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CHAPTER I

INTRODUCTION

Ribbon, or "flat-pack" cables, as described in this

report, are a particular type of multiconductor cable

consisting of n dielectric-coated conductors arranged in a

linear array as shown in Fig. 1.1. Each conductor is

cylindrical in shape, with all conductors in the cable of

identical radii, rc. Surrounding each conductor are

identical, cylindrically-shaped homogeneous dielectrics, or

insulations, of equal radii, rd, and relative dielectric

constant, er" The conductors are uniformly separated by a

distance, d, in the horizontal plane. in m~ny types of

ribbon cables, the conductor orienc,1-cxs are maintained in

this linear array by bonding the adjacent dielectvric

insulations together. When the separation between con-

ductors does not allow the dielectric surfaces to touch, a

2 3 4 n

Figure 1.1 Orientation of ribbon or "flat-pack" cable.



thin film of the insulation connects the adjacent conductor

insulations.

Ribbon cables have been used for many years in computer

bus zconnections as in the Digital Equipment Corporation 2DP-

8 minicomputer [1]. They are recently finding greater usage

in other types of systems such as aircraft and missiles. In

these applications, the various conductors connect

electronic devices at either end of the cable. Of con-

siderable importance when using these cables is the ability

to predict interference or crosstalk. Crosstalk is the

unintentional coupling of signals from one wire onto an-

ot.ier, resulting in possible bit errors in computer signals

and the mixing of signals in analog systems.

Paul [2,13,19] has developed general techniques for

characterizing a system of wires as a multiconductor trans-

mission line, which can be used to predict crosstalk in

ribbon cables. These techniques require '.h'at the per-unit-

length transmission line capacitance and inductance matrices

of the system, C and L, be obtained. The purpose of this

report is to develop a numerical technique yielding these

matrices for ribbon cables.

Approximations to the elements of the transmission line

capacitance matrix can be obtained for cases with no

dielectric insulation, providing the separation between the

conductors is at least ten times the conductor radius. One

such approximation will be derived in Chapter V, and will be

used to develop an approximate expression for the trans-
2



mission line inductance matrix. Boast [3] describes an

approximate method of determining the transmission line

capacitance matrix for bare conductors above an infinite

ground plane. The smallest ratio of conductor separation to

wire radius must be greater than ten. In this case, one can

assume that the per-unit-length charge on each conductor

surface i3 uniformly distributed around the conductor

periphery.

Ribbon cables, however, have a much smaller conductor

separation than is required for these approximations to be

valid, and in addition have dielectric insulations.

Clements [4] showed that, in fact, the approximate formulas

based on constant charge distributions are no longer

sufficiently valid for close spacing and dielectric material

surrounding the conductors.

Clements [4,9] has developed a general computer

numerical technique for characterizing systems of circular

conductors with circular dielectric insulations. This

general technique is specialized in this report to the

particular case of ribbon cables. As a result, many sim-

plifications in the technique are made possible. This

specialization of the general technique and the simpli-

fications which result are described in detail in Chapter

II. Certain special considerations in defining the boundary

conditions and in choosing the matchpoints when applying the

technique to ribbon cables are described in Chapter III.

Chapter IV describes two alternate methods which were

3



investigated to reduce computer solution time; these methods

did not yield valid results.

Chapter V describes the determination of the per-unit-

length transmission line capacitance and inductance

matrices, C and L, needed to analyze multiconductor systems.

An approximate expression for the transmission line

inductance matrix is also derived.

A computer program was written to implement the results

of this report to provide a means of finding the trans-

mission line capacitance and inductance matrices of ribbon

cables. Chapter VI describes the operation of this computer

program and the separate subroutines used. Results of the

program are compared to both known results and to the

approximate technique of Chapter V. Chapter VII is

basically a users manual describing input formats and

displaying typical outputs from the program. Finally,

Chapter VIII summarizes the main points of the report, and

Appendix B gives a full listing of the computer program.

4



CHAPTER II

DESCRIPTION OF THE METHOD

II.1 Capacitance and the Capacitance Matrix

To understand the concepts involved in determining the

capacitance matri- for a system of wires, it is necessary to

have a knowledge of the meaning of the term capacitance.

This can be accomplished by considering the case of two

arbitrary conducting bodies, as shown in Fig. 2.1. Q and

Q2 are the total free charges on the bodies, and 0I and 02

are the pot,'ntials of the bodies with respect to some

arbitrary reference point. The charges Q1 and Q2 can be

related to the potentials of the bodies as shown in Eq.

(2.1).

Q 0

111= (2.11)
2 L 21 2%2- 02

02

1a

Figure 2.1. Two aroitrary conducting bodies.
5



The matrix

{1

~=[~; ~:](2.2)

.s known as the "generalized" capacitance matrix [7].

Hereafter, will be used to denote matrix quantities, and

an underbar, _, will denote nxl column vectors. A matrix

with m rows and n columns is of order mxn.

When the system of Fig. 2.1 is considered as an elec-

trical network problem, it is customarily assumed that the

bodies have been excited in such a way that charges of equal

magnitude and opposite sign are present on the surfaces of

the bodies. Enforcing the condition Q=Ql=-Q 2 appropriate

to network problems, Eq. (2.1) becomes

= 11I+ 22 (2.3)

-Q = &2102 + 't2202

In most texts on electromagnetic theory, a network

consisting of only two bodies is said to have a capacitance,

C, between the bodies defined as [5,6,7]

C = Q  (2.4)
V

0

where V0 is the difference in potential of the bodies; i.e.,

Vo=01-02

Equation (2.3) can then be solved for the ratio

Q/(01-02) yielding an expression for the capacitance
6



between the two bodies of Fig. 2.1 as [7]

Q 1122 -t12 21 (2.5)

01~2~H+L +~ +'
1-02 =11 22 12 21

The concept illustrated by Eq. (2.1) can be extended to

the case of n charged bodies. Then, the nxn generalized

capacitance matrix is defined by the equation

1 11 12 1n

Q 21 22 2n 02(2.6)
a.- (2.6)

LQn "nl n2 nn

In matrix notation, Eq. (2.6) is written as

Q =0 0 (2.7)

where 6 is the generalized capacitance matrix of the system.

When considering infinitely long parallel conductors,

total free charge is no longer finite. The charge on each

conductor is customarily expressed as a function of its

length. This per-unit-length free charge, qf, can be

related to the conductor potentials by the same relationship

as in Eq. (2.6). This yields the matrix equation

7



qlf 11 12 In

q2 f 21 2 2n 2

: : ". (2.8a)

qnf n1 n2 nn- n-

or

saf 0 (2. 8b)

where qif is the per-unit-length free charge on conductor i,

and i is the per-unit-length generalized capacitance matrix

of the system.

11.2 Dielectric-Coated Conductors

Shown in Fig. 2.2 is a cross-section of two infinitely

long circular conductors covered with a cylindrical diel-

ectric. These dielectric-coated conductors will be referred

to as wires. The dielectric material is assumed to be

linear, homogeneous and isotropic. The quantities rcl and

rc2 in Fig. 2.2 designate the radii of the conductors, rdl

and rd2 designate the radii of the dielectrics, and eri and

Er2 specify the relative diele, tric constants of the diel-

9re

Tdi

Fig. 2.2. Two dielectric-coated conductors.
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ectric materials relative to free space. The term "con-

ductor surface" will designate the conductor-dielectric

boundary, and the term "dielectric surface" will designate

the dielectric-free space interface.

The potentials on each conductor cause quantities of

"free" charge to build up on the surfaces of the conductors.

These "free" charges produce an electric field in the

region surrounding the conductors. The introduction of

dielectric material into this field will cause the dipoles

in the dielectric to separate their positive and negative

charges to align themselves with the electric field. This

separation results in a net drift of "bound" charge to the

dielectric surface, qlb and q2b in Fig. 2.2. An equivalent

amount of charge equal in magnitude but of opposite sign

will be induced on the conductor surface. The total (bound

plus free) charges q, and q2 on the conductor surfaces are

q, = qlf - qlb and q2 = q2 f - q2b (2.9)

Thus, the "free" charge on the conductor is found by adding

the values for the bound charge at the dielectric surface

Pnd the total charge at the conductor surface;

qlf = ql + qlb and q2 f = q2 + q2b" (2.10)

Since the generalized capacitance matrix relates "free"

charge to conductor potentials, the per-unit-length charges

on both the conductor and dielectric surfaces must be found

9



in order to develop this matrix for dielectric-coated con-

ductors.

11.3 Analytical Formulation of the Method

To find the generalized capacitance matrix of ribbon

cables, a general computer numerical technique developed by

Clements (4,9] is used, which utilizes the matrix methods

described by Adams (7,8]. The technique is associated with

the general "method of moments" (10] for solution of fields

problems.

F

Wr,a (re

r

Figure 2.3. Fourier series charge distribution around
a cylindrical surface.

In examining the method, the per-unit-length charge

distribution, a, around an infinitely long cylindrical

surface as shown in Fig. 2.3, will be represented as a

Fourier series,

k
a(@) 0 + Z (amCOSm + a ms i nm) (2.11)m=1

where k is the number of harmonics included in the repre-

sentation. Then, the potential, with respect to an arbi-

10



trary reference point, at a point (r,e) outside this surface

(i.e., r>r') is [41 (Ev is the permittivity of free space)

(r,) = r'ln r + 1 (r') m + 1 cosm0 r ) = a0 v + mE Mm
vm=1 mr

(2.12)

+ 1 sinme
2v m= I M mrm

The reference potential term (defined in Appendix A) has

been omitted in Eq. (2.12). It is shown in Appendix A that

this reference term will vanish for a system with zero net

charge and the reference point at infinity. Aiso, the

electric field at the point (r,8) can be found as [4]

rOIl- I k rm1
0 r + 1 a r ) + (cosm OF + sinm OT)

E~r8)- v 7rv m1 r-
^ , m+1

kmI (sinmOF - cosmO ) (2.13)
+ Vm=1

where ? is a unit vector in the radial direction, and IT is

a unit vector in the tangential direction.

Similarly, if the point (r,8) is inside the surface,

that is, r<r', (4]

-or'ln r' k m k - m
0_+ 1 Z j r _osm __ r sinm

0(r,8) Vv2- m-1 m(r,)m1 + 7m=i rn m(r')m-

(2.14)

11%



k Mn-i
-)Z r (cosmO? - sinm9T)

ar~m+ m C J (sinmeF + cosmeO) (2.15)2ev m=1 Mr-

Equations (2.12), (2.13), (2.14), and (2.15) can be

used to find an approximation to the potential and electric

field vector at any point due to a per-unit-length charge

distribution on a cylindrical surface of the form of Eq.

(2.11). A consideration of the geometry of the "flat-pack"

cable results in a reduction of the number of terms in these

equations.

Figure 2.4 shows the orientation of the wires in a

"flat-pack" cable. All wires are identical and are oriented

in a linear horizontal array.

rar

Figure 2.4 Physical geometry of "flat-pack" cable.

One would expect from the extreme symmetry of the

"flat-pack" cable with respect to the line connecting

centers of the wires, that the surface charges would be

symmetric with respect to this line. This "even" function

of the per-unit-length charge on the surfaces can be de-

12



I
scribed by constant and cosine terms only. In analytical

form, the per-unit-length charge on a conductor surface is

of the form

k
(G) = a0 + E amCosme . (2.16)

0 m1

Thus for "flat-pack" wire orientations, only k+1 of the full

2k+1 Fourier coefficients need to be retained.

The potential and electric field equations for r*r',

Eq. (2.12) and Eq. (2.13), can then be reduced to

k m+1

(r, _ r'ln r + 1 E o (r') cosme (2.17)0 V 2c-- M=1 m mr(m

and

rlk m+1
0  +E v1 2 -- Om  (cosmOe + sinme9)

V v(2.18)

Similarly, for r<r', Eq. (2.14) and Eq. (2.15) become

0(r,B) = -.ar'ln r' + 1 a r icosme
0 v  v m=1 m mr-1 (2.19)v vin=1 m W')

and

1 k

(r,) m(r) (cosmOF - sinmeT) (2.20)= o r m-11

Similarly, the per-unit-length bound charge on a

dielectric surface is of the form

13
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1

p4

a' (0) = q' + E acosme (2.21)
m=1

The potential and electric field vector due to the per-unit-

length bound charge on the dielectric surface can be found

from Eqns. (2.17) through (2.20) with a replaced by a'.

The angle e in the charge distributions in Eqns. (2.16) and

(2.21) for each wire is with respect to the line connecting

wire centers as shown in Fig. 2.4.

II.4 Matrix Organization in the Method

In the previous section, equations were developed for

the potential and the electric field due to a charge distri-

bution on a cylindrical surface, where the charge distri-

bution is represented as a Fourier series. These equations

are utilized in this section in a matrix formulation to

solve for the per-unit-length generalized capacitance

matrix.

Fourier series representations of k-4-1 terms are chosen

for the charge distribution around each conductor surface,

where k is the number of cosine terms in the series. Since

the potential is equal at any point on the conductor sur-

face, k+1 matchpoints on each conductor surface are used to

define the potential resulting from the charge distributions

on all the surfaces.

Similarly, Fourier series representations with 1+1

terms are chosen to describe the bound charge distribution

around the dielectric surface. The boundary conditions at

14
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the dielectric surfaces require that the normal components

of the displacement vector D=E must be equal just inside

and just outside the dielectric boundary [7]. Therefore,

l+; matchroints are chosen on each dielectric surface at

which- this condition will be enforced. The electric field

will change by Ps /v as a field point passes through the

charged suarface (where Ps is the surface charge in coulombs

per squdre meter), but the normal component of the dis-

placemer.t vector will remain continuous across the boundary,

i.e.,

i 0
;E - S E = 0n vn

,C 'Ei F 1 E) = 0 (2.22)
V r n 0

Ei E. Eo 0 0
r n n

i 0where El and E are the normal components of the electric
n n

field just inside and },st outside the boundary, respec-

tively, ci and E r are ti, dielectric constant and the

relative dielectric constant of the insulation, and cv isvi

the permittivity of free space.

The matrix equation which i.isults will be of the form

15



I D Dl
D1'1 £1'1' D1'2 D1'2' 1'n £1'n' _1 0

D D Dn -2 C
P 21 £21' £22 P22, . 2n £2n -2

I D of 0D2'1 D2'1' DP2'2 D2'2' D2,n D2,n' o =0I

Dnl D 1 ' 1.a2 £n2' 'nn Pnn' 0n n

I -

Dn'l Dn' 1 ' 'Dn2 Dn'2'' DnnDnn -n -L

(2.23)

D

where unprimed quantities relate to the conductors, primed

quantities relate to the dielectrics, and n equals the total

number of wires in the cable. The a. terms are vectors of-i

length k+1 containing the Fourier coefficients of free plus

bound charge densities on the i-th conductor boundary, _.

are vectors of length 1+1 containing the Fourier coeffi-

cients of the bound charge densities on the i-th dielectric

boundary, and 0. are column vectors of length k+1, defining

the conductor potential of the i-th conductor for i=l,''',n.

These three vector quantities have an element organization

as shown below:

AI ~ i

. = a' 0. (2.24)

ik] -"
6 !
16
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where the per-unit-length charge distribution on the con-

ductor surface of the i-th wire is represented by

k
i = aiO + E aim cosme (2.25a)

m=1

and the per-unit-length bound charge distribution on the

dielectric surface of the i-th wire is represented by

I 1 1 1

i = a A + E a. cosme (2.25b)
m=1

The submatrices of D have the significances noted below:

D.. contains the contributions to the potential at the

matchpoints of conductor i due to unit charge

distribution coefficients on conductor j. This

submatrix is of dimensic. (k+1)x(k+1).

D..j contains the contributions to the potential at the

matchpoints of conductor i due to unit charge

distribution coefficients on dielectric jI. This

submatrix is of dimension (k+1)x(l+1).

D' contains the contributions to the difference in

the normal components of the displacement vector

at the matchpoints on the surface of dielectric i'

due to unit charge distribution coefficients on

conductor j. This submatrix is of dimension

(l+1)x(k+1).

17



D.,, contains the contributions to the difference in

the normal components of the displacement vector

at the matchpoints on the surface of dielectric i'

due to unit charge distL'ibution coefficients on

dielectric j'. This submatrix is of dimension

(l+1)x(i+1).

For convenience, the matchpoints on each conductor

surface (dielectric surface) will be chosen according to the

same rules for all conductor surfaces (dielectric surfaces).

An example of this is shown in Fig. 2.5, where the match-

points are denoted by X's.

Figure 2.5. Matchpoint orientations for the conductor
and dielectric surfaces.

Due to (1) the horizontal orientation of the flat-pack

cable, (2) the identical size of all the wires (see Fig.

1.1), and (3) this particular method of choosing the match-

points, many of the submatrices of D are identical. For

example, Di1 contains the contribution to the potential at

the matchpoints of conductor 1 due to the components of its

own charge distribution. Obviously, then,

P11 P22 = nn (2.26a)

18



Thus, the charge distribution on any conductor produces the

same contribution to the potential at the matchpoints on its

own surface. Also, the charge distribution on the surface

of any dielectric produces the same contribution to the

potential at the matchpoints on the conductor surface inside

it:

D D22 = Dnn (2.26b)

Similarly, it can be seen that

P 1,1  P2 12 = Pn n

i = D2' 2 ' = = n' n' (2.26c)

This shows that all the submatrices on the ... diagonal of

D are identical, i.e.,

i Pi' 1 D22 P 2 2 ' 1 = [Pnn Pnn'1

.ill Pill,- D212 P2'2', LDn'n Dn'n'-

(2.27)

The same is true for the other diagonal partitions: hence

the matrix in Eq. (2.23) can be written as

1
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O  1 P- 2  (n-i) i  XI

D1 D D a- XD1- (n-2)

P2 P1 PO (n-3) -3 -?3

D(n-1) D(n-2) PDin-3) PO Ln .n

(2.28)

where

i , -

and the subscripts on the Di submatrices in Eq. (2.28) are

found from the subscripts of the corresponding submatrices

of D in Eq. (2.23) by subtracting the second subscript from

the first. For example,

[ n P1'n D_ (n-1) (2.29)
Pl'n Dl' -

The matrix D in Eq. (2.28) is in the block Toeplitz form

allowing fast generation of the complete matrix, since only
2

2n-1 of the original n 2submatrices need be computed.

The matrix: D of equations (2.23) and (2.28) is inverted

to obtain the matrix T=D-1 , and the equation becomes

20
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a1 T12 Tl Tl'-1 T11 T11' T -12' T ,in Tin' 1 I
"I I I

---- -.--- I------- - ---

2= 
0 1 n

O, T, T'' I Tn'T' TnTn n' 0
-n~ I ~n I 2 2 .'n ' -

2.30)

The total (bound plus free) per-unit-length charge, qi on

the i-th conductor surface is the integral of the per-unit-

length surface charge density, ai, over that surface. Thus,

2ff k
qi = f (a.0 + Z a.l cosme)rcdS (2.31)

00
C J - '1 mn T'1 cnn

= f a. =(2.32)

since the integration of a cosine function over a multiple

of 271 is zero. The term rc is the conductor radius, and i

is the average value of the total per-urit-length charge

density (the constant term of the Fourier expansion) on

conductor i.

Similarly, the per-unit-length bound charge on the

dielectric surface is

qi = 2T a'0 (2.33)

21
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where r is the dielectric radius, and U! is the average
d ri0

value of the per-unit-length bound charge density on the i-

th dielectric surface. As a consequence of Eq. (2.10), the

per-unit-lengtii free charge on the surface of conductor i

is

= ' j (2.34)qif =qi + q! (234

Thus, combining equations (2.32) and (2.33) yields the per-

unit-length free charge on the i-th conductor,

qif = 271 (rcai0 + rdO') . (2.35)

From Eq. (2.30), the average per-unit-length charge density

on the i-th conductor, ai0 , (the first term in the a

vector) is

ai = TI 1  + 1 + "'" + 1 (2.36)

where T! . indicates a lxn vector consisting of the first row

of T... Similarly, the average per-unit-length charge

density on the i-th dielectric, o'1, is

' T ... (2.37)S--i' 111 -i'22 + + (i

Adding equations (2.36) and (2.37), according to

equation (2.35), yields

22
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qif Irc (T + T + (T + T! 0

+ rd(T ,01  + T + Id- ' - , i2 -2 + " i" + -n)
n 1

27 E (rcT.j + rdT.,j  . (2.38)
j= I-1

Since 0. is a vector of equal conductor potentials, that is,

0
i

0
i

S_ 0. (2.39)

then Eq. (2.38) can be written as

n n Im  n
2qif =  2 r ij + rd TIj 0j (2.40)

9= I  c M=1 m=1

where Tij is the element of T.. in the p-th row and q-th

column. The desired generalized capacitance matrix is

qlf 11 12 In 01

q2 f = 21 22 2n 02 (2.41)
• . . . ..
* • . •

L ni n2 nn .Ln

and the per-unit-length free charge on conductor i is

nqif 0 . (i)@ (2.42)

j=1 i
23



Thus comparing equations (2.40) and (2.42), the elements of

the per-unit-length generalized capacitance matrix can be

written as

~ij 2Trfrc m T j+ r d m .ii (2.43)
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CHAPTER III

MATCHPOINT SELECTION

III.1 Introduction

In the previous chapter, a method for computing the

generalized capacitance matrix of ribbon cables was de-

veloped. Several major considerations concerning choice of

matchpoints will be discussed in this chapter. In the first

part of this chapter, necessary criteria for choosing the

position of the matchpoints are discussed. A matchpoint

selection technique applicable to the ribbon cable problem

was developed and is shown to meet these criteria. The last

portion of the chapter provides some guidelines on the

number of Fourier series coefficients and matchpoints

required for the surface charges to yield accurate capa-

citance matrices.

111.2 Matchpoints and Nonsin ularity of the D Matrix

A key step in the method outlined in Chapter II is the

inversion of the computed D matrix. The necessary criterion

to insure solution is that D be nonsingular thus assuring

that D - exists. Therefore, the matchpoints should be

chosen such that singular D matrices are not generated.

A matrix is singular when any of its rows (or columns)

can be expressed as a linear combination of the other rows
25



(columns). The most obvious case of this condition results

when two rows (columns) are equal. Criteria for matchpoint

selection which will guarantee that no two potential or

displacement vector continuity equations are equal will be

developed in this section. It should be pointed out,

however, that these will constitute only necessary con-

ditions for the nonsingularity or D.

As described in Chapter II, the matrix equation de-

fining D is of the following form:

P11 P11' P12 P12 ' PIn PlIn' -1 -1
I I

1 ,1 1ii D' 12 Pl'2' D' " PI'n P1'n' l'

-21 21' 1 P2 2  P2 2 ' 92n P2n' 2 02

22 ' 1 P2 '111' P2 ' 2 P2 ' 2 ' P2'n P2'n' . =0

----------------------S- -. ... -
* • I • I••"

D .D DD Dnn a' 0
-nl n1i' -n2 Pn2' i ~nn -nn' -n

Pn'1 Pn'1' Dn'2 Pn'2' D nn Pn'n' -n 0
I0 j

(3.1)

It will be assumed that there are k+1 matchpoints

around each of the conductor surfaces and 1+1 matchpoints

around each of the dielectric surfaces. The first block row

of Dij and Di'j' submatrices in a partitioned row of Eq.

(3.1) consists of k+1 equations for the potential at the

conductor matchpoints of wire i. The next block row of Di'j

and Di'j, submatrices consist of 1+1 equations containing

26
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the differences in the normal components of the displacement

vector at the matchpoints on the dielectric surface of wire

i.

Examining the conditions for identical potential

equations, the case where the identical equations are in

different partitioned rows of the matrix in Eq. (3.1) will

be considered first. The matchpoints corresponding to the

two equations are located on different wires since the

partitioning in Eq. (3.1) combines only those equations for

a particular wire in each block row. Figure 3.1 illustrates

two matchpoints, A and B, on the surfaces of the conductors

of two different wires, i and j.

A

I L n

Figure 3.1 Matchpoints on two different wires in the cable.

Referring to the matrix equation (3.1), the rows associated

with matchpoints A and B will be equal if the respective

rows of the submatrices in each column partition are the

same. That is,

D = DB for all m=l, 1,, n, n (3.2)-im .m
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Rwhere D indicates the row associated with matchpoint R in-pq

the submatrix D pq. This implies that the contributions to

the potentials at matchpoints A and B due to the components

of the charge distributions on the m-th surface must be the

same. It is obvious that this will be true only when match-

points A and B are at the same location. For wires having

dielectric insulations, however, matchpoints on two dif-

ferent conductors will never be coincident.

A similar analysis for the displacement vector con-

tinuity equations shows the same result which is illustrated

in Fig. 3.2. For ribbon cables with separation greater than

twice the dielectric radius, however, this will never occur,

since the dielectric surfaces will not be touching.

Figure 3.2 Coincident matchpoints from different surfaces.

When the adjacent dielectric surfaces in a ribbon cable are

touching, this may occur and a general matchpoint selection

method should avoid this condition.

Another instance in which the D matrix in Eq. (3.1)

will be singular occurs when two identical equations are in

the same row partition, implying that the matchpoints

associated with these identical equations are associated

28



with the same surface. As in the previous case, the ele-

ments of the two equations will be equal when the effects at

the two matchpoints (on potential or continuity of the

displacement vector) due to components of the charge dis-

tributions on the m-th surface are the same. This will

result when choosing two matchpoints on the same surface of

some wire as images of one another, above and below the line

between the centers of the wires. Fig. 3.3(a) illustrates

a typical occurance of this condition.

(a) Matchpoints symmetrically disposed with respect
to the center line on a charged surface
(dielectric or conductor).

(b) Alternate choice of matchpoints on the surface.

Figure 3.3.

Matchpoints A and B in Fig. 3.3(a) are symmetrically

disposed with respect to the charge distributions on all the

29
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wires. The potentials (or fields) at these points due to

terms of the Fourier series representation of the charge

distributions (assumed to be an even function with respect

to the line between centers) on any surface will be the

same, thus generating two identical rows. This can be

easily avoided by choosing the matchpoints on any surface

according to the method in Fig. 3.3(b). If the angles e and

are not equal, the rcws in the D matrix associated with

these matchpoints will not be equal.

A method for matchpoint selection must then meet two

necessary criteria:

1) the matchpoints on two adjacent wires must

not both be on the line between centers, and

2) the matchpoints on any surface must not be

chosen symmetric with respect to the line

between centers.

These criteria, of course, do not guarantee the nonsin-

gularity of P. They do, however, avoid the obvious cases in

which a singular D matrix will be generated.

111.3 Matchpoints and Symmetry of the Matrix

Due to the extreme symmetry of the "flat-pack" problem

(conductor radii identical, dielectric radii identical,

separation of the wires identical, and the wires oriented in

a horizontal plane), some of the elements of( must be

identical. As an example, consider the case of three wires
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shown in Fig. 3.4(a). The generalized capacitance matrix

becomes

11 12 13
1 (2 2 32

13 12 11 (3.3)

(a) A three-wire cable

0000
(b) A four-wire cable

Figure 3.4 Three and four-wire cables illustrating the

geometrical symmetry.

The resulting structure of e in Eq. (3.3) can be

easily shown by recalling thattij is the ratio of the total

per-unit-length free charge on the i-th conductor with a

unit potential applied to the j-th conductor and all other

conductor potentials set equal to zero; i.e.,
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_ qif

1J 0j 0m=0  (3.4)

m~j

Clearly then from geometrical considerations

33 11

623 - 21

32 12 (3.5)

31 13

as indicated in Eq. (3.3).

For four wires 6 becomes

it 11 12 A13 0 14

6 &'

24 23 22 21

L14 13 12 11j

Thus it can be shown from Eq. (3.4) that for this four wire

case (see Fig. 3.4(b)),

33 22
4 4 =  11 (3.7)

31 
24

32 ( 23

41 14

42 13

43 12
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Therefore, the matchpoint selection technique should yield

this "geometrical symmetry". Matrices with these properties

are called centro-symmetric [18]. An nxn centro-symmetric

matrix M has the property that M = SMS where S is an nxn

matrix with ones on the cross-diagonal and zeros elsewhere;

i.e., Si. = 1 for i+j = n+1 and zeros elsewhere [18].
1J

Reciprocity relations [11] also show that the gen-

eralized capacitance matrix is symmetric with respect to the

main diagonal. Thus, the generalized capacitance matrices

for three and four wire cables can be written as

~11 12 13

12 2/ (3.8a)

13 12 11

\11 12 13 14

12 .22 23/ 13

13 23 22 12 (3.8b)

14 13 12 11

Therefore, the generalized capacitance matrix should be

symmetric with respect to ooth the main diagonal and the

cross-diagonal and those elements above the dashed lines in

Eq. (3.8) completely characterize the matrix.

Another necessary criterion: then, in choosing the

matchpoints for the method described in Chapter II is that

the computed capacitance matrix be symmetric with respect to
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both the main diagonal and the cross-diagonal.

III.4 A Method for Matchpoint Selection

In thki implementation of the general technique, many

choices of the number of matchpoints and expansion terms for

each surface are possible. However, one particular choice

will be used in this report and the resulting computer

program. The number of terms in the Fourier series dis-

tributions associated with each dielectric surface of each

wire will be the same and will be denoted by NFD. Also, the

number of expansion terms associated with each conductor

surface of each wire will be the same and will be denoted by

NFC. The number of matchpoints associated with each di-

electric surface of each wire will be equal to the number of

expansion coefficients associated with this surface; i.e.,

NFD = 1+1. Similarly, the number of matchpoints associated

with each wire will be equal to the number of expansion

coefficients associated with this surface; i.e., NFC = k+1.

During the course of this work, a recursive method for

selection of the matchpoint positions was developed. This

will be described and then shown to meet the necessary

criteria. The method is dependent on the number of Fourier

coefficents chosen for the distribution of charge around the

surface. The relation assumes the matchpoints are evenly

divided around the surface, sc that the only independent

variable is the rotation of the matchpoint set from the zero

degree axis. This is illustrated in Fig. 3.5 for five
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matchpoints on a particular surface. The angle 6 used in

the potential and electric field expressions in Chapter II

will be chosen with respect to the horizontal line between

centers, as shown in Fig. 2.4 and Fig. 3.5.

S ,-reference axis

Figure 3.5 Example of matchpoint selection.

The angle, a, between any two adjacent matchpoints is

determined by

_27r
a 27T '(3.9)

where NFS indicates the number of Fourier coefficients

(matchpoints) associated with the surface (conductor or

dielectric). For this particular case of five matchpoints,

2' = 720
a=5

The angle A, the rotation of the matchpoints from the 8=0

reference, is given by
A = (3.10)

(2xNFS) .(.0

Thus for the case of NFS=5, as above,
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fl5f 911 13ff 1711 from
The matchpoints then lie at angles , S R -- , - -f

the reference.

Table 1 shows the typical matchpoint selections using

the formulas in Eq. (3.9) and Eq. (3.10) for cases where the

number of matchpoints is in the range of 1 to 10.

For all the cases shown in Table 1, the matchpoints on

any particular surface (conductor or dielectric) are not

symmetric with respect to the line connecting wire centers,

nor do the matchpoints occur on the line connecting wire

centers. This is true for all finite values of NFS. In

general, then, this matchpoint selection technique will

always meet the criteria which were necessary in avoiding D

matrices in which two rows of the potential equations or the

displacement vector continuity equations are identical.

It was shown in Section 111.3 that the generalized

capacitance matrix should be symmetric about the main and

cross-diagonals. This would be true if the exact charge

distributions on the conductor and dielectric surfaces are

obtained. In applying this technique, an approximation to

the true charge distributions will be obtained. In the

limit as the number of matchpoints on each surface increases

without bound, these approximate charge distributions will

approach the true charge distributions. In order to min-

imize the computation time and required core storage, how-
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O3

4

0

aI NFS'I2 •NF

Cd 1=Ici (\JtcO I

U)

0
4-)

U)

Table I. Matchpoint positions resulting from formulae

a NFS -N
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ever, the matchpoint selection technique should provide a

rapid convergence of the generalized capacitance matrix to

one which is symmetric about the main and cross diagonals.

As indicated above, the number of matchpoints on each

conductor surface and each dielectric surface of each wire

will be denoted by NFC and NFD, respectively. In addition,

the number of matchpoints chosen on each surface will equal

the number of Fourier series expansion terms associated with

that surface. For the case of two wires, the matchpoint

selection technique outlined previously can be shown to

yield centro-symmetric generalized capacitance matrices for

any value of NFC or NFD. To show this, consider the case of

*two wires with various matchpoint selections shown in Fig.

3.6. These cases should be sufficiently representative to

illustrate the proof.

Note in Fig. 3.6 that when the number of matchpoints on

a particular surface is odd, these matchpoints are mirror

symmetric about a vertical line X-X' between wire centers.

When the number of matchpoints on a particular surface is

even, these matchpoints exhibit skew symmetry about the

vertical line X-X'. These conclusions can be generalized

for two wires and any value of NFC or NFD.

The generalized capacitance matrix for two wires

becomes
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(a)

IJFC= 1 a=2TT

NFD=1 a=2JT

A=T

x

(b)

NFC1l a=2 7T / 4

NFD= 2 i=1T

(c) 
K'

NFC=2 a=TT
A=I 'r4T

NFD=2 a=TT

A=T

(di)

NrC=2 a=71

A=n
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1~ it12J
21 2 2 1 (3.11)

Recall that is the free charge on the i-th conductor

with a unit potential applied to the j-th conductor and the

rem&a.ning conductors at zero potential. Since (1) the

matchpoints on corresponding surfaces exhibit either mirror

symmetry or skew symmetry with respect to the vertical line

X-X', (2) the wires are identical, and (3) the assumed

charge distributions are symnetric with respect to a line

between centers, then clearly for two wires will exhibit

centro-symmetry and

11 = 22

12 - 21 . (3.12)

This is a direct result of the fact that due to the above

observations, the computations performed when the cable is

viewed from either end will be identical. Note that for two

wires, centro-symmetry automatically guarantees symmetry of

about the main diagonal. Computed results illustrating this

are given in Table 2 for the cases of NFC=2, NFD=2 and

NFC=2, NFD=3. Note that the matrices are symmetric with

respect to the main and cross diagonals to sixteen digits.

All computations were performed on an IBM 370/165 computer

in double precision arithmetic.

For cables containing more than two wires, geometrical
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symmetry (i.e., centro-symmetry) ofit will again result.

This has been verified computationally in numerous cases for

cables involving up to twenty wires. However, for more than

two wires, this geometrical symmetry does not automatically

imply symmetry about the main diagonal. Again, the reason

that i will not be symmetric with respect to the main

diagonal is that only the approximate charge distributions

are obtained. However, this matchpoint selection technique

does provide rapid convergence to generalized capacitance

matrices which are symmetric about the main and cross-

diagonals. A typical result for a five wire cable with

NFC=3, NFD=7 is shown in Table 2.

111.5 Number of Fourier Coefficients and Convergence of the

Ccitance Matrix

One final topic to be discussed is the choice of the

number of Fourier series coefficients around each boundary

which are to yield results to a certain accuracy. This is

most important in terms of computation time, since a single

additional coefficient increases the size of the D matrix by

an order of NW (the number of wires). This is significant

since the number of operations (multiplications and di-

visions) required to invert an mxm matrix is approximately

3m3 . Therefore, the number of operations required to invert

3 3D is (NFC + NFD) (NW)

A number of sample cases were run to determine worst

case needs. The problem considered is illustrated in Fig.

3.7,
42



Er\\ 6

r =1.0

rd= 2.0

sep = 4.0

Sep " 4.0
r

Figure 3.7 Two-wire ribbon cable.

where the dimensions of the cable indicate that the diel-

ectric surfaces are touching. This should correspond to a

worst case condition in terms of wire separation. Table 3

shows the calculated capacitance using Eq. (2.5), for

various numbers of Fourier coefficients associated with each

surface.

The circled items in Table 3 indicate the best result

for a particular number of total Fourier coefficients

assigned to each wire. The most interesting point is that

not as many terms are required around the conductor surface

as the dielectric surface. For example, with ten total

coefficients, the best organization would use three terms in

the representation of the charge distribution around the

conductor surface and seven for the dielectric surface.

Table 4(a) indicates similar results for five-wire

ribbon cable. Considering the convergence of the t31 term

given in Table 4(a), it is sufficient to assign approx-

imately one-third of the total number of expansion coef-

ficients alloted to the wire to the conductor surface expansion

and assign the remaining number to the dielectric surface
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# terms # terms around conductor
around
dielectric 1 2 3 4 5 6 10

2 6 D 63.5

3 (9D&~i (E)73
4 70.5 79.4 79.5

5 73.0 82.7 82.8 82.8

6 74.7 85.0 85.0

7 75.6 84.6 86.2 86.2

8 76.2 85.3 87.0 87.0

9 76.6 85.7 87.4 87.4

10 76.8 86.0 87.7 87.8 87.8

11 8. 87987.9

12 81Q8.

14 88.0 88.2

Physical conditions:
rc=1.0, rd= 2 .0, sep=4.0, 6=4.0

c r

Table 4(a). Center element, !(3,3), in the

generalized capacitance matrix of a

five-wire ribbon cable for various

numbers of Fourier terms per boundary.

(All entries x10 -12 .)

45



expansion. In applying these results to transmission line

analysis, the transmission line capacitance matrix, C, is

needed. The derivation of C from the generalized capa-

citance matrix is shown in Chapter V, and the C11 term for

the five wire ribbon cable is shown in Table 4(b). Again,

it is sufficient to proportion the total number of expansion

coEfficients allotted to a wire by assigning approximately

one-third to the conductor surface. This allotment cri-

terion has yielded the same convergence results for all

computed cases which were examined and should serve as a

general rule for users of this program.

A general rule for the total number of coefficients to

be allotted to each wire cannot be as easily obtained since

the convergence depends upon the relative separation of the

wires; for larger wire separations, a smaller number of

total expansion terms can be used. However, a worst case

rule can be cited. Numerous examples have been run in-

volving up to twenty wires in which the dielectric surfaces

are touching (a worst case and generally typical situation

for ribbon cables). The dielectric constant is assumed to

be 4 (a representative upper bound on typically used in-

sulation materials). For all of these cases, accuracy to

within approximately five digits can be obtained by using a

total of ten coefficients per each wire. With the above

allotment rule, the recommendation is to use a total of ten

terms for each wire and assign three to the conductor

surface and seven to the dielectric surface.
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# terms # terms around conductor
around
dielectric 1 2 3 4 5 6 10

2 63.7

3 73.6

4 70.8 79.6 79.7

5 73.4 82.9 83.0 83.0

6 75.1 85.2 85.2

7 75.9 84.8 86.4 86.4

8 76.6 85.5 87.2 87.2

9 76.9 85.9 87.6 87.7

10 77.1 86.2 ( ,8 88.0 88.0

11 6(iD 88.2
12 883(8.

13 88.2 j 8D
14 88.2 88.4

Physical conditions:
rc=1.0, rd= 2 .0, sep=4.0, Er=4 .0

Table 4(b). C11 element in the transmission line

capacitance matrix (to be described

in Chapter V) of a five-wire ribbon
cable for various numbers of Fourier

terms per boundary.

(All entries x10 -12 .)

47



CHAPTER IV

ALTERNATE METHODS OF SOLUTION

IV.1 Introduction

A numerical method for determining the generalized

capacitance matrix for ribbon cables was developed in

Chapter II. Criteria for the selection of the matchpoints

were given in Chapter III.

One difficulty with this technique is that for large

numbers of wires, a reasonably accurate matrix requires

that the D matrix of Eq. (2.23) be of a very large order. As

indicated previously, the number of operations required to

obtain D-1 is on the order of (NFC+NFD) 3(NW)3 where NW is

the number of wires in the system and NFC and NFD are the

number of matchpoints (expansion terms) associated with the

conductor and dielectric boundaries, respectively.

The solution of the matrix equation (2.28) to yield the

generalized capacitance matrix could be obtained in much

less time if there were a large number of zero elements in

the D matrix. There exist many routines which take advan-

tage of this "sparseness" of the coefficient matrix to

optimize solution of the equations.

In this chapter, two methods which result in sparse D

matrices will be discussed. One is a "near-neighbor"
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technique in which only close wires are assumed to affect

one another. The other is a "term-dropping" technique based

on the relative separation of the wires. Neither of these

techniques proved to yield valid zesults.

IV.2 The Near-Neighbor Technique

In this technique, it is assumed that the potential and

displacement vector at the matchpoints on a particular wire

have contributions from the charge distributions on only the

wires closest to it. A term will be defined to describe

this closeness. Consider the multiwire ribbon cable shown

in Fig. 4.1. The term "first near-neighbors" will refer to

the wireb directly adjacent to the match wire, "second near-

neighbors" will refer to the wires separated by one wire

from the match wire, etc., as noted in Fig. 4.1.

When calculating a particular row of the D matrix, the

terms corresponding to a particular number of near-neighbors

will be included; the rest will be assumed to be small and

second near neghbors

match wire

first near neighbors

third near neighbors

Figure 4.1. Near neighbors of a multiwire ribbon cable.
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will be set equal to zero. The more terms that are ne-

glected, the more sparse the D matrix becomes.

The goal was to find an optimum number of near-neigh-

bors to include such that the results are valid, and yet the

D matrix is sparse enough to make solution worthwhile

through the sparse matrix techniques.

Results indicate, however, that a near-neighbor tech-

nique is not valid. Shown in Table 5 is a comparison of

several terms of the generalizd-, capacitance matrix for the

exact (no assumptions) and the near-neighbor methods. Not

only are the magnitudes of the particular elements quite

different, but the required sign pattern of the generalized

capacitance matrix (positive diagonal elements, negative

off-diagonal elements) has been altered. Similar results

occcured for the case of ten wires with eight near-neighbors

included (only the effects of the end wires on one another

were neglected). It would seem from these results that this

method is unusable.

Careful investigation of the physical conditions of the

previous method shows that an assumption which was made is

invalid. In electromagnetics, it is valid to assume that

when two surface charge distributions are widely separated,

the distributions themselves are approximately constant

around the periphery of the charged surfaces.

Thus, assuming no effect on the potential or displace-

ment vector at a matchpoint on one wire due to the charge

distribution on another wire when the wires are widely
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Elements of the Generalized Capacitance
Matrix for a Three-wire Ribbon Cable.

(elements *10- 12 , pF/M)

Element Control First Near-neighbor

o(I,I) 36.44 -25.80
e_(1,2) -39.43 -22.96
S(1,3) -13.73 40.20

!(2,2) 70.62 84.04
t(2,3) -39.43 -22.96

(3,3) 36.44 -25.80

Physical conditions: rc =1.0

rd =2.0

sep=4.0

=3.0r

Ten Fourier coefficients chosen
around each boundary.

Table 5. Comparison of results using the
near-neighbor technique to
results from the control case
(no dropping of terms).
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separated, as in the method above, is clearly not valid.

However, assuming that this effect would be due to a con-

stant distribution would seem more logical. This is the

idea behind the second method which will be described in the

next section.

IV.3 The Term-Dropping Technique

The results of the previous section indicate that the

"near-neighbor" technique does not adequately describe the

physical conditions of the ribbon cable. This method, then,

will not be useful in reducing the computation time required

to find the generalized capacitance matrix. The results

did, however, point to another possible tenhnique which will

be described in this section.

The "term-dropping" technique is based on the assump-

tion that the effects between two widely separated surface

charge distributions are produced mainly by the average

value of charge around the periphery of the charged sur-

faces. In this report, the surface charge distributions are

represented by a Fourier series. Thus, the total contri-

bution to the potential or displacement vector at a match

point on the match wire should be adequately represented by

a charge distribution on the source wire which has fewer

number of Fourier series coefficients as the separation

between the wires increases. An example of the "term-drop-

ping" technique is illustrated in Fig. 4.2.
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1j
MATCH V1R

3 j9.

Figure 4.2. Multiwire flat-pack cable illustrating the
"term-dropping" technique. (Five Fourier
coefficients per boundary.)

The second wire from the left in Fig. 4.2 is considered

the match wire; that is, the contributions to the potential

and displacement vector at matchpoints on the surfaces of

the match wire due to all the wires are to be determined.

The numbers on the surfaces indicate the number of com-

ponents of the Fourier series representing the charge on

that surface which will be considered to effect the poten-

tial and electric field at the match wire. For example, the

number 3 will indicate that only the expansion terms 1,

cose, and cos29 are used to represent the distribution on

the particular surface; the number 6 indicates that the

terms 1, cose, cos2O, cos39, cos40, and cos58 are retained.

A three wire flat-pack cable with conductor radius of

1.0, dielectric radius of 2.0, separation of 4.0, and

relative dielectric constant of 3.0, was analyzed using this

technique. Results from the term-dropping method are com-

pared to the control case (no dropping of terms) in Table 6.

The data in Table 6 indicate that accuracy is fairly

well maintained for all cases. In the case yielding 39.44%

sparsity (the percentage of the total elements in D which
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are zero), the error in the elements of the generalized

capacitance matrix is at most 5.84%. Since this term-

dropping technique appears to work so well for three wires,

extension to more than three wires is called for. The term-

dropping technique was applied to the cases of 4, 5, and 6

wire ribbon cables, with the same wire characteristics,

dimensions and separations, as the three wire cable. The

data in Table 7A is a comparison of representative elements

of the generalized capacitance matrix which were computed

using this technique to the same elements from the control

case (no terms dropped). These elements are chosen to

indicate the relative behavior of all the elements of the

matrix.

For the case of 4 wires, the elements of t agree to the

control case to within approximately 5% when elements of D

less than 10 are set to zero. However, for the 5 and 6

wire cables, with elements in D less than 10-4 set to zero,

the error has increased to approximately 10% and 33% respec-

tively.

The erro: can be corrected by adding more Fourier

coefficients to the surface charge representations, while

simultaneously changing the threshold for setting elements
-5

to zero to those less than 10 . This new threshold can be

illustrated by showing the number of Fourier series coeff-

icients representing each surface charge distribution which

will contribute to the potential and field equations on the

match wire, as in Fig. 4.3.
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Representative Elements of the Generalized Capacitance

Matrix with 5 Fourier Coefficients per Boundary

(Elements *10-12.)

Number No terms Terms dropped:
of Element dropped 4 2
Wires 10 10 3

4 C (1,4) -8.63927 -8.62931 -8.17036 -6.99345

5 6(1,4) -3.37309 -3.71094 -4.26695 -2.77220
(1,5) -6.30418 -5.97030 -4.92757 -4.93595

6 (1,5) -2.41456 -3.20696 -2.98949 -.454844
t(1,6) -4.94645 -3.82304 -3.70573 -5.32934

Table 7A. Comparison of results from term-
dropping technique for 4, 5, and
6-wire ribbon cables with 5 Fourier
coefficients per boundary.

Representative Elements of the Generalized Capacitance

Matrix with 6 Fourier Coefficients per Boundary

(Elements *10-12.)

No terms Terms dropped:
Element dropped oi2Eeet dopd 10- 5  10- 4  10- 3  10- 2

4(1,5) -2.41453 -2.41808 -2.68969 -3.25143 -2.09194

'(1,6) -4.94634 -4.94287 -4.68013 -3.76534 -3.64053

Table 7B. Comparison of results from term-
dropping technique for a 6-wire
ribbon cable with 6 Fourier
coefficients per boundary.

56
I



MATOH

6 4o

condg"Cfeoy Surfae4

d,~Mctnic sundace

Fig. 4.3. Modified term-dropping technique with
6 Fourier coefficients representing
each surface charge.

These two changes were incorporated into the analysis

of the 6 wire ribbon cable. The results are shown in Table

7B. It is evident from these data that the combination of

increasing the number of Fourier coefficients used to

represent the surface charges and changing the dropping

threshold produces accurate results. But from a compu-

tational standpoint, this also increases the size of the D

matrix from a 60x60 matrix to a 72x72 matrix, while simul-

taneously reducing the sparsity of che D matrix. Thus,

sparse matrix techniques would not be useful for these

problems.

The term-dropping technique, then, does not appear to

be particularly useful for two reasons:

(1) As the number of wires in the cable increases, the

size of the D matrix must be increased to allow

the use of more Fourier coefficients in the

representations for the surface charge distri-

butions. This increase in size will increase
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computation time significantly.

(2) As the number of wires in the cable increases, the

D matrix must be made less sparse to make the

results accurate.

IV.4 Conclusions

The results of the previous two sections indicate that

neither the near-neighbor technique nor the term-dropping

technique yielded sufficiently valid results to be useful in

determining the generalized capacitance matrix of ribbon

cables.

An efficient method for finding the inverse of a block

Toeplitz matrix would be useful, however, since the D matrix

is in this form, as shown in Eq. (2.28) [14,17]. Methods

for inversion of block Toeplitz matrices have been devel-

oped, but all require further constraints on the blocks.

Sinnott's inversion algorithm [17] requires that the entire

block Toeplitz matrix, as well as the block submatrices, be

symmetric. Cramer's algorithm [14] requires that the block

submatrices be scalar Toeplitz matrices. It does not appear

that the requirements of either of these methods can be met

with the structure of the D matrix for ribbon cables.

A method applicable to this problem yielding one-half

of D 1 will be shown later in Chapter VI. This method will

result in a time savings of approximately five-eighths over

full inversion.
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CHAPTER V

THE TRANSMISSION LINE CAPACITANCE AND INDUCTANCE MATRICES

V.1 Introduction

In Chapter II, a method for determining the generalized

capacitance matrix of a ribbon cable with n wires was shown.

Computation of crosstalk in this type of cable can be accom-

plished through a solution of the multiconductor trans-

mission line equations [2]. This method utilizes the per-

unit-length transmission line capacitance and inductance

matrices. The transmission line capacitance matrix differs

from the generalized capacitance matrix in that a particular

conductor in the cable is chosen as a "reference conductor",

and all cable voltages are referenced to this conductor.

In Section V.2, a technique for computing the trans-

mission line capacitance matrix from the generalized cap-

acitance matrix is given. In Section V.3, a formula yield-

ing an approximate transmission line inductance matrix for

ribbon cables is developed. Section V.4 deals with setting

up the transmission line equations for cases involving

multiple reference conductors in ribbon cables.
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V.2 Determining ihe Transmission Lie Capacitance Matrix
From the Generalized Capacitance Matrix

IThe "generalized" capacitance matrix is defined by

the matrix equation

qlf 01I

q2 f 02

Sqnf. On. (5.1)

for an n-wire cable, with qif indicating free charge on

conductor i, and 0i indicating the potential on conductor i

with respect to some arbitrary reference point.

For the purpose of describing this method, the n-th

conductor in the cable will be chosen as the reference for

the transmission line voltages, defined by

V i= (0.- n) , i = 1,2,...,n-1 (5.2)

The transmission line capacitance matrix, C,is of order

(n-l) and is defined by

Il C 1 w "'" i1 (n-1) 1

LL'(n-l Lc (n-1) 1 C (n-1) (n-l) J  Lv(nl )  (5.3)

To determine the transmission line capacitance matrix, C,
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from the generalized capacitance matrix, d , we require the

per-unit-length free charge on the reference conductor to

satisfy the constraint

n-1q nf = -7 qif
~il (5.4)

Thus Eq. (5.1) can be written as

nqlf & 11 V 1 12 V2 +  + 6 n + (E 1M)n
q + & + + & V + (. 2)0

q2f 211 222 2n n m=1 2m n

n-i ni + * + nnn (Z nm 0nn-1 (n

Z qif +V "' n (5.5)

i = I m = I

Adding all equations in Eq. (5.5) together results in

n n n
0 = ( )V + E Cm2)V + . + ( Z n)V

M=1 ml 1 m=1 2 2 m=1 n

n n n+ m+. Z 2 + + ¢m) 56
m=1 I m=1  m=1

Solving Eq. (5.6) for 0 n yields
n

k m1
'n n n =. 7 

(5.7)
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Substituting Eq. (5.7) into the first (n-i) equations in Eq.

(5.5) yields the entries in the transmission line capaci-

tance matrix as

(C]! ][n 1
~ij = ij n

1=1 m=1 ] (5.8)

for i,j = I,...,(n-l). Eq. (5.8) can be rewritten as

C.. = 'iJl 1[m.1 lm]J-[ ii mJ]
13 n [~

1=1 _m Im] (5.9)

Note that the denominator of Eq. (5.9) is simply the sum of

all elements of the generalized capacitance matrix, c . The

second term of the numerator can be expanded by deleting the

products with yielding for the numerator of Eq. (5.9)

ij E= E=1 1 i im ij
1=~~~~lJ MmjM= m=1

mri m/j

-(Z= 11im) (M 1 6mil=

m~j mi . (5.10)
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Combining the first four terms of Eq. (5.10), the numerator

of Eq. (5.9) becomes

n_ ! m n n i mli)n
ij 1 1 m 1 ~ Mj im jM=m

m~i m~j m~j m~i

(5.11)

or

Sn nim n )C' n )

ij171= m--  - ( m =71im m j )
l i m~j m~j m~i (5.12)

The first term in Eq. (5.12) is the term .. multiplied by

the sum of all the terms in except for those in the i-th

row and j-th column. The second term in Eq. (5.12) is the

product of the sum of the elements in the i-th row of LA

(except .j) with the sum of the elements in the j-th column

of 6 (except eij,.

The above results yield a simple procedure for deter-

mining the transmission line capacitance matrix from the

generalized capacitance matrix with the n-th conductor

chosen as the reference conductor for the transmission line

voltages.

Rewriting Eq. (5.9) by inserting the numerator of Eq.

(5.12) yields
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" - i I I I I I I I I 1 1 1 1 1 I 1 [ I t lI

n] n n
i[InmMI= I m

for i,j = 1,...,.(n-1) . Thus, given the generalized capaci-

tance matrix&, as shown in Eq. (5.1), to find the term C..

of the transmission line capacitance matrix C, in which the

n-th conductor is chosen as reference for the transmission

line voltages,

1) multiply dij by the sum of the terms of
the matrix 6 with the i-th row

and j-th column deleted,

2) subtract the product of the sum of all

terms of the i-th row (except ij) with

the sum of the terms of the j-th column

(except tij), and

3) divide by the sum of all terms in the

generalized capacitance matrix.

j-th col.

11 12 ij in

21 22 2j 2n

i-throw-'~ i i2 ij in

nI n2 nj nn (5.14)
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The above method should be easy to do by hand especially for

a small number of wires. For computer implementation,

however, the form of Eq. (5.8) i5 used as shown below:

n3 . n

1=1 [ m=1 (5.15)

for i,j 1,...,(n-l). The procedure is as follows:

1) Sum the elements in the n-th row of 6. This sum
will be used to find the sum of the elements in

2) For i=1,...,(n-1)
a) Sum the elements in the i-th row

of C. Add to the matrix sum. Insert
this sum into the elements of the i-th
row of the C matrix.

b) Sum the elements in the i-th column
ofd. Store these sums.

3) For i=1,...,(n-1)
j=1,..., (n-i)

a) Multiply C.. by the sum of column j,13
divide by the matrix sum, then
subtract from .. and insert in C.

13 1J

This procedure was developed for obtaining the per-

unit-length transmission line capacitance matrix for an n-

wire cable with the n-th wire chosen as reference for the

transmission line voltages. Clearly, this is readily adapt-

able to the case where any other wire in the cable is chosen

as a reference for the transmission line voltages. To show

this, it is sufficient to note that the row3 and columns of

the generalized capacitance matrix may be exchanged to

obtain a representation with the per-unit-length free charge

on the reference conductor, qrf' as the last entry in the

vector qf and the potential of the reference conductor, 0f r
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as the last entry in the vector 0. The particular ordering

and structure of C with respect to the conductor numbering

system used in the computer program will be discussed in

Section VII.4.

V.3 The Per-Unit-Length Transmission Line Inductance

Matrix for Ribbon Cables

In order to solve the transmission line equations for a

cable system, the per-unit-length transmission line capaci-

tance and inductance matrices are needed. In the previous

section a method was developed yielding the transmission

line capacitance matrix from the generalized capacitance

matrix computed by the method described in Charter II. The

per-unit-length transmission line inductance matrix is a

function of the wire orientation and is independent of the

characteristics of the dielectric insulation materials.

This is true since the permeability of dielectrics is

typically that of free space. Thus, the inductance matrix

for a system of insulated wires is the same as that for a

system of uninsulated wires with an identical wire orien-

tation.

The per-unit-length transmission line inductance matrix

for a system of uninsulated conductors must obey the equa-

tion [15]

L =11 E C 1 , (5.16)

where p v is the permeability of free space, cv is the
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permittivity of free space, and C1 is the inverse of the
.~0

per-unit-length transmission line capacitance matrix with

the dielectrics removed.

Therefore, given the transmission line capacitance

matrix for the ribbon cable with the dielectric insulation

ignored, the transmission line inductance matrix can be

easily found.

For most ribbon cables, the ratio of conductor radius

to conductor separation usually is greater than 4. (If the

insulation thickness is equal to the wire radius and the

insulations were touching, the ratio would equal 4.) In

many instances it may be sufficient to find an approximate

form of the transmission line inductance matrix instead of

recomputing the transmission line capacitance matrix with the

dielectrics removed.

In developing this approximation, consider the case of

n wires, in which the n-th wire is chosen as reference.

Fig. 5.1 illustrates conditions on two typical conductors, i

Figure 5.1. Two typical conductors and the reference
conductor.
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and j, as well as on the reference conductor, labeled n. The

per-unit-length charge on conductor i (which for this

uninsulated case will be entirely free charge) is qi, dij

is the distance between the centers of wires i and j, and Vi

is the potential of conductor i with respect to the iefer-

ence. The relationship between the conductor potentials, V,

and the charge on the conductors, q, is represented by

-1

V(n-1) [C (n-1l) C (n-l)(n-l) q (n-l)]

Co (5.17)

-1

Individual elements of C0 can be found from the con-

ductor potentials and per-unit-length charges by the equa-

tion

-1I

0 'qm=0 m ,...,(n 1

m~j (5.18)

The generalized capacitance matrix for this case can be

found by using the results of Chapter II. Since the con-

ductors are widely spaced, the match points can be chosen at

the center of the conductors with constant charge distri-

butions assumed on the conductors. However, when deter-
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mining the potential of a wire due to its own charge dis-

tribution, the matchpoint will be chosen on the surface of

the conductor. Then, from equations (2.12) and (2.14),

there result n equations relating the per-unit-length charge

distributions, gi0' and potentials, 0i, in the form

0rI clln(rcl) rc 2 ln(d 2 1 ) rc 3 ln(d31) . 10

02 rcll(d 2 1) c2 c2 rc3n(d 3 2) "20-1

S cln(dni) .

(5.19)

The potential of any conductor can then be written as a

function of the per-unit-length charges qi" For example,

the first equation in (5.19) can be written as

0 1 2 j{ 2Tr c10ln(rl) + 2 iTrc 2 2 ln (d 2 1 ) +
(5,20)

where qi = 2JTrciai0 for i = 1,2,...,n . Then, equation

(5.19) becomes:

01 ln(rcl) ln(d 2 1) ... q

02 -1 ln(d 2 1 ) ln(rc 2 ) ... q2

IOn L ln(dn1 ) ln(dn 2) .qn (5.21)

Now, conductor n can be chosen as reference and the poten-
tial, Vi, between conductor i and the reference conductor

defined as

69



Vi = i - On (5.22)

According to equation (5.21),

On = v in(dlnl)ql + "'" + ln(dni)qi + + ln(d nJ)qJ

+ ... + ln(rcn)q n} (5.23a)

and

y - jln(di.)ql + "'" + ln(r ci)qi + "'" + ln(diJ)qJ

+ ... + ln(dni)q n . (5.23b)

Then,

V - O n dc i
1 1 n)j

'-- -[ f d ql + ... + ln(r)qi + ... + ln qj +

Iv n1 dni nj

+ r n qn . (5.24)

cn
The requirement that the total charge on the reference

conductor (conductor n) is minus the sum of the total

charges on all the other conductors can again bc invoked;

that is,

n-1
q - E qi (5.25)i=1

Rewriting (5.24) by including (5.25), yields

V -1 v"' + lin r cncrl qi + ... + lnrdi qj +
T T -r-V ((dni)2(

(5.26)
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Then, from equations (5.18) and (5.26), individual elements
-1

of C are

2 1 n (d n i )  1
2EWLrcnrcii

27J vln rc for i=j

L 27 11 n dj] for i3j (5.27)
1 rcndij

and i,j = 1,2,..., (n-i).

Finally, combining equations (5.16) and (5.27), the

elements of an approximation to the per-unit-length trans-

mission-line inductance matrix with conductor n chosen as

reference are

v F(dn*) 2
-ln i_ nr for i=j

[Lij. = rVndnidn.1
2 T lnr dijJ for i~j (5.28)

TrL cn dijJ

V.4 Applications to the Analysis of Multiple

Reference Conductor Systems

Computer and other digital system interconnections

utilize a wire assignment in ribbon cables where many wires

are reference conductors. The most common method is the

ground-signal-ground technique, where the end wires and

every other wire is a reference conductor, so that the

signal wires are separated from each other by a reference

conductor.

The transmission line equations can be used to solve
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the multiple reference conductor probler, by obtaining C and

L for the cable with one of the grounded conductors chosen

as reference. Then, the terminal impedance matrices, Z, can

be written by considering grounded wires as zero terminal

impedances [2, 131. A typical example is illustrated in

Fig. 5.2.

~ 14o4

R4VP V4U)' rTc) R,

IL A A

t ference coduanbr

Figure 5.2 Five-wire, ground-signal-ground cable.

The equations defining the voltages at the ends of the

lines are [2]

V(O) = E 0- Z(O)I(Q)

V() = E + Z()I(l) .(5.29)

where E0and E1are (n-1)xl vectors of the equivalent open

circuit port excitations, and 1(0) and I(I) are (n-1)xl

vectors '-' current in the lines directed in the direction of

increasing x. Writing the terminal impedance matrices, Z(O)

and ZMl, at x=Q and x=l respectively, for the 5 wire cable
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in Fig. 5.2 yields 12, 131:

FR 0 00

Z(o) 0 [ R4 j

LO 0 0 o

0 0 0
ZU() 0 0 RI 0

L0 0 0 0j (5.30)

The transmission line equations can then be solved in

the normal fashion as described in [2, 13, 191.
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CHAPTER VI

DESCRIPTION OF THE COMPUTER PROGRAM

VI.A Introduction

The main purpose of this work was to implement on a

digit&- computer the techniques of Chapter II to solve for

the per-unit-length generalized capacitance matrix for a

multi-conductor ribbon cable. Then, utilizing the results

of Chapter V, to solve for the per-unit-length transmission

line capacitance rr-trix needed for the analysis of crosstalk

in ribbon cable systems. A listing of the program which

will be described is contained in Appendix B.

VI.2 Computer Progran GETCAP

GETCAP (which is an acronym for GEneralized and Trans-

mission line CAPacitance matrices) is a FORTRAN computer

program which utilizes all the results of this renort to

find the per-unit-length generalized and transmission line

capacitance matrices for ribbon cables. The GETCAP main

omputer program uses a subroutine which is also called

GETCAP. This GETCAP subroutine may be used al.one i~i cases

whore 4t will be part of a larger program designed for

specific purposes, or with its controlling mainprogram which

provides a very u er-oriented method of determining the

capacitance matrices.
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The problem to be solved is described by the following

input variables:

NW - The number of wires in the cable.

RC - The radii of the conductors.

RD - The radii of the outer dielectric insulation

surfaces.

CCSEP - The center-to-center separation of

any two adjacent conductors.

ER - The relative dielectric constant of the

inulation material (relative to free space).

NFC - The number of Fourier series terms to be used

to represent the charge ditributions around

the conductor surfaces. (Note: The charge

distribution is assumed to be of the form

(NFC-1)

.i (e) = a aim cosme

m=O

for i=1,...,NW.)

NFD - The number of Fourie.: series terms to be used

to represent the charge distributions around

the dielectric surfaces. (Note: The charge

distribution is assumed to be of the form

(NFD-1)
0 () = a cosine

m0 i

for i=1,...,NW.)

NF - The total number of Fourier coefficients per

wire; (NF = NFC+NFD).

IREF - The reference conductor for the transmission
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line voltages; (1 <IREF <NW).

IOPT - A program option selector.

The cable dimensions, RC, RD, and CCSEP can appear in any

choice of units (mm., meters, mils., etc.), so long as all

of the dimensions are in the same units.

Subroutine GETCAP recognizes three possible values for

IOPT.

IOPT = 0 - Matrix partitioning is used to invert

the D matrix.

IOPT = 1 - Standard full inversion of the D matrix.

IOPT = 2 - The dielectrics are removed. The

program assumes a bare wire cable.

In addition, the GETCAP mainprogram recognizes options 10,

11, and 12. The second digit corresponds to options 0, 1,

and 2 above. The first digit, 1, provides a copy of the

upper triangle of the transmission line capacitance matrix

in punched card format being generated for later use.

At this point, a discussion of the partitioning method

which is selected with IOPT = 0 (or 10) Is necessary. As

was shown in Chapter III, the generalized capacitance matrix

for ribbon cables is ideally symmetric with respect to both

the main diagonal and the cross-diagonal. This means that

only a few terms of the entire matrix must be found, as

shown in Eq. (3.8). Further investigation shows that these

terms can be developed from the elements of half of the

inverse of the D matrix.

The elements of 6 are developed from the inverse of the
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D matrix according to Eq. (2.43)

2 m r T + rd E I 1 (6.1)
1i3 =2r c  =I 1i3 m=i1i 1

where T=D - . The symmetry of t with respect to both the

main and cross-diagonals will allow those elements which

completely specify 6 to be developed only once. Also, these

elements will be chosen so that only the submatrices on the

left half of T will be used.

Noble [12] describes a technique for finding the

inverse of a square, nonsingular matrix D partitioned such

that

D= (6.2)

where P and S are square matrices. The inverse of D (if D

and S are non-singular) is

= _XQS1

~_ _-IRX W

- -1-l -i -i
where X = (P-QS- R)-I and W = S + S RXQS (6.3)

Partitioning the matrix D of Eq. (6.2) in halves results in

the rinimal amount of time required to solve for part of the

inverse of D by the method in (6.3). This can be verified

by counting the number of operations (multiplications and

divisions) required to obtain the form of D-1 in Eq. (6.3).

The number of operations required to multiply an nxk matrix
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by a kxp matrix is npk.

Partitioning D in Eq. (6.2) in halves, the number of

operations to solve for the required portions of D- as

described above is approximately 5/8 of the number of

operations required by a direct full inversion of D. To

show this, consider D of order 2n such that

D =  ~(6.4)

where P, Q, R, and S are n x n matrices. To solve for D 1

directly will result in approximately 8n3 operations. If

the inverse of D is written as

D = (6.5)

then solving for a and y will require 5n3 operations (re-

membering that n3 operations are required to invert an nxn

matrix and n3 operations are also required to multiply two

nxn matrices).

VI.3 Operational Details of the GETCAP Program

The entire GETCAP program consists of five program

units:

MAIN - The main program for inputting data and

controlling output of results.

GETCAP - The subroutine which performs the actual

computation of the capacitance matrices from

the input data,
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MINV - A matrix inversion subroutine from the IBM

Scientific Subroutine Package (SSP) [16].

MPC - A subroutine which multiplies two general

matrices, then multiplies the resulting

matrix by a constant.

MPRT - A subroutine which outputs a general matrix

to the printer in matrix format with la-

beling.

Each of these program units will be described separately in

this section, with the greatest emphasis on the GETCAP

subroutine.

The main program was written so as to be used by

persons who are not computer-specialists. Its operational

characteristics are illustrated by the flowchart in Fig.

6.1. The main program is an executive over the GETCAP

subroutine; it also checks the input data for obvious

errors. The main program also provides the matrix and array

storage areas used in the computations by subroutine GETCAP.

The user must ensure that the array dimensions are large

enough to deal with the problems to be considered. Di-

rections for this dimensioning are given at the beginning of

the listing of the main program. Assuming a maximum number

of wires, NW, and a maximum number of total Fourier series

expansion terms per wire, NF=(NFC+NFD), for all problems to

be considered, the dimensions of the matrices required in

subroutine GETCAP will be as follows:

C(NW')
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Figure 6.1. Flowchart of MAIN program.

80



CI ((NW-I) 2)

D(NF 2 )

2
D1 (NW NF) 2

LT(2 NF NW)

SCR((NF NW + 1)/2)

Note that these items are stored in vector format. This

dimensioning will allow all problems up to the maximum

specified to be considered. When the GETCAP subroutine

returns to the main program, a printed output of the gen-

eralized and transmission line capacitance matrices is

generated by calling subroutine MPRT.

Subroutine GETCAP is the computational part of the

GETCAP program. All input data, output data, and working

vectors are passed through the argument list as shown below.

SUBROUTINE GETCAP (NW,NFC,NFD,NF,RC,RD,CCSEP,ER,IREF,

IOPT,CG,CTL,D,D1,SCR,LT)

The first ten arguments are the input variables described

earlier. CG and CTL are the resulting per-unit-length

generalized and transmission-line capacitance matrices,

respectively. The last four arguments are working vectors

used by GETCAP. D1 is matrix D in Eq. (2.28) stored in

vector format.

Subroutine GETCAP operates as shown in the flowchart of

Fig. 6.2. The first step is a scaling of the input wire

dimensions to prevent numerical underflow and overflow by

the computer in generating the inverse of the D1 matrix.

Equations (2.17) and (2.18) are then used to compute the
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off-diagonal submatrices Dn' for n = ±1,..., ±(n-1), shown

in Eq. (2.28). These submatrices are then inserted into the

large matrix D1 according to the relationship of Eq. (2.28).

Equations (2.17), (2.18), (2.19), and (2.20) are then

used to generate the diagonal block submatrix D0 of Eq.

(2.28). D0 is then inserted in the diagonal blocks of the

D1 matrix. Computer matrix D is used to hold each of the

block submatrices Dn' n=0,±1,...,±(n-1) for insertion into

D1.

It should be noted that when IOPT = 0 (or 10), the D

matrix in Eq. (6.1) is stored in the computer in the vector

D1, such that the first (NFxNW/2)2 locations correspond to

matrix P, the next (NFxNW/2) 2 locations correspond to matrix

Q, followed by (NFxNW/2)2 locations for R, and then

(NFxNW/2)2 locations for S. In this case, the submatrices

in D are inserted into the D1 matrix to take into account

this unusual storage order.

When IOPT=2 (or 12), the dielectrics are ignored. Thus,

equations (2.18) and (2.20) for the electric field vector at

a point are not used in generating the D submatrices. Also,

since the dielectric surfaces are ignored, the contributions

to the conductor potentials due to the charges on these

surfaces are ignored.

Following the generation of matrix D1, it is inverted

according to the method designated by IOPT. If IOPT=1 (or

0i), subroutine MINV inverts the entire D1 matrix. If

IOPT=0 (or 10), the method described by Eq. (6.3) is used to
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compute half of the inverse of D1.

The matrix D represented by Eq. (6.2) is stored in D1

and inverted according to the following procedure:

1) Invert matrix S using MINV. S is replaced
by its inverse-.

2) Multiply S R, and insert the result in S
using MPC.

3) Multiply Q by S using MPC and insert the
result (Q S7I K) in Q.

-1
4) Subtract QS R from P and insert the result

(P-QS-IR)-1nt6 P.

5) Invert (P-QS- R) using MINV. Store the result
in P. -~

6) Multiply S- R by (P-QS- R) - using MPC, then
multiply the-result 5y -1 and store in R.

Half of the inverse of D1 then lies in partitions P and R.

This method takes slightly over half the time required to

invert the entire D1 matrix.

Once the D1 matrix is inverted, the elements of the

generalized capacitance matrix, , are computed from the

elements of the inverse of D1 by Eq. (2.43) and stored in

the computer as matrix CG. When IOPT=1 (or 11), all the

elements of t are computed. For IOPT=O (or 10), the sym-

metry conditions as described in Section 111.3 are utilized

and only a portion of the elements of 4 are computed, as

indicated by Eq. (3.8). The rest of the elements are

assumed to be duplicates of those computed.

The transmission line capacitance matrix, C, is then

computed from the generalized capacitance matrix by fol-

lowing the algorithm in Section V.2, and the elements of C
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M
are stored in the computer as matrix CTL. Subroutine GETCAP

T. then returns to the main program with both the per-unit-

length generalized capacitance matrix, CG, and the per-unit-

length transmission line capacitance matrix, CTL.

Subroutine MINV is a standard matrix inversion routine

included in the IBM Scientific Subroutine Package [16]. Its

argument list is shown below:

SUBROUTINE MINV(A, N, D, L, M)

The arguments have the following meaning:

A - An input matrix which is destroyed in computation
and replaced by the inverse of A.

N - The order of matrix A.

D - The resultant determinant of A.

L - A working vector of length N.

M - A working vector of length N.

Subroutine MPC is used to find the product of two

general matrices and to multiply the resulting matrix

product by a constant. The argument list for MPC is shown

below.

SUBROUTINE MPC (A, B, R, S, L, M, ', C)

These arguments have the following significance:

A - The first matrix, dimensioned L by M.

B - The second matrix, dimensioned M by N.

R - The resulting matrix, dimensioned L by N.

S - A scratch vector, length L.

L - The number of rows in A and R.

M - The number of columns in A (number of rows in
3).
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N - The number of columns in B and R.

C - The constant by which R is multiplied.

The multiplication takes the form:

R = CAB

The subroutine was written so that neither A nor B are

destroyed by the computation. In addition, if the dimen-

sions of matrix R are large enough (N greater than or equal

to M), the use of scratch vector S provides that A and R can

share the same storage locations. This is useful when two

large matrices are to be multipled, and the first one is no

longer nc:ed after the multiplication, thus saving the

amount of storage needed by the matrices. In the GETCAP

program, the large size of the DI matrix makes this savings

considerable. The flowchart of Fig. 6.3 illustrates opera-

tion of the MPC subroutine.

Subroutine MPRT is used for printing a matrix in matrix

format. Elements are printed in scientific notation rounded

to three digits. The rows and columns are numbered on the

printout to provide easy identification of any element.

The argument list of MPRT is shown below:

SUBROUTINE MPRT (A, M, N, B, J)

where the arguments have the following meanin;:

A - The matrix to be printed.

M - The number of rows in A.

N - The number of columns in A.

B - The tit±i oL Lhe matrix in Hollerith format.
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J - The number of characters in the title.

The title, given in B, is printed on the header of the

first page of the printout. The first twelve columns are

then printed on page two, and so forth, until the entire

matrix has been printed. The printout can then be separ-

ated, and page two connected to the right of page one, page

three to the right of page two, etc., so that the printed

matrix can be viewed in its normal matrix form. An example

of a general matrix printed with MPRT is given in Fig. 6.4.

The calling statement was

CALL MPRT(A,6,7,'TYPICAL OUTPUT OF A',19)

with the contents of A stored as shown in the printout.

The listing of the program found in Appendix B includes

comment statements to provide an interested user the ability

to check or find any particular portion of the program. The

program waz designed to operate in as little time as poss-

ible, using as little duplicated storage as possible. The

object code consumes approximately 167K bytes for the

capability to work with up to twenty wires and a total of

ten Fourier series terms per wire. Run times can be signi-

ficantly reduced by running the program on the FORTRAN G or

H compilers with an object deck. Compilation is no longer

necessary, and execution time is much faster than on diag-

nostic compilers such as WATFIV available at the University

of Kentucky. Typical run times on the IBM System 370/165 at

the University of Kentucky using the FORTRAN G compiler with

no printout of the source listing are shown below.
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COMPILE TIME , - 1.9 sec.
EXECUTION TIME - 37.5 sec.

VI.4 Verification of Program Operation

Unfortunately, there is no way of comparing these

computed results to known data on the capacitance matrices

of ribbon cab-es since none apparently exists. Comparisons

can be made, however, to known exact and approximate formulas

for the capacitance where the dielectric effect is

ignored; i.e., bare wires.

The data in Table 8 show how the capacitance for the

two bare-wire case converges rapidly to the exact value

found by the equation [5]

TrE
V

C 0  1( 1 d , (6.7)
cosh 2r

where d is the center-to-center separation of the wires, and

r c is the radius of the conductor. The per-unit-length

inductance L is related to C0 by Eq. (5.16). Ribbon cables

typically have a conductor separation greater than four

times the conductor radius. In this range, results for the

per-unit-length inductance for a two-wire cable are ex-

tremely accurate with even small numbers of Fourier series

terms.

Results from GETCAP for a multiwire bare cable assembly

can be compared to the approx.mate transmission line capaci-

tance matrix derived in Chapter V. These results are shown

*

20 wires, 10 coefficients per wire, IOPT=0.
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Figure 6.5 Five wire bare ribbon cable.

in Table 9 for the cable shown in Fig. 6.5. The approximate

results agree with the GETCAP results to at least two

digits, and the largest error is approximately 2% between

the two sets of results,

Another check was made of the results from GETCAP by

checking the rate of convergence of the elements in the

first row of the generalized capacitance matrix for a five

wire ribbon cable (with the dielectric included) as shown in

- ~reA~fec"I( ceb.1SL+d"

r =1.0

@ @ ,.., sep= 4.0

Se C_-, - r = A.o
r

Figure 6.6 Five wire flatpack cable.

Fig. 6.6. The results in Fig. 6.7 indicate smooth conver-

gence to the final values for increasing valies of NF. (The

magnitudes of the elements are plotted since the off-diagon-

al terms of t are negative.) These results are for the

worst case problem (dielectric boundaries touching, high

relative dielectric constant).
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Elements of the Transmission-Line Capacitance
Matrix for a Five-wire Bare Cable

(Elements *10- 12 , pF/M)

Element GETCAP Results Approximate

C(1,1) 18.87646053717670 18.78148468923442
C(1,2) -6.851495768047740 -6.854631737467468
C(1,3) -2.129410716129314 -2.066002017837669
C(1,4) -1.843114316184374 -1.82'053886227327

C(2,2) 19.14682911214455 19.03688696351830
C(2,3) -6.851495768052782 -6.854631737467466
C(2,4) -2.721918788019494 -2.663811744291685

C(3,3) 18.87646053717669 18.78148468923442
C(3,4) -8.05243973:815269 -8.034797047702019

C(4,4) 14.81610887311056 14.72743429621767

Physical conditions: rc = 1.0

sep = 10.0

End wire chosen as reference.

Table 9 Comparison of GETCAP results to
the approximate formula derived
in Chapter V for the capacitance

matrix of multi-conductor bare
wire.
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CHAPTER VII

USING GETCAP

VII.1 Introduction

This chapter will describe the use of the GETCAP

program for two different purposes. Section VII.2 will

consider use of the GETCAP subroutine for cases where it

will be required to compute and deliver the generalized and

transmission line capacitance matrices to other program

units written by the user. More commonly, though, the

transmission line capacitance matrix of the ribbon cable is

used as input data for another program, such as in a cross-

talk analysis. Section VII.3 will describe the entire

GETCAP program with its facilities for outputting the

elements of the transmission line capacitance matrix in

punched card format.

VII.2 Using Subroutine GETCAP

Subroutine GETCAP is the workhorse of the GETCAP

program. It is used by calling the subprogram from another

FORTRAN program unit, using the following statement and

argument list:

CALL GETCAP (NW, NFC, NFD, NF, RC, RD, CCSEP, ER,
IREF, IOPT, CG, CTL, D, D1, SCR, LT)

As described in Chapter VI, the arguments have the fcllowing
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meaning:

NW - Number of wires in the cable.

'1 NFC - Number of Fourier series terms to be used
to represent the charge distributions
around the dielectric surfaces. Note:
the charge distribution is assumed to be
of the form

(NFC-1)
ay(8) = C Cos me for i=1,...,NW.

m=

NFD - Number of Fourier series terms to be used
to represent the charge distributions around
the dielectric surfaces. Note: the charge
distribution is assumed to be of the form

(NFD-1)
V' (9) = V Cos me for i=1, ...,NW.

1 m=0

(See Section 111.3 for a discussion of how to
choose these.)

NF - Total number of Fourier series terms per
wire. (NF = NFC + NFD).

RC - Radii of the conductors.

RD - Radii of the outer dielectric insulation
surfaces.

CCSEP - Center-to-center separation of any two
adjacent conductors.

(These cable dimensions must appear in the same
units: meters, mils, inciies, etc.)

ER - Relative dielectric constant of the insulation
material (relative to free space).

IREF - The reference conductor for the trarsmission
line voltages. (1<IREF<NW)

IOPT - Option selector.
0 - fast solution
1 - long matrix inversion
2 - dielectric insulations removed

(bare wire case)

CG - Holds the computed per-unit-length generalized
capacitance matrix in vector format. (dimension
NW2) NW) 96



CTL - Holds the computed per-unit-length transmission
line capacitance matrix in vector format.

2(dimension (NW-i) )

D - A working matrix of dimension NF x NF.

2
DI - A working vector of length (NF- NW) •

SCR - A scratch vector of length NF(NW+) •2

LT - A scratch vector of length 2-NF-NW.

All that is required in using subroutine GETCAP is to

provide for and properly dimension these required matrices

and vectors in the calling program. One must be especially

careful about the size of vector D1. A typical case of

twenty wires and ten Fourier coefficients per wire requires

2
that Di be dimensioned to provide (20 x 10) = 40,000

storage locations. The user should note that D1 is dimen-

sioned in the main pzog3an s a r;4trix DI(NF'NW,NF-NW). In

subroutine GETCAP, however, Di i4 stored in vector format.

GETCAP requires two other subroutines. They are:

MINV - A standard IBM SSP matrix inversion program [16]

and MPC - The product of two matrices with a scalar
constant multiplying the result.

Both of these routines are included in the program listing

found in Appendix B.

VII.3 Using the GETCAP Program

The full GETCAP program is a user-oriented method to

find the capacitance matri.ces of ribbon cables. The input to
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the program is through three data cards, (1) a problem

description card, (2) a physical characteristics card, and

(3) an option card. Their format is shown below.

(1) Problem description card:

Cols. 1-3, NW
Cols. 4-6, NFC
Cols. 7-9, NFD

Example:
Assume a fifteen wire flat pack cable,
four expansion terms for the conductor
charge distribution and eight expansion
terms for the charge distribution
around the dielectric surface.

The problem descriptor card would look like:
Col. 1 Col. 4 Col. 7

01504008

where 0 denotes a blank item.

(2) Physical characteristics card:

Cols. 1-10, RC
Cols. 11-20, RD
Cols. 21-30, CCSEP
Cols. 31-40, ER

The dimensions of RC, RD, and CCSEP can be
in any units convenient to the user. Each
of these dimensions, however, must be in the
same units.

Example:
Assume an orientation as shown in Fig 7.1.

~ IC002 mm. -3.5

Fig. 7.1 Typical physical characteristics
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The physical characteristics card would be:

Col. 1 Col. 11 Col. 21 Col.

16002& .5 0 002XX.5O8 1.2 7 27 XO3. 516X)6

(3) Option card:

Cols. 1-3, IREF -- the reference conductor.

Note:
Conductor numbering is sequential from
the end of the cable, as illustrated
below:

OOO'"
Therefore, IREF can range from 1 to NW.

Cols. 4-6, IOPT -- option.

IOPT = 0 fast solution
IOPT = 1 long inversion
IOPT = 2 dielectric insulation removed
IOPT = 10} rsame as 0, 1, and 2 above except
IOPT = 1 that the upper triancle of the
IOPT = 1 Jtransmission-line capacitance

matrix is punched on cards,

Example:
Assume conductor 1 chosen as reference and
execute in fastest time, with a punched
copy of the transmission line capacitance
matrix generated.

Then IOPT = 10 and the option card is:

Col. 1 Col. 4

Typical output from the GETCAP program is shown in Fig.

7.2. Fig. 7.2a shows the header page which is printed at

the beginning of a batch of problems to the program. Fig.

7.2b is the first page of output -.ssociated with a problem.
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GGG EEEEE TTTTT CCC AAA PPPP
G G E T C C A A P P
G E T C A A P P
G GG EEEE T C AAAAA PPPP

G G E T C A A P
G G E T C C A A P
GGGG EEEEE T CCC A A P

GGG EEEEE TTTTT CCC AAA PPPP
G G E T C C A A P P
G E T C A A P P
G GG EEEE T C AAAAA PPPP
G G E T C A A P
G G E T C C A A P
GGGG EEEEE T CCC A A P

GENERALIZED AND TRANSMISSION LINE CAPACITANCE MATRICES

OF RIBBON CABLES

BATCH RUN

Fig. 7.2a Typical Output from the GETCAP program.
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All of the input data are printed as they are read in, and any

errors in the data are flagged on this page. The item,

(METERS), on this printout is used to show that all wire

dimensions must be in the same units (meters, inches, mils,

etc.). Fig. 7.2c is the output of the generalized capa-

citance matrix associated with the ribbon cable described by

the data in Fig. 7.2b. The elements have units of Farads

per meter. Fig. 7.2d, the transmission line capacitance

matrix with a conductor chosen as reference for the line

voltages, is the final page of output for each problem.

VII.4 Format of the Output of the Transmission Line

Capacitance Matrix

An algorithm was developed in Chapter V which is used

in the computer program to determine the transmission line

capacitance matrix from the generalized capacitance matrix;

any of the conductors in the ribbon cable can be chosen as

the reference conductor in this algorithm.

In the printout of the transmission line capacitance

matrix, the row and column indices are numbered from 1 to

(NW-i). Thus, if the last wire, NW, is chosen as the

reference, the indices will correspond to the elements

correctly. However, if another conductor is chosen, the

user will have the responsibility for correctly interpreting

the results. For example, the case of a 10 wire cable can

be considered. If conductor 5 is chosen as reference,

CTL 5, is actually the element of C describing the capaci-

tance between wires 6 and 1. Similarly, CTL 5,5 describes
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the self capacitance of wire 6.

The punched card output is of a similar format. One

upper triangular element is punched per card, with the row

and column indices of the element punched as well. Suppose

the capacitance matrices were determined for a twenty wire

ribbon cable with the 20-th wire chosen as reference. A

sample punched card would look as follows:

C 10 3 -4.384692E-10

This element would be C10 3 with value -4.384692x10 - 0 . The

user has the responsibility for correctly interpreting the

results if any wire other than the last wire is chosen as

the reference conductor.
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CHAPTER VIII

SUMMARY

A method for computing the capacitance matrix for

dielectric-coated conductors was applied to the case of

ribbon cables. Simplifications in the method were made

possible by the symmetry of the cable dimensions; the radii

of the conductors are all identical, the radii of the

dielectric insulations are all identical, and the center-to-

center spAcing of adjacent wires is identical. In addition,

the wires are oriented in a horizontal plane which is main-

tained throughout the length of the cable. An attempt was

made to optimize the selection of matchpoints to ensure

valid results and reduce computation time.

Using the generalized capzacitance matrix, a technique

for obtaining the transmission line capacitance and in-

ductance matrices was developed; these matrices are used in

frequency response and crosstalk analyses of cable systems.

An approximate method for determining the transmission line

inductance matrix was also developed.

Computer program GETCAP was written to utilize the

results of this report. Given the wire dimensions and the

number of wires in the cable, GETCAP will compute the per-

unit-length generalized capacitance matrix, and from that
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determine the per-unit-length transmission line capacitance

matrix for a ribbon cable. Results indicate rapid

convergence of the matrices to accurate values. The GETCAP

program is written to be useful even to the person who is

not a computer specialist, with simple input formats and

error correcting facilities.

Ribbon cables are now widely used in the intercon-

nection of electronic systems. The ability to compute the

transmission line capacitance matrix for such cables enables

the multiconductor transmission line equations to be solved.

This in turn will enable a more precise analysis of ribbon

cable systems through a detailed analysis of crosstalk.
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APPENDIX A

The purpose of this appendix is to provide justifi-

cation for omitting the reference potential terms in the

potential expressions in Chapter II. Consider Fig. A.1(a)

in which infinitesimal line charges lie on a cylindrical

surface of radius r'. The potential 0(r,8) with respect to

the potential reference point due to one of the line charges

is (reference [7], pp. 91-92)

0(r,A) = - in ( (A.)

where the distances from che line charge to the potential

and reference points are given by

d2 = r2 + r'2 - 2rr'cos(8'-8) (A.2a)

and
d = r2 + r' 2 

- 2r0r'cos(O'-e0 ) (A.2b)

If the cylindrical surface supports a per-unit-iength charge

distribution of the form

k
a(8') = r0 + E (TmcosmS' + ('sinm6') (A.3)

m=1

then the potential 0(r,6) can be obtained as the limiting

case of an infinite number of infinitesimal line charges

with appropriate weighting given in Eq. (A.3) as [4]
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0(r,e) a0 2W IT (WEv f ln(a --)r'de
0  0

k 2W
176 V m f mCOSm, 1n(0)r' de'

m= 0

+ fl aisinmei ln(,d)r' delj (A. 4)
0

Substituting the expressions for d and d o given in Eq. (A.2)

into Eq. (A.4) yield integrals which can be evaluated in

closed form. The result is [4]

0(r,e) = c 0D0 (r,G) - a0D0(r0oe) (A.5)

+ E iamDm(r,e) amDm(r 0 ,G0 )
m=1

+ OmDm(r,) - 'D' (r,801m m el

where

- r' in r r> r'

TV- (A. 6a)
D (r,G )=

0 r' in r' r < r'

((r')m+ costaG r> r'

Dm (r,e)= 2 (A.6b)

(r)i cosmO r< r'
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M+_1W). sinm6 r > r'
{ (r' )

expressions in Chapter II.

Consider a typical system of n circular conductors

shown in Fig. A.1(b) bearing per-unit-length charge distri-

butl ~rs of the form
k.

1
G (r0 a= + E (0 cosm6. +0!msinme.) (A.7)

mz
i i 2ovmr m-

A typican expression for the potential at a matchpoint on

the i-t o.ductor in Fig. A.1(b) is

butl ,s of te fll



0i + (I A D A (r i, 6 ) - oDi rolO
I1 i =  + {iDi(rciei) iDi(ri 8 i)

k.S+ Z i. D. (r ci,Si - imDim(roil 0i )

+ 'D' (rci , i) -a. D (r)i, 1

3.aj~j 1j im i m

im jm ' im im Oj i

+ a!D D!ri, jl) -a n0D 0(r0j, 8 0 )

+ C Dm(r. 8 ) - a D (r )

m=1 D n 6 aDjm On On

+a q'D' Cr.j,e j ) - q'jmD'm(ri80j)}I

= fa rim nm in n rim nm On,0
+ Gn o D (r inn) -nmDn m (r0n,0n

(A.9)

If we allow the reference point for the potentials 
to

move to infinity, the reference potential 
terms -or the

a.mcosm i and Olmsinmei expansion terms go 
to zero as is

clear from Eq. (A.6b) and (A.6c). If the total per-unit-

length charge on the system of conductors is 
zero, then the

reference potential terms due to the constant 
expansion

terms may also be removed. This can be shown in the follow-

ing manner. The total per-unit-length charge 
on the i-th
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conductor is

2 I
qi f i(i)r cidi

1(A.9)

=21 r ci ai

and the portion of the potential expression in Eq. (A.8)

consisting of the reference potential terms due to the

constant charge expansion terms is

o .. - AiDi (r Oie0i) " ' -j0D~j0(roj,80 j )

" -a n0D n0 (r~n,190n) (A.10)

n

m= m0 D 0 (r 0 m,8 0 m ); m= I

Utilizing the expression for D r m of the form given

in Eq. (A.6a), Eq. (A.10) can be written as

n rcm ln(rOm))Z 0  - Em (A .1 1 )
rn =1 €v

With the expression for the total per-unit-length charge on

the i-th conductor given in Eq. (A.9), Eq. (A.11) can be

written as

n in (mn qm 0 m) (A. 12)

m=1 2T 6
2 v

Requiring the system to be electrically neutral, i.e.,
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n
q = 0 (A. 13)

m=1

Eq. (A.12) can be written as

n m n(r01 ) n in(r 0m)-Z qm 01 + E qm O

m=2 2ir m=2 211% v (A.14)

By combining associated terms, Eq. (A.14) can be written as

n
E q)m r Om (A.15)

m=2 27 v (r01)

As the reference potential point move,; to infinity, the

distance from the centers of the conductors to the reference

point become the same, i.e., r01=r 0 2= '. =rOn, and Eq.

(A.15) approaches zero. Therefore, the reference potential

terms in the potential expressions may be omitted. Imp-icit

in this is the fact that the potentials, Oi, are with re-

spect to infinity which is permissible only if the net per-

unit-length charge on the system is zero, i.e.,

n
E = 0 . (A.16)
m=1
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APPENDIX B

Listing of Computer Program GETCAP.

The listing will be divided into its individual program

parts:

MIN - main program controlling input of data

and output of results

GETCAP - subroutine which computes the per-unit-

length generalized and transmission line

capacitance matrices for ribbon cables

of the specified dimensions

MINV - subroutine which computes the inverse of

a matrix (from the IBM Scientific

Subroutine Package [161)

MPC - subroutine which multiplies two matrices

and then multiplies the result by a

constant

MPRT - subroutine which prints a matrix in

standard matrix format
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MISSION.9 Of

Rome Air Development Center

KRADC is the principal AFSC organization charqed with
planning and executing the USAF exploratory and adva:uced

~ development programs for information sciences, intelliy-

gence, command, control and communications 'tcchno :..

products and services oriented to the needs of the U:.IIF

Primary RADC mission areas are communications, electi -x)-
( magnetic guidance and control, surveillance of ground

and aerospace objects, intelligence data collection and

handling, information system technology, and electronic
S reliability, maintainability and compatibility. RADC

has mission responsibility as assigned by AFSC for dc-

monstration and acquisition of selected subsystems aT4

systems in the intelligence, mapping, charting, command,

b control and communications areas.
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