
AFOSR - TR - 7 r, - ^ ö 0 ^

CO.

^^

O

An Approach to
Global Register Allocation

Richard Karl Johnsson

December 1975

DEPARTMENT
of

COMPUTER SCIENCE

D D C
moEf
1 «T^

Einna
D

ll
AIR FORCE OFFimS OF SCIEHTIFtC RESEAP.CH (AFSC)
NOTICE OF Dfl , , ^r 4.
This teolu ^ f/,^-

A.
leotaioftX inforiaatioa Officer

Carnegje-Mellon University

.... ^ ^ - - • .»■■•'

■ - - - -- i nin^aii i i

uu.pii« ^mfmmm* •vw'i min ii.»^«^w^^v«iiiiiP ""nil ipp

•

1

UNCLASSTFiriD
'ECURITY CLAiilUCATION OF THIT. PACT fH7i..n IUIHI llnlrrcd)

^Richard Karl/jol. isson /

(^jyREPORT DOCUMENTATION P/GE

^ AFOSR
4. TITLE (end ! ub(lllc)

7. GOVT ACCtSSION NO

■' \

AN APPROACH TO GLOBAL REGISTER ALLOCATION,!

7. AUTHORfJ.)

READ WSTRUCIIONS
HK.rOKK COMHLKTING KORM

1. RECIPIENTS C XTALOG NUMBfR

5. TYPE OF REPORT » PERIOD COVEREIJ

'' Tn^t■rHIl 21
I'LWI PWiiHHIS ORG. R

8. CONTRACT OR GRANT NOMBS-SfsJ

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Lept.
Pittsburgh, PA 15213

//SJ F44620-73-C-0Ö74.

SRAMTLEMENI. PROJECT

1 t. CONTROLLING OFFICE NAME AND ADt RESS

Defense Advanced Research Pro
1400 Wilson Blvd.
Arlington, VA 222J)»-

Agency

16. DiyTRIDUTION STATEMENT (of ll.is Report)

I«. MONITORING AGENCY N A^^TRDDRESSf// diltcront Irom Con(ro//;ng Ollice)

Air Force>*frffice of Scientific Research (NM)
Bolly^^'b, DC 20332

10. PROGRAH^LEMENI. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

G1I01D
A0-2466

lar^cponT BATS- "^ /

UNCIASSIFIED
15«. DCCL ASSIFICATION DOWNGRADING

SCHEDULE

rovej tor pub^jr rolense; distribution unlimit(

IWlTMON ST'ATHW'ENy f' » 'erorTTTnTocVlff, intl.tPnrM hi" Kr£t>r.

Approved for public reiea:se; distribution unlimited,

18. SUPPLEMENTARY NOTES

19. KEY WORDS fCotlllniM on reverse side ./ necessary and idcnlily by block number)

20. ABSTRACT CCoii(/niie on reverse «/de // necessary and Identity by block number)

see back of this page

442 ±ZJLL
X5K

0^) 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

tmmmmi* — '-"-V..IPWII •14J(llll!l!!)-.lll I -.■ PHI^W-'W.« '" «» »"

UNCLASSIFIED
SECURITY CL ASSII ICAI ION OF THIS PAOf Mlhwi D«tn Kntnriid)

"""The thesis presents an approach to the problem of ßlobal reciste' allocation as

performed by an Optimizing compiler. The problem considered is actually the more

Cenerai one of choosing what physical resource within the target machine will be

used to hold the results of various compuiations in a running program. The resuiiS

may be the values of common (redundant) subexpressions, partial resuhs developed

during expression evaluation, or variables declared by the programmer. An

optimizing compiler can make better use ul the resources of the target machine if

these decisions are all considered together at or near »he source level rather than
-Ik

heing distributed throughout the compiler and operating at both source and object

)ü 'els.

A decomposition of an optimizing compiler is presented with research focusing

on one part of the compiler, namely the part which assigns the computed results to

physical locations. The entities for which locations-nust be assigned by the compiler

are uniquely identified by vcnxporary names (TNs). The process of binding the TK's to

actual locations is called TNBIND. A further decomposition of the TNBINO mods! yields

several interesting problems. Three of these problem! are considered in greater

detail.

(1) Specifying the way in which particular language constructs interact with

particular target machine capabilities.

(2) Determining the lifetimes of TNs, i.e., the segments of the program during

which each TN contains a valid value. This is similar to what has been called live-

dead analysis.

(3) Assigning a large number of TNs to the relatively few physical locations

available. This is related to so-called "knapsacK" or "cutting-stock" problems in

operations research.

Several versions of the TNBINO model are incorporated into the Bliss-11

compiler and compared with each other and with the original compiler in terms of

code quality and compilation time.

UNCLASSIFIED

■ - ■--— ■- ^^^^ iiMinifiMifHtttiiiirB

r

MSCBIIMJ*

NIIS WHIk Sect.N V

CDC lütt ScctM D

HUMnca □
miiftuTm

i» _.-
DISTRIDUTISI/miUIIILITY CNEJ

"TK MM iCui/i man

^1 n

W

An Approach to
Global Register Allocation

Richard Karl Johnsson

December 1975

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

SabmUted to Carnegie-Mellon University in partial
fuLjllltnent of the reqairemenXs for the degree of
Doctor of Philosophy.

D D C ^

JUN 1 1976

isranrrai
D

This research was supported in part by the Advanced Research Projects Agency of
[ha Off ce of the Sectary of Defense (Contract R4620-73-C-0074) and mon.tored
by the A* Force Office of Scientific Research. This document has been approved for

public release and sale; its distribution is unlimited.

*«> ^: .-^^.^ _

AbGiract

The thesis presents an approach to the problem of global register allocation as

performed by an optimizing compiler. The problem considered is actually the more

general one of choosing what physical resource within the target machine will be

used to hold the results of various computations in a running program. The results

may be the values of common (redundant) subexpressions, partial resu'ts developed

during evpression evaluation, or variables declared by the programmer. An

optimizing compiler can make better use of the resources of the target machine if

these decisions are all considered together at or near the source level rather than

being distributed throughout the compiler and operating at both source and object

levels.

A decomposition of an optimizing compiler is presented with research focusing

on one part of the compiler, namely the part which assigns the computed .esults to

physical locations. The entities for which locations must be assigned by the compiler

are uniquely identified by temporary aames (TNs). The process of binding the TNs to

ectual locations is called TNBIND. A further decomposition of the TNBIND model yields

several interesting problems. Three of these problems are considered in greater

detail.

(1) Specifying the way in which particular language constructs interact with

particular target machine capabilities.

(2) Determining the lifetimes of TNs, i.e., the segments of the program during

which each TN contains a valid value. This is similar to what has been called live-

dead analysis.

(3) Assigning a large number of TNs to the relatively few physical locations

available. This is related to so-called "knapsack" or "cutting-stock" problems in

operations research.

Several versions of the TNBIND model are incorporated into the Bliss-11

compiler and compared with each other and with the original compiler in terms of

code quality and compilation time.

- *^-^^*- ■ - • iirli naniiF* ■'■"'■ ■*-■" "*'

^

Acknowledgements

I am deeply indebted to all the members of the Computer Science

Department, faculty, staff, past and present students. Together they

create an atmosphere which is highly conducive to academic and personal
growth.

is My special thanks go to my advisor. Professor William Wulf, for hi

ideas, suggestions, and tireless effort in the original programming of

TNBIND for the Bliss-11 compiler. Thanks also to the other members of

my committee. Professors Anita Jones, Mary Shaw, and David Casasent,

for their helpful comments and criticisms. I must also thank Bruce

Leverett for his help and cooperation while I was building my test

versions of the compiler.

Finally my thanks go to Nancy and Elsa for their words of

encouragement when needed and their coercion when required.

. ^MdMkditti MtfÜMMMMfeiMikUtB*^! ,, ^."^^ »■■ ,], *M.mi | iiiiilüülM

r

•

1
1

!
I«

Contents

1. Introduction
1.1 Background
1.2 Issues and Subproblems

1.2.1 Evaluation order
1.2.2 Target path
1.2.3 Machine requirements
1.2.4 Run time environment
1.2.5 User variables
1.2.6 Interaction with control flow

1.3 Previous work
1.3.1 Index register allocation
1.3.2 Evaluation order
1.3.3 Global assignment

1.4 Approach to the problem
1.5 Thesis organization

2. A View of Global Register Allocation
2.1 The global register allocation problem
2.2 Local variables
2.3 Input to TNBIND
2.4 Actions of TNBIND

2.4.1 Targeting and Preferencing
2.4.2 Data gathering
2.4.3 Lifetime determination
2.4.4 Importance ranking
2.4.5 Packing

2.5 Summary of the model

3. Describing the Language and Machine
3.1 A typical binary operator

3.1.1 The necessary functions
3.1.2 An example
3.1.3 The store operator

3.2 Other operators
3.2.1 Unary operator
3.2.2 If-then-else
3.2.3 Simple loops
3.2.4 Complex operations

3.3 Cost computations
3.4 Mechanically generating TNBIND

4. Determination of IN Lifetimes
4.1 Definitions
4.2 An exampie
4.3 Reflection on lifetimes

1
2
4
4
5
6
7
7
8
9
9
15
20
24
27

28
28
30
31
32
34
35
37
37
38
38

39
40
40
44
46
47
47
48
48
49
50
51

53
55
57
64

I I IlilllililfllllHIIMIIIIM .^m —"'^•'-■'- "'•"'

VI An Approach to Global Register Allocation

4,4 Summary of Lifetimes

5. The Packing Problem
5.1 The problem
5.2 The procedure

5.2.1 The fathoming procedure
5.2.2 Backing up
5.2.3 Assigning anothei TM to a register
5.2.4 Honoring preferences
5.2.5 An intuitive view of the procedure

5.3 The practicality of obtaining an optimal solution
5.4 Formulation of the more general problem
5.5 Summary of packing

6. A Test Case
6.1 About Bliss
6.2 About the PDP-11
6.3 Bliss-11 implementation of TNBIND

6.3.1 Subroutine parameters
6.3.2 The store operator
6.3.3 Cost computations
6.3.4 Lifetimes
6.3.5 Ranking
6.3.6 Pack.ng
6.3.7 A new kind of restriction

6.4 Measurements of TNBIND
6.4.1 The programs
6.4.2 The numbers
6.4.3 Discussion
6.4.4 Evaluation

7. Conclusion
7.1 The TNBIND Model - Review
7.2 More traditional optimizations
7.3 Contributions of the thesis
7.4 Future research

7.4.1 Better algorithms
7.4.2 Automatic TNBIND generation

A. The TNP Routines

B. The Basic Packing Routine

Bibliography

66

67
68
71
72
74
74
75
76
77
78
79

81
82
83
84
84
86
87
oo

89
89
92
93
95
96
99

103

105
105
107
108
109
109
109

HI

130

132

— -"'' —-^ -. .^. ^—■.^■■~t.

— ™

Chapter 1

Introduction

This thesis presents an approach to the problem of global register allocation as

performed by an optimizing compiler. The problem is actually more general than

merely choosing one register or another to hold a part.cular value. A comp.ler has

the freedom and responsibility to choose what physical resource will be used to

(temporarily) store information during the execution of a program. This is a freedom

given up by a programmer when he changes from an assembler to a compiler. When

a program is being executed, many values are computed, stored temporarily, used and

then discarded. At the time of compilation a compiler must decide which values will

be stored in which locations at runtime. The thesis does not include questions of

dynamic storage allocation or other questions of large quantities of storage, but is

restricted to consideration of problems usually associated with register allocation.

In most computers there are several classes of locations which may be used to

hold information (e.g. registers, mam memory, stack). In addition there are usually a

number of (logically) identical locations within each class. Because the primary

function of a compiler is to translate faithfully any algorithm presented to it, the

primary goal must be to make a consistent l' \ of decisions about where information

will be stored, i.e. the translation must perform the algorithm described by the source

program. This thesis is concerned with the secondary goal of an optimizing compiler,

namely to select from the possible translations one that is somehow "better" than the

others. The concern here is only with the decisions relating to the use of temporary

storage. Other areas of optimization, especially common subexpression elimination

and code motion will be discussed only as needed to provide context and motivation

for the discussion of temporary storage.

T Hl1llHiMillM>^lM*i ^-^-■. ■^..■^■^ :......

2 An Approach to Global Register Allocation

1.1 Background

For many purposes the advantages gained by using an optimizing compiler are

far outweighed by the cost of analyzing the alternative code sequences in such a

compiler. In fact Hansen [Han74] has suggested that some types of programs are

'Aore naturally run in the environment of an adaptive compiler that initially interprets

programs and only compiles or optimizes as execution frequency warrants. On the

other hand, some applications demand highly efficient programs. In this latter

category come operating systems, compilers, and other programs run constantly or

very frequently but which are compiled infrequently. Traditionally such programs

have been written in assembly languages. By programming at the machine instruction

level the programmer is able to use all of his experience and knowledge of both the

machine and the problem to make decisions about what code should be written to

implement various parts of his algorithm. Until we can accurately build a model of

human knowledge, reasoning and associative capacity into a compiler, there will

continue to be small programs or parts of programs on which an experienced

assembly language programmer can outperform any compiler (in terms of "goodness"

of output code).

The problem with the traditional approach is twofold. 1) Assembly language

programs do not lend themselves to understandability, modifiability and demonstration

of correctness as many higher level language programs do. 2) Tnere are not enough

good assembly language nrogrammers. An optimizing compiler is an attempt to solve

this problem. The advantages of higher level languages (specifically

understandability, modifiability, and demonstration of correctness) are widely

accepted even by those who are not satisfied with the efficiency of the code

 j^-

iMt'MJ-MlH ^- \ |im wiy-^aa^!i^atf>A

Introduction 3

produced. The hope is that programs can be written in a high level language, and

that an optimizing compiler can provide translations which execute with the efficiency

of good assembly language programs.

This thesis will consider only that part of an optimizing compiler generally

known as the register allocator. The problem considered is actually the more general

one of deciding where information may be temporarily stored at program execution

time; the locations chosen need not be registers. The idea is to maKe optimal

decisions, but optimality is both hard to define and hard to measure. In terms of

register allocation, optimality may mean minimum object code sii:e, minimum execution

time, minimum number of registers used, minimum number of loads and stores, some

combination of these, or some other criteria. The word optimal was purposely

omitted from the title of the thesis because there can be no optimal solution to the

register allocation problem without a good deal of qualification on the meaning and

measurements of optirmlity. The emphasis here is on providing a general framework

in which particular optimization decisions car easily be made.

Although algorithms for specific aspects of the problem have been presented,

there has been little or no consideration of the overall problem. A primary goal of

this thesis is to present a model of register allocation which shows the interaction of

the various subproblems and allows specific solutions to those subproblems to be

easily incorporated into a realization of that model.

In the long term this research is directed toward compiler compilers —

programs which produce compilers from a description of the source language and the

target machine. Just as formalization of language syntax led to advancements in

mechanically generated parsers, it is expected that the formalization of the register

MMMWHUMiM« maummm '"'■- ■ '■ ^ -■

 *>- ^
...,,.. i.

4 An Approach to Global Register Allocation

allocation problem »Ul lead to advancements in this area of mechanically generated

optimizers.

1.2 Issues and Subproblems

There are many issues in the overall register allocation problem. Most of these

issues arise because we want to produce code that is not only correct, but also

"good"; many of the issues become "non-issues" if we are concerned only with the

generation of correct code. The issues include at least these:

Evaluation order
Target Path
Machine Requirements
Run time environment
Interaction with control flow

Each of these is discussed in more detail below.

1.2.1 Evaluation order

Since an expression must be evaluated by first evaluating its subexpressions

and then combining them, some decision must be made about the order in which the

subexpressions will be evaluated and where the resulting values will be stored until

needed. A simple example will help illustrate the op'ons. Suppose we ar» required

to evaluate the expression

(a ♦ b) + (c * d)

Using a three address notation, our evaluation order choices are

and

a * b
c * d
t1+t2

-» t 1

c ♦ d -» ti

'■-■ -■■J" --■^^■■-■-- ---^..^ äfe.^A.

■ ii i in ii>p*niiuj|ii

Introduction

a * b -» t2
t1+t2 ■♦ t3

The point is that the evaluation of the expression requires that the two

products be formed before their sum can be formed. Mathematically, there is no

restriction placed on the relative order in which the products are formed. Indeed, if

our hardware permits, the two products could be produced in parallel. In practice,

however, the evaluation order may be somewhat restricted. The restrictions may be

due to the language definition, e.g. the language might specify strict left to right

evaluation of subexpressions. The evaluation order may also be restricted because

of possible side-effscts of an operend. The issue of evaluation order is how to

decide which subexpression to evaluate first. In the example of Section 1.2.1 there is

no obvious preference \or choosing one or the other subexpression as the one to be

evaluated first. In some ;ases choosing the correct evaluation order is the

difference between "good" and "bad" code.

1.2.2 Target path

Although similar to evaluation order determination, the selection of target path

is in fact an independent decision. In the example above we avoided the target path

decision by using a three address notation. Very ♦ew computer? have full three

address capability. The last of the three address instructions above

t1+t2 ■» t3

may have two realizations on most machines

or
»3

♦ to

h+[2 •* *!

6 An Approach to Global Register Allocation

The target path is the sequence of subnodes which are first loaded into result

locations and then operated on by the indicated operators. We refer to an operand

lying on the target path as the target path operand, although we frequently refer to

an operand as being the target path since at any particular node the target path is

uniquely identified by an operand. When the alternatives are made explicit, we see

that the initial move instruction (tj -» 13 or ^ "• ^ may b8 el'^ina^d if "t is possible

that {3 can be the same location as eitter tj or ^ In the simple case, 13 may be

assigned to either location and we may make an arbitrary choice. In other cases

more global context may restrict our decisions. In the above example, let us suppose

that ti (i.e. a*b) is a redundant subexpression whose value, once computed, may be

used several times without recomputation. In this case t3 must not be the same

location as t^ since the value in tj must be preserved for later use. This additional

info» mation leads us to choose [2 as ^e target path.

1.2.3 Machine requirements

Different computers place differing requirements on the operands of certain

instructions. Aside from the special instructions unique to a given machine, these

requirements are usually restrictions on the kind of location in which the roerands of

the normal unary and binpry operators may reside. The available kinds of locations

may include

main memory
register
top of stack
special register (e.g. floating point, index)
pair of registers

Any general model of the temporary storage management problem must provide for

these differing requirements.

 —-"■-*—■'*'' ■- --^ -- ■ "—

' ■ ^ r
rr'^fiirtlfciJhtiiliMiirfcäiitli

"""""TP sssssszz 'if ImmtK^taa 1 i i i i i i *■ ill I ■——WM

Introduction 7

1.2.4 Run time environment

Language designers/implementors make decisions about the run time

environment which must be considered by a general model of temporary storage

management. These decisions are essentially extensions of the machine

requirements. Some of the questions to be addressed here are

How many registers are available for system temporaries?

Which registers are safe and which are destroyed across subroutine
calls?

Are there display pointers? If so lire they fixed or dynamically
allocated?

How are parameters to, and return values from, subroutines :.andled?

What is the interaction with library and system functions including
debuggers?

The model must allow for some degree of freedom in making these decisions.

1.2.5 User variables

Should variables declared and used by the programmer to temporarily hold

values be given the same treatment as those generated by the comoiler? Program

size and execution time car be reduced if some user variables can reside in

registers. If we are to consider allocating registers for user variables, it is logical

that we do that at the same time we allocate registers for compiler temporaries.

While machine restrictions and the run time environment force some decisions about

which values must or must not be in registers, we may be able to produce a "better"

program if we place some user variables in registers, even at the expense of keeping

some compiler temporaries elsewhere.

jMnamt^mmltM

 I ■ ■PIWIIIL

8 An Approach to Global Register Allocation

1.2.6 Interaction with control flow

In order to generate "good" code we must make the best use of the resources

available. In the case of registers, generally a scarce resource., this implies that we

must be able to recognize precisely when a register contains valid information and

when it does not. We say that a location contains a valid value when the value may

be referenced before a new value is stored into the location. We can do this In much

the same way a clever assembly language programmer does. When such a

programmer needs a register for some value, he follows the control flow to

determine where the registers currently in use are referenced and where values are

stored into them. A register can contain several logically distinct quantitie«, as long

as no more than one of the quantities has a valid value at any point in the program.

This issue concerns the graph theoretic properties o' the program. Suppose that

points x and y in the program flow graph are uses of some variable A, and that at

point z a new value is stored into A. We want to ask questions such as "Is there a

path from x to y that does not pass through z?" If the answer is no, then the variable

A does not contain a valid value between points x and z.

Another aspect of this issue is the use of a register over a small piece of

program to hold a variable whose value is normally kept h memory. When a variable

is accessed frequently within a small segment of code, program performance may be

improved by loading that variable into a register before the segment, thus eliminating

a memory reference for each access, and storing it back into memory after the code

segment. This optimization is most commonly applied to loops because the savings

are multiplied by the number of times the loop is executed.

 __

Will P- 1»1P.»IH .HIW ■ '- "'I11

Introduction

1.3 Previous work

This section presents some of the major results in the area of register

allocation. Published work in the area has generally been limited to consideration of

simple allocation problems in straight line programs and optimal evaluation order for

expressions. Little published material is available on the problf.mc of register

allocation in the presence of control flow constructs. The material below summarizes

the major results.

1,3.1 Index register allocation

Horwitz, et. al. [Hor66] discussed index register allocation in a paper oriented

toward FORTRAN-like programs (and machines like the IBM 7090) which have simple

array accessing mechanisms. An index is presumed to be a simple variable whose

value must be retained either in a register or in memory at all times. Given the future

index requirements of a program, the allocation of the index registers of the machine

to the indices is considered. When all of the index registers contain values that will

be needed again later in the program, a decision must be made to replace one of

those values when a new index is required.

Horwitz considers the possibility that an index may be changed while it resides

in a register. If an index is changed in a register, and subsequently that register

must be allocated to another index, the changed value must be stored in memory. If

the value is not changed, it is not necessary to store the value back into memory

when the register is reallocated. This problem is analogous to the problem of page

replacement in a virtual memory sy^em. It is less expensive to replace a page which

has not been changed since it was read from secondary storage because a valid copy

still exists elsewhere.

-...,>..>"'-—
-nr—r-

■■«mrtiüiiartl—lLii^ ii i i

w-w PI ~ "i "i mmmmm^^rnrnrnmcm^mmm i1"1"»1'

10 An Approach to Global Register Allocation

For the purpose of thi> problem, a program can be considered to be a

sequence of steps each of which requires a specific index. The fact that there may

be steps in the program that do not require indices is not important. Consider the set

of program steps and associated indices

step index

1

2

»
*1

*
X2

3 x3
4 «1
5 x2

6 *
x2

7 ^

where x* means that index x is changed in the step where x* appears. When a step

calls for an index, that index must be in one of the index registers. The other index

registers may contain any configuration of indices. The indices in the other index

registers may or may not be in a modified state.

We may construct «II of the allowable configurations for each step i, I.e. all

combinations of n of the indices used by the. program which include the index

required by step i (where n is the number of index registers available). Consider the

configurations to be nodes in a directed graph with branches from each configuration

of the ith step to each configuration of the i+lst step. Each of these branches can

be assigned a weight which is the cost of making the change in configurations

between steps t and t+1 represented by the branch. The cost of changing between

configurations is defined as the number of memory references required to make the

change. Thus each new index which is loaded has a cost of one. Each starred index

which is replaced has an additional cost of one. Changii.^ an unstarred occurrence of

.
■ ■■ - JM, .,■

Ml - _- ,,«..—

.-.

]
Introduction 11

an index to a starred occurrence of the same index, or replacing an unstarred index

require no memory references and therefore have a cost of zero.

Given this representation of the poss ble allocation of index registers, the

problem becomes one of finding the shortest, i.e. least expensive, path through the

graph from the first step to the last step. Although there are several algorithms for

finding the shortest path through a directed graph, the number of calculations

required for other than a small number of nodes makes these solutions impractical.

Since it is necessary to find only one of the possibly many shortest paths through

the „raph, we may restrict attention to any subgraph which contains a shortest path.

The bulk of the Horwitz paper is devoted to developing properties of these graphs

which lead to rules for eliminating nodes and branches from consideration. Horwitz

proves that the subgraph obtained by applying these rules does contain a shortest

path, and gives a procedure for finding that path. Six rules are given for generating

the subgraph from which an optimal index register allocation may be derived. Define

w(n1,n2) to be the cost of changing the configuration from that of node nl to that of

node n2. Define W(n') to be the weight of a node given by minn(W(n)+w(n,n')), i.e. the

minimum over all n of the sum of the weight of n and the cost of changing from n to

n'. The weight of the initial node is zero. Given these definitions we may summarize

Horwitz's rules:

Rule 1: Generate only minimal change branches and eliminate any node

which has no minimal change branches entering it. A minimal change

branch is defined as a branch from node n. at step i to node n' at step

t+1 such that either nodes n and n' are identical or n' differs from n

only in the index required at step i+1.

Rule 2: If nl and ^ are nodes of step i and W(n1)+w(nlln2)sW(n2),

eliminate ri2-

*- ■ ■ --"-"■"»•-—

'! tpSPWflPIH'WM'l^WUPl.PJ'ilK»1 ■>. ^■!«J*l^r""-'""iw.niMw.iMni^r

12 An Approach to Global Register Allocation

,

■

STEPO

STEP I X

v«

<l)X*Xj «»«'««

STEP 2 Xj «3)*"2XS »W ««•«•

STEPS Xj «5)XjXs WXJX, (4)X^XJJJ5)XJX,

STEP 4 x, 16)X(X5 («äJIJL CWMi Wjxrx,^ leix.x,

STEPS Xj (TlXjX, (/jx.Xj (Wx.xJ tejXjXj (Sjx.Xj mx2x,

STEPS x? «7)x»x5 (Wx^J l«)&| W«?«; JJl^t

STEP7 X4 (»)Xp<5 (7)^ (6)X;x4'^T8)XJ?(4 (71 X^ 19) X.X,

Figure 1-1. The result of applying Horwitz's Rule 1.

,* v*

x* x x* x

♦ v* x* x' x x x- x

Figure 1-2. Luccio's six link types.

'.....i™.

—•■* —-.-. ^^-- •:~- — -"t.^.-^..--iJ-

f

f

Introductirr, 13

Rule 3: n^ and ^2 are nodes at step t which differ in exactly one element.

Let z^ be the element of n^ which is replaced by Z2 in r\2. Although

the exact explanation is somewhat more complex, the idea is that

node n2 can be eliminated when W(nj)<W(n2) and in the future z^ will

be used before Z2. This requires the ability to look ahead in the

program.

Rile 4: This rule is a consequence of Rule 3 and prevents generation of

nodes that would later be eliminated by Rule 3. If Zj and Z2 are

elements of a node n. at step L and the next use of Zj comes before

the next use of Z2, do not form a node at step i+1 which replaces zj

by the index required at step t+l.

Rule 5: Since we need only one shortest path, generate only one branch

b into each node n' such that W(n')":W(a)+w(6).

Rule 6: If a node n of step i which is not the last step has no branches

leaving it, eliminate node n.

Figure 1-1 (reproduced from [Hor56]) shows the result of applying Rule 1 to

the graph of the example program above when there are two index registers

available. Step 0 is added to indicate the initial configuration which contains two

indices not used in the program (xg and xg). Each branch >s labeled with the cost of

the change between the indicated configurations and each configuration is labeled

with the minimum cost to reach the configuration from step 0.

Luccio [Luc67] showed that Horwitz's rules may restrict the graph so that at

some steps only one configuration is possible. The program steps before and after

such a step may be treated separately. Luccio neatly describes his technique in

terms of link diagrams. Six types of links are used to connect various combinations

of starred and unstarred indices (Figure -2 . Links of types 1, 2, 3, and 4 are built

whenever a second occurrence of an index is seen. Links of types 5 and 6 are built

following occurrences o(starred indices and are maintained up to the current step.

These are called temporary links since they will be changed to one of the other

types when a succeeding occurrence of the particular index is encountered.

' —HI

M " K i " »■i^i*W^PPPlW«pilBPPÜit«*«PiPWPII^ P^P. ,«I41*IMPI ^i-^g«HH

14 An Approach to Global Register Allocation

A link is said to cover all the steps along ts extension excluding the extremes.

Only the first extreme is excluded for temporary links so that they cover the current

step. Luccio gives two rules for changing links of types 1, 2, 3, or 4 to links of

definite allocation (type 0). The index corresponding to a link o* type 0 must be kept

in its register throughout the entire extension of the link.

If there are N reg ■ 'ers available then

1. A link L of type 1 becomes type 0 if for each step k covered by / the

number of other links of types 0, 1, 2, 3, or 4 covering k is less than
N-l.

2 A link L of type 2, 3, or 4 becomes type 0 if for each step k covered

by / the total number of other links covering k is less than N-l.

When the number of type 0 links covering a step k is N-l, the configuration for

k is fixed. The n registers must contain the N-l indices corresponding to the type 0

links and the index required by step k. At such steps the Horwitz method may be

applied independently to the preceding and succeeding steps.

The Horwitz method is related to Belady's algorithm for page replacement in a

virtual storage computer [Bel65]. Belady shOvved that in a paging environment, the

page to be replaced should be the pa^e whose next use is farthest in the future. In

addition he noted that if a page has not been written into, it need not be written out

(to secondary storage) but merely deleted, The ability to determine which page

(register) is next used farthest in the future depends on knowing the future behavior

of a program.

1

.MbMMMiaifaiittM

 „„.._.,.»...-...„„.u*. „„ ,, , .MU...., „,., ^—^-^-. —— B^n^r----F--.T™-.-?-n''"'» -■7,—e^n-wr^™'^—-• -■ . — T

Introduction 15

1.3.2 Evaluation ordsr

Ikuo Nakata addressed the question of evaluation order in his paper describing

the register allocation phase of a FORTRAN compiler for the HITAC-5020 [NaK67].

Nakata shows that the order of evaluation of the subexpressions of an expression

can affect the number of temporary values thai are required at any one time.

Consider the expression a»b+(c+d)/(e+f). A straight forward code sequence to

evaluate this expression is:

a * b -> Rj
c + d -> R2
e + f -» R3
R2/R3-» R2

R1+R2-> Rj

Suppose, however, that this expression must be evaluated on a computer with fewer

than three registers. To use the same evaluation order with only two registers

available would require that one of the intermediate results (namely 8*b) be stored in

some temporary memory location. On the other land, by changing the order of

evaluation of the suoexpressions, the expression may be evaluated using only two

registers and without storing intermediate results.

c + d -♦ Rj
e + f -» R2

Rl/R2^ Ri
a * b -» R2

R2+R!-» P>

The central point of this example is that the subexpression (c+d)/(e+f) requires

two intermediate values. Since those intermediate results are not needed after the

division is pei formed, one of the registers may be used to compute a»b. Since the

result of the evaluation of an expression occupies only one register, it follows that

for any binary operator, the operand whose evaluation requires the larger number of

registers should be evaluated first.

■—■- ...■.■— »...I -.,.., ..._^.J..:.. ■^■^■-.n—^^^^—

w—mmig^^ mmmm! ——r.
"'«' *'| «J"

16 An Approach to Global Register Allocation

The nu'-' er of registers required to evaluate the expression (a) <op> (b) where

(a) and (b) are arbitrary expressions and <op> is some oinary operator is given by

the following analysis. Let I and m be the number of registers required to evaluate

(a) and (o) respectively. If either (a) or (b) contains no operators (It is a constant or

a simple variable) it requires zero registers. (Note that "require" here means the

minimum number of registers necessary to evaluate an expression without storing any

intermediate results).

There are two cases:

1. /-ffi=p. (a) can be evaluated first leaving the result in one of the L

registers used. Evaluation of (b) will require one more than the p-1

registers remaining giving a total of p+1 registers for the expression.

2. Ltm; maxU,fn)-p. In this case the operand requiring the larger number

of registers is evaluated first leaving p-1 registers for the other

operand. Since the other operand requires at most p-1 registers no

additional registers are needed and the expression can be evaluated

using only p registers.

In both cases p is a lower bound on the number of registers required and p+1

is an upper bound. In case 1 p+1 is a lower bound, and in case 2 p is an upper

bound.

Nakata gives an algorithm for labeling the nodes of a tree with the number of

registers required for evaluation of the node. Briefly, this algorithm assigns a label

La to each noda n of the tree such that if ft is » leaf then Ln-O, otherwise the

immediate descendants of ft have labels I and r and Lft-min(max(/+l, r), mnxU, r*l)).

Nakata's algorithm for code production involves first labeling the nodes of the

tree by the above method, and then beginning at the root node, walking through the

tree generating code to evaluate the expression represented. At each node the

^pRfj^f y». m^m

n in I^M ■ i" i - - *—-

11 I ■ will ■■■■■nHMMBmnai

Introduction 17

operand requiring the larger number of registers is evaluated first. If the operands

require the same number of registers, the left operand is evaluated first. NaKata

does not consider formally the question of what to do when the number of

simultaneous temporary value-,; exceeds the number of registers. He does, however,

offer some heuristics for deciding which temporary value should be stored. On most

machines the left operand of a division or subtraction operation must be in a register,

so the left operand of these operations should not be stored. This may conflict with

the other assertion that the value to be stored should be the one whose use is

farthest in the future, but Nakata conjectures that the efficiency of the code

produced will not be significantly affected by the choice of either of these courses

of action.

Using a graph theoretic approach, R. R. Redziejowski [Red69] later proved that

Nakata's algorithm does use the minimum number of registers. Redziejowski

transformed Nakata's tree into a "lineup" or linear sequence of vertices. Each vertex

represents a single operation in the tree and an arc is drawn from vertex x to vertex

y to represent a partial result which is computed at y and used at *. Choosing a

feasible evaluation order is equivalent to ordering the sequence of vertices so that

vertex y precedes vertex % if there is an arc from x to y. {This is equivalent to

requiring that any partial result be computed before it is used.)

At any vertex % the number of partial results created before x and used after

x is represented by the number of arcs passing over vertex x. Redziejowski calls

this number the width of the lineup and develops an algorithm for producing a lineup

of minimum width. Redziejowski's algorithm is in principle the same as Nakata's

algorithm and therefore Redziejowski's proof of his algorithm can be considered as a

t

iwfti'iitf'itiiffi-ii -i
,

""—'•''——"-""'—'——WWWPBWWi -—-", ^^m^mmmmmm

>

18 An Approach to Global Register Allocation

formal proof of Nakata's algorithm. Redziejowski generalizes the algorithm to include

operators with more than two operands.

Sethi and Ullman [Set70] consider the mora general problem of minimizing the

njmber of program steps and/or the numbe,' of storage references in the evaluation

of an expression with a fixed number of general registers. They exploit the

associative and commutative properties of operators and assume that all elements are

distinct (no common subexpressions) and that there are no non-trivial relations

between operators (e.g. no distributive law).

Nakata's tree labeling scheme is modified slightly to account for commutative

and non-commutative operators. This change assigns a label of one rather than zero

to a leaf node which is the left descendant of its ancestor. The change means that

the Isft and right operands of a binary operator may have different weights and

accounts for the gains which may be made by exploiting commutativity.

First considering only non-commutative operators, Sethi and Ullman prove that

their Algorithm 1 (which is essentially Nakata's algorithm) uses the minimum number of

registers as well as the minimum number of loads and stores. Since the number of

binary operators is not changed by the allowed transformations, a program which has

a minimum number of loads and stores has a minimum number of program steps.

In Algorithm 2, Sethi and Ullman consider commutative operators by adding a

step to Algorithm 1 which interchanges the left and right descendants of a

commutative operator when the left descendant is a leaf and the right descendant is a

non-leaf.

Associativity is treated only in conjunction with commutativity since in practice

most associative operators are also commutative. The approach used by Sethi and

■—-- ^..^ ^,^,l iiniri ^■" hflvaüirifii

^^W^^PWUPPWUP «WPPW^nnMi^IPMI^mpilUW llfPIMI • WUWII

Introduction 19

""..».. is to make the associative-commutative operators into n-ary operators,

reorder the operands so that the one or two operands requiring the largest number

of registers appear on the left, and then change back to binary operators associating

to the left. This is conceptually similar to Redziejowski's treatment of n-ary

operators.

Sethi and Ullman prove that each of their algorithms generates an evaluation

sequence containing the minimum number of loads and stores under the assumptions

of the algorithm. They then show that this leads to the to1,elusion that the algorithms

also minimize the number of storage references.

In their conclusion, Sethi and Ullman point out that all of their algorithms can be

performed in time proportional to the numbtr of nodes in the tree. They also show

that the algorithms can easily be modified to allow operations which require more

than one register.

Beatty [Bea72] recasts the ideas of Sethi and Ullman in terms of axiom systems.

Beatty extends the Sethi-Ullman algorithm for associative-commutative operators to

include the unary minus and its relations to the other operators. These relations

include the equalities

a-b - a+(-b)
-(a*b) •■ (-a)*b
-(a/b) - {-a)/b - a/(-b)

Beatty's proof of minimality is considerably more complicated than the Sethi-Ullman

proof due to the properties of the unary minus.

More recently Bruno and Sethi [Bru74, Set75] have shown .hat the register

allocation problem for straight line programs is polynomial complete when common

subexpressions are not recomputed. The specific problems considered are (1) to use

i. •

T"^ tmmmi™** ——

20
An Approach to Global Register Allocation

the minimum number of registers without stonng intermediate results and (2) to

generate the minimum length code for a one register machine. While the optimal

register allocation/evaluation order may be easily determined in some cases, the

results of Gruno and Sethi tell us that in general there is no known nonenumerative

solution,

1.3.3 Global assignment

The work thus far discussed has dealt only with the question of optimal use of

registers in expressions. A paper by M. H. E. Day in the IBM Systems Journal [Qay70]

considers the much broader problem of global assignment of data items to registers.

Before describing Day's work, it is necessary to explain the distinction between what

Day calls global assignment and what he considers local assignment. Informally, a

local assignment is one which makes assignments within basic blocks, i.e. without

control flow. A global assignment considers larger contexts which include control

flow. A more formal discussion follows.

Consider a programming language L The terminal symbols of L are delimiters,

operators, constants, and identifiers. Th« constants and identifiers are the data items

of L A program in L is a sequence of statements; a statement I« a sequence of

terminal symbols. Statements in L are either descriptive or executable, the latter

specifying operations to be performed on data items. A data item is said to be

defined in a statement when execution of the statement causes a new value to be

assigned to the data item. A data item is referred to when the value of the data item

is required for correct statement execution.

Let P be a program in L A basic block in P is an ordered subset of elements

of P which intuitively is "straight line code," i.e. a sequence of statements which can

.üm.L i —
i ii>i*fifMiJiiitiaiM^iaiiriii^tfciiitiif • n iii-iifiiiiiliiii'iiiiii -v—:---'-:-M-'^-:

H^^PI^PP!

Introduction 21

only be entered by branching to the first statement and which can only be le't by

branching from the last statement. Pb is a representation of P as an ordered set of

basic blocks. P is a representation of P as a directed graph with the elements of Pb

as the vertices and a set of arcs representing the flow of control ainong the basic

blocks of P. A region Ri is a strongly connected subgraph of Pff, and Pr is a

representation of P as an ordered set of regions:

Pr ■ {Pj.R2 KJ

Rt n R - 0 or /?t c Rj for t < j,

A computer has a set of registers C* whose elements are g^, and for most

situations requiring the use of a register any available g^ i G* may be assigned. Let d

, epresent an element of P, Pb, or Pr and define:

0* ■ { f; | f; < G*, «i "S available for assignment everywhere in d)

N' ■ { R; | A^ it • data item in P, ^ may be assigned to registers in d }

Given these representations, Day offers the following Definitions:

1. A local assignment is a (possibly multi-valued) mapping of A/ £ A/' onto

G c C f or ri < Pb.

2. A global assignment is a (possibly multi-valued) mapping of NcN'

onto G c G' for ri < Pr.

3. A one-one assignment is a one-one mapping of /V £ A/' onto G c C'. A

one-one assignment defines a one-to-one correspondence between N

and G.

4. A many-few assignment is a single-valued mapping of NcN' onto

C c C with cardinality{N) i cardinality(G).

i . ■ irr ^jr---^-* -■■-— ' i^.ainiilnni - '-^■^ -
■ - !■ ■ ^- ■'- ■ • - mmm

_l ■"^«Hül

22 An Approach to Global Register Allocation

5. A many-one assignment is a many-few assignment in which

cardinality(C) - 1.

A data item is active at a point in d if it may be referred to before being

defined subsequent to that point. Two data items interfere in d if they are both

active at some point in d. A necessary condition for the assignment of A/ £ N' to g <

G in t/ is that n^ must not interfere with ft for every ftj, rij < N, i M >.

Local assignment, as defined by Dav, occurs entirely within basic blocks of a

program. The methods described by Horwitz, Nakata, Sethi-Ullman, and Beatty

provide algorithms which may be used to obtain optimal local assignments under the

assumptions dictated by those authors. Local assignmant is not, however, able to

cope with data items vhich may be active on block entry or exit.

Global one-one assignment partially solves the problem of active data items at

block boundaries by assigning data items to registers throughout an entire region.

With this type of assignment, precautions need be taken only at region ooundaries to

assure that values of active data items are retained.

Assigning a data item to a register for an entire region may lead to inefficient

use of the registers. With accurate program flow information, it is possible to

determine the points at which a data item is active. When the active points of all data

it«ms are known, a set of data items which do not interfere may be determined and

the elements of that set assigned to the same register. The availability of complete

and accurate flow information is critical to efficient use of global many-one or many-

few assignments. In the absence of flow information, many-one and many-few

assignments degenerate to one-one assignments.

Day formulates global one-one, many-one, and many-few assignment problems

■ttW**B».._ _ IM ^Mil - '^- ^ - - ' ■ '

.iwjiwpi^vpi' .it i.iiiiipijnppppiiiipi ^HPHP^V ■HNinipBHiPnMin . n mmi '

Introduction 23

as integer programming problems. He makes the intuitively reasonable assumption

there is some profit (>0) associated with the assignment of a data item to a register

and that this profit depends on the frequency and context of the use of the data item.

Day gives several algorithms for solving the assignment problems. Some of these

give optimal results while others may produce non-optimal feasible results at a much

lower cost in computational complexity. 'Jay's formulations of the problems are

summarized below.

The global one-one assignment is the simplest of the three problems since no

interference data is required. Refering to the definition of a one-one assignment let

n - cardinality(W') and m. - cardinality(C') and let p be a vector of profits such that p^

is the profit associated with assigning ^ < N' to a register. Vector « Is a selection

vector such that «^ - 1 if ^ < N' is assigned to a register, otherwise «^ - 0. Let i be

a vector of I's of appropriate size so that lx produces the sum of the elements of xj

then the problem is

maximize
subject to
where

z m px
lx $ m
xL i {0, 1} and p^ > 0

The solution to the one-one assignment is simple: assign the m data items with the

largest profits to registers.

The global many-one assignment problem is similar to the one-one problem

except for the added restriction that no two data items which are assigned to the

register may interfere. Day expresses this condition in terms of a matrix of data item

interference values (C | c^ - 1 if /^ «y < A/', i »< ; interfere! c^ - 0 otherwise).

The many-few assignment problem is an extension of the many-one assignment

problem to more than one register. The problem is to select the best combination of

'■ ■ -■"' ■

24 An Approach to Global Register Allocation

many-one assignments. Day explicitly excludes multi-valued mapping which mij,ht

assign a single data item to different registers at different points in a region.

In his conclusion, Day reports the results of several tests of the actual

execution characteristics of his algorithms for many-few assignment. The OPTSOL

algorithm (which provides an optimal solution) requires much longer execution time for

relatively little gain over the estimating algorithms. (Sample values: for one register

and 48 data items t(optimal) - 6 sec, t(estimate) - 0.05 sec). The total profits

produced by the estimating algorithms are consistently greater than 907. of the profit

produced by the OPTSOL algorithm and are significantly better than a one-one

solution to the same problem. Day concludes that his algorithms are sufficiently fast

to be included in an optimizing compiler.

1.4 Approach to the problem

In order to build the optimizing compiler mentioned earlier, it is necessary to

have a general overall model of the resulting compiler. Once we have this model we

can divide the task into subproblems along the lines of the phases of the resulting

compiler and attack the subproblems individually. The overall structure of the

compiler presumed in this thesis is the decomposition of the Bliss-11 compiler

[Wul75]. The Bliss-11 compiler is decomposed into five major phases:

1. LEXSYNFLO -- lexical, syntactic and global flow analysis.

2. DELAY — Program tree manipulation. Replacement of some nodes by

simpler but equivalent nodes. Determination of evaluation order and

target paths. General decisions about the code to be produced.

3. TNBIND — Allocation of registers and other temporary storage.

4. CODE -- The actual code generation.

5. FINAL — Peephole optimization and preparation of the code for final

output.

MMm i —-n ..—...na^i»

ii i myp WIIVUJPMWMIWIF I . IU |l»W>W^WPWPWPI>^^^».1W" " ■—■"■"■

Introduction 25

In this thesis we will consider the TNB1ND phase of the compiler. The name

TNQIND comes from Temporary Name BINDing. A temporary name (TN) is a name

assigned to any location to be used as temporary storage. A unique name is assigned

for each logically distinct entity, although several namas may represent the same

physical location in the final code stream. It is assumed that the DELAY phase has

made the evaluation order and target path decisions described above. TNBIND must

make the actual bindings of TNs to locations after considering the other issues. Of

particular importance are the machine requirements and characteristics. Working from

the tree representation of the source program TNBIND determines the number and

context of the uses of each TN and decides how to bind the TNs to the available

locations so as to produce the "best" output code. There are two basic goals in

studying the TNBIND phase of the generalized optimizing compiler structure. (1) We

want to formalize some of the actions in a phase of compilation that is usually a

collection of unrelated algorithms at best, and completely ad hoc at worst. (2) We

also want to make the transition from a phase of a compiler for a particular

language/machine combination to a general model of the temporary storage problem.

The TNBIND model will include the assignment of TNs for user variables, and user

variables will be considered as equal competitors with the compiler generated

temporaries in the allocation of machine resources. The model will also place a great

deal of emphasis on accurately determining the interaction of the TNs with control

flow in the program. The restrictions placed on the final bindings of TNs to locations

which arise from the machine requirements and the run time environment will be

coisidered in a general way so that changes in the machine, the language or the

implementation can easily be incorporated into a new compiler.

The thesis can be seen as an extension of the work described in [Wul75]. We

26 An Approach to G'obal Register Allocation

take the relationship of TNBIND to the other phases of compilation as defined by the

Bliss-11 decomposition to be the correct relationship. From that point we expand the

TNBIND idea to a general model of temporary name binding applicable to a large class

of languages and machines. We also consider new algorithms for the solution of two

specific subproblems of the TNBIND model. The goal is to show how to produce a

TNBIND phase of a compiler when presented with the language and the characteristics

of the target machine. It is not proposed that the result of the research reported

here should be a piece of a running compiler compiler system. Rather we will present

a notation for describing a general model Of a solution of the problem and indicate

how the specifics of a particular language or machine may be incorporated in the

model. Though it may be somewhat of an understatement, the step from the model

presented here to the corresponding piece of a compiler compiler is "merely a matter

of implementation,"

The following description is an overview of the implementation suggested by

the model. We assume here that our only choices for assigning TNs are registers and

main memory. Each expression which must produce a value and each user variable is

assigned a unique TN, Two values are calculated for each TN: the cost* of accessing

the TN if it is assigned to a register and the same cost assuming the TN is assigned to

a location in main memory. We also collect for each TN a list of all points in the

program at which the value of the TN must actually exist in the assigned location.

The optimal binding of tho TNs to the available locations is the one which produces a

minirnum cost program (i.e. the sum of the costs of each TN for the type of location to

which it Is bound is minimized) and no two TNs which must contain valid values at any

one point are bound to the same location. The really hard parts of the problem are

t in terms of code size, memory references, etc.

■"" • nwi |TT,wp..^WT-.«J.-' ■ ^—-■:-._

•wmmmrnnmrnmi* 2ZS2 mmrm*wr***i~~mm*m*im ~

Introduction
27

/

determining, accurately, the points at which any given TN must contain a valid value

and selecting a set of bindings to minimize cost without a comp.ete enumeration of all

feasible bindings. By clanging the exact measures of cost, we can change the

emphasis of the optimization. If the cost minimization procedure is effective we will

produce at least very good, if not optimal, c.->de as defined by our cost measures.

1.5 Thesis organization

Chapter 2 provides a detailed description of the model. This includes the

decomposition of the problem into several subproblems including cost computations,

lifetime determinations and the actual binding. Chapte- 3 gives a notation for

describing the pertinent facts about the language and the target machine as they

relate to register allocation. This is the place where implementation decisions (e.g.

subroutine call-return conventions) and machine specific information are encoded.

The machine specific information needed here is not a description of each opcode,

but rather more general information such as the relative cost of accessing registers

and memory and what kinds of locations may (must) be used to hold the operands of

various operators.

Chapters 4 and 5 describe solutions to two specific subproblems: the

determination of lifetimes (also known as free-busy or live-dead analysis) and the

problem of binding a large number of temporary locations to the limited physical

resources of the target machine. Chapter 6 discusses the reimplementation of the

TNBIND module of the Bliss-11 compibr as a test case of the thesis. Chapter 7

reviews the model and considers the possible directions for future research.

-- ^- —--

v-l -KiuMNi-L^wijniimwiiMiiiui •Mpii i ■■..lu.ijpnvmnpq" nmmmm>w^mmmmmimmmm^i^i^mi<^'W^iif'^liil'''rvmw^lfltKK

Chapter 2

A View of Global Register Allocation

This chapter will present a description of the TNB1ND model of global register

allocation. Global register allocation as used here means making decisions about

which register (or other location) will be used to hold a particuibr value by

considering a context larger than a single expression or statement. While it will not

always be explicit in the following description, the intent of the model is to make ai.

derisions in the context of a sin5le subroutine. The model could be expanded to

consider an entire c^. .pilation or, with suitable intermediate storage of data, a set of

compilations, but the subroutine is the unit of program frequently considered by

other optimizations and is large enough to provide the opportunity for interesting

global decisions.

2.1 The globai register allocation problem

Most register allocation done in actual compilers is local. As defined in Chapter

1, a local allocation is an allocation done entirely within a basic block. This type of

allocation is much easier than a global allocation which makes allocations within a

region. It is possible that an entire program may be a single basic block, in which

case local and global allocations are identical, however such programs are a small

minority and are rather uninteresting. In order to do the global allocation, we must

have more information about the control and data flow of the program. In traditional

compilers this information is not available at the time register allocation must be done.

Traditional register allocation methods such as those described by Hopgood

[Hop69] operate on sequences of machine instructions. The instructions come from

28

— ■■ -- ■"- - -J" >■-,....- ...^ ■^— -. 1-..,..-—t ' . .^■>.t^~mjljli*l&M-v*i. mMM

i. .Hill» i ■ ■ »HUM «^^»IBWyi^i^n^WTWT»! IliniilWIllunwiHW^^aWIIT'— ""■"«WWWIBKWWWPWW i ■»■■l f^iff. „y. -

A View of Global Register Allocation 29

the code ßenerator with the necessary registers specified symbolically. The register

allocator then associates ihe symbolic names with the actual registers of the machine.

A local allocation is the logical choice in this situation because the information

necessary to make global decisions is difficult to obtain from the machine code. Thus

the model of compiling that places code generation before register allocation has to

some extent dictated the use of local allocation methods.

The TNBIND model differs from the traditional view by placing «he register

allocation before the actual code generation. At this point the traditionalists will cry

"How can you assign registers before you know what instructions are to be used?"

The answer lies in the fact that trie TNBIND model considers registers as more

general than just a necessary part of a machine instruction. This is reflected In the

choice of the term "temporary name" rather than "register" to refer to the entities in

question. A temporary name is, quite simply, the name of a place that can be used to

store information. It is possible to identify the values (information) that must be

computed by looking at the parse tree of a program.^" If we couple the knowledge of

where these values are computed and where they are used with some basic

knowledge about the machine, we can assign actual locations to hold each of the

values without ever knowing the exact sequence of instructions that will be needed

to perform the computation, Indeed it may be the case that we cannot decide on the

exact instructions needed until we have determined whether certain values are being

held in registers or not. Thus there is somewhat of a "chicken and egg" flavor to the

problem. On the one hand we can argue that we cannot assign registers until we

know what instructions are to be used, and on the other hand we argue that we

t In the case of a language construct that is not closely represented by the basic
hardware of the machine, it may be necessary to add some information to the nodes
of the parse tree during semantic analysis.

■

■-— ■ ■' "

1 •^mm

30 An Approach to Global Register Allocation

Cannot decide on the best sequence of instructions until we know which reg!»ters will

be used and which operands will be in registers.

The global allocation problem is hard. Sethi [Set75] has shown that the general

problem is hard even for straight line programs. Not only is the problem of finding a

good (i.e. near optimal) allocation polynomial complete, but merely determining

whether a given function which associates registers with program nodes is a valid

allocation is also a polynomial complete problem.

2.2 Local vtnables

The TNBIND model treats user declared local variables in the same way it treats

temporary storage needed for expression evaluation. This is a logical extension

since the programmer uses the abstract computational facility provided by the

language in the same way the compiler uses the facilities provided by the target

machine. The programmer expresses his operations in terms of the language

primitives just as the compiler expresses the language operations in terms of the

hardware primitives. The programmer uses his local variables to temporarily hold

intermediate results. By treating the local variables like compiler generated

temporary storage the programmer reaps the benefits of keeping some, if not all, of

his results in registers. The TNBIND model differs from other views of register

allocation by declaring, at the outset, that user variables will compete on equal basis

with compiler variable^ for use of the registers.

•ÄMOÜA

—'—- 'wm^r^mfm

A View of Global Register Allocation
31

2.3 Input to TNBIND

.K.L.on cod. s,fMm «tu- -*• ins.ruc.io« .0 b. **** ** *'

rc6ister Md. «n.d in .y*^. » I- »- -«•" " ,h- ',IOC<,0r ,0 m"P ,h'

,y^ n,n,es in.o physic, 3ss,gnmen.s. So o.s a. . dis.inc.ion

be.ween ^^ '*' ^^ *° '°"°" *"* '"'"""* "" ' ^ ^

U5. ... ,.rmS in..rch.o..,b,y. A pro8 y «^ -»" "«is"" '

p^.c.iy .v-1*.., bo. ,. .»I no. ««a« ™ro .„s... , pHysio.Uy

.v.,.«.. B.C.U.. .any o. .be opera.ions pe.or.ed in .b. TNB.ND .ode, ...

„.en. i„d.p.nd.n,, h.vi„8 .0 d.,. wi.b .Co.! — *** "*'°*"'

u„„.c«s.ry co^pHCions. TNB.ND op.r...s on . pro.r.. ^ ««h ..ch.n.

depond.nc. b.in. suppii.d psra^.Ticiiy .0 l.s sUbph.seS .s r.ooir.d. E.ch nod. 0.

m. ,r., which prodocs . r.- vsioot h.s he.n .ssigned . uoioo. ***** "...

be „eea ,o hoid « ». -* ™. « .-"- ^ •" Wi",,0 P00''

.„Housh .h.y wi„ .«.tu-ly hav. .0 h. ..ppod on,o ,h. hn sourc.s o, .h.

t.ri., „.chin.. Loca, variahios and comn,oo soh.^pr.ssio o .ssi.n.d TNs.

ot th. „.chin. r„o d ,h. imp..m.n...ion d.cisions as discuss.d in Chap..-

. ln the c... o, .: adias .« -y '.ad .h. ophons W.

SrÄVÄTÄ Ä.1!^ .h. sloCion o, a sUh5.oo.n. „ow pa.h.

■ ^"i' ■

«PUP

32 An Approach to Global Register Allocation

loca' variable must (or must not; be kept in a register. The restrictions, may include

concepts such as "must be a register," "must not be a register," "must not be register

0," or "must be an even-odd register pair." These restriction decisions are made by

an earlier compilation phase which has knowledge of the semantics of the language as

well as the characteristics of the machine. Earlier phases have also decided the

evaluation order of subexpressions and have made the target path decisions. A

global flow analysis phase has identified common oubexpressions and noted the

points at which each such expression must actually be evaluated. There may be more

that one distinct common subexpression identified from each set of formally identic«!

expressions [Ges72, Wul75].

Figure 2-1 shows the structure of the input to TNBIND for an assignment

■statement. Each operator node contains the operator, a TN (which may be nuil), and

pointers to the operands. In the figure the target path operands are marked with the

symbol "•" which appears in the pointer field. The leaf nodes of the tree structure

are variables and literals. The leaf nodes which represent user variables to be

treated by TNBIND also contain TNi. In the figure, the variables "A" and "J" have

been assigned TNs.

2.4 Actions of TNBIND

Given the input described above, the function of TNBIND becomes one of

bind'ng the TNs to actual storage lociiions (regsters, memory, etc.). This proceeds

in f.evcral subphases as shown in Figure ?-2. In the figure each box represents

one of the subphases. Boxes stacked vertically represent independent processes

which may be done in parallel. Each element of a vertical stack is dependent on one

or more of the elements of the stack on its left. Thus the vertical dimension

l^^Mt-lMttirtmwiiaiitf iiAMMiiühii -rtiiii iiiiriii

A -ew of Global Register Allocation

<-

•w

TN - null

J^
te"^"^ 1

var
i^

•

A TN-IJ

»A
• fr^"^ •«-

var
»^

+

B TN-t2

LU
1 K-

*
V

var

TN-tj C

Z^
Cc^"^ 1 K-

var
V

literal
,

D 2

»D

A#-B»(0»2+C)

Figure 2-1. The TNBIND input for an assignment statement.

— ^•-*—^^-- ■- -^A^ -

34 An Approach to Global Register Allocation

represents potential parallelism whila the horizontal dimension represent« required

sequential execution. Each o(the subphases in Figure 2-2 Is described below.

targeting and

preferencing

data gathering

Figure 2-2. The subphases of TNBIND.

2.4.1 Terg«ting and Preferencing

TargeUnB is the process of trying to cause each result to be computed in the

place the result will be needed, thereby eliminating non-productive data moves. The

values of subexpressions are targeted or directed toward producing a final result in

the TN in which the result will eventually reside. The targeting process attempts to

take advantage of the opportunities recognized in the target path decision (Section

1.2.2).

The process is carried out in an execution-order tree walk. Each node passes

its own TN to its target path subnode saying, in effect, "This is where I would like

you to leave your result." The subnode considers the desirability of generating its

result in the target TN. The considerations include whether the subnode is a common

...■:.-^a ;■.,-; J-.._ ..■,.l..:v.,...J_^.

 _r-i -
,t '■Mil 111^ I

A View of Global Register Allocation 35

subexpression or a user variable anJ whether the restrictions on the two TNs

(ancestor and descendant) are compatible. If the target TN is a reasonable place to

compute the result, the two TNs are "bound together," i.e. they will henceforth be

considered to be the same TN. We refer to this successful operation as "making the

target." The ancestor is informed of the decision made at the subnode. If the

subnode could not maKe its target, the ancestor has the option of asking that some

preference be given to assigning the two TNs to the same physical location in the

later packing phase. The operation of expressing this preference is called

preferencing. There may be several degrees of preference forming a spectrum from

weak preference to strong preference to actual binding together

2.4.2 Data gathering

In parallel with the targeting and p-eference class operations, the tree nodes

are numbered and a flow graph is built. (Flow information collected during the flow

analysis phase may not be accurate since later phases may have changed the order

of expression evaluation. Flow information collected during flow analysis may be

used if the data collected is sufficiently robust to provide the information needed by

TNBIND. It is not important to know how the information is gathered.) The flow graph

is represented as a sequence of linear blocks. A linear block is the largest piece of

the program having one entry, one exit and no internal branches. Each linear block

also has pointers to each of its possible successors.

A record is kept for each TN indicating at which nodes the TN is referenced.

The references are separated into two classes: those that replace the value with an

unrelated new value and those that use or modify the value. Changing one field of a

variable which contains several packed fields is considered a modification. For the

-.«.'•'■-^ iirirmtriilirMiiiiiiill'iiHüiiMflkiili ^.^u^.:^:: iiiiiMiiiiiiiiiiirii IIM H

36 An Approach to Global Register Allocation

purpose of this record, each node is assigned a linear order number (Ion). (The Ion

values will be more precisely defined in Chapter 4.) This information is used together

with the linear block information to determine at which nodes in the program the TN

must contain its proper value. The determination can be made by a machine

independent procedure which will be described in Chapter 4.

Another item of information recorded for each TN is the cost of its use. This

cost is a function of the number of instructions, memory cycles, etc. which are

required to perform the specified operations on the TN. A separate cost is Kept for

each class of storage to which the TN may be bound so that the savings in program

size/speed resulting from any particular binding may be evaluated. The cost function

may include some frequency of execution data depending on what information is

available from the source language. The specification of the cost functions is

essentially what determines the optimization criteria. In general a cost may have two

parts: a static cost Cs and a dynamic cost Cd. Cs represents the cost in terms of

code space. Cd represents the cost of performing the access and is multiplied by the

nimber of times the access is performed. Thus the basic flavor of the optimization

can be changed by changing the relative values of Cs and Cj. Increasing Cs relative

to Cj tends to optimize for minimum code size while increasing Cd relative to Cs

tends to optimize for minimum execution time (not necessarily implying an increase in

code size). For any access a which is performed na times the cost is Cc + ^C^. The

total cost for a TN is given b/ the expression

21 (C, * *acd>
a

In practice it may be necessary to use an approximation for the number of executions

of each access. When the data on branch probabilities is available it is considered in

calculating na.

■"-^- ^_^^_^ ̂ j ^i «■•^' . ..^...^.^....^■.Jfc-»«^,

A View Of Global Register Allocation

2.4.3 Lifetime determination

37

In using the concept of TN lifetimes, we recognize the fact that in general it is

not necessary to retain the value of any TN throughout the execution of the program;

it is only necessary that the value be available when required. The analysis of

lifetimes has been given many names. Day [Day70] calls a data item "active" if it may

be referenced before it is redefined. Allen has discussed "live-oead «nalysis"

[AII71b]. Other authors have referred to variables as being "free" or "busy" [Low69].

There is a basic difference in the emphasis of the analysis done by these authors and

the analysis required by the TNbi'iD model. Past work has been concerned almost

exclusively with determining whether it is feasible or desirable to keep a copy of a

variable in a fast register over some part of a program. The TNB1ND model is geared

toward keeping TNs permanently in registers while identifying the points in the

program at which the register may also be used to hold other values. A detailed

description of the lifetime ard the method of determining it is presented in Chapter 4.

2.4.4 Importance ranking

After the information described above has been collected the TNs are ordered

according to their relative "importance." This is a measure of how important it is for

to program optimization to bind a given TN to a particular kind of location. The

importance of a TN is a function of the sum of Cs and Cd for each access as well as

the restrictions on the binding of the TN. Those TNs restricted to a single storage

class are given the highest priority to be bound to that storage class. The ranking

phase is really nothing more than the creation of a number of sorted lists which will

serve as input to the packing phase. The purpose of the ranking is to select the

order in which the TNs will be considered by the packing phase. The most important

TNs will be considered first.

m - —.-^--"---^ . ..v -'■■ -N-^-^-^^-ioifc^tattJA.

38
An Approach to Global Register Allocation

2.4.5 Packing

Tht packing phase does the actual assignment of locations to the TNs (or TNs

to locations). A perfect assignment is one which satisfies all of the restrictions and

preferences and assigns each TN to a member of the most desirable of its allowed

storage classes. In practice it is not always possible to make such perfect

assignments. The function of the packing phase in this case is to minimize the

increase in cost over the perfect solution. When it is not possible to assign all TNs to

their desired locations, we attempt to select a minimum cost solution from the set of

all possible assignments. This set may be very large. If there are k classes of

storage to which TNs may be assigned and there are n TNs, then there are kn

possible assignments. Chapter 5 describes how this solution space may be searched

efficiently for a minimum cost solution.

2.5 Summary of the model

The TNBIND model is summarized by the following statements:

1. A unique name (TN) is generated for each entity for which the

compiler must choose a physical location.

2. Using knowledge available from the program tree and knowledge

about the target machine, cosU and patterns of use are determined.

3. TNs which should be bound to the same location are identified. A

record is kept when it is desirable (from the optimization viewpoint)

that two TNs share the same location, but such sharing may not be

consistent with the semantics of the program or may not be the best

decision in a more global context.

4. Lifetimes for each TN are determined from the use patterns and

program flow information.

5. Finally, TNs are bound to physical locations such that the cost due to

inability to make perfect assignments is minimized.

..^.^.^■^■^■....,_ ^-..„■....-.-^..Jk.,

Chapter 3

Describing the Language and Machine

The TNBIND model relies on attributes of the target machine. It can be adapted

to a new target machine by respecifying machine attributes including the types and

number of temporary storage locations to be used and the characteristics of the

various operations that the target machine can perform. The model treats programs

at a much higher level than traditional register allocation methods. Since the details

of the instruction set of the target machine are not explicitly encoded in the model,

the respecification needed to effect a change of target machine is the relationship of

target machine capaNlities to language coi.^trurts rather than the format and

semantics of the instructions.

The various language dependencies and machine dependencies affect the first

phases of the TNBIND process. There is a specific routine for each node type.

These routines perform the targeting, preferencing and data gathering functions for

all of the TNs in the program unit being compiled. As mentioned in Chapter 2, we will

assume that the unit of compilation is the subroutine. TNBIND considers the nodes of

the program tree in execution order. That is, the first node considered is the first

node for which code will be generated. In a tree representation of the program, the

first nodes to be considered are the leaves. The descendants of a node represent

the computations which must be performed before the computation specified by the

node itself. TNBIND accomplishes the execution order examination of the modes by

using a recursive tree-walk algorithm. At each node the algorithm is invoked to

examine the subnodes. When the algorithms is invoked on a target path subnode, a

target TN is passed. When the bottom of the tree is reached, the necessary TN

39

 —■ ^IMIII i ir'l ■ --•■ ^A..-^-^^-.....

40 An Approach to Global Register Allocation

> processing for the leaf node is performed, and the result is returned to the ancestor

node. When all of the descendants of a node have been processed. The node itself

is processed and then returns to its ancestor. In order to clarify this structure, we

present below a few examples of the node types and the actions necessary to

process them.

3.1 A typical binary operator

3.1.1 The necessary functions

Let us consider the actions that are necessary during the TNBIND processing of

a typical binary operator. We will assume that this operator is one which is

represented directly by the hardware, i.e. there is a hardware instruction which

implements the basic operation. For example, tt, "ADD" instruction directly

implements the "+" operator. The TNBIND processing is identical in form to the actual

code generation process. By this we mean that the code generator traverses the

tree in the same manner in order to generate code. The difference is that the

TNBIND phase does not involve the actual instructions, bu» rather the control flow and

the number and Mnds of references made to temporarily stored data. The processing

of a binary operator usually proceeds as follows:

1. process first operand
2. process second operand
3. move targel path operand to temporary
4. operate on temporary with non-target operand
5. leave result in temporary

The TNBIND processing mimics the actions of the code which will eventually be

produced. (If the target machine organization dictates some other sequence of

evaluation for a binary operator, then the TNBIND processing will change

accordingly.)

..,-,-.. ^.«^^ —»UA-^^.

Describing the Language and Machine Al

First the two operands are processed by TNBIND with the current node's TN

being passed as a target to the target path operand. This processing occurs

recursively until the bottom of the tree is reached. After the two operands have

been processed, we look to see whether the target path operand "made its target." If

not we must allow for the move of the value of the target path operand from the TIM

where it exists to the TN of the current node by increasing the costs of both TNs by

the cost of the move. In this case we also record the fact that we prefer that the

two TNs (target path TN and current node TN) be assigned to the same location. If

they can be assigned to the same location by the later packing phase, the data move

can be eliminated. We next update the cost values of the non-target TN and the

current .tode's TN to include the cost of the one.-ation. Lastly we decide whether to

bind the current node's TN to the target that was passed in from above. Thus

targeting decisions are made by the recipient of the target request, and targeting Is

done by the requestor when the targeting request is rejected.

In order to specify these actions we need to be able to talk conveniently about

nodes, operands, TNs and costs. We need to define the basic operations to be

performed and describe the sequence of these operations that should be performed

for each node type.

The primitives we need for the typical binary operator described above are

TNP(node,target)

node: a tree node

target: a TN or 0
Invoke the TNBIND processing on "node" passhg "target" as the

target. When no target is being passed, "target" is 0. This is the

function invoked for each node by the recursive tree-walk

algorithm. Common actions are performed by TNP and then the

node-specific function for the node type is invoked.

--'-■"— ■ —— ■ "-: '■ ^. MnuiMaiiJif' i tfliiMM'iiiilinn m

42 An Approach to Global Register Allocation

PassTarget(node,target)

node: a tree node which is an operand of a binary operator

target: a TN

Evaluates to "target" if "node" is the target path operand.

Otherwise the value is 0 meaning no target, "his conveniently

expresses the notion that the target is passed only to the target

path operand without assuming which operand of a binary operator

lies on the target path.

NoteUse(t,when)

t: a TN

when: a Ion value

Add "when" to the list of nodes which are uses of "t".

NoteCreation(t,when)

t: aTN

when; a Ion value

Add "when" to the list of nodes which are creations of "t".

Move(tfrom)tto)

tfrom: a TN or tree node

tto: a TN or tree node

If there is a TN associated with "tfrom" then invoke NoteUse

passing the TN and the current Ion value. Similarly for "tto" except

invoke NoteCreation.

PrefMove(tfrom,tto)

tfrom: a TN or tree node

tto: a TN or tree node

Indicate that the TNs associated with "tfrom" and "tto" should be

assigned to the same location if possible (preferencing), then

invoke Move(tfrom,tto).

„^tüatvätomim

Describing the Language and Machine 43

(
Operate(oplollo2)

op: c. machine operation

ol: a TN or tree node

o2: a TN or tree node
Invoke NoteUse and/or NoteCreation as appropriate for the action

of executing "o2 «- o2 op ol". For example, the call

"operate(+,X,Y)" means that the action "X «- X + Y" is • use of ooth

X and Y and therefore invokes NoteUse on both X and Y. For

unary operators we omit "o2M. Some operations are specified

generically, e.g. "test" meaning "test for true or false".

Bind(tl,t2)

tl: a TN

t2: a TN
Bind the two TNs together. That is, force them to refer to the

same locution. This is the action when a node "makes its target."

In addition to these primitives we need a few notational conventions to simplify

the explanation of the processing routines. We will use the notation "X[fielQ name]"

to represent the value of the named field of the item named X. Thus

"q[first operand]" will refer to -irst operand of a node named q. We will also make

use of the following abbreviations.

Abbr. meaning

MyTN node[temporary name]

Oprl node[first operand]

0pr2 node[second operand]

OpType node[operation]

We are now in a position to state the actions necessary to process a binary

operator node in terms ot le primitives.

TNP(0pr 1 ,PassTarget(Opr 1 ,MyTN))

TNP(0pr2,PassTarget(0pr2,MyTN))

^--A-v^" -

44 An Approach to Global Register Allocation

PrefMove(node[tarBet path],MyTN)

Operate{OpType,node[non target path],MyTN)

3.1.2 An examplo

Let us consider the processing of the assignment statement of Figure 2-1. The

tree is reproduced in Figure 3-1 with names attached to the nodes so that we can

refer to them easily. TN processing begins with node Nj, th. assignment operator.

The assignment operator invokes TNP on each of its operands, passing no targets

since neither operand is flagged as the target path operand. Figure 3-2 shows the

complete sequence of invocations. The calls to PassTarget are not shown; rather the

result of the PassTarget evaluation is shown explicitly in subsequent calls to TNP.

In Figure 3-2 we see the TN processing recurring until the bottom of the tree

is reached. This first happens when W^ processes node D. After N4 has processed

both of its operands, it sees that its target request to node D was rejected and

therefore invokes PrefMove to indicate that the value of D must be moved into h. At

this time PrefMove updates the costs of tj and tp, invokes NoteUse and NoteCreation

on tD and t1 respectively, and adds each TN to the other's preference list. N4 then

invokes Operate to update the costs of the TNs involved in the operation. Finally N^

invokes Bind to bind its own TN to the target TN.

After processing its second operand, N3 sees that N4 accepted the target

request meaning .hat the value of N4 will be left in t2. N3 invokes Operate and Bind

and returns to N2. N2 invokes Operate and returns to Nj which calls PrefMove to

update the costs for the data move from 13 into A,

The results of this processing are:

1. t^, t2, and t3 will all refer to the same location. This means that the

-" ""-'■-■"■ ---^ - ■ niiirilfciiillnirh VJ k* - '■"'•

Describing the Language and Machine 45

A<-B»(D»2 + C)

Figure 3-1. An expression tree to be processed by TNBIND.

■ ■

46 An Approach to Global Register Allocation

controlling
node action

TNP{N1,0)
Nl TNRA.O)

TNP(N2.0)
TNP(B(0)

N2

N4

TNP{N3,t3)
TNP(N4,t2)

TNP{D,t1)

N4 jmz.o)
N4 PrefMoveCO.ti)

N4
0perate(^,t1,2)

N4

N3

Bind(t2;1)
TNP(C,0)

N3 Operate(+,t2,C)

N3
N2

Bind(t3,t2>
0perate(*,t3,B)

Nj PrefMove(t3,A)

Figure 3-2. A trace of TN processing actions.

3.

expression on the right hand side of the assignment will be evaluated

without any unnecessary data moves.

tD is preferenced to t^ If this use of D happens to be the end of a

lifetime segment, then tD and tj will be assigned to the same location thus

eliminating the initial data move.

tA is preferenced to tg. If the lifetimes of tA and t3 have no points in

common, tA and t3 will be assigned to the same location thus eliminMina

the final data move.

3.1.3 The store operator

The store operator is considered to be a special properties. These properties

are due to the special optimizations which may be performed on store operations. In

general we evaluate the right hand side leaving the result in some TN and then we

move the value from the TN to the location named by the left hand side. We would

-"-■"—'—

I, 111 .WIJWWMW ■,l»ill|ii 111^1

Describing the Language and Machine 47

like to eliminate the final data move when the store operation is inherently simple.

We say that a store operation is simple when it is possible to bind the TN of the right

hand side to the location of the left hand side.' We define a predicate in order to

identify the simple cases:

SimpleStoredeft.right)

left: a tree node

right: a tree node
True if it is possible to bind the TN of "right" to the location of

"left"! faUt otherwise.

A few of the operations which might be simple on some machines are

1. A«-A*K (k a constant)

2. At-B+k
3. At-A op B(op one of some set of operators)
4. A<-A op e(e an expression)

3.2 Other operators

3.2.1 Unary operator

With the notation established, we can easily describe the actions required by

other types of tree nodes. The simplest of these is the typical unary operator:

TNPKDprl.MyTN)

PrefMove(Oprl,MyTN)

Operate(OPTYPE,MyTN)

As noted in the discussion of binary operators, the actions taken in TN processing

mirror the code that will be used to implement the operation.

t The exact definition of which store operations are simple is dependent on the
capabilities of the target machine, but the concept is machine Independent

■iMttaiiMiyflHI

!«^WW"WWIIWIIHP«^"W '■ imt.mmimmmm*mgmimßmmmm

48 An Approach to Global Register Allocation

3.2.2 IMhan-elea

The processing for more complex nodes, such as if-then-else. is also easily

expressed in terms of our primitives.

TNP(node[boolean],0)

Operate(test)nodD[boolean])

TNP(node[then partyMyTN)

PrefMove(node[then part],MyTN)

TNP(node[else part],MyTN)

PrefMcve(node[else partJ.MyTN)

Note that this presumes that the if-then-else has a value. If the language does not

provide for an if-then-else expression then the calls to PrefMove and the passing of

targets to the then and else parts may be eliminated.

3.2.3 Simple hops

The processing /or a while loop is also very straightforward. Remembering

thet at this point we need not know what instructions will be generated to implement

the loop, we need only process the subnodes of the while in the order In which the

code will be executed. The fact that the body of the loop may be executed several

times is irrelevant to the basic processing, but should be considered in the cost

corputations.

TNPinodeLbooleanj.O);

Operate(test)node[boolean])

TNPOiodetbodyLO)

Note that in this case we make no provision for the value of the while loop. If,

for example, we wanted to specify that the value of the loop was the value of the

last evaluation of the body, we could pass MyTN as a target to the body and insert a

PrefMove at the end of the processing routine.

, „
..i _

Describing the Language and Machine 49

3.2.4 Complex operations

Up to this point we have discussed language constructs that are common to

most algebraic languages and easily implemented on most computer hardware. One of

the advantages of the TNBIND model of using temporary storage is the ability to

handle new and more complex language constructs much closer to the language level

rather then fat the machine instruction level.

Consider a language which implements lists of items as a primitive data type.

There might be a language construct which allowed a sequence of statements to be

performed on each element of a list. A programmer might write something like

forall I in L do begin tj; sgi S3) ■ ■ ■; sn end)

The tree node for such a construct would have three subnodes: one for the Item

name (I), one for the list name (L) and one for the body. The processing in TNBIND

might look like

NoteCreation(node[item name],node[lon])

Operate(end-of-list-test,node[item name])

TNP(node[body],0)

Operate(next-item,node[item name])

where the linear block information would show that the end-of-.'ist-test was the

successor of the next-item operation. This example is rather explicit in its use of a

TN to hold each element of the list in turn. It is easy to imagine, however, that the

same treatment could be given to other constructs. For example, it might be the case

that the "forall" construct was only an internal representation produced by the

semantic analysis phase so that the programmer's

L ♦- sqrt(L)

is transformed into

forall I in L do I «- sqrt(I)

MTtairffliiiiiiiiili^ — - ■

__
' II llllllillll II^^IW^*W1«I»IMI»|1»WM,IIUIIIMI '»»"'•* I

50 An Approach to Global Register Allocation

3.3 Cost computations

A very important part of the TNBIND process is the computation of the costs

associated with each TN. One of the simplest measures of cost to compute is object

code size. It is easy to calci'late the size of the object code required for a given

access to a TN. This is a particularly interesting cost measure for a machine which an

instruction which accesses a register is smaller that an equivalent instruction which

accesses a memory location. On other machines some other me&sure may be more

appropriate. The point is not what the measure is, but rather that the cost

computation can be separated from the rest of the processing and modified

independently as desired.

As discussed in Chapter 2, \«e want to collect relative cost measures; the

absolute measures are of only marginal interest. In terms of a code size measure,

the cost da'a we want to get information such as "Assigning variable X to a register

instead of a memory location will save 8 words of code." We can then say that the

cost of (failing to allocate a register for) X is 8 words. If code size is our only

measure then it makes no difference whether the 8 is the difference between 2 and

10 or between 100 and 108.

The costs are calculated in very much the same way that the TN processing is

carried out, i.e. by having separate routines to handle the specific information about

each node type and a driver routine to handle the common inforn ation. The cost

calculations can be included in the TN processing routines, or they can be separated

into a separate pass ofer the tree.

The cost computations rely most heavily on the attributes of the target

machine. The data that must be available for the cost computations includes the

following values for each of the storage classes to be considered.

Describing the Language and Machine 51

The cost of a simple access of a TN.

The cost of isolating a subfield of a TN,

The cost of implementing non primitive functions, e.g. the cost of

performing the "exclusive or" operation on a machine which does

not have ■ corresponding hardware function.

In traversing the tree, all references to a TN are analyzed and the costs are

accumulated. Those TNs which must be assigned to a register are assigned arbitrarily

high costs to assure that they are treated first in the packing process. The TN

processing phase attempts to keep the lifetimes of such TNs as small as possible,

relying on the preferencing operation to eliminate loads and stores when possible.

3.4 Mechanically generating TNBIND

It should be possible to generate the TNBIND model of a compiler mechanically

from a description of the input language and the target machine. This is not to say

that there is an obvious algorithm which accepts BNF and ISP descriptions as input

and produces program text as output, but rather that there is a systematic way of

using knowledge about the language and the machine to generate the necessary

TNBIND routines.

One possibility for specifying the language is to provide functional descriptions

of the operators which look very much like the descriptions in this ciapter. That is,

specify for each node type the sequence P* actions it should take during program

execution. The information is not very specific, but rather a much more general

description of the order in which the subnodes are evaluated and how the values of

the subnodes are to be used, Any initial attempt to specify a new language for

TNBIND will most certainly involve writing out the processing routines for each node

vmmmmmm* mmmmmmmm^^^^^m^mmm ^.«mvtmw mmmmmmmr^mmmmmmmim mmim**~**m

52 An Approach to Global Register Allocation

type in the tree representation of the language. In TNBIND we are concerned not

with the syntax of the input language but with the semantics.

Several pioces of information about the target machine obviously must be

supplied. These include the types of locations to be used for temporary storage and

the number of locations of each type. TNBIND must also Know the functional

characteristics of the various operations which can be performed by the target

machine. For example, if the target machine is of the "general register" variety

without no memory-to-memory instructions, TNBIND must know that there must be a

TN associated with the right hand side of every assignment, and that that TN must be

bound to a register. One candidate for specifying such information is Newcomer's

attribute sets and transformations [New75]. Building TNBIND requires both the

knowledge of what the attributes and transformations are and the costs of making the

transformations. The appropriate cost measures and values are not readily

determined from classical descriptions of computer hardware.

The advantage of the TNBIND model is that it provides a mold into which we

can fit descriptions of languages and machines. In this role the model serves to point

out options and keep the treatment of Operators uniform.

_ -•
Jfanrliirr--^—■'■''

^^m
""

■■ilippWTf'"»"'•HT11- ".J.W'i'UP'WWW-t

Chapter 4

Determination of TN Lifetimes

One of the assumptions made in discussing the problem of register allocation is

that it is in fact a problem. As computer hardware advances are made, the number of

registers which can reasonably be made available increases. As long as there are

more registers available than there are data items to store in them, there is .0 real

problem. On the other hand, in such cases, we begin to th:;.K of new ways to use the

registers to increase the efficiency of our programs. When machines moved away

from the single accumulator model, it became possible to consider using registers for

purposes other than expression evaluation.

A number of articles have appeared describing methods of program

optimization though judicious use of the registers. Lowery and Medlock [Low69]

describe the analysis done in the FORTRAN H compiler to keep the values of

frequently used variables in registers within loops. This type of optimization is

frequently referred to as "load-store motion" [AII71a].

A good deal of work has been done in the area of program control flow for the

purpose of finding the paths along which the value of a variable may be retained in a

register. Allen [AI170] and Beatty [Bea71] discuss the use of graph theory and the

concepts of regions and intervals of a graph to determine the aspects of control flow

relevant to register allocation.

The current state of computer hardware provides us with (in most cases) more

than enough registers to evaluate the most complex expressions occuring in

programs. In order to improve the efficiency of our programs we would like to keep

53

■

54 An Approach to Global Register Allocation

the values of frequently used variables in registers where they can be accessed with

more speed and sometimes with shorter instructions. A simple approach is to first

allocate the registers necessary for expression evaluation and then use the remaining

registers, if any, to hold one variable each, inserting the necessary load and store

instructions into the code at the beginning and end of the program segment being

considered (the most frequent piece of program used with this method is the loop as

in [Low69]). A more ambitious goal is to multiplex several variables into each

register. This idea has oeen discussed in [Day70] and [Bea71]. The approach taken

in the TNBIND model is of the multiplexing variety, but with a different emphasis. In

the TNBIND model variables are either assigned to a register throughout their

lifetimes or they are not. This is conceptually much simpler than a model which loads

and stores several variables during the course of executing a program. The

disadvantage is that some variables used heavily in the inner loop of a program may

not be assigned to registers by TNBIND. We might encourage the assignment of

registers for variables used in loops, or we might seek a way to incorporate the loop

optimizations into the TNBIND model. The latter possibility is discussed in Chapter 7.

This chapter describes a method of determining the lifetime of temporary

names. We want a characterization of the lifetimes which is not only accurate but

also very precise so that we can make maximal use of the registers by assigning

several TNs to each register. The lifetime of a TN is the set of those segments of

the program during which the value of the TN must be available. The complexity

involved in determining the lifetime of a TN is related to the type of TN, e.g. TNs

which are compiler generated temporaries generally have much shorter and more

easily determined lifetimes than TNs which are user variables. A few definitions will

help in the discussion of lifetime determination.

fctffe f nWi' AiA,

r

Determination of TN Lifetimes 55

4.1 Definitions

A program point, p, is used to label an instant in the execution of a program.

The term is also applied to the static program and essentially names a particular

object code instruction. A program point represents a node in the graphical

represintation of the program. A successor of a node is an element of the set of

instructions which may be executed immediately after the instruction represented by

the node. In terms of the program tree, the successors of a node are either brothers

or immediate ancestors.

A flow path is a sequence of program points pj pn such that for all i

(lii<n) pj+1 is an immediate successor of pj. A flow path describes a possible

sequence of nodes in the program flow graph. The length of a fow path is the

number of transitions necessary to move from the initial point to the final point of the

path, i.e., the length is one less than the number of points in the path.

A UM of a TN is any reference to the TN which requires the value stored in it.

This includes simple loading of the value or assigning a new value which Is a function

of the old value. The latter Kind of reference may be called a modification.

A creation of a TN is a reference which stores a new value (not a function of

the old value) into the TN.

A ton, or linear order number, is a unique number assigned to each node in the

program graph. The Ion values are used to name the program points. The values

increase along any flow path throi-gh the program graph except in the case of loops.

For loops the successor of the loop has a Ion which is greater than the Ion of every

■ J I IUUL.HPWJUWIII1 ■<' '''^-"'^ "- ^^"^HISHi^lBH^BBi

56 An Approach to Global Register Allocation

node in the loop.1" Within a linear block the Ion values are consecutive.

A TN is aiiva at a point p| Lff there exists a flow path Pj,.. ., Pn such that pn is

a a*« of the TN and for every pj (i<j<n) on the path, Pj is not a creation of that TN.

The initial point of the path, p,, need not reference the TN at all. The essential idea Is

that the value of the TN must be preserved at every point along the path.

The lifetime of a TN is the set of points in the program at which the TN is alive.

The kind of information we need to determine lifetimes is similar to that used in global

common subexpression recognition. In order to recognize common subexpressions

we need to know when the value of a variable changes so that we can find all of the

expressions involving that variable and mark them as changed. This is essentially an

analysis of program flow and has been discussed by several authors [AII70, Coc70,

Ges72].

For the purpose of describing the lifetime determination, we will assume the

following information is available; (1) a description of the linear blocks of the

program in terms of their starting and ending Ion values, (2) the starting Ion values of

each successor, and (3) a list for each TN indicating, by Ion value, the nodes which

are creations or uses of the TN.

A connection matrix is a matrix of binary values representing the successor

relationships among the nodes of a graph. The connection matrix C of a graph of n

nodes is an n x n matrix (C|j-1 if node j is an 'mmediate successor of node I, Cjj-O

t The assumption here is that we are not burdened with the unrestricted contro
structures that can be constructed by using an arbitra-y golo. This is not to say that
the method to be described will not work for such structures. Rather the simplymg
assumption merely makes the exposition of the method less complex,

t A linear block has exactly one entry, one exit, and no internal branches. It is, in the
most restrictive sense, "straight line" code.

^^^gH^H^gg.
... ..-.■■ --„„ii'aaa^ior'-"^ *--'' -*»- ■ -"■■'i- - -■ —^rf>»-ib-aJhAA..^M^ w.^...w,.

"■»IWWW^"

Determination ot TN Lifetimes
57

otherwise). II the nodes ot a program 8raph are npmber.d by Ion as defined above

then some generai.zations about the corresponding connection m.lri, may be stated.

W,hin a line,r blocK the onty successor of a node is the nod. with the next highest

ion veiue, i.e., if node i is not the last node of a linear blocK then e,,-! if« H*l-

Cons,der two linear blocks LB, and LB2 composed of nodes a, ..I b and

d| „», respectively. By the definition of linear block w. know that the two

slcuences have no points in common and that, except possibly at the endpoint.. no

„ode of one block is a successor of any node in the other block. In the connection

matrix

asi<b A dsj<e implies Cjj - 0 - Cjj

Moreover, if we think about a matrix representing the connections among lineer

biocks, we know that LB2 is a successor of LB, iff cbd.l and LB, is . successor 0.

LB2 iff c„.l. By knowing the composition of the linear blocks we can readily

convert bVck and forth between the full connection matrix and the matrix of linear

block connections.

4.2 An example

A sample program graph with ton values, linear blocks, and the linear block

connection matrix is shown !„ Figure A-l. T mple prog 99 tree node.

broken down into 7 linear blocks. Consideration of the connection matrix of linear

biochs instead of the connection matrix of nodes yields a significant reduction in the

amount o. date required. Unfortunately this abstraction does not contain all of the

information from the original connection matrix, although the lost information may be

recovered.

P^arily because of the increased storage efficiency, w. would like to be able

 ••^, ■— "•' "-■■'

 :■...,.. . _ ~*.. «^LMJ-tu-^

58 An Approach to Global Register Allocation

el
*—
e2

e3

e4

A
e5

v
e7

e6

Ion values linear blocks
el - 1-20 1 -el
e2 -21-25 2 -e2
e3 - 26-42 3 - e3; e4
e4 - 43-47 4-e5
e5 -48-71 5 -e6
e6 - 72-84 6 -e7
e7 - 85-93 '/ - e8
e8 - 94-99

connection matrix
12 3 4 5 6 7

1 0 1 0 0 0 0 0

2 0 0 1 0 0 0 1

3 0 0 0 1 1 0 0
4 0 0 0 0 0 1 0

5 0 0 0 0 0 1 0

6 0 1 0 0 0 0 0
7 0 0 0 0 0 0 0

e8
el; while e2 do (e3j if e4 then e5 else e6; e7)i e8

Figure 4-1. The example program.

to perform matrix operations on the full connection matrix by manipulating the smaller

linear block connection matrix. In order to do this vie must transform the linear block

connection matrix into a more accurate representation of the full connection matrix.

In Figure 4-2 the connection mat'ix has been modified to include entries labeled "S"

(for sequential) along the main diagonal. The connection matrix is now a shorthand

for the much larger node-level connection matrix. In our shorthand matrix, each

element represents a submatrix of the full connection matrix. The interpretation of

the values in the shorthand is

0 -» mj(j - 0 Vi.j
1 "* ml,n " ^ mi,j " 0 for other 'tJi n 's the number of rows in the submatrix
S "* mi,i+l " ^ mii>J] " 0 for J^*1

Figure 4-3 shows an expandeo section of the matrix from Figure 4-2. The

rows and columns in Figure 4-3 are labeled with Ion values. The lines within the

matrix show the partitioning.

•HI« «in umn* ■ lH.pnil i i. ii 1,1, ^WpWB^F^^'?^"'HI^WWpWPl''WP*liW''W'^^''''W'1 llllipj ■ Jl'Hl" uiilMi- ••»■I

Determination of TN Lifetimes 59

12 3 4 5 6 7
1 S 1 0 0 0 0 0
2 0 S 1 0 0 0 1
3 0 0 S 1 1 0 0
4 0 0 0 S 0 1 0
5 0 0 0 0 S 1 0
6 0 1 0 0 0 S 0
7 0 0 0 0 0 0 s

Figure 4-2. Connection matrix with "S" entries.

16]7 18 19 20 21 22 23 24 25
16 0 1 0 0 0 0 0 0 0 0
17 0 0 1 0 0 0 0 0 0 0
16 0 0 0 1 0 0 0 0 0 0
19 0 0 0 0 1 0 0 0 0 0
20 0 0 0 0 0 1 0 0 0 0
21 0 0 0 0 0 0 1 0 0 0
22 0 0 0 0 0 0 0 1 0 0
23 0 0 0 0 0 0 0 0 1 c
24 0 0 0 0 0 0 0 0 0 1
25 0 0 0 0 0 0 0 0 0 0

Figure 4-3. Expanded section of connection matrix. (Linear

block 2 and a portion of linear block 1).

A second modification to the matrix is based on the information we wish to

obtain from the program, namely what nodes in the program are on flow paths leading

vo any use of a particular TN. In this context any cre?fion of the TN effectively

terminates the path, More simply, a creation node has no predecessors. This is

reflected in the matrix by setting the columns corresponding to the creation nodes to

0 (indicating that they cannot be successors of any node). In the shorthand matrix

this is done by first making the creation nodes separate linear blocks. If we consider

a TN with creations at nodes 6, 67, and 80 (in linear blocks 1, 4, and 5) the resulting

•

■" •--^■•--■:

60 An Approach to Global Register Allocation

shorthand matrix will appear as shown in Figure 4-4. The columns labeled lb, 4b,

and 5b are the new blocks, each consisting of a single node. Although the matrix we

must now consider has increased in size from 7x7 to 13x13, it is a far cry from the

potential 99x99 matrix we would have i' we considered each node separately. It ic

important to keep the size of the matrix to a minimum since from this point on the

algorithm must be performed separately for each TN.

la lb 1c 2 3 4a 4b 4c 5a 5b 5c 6 7
la S 0 0 0 0 0 0 0 0 0 0 0 0
lb 0 0 1 0 0 0 0 0 0 0 0 0 0
1c 0 0 s 1 0 0 0 0 0 0 0 0 0
2 0 0 0 s 1 0 0 0 0 0 0 0 1
3 0 0 0 0 s 1 0 0 1 0 0 0 0
4a 0 0 0 0 0 s 0 0 0 0 0 0 0
4b 0 0 0 0 0 0 0 1 0 0 0 0 0
4c 0 0 0 0 c 0 0 s 0 0 0 1 0
5a 0 0 0 0 0 0 0 0 s 0 0 0 0
5b 0 0 0 0 0 0 0 0 0 0 1 0 0
5c 0 0 0 0 0 0 0 0 0 0 s 1 0

6 0 0 0 1 0 0 0 0 0 0 0 s 0
7 0 0 0 0 0 0 0 0 0 0 0 0 s

Figure 4-4. Connection matrix with creations partitioned.

The matrix we are considering (actually the complete matrix it represents)

shows only the connections along paths of length one. That is, Cjj-1 when there is a

flow path of length one from node i to node j. In order to bo able to answer the

question about where a TN is alive, we must know about all paths of any length. Wc

know from the use of connection matrices in graph theory that the boolean product

of the connection matrix with itself will produce a matrix showing paths of length two.

Let us consider why this is so. First recall that the boolean product of matrices is

ii^iiiliiiHiiiiiiii'iiin ill lii liliTi
^^Jfijj^

Determination of TN Lifetimes 61

just like the algebraic product except that multiplication and addition are replaced by

the and and or operations respectively. Thus each element of the product matrix is

produced by giring together several elements which have been produced by ending

corresponding elements of the original matrices.

The boolean product P of matrices A and B is defined by

A is of order n x k
B is of order k x m
P is of order n x m

k
P - A ♦ B iff pji - v (ajr A brj)

' r-1 '

By this definition we see that Pjj-1 iff 3x) ajx-l and bxj-l. For the product

of a connection matrix with itself we have

n
Pij - ^(Ci, A crj)

- 1 iff 3x j Cjx-1 and cxj-l

This is exactly the statement that there is some program point px such that there is a

flow path pj, px, p: in the graph of the program; i.e., there is a path of length two.

If we call the original connection matrix C^ indicating that it reflects paths of

length one then Cl»Cl-C2 which reflects paths of length two. Similarly C^-cUc2,

C^-C^C3, etc. Forming the element-wise or of two or more of these matrices

produces a new matrix whose elements indicate paths of any of the constituent

lengths, i.e., C1 or C2 indicates paths of length two or less. The boolean sum C1 or.

C2 or.... or. C00 is the matrix we are seeking, the one which indicates whether there

is a path of any length between any pair of nodes. In practice it Is only necessary to

accumulate terms of the sum until it converges since in a finite graph there is a finite

maximum length path which does not contain cycles. If the graph contains n nodes

then the sum will converge in no more than n steps since a path of length n+1 or

r-.
, „V,,,,,.,- .,,. ,,- ..nii^ai

nur mil ^ - ' -"

I ~^-w—w ^PiWWWIWIWilllWWPWiWWillW^^

62 An Approach to Global Register Allocation

greater must contain a cycle. The converged sum is called the closur« or transitiv«

closure of the connection matrix. Clearly we can find the closure of a connection

matrix by forming the products and oring them together. This solution is unattractive,

however, since the operation of finding the product is itself an n0 algorithm. Steven

Warshall [War62] devised and proved an algorithm which will determine the closure of

a connection matrix in time proportional to n^. The basic approach of the algorithm is

to operate on rows of the connection matrix. Wh^n processing the tth row, any row

which has a 1 in the ith column is ored into the ith row, Warshall shows that when

the rows and columns are selected in the proper order the closure is formed in a

single pass over the matrix. The algorithm performs nicely on our shorthand matrices

when we define the or operation on the shorthand elements as

0 v X -0
1 vX - 1
S v S = S

where X r-.ay take on any of the three values (0, 1, S) and our interpretation of the

symbols in the shorthand for the closure is changed to

0 -» mjj - 0 Vi.j
1 -» mjj - 1 Vi,j
S -» mj: - 1 Vj,i

Remembering that the elements of the shorthand matrix correspond to the

linear blocks of the original graph, it is easy to understand the definition and the

change of notation. In the closure the element representing a linear block (the S

elements) will hc-e at least all I's above the main diagonal because there is a path

from any node in the block to any later node in the block. The 1 elements in the

connection matrix represented connections between blocks, but clearly if there is a

path from one node of one block to a node of a second block, then there must be a

mmmmmmmimmKmKmmmimKISKK^v '' ' ""

Determination of TN Lifetimes 63

path from every node in the first block to every node in the second. The S entries

serve only to remind us of the interior detail of the connections of the nodes.

Indeed if there is a path from a linear biocK back to itself ther the entry for the

block will change from S to 1 (S v 1 - 1) indicating that there is a path from every

node in the block to every other node in the block. Figure 4-5 shows the closure

of the matrix from Figure 4-4.

la lb 1c 2 3 4a 4b 4c 5a 5b 5c 6 7
la S 0 0 0 0 0 0 0 0 0 0 0 0
lb 0 0 1 1 1 0 0 0 0 0 1
1c 0 0 s 1 1 1 0 0 0 0 0 1
2 0 0 0 s 1 0 0 0 0 0 1
3 0 0 0 0 s 0 0 0 0 0 0
4a 0 0 0 0 0 0 0 0 0 0 0 0
4b 0 0 0 1 1 0 1 0 0 1 1
4c 0 0 0 1 1 0 s 0 0 1 1
5a 0 0 0 0 0 0 0 0 0 0 0 0
5b 0 0 0 1 1 0 0 0 1 1 1
5c 0 0 0 1 1 0 0 0 s 1 1
6 0 0 0 1 1 0 0 0 0 s 1
7 0 0 0 0 0 0 0 0 0 0 0 0 s

Figure 4-5. Closu-e of partitioned matrix.

Let us reflect for a moment on the information contained in the closure of the

connection matrix. By zeroing the columns associated with creations, we have

assured that no path in the matrix passes through a creation node. The interpretation

of the elements of the closure is that the i,j element is 1 t/y there .s a path from node

i to node j that does not pass through a creation. If there exists a j such that node J

is a use and element i,j of the matrix is a 1, then it follows that the TN is alive at node

i. The lifetime of the TN is obtained as a bit vecto»1 by oring together the columns of

L. nnlklii »rtilWrilliiWi mill — ■'■ - ■ ii II litiMTlitMUa^tllTil

... — ^ ""

64 An Approach to Global Register Allocation

tho closure matrix that correspond to the uses of the TN. Like the other operations,

this too can be performed in terms of the shorthand matrix.

Suppose now that our hypothetical TN has uses at nodes 32, 74, and 99. In the

matrix of Figure 4-5 these nodes are in linear blocks 3, 5a, and 7. Qring those

columns together produces

01111011S111S

The S entries come from blocks 5a and 7 and indicate that the TN is alive in those

blocks before (and including) the last use in each block. The 1 entries indicate that

the TN is alive throughout blocks lb, 1c, 2, 3, 4b, 4c, 5b, 5c, and 6. In particular the

TN is not alive in blocks la and 4a and in block 5a after the use at node 74.

4.3 Reflection on lifetimes

Let us reflect on the importance of this method. The result is very important.

By repeating the process for each TN we produce a precise specification of the

lifetime of each TN, This means that we can determine easily and accurately whether

two TNs interfere. Two TNs are said to interfere or conflict with each other if there

is any program point at which they are both alive, i.e. if the element-wise and of the

lifetime vectors for the two TNs contains any non zero elements. This is exactly the

knowledge needed to make efficient use of the registers in the compiled code. We

may assign two TNs to the same location only if they do not interfere. Note also that

the method is completely independent of any language or target machine. Cnce we

are given the linear blocks and their successors along with the creation and use

points the rest is a mechanical process. Warshall's algorithm for finding the closure

allows us to transform a matrix into its closure in a single pass over its elements.

At this point let us ask why it is necessary and/or desirable to expend the

—-■ - -'-" :-- ^»1^.^-^^^^.^^ ^ .. **:■.. _.,.,.... .,„.^.. ;- ,..>:..-.■,. AMMIMfitfüaälttfc rtihri MI* 't*'

Determination of TN Lifetimes 65

computational effort required to generate the connection matrices and their closures.

There are much simpler algorithms which will produce good approximations of the

lifetimes with much less effort. First, we must remember that our ultimate goal is to

produce compilers which generate the best possible code (the metric being

determined by the implementor). The simpler algorithms will always lead us to safe

decisionsj that is, we will never be told that two TNs do not interfere when in fact

they do. The problem is that the approximate lifetimes may exclude the best solution

from the set of feasible solutions. As long as the extra effort is not unreasonable,

our goal requires that we use the exact solutions to such problems. Second, we

recognize that the simpler algorithms do yield exact solutions in many cases. To

exploit this fact we use the simpler methods when possible by dividing the TNs into

two classes: interesting and uninteresting. The uninteresting TNs are those whose

lifetimes may be determined exactly by a simple method. Their lifetimes always

consist of a single segment of the program graph from the first reference to the la»t

reference. The method described in this chapter is used only for the interesting TNs,

those which might have lifetimes composed of disjoint program segments. In general

the interesting TNs are user variables and common sdbexpressionsj the uninteresting

TNs are compiler generated temporaries. We make the division into the two classes

by declaring that any TN which has more than one creation or is referenced in more

than one linear block is interesting. One of the two conditions is necessary (but not

sufficient) to produce a lifetime of disjoint segments.

 ^ " ,--*t**M^. .^.... ..,.| C.^

^mn^m mmmmf «■"Hfl i .m'i'.ww m. ivmm,,nm«mn *~m

66
An Approach to Global Register Allocation

.

4.4 Summary of Lifetimes

In this chapter we have presented a method of determining the lifetime of I TN,

that is, the points in the program at which the value contained in the TN must be

preserved. The method depends only on collection of data about creation and use

points and on knowledge of the flow of control. Because we would like to have a

very precise representation of the lifetimes, we want to consider each program node

separately. However, even with ^Marshall's algorithm, finding the closure of the

connection matrix is an n* process and n grows very quickly. This realization led to

the development of a shorthand matrix on which the closure could be performed.

.——..-—i«ll... I..— I«!.. I ■!

Chapter 5

The Packing Problem

This chapter will describe an algorithm which assigns the TMs to the physical

locations available within the target machine. The lifetime information generated by

the procedure described in the previous chapter is taken as an input to the packing

algorithm. The costs associated with each TN and the restrictions placed on the

assignment of the TN to physical locations are the other inputs. In the ideal case, it is

possible to assign each TN to a location which minimizes its cost; in practice, this is

frequently not possible. Thus the pa-king algorithm must handle two slightly

different but related problems. The first problem is related to problems known in

operations research as "cutting-stock" or "knapsack" problems [Gil66]. The locations

to be used for temporary storage represent the stock from which pieces (TNs) are to

be cut or the knapsacks into which items (TNs) are to be packed. The measure of

space in both cases is in terms of program points. The TNs not only require a given

number of points but particular points. In this respect the TN packing problem is

more constrained than the cutting-stock or knapsack problems. If a TN is placed into

a location, it must be at a fixed position and orientation in the space of program

points within that location. In a cutting-stock problem ii.e task is to cut pieces from a

piece of stock. The exact position and orientation of the pieces is not specified. The

second problem deals with the selection of TNs to be assigned to the preferred

locations (usually registers). The problem is to minimize the increase in cost over the

cost that would have realized if all TNs could have been packed into their preferred

locations.

The algorithm described considers only two classes of storage — registers and

67

-

* ii ■■iiiiji.^i ■ i .in ^mmmumm

68 An Approach to Global Register Allocation

memory. The algorithm is also based on the implicit assumption that most TNs should

b« assigned to registers if possible. These assumptions simplify the algorithm

considerably and are a reasonably accurate characterization of current computers.

Extension to more than two classes of storage will be considered after the algorithm

is presented. The algoiithm described will produce an optimal solution to the packing

problem, i.e. will minimize the increase in cost due to inability to assign all TNs to

registers.

5.1 The problem

The problem of assigning the TNs to the set of available registers is the many-

few allocation discussed by Day [Day70], That is, there are a number of TNs which

must be assigned to relatively few locations. When the number of TNs is not larger

than the number of locations then the solution to the problem is trivial. Added

complications are the preferences noted during TN processing and the restrictions on

the locations to which certain TNs may be assigned. Let us first consider the many-

one allocation problem, that is, reduce .'he problem to consider only one register.

Assume that the TNs are rtpresented by a sequence T in which the tth element

Tj represents the tth TN in some ordering. Define a vector p of which each element

p^ is the profit associated with assigning the ith TN to a register. The profit is taken

to be the difference between the two cost measures calculated for the TN during

temporary name processing as described in Chapter 2. A selection vector • is used

to identify which TNs have been selected for assignment to the register (s:;-! if T; is

assigned to the register, x^O otherwise).

Two TNs are said to interfere if their lifetimes have any points in common.

Total interference exists among the TNs in a set N if nj interferes with nj for all

^■1 '— IM IHM iipniinni ■ in UM wii in ■■inn i m^m^wvm^imm

The Packing Problem 69

I

rij.nj < N, Mj. Let N* be a subset of N such that there is total interference among the

elements of N*. Let N** be a set of subsets giving a complete description of the total

interference data; N** = {N*. N*, . . ., N*). This implies that if n^ interferes with np

then there exists at least one i such that N* i N** and {nj,np} cN*. Let A be an

interference matrix (which has dimension (m x k) when there are k TNs) such that

a;: - 1 if n: < N*: otherwise a:: - 0. The selection vector « is a solution to the
• J J i IJ

assignment problem. The solution is feasible if no two TNs selected by x interfere.

This condition is expressed by Ax<l, i.e. each element of the product of A and x is

Si meaning that there is at most one TN occupying the register at any program point.

The optimal solution to the many-one assignment problem is the solution of the

integer programming problem;

maximize z * px
subject to Ar<l

where «t < {0.1}

•ij « {0,1}
pi > 0

This problem is described by Balinski [Bal65] as a weighted set matching problem.

There is no known solution to this class of problems aside from examining all possible

selection vectors and evaluating the objective function of each. Fortunately it is not

necessary to actually calculate the values for each solution (remember that for n TNs

th3re are 2n solutions).

The following definitions are due to Day [Day70] and Geoffrion [Geo67]. A

complete solution is an assignment of a binary value to each element of x. A partial

solution Sp is an assignment of binary values to some of the elements of * with the

other elements remaining free. A completion of Sp is an assignment of binary values

to each of the free elements of Sp. Explicit enumeraticn is the process of excluding

— .-» -f ""
•-*»-. JL-. ...,.-. .■■.- .^..JAA£^ Jti*

p*iw.i.»»i«l!!» i|i|in.! ppifiii.ii^mniinm^ipnipipipBmpppi

70 An Approach to Global Register Allocation

a complete solution from the set of possible optimal feasible solutions. ImpUcit

enumeration is the process of excluding a set of solutions from the set of possible

optimal feasible solutions without the explicit enumeration of each element of the set

being excluded. Let z' be the value of the objective function ipx) for the most

profitable feasible solution yet obtained. To fathom a partial solution Sp is to

determine that either there is no feasible completion of Sp with profit greater than z'

or that there is a most profitable feasible completion of Sp with profit z">z'. If a

partial solution Sp is fathomed, then the set of completions of Sp is implicitly

enumerated. The key to finding an optimal feasible solution is finding an effective

fathoming procedure.

Before discussing the solution further, it is interesting to note that the

procedure used to find an optima solution to the many-one problem may be used to

find an optimal solution to the many-few problem. An obvious approach to the many-

few problem is to treat it as a sequence of many-one problems. With this approach

an optimal assignment is found for one of the registers. The remaining TNs are then

used as input to a second many-one problem for a second register. The process

continues until either the supply of registers or TNs is exhausted. This approach has

two disadvantages: it may produce a non optimal solution and, more importantly, it

does not allow the preference data to be consideied.

A more general approach to the many-few problem is to expand the many-one

problem by a factor of m, the number of registers to be considered. The structure of

this problem is identical to that of the many-one problem with only the maKeup of the

matrices changing. The problem is stated as

tttttütiäkatiumaMt'. -_-_ -- - -■■- -- ■ ma ■ i l^•|^■■l■^r■^'-v-•^:~-^

The Packing Problem 71

maximize
subject to
where

z - pV
AV<I
*tM0,i}
ajj < {0,1}
Pi>0

Here p is a sequence pj, P2, ■ • •. Pm where each p; is identical to the original profit

vector p of the many-one problem. Similarly x* is a sequence »Cj, x2, . . ., xm where

Xj is the selection vector for the ith register. A* is a matrix compcsed of

submatrices.

A, i ■ I| an identity matrix of order (n x n)

when i«j+l, Aj. - A, the original interference matrix; order (p x n)

otherwise, A.., - 0, i^j a zero matrix of order (p x n).

The form of ma'.nx A* is shown in -igure 5-1. The addition of the identity elements

assures that no TN car be assigned to more than one register. In the abstraction of

the integer programming problem this constraint is necessary to eliminate solutions

wiNch might achieve a high profit by assigning a particularly profitable TN to all of the

registers.

5.2 The procedure

The complete enumeration of the solutions to the assignment problem is

obtained by a branch and bound procedure [Mit70]. Such methods use a branching

procedure to generate an ordered sequence of partial solutions and a set of

bounding rules to provide a lower bound on the value of the objective function for

each possibly optimal feasible completion of each partial solution. The procedure,

shown in Figure 5-2, begins with no TNs assignee to registers. One by one TNs are

.^-.--.^■A.... ^-. --.-- ^...^ ^■^■.■.tJ.<MiAjM^..
•YT ipp J..,™ .,.S.-J^

.min..wiiiiuimwif inn jiwa^^m^qpi mwi». i i iiHiiaiiiini.imjviifiiin imijii umivimi*mmmmmmmmr*i<mmmmmmmmmmmmm

72 An Approach to Global Register Allocation

I 1 ... I

A 0 ... 0

0 A ... 0

0 0 A

Figure 5-1. The expanded interference matrix.

assigned to a register (maintaining the feasibility of the partial solution) jntil the

resulting partial solution is fathomable. At this point the complete solution with the

largest value for the objective function is remembered and all completions of the

current partial solution are implicitly enumerated. The last TN assigned in the partial

solution is then removed from its register and the procedure :; repeated from the

fathoming step.' The process terminates when all solutions have been enumerated,

i.e. when the initial (empty) partial solution is fathomable.

5.2.1 Tho fathoming procodura

The fathoming procedure is fairly simple. If the current partial solution is Sp,

then let us define S^ to be the completion of Sp which assigns to registers all TNs

which are free in Sp. If the value of the objective fui ttion associated with Sp is not

greater than the largest objective function value yel observed, then there is no

completion of Sp which will produce a larger value and Sp Is fathomed. Othe-wise Sp

is not fathomed and the procedure of Figure 5-2 will try to assign the next TN to a

t If there is a possibility that assigning the removed TN to a different register may
produce a better feasible completion then this may be t'ied.

-j'v-"1"—*: -'■- ■'-' ■^"-^-
. .^..„-. ^■■.^.....- !i.—-. ..-...■ - - .^^^.«^^fcikJfc^-.^^ .t^. .^^^^fc^aiHi

f-?W^PmBPHP!g^»l^^Wl W" ' ' liipii^u*!^ J'PWM-J"1- luifmj.i. iipi^

The Packing Problem 73

set last 1 to 0
free all later

elements

generate new partial
solution by assigning
a value to the first

free element

yes

yes

JL
remember new

solution

Figure 5-2. The Branch and Bound Algorithm.

■

tt^amäUtiiämtmM ■■*- ■■■- —" ■■ 2

r

>

74 An Approach to Global Register Aliocctiün

register. Regardless of whether the attempt to assign the next TN to • register is

successful, the result is a new partial solution derived from the old solution by

assigning a vaLe to one of the free elements of the old selection vector. This new

partial solution is then presented to the fathoming procedure.

5.2.2 Backing up

When a partial solutior. is fathomed, the next step is to "undo" the mos'. recent

assignment of a TN to a register reflected in Sp, i.e. the last 1 is changed to 0. All

laments of Sp following the changed element are free. An attempt is now made to

fathom the nev partial solution. Following this procedure, the partial solutions

fathomed have more and more free elements. Wh^n a partial solution containing k

free «lements is fathomed, 2k solutions are implicitly enumerated.

5.2.3 Assigning another TN to a register

The process of attempting to assign a new TN to a "-egister consists of trying

sf veral steps to find a location to which the TN can be assigned without interfering

with any TN already assigned. In the following discussion of the steps, a register is

said to be open it there ar? any TNs assigned to it and cbsed otherwise.

1. If the TN has a preference for assignment then try to assign the TM

to one of N" - prefered location1:. (This step is expanded in Section

5.2.4.)

2. Try to find an open register to which the TN can be assigned.

3. If there are any closed registers, open one and assign the TN to it.

4. If steps 1 through 3 fail to assign TN to a location then the attempt is

unsuccessful. The new partial solution will have the corresponding

element of the selection vector equal to 0.

.

^jP»^»^mgg^*lWffWWFW|.i.l.,W i ^wW^gg^wwym^^p^i;nijiyiu||P.lff U i.HiPMMJ I .1 ^f —....i —

The Packing Problem 75

5.2.4 Honoring preferences

As discussed in Chapter 2, some TNs are "prefe-enced" to other TNs. The

intent of a preferencing operation is to indicate that there is some additional benefit

to be gained by assigning the * . TNs to the same location, be it register or memory.

In terms of the generated code, failing to honor a preference means that at some

point a value will have to be moved from one TN to the other.

Suppose the TN being considered by the assignment algorithm is T and that T

has preferences P^ . . ., ?„.'* The algorithm for honoring preferences iterates

through the P|V If any Pj has been assigned to a register and T can be assigned to

that register, then tht assignment is made and the preference is honored. It may

happen that none of the preferences has been assigned to a register, or that T is

unable to fit into any of the registers to which Pj's have been assigned, In these

cases the preference usually cannot be honored. However, it may also happen that

some preference P; has been assigned to a memory location. If the profit associated

with T is not greater than the cost of a move from memory to a register, then

assigning T to the preferred memory location will result in a better overall solution.

If nr ne of the preferences have been assigned to locations or T cannot fit into any

of the preferred locations then the preference cannot be honored.

Note that at this point the only TNs which have been assigned to memory

locations are those which are restricted to be in memory. No feasible solutions which

might have higher profit are lost when a preference for a memory location is honored

as long as the profit loss due to such an assignment is not greater than the cost of a

move from memory to a -egister.

t In a typical Bliss-11 program, the value of n is small (2 or less). Constructs can be
generated, however, which result in large numbers of preferences.

-- -i^ara^^i^-riM^iiMr i-' ^ii i riif i ii 1" -^^ ^ -

JH iiime^^m ■""I ' ' ■' wm*^mmim>v,nmfi ■WBWW^ww

76

5.2.5 An intuitiv« view of the procadur»

An Approach to Global Register Allocation

The above procedure can be viewed as a packer operating on a vector of TNs.

The TNs in the vector are arranged in order of decreasing importance. As we have

described importance this means that the TNs we would most like to have assigned to

registers are considered first. In this way we are more 'ikely to be able to assign

the important TNs to registers because the registers are "less crowded" when the

important TNs are considered. The packer considers each TN in the vector in turn,

assign! tg as many as possible to registers. When the end of the vector is reached,

an initial complete solution has been generated. The packer has assigned as many

TNs as possible to registers, given the order in which they were considered. The

only fact that keeps us from stating that this is an optimal solution is the possibility

that -«»moving some set of TNs from the registers might allow the assigning of some

other set of TNs with a larger combined importance.

After producing the initial complete solution, the packer works backward in the

vecvor reconsidering the assignments. At each step the packer asks whether

removing the current TN from its register might lead to a more profitable complete

solution. Sometimes the answer is that there can be no more profitable completion

and the packer continues backward in the vector. At other times there is a more

profitable completion nd the packer moves forward in the vector again to investigate

the feasibility of the more profitable complet'on. When there is no more profitable

completirn, all of the sc unions in all completions are implicitly enumerated. The

algorithm terminates when there are no solutions (i.e. completions of the empty partial

solution) which can produce a larger profit than the most profitable solution already

obtained.

»mi Mi- iif m mliiTiiiilwiBr imiti ,rnm-triiat*iimfiii iMrmliif" -'"-^—^'^^^... ,,«,1 .^iiirtgj-'iiiiiliiiliiiitii i

v.ummvn

The Packing Problem 77

5.3 The oracticality of obtaining an optimal solution

The algorithm desci ibed above is essentially the same as the OPTSOL algorithm

described by Day for sol' ing the many-one assignment problem. Day proves that the

algorithm terminates only after enumerating all solutions and yields an optimal

solution. Mitten [Mit7C} also gives a proof of the general branch-and-bound

procedure, ^ay reports experimental reiuUs of using OPTSOL to solve 400 randomly

generated assignment problems. The results show fiat the time required to solve a

problem is a function of both the size of the problem (number of TNs) and the density

of nonzero elements in the interference matrix C. Execution time was directly related

to problem size and inversely related to C matrix density. The disheartening result is

that the average execc-tior ever all densities of C are large and grow very rapidly.

For one register the following average execution times (on an IBM 360/65) were

observed

number TNB lime (sec)

24 <1
32 2
^8 6
64 46

We see that for moderate sized problems the execution times quickly become

unreasonable. Day indicates tha* ror more than one register the times grow much

faster. Appealing to the argument of Section 4.3, we cannot expect that the branch-

and-bound algorithm to guarantee an optimal solution in a reasonable amount of time.

What we can do is measure the rate of progress of the algorithm toward termination

or the fraction of the total number of solutions enumerated. Care in choosing the

t In real programs observed by the Bliss-il compiler, the number of TNs per routine
averages less than 20 because routines tend to be 3mall. However routines having
50 or more TNs are fairly common.

■—* -*-—*- nrini-iiiriki

jiiMiiM mmmmum '^mrnmammmmm .uinw*pii pw.i.ii. in.i.iij.i ■v^tf^p^K^p^Rvvwm

78
An Approach to Global Register Allocation

order in which TNs are added to partial solutions will increase the probability that an

optimal or near optimal solution it found early in the search. The branch-and-bound

procedure is more effective if a feasible, near optimal solution is taken instead of the

empty solution as the starting point. Day gives a procedure for finding such a

solut-nn quickly and notes that the profit of the initial solution is almost always

greater than 907. of the profit of an optimal feasible solution. Day suggests that the

initial solution is a close enough approximation to an optimal solution to make it usable

and can be computed quickly enough to make it practical. It should be noted here

that Day's results are for randomly generated profits and interference matrices. The

initial solution described in Chapter 6 for real programs almost always produces an

optimal solution.

5.4 Formulation of the more general problem

Section 5.1 describes the formulation of the general integer programming

problem for assigning TNs to one of several registers by replicating the profit vector

and interference matrix for each register. In this section we show how this same

reasoning can be used to express a much more general problem. Thus far we have

assumed that there are only two classes of storage available for TNs, a limited

number of identical registers and an unlimited number of memory locations.

Suppose that the machine for which we wish to compile code has more than two

classes of storage. For example the Umvac 1108 has 47 registers available to user

programs. Of this number 11 are index registers, 12 are arithmetic accumulators, 4

are both index registers and accumulators, 17 are fast memory locations, 2 have

special functions in certain instructions and 1 is modified by real time clock interrupts.

In such a machine, there are several levels of trade-offs when trying to decide which

of the many classes of storage should be u.sd for any particular TN.

._A..^\.^.^.

^1 tmmmm »^wwwnwwwwwuBppwp^WPPPppmpi IliV1^^*.-" «W"1 PI

! 79
The Packing Problem

♦ r - (r, r] of m profit values such that n is the
For each TN compute a set r - l^, . . ., rmj

worst case solution. The problem is now

maximize
subject to
where

z - pV
A*x*<l

•ij « {0,1}

..^.«.n o, «,. -ny-..« re6,S.er pr*.«. o, S..«PP 6... «- «*V.C.W. o. P

dlf«.ul(«,.. »>. ..1U«« ■>< *• re,.—orv prP««, "• '"

c„mp,exi,y o. the r...ric«0«. p.a«d on TNs tends to increase.

chapter, Is the problem o(binding •

5.5 Summary of packing

The packing problem, as described in this

concerned with the solution o, the general packing problem, concentrated on

ual .._-^. ...- .
-rv» "■ ^
-_Jw. MI

«■p^mmm« •mm^rmm mmmm^^^^^^mmmmmmmmmmm

80 An Approach to Global Register Allocation

[>

and one generally uiidesirable. We have shown that the problem can be formulated

as an integer programming problem and that the form of the problem is essentially the

same regardless of whether we consider one register, several registers, or several

classes of storage each containing several distinct locations. Section 5.2 described a

branch-and-bound procedure which yields an optimal solution to the problem. We

have also noted that while the number of possible solutions to be examined by the

procedure is exponential in the number of TNs, the algorithm terminates much sooner

if we can determine a feasible, near optimal solution from which to begin the search

of the solution space.

 ■ ■ '- - ■- -- -^ ■ - ^^A^U-^t ■

—'—**lTiril11—«Mr i in i n ■ ■ ■ -■ ' ' ' ' " "■ ' ' ' ''"

Chapter 6

A Test Case

This chapter will describe the implementation of the TNBIND algorithms in the

compiler for Bliss-11, a dialect of Bliss [Wul71] for the PDP-11. The essential

features of both the language and the machine are describe below, The standard

version of the Bliss-ll compiler uses an initial version of TNBIND and thus provides a

good comparison for some of the more advanced ideas. The fact that the language is

Bliss does not have a significant effect on the implementation; the language

dependencies for any AlROi-like language would be nearly identical. The target

machine has significant effect on the TNBIND algorithms, but mainly influences the

cost measures and the kinds of targeting and preferencir.g done.

The decision to use Bliss-11 as a test has both advantages and disadvantages.

On the positive side, the existing compiler is highly modular and it was easy to

"unplug" the sxisting register allocation phase and "plug in" the new TNBIND with

relatively few changes to the rest of the compiler. This would not have been the

case with a compiler which started with a more traditional register allocation method.

It is also intended that the new TNBIND will become a part of the standard compiler

thus providing real world benefits. On the negative side, in order to produce a

working compiler, TNBIND had to incorporate all of the functions provided by the

original version. These included assigning TNs to those nodes which needed them,

generating linear block information, and assigning labels for the final code stream.

The fact that the TNBIND algorithm has been implemented for only one language-

machine pair raises the question of whether the algorithms would perform as well on

other languages or, more importantly, other machines. TNBIND does not include some

81

mrnmrnmrn "^

82 An Approach to Global Register Allocation

of the more traditional register optimizations because these were not critical to the

goals of Bliss-11. Chapter 7 will discuss how these operations can be easily

incorporated into the TNBIND philosophy.

6.1 About Bliss

Bliss falls into the class of Algol-like languages. It has the features normally

associated with such languages: block structure, recursive routines, loops,

conditionals, local variables. Bliss was designed as a systems implementation

language and therefore presumes little or no runtime support. The emphasis is on

flexibility and runtime efficiency. Bliss provides the p.ogrammer with the ability to

perform arbitrary address calculations at runtime and to address parts of words when

appropriate. More complete descriptions of the language may be found in [Wul71],

[DEC74], and [Wul75].

The programming style of Bliss tends to be considerable different from Algol or

other languages. Because there in little overhead in routine calls, programmers are

encouraged to wr.te small routines. In addition the control structures observed in

Bliss programs tend to be well structured because there is no goto statement in Bliss.

The control structure of Bliss makes the linear block analysis quite easy. The smaH

size of the routines usually means that the numbers of linear blocks and TNs are

small. These two factors combine to make the first pass implementation of TNBIND

acceptable in terms of computing time required. As routines get larger and have

more linear blocks and TNc, the time required for the TNBIND algorithms increases

dramatically, On the one hand this tells us that we will need better algorithms in

order to deal effectively with large routines. On the other hand we can argue that

smaller routines and simpler control structures are the "wave of the future," and

dtt* »—JM3-Ii

H l.. mi up iiiwiiuippw^^pwwwWWWWWIWI''

A Test Case 83

therefore it is not unreasonable to design algorithms which perform better for small

routines than for large routines.

6.2 About the POP-11

.The PDP-11, manufactured by Digital Equipment Corporation [DEC71], falls into

the class of "mini-computers." It has a 16-bit word length which is addressed in units

of 8-bit bytes; thus a 16-bit word can address 216 bytes or 215 words. Instructions

come in 0- 1- and 2-operand formats and may be 1, 2, or 3 words in length. Each

operand uses six bits of the first instruction word and may require one additional

word to hold a 16-bit address or index quantity. The PDP-11 has eight registers; six

of these are general registers, one is used by both hardware and software as a stack

pointer, and one is the program counter. Instructions whose operands are in

registers are both faster and smaller. The fact that any instruction can have any of

its operands in registers or memory locations means that almost all TNs are of the

kind that can be assigned to either a register or memory location. This makes the TN

packing a simple cost minimizing procedure with few restrictions on the locations to

which any TN may be assigned.

Bliss makes use of locations in the stack for local storage when there are no

registers available. Because the PDP-11 hardware uses the same stack, e.g. to save

the processor state during an interrupt sequence, all stack locations must be allocated

before they are used. A stack location is allocated when it is at or below the location

pointed to by the stack pointer register. Stack locations are allocated explicitly by

adding a constant to the stack pointer register or implicitly by pushing parameters.

 ^-r-

-■■■ -WA^ rt inrt- '[il* -*■'•*'■-

I» ■" HPIIWt^—W»B—WW •ü^^^nipiwpiniMii.i^iuuiiiiuDimi ii^njpjjj, |i i■piniiBnmiim^«i«>m

84 An Approach tc Global Register Allocation

6.3 Bliss-U implementation of TNBIND

In the Bliss-11 compiler TNBIND is presented with a tree representation of a

routine to be compiled. The tree is traversed in a recursive depth-first tree walk.

There is a separate routine for each type of troe node. Several of these routines

were shown in Chapter 3. A switching routine, TNP, performs some common functions

(like updating the Icn value) and calls the appropriate routine for each node,

language. A complete listing of the TNP routines tor Bliss-U appears in appendix A.

The interesting parts of TNBIND are those that are affected by decisions made by the

language designer/implementer. Below we discuss two areas in which non obvious

processing is done in the Bliss-11 version of TNBIND.

6.3.1 Subroutine parameters

In most machines there are several ways to call subroutines and pass

arguments. In Bliss-U the programmer may specify whether arguments to a

subroutine are to be passed in registers or on the stack. The caller is responsible

for removing parameters from the stack after a call, while the callee is responsible

for restoring the contents of any registers used by its code (except for the register

in which the value of the subroutine is returned). In processing a subroutine call

node, TNBIND performs the following actions for each argument.

1. Call TNP to do TN processing for the argument expression.

2. Generate a new TN and assign it to the location in. which the argument

will be passed (either a specific register or a stack location).

3. Preference the TN of the argument to the TN of the location.

TNBIND thus simulates the machine code implementation of the subroutine call which

might be expressed as

--
r iiiniiiiiMharr'--1"'^■--*"" . _-'

-••"--*■*"' 'mmmm^1-:

A Test Case
85

for each argument do
begin
compute value;
store value in proper place

end;
call subroutine

Lifetimes are generated at this time for the TNs which identify the argument

locations. These lifetimes extend from the Ion value at which the argument will be

stored to the Ion value of the actual call. This prevents the argument locations from

being used by any computations necessary to produce succeeding argument values.

These TNs are part of the initial state input to the packing phase.

After the subroutine call, the locations used for any arguments passed on the

stack remain allocated. Rather than deallocate these locations immediately, the caller

keeps track of the number of such locations on the stack at all times and adjusts the

stack pointer only when two or more flow paths join and the stack depth is not the

same on all of the paths. This has two effects: the number of instructions necessary

to adjust the stack pointer after subroutine calls is reduced, and the locations on the

sta^ may be used for temporary storage by later calculations or local variables.

These locations are called dynamic temporaries because they are dynamically

allocated and deallocated at run time. Since the allocation of these temporaries is a

byproduct of a routine call, there are no additional instructions needed to allocate

these locations. Thus we have a group of dynamically allocated locations whose

allocation anci deallocation overhead costs are zero.

Temporary locations, i.e. registers and stack locations, may be either "open" or

"closed". In general a location is "open" when it is available for use in a particular

routine. When refering to registers, "open" means that some TN has been assigned to

— - - — — .^.-^ JAZZ,..^.^::^-. ^■-.

f 4
86 An Approach to Global Register Allocation

the register and consequently the contents of the register will have to be saved and

restored. When refering to stack locations, "open" means that the location is

allocated, i.e., below the current value of the stack pointer. Registers are either

open or closed throughout a routine, but stack locations may be open and closed at

several points within the routine. Each location is represented by a list of the TNs

assigned to the location. A location is closed when its list is ^mpty; dummy TNs are

used to mark the locations as open. When a dynamic temporfry is closed, a dummy

TN with a lifetime corresponding to the closed period is added to tne appropriate list,

thus making it unavailable for use by other TNs during the closed period.

6.3.2 The store operator

SimpleStore (Section 3.1.3) is very important in Bliss-ll. Because the PDP-11

can perform general memory-tc-memory operations, a great many store operations

f.re simple, A store operation may be cimple even when the left hand side is an

expression or an own or external * ariable. The important feature of the SimpleStore'

predicate is that the machine specific details of which operations are simple is

encoded entirely within the predicate. It is not necessary, for example, to moJify the

routine processing the "+" operator to take account of the fact that many "+"

operations are simple. The routine processing the store operator evaluates the

SimpleStore predicate for each store operation and performs the binding when

possible. When the store is not simple, the right hand side is preferenced to the left

hand side jus(in case the lifetimes of thw TN's involved are such that the binding is

possible after all.

-■' »~.^' --■ ■-■ --^ -•-■

«"« i>,iiiinwww«i»Hr?rTOi«^^^»w"«i"».)W"1 immmw .■vnmmfmmmmmig^m ess

A Test Case

6.3.3 Cost computations

The Bliss-11 vsrsion of TNBIND counts memory references as the cost of

accessing a IN, The counts include both the reference to the actual value and the

reference to memory which is necessary to pick up an address or index value in a

multi-word instruction. This measure tends to minimize both execution time and code

size by putting heavily used TNs in registers, which results in faster and shorter

instructions. The size of the object code is used as a static indicator of the

effectiveness of the optimizations.

A TN assigned to a register requires no memory references for a direct access

and one memory reference for an indirect access. A TN assigned to a memory (stack)

location has a cost of two for a direct access (one to get the stack offset and one to

access the stack location) and three for an indirect access. Other forms of access

are similarly assigned costs. Indexing, for example, has a cost of two if the TN is in a

register because the hardware will handle the addition. If indexing is required for a

TN in memory, the hardware function will have to be simulated by sortware which has

a cost of between five and nine depending on whether there is a free register at the

moment the indexing is required.

During the TN processing tree walk, a minimum and maximum cost Is computed

for each TN. The cort of a TN is the sum of the costs computed for that TN by the

t Because TNBIND cannot always assign all TNs to registers, the code generation
phase of compilation is sometimes presented with these nasty problems. In the case
of indexing the code generator will load the value of the TN into a free register if
there is one and then proceed normally. If no register is available, then code must
be generated to explicitly simulate indexing. This predicament is a result of the
decision that a TN is assigned to a single location throughout its life. There may be a
register available at the time the indexing is needed, but unless the register is
available throughout the lifetime of the TN, it will not be used by TNBIND. It is
comforting to note that in real programs it is seldom, if ever, necessary to index by a
memory location.

UdOBHI e^

■ iLiiui».wu, i . / • •^•gmm**mnw inn, [UW,! LIIJIIU.IMI lllll ■■:||l| "' IIHI ..«III Ml. Uli ll.llUIIIJIIp.wllVnnpil

88 An Approach to Global Register Allocation

nodes that reference it. The cost computed at a node is the product of the cost of a

single reference and the number of references required to execute the function

represented by the node.

6.3.4 Lifetimes

During the TN processing, creation ruu use points x..\ terms of Ion values) are

noted for each TN through calls on NotöCreation and NoteUse as described in Chapter

4. NoteCreation and NoteUse also oiled some additional information to simplify the

lifetime computations.

The first (smallest Ion valu?) and Idst access are noted for each TN, and TNs

which have more than one creation or are accessed in more than one linear block are

flagged as possibly having lifetimes composed of disjoint program segments. As

described in Chapter 4, this partitions the TNs into interesting and uninteresting

subsets. The lifetime of an uninteresting TN is simply all of the Ion values between

the first and last accesses. Most compiler generated temporaries, notably those used

for expression evaluation, fall into the uninteresting subset because, in general, they

have one creation and one or more uses within a single linear block. The interesting

TNs are those whose lifetimes may consist of noncontiguous sequences of Ion values.

These TNs are subjected to the complete lifetime computation describee! in Chapter 4.

There are two types of TNs which are not treated by the lifetime phase

because their lifetimes jre determined when they are generated. Tt.ese are the TNs;

which hold the arguments to a routine call and the dummy TNs used to close the

dynamic temporaries.

A Test Case 89

6.3.5 Ranking

The ranking phase computes the difference between the maximum and minimum

cost measures for each of the TNo which may be assigned either to a register or to a

memory location. This value is the profit associated with assigning the TN to a

register. The output of the ranking phase is a list of all of these TNs sorted by

' ofit. Those TNs which must be assigned to a register but which do not require a

specific register are added to the list after being assigned arbitrarily large profit

values.

6.3.6 Packing

The packing ph^se is responsible for the actual binding of TNs to locations.

The objective is to maximize the sum of the profits of the TNs which are assigned to

registers. A secondary goal i,i cases where all TNs are assigned to registers is to

minimize the number of registers, since the corients of any register used will have to

be saved and restored.

The packing phase first assigns »W TNs which require specific registers. These

TNs represent arguments passed to other routines in specific registers, the values

returned by other routines, or a request from the programmer to put some variable in

a specific register. The packing phase then deals with the sortcj list of TNs

prepared by the ranking phase The algorithm used is a slightly modified

implementation of the algorithm described in Chapter 5.

The TNs are considered to be elements of a vector sorted by profitability with

the most profitable TN first. Corresponding to this vector is a binary vector

indicating (with I's) which TNs are assigned to registers. The binary number formed

r. • -
t6 — ■ ■ - — - — ■ - !■ I ■III .. -J,—^„^jaL^j^MM^.^- ^■.^.. .. ■.■.. .■■^-^ ...

r ■■r Hipppw^www^^w^wiwiiwipp mmmm^m *m*mmmmm —•■■i»1 . |U" ^m»^i^w^»

90 An Approach to Global Register Allocation

by the ones and zeros of this vector can be taKen as a numbering of the solutions of

the problem of which TNs are bound to registers. Thus when there are n TNs to be

considered, there are 2n solutions. Ignoring for a moment the TNs which are

restricted to specific registers, there are really (m+l)n solutions where m is the

number of registers available. Nearly not all of these solutions are feasible. The

goal Of the packing algorithm is to select the most profitable feasible solution.

There are several approaches to selecting a feasib;? solution, Below are listed

three possible approaches. The three are given in order of increasing complexity

and computing time required. This is also the order of increasing probability of

producing an optimal solution since each method considers a larger portion of the

solution space than the preceding method,

1. Beginning with the most important TN, try »o bind each TN in turn to

some register. When a TN is bound to a register (using a spatial

analogy we say it "fits") it remains there and the corresponding

element of the binary vector is set to one. At the end of the TN

vector the solution i epresented by the binary vector, i.e. the one we

have built during the algorithm, is used,

2. Same as 1 except that when a TN will not fit into any register we try

to move the TNs with which it conflicts into other registers. This

operation, called resliuffUng, is aimed at correcting decisions made

earlier in the algorithm. Whenever we find a register into which a TN

will fit, we bind it there without regard for whether it might also fit

into some other register.

3. Same as 1 initially. When the end of the vector of TNs is reached, we

back up in the vector and set the corresponding binary vector

element to zero. We remember the profit value and the bindings of

the most profitable solution yet obtained. If it might be possible to

obtain a more profitable solution by binding the TN just removed to a

different register or by not binding it to a register at all, then trying

this alternate solution by moving forward in the sequence again as

described in 1.

I ■■ I >MI1MM MMh^A ■ - «MM ' ttlM .

A Test Case 91

The reshuffling operation described is method 2 is interesting. The term is

derived from the effect on the TN assignments. No TNs are removed from registers

or added to registers. The TNs assignments to specific registers are merely

permuted or shuffled. The reshuffling in method 2 is called "bottom level" because it

is invoked at the bottom of the packing search. In method 3 the reshuffling is implicit

in the search algorithm, but is performed at the top level, i.e. a TN «ssignment is only

chan&«»d to another register when all when the search is backing up.

■Method 3 is equivalent to the branch and bound procedure described in

Chapter 3. It will always produce an optimal solution, but may explore a large

fraction of the (m+I)n solutions in the process. Success in using procedure 3

depends on being able to decide quickly whether a new path is worth exploring. It is

easy to tell whether the best completion of a partial solution will produce a solution

with a larger profit than any solution yet obtained. The key is to able to determine

the profit of the best feasible completion without generating the completion. For the

purposes of measurement and comparison, all three methods were implemented. The

results are reported in Section 6.4.

When a particular TN, t, is to be packed by the packing procedure, the available

locations are considered in a particular order. The order of consideration is

1. Register preference. If t has been preferenced to some t' and t* has

already been bound to a register, then the register to which t' is

btund is considered. If reshuffling is being done at the bottom level
then it is invoked if necessary.

2. Stack preference. If t is preferenced to some t' which has been

bound to a stack location, then the stack location is considered only if

the profit associated with the TN is no larger than the cost of loading

or storing a register (see Section 5.2.4).

i

- -•1 ^^--^ '<--- -^

' I ■^ i -u.iiui.uiiii' >■< iLjptii i ■y-wjiwMPiMiniü.m .iiiii-m ■WJii^w

92 An Approach to Global Register Allocation

3. Open register. The open registers are considered in an arbitrary

order. When applicable, bottom level reshuffling is invoked.

4. Closed register. A closed register is selected and opened. Ideally

this step is only invoked when the profit associated with t is greater

than the cost Of saving and restoring the register. In practice it is

almost always correct to open another register because the register,

once opened, can be used for TNs to be packed later.

After the packing algorithm terminates there may be TNs which have not been

bound. These TNs are bound to stack locations. Dynamic temporaries are used when

possible. As a last resort the TN is bound to a static temporary, a stack location

which is explicitly allocated/deallocated at routine entry/exit.

6.3.7 A new kind of restriction

Becaur.e there fire usually enough memory locations there is no incentive to

expend large amounts of computing time to produce an optimal packing of the

t remaining TNs into the smallest number of memory locations.

Because of the nature of the variable length instructions of the PDP-11, it is

sometimes desirable to load the address of a frequently used variable or a frequently

called routine into s register and then reference the variable or routine indirectly

through the register. The semantic analysis phase can generate TNs to hold the

addresses when the number of accesses passes some threshold. A problem arises,

however, if the solution produced by the packing algorithm does not bind one of

these TNs to a register. If a TN used to hold a fixed address is bound to a memory

location, the resulting code is worse (by any metric) than if the TN had not been

t Clearly we can produce programs which require any arbitrarily large number of
memory locations to hold TNs. The concern here is to do very well under ordinary
circumstances and not worry too much about "pathological" programs.

.
i ■iimn ■MMMAMMMHMiMnMHMIi

A Test Case 93

generated. In order to accommodate this type of TN, a new type of restriction was

devised. Just as some TNs are marked "must be a register" or "must be a specific

register," these TNs generated to hold addresses are marked "register or forget it"

meaning that if binding to a register is not possible then the TN should not be bound

to a stack location but rather should be bound to the variable in question, This type

of TN opens the way for including many of the classic register optimizations into the

TNBIND philosophy. Because these optimizations are not included in the Bliss-11

compiler, they will not be discussed here; Chapter 7 will describe these optimizations

and how they would be included in TNBIND. The possibility of including these

optimizations increases the credibility of TNBIND as a method for register allocation

for other languages and particularly for other machines.

6.4 Measurements of TNBIND

This section will present a comparison of several variations on the TNBIND

philosophy. The intent is to measure TNBIND, in terms of quality of output code and

compilation speed, as compared with more traditional methods of register allocation.

We also want to explore the space of possible TNBIND algorithms not included in the

Bliss-U compiler. It is not reasonable to build several register allocators merely in

order to make these comparisons. Instead we simulate the actions that would be

taken by several different register allocators by "turning off" various pieces of the

TNBIND optimizations.

The compilers we will be considering are:

1. PB - The "production version" of the Bliss-11 compiler. This compiler

is in use daily for many programming projects. It incorporates an

initial version of TNBIND with simplified lifetimes and has been

_ T^-, ■ ■'

—~ .

94 An Approach to Global Register Allocation

carefully tuned to produce high quality code over a perio1-! of several

years.

2. TB - The compiler with all TNBIND features enabled. This includes the

matrix closure to produce exact lifetime representations and the full

branch and bound search for an optimal solution to the packing

problem. (As a practical matter, the search was limited to a small

fraction of the solution space by limiting the number of solutions that

were examined. Because of the nature of the search, finding an

optimal solution for very large routines could take many hours of

computing time.)

3. TBR - The same as TB except that simplified reshuffling is done at the

bottom of the search rather than the top. That is, when a TN will not

fit into any register or will not fit into a preferred register, a search

is made to see if moving any one TN would allow the fit. This action

brings the reshuffling closer to problem it attempts to solve at the

cost of not enumerating all possible solutions.

4. TBS - Instead of the complete enumeration in the packing phase, TBS

uses a simple, one pass algorithm in which the packing of each TN is

attempted only once along with the bottom level reshuffling of TBR.

The TNs are considered in order of decreasing cost.

5. DUMB1 - All of the "clever" parts of TNBIND are disabled. In
particular

a. All lifetimes are taken to be continuous from first access to last

access.

b. TNs are considered for packing in order of first access. This

simulates a register allocator making a pass over the object code

assigning registers as they are needed.

c. All "register or forget it" TNs are forgotten.

d. Preferencing is turned off

e. There is no attempt at reshuffling.

f. No user declared local variables are assigned to registers.

6. DUMB2 - This is DUMB1 with most of the other optimizing features of

the compiler turned off. This gives some idea of the code that might

be compiled by an unsophisticated compiler. The rationalization for

this is that Bliss-11 has many optimization features that tend to be

partially redundant, i.e., when one optimization is disabled, another

. ' m ^^MtiMI* mm ^_ iuääum^

H
A Test Case 95

optimization may partially compensate to prevent an accurate

assessment of the effect of the disabled optimization. Optimizations

are not generally additive; the whole is less than the sum of the

parts. The additional features disabled in DUMB2 are

a. Common subexpression recognition.

b. Peephole optimization. The last phase of compilation which

performs transformations on the object code to produce

equivalent, but more efficient, sequences of instructions.

There are some optimizations in the compiler that cannot be easi'y disabled for

the purpose of these measurements. The most notable of these is the extensive

special case analysis performed in the code generation phase.

6.4.1 The programs

Five programs with a total of 128 routines were selected for the

measurements. With one exception these are "real" programs as opposed to

programs written explicitly to test the compiler. The programs were written by five

different authors and thus represent somewhat different programming styles. The

authors have spent varying amounts of time tuning their programs to th^

optimizations performed by the standard compiler. The five programs are described

briefly below.

CODGEN. The code generation phase of a FORTRAN compiler. Although this is a

"real" program in the sense described above, it has been used as a benchmark of the

progress of Bliss-11 over the last three years.

SPQQK. A daemon process which periodically examines the state of an operat'ng

system. This program was under development when the measurements were taken.

EVLSTK. The stack evaluation modu'e of an interactive interpreter.

TXQMS. A simple queue management system. This is one of a series of

i ii i — — ■■'

 „.-: ^.

.

(

96 An Approach to Global Register Allocation

programs designed to test the original Bliss-11 compiler.

KA612. One module of a powerful interactive debugging system designed for

us« with Bliss-ll programs. This program contained the largest routine in any of the

test programs (>500 words of code).

6.4.2 Th9 numbers

The cost measures used for Biiss-11 are desifned to minimize code size for

two reasons: (1) in a computer with a small addressing space such as the PDP-11

minimal code size is important, and (2) in the PDP-11 minimum code size almost always

means minimum run time. In the discussions that follow, the terms "less code" and

"better code" are taken to be synonymous.

Figure 6-1 shows the code sizes proouced by PB and the three TBx compilers

Each column shows the absolute number of words of code produced and the ratio of

this number to the code size produced by PB. PB is taken to be a state-of-the-art

compiler against which the other compilers are measured. The DUMB* compilers are

not shown in this figure because they are not really comparable to the optimizing

versions.

Figure 6-2 shows the processing times in seconds for the TNBIND portions of

the four optimizing compilers as well as the ratios to the PB times. Again, the DUWBx

compilers are not included because their times are not representative of the times

that wo.ild be observed from an unsophisticated compiler. This is because the DUMBx

compilers contain all of the generality of the more complex compilers with only the

benefits removed.

In figure 6-3 we see the ratios of the overall compile times to the P9 compile

i —Kiln iiiiiiiriiiiiiitiirlrlMiiilKiiiiMi aihiiniiimirtnintf'r'iräiiiiin lijaüaftiim^Mi 1 ij.hM-^^^^^^M'^a^^^W..... .^- ».„...^JM^Ito

r 1 ■

A Test Case 97

.

CODGEN
SPOOK

EVLSTK

TXQMS
KA612

total

PB 73 TBR TBS
2234(100) 2235(100) 2226(100) 2224(100)

627(100) 654(104) 649(104) 649(104)

1245(100) 1190(96) 1181(95) 1188(95)

302'J 00) 299(99) 301(100) 302(100)

2089(100) 2141(102) 2138(102) 2136(102)

6497(100) 6519(100) 6495(100) 6499(100)

Figure 6-1. Code sizes (percent of PB size).

CODGEN
SPOOK

«EVLSTK
TXQMS
KA612

PB TB T3R TBS
14.6(100) 69.7(477) 35.2(241) 32.9(225)

3.5(100) 12.4(354) 8.3(237) 7.7(220)

6.5(100) 75.6(1163) 27.7(426) 26.8(412)
1.5(100) 9.7(647) 3.3(220) 3.1(207)

17.2(100) 339.5(1974) 310.6(1806) 247.7(1440)

Figure 6-2. Seconds of TNBIND run time (percent of PB time).

PB TB TBR TBS
100 154 126 125
100 131 128 128
100 274 173 154
100 176 132 137
100 314 309 280

CODGEN
SPOOK

EVLSTK
TXQMS
KA612

Figure 6-3. Ratio of total compile times (percent).

time. This is a measure of how the more complex TNBIND operations affect the total

compile time.

Figure 6-4 shows a breakdown of the differences in routine size by overall

size of the routine. The numbers represent the difference produced by the "best" of

the TBx compilers using PB as a base. By "best" we mean that the size difference

reported is the difference between PB and the smallest amount of code produced by

and on the TBx compilers. All 128 routines are included.

. .^^I^^^-^-J—^-..--,>..-,-..,.. —.■ ,._.■...■..,.,...,,..■- ,I-.....^.J..J^^ J,^..-^^J.. i...., ._

98 An Approach to Global Register Allocation

Size number size difference
from PB observed numb er of routi nes

1-10 30 no differences

11-25 35 -5
1

-1
4

0
28

>3
1

+4

1

26-50 29 -3 -2 -1 0 + 1 +3 +4 +6 +7
1 1 18 4 1 1 2 1

51-100 15 -6 -5 -4 -3 -2 0 +6 +15
1 1 1 2 1 7 1 1

101-200 14 -36 -11 -6 -5 -a ^3 -2 -1 0 + 1
1 1 2 1 i 1 i 1 3 1

>200 5 -23 0 ♦1 +6 +20 ♦24
1 0 1 1 1 1

+6
1

Figure 6-4. Differences in code size by routine.

code s si-^e run time
DUMB1 DUMB2 DUMB1 DUMB2

2679(120) 2888(129) 15.6(107) 14.6(100)
760(121) 894(143) 4.5(129) 4.2(120)

1651(133) 1924(155) 9.0(138) 9.1(140)
414(137) 480(159) 2.2(147) 2.2(147)

2889(129) 3642(151) 19.1(111) 19.0(110)

C0DGEN
SPOOK

EVLSTK

TXQMS
KA612

Figure 6-5. Code sizes and TNBIND runtimes for DUMBx compilers.

Figure 6-5 shows the code sizes and compile times produced by the DUMBx

compilers along with the percentage of he PB sizes and times. These numbers do

not represent actual compilers and therefore should not be taken to be the results

one might obtain from compilers producing code with the same degree of

sophistication. In particular the r^n times of the DUMBx compilers are slightly larger

than the run times for PB. The run times for the DUMBx compilers are useful only for

utmtimmttttmaM M 1 mm mmtmmtmmm
_

ikiHthiirtriift r ■ir m . ^jflfl

r— ■

A Test Case 99

comparisons with the TBx times to see the costs the particular operations omitted in

the DUMBx compilers.

6.4.3 Discussion

We see from Figure 6-1 that there is relatively little difference in the code

sizes produced by the PB, TB, TBR, and TBS compilers. This may be attributed to the

fact that the TBx compilers actually add relatively little to the TNBIND processing

already performed by PB. The point of the comparison is that the TNBIND in PB has

grown piecemeal over the last three years while the TNBIND in the TBx compilers is

the product of about a month's work. Working from the general model it was

possible in a short time to produce a TNBIND that compares favorably with a finely

tuned production compiler.

Although we might expect that the code quality (size) would get progressively

better as we moved from TBS through TBR to TB, we see from Figure 6-1 that this is

not always true. One reason for this anomaly is the interaction of optimizations in the

compilers. TNBIND can make optimization decisions only on the basis of the cost

measures supplied. While these decisions are made on a global scale as far as the

register allocation is concerned (see discussion of global vs. local allocations in

Section 2.1), the decisions are local in the sense that they are made without

interaction with other phases of compilation. Even optimal solutions to the allocation

problem based on the cost measures defined within TNBIND may not produce the best

code when considered in the context of the other compiler optimizations.

It is interesting to note that even in the worst case the code produced by

DUMB2 is less than twice the size of the code produced by the other compilers. One

-- ■--

■- - ■ ■■ - j.^-.^a—J^tlM»»^. ^. - J...^.,.-^^. . ..

100
An Approach to Global Register Allocation

would expect that a truly unsophisticated compiler would be worse than the

0ptim1Zing compilers by a factor of three of four at least. The fact that the DUMB

compilers do as well as they do in the s,Ze comparison is a tribute to the opt.mization

and extensive special case analys.s done in the other phases of the compiler.

The data in Figure 6-2 is more disturbing. The TBx compilers require much

more time than the PB compiler to perform the same task and produce approximately

the same results. It is expected that the TBx compilers would require more time

since they are doing more computation, but the deferences are large both relatively

and absolutely. Consider the case of KA612 which uses about 17 seconds for TNBIND

in PB and more than five minutes for TNBIND in TB. Closer exam.nat.on of the timings

shows that the bulk of the difference is accounted for by the lifetime computations.

PB uses a simplif.ed lifetime characterization which is computed on-the-fly (in linear

time) during its TNP phase. There is no increase in the cost of lifetime determination

due to routine size. TB uses the full matrix closure algorithm of Chapter 4 for all

interesting TNs. This algor.thm experiences an J increase in running time as the size

(number of linear blocks) of a routine increases, Nearly half of the TNBIND t.me used

in KA612 is accounted for in the lifetime determination for a single routine. This

routine, the largest in the measured programs, has 160 linear blocKs and 70

interesting TNs. The resulting code for the routine is 575 words from PB and 595

words from TB. The effect of the lifetime computation on run time can be seen in the

differences between the TBS values in Figure 6-2 and the values for DUMB1 from

Figure 6-5. It must be noted at this point that the DUMBx compilers are not

"lightening fast" for two basic reasons. (1) The TNBIND phase accounts for only

about 107. of the total compile time and therefore even reducing the TNBIND time to

zero would not produce drastic changes overall. (2) The DUMBx compilers have to

HMMMMb«** **m* _

feM - ■' -" "^—^

ni ii imw i. uwm ^pwpip

A Test Case 101

< pay the price of many of the more sophisticated algorithms, e.g. lifetimes and packing,

without reaping the benefits. The DUMBx compilers were generated mainly to show

code size and not compile times.

The other major difference in runtime between PB and TB is the complete

enumeration packing algorithm. The packing done by PB is essentially the same as

that done by TBS. The only basic difference is that PB uses a more elaborate

reshuffling scheme. PB will reshuffle several TNs and may recur several times in

trying to make room for a new TN. TBS will try to reassign only one TN and will not

recur if the reassignment is not possible. The difference between the TB and TBR

column's in Figure 6-2 is the cost of the complete enumeration.1" In only a few cases

did TBR examine more than the initial complete solution. The difference between the

TBR and TBS columns is the overhead of maintaining the mechanism for the

enumeration algorithm. TBS does no backtracking or state saving; its solution is the

initial solution from which TB and TBR begin to search.

In Figure 6-3 we see that the compile time for the TBx compilers increased

over the PB time by just over a factor of three in the worst case and less than a

factor of two in most cases. This performance is quite respectable, considering that

this was the first implementation of a general model of register avocation.

Figure 6-4 shows how the TBx compilers compared with PB. An example of

how to read the table is probably the best explanation of what the data represents.

The routines are separated into groups based on the size of the code produced by

t As noted above, the enumeration was actually limited to a fraction of the solution to
avoid the exponential computing time that would be required by large problems. In
compiling programs to collect the test data, the search was limited to examining 50n
solutions where n is the number of TNs to be packed. This limit was reached by 17 of
the 128 routines.

 — - ■ - -- - ■■ i m iniiit—aiMaMri —■^•^^ H-. ^..- ■ - ■ ^^-.::.^.^^^.-i. .^ .v-.'-

T 1 "

102
An Approach io Global Register Allocation

the PB compiler. Lets consider the routines which were compiled into 11 to 25 words

of code by PB. This is the second group of numbers in the table. The second column

tells us that there 35 routines in this size range. In the third column we see that the

TBK compilers produced code which was five words smaller than the PB code one

time, one word smaller four times, the same size 28 times, three and four words

larger one time each. The intent of V,s table is to report all of the size differences

without making separate entries for each of the i28 routines. The routines are

separated into groups by size to give some idea of the percentage differences.

An interesting statistic in gauging the effectiveness of the various parts of the

TNBIND orocedure is the relative score of the four optimizing compilers on the 128

test routines. Each compiler is given a point when it is the simplest compiler to

produce the smallest amount of code for a rout.ne. No points are given if all

compilers produce the same code. Simplicity is measured by how many of the

sophisticated TNBIND algorithms are included; thus PB is the simplest followed by

TBS, TBR and TB. If for some routine the code sizes produced by the compilers are

PB 20 words
TB 18
TBR 18

TBS 19

then TBR would get one point. Computing this measure over the 128 test routine

gives the following ; esult:

PB 19
TB 6
TBR 5

TBS 12

This result is interesting because it points out the import-ce of precise lifetimes as

opposed to the sophisticated packing algorithm. There were 23 routines for which

MMHttüüMBlii — ■ -—.,..--.. - ^.. ^^ää^äimmimmm^mmm^ätlUiäM

■ r ■ i -nil imiw^mwrn ■•WWWPW"'' ""l« ■ »W^WI^PP^W^WI^Wlip»

A Test Case 103

1

better code was produced by one of the TBx compilers. Twelve times out of that 23

the best code was produced by the addition of only the more precise lifetime

characterization. The only essential difference between PB and TBS is the lifetirrv-

characterization. In the test cases, TBS was actually actually a restricted version of

TB. It is roasonable to conclude that adding the more precise lifetimes to the PB

compiler would result in a compiler better overall than any of the four tusted. In

reaching this conclusion we assort that the cases in which PB produced better code

than any of the TBx compilers are due to a combination of tuning and chance. The

tuning argument states that is is reasonable that a finely tuned simpL algorithm will

sometimes produce better results than a more sophisticated general algorithm. The

question of chance brings us back to the issue of compensating optimizations. TI.e

peephole optimization phase of Bliss-11 can have drastic effects on the amount of

code produced by combining unrelated sequences of instructions which happen to be

identical. When a TN will fit into more than one register, we arbitrarily choose the

first one we find. It might be that some other choice would allow or disallow

combining sequences of instructions. Examination of the code produced by the

various compilers showed that the largest differences (both positive and negative)

were mainly due to the action of the peephole optimization rather than the TNB1ND

actions. Since the packing algorithms of PB and the TBx compilers are different, it is

not necessary that these arbitrary choices would be the same in any two compilers.

6.4.4 Evaluation

One of the goals of this thesis is to explore extensions to register allocation

algorithms. In pursuing that goal we have looked specifically at the TNBIND model

and the lifetime and packing phases of that model. The test results have shown that

I™- ■ ■ ■ ■ ■ '

ioa An Approach to Global Register Allocat'on

it is possible to produce according to the general TNBiND model a compiler which

compares favor&bly in code quality with a state-of-the-iwrt optimizing compiler.

The TBx compilers cannot match the PB compiler in execution speed, but the

increase is not (with one exception) an unreasonable tradeoff for the efficiency in

production of the compiler. A slowdown by a factor of 2-10 is tolerable for a first

try at using the general model. Although there are no statistics generally available,

one would expect that similar degradations in performance were experienced by the

first automatically produced parsers.

Another point to consider in evaluating the results is that while the lifetime

computation is an n2 algorithm in the size of the routine being compiler, the trend in

programming is toward smaller routines. Indeed a compiler which produces very

good code but require« long compilation for large complex routines can be a factor in

encouraging programmers to write smaller, more easily understood routines. In

addition, studies such as that by Knuth [Knu71] have shown that programs in general

are very simple implying that the complex cases which require large amounts of

computing should be relatively rare.

 —i -■ ü . ._. ^i^taiaai<> nütfiiüiiiiiii «llriiim

■MB

•i. utij.wmmiiaiii ——. "■' "

Chapter 7

Conclusion

In this chapter we consider again the overall view of what is usually called

register allocation. The view is on a higher level than that on which register

allocation is usually discussed, and does not explicitly include some of the

optimizations frequently performed by optimizing compilers. We will show that the

TNBIND philosophy can easily be extended to incorporate other optimizations which

can be expressed at the source level of the program.

This chapter also summarizes the contributions of the thesis and considers

directions for future research in this area.

7.1 The TNBIND Model - Review

The TNQIND model of temporary storage allocation is more closely related to

the source level of the program than to the object level. As a result, the model it

easily adaptable to new languages or machines. The basic points of the model are

1. Information local to some part of a program is computed, stored, and

used over contexts larger than a single statement or expression.

2. Within some piece of program which can reasonably be considered as

a unit, a compiler has the responsibility to allocate physical resources

to hold the computed information.

3. There is no inherent difference between the intermediate results

produced by a compiler in the process of evaluating arithmetic

expressions and the intermediate results produced by a programmer

in the process of performing some complex algorithm.

Chapter 2 expanded these ideas to a model of implementation. That model

described the assignment of unique names (TNs) to the items of information to be

105

■ —
.^

•-—■-
^^^ rfaUMadu

"sZ^ZST' -^m '"""' ""■'«^'■'■»■1 '.i'..- —■■

105 An Approach to Global Register Allocation

stored, the collection of data to deftrmine lifetimes and preferences, and finally the

association of each TN with some physical location in the target machine.

The advantage of the model is that it deals with representations of the source

program which still contain much information about the semantics and control flow of

the program. This high level analysis makes global allocations easier. Recall from

chapter 1 that a local allocation occurs entirely within linear blocks while global

allocations consider larger contexts. With a local allocation, interblock transfer of

information must be via memory locations which can be fixed throughout the program

segment being considered. Since registers are a scarce resource (relative to main

memory), traditional compilation techniques have reserved the use of registers to

those data items which are used only in local contexts.

Traditional register allocation methods deal with actual machine instructions for

which the allocator must assign registers. Without knowledge of what registers will

be available, the code generator must compile code for the worst case. In the

TNDIND model the register allocator, presented with the constraints, chooses a set of

bindings of TNs to locations which will minimize the cost (maximize the profit) of the

resulting object program. The code generator is then able to produce code which is

specifically tailored to the TN bindings.

The TNB1ND model was based on the compiler structure of Bliss-11. A question

naturally arises as to what effect the adoption of this compiler structure has on the

TNBIND concept. The lifetime, ranking, and packing subphases of TNBIND are

independent of any change in the compiler structure. Those subphases require only

that flow information be available and that certain decisions, e.g. evaluation order,

have been made. If we can determine the connection matrix and the creation/use

■ - --^i^aa.^-^ ._, - ^.^c^..,.. «~—■'—-- ■ ■ "--L-'-sU****^

■—-"- —mm MH^H ■HBP«^*1«"!" (■UP".i ■■" ' .itwi"""|w-' .■PIIUIIHORI.IIH.UIIII 11 1 " ■■mil"

Conclusion 107

points of the TNs, we can perform the lifetime, ranking, and packing operations at any

point in the compilation. In that sense a good deal of TNBIND is independent of the

compiler structure.

On the other hand, if we had not started with the Bliss-11 decomposition we

might not have developed the model as we did. One can argue, we believe, that the

Bliss-U structure is the "right" structure for a highly optimizing compiler.

7.2 More traditional optimizations

Ther^ is no reason why any optimization of register utilization which can be

expressed at the source level of a program cannot be incorporated into the TNBIND

model. One such optimization which has been discussed frequently is the use of a

register to hold the value of a frequently accessed variable during the execution of a

loop. This is done by inserting instructions to load the value into a register before

the loop and to store the value after the loop. If it can be determined that the va'-ie

of the variable cannot be changed within the loop then the store instruction can be

eliminated. This is the optimization described by Lowery and Medlock [Low69]. To

incorporate this optimization into an implementation of TNBIND we simply assign a TN

to hold the value of the variable during the loop and add the necessary load and

store as assignment nodes in the parse tree. The TN is is marked "register or forget

it" so that failure to assign a register to the TN will result in the TN being bound to

the location of the variable. Presumably the code generator in a compiler which

includes these optimizations is clever enough to ignore requests to assign the value

of a variable to itself.

The addition of such optimizations at the level of TNBIND rather than at the

source level means that the TNs generated for the optimization are considered as

- - - w^Müriüiiiyii •^—"-"-'■■ ■*i*iri I

mjm zz^zz ^^^mm

108 An Approach to Global Register Allocation

equal competitors for the registers available to the allocator. Ve can then assert

with reasonable confidence that choosing registers fc some such TNs and not for

others is the correct decision.

7.3 Contributions of the thesis

This thesis has presented a high level model of a global register allocation

process. The model in fact deals with the more general problem of assigning

locations to hold computed values during the execution of a compiled program. Tne

model is not restricted to the situation which allows only two classes of locations to

be used for such temporary storage. The model defines a cost which is associated

with each entity to be stored and each class of storage location. The concept of

targeting values to particular locations is not new, but its application in terms of the

model is different. Preferencing is a new concept and is very useful in providing

direction to what would otherwise be an arbitrary decision.

The fact that the registers are bound before code generation means that

meaningful special case analysis can be profitably applied during code generation.

The TNQIND model also provides a starting point from which to generate this phase of

a compiler automatically. The basic knowledge needed by TNBIND is a list of what

operands of what operations must or must not be in a particular class of storage.

The cost measures can be as simple or as complex as the compiler designer wishes.

It may be observed that some of the ideas reported here are also presented in

[Wul75]. In the thesis we have taken the basic compiler structure of Bliss-11 as

given, but we have not taken the details of the implementation. We have developed

t Correct in the sense that the decisions minimize the cost of the object program as
we have defined the cost measures.

 -— - ■ --■----' Mitti^riMMrii* - -■ - - ■ ■ iLMä

Conclusion 109

the general model of register allocation and explored some new dimensions of the

solution space. The emphasis of the thesis has been on providing a framework within

which specific solutions to particular problems can be explored. The intent is that the

register allocator of a compiler should be produced (either manually, mechanically, or

more likely a combination of the two) according to the TNBIND model and then tuned

to the pecularities of the language and machine. It is expected that this tuning will

usually take the form of adjusting the cost measures and introducing preferencing.

Preferencing is a particularly powerful technique, because it allows us to indicate the

code we want to generate in the normal case without precluding what we must do in

the worst case.

7.4 Future research

7.4.1 Batter algorithms

As shown by the timing data in chapter 6, the lifetime determination can become

very costly for large routines. On the other hand, adding the more precise lifetime

characterization to the Bliss-11 compiler produced better code in about 107. of the

routines examined in chapter 6. We need to develop better algorithms for dealing

with very large problems. Equally as important is the development of fallback

positions of lifetime characterizations which are accurate but possibly less precise

and less costly to determine.

7.4.2 Automatic TNQIND generation

One of the long range goal:; for research in this area is to enable the automatic

production of optimizing compilers. Some parts of TNBIND are independent of both

__ ^^ÜÜÜIÜ * -

mmwmmm** *' WKT* wmmmmmm

110 An Approach to Global Register Allocation

the language and the machine and thus could be copied directly to new environments

(modulo the language in which the compiler is implemented). In this category are the

lifetime determination and the basic cost collecting functions. The actual cost valups

depend on the target machine and the desigier's criteria for optimizatior..

The TNP phase requires knowledge about the language to be compiled and

some way of determining wha^ code sequences might be used to implö.nent each

construct in the language. Some work in the latter area has been d)ne by Newcomer

[NewyS], but further work is nocessary to iron out the differences in the interfaces

expected by tt • various phases of the resulting compiler.

As suggested in chapter 1, the step from the TNB1ND model to a program which

produces a running TNQIND is "merely a matter of implementation." At the current

time, however, a good deal of judgement is required to make (he transition.

*

- ■■ - . - . niliM^ltSÜ^tti -i niiliMMiliMäitli^li^iii « -

„.„... .,.„„., 11 "-' "" ! •*"

1
Appendix A

The TNP Routines

Listed below are the actual unadulterated TNP routines from the Bliss-il

compiler. The interesting point is not exactly what each routine does, but that the

operations for most node types are highly similar. The routines become complex only

we wish to exploit special features of the hardware (e.g. in the store operator) or to

make clever implementation decisions (e.g. routine calls). The macros TLRDEF and

NDRDEF are used to consolidate the common features of most of the TNP routines.

««cro TLROEMNRME.BOOY).
routine IO(TL)NRnE(NODE,TflRGET)m

(ii«p CTVEC NODE, TNUORD TfiRGET, BODY) .NODEIREGF])$|

macro NDRDEF (NRKE.BODV).
POUtim It) (NlDNflHE (NODE,TARGET).

(map GTVEC NODE, TNUORD TARGET) BQDV, novalut)S|

TLRDEF(NULL, (ACCESS (.MYTN)) NOTEDTD))j

N0RDPF(B,(
local TOPI,T0P2,TOR,NTfiR;
T0Pl^T0P2^e;
II .NODE(TPRTH)

thon irevorsa order
begin
TOR*.NODE 10PR2); NTfiR^.NODE(OPRl)|
TOPZ-.HYTN) TOPUBi
enrt

•Ise 'normal order
begin
TRR-.NODE tOPRl]; NTflR-. NODE (0PR2)|
TOPK.riYTN) T0P2^ei
and;

TNP(.NDDE(0PR1],.T0P1))
TNP<.N0DE(OPR21,.TOP2>(
PnEFI1DVE(.T«R,.(1YTN>|
OPERATE (.NTRR,.(1YTN)(
>)|

111

__ ttttmkä .. — ^~—»~±*—*~u. MiiiMa r- ■ - • ■ ■ ^ -

■ "P'""ww""W'S^*^**pwwwppiip»pipiiP(pippp^^ mmmmmm ^

112 An Approach to Global Register Allocation

NDRDEF(U,(

TNP(.N0DEI0PRl),.n 1N)|
PREFf10VE(.N00E{Pori],.nYTN>|

N0RDEF(UX,<
TNP(,N00E(0PRlJ,e)|
PREFMOVE(.N0DElOPRni.f1VTN)l

)>:

N0R0EF(PTR,(

TNPt.NODEIOPRll.e);

PREFM0UE(.N0DEI0PR1),.MYTN)J

If .NODE(SIZEF) eql 6 Ihon

If .NO0E(POSF] eql 6 thon

RCCESSCNOOEIOPRlDi

N0R0EF(00T, (

TNP(.N0DEI0PR1)1.MVTN>|

If (.NOOEIflODEJ eql 1N0EXE0) or (.NODEtflOOEJ eql IN0EK£0*DEFERRE0) than
t1flKESfll1E(,nYTN,.N0DE[0PRl)),

>)|

routine ISBITCLEX).

begin

m»p LEXEME LEX;

bind CTVEC N0DE.LEX|

If .LEXtLTYPFl eql GTTYP

then II .N0DE(N0DEXJ eql SBITOP

then (TNNEEDED)1 ♦ 1
end;

N0R0EF(REL,(

locel LOP.ROP;

bind B1TLEFT »ISBIT(.N0DE(0PR1J),

BITRIGHT.ISBIT(.N00E[0PR2J)|
LOP^ROPHO;

H BITLEFT then LOP-.MYTN cite

If BITR1GHT thon ROP-.tmN;

TNP<.N0DE(0PRl),.L0P>i

TNP(.N0DE(OPR21,.R0P);

If BITLEFT then (PREFfOVE(.NQDE 10PR1), .tlVTN), COMPARE (. HYTH, .hOOECOPRZ))) else

If BITRTHT then (PREFMOVE (.NODE (0PR2J, .MYTN), COMPARE (.flYTN, .NODE I0PR1))) else
(COMPRRE(.NODEI0PR11,.NODEI0PR2)>i HOVE(8..HYTN)>.

>),

 -- MMMy^JMiii* mujgUuüum

w

The TNP Routines 113

!>r

N0R0EF(FPRR,l
local GTVEC U0P:PRRM;
bind LEXEME PflRtlLEK»PflR(1{
TNP(PflRI1e.N0DEl0PRl),lf .NODE ICSC0I1PLI l*q nRCIC2 Ihtn .I1VTN tlM 6),
PREFMOVE(.NO0ElOPRn,.HYTN))

))|

NDROEFdOnDNODE, (
local U0P,ii.*tm 0P1)
TNPCOPl^.NODEIOPRn.e);
it .0P1ILTYPFJ net, BHDVRR

than PREFI10VE(.0P1,.I1VTN)
alia nOVE(.OPl,.nVTN)|

))|

NORDEF(flDDSUB,(
local T0Pl,T0P2,TflR,NTflRi
T0Pl.-T0P2.-ei
If .NODE(TPflTH)

than Iravarsa order
btfln
TflR^.N0DE[0PR21| NTflR^.NOOE (OPRl) |
T0P2^.l1YTNj TOPUBj
and

alia Inomal ordar
begin
TflR-.NODE(0PR11| NTRR».NODE(0PR21i
T0Pl».nYTN(T0P2.-e;
and;

TNP(.N0DE(OPRn,.TOPl)t
TNP (,NODE'OrR2),.TOK2))
if (NOT .NOOEIKCMTFl) and (NOT .NOOEIRCMOFI)

thf/n (1R>;ESflME(.riyTN,.TflR>
• IJS PREFI1DVE(.TflR,.nYTN>)

OPERflTE(.NTflR,.riYTN),

>>)

routine BINDSTORE (LOP.ROP).
bogm map GTVEC LÜP:R0P;
bind LEXEME LLOPHLOP;

ROP-BRSZTNLROP);
i« .ROP leq 7 then return NOURLUE;
if .R0P(REQ01 neq 6 then return NOVRLUE)
if .LLOPILTYPFJ aql LITTYP

than begin
ROPtREQO-nEMHEQDDj
R0P1TNLITBIT1*!;
ROPITNLITLEXJ^.LOP)
R0P(BN0TYPl*8i
return NOVRLUE
end;

ROPIREQDl-tlEMREQDB;
ROPIREGFJ^.LOP)
N0TEUSE(.L0P,.R0PlL0HFU)))

I
■b,^.. - - ■ ■ -—~^^~- klmi mt I

r

114 An Approach to Global Register Allocation

NOVALUE
and;

routln« FINOLEK (LEX,THEE),
beg In
Mp -EXEIIE LEX, G fVEC TREE;
bind LEXEME TLEX-1REE;
iwcro FINONCSE(NOOE).

(ra»p CTVEC NODE;
M .NOOEIREGF] Itq
If .GTI.NODEIRECF)

7 than raturn 6 alta
BNOTYPJ neq BHDHCSE than raturn 8 alaa

NODE-.GTt.NODE IRECF).OFFSETF];
If .NODEtTYPEF) aql GRRPHT than raturn 0;
NODE<LT,''F>-BNDUfiR)$)

If .LEXILTYPFJ eql GTTYP the.. FINONCSE (LEX);
If .TLEXILEXPfiRTJ aql .LEX ILEXPfiRT] than raturn Ij
If .TLEXtLTYPF) aql GTTYP than

if .TREE(NODEX) aql SiNNULL than (FINONCSE(TREE); raturn FIN0LEX(.LEX,.TREE))
■ IM

Incr I fro« 6 to .TRE£(N00CSIZEF)-1 do
If FINOLEX(.LEX,.TREElOPERflND(.I))) than raturn 1;

0
and;

rout Ina FINDLEFT (LN,RN).
boqln local X,Y|
map CTVEC LN:RN; bind LEXEME LRN.RN;
If .LRN1LTYPF] naq GTTYP than return 8;
If .RNINOOEX) aql S00T0P thou return (.RNI0PR1) aql .LN);
If NOT (ONEOF(,RNlN0DEX))BIT5(Sfl0D0P,SMINOP,SfiHD0P,SOROP,SSHflBOP>)

or 0NE0F(.RNINDDEX)-2,BITG(SSHlFT0P-2,SR0T0P-2,
SMnXOP-2,SMINNOP-2,SEQVCP-2,SXOROP-2)))

than return 8;
If .RNITPfiTH) than (X-.RN(0PR2)jY-.RNIOPRl))

else (Y-,RNtOPR21iX-.RNICPRl]);
If .RNINODESIZEF) aql 2 than

If FIN0LEX(,LN,.Y) than return 8;
If (YvFINOLEFT(.LN,.X)) neq 8 than .Y+l alsa 8
and;

- ■ m —-*^~-'— --—■■'—*i'-^ liiil iTiMüilüiimiT i in—^■^^- —"■- ■■ --■' —;- A

mmmmmmmmm ~~ ~~~

The TNP Routines 115

routlnt ISNECNOT(LN,RN).
boy in
m«p GTVEC LN:RNt
IOCKI CTVEC LRN:LLRNi
b. ■ LEKEnE LNLEX.LN^NLEX.RN^RNLEX.LRNiLLRNLEX-LLRN)

. .RNLEXILTYPF) nnq GTTYP than rtlurn 6)
14 .RNINODEX) neq SN'EGOP than

M .RNtNOO'.X) neq SNCTOP than raturn 8;
LRN^.RNIOPRll)
I« .LRNLEXILTYPF) neq CTTYP than ratgrn i\
i« .LRNINODEX) neq SLJTOP than return i\
LLRN^.LRNIOPRH)
M EQLP0SSI2E(.LN,.LLRN) than return 1|

and)

routine SI(1PLE3T0RE(LN,RN>.

begin

fl "SIMPLE" STORE IS, BY DEFINITION, ONE UHICH DOES NOT

NEED R SPECIAL TEflPORRRY FOR THE RHS.

VALUE RETURNED:
-1 : i UE HAVE R STORE OF THE FOM

(EXPRl) ► . (EXPR1) OP (EXPR2),

OR (EXPRl) ► NOT .(EXPRl)

OR (EXPRl) ► - . (EXPR2);

THE •RCt1TF, BIT OF THE 'OP' (OR 'NOT' OR '-•) NODE
SHOULD RE TURNED OFF.

1 it HE HOVE SOME OTHER KIND OF SItlPLE STORE, E.G.
VRRl ► .VRRS ♦ 3;
THE 'RCtlTF' BIT OF THE 'OP' NODE SHOULD BE LEFT AS IS.

Bn THE STORE ,.u PRE DERLINC WITH IS NOT SIMPLE.

macro
RDDORS'JDnONEOF (.RNINODEX), BIT: (SflDD0P,SHIN0P>)$,
RN0DRIOR=0NE0F(.r, 'tNDDEX) ,BIT2(SflN00P,S0R0P>)»,

SPECIRLCRSES»
NOT ONEOF(.RNINODEX), (BIT3(SPLUS0P)SX0R0P,SEQVDP) or

BHSi:X(SCTR0P,6) or

BMsmsGTRUop.emsi

ni*p GTVEC LNiRN;

local GTVEC LRN:LLRN, RRN;
bint) LEXEME LNLEX=LN:RNLEX^RN:LRNLEX=LfNiLLRNLEX.LLRN;

bind SIMPLEVRLnSj
routine SIMPLOP(NODE)= (map G'VEC NODE;

\{ .NQDEINODEX) leq MRXQPERRTOR then 1 alta

14 .NODEtNQDEX) eql SYNNULL then 1 else

If .NODEINODFXl eql SSTOROP then
SIMPLOPd« .NOOEITPRTH) then .NOOEIOPRll alaa . NODE tOPR2))))

routine ISPSOMLN.RN).

bogln

m«p GTVEC LNiRN)

bind LEXEME LNLEX-LN:RNLEX»RN(

kcal SSP|

mm — - — tmim^m^^mmmmm •*' - '-.■ ■ ■ ■ v^ -. ^^—

Ill ii ii. vm^mmmmmmmmm*****^****^ .y " ■ —!—

116

'^y

An Approach to Global Register Allocation

iMcro ISBISORBJCa

(M RNOORIOR then

(loctil LEXEHF RhN:LRKj
If .RNITPflTH)

thon (LRN".RNI0PR2); RRN^.RNIOPRll)

als« (LflN^.RNIOPRl); RRN<-.RN(0PR2));
(1 »ni (.RRNIKNOTF] eqv (.RNtNODEX) eql SflH00P>M

+ .LHNtt;NUTF)*2))$)

M«cro ISINCORDEC-

(If «DDORSUB thin
If «bB(rXTElD(.RMOrFSETFJ)) eql 1 «hen

(.HNlRCfll-, or .RN(RCSF}))$|

nmcro ISCOhORNEGp

(If .RNINCD'K) «ql SPLUSOP than

(.RNIRCCF) or .RNIRCNTF)))$(

SSP^.LNLEXISSPFh
If .SSP laq PFei6

than TRUE
alia If .SSP laq PF06

than (if ISINCOROEC than TRUE
elsa if ISCOHORNEG then TRUE
else 1SB1S0RB1C)

else (ISBISORBIC eql 1)
and)

If .RNLEXILTYPFJ naq CTTYP then return 8)
If .LNLEXILTYPF) aql CTTYP than

begin macro PHOCEEOuexitblockS)
If .LN(NODEX) aql SYNPOI than

If ISPSOi:(.LN,.RN> than PROCEED)
If NOT Slt1PL0P(.LN> than return 0
erdi

If .LNLEXILTYPF} eql BNOVfiR than
begin local X|
if .LNLEXtLEXPPRT; eql .PCREG thon return 0;

I LRTER THIS WILL BE EXTENDED TO ALL
! VOLRTILE L0CRTI0NS.

If NOT ISPS0M.LN,.RN> than return 0)
If (X.-FINOLEFT(.LN,.RN)) naq 6

then If .X leq (SinPLEVRL*l)/(l-f(.LN(tlODE) naq CENREO) than raturn
end;

if .RNINDDEX1 aql SPLUSOP than
return

If .RNtOCCF] eql 1
then if .RNICSCOMPL) eql 6 then 1 «Isa

if ISNKGN0T(.LN,.RN[0PR1)) than -1|
If .RNINOOEX) aql SFSTORE thon return 1)
If .RNINOOEX) laq MfiXOPERRTOR than

if .RN(NOOEX) aql S00T0P thon return 8 ell«
If .RN(NODEX) eql SSURBOP then return 1 elia

If .RNIN0DESI2EF] aql 2 than
begin
macro PR0CEED>>ex i tblockS)
I« .RNITPflTH)

then (LRN-.RN!0PR21| RRN^.RNIOPRll)

-- - — - ^ — MM ..^^A.^^:^-..
iiiiaMim'iiiiiv • ■ *■'■■ —-: ■• m^Mjm J

PWPW^W^iW mmmm* I p-w" "^•^

i

The TNP Routines 117

| • Ise (LRN^.RNIOPRD) RRNfc.RNI0PR2)) |
If .RNIREGFJ eql .LRH(RFGF) then

I« .RN1CSC0MPU g»r SlflPLEVRL then PR0CEE0|
H FINÜLEX(.LN,.LRN> then

If SPECIRLCRSES thon PROCEED ill« rtturn 0;
If .LNLEXtSSPF) gtr PFBIB then PR0CEE0|
If .LRNLEX(LTYPFJ eql CTTYP then

If .LRNtNODEX) eql SFSTORE then return 0)
return 1 - FINOLEX (.LN,.RRN)
end;

If begn

m«ci o TRUNC <X)- (X-tinxC°ERflTOR)f j |
ONECP (TRUNC (.RN tNODEX)) (BIT4 (TRUNC (SYNIF) .TRUNC (SYNCfiSE),

TRUNC(SYNSEL),TRUNC(SYNLflBEL)))
end

then return 1

else If .RNINOOEX) leq MflXOPERfiTOR then
begin

LRN-if .RNITPflTH) thon .RNtOPR2) else .PN(OPRl))
if .LRN1.EX(LTYPFJ noq CTTYP then return 8;
If .LRNINODCX) eql S00T0P then

bocj in

LLRN-.LRNIOPRDt

if .LLRN eql .LN thon return -(SPECIflLCRSES)
elte If EQLP03SI2E(.LLRN,.LN>

thon if SPECIflLCRSES

then (LRNtCODEOM;

LRNIflODEl^O)

LRNtREGF)^.RN!RECF)j
return -1):

end:
snrt;

6

end;

rout ine TRYSIMPLESTORE (N0DE,LN,RN) =
bogin
tnap GTVEC N0DE:LN:RN;
bind LEXEME LNLEX=LN:RNLEXrRN,
if .NOSIUPLESTORE then return 6;
uhile 1 do

begin
necro 00BINDn(

ceie (SII1PLEST0RE(.LN,.RN)+1) of
eet

tes

Uit (6IN0ST0RE(.LN,.RN(REGF))| RNIRCtUFJ-Ulit),
/ 0,' 0,

% 1/. If not .NOSIUPLESTORE then BIN09T0RE (.LN, .RNfREGF) >

>t|
if .RNLEXtLTYPF) neq GTTVP then return NOVflLUE;

If .RNrNOOEXJ leq flflXOPERflTOR then return 00BIN0|
select .RNINOOEX) of

nset

SYNIFs

begin

if DOBIND then

- ■ ■ — mamm^^^mti t^am ..j^»^,—,1^,.. .—ai

:;■■.' w.MP^w^pawwwmw -■ ■■■i"«1 'i • ■ '

118 An Approach to Global Register Allocaticn

(TRYSinPLEST0RE(.N0DE,.LN,.RNI0PR31)i
TRYSIf1fLEST0RE(.N0DE,.LN,.RNl0PR4)) >)

return NOVRLUE
•nri;

SYNCRSE:
bt()in
l< DOBINO Ihon

incr I from 2 to . RNINODESIZEH-2 do
TRYSII1PLESTORE(.NOOE,.LN,.RNIOPERflN0<.I)))|

rsturn NOVRLUE
tnd|

SYNSELi
bagln
M 00BIN0 than

incr I from 2 to .RN(N0DE9IZEF]-3 by 2 do
TRYSItlPLESTORE (.NODE, .LN, .RN(OPERRND<. D)) i

rtturn NOVRLUE
•nd)

SYNCOMP:
CONTINUE RN...RN[OPERflN0(.RNINODESIZEF)-l))|

SYNLRDELs
(OODINO; return N0VflLUE>;

SFSTOREi
OODINO;

«lH«yBi

rtturn NOVRLUE
tMfl|

•nd|
NOVRLUE
• nd;

- ■--—iiiiMHiiliiiüii-iiii ■ iiiiiiiiiiii'i ti i

■zzzz

The TNP Routines 119

NOROEF(STORE,(
lool LEXEME L0P:R0P, GTVEC T, T1,T2;

Tl^T2^eJ

If .NODElTPflTH)

then (LOP-.NODE(0Pfl2J(ROP-.NODE(OPRl)) Tl^.HYTN)
• In (LOIv.NOtinOI'Rlli R0P-.N0DEI0PR21I T2-.MYTN),

TNP(.NODElOPRn,.Tl>)

TNP(.N0DE(0PR21,.T2>)

If (U.nVTN) mq 6 thin

bigln

If .T[REQDI iql nEHREODB Ihm
If .TIREGFl iql .ROP(flDDRP) thin

T-B)

•nd|
PREFI10VE(.R0P,.I1YTN>1

If .T iql 6
thin

bogln
TRYSII1PLEST0RE (.NODE, .LOP, .ROP) |

PREFH0UE(.ROP,.LOP)|

end

• In PREFf10VE(.nYTN,.L0P>i

»I

macro INITPRRIIDESC« (LNKCO-.LNRHE ILNKGDESCF] | PflRHN0>-8)S,

NEXTPPRHDESCn

big In
If (PflRMNO-.PRRHNO+l) gtr .LNKCDILNKCSIZEF)

thin PUSTPCKPRRM

• lie
(PT-.LN(:GO(PflRHTYPE(.PRRI1NO))t

PL-.LNKGD(PRR(1LOC(.PflRMNO)))
• nctt;

routine SPRNPRHMSn
bigln
local GTVEC T, ITEfl Lj
dicr I froii .Cfll.LSTt: (CURDl to 6 do

FORflLLTN(T,CflLLSTK ILSELEM (. 1)1,
L-.TtTNLIFELISTJi
If .LILIFESTOP) In .LON thin LIL1FEST0P)*.L0N

>l
NOVRLUE

•nri;

■ mm mmmm ■MMM --—~ -

|£l WIH^ ^^mm^mw^r mm mim

120 An Approach to Global Register Allocition

macro
INITCRLL»lNITSTK(CflLLSTK)$,

PUSHCflLLoPUSHSTK (C(U.LSTK>$,
NOTECflLL«flDDT0T0S(CflLLSTK,TNREP(.SUBHODElRECF))>$,

POPCRLL.P0PSTK(CRLLSTK)$,
RELE9SECflLL=RELERSESPflCE(GT,.CflLLST»;,STKSI2£)$)

TLRDEF(COLL,(
ext«™«! LIFEBLK;
bind SHITCHREGISTER» 177578;

bind STVEC LNflHE»NODEI0PR11|
local CTVEC SUIHODElTHiUKM, 0L0N,N,PRRf1H0,PT,PL,FSP|

TNP(.N0DEl0PR2),e)l

INITPflRIIOESC;

FSP^l-,
M .NODEINODESIZEF) gtp 2 thon

begin
PUSHCRLL;
Iner 1 «roii 2 to .N0DE(N00ESIZEF)-1 do

betjm
NEXTPPRMBESC;
SUBH0DEH.NODEIOPERRN0(.1))I

OLOH^.LON+1;
TNPt.SUDNODE.e);
TN^.SUDHODEtREGF);
TN(TNLIFELISTJ^LIFEBL>;(.LON,.L0N)t
NQTECRLLj

SPRNPRRMSOi

C.EB .PT Oi

(«1

^6; ItMlt p»rit %
begin

M .FSP thtn
begin local D;
FSP^B; DH.DTDSTKILOTDII

N-.DTEHPSICURDl)

SRVOTDj
H ((.OTEtlPS(CURD) nog .0)

or (.NODEINODESIZEF) eql 3)

or (.NODE(NOOESIZEF) eql 5)) «ban
i« TRYSPDYTFI1P(.TN,.N) than

ex I tease (TN1REQ0) ►f1EHREQDB>

end;
M not TRYSPOVTEtlPf.TN.N^.N+l)

then OPENDYTEHP<.TN(.0L0H,e)|

0T0STK(LDT01*.Ni

TNtREQDl-nEMREQDD

and;

The TNP Routines 121

Zli cpecK ic ragitttr Z
bogln
loc«l LEXEME SUBSUD.TTN;
SUBSUB>-.SU6N0DE(0PR1]|
If .SUBSUBtLTYPFJ eql GTTYP then

bogln
TTN-.GK.SUBSUB.RECFJi
If -TTN qeq 8 than

TNtTNPEmilTK.TTNi
WMI|

TNSRREQO(.TN,.PL>|
•nd|

XZi (I I tar«I) memory X
begin
TNITNL1TBIT)*TRUE;
TNtTNLlTLEX)^LITLEXEI1E(,PL)(
TNtREQDl^nEflREQOB
•nd;

Z3: (nniiert) memory X
begin
TN1REGF)*.PL)
TNIREQOI^nEnREQOD
■nd

'•«■;
If not .FSP then

KILLP0TE(1PS<.SUBH0DE,
(If (.OTEMPSICURD) nql .N) or (.1 •ql .NOUEINODESlZEFJ-l)

then .N else .N*l))
•ndj

POPCRLL
•nd;

NOTEOTO;
if not .FSP then POPDTO;
if (.DTEtlPStCURD) goq (STKSIZE-.flflXPflRHS)) or .CUTBflCKSTBCK

then KILL0YTEnPS(.N00E»i

If .LNBMEtLNKCTFJ neq INTRRPTLWGT than
begin
if .HYTN Iss 6 then tlYTN^GETTNO (

TNSRREQD<.t1YTN,VRECNUI1>i

• nd;
If (TN^.flYTN) noq 6 then

If .N0DE(X0PR2J agl .LXHflLT
the',

bogln

TNIREQOKHEMREQDB;
TNtTNLITBIT3*TRUE)
TNIRECFJ-SHITCHREGISTERi
•nd

• !■•

ii lifiii'iiillliimiinir IYIKHI In i-inilili liTiiliMM "-' -^ — — -1 tt ri 11- niiinihliii miliriir^^^ "^; ■ ■

wumMv i"l •■^«pi^ww^^wfpmfiw" ■W^WiWW» -T"""'"'_.■,■.

122 An Approach to Global Reglstar Allocation

TNSRREaD(,T(t,VRECNUtt))

N0TeUSE(.N0DE10PR2J>.L0N))
NEXTLON;
NOTECRF.RTION(.TN,.L0N);

UPORTELON;
SETBOUND;

routine LOnDRÖ(NODE)»
begin
m»p GTVEC NODE;
local GTVEC TXj
i((TX^.NODE(RECF)) eql 0 then return 8-,
TXieNOTYP)^BNnREGi

TXCREQDI^SRREaDB;
TX(R£GFJ.VREGNUH;
TXIßNOLSTHOR)►REGS (VREGNUM) t
H ISCLOSEOl.REGStVREGNUMJ)

then OPENLIST(REGSIVSECNUMl<8,0>>|
.TX
end;

TLROEF(rout Ine, (
extern«! LBPRTCH.LBRETLIST;
loc«l STVEC RNRI1E:LNRME:L0ESC, GTVEC TNiTL;
LBRETLIST^B;
RNRHE-.NODEIOPRZ);
RNRHEIRETLRBK.NODE;
LDESC^.GTtLNflf1E^.RNRIIElLNt;CNI1F),LNKG0ESCF),

if not .flNYENRB then
begin
deer I from 5 to 6 do NULLLST(REGSt. 11) |
Incr I fron 1 to .LDESCtLNIXSIZEF) do

If .LDESClPflRMTYPE(.l)) eql RECPRRM
then ÜPENL1ST(REGSI.LOESCIPRRHLOC(.!>))) |

end;
If not EMPTY(.RNflHriRECrORMLSTJ> then

beg in
locel LSTHDR L.ITEfl I;
NL^-RNRHEIREGFORHLSTI;
until (lo.HRLlWO) eql ,L do

bagm
TL^GETTNO;
PREFMOVE (.TL, .GTt. I (RORTITEtKl)) .REGFJ))
TUBNOLSTHDRl-REGSMlLORTITEfld))])

TLIREQOl^MEItREQOD;
TLtREGFJ^-HLDflTITEIKl));
UPDRTE(.ItRDflTITEn(l)),l,2)
end

end;

1 ■-■■ ^ ■ ■■ - ■■■'-—- ■■ if iiftiw'aiifliiiliiiiar'i nil i

The TNP Routines 123

if (TN-.NODE[REGm nac| 6 than TN-L0PDRe<.N00E)|

H .SIHPLELIFE then NODE{REGF)*GETTN() |

TNH(.N00E(0PRl],e);
LBPRTCHC.LBRETLIST);

UPDflTELONf

PREFflOVfct.NODE tOPRl),NODE IRECFJ*.TN>)

"I

NOROEF<flNOOR,<

le:nl LOP.ROP.OPlj

loc»l ITEM LBLOPjLBROPi

bint! LEXEME LE)(2<N0DE [0PR211
LOPHROP^O;

If .NODEITPPTH)

thon (ROP^.MYTNjOPU.NODEtOPRZl)

else (LOP*.nVTN;OPU.NODElOPRl))i

TNP (. NODE lOPRll,. LOP);

If FLOIIRES than
bogin

LBLOP-NEHBLK^);
LBLOPILBSUCC<l)]<-.CBSTflRTi

SflVDTOj

enri;

TNP(.NODE[OPR2),.ROP)(
if FLOWRES than

begin

LBROP^NEHBLK(l),
LBR0PILBSUCC(1)).-LBL0PILBSUCC(2>)-.CBST«RT|
if .0TE(1PS(CUR01 naq .OTDSTKILOTOJ then

(KILLOYT£MPS(.N0DE(OPR2))(SETNOTFPRRH)(

POPDTOi
return

end;

If not RESREQ then return)

PREFf10VE(.0Pl,.f1YTN))

))i

NOROEF(COriP,(
incr I fro» 0 to .NODE :N00ES12EM-2 do

TNP(.NOPEIOPCRflN0<.I)],O);
TNP(.NODE ILRSTOPCRRNDl,.nYTN))
if RESREQ then PREFf10VE(.N0DE(LRSTOPERRN01, .IIYTN))

*mmM - ■ - - - ■ —'-^-" ---

1 ' ■ ■■
-'in—iiiiiimr--

——-^

124 An Approach to Global Register Allocation

NDROEFdt, (

loc«l DTIMVEN;

loc«l ITEM LBBOOLiLBTHENiLBELSE)
Br.ULST(.NODÜIOPRll)|

TNP(.N0DE(0PR2),e)i

LBB00L-NEUBLK(2)|

LBBO0L(LBSUCC(l))^.CBSTflRT)
SnVDTO;

TNP(.N0DEt0PR3J,.MVTN>|
LBTHEN^NEIJBLK(l))

LBD00LILBSUCC(2))^.CBSTflRT)
RESETOTO;

TNP(.NODE(OPR<iJ,.riVTN)i

LBELSE.-NEIIÜl.K(l)(

LBTHENILBSUCC(l)ULBELSElLBSUCC(l))^.CBSTnRT)

OTUNEVEN^<.OTEnPSICUrtO) neq .OTOSTK(f10TOJ);
MINOTO;
i« .OTUNEVEN then

begin

KILLFORCOVTEflPS (.NODE (0PH3)) |

KILLFORKDYTEflPS (.NODE I0PR4));
SETNOTFPfiRM
• nri;

POPDTD;

M RESREQ than

(PREFfl0VE(.N0DE(0PR3)>,riYTN)| PREFMOVE (.NO0EIOPR4), .IIYTN)) |
BINDLST(.N0DE(0PR5J)i

»I

NORDEF<c«Be, (

locol T.RES.HTUNEVEN.CTVEC SUBNODEj

loco I ITEM LBSEL:LBFRi;, FRKX, GTVEC LBFRKV;
DTUNEVENf-Bi

BlNDLST(.NODEIOPRl)))

TNP(.N0DE(0PR2),e)i

LBSEL^NEHOI.n.NOOEtNOOCSIZEFj-S);

LBFRKV^GETSPRCE (GT, .NODE (NODESIZEF) -3))
SflVDTO;

incr I (roil 2 to .NODE [NODESIZEF)-2 do
boyin
SliDNODE.-.N0DE(OPERflH0(.I))|

LBSELtLBSUCC<.I-l))».CB£:fPRTj
TNP(.SUBNODE,.nVTN))

LBFRi;VI.I-2ie,36)^LBFRUNEUBLK(l))

PREFMOVE (.SUBNODE,,nVTN> |
M .I gaq 3 than

M .OTEMPSICUROl naq .0T0STK1I10T0) than 0TUNEVEN*1|
M .1 naq .N0DE!N0DESlZEn-2 than RESETOTO alta t1INDT0|
tnri|

Incr I »ro» 1 to .NODE(N0DESIZEF)-3 do

(LBFRK^.LBFRKVr.1-1,8,36); LBFRCtLBSUCC(l))*.CBSTflRT)|
RELEflSESPflCE(GT,.LBFR);V,.N0DEtN0DESIZEF)-3))
If .OTUNEVEN than

bogln

incr I «ro« 2 to .NODE{NC0ES)Z£F)-2 do

KILLF0RK0YTef1PS(.N0D[[0PERflN0(.I)))|
SETNOTFPBRH

•-- '■ —^ ^amttämmmm ^iMTi irt ■*•-'- ■ ---■■■- ■ •

I «

The TNP Routines 125

-

•nd|
POPDTO;
BINOLST (.NODE (OPERAND (.NODE (NOnESIZEF)-!))))

routine FLOOP (NODE,TARGET,TYPE>-
bogin
! TNP «or Hhll«-rto(untll-do, do-Mhll«, and do-untll
! C«I«B 8 through 3 o< type rtipsctlvaly
mop GTVEC NODE-,
local L1,L2|
local ITEM LBB00L:LBB0DV,L00PT0P;
BINDLST(.N00El0PRll)i
6INOLST(.N0DE(OPR2])|
MVOTOi
ENTLOOP;
LBBOOL^NEWBU(l)) LBBOOLlLBSUCC(l))«-LOOPTOP^.CBSTflRT|

TNP(.N0DE(0PR3)ie>|
I« .TYPE/2

«O-H/UÄ than (LBBODY-NEHBLni)) LBB0DY(LBSUCC(1))^.CBSTRRT)
XU/U-DX else (LBBO0L^EMBLi;(2)) LBBOULlLBSUCC(l)K.CBSTflRT),

M (not .TYP£(-l))
or (bind LEXEME OPa.NODEtOPRft)| .OPAtLTYPFJ naq CTTYP)

then (RESETOTO; KILL0YTEnPS(.N0CEI0PR31))|
TNP(.N0DE(0PR't))e)i
H .TYPE/2

■/O-W/UX than
begin
Ln&ÜL*NEUaLK(2>|
LBB00L(LBSUCC(1))«-.L00PT0P|
LBB00LtLBSUCC(2>j4-.CBSTflRT
and

/U/U-OZ alia
begin
LBBODY*NEM0Lni)|
LBB0DYILBSUCC(1))«-.L00PT0P|
LBB00LlLBSUCC(2))*.CBSTflRT
enrij

RESETOTO) XITLODP;
KILL0YTEMPS(.N0DEI0PR4])i
►;iLL0YTEf1PS(.N0DE))
POPOTO)
H .tlYTN neq 8 then H0UE(L1TLEXEI1E (-1), .MYTN))
end;

uttAtt^akAttMi^uiriauafliaikiuLUtfuihAM^a^« --^- ■ .^. .^ -^^^^ ^AJ^, ai''ii JUmiltti

Tfpm^ß^mm^m^^m^mmmmnmmpi ,•". mm*mm*m*m '^m^^m^^^^^mmmmmmammmmmm

126 An Approach to Global Register Allocation

NDROEF WO,PL00P(.NODE,. TARGET,e>)i

NDROEF(UD.FLOOP(.NODE,.TfiRCET,1))|

NDRDEF(0U,FL00P(.N0DE,.TfiRCET,2))(

NDRDEF(0U,FL00P(.N0DE,.TRRCET,3>)(

NDRDEF(1DL00P,(

loc»l L, CTVEC CV;

local ITEM LDPRE:LBB0DVt

TNP(.N0DEt0PR21,8)|

TNP(.N0DE[QPR31,0)|
T,-'P(.N0DE(0PR4)19),

BIN!)LST(.N0DEtOPR^)(

BINOLST(.N00EIOPRG))|

PREFf10VE(. NODE I0PR2J,. NODE (OPRIDi

CV^.NOOEtOPRU)
SRVDTDj
ENTLOOPj
LBPRE-NEUBLt;^); LBPRE[LBSUCC(l))».CBSTflRTi

TNPC.NODEIOPR?)^);

LßB0DY^NEWBLi;<2);

LBBODYtLBSUCC(l)K.LBPREILBSUCC(l)))
LDBO0Y(LBSUCC(2)KLBPRElLBSUCC(2))<-.CBSTflRT)

OPERATE (. NODE {0PR3),.NODE lOPRl)) |

COMPRREC. NODE lOPRll,. NODE I0PR«))|

RESETOTD; XITLOOPj

KILL0YTEHPS<.N0DEI0PR7))i

POPDTD;

lf .«VTN nBq 8 then HOVE (LITLEXEtlE(-l), .flYTN) |

))|

TLROEF(l«bal,(

•ytBrnnl LBPRTCHj

TLC0HMDN<.NODE,.TARGET) j

LBPRTCH (. NODE ILBPRTCHLIST]);

KILLPDTEMPS (. NODE,. DTEtIPS (CURO)) |
SETNOTFPARtl;

)'l

■---- ■■'■' "■ - ■ ■ -
 -■—--Mi^Mlilllii if* --■■-■•■

wiyi'mmim-i n :ipi-wnmiqiywgi i. ^uiiiuii.t,— = ■Hi

The TNP Routines

TLRDEF(l««vt,(

local CTVEC H|

N^.ST{.NODE(OPR2),LIN»;FL01|

TNP(.NO[)ElOPRni.N[RECF))(

MUSTPRTCHCNtLBPflTCHLISTl);
PREFH0VE(.N0DE10PRl),.NtREGF))(

NOTEOTDi

»|

TLROEF(RLEnVE,(

•xttrn«! LBRETLISTt

local CTVEC RNTN)

RNTN^.NODE I0PR2)) RNTN^.RNTNIRETLRB))
TNP(.N0DEtOPRl], .RNTNtREGFJ);

PREFNOVE (.NODE(OPRll,.RNTNIREGF)))

nUbTPflTCH(LBRETLIST>)

NOTEOTDi
UPDRTELON;

)>)

127

TLROEF(SYNNULL((

IOCHI CTVEC PRR;

bind LEXEME LEX=N0DEi
PRR-.NODEtCSPRRENT)!

If not .PRRIBOUNDl than
beg In

M not .PRRIOELRVEOl than NONBOuUS (PAR) i

It .PRR neq .LEXIRDDRF] then

TLLIST(FflSTLEXOUT(CTTYP,.PflR>,e)|

■nd{

NOTEOTDi
UPDRTELON;

RCCESS(.NOOE>t

>>;

NDROEF (select,(
local OTHERENO.DTUNEVEN.SRVDTC, LEXEME L, CTVEC OTHtRTNj

local ITEM LBSEL.LBLEFTJLBRICHTI

DTUNEVEN^Bj

OTHEREND-LtTVflLUE<.N00E!LflST0PERRH01)|

it .OTHERENO eql 8

then OTHtSTN-B
tlst NÜDE(OPERRN0(.N0DEIN0DESIZ£FJ-2)]*LEX0UT(TNTYP,OTHERTN^GETTN())|

TNPt.NODEIOPRD.B);
LBSEL-NEUBLK(1)|

LBLEFUOi

MOVE (LITLEXEME (8), .OTHERTN) j
Incr I fron 1 to .NODE(NODESIZEF)-3 do

begin

L-.NODE(OPERRND<.I)]|

It .1

than I Ittt part
begin
If .LBLEFT neq 8

- • - -- -"■
- ^ ^ ...*..* .^....^a^^, .^ ^.. -»r, ■M.tiiir.rii J

128 An Approach to Global Register Allocation

Ihsn LBLEFTtLBSUCC(2))»,CBSTflRT

else LBSEULBSUCCan-.CBSTnRT)

I« .LILTYPF) naq SELTYP then {TNP(.L,e) iCOMPflRE (.NODElOPRll, .L>> |
LBLEFT^NEWBLK(2>)
end

else ^Iqht pert
beg in

If .1 eq! 2 then SRVOTC-.DTEtlPSlCUROl (
SnVDTD;

LBLEFT[LBSUCC(1)U CBSTflRT;
TNP(.L,.HYTN>j

LBRIGHT^NEHUl.K(l);
LBRIGH1 CLBSUCC(l))».CBSTflRT;

If .DTEMHSICUROl neq .SfiVOTC then 0TUNEV£N»1|
RESETDTDj

KILL0YTEf1PS(.L)j

P0P0T0;
enri;

if .1 leq .OTHERENO ther flCCESS<.OTHERTN)
enrtj

LBLEFT(LBSUCC<2))^.CBSTflRT|
If .DTUNEVEN

then SETNOTFPflRM

else

Incr I fro» 2 to .NO0EINODESlZ£F)-3 by 2 do
begin

locel LEXEME OP;

bind CTVEC SUDN0BE=0P;

OP^.NODEIOPERflNn«.!));
If .OPdTYPFJ eql GTTYP

then SUBNODE (OTDELETE)*0T00NTCflRE
end:

));

TLROEFfENflBLE.f

SETBOUHO;

LOflnR0<.N00E);

NOTEOTOj

UPORTELOH;

TNPf.NOOEtOPRD.B),

)))

■ iMrlia"»iin *•'''*■■ ■ ia-.

mMHtm/mmmmmmummm — i' I i mi HI i i linn m i wn mn mi |i mil IMI n. I n n

The TNP Routines 129

N0R0EF(SICNfiL,(
exHrnnl LBPfiTCH,LBRETLIST|
local CTVEC TL)
TNP(.NODE lOPRl),e>(
L0nDR8<.N0D£)l

IIUSTPOTCH(LBRETLIST))
PREFMOVE(.NOOEIOPRI),.(IVTN;I

•• ■" " " '— - -•- imii ii »n !<■■ mi a i - ^■■-'-■^

Appendix B

Ths Basic Packing Routine

Listed at the end of this appendix is the code for the basic loop of the packing

procedure. The routine EVAL is called recursively to evaluate the maximum profit

that can be obtained by packing subsequent TNs. Below are descriptions of the

important routines called by EVAL.

POSTUPDATE remembers the current complete solution as the most profitable

thus far examined. When the algorithm terminates, the last

solution remembered is an optimal solution.

REALIZABLE tries to pack its second argument Into a register. The first

argument is true when REALIZABLE is called during reshuffling.

The value returned is true if the packing succeeded «nd false

otherwise.

BESTCASEWITHOUT returns the value of the most profitable completion of the

current partial solution without the current TN. The most

profitable completion may not be feasible.

UNDESIRE removes its argument from the current solution.

130

I liillffilirÜlir^""-^ ■'' --iimfcn JiTi IUMI
^ . ,. .„. , . .^ .^.>^.J,^>.,^.^^^.^.....,^J,:^^^.iL^^<t |fr-~ ■-

r
The Basic Packing Routine 131

routine EVflL (PflSTVflL.ME).
bogin
tnjip TNREPR HE;

Ubal tlOVERIGHTi

M«cro B0TTOH0FTREE(X).(.X[RLINK) «ql LHEflQ<C,e><t|

macro TRYUPQRTE^ (i4 -.nvvm eql .GLBLnflK than PSSTUPORTE())S|

local TEMP,MINflCCEPT.nRKSON.PREFmSSED,TNREPR SON;

bind MYVflLnPRSTVfiL;

EVfl'.CNU.EVfiLCNT.»!;

nElTNFL0(TNREC3TRlE0>)^.RESERVED;

II NOT REflLI2flBLE(<alsa,.t1EtTNPTR)) than raturn 6;

H .SItlPLERESHUFFLE

than PREFMISSEO-e
else PREFMISSE0^(.I1EITNFL0(PREFF)J naq 8» and (.nE[TNFL0(BN0TVP)) naq BNOPREF);

ME ITNFLD (TNCONFNUH)UNOCONFSEEN;

If (MYVflL^.PfiSTVnL+.ME[TNFLO<TNCOST))-.PR£FMISSEO) qtr .CLBLMflX

than (CLBLMflX.-.MYVflL; MYVflL—.MYVRL);

HINflCCEPT^.CLBLMflX-aba(.MYVflL))

MflXSON^O;
If BOTTOMOFTREE(ME)

then (TRYUPDRTE; UNDESIRE (.MEtTWTRl), 00RESHUF.-1)

eli«
do begin

SON^.ME;
Hhlla (SOK-.SON(RLINKl) neq LHERD<e>e> do

MOVERICHTi
begin

M .EVRLCNT gtr .MflXREBS then (CUTOFF^true; exltloop);
it .SON(TNFLD(BNDLSTHOR>) neq 0 then leave MOVERIGHT;
if .SON(TNFLD(TNCSUM>, laq .MINRCCEPT then exit loop;
If (TErP.-EVfiLUbB(.MYVflL>,.SON>) gtr .HflXSON then

(if (MflXSON^.TEMP) gtr .MINRCCEPT then MINRCCEPT*.TEMP);
If 6ESTCflSEUITH0üT(.S0N(TNPTR]> 'eq .SONITNFLO(TNCOST)] then exit loop;
end;

TRYUPOflTE;
UNÜES1RE(.MEITNPTR))I
If .TEMP aql .SONITNFLO'TNCSUM)) then

if .SONILLINK) aql .ME then I optimal completion, don't try any «ore
ex i tloop;

If .SIMPLERESHUFFLE then exit loop;
end

until NOT REflLIZf)BLE(false,.ME(TNPTR));
re turn (.HE ITNFLO (TNCOST) U.MRXSON-.PREFHISSED)
end;

 ■ -- - - - - '■"■ -^-^ --_ ■—

132 An Approach to Global Register Allocation

Bibliography

AII70 Allen, F. E„ "Control Flow Analysis," SIGPLAN Notice«, July 1970.

AII71a Allen, F. E. and John Cocke, "A Catalogue of Optimizing Transformations,"

Design and Optimization of Compilers, (R. Rustin, ed,), Prentice-Hall, 1971, 1-30.

AII71b Allen, F. E., "Control and Data Flow Analysis," Computer Science Dept.

colloquium series, Carnegie-Mellon Univ., April 1971.

Bal65 Balinski, M. L, "Integer Programming: Methods, Uses, Computation,"

Management Science 12, 3 (November 1965), 253-313.

Bea71 Beatty, James C, "A Global Register Assignment Algorithm," Design and

Optimization of Compilers, (R, Rustin, ed.), Prentice-Hall, 1971, 65-88.

Bea72 Beatty, James C, "An Axiomatic Approach to Code Optimization for

Expressions," JACM 19,4 (October 1972), 613-40.

Bel66 Belady, L, A., "A Study of Page Replacement Algorithms for a Virtual Storage

Computer," IBM Systems Journal 5,2 (1966), 78-101.

Bru74 Bruno, John and Ravi Sethi, "Register Allocation for a One-Register Machine,"

Computer Science Dept. Technical Report No. 157, Penn State University

(October 1974).

Coc70 Cocke, John anr J. T. Schwartz, Programming Languages and their Compilers,

Courant Institut J of Mathematical Sciences, New York University, New York,

19" 0.

Day70 Day, W. H. E., "Compiler Assignment of Data Items to Registers," IBM Systems

Journal 9,4 (1970), 281-317.

DEC71 Digital Equipment Corp., PDP-11/20/15/R20 Processor Handbook, Maynard,

Mass., 1971.

DEC74 Digital Equipment Corp., Bliss-11 Programmer's Manual, Maynard, Mass., 1974.

Geo67 Geuffrion, Arthur M., "Integer Programming by Implicit Enumeration and 3alas'

Method," SIAM Review 9,2 (April 1967), 178-190.

Ges72 Geschke, Charles M., 'Global Program Optimizations," Ph.D. thesis. Computer

Science Department, Carnegie-Mellon University, 1972.

Gil66 Gilmore, P. C. and R. E. Gomory, "The Theory and Computation of Knapsack

Functions," Operations Research 14,6 (1966) 1045-74.

-- - - >**~~^~ - ':— J-^....—^~^~<

■*WV»"**^(j v. ■

Bibliography 13S

Han74 Hansen, Gilbert J., 'Adaptive Systems for the Dynamic Run-Time Optimization

of Programs," Ph.D. thesis, Computer Science Department, Carnegie-Mellon

University, 1974.

Hop69 Hopgood, F. R. A,, Compiling Techniques, American Elsevier, New York, 1969,

91-103.

Hor66 Horwit-, L. P., R. M. Karp, R. E. Miller and S. Winograd, "Index Register

Allocation," JACM 13,1 (January 1966), 43-61.

Knu71 Knuth, Donald E., "An empiracle study of FORTRAN programs," Software--

Practice and Experience 1,2 (April/June 19"1), 105-133.

Low69 Lowery, E. S. and C. W. MedlocK, "Object Code Optimization," CACM 12,1

(January 1969), 13-22.

Luc67 Luccio, F., "A Comment on Index Register Allocation," CACM 10,9 (September

1967), 572.

Mit70 Mitten, L. G., "Branch-and-Bound Methods: General Formulation and

Properties," Operations Research 8, 1 (January-February 1970), 24-34.

Nak67 Nakata, Ikuo, "On Compiling Algorithms for Arithmetic Expressions," CACM

10,8 (August 1967), 492-94.

New75 Newcomer, Joseph M., "Mach.ne-independent Generation of Optimal Local

Code," Computer Science Department Ph.D. ihesis, Carnegie-Mellon

University, May 1975.

Red69 Redziejowski, R, R., "On Arithmetic Expressions and Trees," CACM 12,2

(February 1969), 81-84.

Set70 Sethi, R. and J. D. Ullman, "The Generation of Optimal Code for Arithmetic

Expressions," JACM 17,4 (October 1970), 715-728.

Set75 Sethi, Ravi, "Complete Register Allocation Problems," SIAM Journal on

Computing 4,3 (September 1975), 226-248.

War62 Warshall, Stephen, "A Theorem on Boolean Matricies," JACM 9,1 (January

1962), 11-12.

Wul71 Wulf, W. A., D. B. Russell and A. N. Habermann, "BLISS: A Language for System

Programming," CACM 1,12 (December 1971), 780-790.

Wul75 Wulf, W., R. Johnsson, C. Weinstock, S. Hobbs and C. Geschke, The Design of

an Optimizing Compiler, American Elsevier, New York, 1975.

 —^.^»a^ -^—

