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may be the values of common (redundant) subexpressions, partial resuhs developed 

during expression evaluation, or variables declared by the programmer. An 

optimizing compiler can make better use ul the resources of the target machine if 

these decisions are all considered together at or near »he source level rather than 
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A decomposition of an optimizing compiler is presented with research focusing 

on one part of the compiler, namely the part which assigns the computed results to 

physical locations. The entities for which locations-nust be assigned by the compiler 

are uniquely identified by vcnxporary names (TNs). The process of binding the TK's to 

actual locations is called TNBIND. A further decomposition of the TNBINO mods! yields 
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(1) Specifying the way in which particular language constructs interact with 

particular target machine capabilities. 

(2) Determining the lifetimes of TNs, i.e., the segments of the program during 

which each TN contains a valid value. This is similar to what has been called live- 

dead analysis. 

(3) Assigning a large number of TNs to the relatively few physical locations 

available. This is related to so-called "knapsacK" or "cutting-stock" problems in 

operations research. 

Several versions of the TNBINO model are incorporated into the Bliss-11 

compiler and compared with each other and with the original compiler in terms of 

code quality and compilation time. 
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AbGiract 

The thesis presents an approach to the problem of global register allocation as 

performed by an optimizing compiler. The problem considered is actually the more 

general one of choosing what physical resource within the target machine will be 

used to hold the results of various computations in a running program. The results 

may be the values of common (redundant) subexpressions, partial resu'ts developed 

during evpression evaluation, or variables declared by the programmer. An 

optimizing compiler can make better use of the resources of the target machine if 

these decisions are all considered together at or near the source level rather than 

being distributed throughout the compiler and operating at both source and object 

levels. 

A decomposition of an optimizing compiler is presented with research focusing 

on one part of the compiler, namely the part which assigns the computed .esults to 

physical locations. The entities for which locations must be assigned by the compiler 

are uniquely identified by temporary aames (TNs). The process of binding the TNs to 

ectual locations is called TNBIND. A further decomposition of the TNBIND model yields 

several interesting problems. Three of these problems are considered in greater 

detail. 

(1) Specifying the way in which particular language constructs interact with 

particular target machine capabilities. 

(2) Determining the lifetimes of TNs, i.e., the segments of the program during 

which each TN contains a valid value. This is similar to what has been called live- 

dead analysis. 

(3) Assigning a large number of TNs to the relatively few physical locations 

available. This is related to so-called "knapsack" or "cutting-stock" problems in 

operations research. 

Several versions of the TNBIND model are incorporated into the Bliss-11 

compiler and compared with each other and with the original compiler in terms of 

code quality and compilation time. 
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Chapter  1 

Introduction 

This thesis presents an approach to the problem of global register allocation as 

performed  by  an optimizing compiler.   The problem is actually more  general  than 

merely choosing one register or another to hold a part.cular value.   A comp.ler has 

the  freedom and responsibility to choose what physical resource will be used to 

(temporarily) store information during the execution of a program.   This is a freedom 

given up by a programmer when he changes from an assembler to a compiler.   When 

a program is being executed, many values are computed, stored temporarily, used and 

then discarded.   At the time of compilation a compiler must decide which values will 

be stored in which locations at runtime.   The thesis does not include questions of 

dynamic storage allocation or other questions of large quantities of storage, but is 

restricted to consideration of problems usually associated with register allocation. 

In most computers there are several classes of locations which may be used to 

hold information (e.g. registers, mam memory, stack).   In addition there are usually a 

number   of   (logically) identical   locations  within  each  class.    Because   the  primary 

function of  a compiler is to translate faithfully any algorithm presented to it, the 

primary goal must be to make a consistent l' \ of decisions about where information 

will be stored, i.e. the translation must perform the algorithm described by the source 

program.   This thesis is concerned with the secondary goal of an optimizing compiler, 

namely to select from the possible translations one that is somehow "better" than the 

others.   The concern here is only with the decisions relating to the use of temporary 

storage.    Other  areas of optimization, especially common subexpression elimination 

and code motion will be discussed only as needed to provide context and motivation 

for the discussion of temporary storage. 

T Hl1llHiMillM>^lM*i ^-^-■. ■^..■^■^ :...... 



2 An Approach to Global Register Allocation 

1.1 Background 

For many purposes the advantages gained by using an optimizing compiler are 

far  outweighed by the cost of analyzing the alternative code sequences in such a 

compiler.   In fact Hansen [Han74] has suggested that some types of programs are 

'Aore naturally run in the environment of an adaptive compiler that initially interprets 

programs and only compiles or optimizes as execution frequency warrants.   On the 

other   hand,   some   applications  demand  highly  efficient  programs.    In   this   latter 

category come operating systems, compilers, and other programs run constantly or 

very  frequently  but which are compiled infrequently.   Traditionally  such programs 

have been written in assembly languages.   By programming at the machine instruction 

level the programmer is able to use all of his experience and knowledge of both the 

machine and the problem to make decisions about what code should be written to 

implement various parts of his algorithm.   Until we can accurately build a model of 

human  knowledge,  reasoning  and  associative capacity  into  a  compiler,  there  will 

continue   to   be   small   programs  or   parts  of  programs  on  which  an  experienced 

assembly language programmer can outperform any compiler (in terms of "goodness" 

of output code). 

The problem with the traditional approach is twofold. 1) Assembly language 

programs do not lend themselves to understandability, modifiability and demonstration 

of correctness as many higher level language programs do. 2) Tnere are not enough 

good assembly language nrogrammers. An optimizing compiler is an attempt to solve 

this problem. The advantages of higher level languages (specifically 

understandability, modifiability, and demonstration of correctness) are widely 

accepted even  by  those who are not satisfied with the  efficiency of  the  code 

 j^- 
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Introduction 3 

produced. The hope is that programs can be written in a high level language, and 

that an optimizing compiler can provide translations which execute with the efficiency 

of good assembly language programs. 

This thesis will consider only that part of an optimizing compiler generally 

known as the register allocator. The problem considered is actually the more general 

one of deciding where information may be temporarily stored at program execution 

time; the locations chosen need not be registers. The idea is to maKe optimal 

decisions, but optimality is both hard to define and hard to measure. In terms of 

register allocation, optimality may mean minimum object code sii:e, minimum execution 

time, minimum number of registers used, minimum number of loads and stores, some 

combination of these, or some other criteria. The word optimal was purposely 

omitted from the title of the thesis because there can be no optimal solution to the 

register allocation problem without a good deal of qualification on the meaning and 

measurements of optirmlity. The emphasis here is on providing a general framework 

in which particular optimization decisions car easily be made. 

Although algorithms for specific aspects of the problem have been presented, 

there has been little or no consideration of the overall problem. A primary goal of 

this thesis is to present a model of register allocation which shows the interaction of 

the various subproblems and allows specific solutions to those subproblems to be 

easily incorporated into a realization of that model. 

In the long term this research is directed toward compiler compilers — 

programs which produce compilers from a description of the source language and the 

target machine. Just as formalization of language syntax led to advancements in 

mechanically generated parsers, it is expected that the formalization of the register 

MMMWHUMiM« maummm '"'■-   ■ '■ ^ -■ 

 *>- ^ 
...,,..      i. 



4 An Approach to Global Register Allocation 

allocation problem »Ul lead to advancements in this area of mechanically generated 

optimizers. 

1.2 Issues and Subproblems 

There are many issues in the overall register allocation problem. Most of these 

issues arise because we want to produce code that is not only correct, but also 

"good"; many of the issues become "non-issues" if we are concerned only with the 

generation of correct code.  The issues include at least these: 

Evaluation order 
Target Path 
Machine Requirements 
Run time environment 
Interaction with control flow 

Each of these is discussed in more detail below. 

1.2.1 Evaluation order 

Since an expression must be evaluated by first evaluating its subexpressions 

and then combining them, some decision must be made about the order in which the 

subexpressions will be evaluated and where the resulting values will be stored until 

needed. A simple example will help illustrate the op'ons. Suppose we ar» required 

to evaluate the expression 

(a ♦ b) + (c * d) 

Using a three address notation, our evaluation order choices are 

and 

a * b 
c * d 
t1+t2 

-»  t 1 

c ♦ d -»  ti 

'■-■ -■■J" --■^^■■-■--  ---^..^   äfe.^A. 



■ ii i in  ii>p*niiuj|ii 

Introduction 

a * b -»  t2 
t1+t2 ■♦  t3 

The  point  is  that  the  evaluation  of   the  expression  requires  that  the  two 

products be formed before their sum can be formed.   Mathematically, there is no 

restriction placed on the relative order in which the products are formed.   Indeed, if 

our hardware permits, the two products could be produced in parallel.   In practice, 

however, the evaluation order may be somewhat restricted.   The restrictions may be 

due to the language definition, e.g. the language might specify strict left to right 

evaluation of subexpressions.   The evaluation order may also be restricted because 

of  possible side-effscts of an operend.   The issue of evaluation order is how to 

decide which subexpression to evaluate first.  In the example of Section 1.2.1 there is 

no obvious preference \or choosing one or the other subexpression as the one to be 

evaluated   first.    In   some   ;ases   choosing   the   correct   evaluation   order   is   the 

difference between "good" and "bad" code. 

1.2.2 Target path 

Although similar to evaluation order determination, the selection of target path 

is in fact an independent decision. In the example above we avoided the target path 

decision by using a three address notation. Very ♦ew computer? have full three 

address capability.  The last of the three address instructions above 

t1+t2 ■»  t3 

may have two realizations on most machines 

or 
»3 

♦   to 
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6 An Approach to Global Register Allocation 

The target path is the sequence of subnodes which are first loaded into result 

locations and then operated on by the indicated operators. We refer to an operand 

lying on the target path as the target path operand, although we frequently refer to 

an operand as being the target path since at any particular node the target path is 

uniquely identified by an operand. When the alternatives are made explicit, we see 

that the initial move instruction (tj -» 13 or ^ "• ^ may b8 el'^ina^d if "t is possible 

that {3 can be the same location as eitter tj or ^ In the simple case, 13 may be 

assigned to either location and we may make an arbitrary choice. In other cases 

more global context may restrict our decisions. In the above example, let us suppose 

that ti (i.e. a*b) is a redundant subexpression whose value, once computed, may be 

used several times without recomputation. In this case t3 must not be the same 

location as t^ since the value in tj must be preserved for later use. This additional 

info» mation leads us to choose [2 as ^e target path. 

1.2.3 Machine requirements 

Different computers place differing requirements on the operands of certain 

instructions. Aside from the special instructions unique to a given machine, these 

requirements are usually restrictions on the kind of location in which the roerands of 

the normal unary and binpry operators may reside. The available kinds of locations 

may include 

main memory 
register 
top of stack 
special register (e.g. floating point, index) 
pair of registers 

Any general model of the temporary storage management problem must provide for 

these differing requirements. 

 —-"■-*—■'*'' ■- --^ -- ■ "— 
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Introduction 7 

1.2.4 Run time environment 

Language designers/implementors make decisions about the run time 

environment which must be considered by a general model of temporary storage 

management. These decisions are essentially extensions of the machine 

requirements.   Some of the questions to be addressed here are 

How many registers are available for system temporaries? 

Which  registers are safe and which are destroyed across  subroutine 
calls? 

Are   there   display   pointers?    If   so   lire   they   fixed   or   dynamically 
allocated? 

How are parameters to, and return values from, subroutines :.andled? 

What   is   the   interaction   with   library   and   system   functions   including 
debuggers? 

The model must allow for some degree of freedom in making these decisions. 

1.2.5 User variables 

Should variables declared and used by the programmer to temporarily hold 

values be given the same treatment as those generated by the comoiler? Program 

size and execution time car be reduced if some user variables can reside in 

registers. If we are to consider allocating registers for user variables, it is logical 

that we do that at the same time we allocate registers for compiler temporaries. 

While machine restrictions and the run time environment force some decisions about 

which values must or must not be in registers, we may be able to produce a "better" 

program if we place some user variables in registers, even at the expense of keeping 

some compiler temporaries elsewhere. 

jMnamt^mmltM 
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8 An Approach to Global Register Allocation 

1.2.6 Interaction with control flow 

In order to generate "good" code we must make the best use of the resources 

available. In the case of registers, generally a scarce resource., this implies that we 

must be able to recognize precisely when a register contains valid information and 

when it does not. We say that a location contains a valid value when the value may 

be referenced before a new value is stored into the location. We can do this In much 

the same way a clever assembly language programmer does. When such a 

programmer needs a register for some value, he follows the control flow to 

determine where the registers currently in use are referenced and where values are 

stored into them. A register can contain several logically distinct quantitie«, as long 

as no more than one of the quantities has a valid value at any point in the program. 

This issue concerns the graph theoretic properties o' the program. Suppose that 

points x and y in the program flow graph are uses of some variable A, and that at 

point z a new value is stored into A. We want to ask questions such as "Is there a 

path from x to y that does not pass through z?" If the answer is no, then the variable 

A does not contain a valid value between points x and z. 

Another aspect of this issue is the use of a register over a small piece of 

program to hold a variable whose value is normally kept h memory. When a variable 

is accessed frequently within a small segment of code, program performance may be 

improved by loading that variable into a register before the segment, thus eliminating 

a memory reference for each access, and storing it back into memory after the code 

segment. This optimization is most commonly applied to loops because the savings 

are multiplied by the number of times the loop is executed. 

 __ 
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1.3 Previous work 

This section presents some of the major results in the area of register 

allocation. Published work in the area has generally been limited to consideration of 

simple allocation problems in straight line programs and optimal evaluation order for 

expressions. Little published material is available on the problf.mc of register 

allocation in the presence of control flow constructs. The material below summarizes 

the major results. 

1,3.1 Index register allocation 

Horwitz, et. al. [Hor66] discussed index register allocation in a paper oriented 

toward FORTRAN-like programs (and machines like the IBM 7090) which have simple 

array accessing mechanisms. An index is presumed to be a simple variable whose 

value must be retained either in a register or in memory at all times. Given the future 

index requirements of a program, the allocation of the index registers of the machine 

to the indices is considered. When all of the index registers contain values that will 

be needed again later in the program, a decision must be made to replace one of 

those values when a new index is required. 

Horwitz considers the possibility that an index may be changed while it resides 

in a register. If an index is changed in a register, and subsequently that register 

must be allocated to another index, the changed value must be stored in memory. If 

the value is not changed, it is not necessary to store the value back into memory 

when the register is reallocated. This problem is analogous to the problem of page 

replacement in a virtual memory sy^em. It is less expensive to replace a page which 

has not been changed since it was read from secondary storage because a valid copy 

still exists elsewhere. 

-...,>..>"'-— 
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10 An Approach to Global Register Allocation 

For the purpose of thi> problem, a program can be considered to be a 

sequence of steps each of which requires a specific index. The fact that there may 

be steps in the program that do not require indices is not important. Consider the set 

of program steps and associated indices 

step index 

1 

2 

» 
*1 

* 
X2 

3 x3 
4 «1 
5 x2 

6 * 
x2 

7 ^ 

where x* means that index x is changed in the step where x* appears. When a step 

calls for an index, that index must be in one of the index registers. The other index 

registers may contain any configuration of indices. The indices in the other index 

registers may or may not be in a modified state. 

We may construct «II of the allowable configurations for each step i, I.e. all 

combinations of n of the indices used by the. program which include the index 

required by step i (where n is the number of index registers available). Consider the 

configurations to be nodes in a directed graph with branches from each configuration 

of the ith step to each configuration of the i+lst step. Each of these branches can 

be assigned a weight which is the cost of making the change in configurations 

between steps t and t+1 represented by the branch. The cost of changing between 

configurations is defined as the number of memory references required to make the 

change. Thus each new index which is loaded has a cost of one. Each starred index 

which is replaced has an additional cost of one.  Changii.^ an unstarred occurrence of 

. 
■     ■■      - JM, .,■ 
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Introduction 11 

an index to a starred occurrence of the same index, or replacing an unstarred index 

require no memory references and therefore have a cost of zero. 

Given  this  representation of  the poss ble  allocation of  index  registers, the 

problem becomes one of finding the shortest, i.e.   least expensive, path through the 

graph from the first step to the last step.   Although there are several algorithms for 

finding   the   shortest  path  through  a  directed  graph,  the  number   of   calculations 

required for other than a small number of nodes makes these solutions impractical. 

Since it is necessary to find only one of the possibly many shortest paths through 

the „raph, we may restrict attention to any subgraph which contains a shortest path. 

The bulk of the Horwitz paper is devoted to developing properties of these graphs 

which lead to rules for eliminating nodes and branches from consideration.   Horwitz 

proves that the subgraph obtained by applying these rules does contain a shortest 

path, and gives a procedure for finding that path.   Six rules are given for generating 

the subgraph from which an optimal index register allocation may be derived.   Define 

w(n1,n2) to be the cost of changing the configuration from that of node nl to that of 

node n2.   Define W(n') to be the weight of a node given by minn(W(n)+w(n,n')), i.e. the 

minimum over all n of the sum of the weight of n and the cost of changing from n to 

n'.   The weight of the initial node is zero.  Given these definitions we may summarize 

Horwitz's rules: 

Rule 1: Generate only minimal change branches and eliminate any node 

which has no minimal change branches entering it. A minimal change 

branch is defined as a branch from node n. at step i to node n' at step 

t+1 such that either nodes n and n' are identical or n' differs from n 

only in the index required at step i+1. 

Rule 2: If nl and ^ are nodes of step i and W(n1)+w(nlln2)sW(n2), 

eliminate ri2- 

*-    ■ ■ --"-"■"»•-— 
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Figure 1-1.   The result of applying Horwitz's Rule 1. 
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Figure 1-2. Luccio's six link types. 
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Rule 3: n^ and ^2 are nodes at step t which differ in exactly one element. 

Let z^ be the element of n^ which is replaced by Z2 in r\2. Although 

the exact explanation is somewhat more complex, the idea is that 

node n2 can be eliminated when W(nj)<W(n2) and in the future z^ will 

be used before Z2. This requires the ability to look ahead in the 

program. 

Rile 4: This rule is a consequence of Rule 3 and prevents generation of 

nodes that would later be eliminated by Rule 3. If Zj and Z2 are 

elements of a node n. at step L and the next use of Zj comes before 

the next use of Z2, do not form a node at step i+1 which replaces zj 

by the index required at step t+l. 

Rule 5: Since we need only one shortest path, generate only one branch 

b into each node n' such that W(n')":W(a)+w(6). 

Rule 6: If a node n of step i which is not the last step has no branches 

leaving it, eliminate node n. 

Figure 1-1 (reproduced from [Hor56]) shows the result of applying Rule 1 to 

the graph of the example program above when there are two index registers 

available. Step 0 is added to indicate the initial configuration which contains two 

indices not used in the program (xg and xg). Each branch >s labeled with the cost of 

the change between the indicated configurations and each configuration is labeled 

with the minimum cost to reach the configuration from step 0. 

Luccio [Luc67] showed that Horwitz's rules may restrict the graph so that at 

some steps only one configuration is possible. The program steps before and after 

such a step may be treated separately. Luccio neatly describes his technique in 

terms of link diagrams. Six types of links are used to connect various combinations 

of starred and unstarred indices (Figure -2 . Links of types 1, 2, 3, and 4 are built 

whenever a second occurrence of an index is seen. Links of types 5 and 6 are built 

following occurrences o( starred indices and are maintained up to the current step. 

These are called temporary links since they will be changed to one of the other 

types when a succeeding occurrence of the particular index is encountered. 
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14 An Approach to Global Register Allocation 

A link is said to cover all the steps along ts extension excluding the extremes. 

Only the first extreme is excluded for temporary links so that they cover the current 

step. Luccio gives two rules for changing links of types 1, 2, 3, or 4 to links of 

definite allocation (type 0). The index corresponding to a link o* type 0 must be kept 

in its register throughout the entire extension of the link. 

If there are N reg ■ 'ers available then 

1. A link L of type 1 becomes type 0 if for each step k covered by / the 

number of other links of types 0, 1, 2, 3, or 4 covering k is less than 
N-l. 

2 A link L of type 2, 3, or 4 becomes type 0 if for each step k covered 

by / the total number of other links covering k is less than N-l. 

When the number of type 0 links covering a step k is N-l, the configuration for 

k is fixed. The n registers must contain the N-l indices corresponding to the type 0 

links and the index required by step k. At such steps the Horwitz method may be 

applied independently to the preceding and succeeding steps. 

The Horwitz method is related to Belady's algorithm for page replacement in a 

virtual storage computer [Bel65]. Belady shOvved that in a paging environment, the 

page to be replaced should be the pa^e whose next use is farthest in the future. In 

addition he noted that if a page has not been written into, it need not be written out 

(to secondary storage) but merely deleted, The ability to determine which page 

(register) is next used farthest in the future depends on knowing the future behavior 

of a program. 

1 
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1.3.2 Evaluation ordsr 

Ikuo Nakata addressed the question of evaluation order in his paper describing 

the register allocation phase of a FORTRAN compiler for the HITAC-5020 [NaK67]. 

Nakata shows that the order of evaluation of the subexpressions of an expression 

can affect the number of temporary values thai are required at any one time. 

Consider the expression a»b+(c+d)/(e+f). A straight forward code sequence to 

evaluate this expression is: 

a * b -> Rj 
c + d -> R2 
e + f  -» R3 
R2/R3-» R2 

R1+R2-> Rj 

Suppose, however, that this expression must be evaluated on a computer with fewer 

than three registers. To use the same evaluation order with only two registers 

available would require that one of the intermediate results (namely 8*b) be stored in 

some temporary memory location. On the other land, by changing the order of 

evaluation of the suoexpressions, the expression may be evaluated using only two 

registers and without storing intermediate results. 

c + d -♦  Rj 
e + f  -»  R2 

Rl/R2^ Ri 
a * b -»  R2 

R2+R!-»  P> 

The central point of this example is that the subexpression (c+d)/(e+f) requires 

two intermediate values. Since those intermediate results are not needed after the 

division is pei formed, one of the registers may be used to compute a»b. Since the 

result of the evaluation of an expression occupies only one register, it follows that 

for any binary operator, the operand whose evaluation requires the larger number of 

registers should be evaluated first. 

■—■-    ...■.■— »...I    -.,..,    ..._^.J..:..    ■^■^■-.n—^^^^— 
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16 An Approach to Global Register Allocation 

The nu'-' er of registers required to evaluate the expression (a) <op> (b) where 

(a) and (b) are arbitrary expressions and <op> is some oinary operator is given by 

the following analysis. Let I and m be the number of registers required to evaluate 

(a) and (o) respectively. If either (a) or (b) contains no operators (It is a constant or 

a simple variable) it requires zero registers. (Note that "require" here means the 

minimum number of registers necessary to evaluate an expression without storing any 

intermediate results). 

There are two cases: 

1. /-ffi=p. (a) can be evaluated first leaving the result in one of the L 

registers used. Evaluation of (b) will require one more than the p-1 

registers remaining giving a total of p+1 registers for the expression. 

2. Ltm; maxU,fn)-p. In this case the operand requiring the larger number 

of registers is evaluated first leaving p-1 registers for the other 

operand. Since the other operand requires at most p-1 registers no 

additional registers are needed and the expression can be evaluated 

using only p registers. 

In both cases p is a lower bound on the number of registers required and p+1 

is an upper bound. In case 1 p+1 is a lower bound, and in case 2 p is an upper 

bound. 

Nakata gives an algorithm for labeling the nodes of a tree with the number of 

registers required for evaluation of the node. Briefly, this algorithm assigns a label 

La to each noda n of the tree such that if ft is » leaf then Ln-O, otherwise the 

immediate descendants of ft have labels I and r and Lft-min(max(/+l, r), mnxU, r*l)). 

Nakata's algorithm for code production involves first labeling the nodes of the 

tree by the above method, and then beginning at the root node, walking through the 

tree  generating code to evaluate the expression represented.   At each node the 

^pRfj^f y». m^m 
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operand requiring the larger number of registers is evaluated first. If the operands 

require the same number of registers, the left operand is evaluated first. NaKata 

does not consider formally the question of what to do when the number of 

simultaneous temporary value-,; exceeds the number of registers. He does, however, 

offer some heuristics for deciding which temporary value should be stored. On most 

machines the left operand of a division or subtraction operation must be in a register, 

so the left operand of these operations should not be stored. This may conflict with 

the other assertion that the value to be stored should be the one whose use is 

farthest in the future, but Nakata conjectures that the efficiency of the code 

produced will not be significantly affected by the choice of either of these courses 

of action. 

Using a graph theoretic approach, R. R. Redziejowski [Red69] later proved that 

Nakata's algorithm does use the minimum number of registers. Redziejowski 

transformed Nakata's tree into a "lineup" or linear sequence of vertices. Each vertex 

represents a single operation in the tree and an arc is drawn from vertex x to vertex 

y to represent a partial result which is computed at y and used at *. Choosing a 

feasible evaluation order is equivalent to ordering the sequence of vertices so that 

vertex y precedes vertex % if there is an arc from x to y. {This is equivalent to 

requiring that any partial result be computed before it is used.) 

At any vertex % the number of partial results created before x and used after 

x is represented by the number of arcs passing over vertex x. Redziejowski calls 

this number the width of the lineup and develops an algorithm for producing a lineup 

of minimum width. Redziejowski's algorithm is in principle the same as Nakata's 

algorithm and therefore Redziejowski's proof of his algorithm can be considered as a 

t 
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formal proof of Nakata's algorithm.   Redziejowski generalizes the algorithm to include 

operators with more than two operands. 

Sethi and Ullman [Set70] consider the mora general problem of minimizing the 

njmber of program steps and/or the numbe,' of storage references in the evaluation 

of an expression with a fixed number of general registers. They exploit the 

associative and commutative properties of operators and assume that all elements are 

distinct (no common subexpressions) and that there are no non-trivial relations 

between operators (e.g. no distributive law). 

Nakata's tree labeling scheme is modified slightly to account for commutative 

and non-commutative operators. This change assigns a label of one rather than zero 

to a leaf node which is the left descendant of its ancestor. The change means that 

the Isft and right operands of a binary operator may have different weights and 

accounts for the gains which may be made by exploiting commutativity. 

First considering only non-commutative operators, Sethi and Ullman prove that 

their Algorithm 1 (which is essentially Nakata's algorithm) uses the minimum number of 

registers as well as the minimum number of loads and stores. Since the number of 

binary operators is not changed by the allowed transformations, a program which has 

a minimum number of loads and stores has a minimum number of program steps. 

In Algorithm 2, Sethi and Ullman consider commutative operators by adding a 

step to Algorithm 1 which interchanges the left and right descendants of a 

commutative operator when the left descendant is a leaf and the right descendant is a 

non-leaf. 

Associativity is treated only in conjunction with commutativity since in practice 

most associative operators are also commutative.   The approach used by Sethi and 

■—--  ^..^   ^,^,l       iiniri        ^■"    hflvaüirifii 
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""..».. is to make the associative-commutative operators into n-ary operators, 

reorder the operands so that the one or two operands requiring the largest number 

of registers appear on the left, and then change back to binary operators associating 

to the left. This is conceptually similar to Redziejowski's treatment of n-ary 

operators. 

Sethi and Ullman prove that each of their algorithms generates an evaluation 

sequence containing the minimum number of loads and stores under the assumptions 

of the algorithm. They then show that this leads to the to1,elusion that the algorithms 

also minimize the number of storage references. 

In their conclusion, Sethi and Ullman point out that all of their algorithms can be 

performed in time proportional to the numbtr of nodes in the tree. They also show 

that the algorithms can easily be modified to allow operations which require more 

than one register. 

Beatty [Bea72] recasts the ideas of Sethi and Ullman in terms of axiom systems. 

Beatty extends the Sethi-Ullman algorithm for associative-commutative operators to 

include the unary minus and its relations to the other operators. These relations 

include the equalities 

a-b - a+(-b) 
-(a*b) •■ (-a)*b 
-(a/b) - {-a)/b - a/(-b) 

Beatty's proof of minimality is considerably more complicated than the Sethi-Ullman 

proof due to the properties of the unary minus. 

More recently Bruno and Sethi [Bru74, Set75] have shown .hat the register 

allocation problem for straight line programs is polynomial complete when common 

subexpressions are not recomputed.   The specific problems considered are (1) to use 

i. • 
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the minimum number of registers without stonng intermediate results and (2) to 

generate the minimum length code for a one register machine. While the optimal 

register allocation/evaluation order may be easily determined in some cases, the 

results of Gruno and Sethi tell us that in general there is no known nonenumerative 

solution, 

1.3.3 Global assignment 

The work thus far discussed has dealt only with the question of optimal use of 

registers in expressions. A paper by M. H. E. Day in the IBM Systems Journal [Qay70] 

considers the much broader problem of global assignment of data items to registers. 

Before describing Day's work, it is necessary to explain the distinction between what 

Day calls global assignment and what he considers local assignment. Informally, a 

local assignment is one which makes assignments within basic blocks, i.e. without 

control flow. A global assignment considers larger contexts which include control 

flow.   A more formal discussion follows. 

Consider a programming language L The terminal symbols of L are delimiters, 

operators, constants, and identifiers. Th« constants and identifiers are the data items 

of L A program in L is a sequence of statements; a statement I« a sequence of 

terminal symbols. Statements in L are either descriptive or executable, the latter 

specifying operations to be performed on data items. A data item is said to be 

defined in a statement when execution of the statement causes a new value to be 

assigned to the data item. A data item is referred to when the value of the data item 

is required for correct statement execution. 

Let P be a program in L   A basic block in P is an ordered subset of elements 

of P which intuitively is "straight line code," i.e. a sequence of statements which can 

.üm.L i   — 
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only be entered by branching to the first statement and which can only be le't by 

branching from the last statement. Pb is a representation of P as an ordered set of 

basic blocks. P is a representation of P as a directed graph with the elements of Pb 

as the vertices and a set of arcs representing the flow of control ainong the basic 

blocks of P. A region Ri is a strongly connected subgraph of Pff, and Pr is a 

representation of P as an ordered set of regions: 

Pr ■ {Pj.R2 KJ 

Rt n R   - 0 or /?t c Rj for t < j, 

A computer has a set of registers C* whose elements are g^, and for most 

situations requiring the use of a register any available g^ i G* may be assigned. Let d 

, epresent an element of P, Pb, or Pr and define: 

0* ■ { f; | f; < G*, «i "S available for assignment everywhere in d ) 

N' ■ { R; | A^ it • data item in P,  ^ may be assigned to registers in d } 

Given these representations, Day offers the following Definitions: 

1. A local assignment is a (possibly multi-valued) mapping of A/ £ A/' onto 

G c C f or ri < Pb. 

2. A global assignment is a (possibly multi-valued) mapping of NcN' 

onto G c G' for ri < Pr. 

3. A one-one assignment is a one-one mapping of /V £ A/' onto G c C'. A 

one-one assignment defines a one-to-one correspondence between N 

and G. 

4. A many-few assignment is a single-valued mapping of NcN' onto 

C c C with cardinality{N) i cardinality(G). 

i . ■ irr ^jr---^-*    -■■-— '    i^.ainiilnni -  '-^■^ - 
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22 An Approach to Global Register Allocation 

5.   A   many-one    assignment   is   a   many-few   assignment    in    which 

cardinality(C) - 1. 

A data item is active at a point in d if it may be referred to before being 

defined subsequent to that point. Two data items interfere in d if they are both 

active at some point in d. A necessary condition for the assignment of A/ £ N' to g < 

G in t/ is that n^ must not interfere with ft   for every ftj, rij < N, i M >. 

Local assignment, as defined by Dav, occurs entirely within basic blocks of a 

program. The methods described by Horwitz, Nakata, Sethi-Ullman, and Beatty 

provide algorithms which may be used to obtain optimal local assignments under the 

assumptions dictated by those authors. Local assignmant is not, however, able to 

cope with data items vhich may be active on block entry or exit. 

Global one-one assignment partially solves the problem of active data items at 

block boundaries by assigning data items to registers throughout an entire region. 

With this type of assignment, precautions need be taken only at region ooundaries to 

assure that values of active data items are retained. 

Assigning a data item to a register for an entire region may lead to inefficient 

use of the registers. With accurate program flow information, it is possible to 

determine the points at which a data item is active. When the active points of all data 

it«ms are known, a set of data items which do not interfere may be determined and 

the elements of that set assigned to the same register. The availability of complete 

and accurate flow information is critical to efficient use of global many-one or many- 

few assignments. In the absence of flow information, many-one and many-few 

assignments degenerate to one-one assignments. 

Day formulates global one-one, many-one, and many-few assignment problems 
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as integer programming problems. He makes the intuitively reasonable assumption 

there is some profit (>0) associated with the assignment of a data item to a register 

and that this profit depends on the frequency and context of the use of the data item. 

Day gives several algorithms for solving the assignment problems. Some of these 

give optimal results while others may produce non-optimal feasible results at a much 

lower cost in computational complexity. 'Jay's formulations of the problems are 

summarized below. 

The global one-one assignment is the simplest of the three problems since no 

interference data is required. Refering to the definition of a one-one assignment let 

n - cardinality(W') and m. - cardinality(C') and let p be a vector of profits such that p^ 

is the profit associated with assigning ^ < N' to a register. Vector « Is a selection 

vector such that «^ - 1 if ^ < N' is assigned to a register, otherwise «^ - 0. Let i be 

a vector of I's of appropriate size so that lx produces the sum of the elements of xj 

then the problem is 

maximize 
subject to 
where 

z m px 
lx $ m 
xL i {0, 1} and p^ > 0 

The solution to the one-one assignment is simple:   assign the m data items with the 

largest profits to registers. 

The global many-one assignment problem is similar to the one-one problem 

except for the added restriction that no two data items which are assigned to the 

register may interfere. Day expresses this condition in terms of a matrix of data item 

interference values (C | c^ - 1 if /^ «y < A/', i »< ; interfere! c^ - 0 otherwise). 

The many-few assignment problem is an extension of the many-one assignment 

problem to more than one register.  The problem is to select the best combination of 

'■ ■ -■"' ■ 
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many-one  assignments.    Day explicitly excludes multi-valued  mapping  which mij,ht 

assign a single data item to different registers at different points in a region. 

In his conclusion, Day reports the results of several tests of the actual 

execution characteristics of his algorithms for many-few assignment. The OPTSOL 

algorithm (which provides an optimal solution) requires much longer execution time for 

relatively little gain over the estimating algorithms. (Sample values: for one register 

and 48 data items t(optimal) - 6 sec, t(estimate) - 0.05 sec). The total profits 

produced by the estimating algorithms are consistently greater than 907. of the profit 

produced by the OPTSOL algorithm and are significantly better than a one-one 

solution to the same problem. Day concludes that his algorithms are sufficiently fast 

to be included in an optimizing compiler. 

1.4 Approach to the problem 

In order to build the optimizing compiler mentioned earlier, it is necessary to 

have a general overall model of the resulting compiler. Once we have this model we 

can divide the task into subproblems along the lines of the phases of the resulting 

compiler and attack the subproblems individually. The overall structure of the 

compiler presumed in this thesis is the decomposition of the Bliss-11 compiler 

[Wul75].  The Bliss-11 compiler is decomposed into five major phases: 

1. LEXSYNFLO -- lexical, syntactic and global flow analysis. 

2. DELAY — Program tree manipulation. Replacement of some nodes by 

simpler but equivalent nodes. Determination of evaluation order and 

target paths.   General decisions about the code to be produced. 

3. TNBIND — Allocation of registers and other temporary storage. 

4. CODE -- The actual code generation. 

5. FINAL — Peephole optimization and preparation of the code for final 

output. 

MMm      i —-n ..—...na^i» 
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In this thesis we will consider the TNB1ND phase of the compiler. The name 

TNQIND comes from Temporary Name BINDing. A temporary name (TN) is a name 

assigned to any location to be used as temporary storage. A unique name is assigned 

for each logically distinct entity, although several namas may represent the same 

physical location in the final code stream. It is assumed that the DELAY phase has 

made the evaluation order and target path decisions described above. TNBIND must 

make the actual bindings of TNs to locations after considering the other issues. Of 

particular importance are the machine requirements and characteristics. Working from 

the tree representation of the source program TNBIND determines the number and 

context of the uses of each TN and decides how to bind the TNs to the available 

locations so as to produce the "best" output code. There are two basic goals in 

studying the TNBIND phase of the generalized optimizing compiler structure. (1) We 

want to formalize some of the actions in a phase of compilation that is usually a 

collection of unrelated algorithms at best, and completely ad hoc at worst. (2) We 

also want to make the transition from a phase of a compiler for a particular 

language/machine combination to a general model of the temporary storage problem. 

The TNBIND model will include the assignment of TNs for user variables, and user 

variables will be considered as equal competitors with the compiler generated 

temporaries in the allocation of machine resources. The model will also place a great 

deal of emphasis on accurately determining the interaction of the TNs with control 

flow in the program. The restrictions placed on the final bindings of TNs to locations 

which arise from the machine requirements and the run time environment will be 

coisidered in a general way so that changes in the machine, the language or the 

implementation can easily be incorporated into a new compiler. 

The thesis can be seen as an extension of the work described in [Wul75].   We 
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take the relationship of TNBIND to the other phases of compilation as defined by the 

Bliss-11 decomposition to be the correct relationship.  From that point we expand the 

TNBIND idea to a general model of temporary name binding applicable to a large class 

of languages and machines.   We also consider new algorithms for the solution of two 

specific subproblems of the TNBIND model.   The goal is to show how to produce a 

TNBIND phase of a compiler when presented with the language and the characteristics 

of the target machine.   It is not proposed that the result of the research reported 

here should be a piece of a running compiler compiler system.  Rather we will present 

a notation for describing a general model Of a solution of the problem and indicate 

how  the specifics of a particular language or machine may be incorporated in the 

model.   Though it may be somewhat of an understatement, the step from the model 

presented here to the corresponding piece of a compiler compiler is "merely a matter 

of implementation," 

The following description is an overview of the implementation suggested by 

the model.   We assume here that our only choices for assigning TNs are registers and 

main memory.   Each expression which must produce a value and each user variable is 

assigned a unique TN,   Two values are calculated for each TN:  the cost* of accessing 

the TN if it is assigned to a register and the same cost assuming the TN is assigned to 

a location in main memory.   We also collect for each TN a list of all points in the 

program at which the value of the TN must actually exist in the assigned location. 

The optimal binding of tho TNs to the available locations is the one which produces a 

minirnum cost program (i.e. the sum of the costs of each TN for the type of location to 

which it Is bound is minimized) and no two TNs which must contain valid values at any 

one point are bound to the same location.   The really hard parts of the problem are 

t in terms of code size, memory references, etc. 
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determining, accurately, the points at which any given TN must contain a valid value 

and selecting a set of bindings to minimize cost without a comp.ete enumeration of all 

feasible bindings. By clanging the exact measures of cost, we can change the 

emphasis of the optimization. If the cost minimization procedure is effective we will 

produce at least very good, if not optimal, c.->de as defined by our cost measures. 

1.5 Thesis organization 

Chapter  2 provides  a detailed description of the model.   This includes the 

decomposition of the problem into several subproblems including cost computations, 

lifetime  determinations  and  the  actual binding.   Chapte-  3 gives  a  notation  for 

describing the pertinent facts about the language and the target machine as they 

relate to register allocation.   This is the place where implementation decisions (e.g. 

subroutine  call-return conventions) and machine specific information  are encoded. 

The machine specific information needed here is not a description of each opcode, 

but rather more general information such as the relative cost of accessing registers 

and memory and what kinds of locations may (must) be used to hold the operands of 

various operators. 

Chapters 4 and 5 describe solutions to two specific subproblems: the 

determination of lifetimes (also known as free-busy or live-dead analysis) and the 

problem of binding a large number of temporary locations to the limited physical 

resources of the target machine. Chapter 6 discusses the reimplementation of the 

TNBIND module of the Bliss-11 compibr as a test case of the thesis. Chapter 7 

reviews the model and considers the possible directions for future research. 

-- ^-   —-- 
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Chapter 2 

A View of Global Register Allocation 

This chapter will present a description of the TNB1ND model of global register 

allocation. Global register allocation as used here means making decisions about 

which register (or other location) will be used to hold a particuibr value by 

considering a context larger than a single expression or statement. While it will not 

always be explicit in the following description, the intent of the model is to make ai. 

derisions in the context of a sin5le subroutine. The model could be expanded to 

consider an entire c^. .pilation or, with suitable intermediate storage of data, a set of 

compilations, but the subroutine is the unit of program frequently considered by 

other optimizations and is large enough to provide the opportunity for interesting 

global decisions. 

2.1 The globai register allocation problem 

Most register allocation done in actual compilers is local. As defined in Chapter 

1, a local allocation is an allocation done entirely within a basic block. This type of 

allocation is much easier than a global allocation which makes allocations within a 

region. It is possible that an entire program may be a single basic block, in which 

case local and global allocations are identical, however such programs are a small 

minority and are rather uninteresting. In order to do the global allocation, we must 

have more information about the control and data flow of the program. In traditional 

compilers this information is not available at the time register allocation must be done. 

Traditional register allocation methods such as those described by Hopgood 

[Hop69] operate on sequences of machine instructions.   The instructions come from 

28 
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the code ßenerator with the necessary registers specified symbolically. The register 

allocator then associates ihe symbolic names with the actual registers of the machine. 

A local allocation is the logical choice in this situation because the information 

necessary to make global decisions is difficult to obtain from the machine code. Thus 

the model of compiling that places code generation before register allocation has to 

some extent dictated the use of local allocation methods. 

The TNBIND model differs from the traditional view by placing «he register 

allocation before the actual code generation. At this point the traditionalists will cry 

"How can you assign registers before you know what instructions are to be used?" 

The answer lies in the fact that trie TNBIND model considers registers as more 

general than just a necessary part of a machine instruction. This is reflected In the 

choice of the term "temporary name" rather than "register" to refer to the entities in 

question. A temporary name is, quite simply, the name of a place that can be used to 

store information. It is possible to identify the values (information) that must be 

computed by looking at the parse tree of a program.^" If we couple the knowledge of 

where these values are computed and where they are used with some basic 

knowledge about the machine, we can assign actual locations to hold each of the 

values without ever knowing the exact sequence of instructions that will be needed 

to perform the computation, Indeed it may be the case that we cannot decide on the 

exact instructions needed until we have determined whether certain values are being 

held in registers or not. Thus there is somewhat of a "chicken and egg" flavor to the 

problem. On the one hand we can argue that we cannot assign registers until we 

know what instructions are to be used, and on the other hand we argue that we 

t In the case of a language construct that is not closely represented by the basic 
hardware of the machine, it may be necessary to add some information to the nodes 
of the parse tree during semantic analysis. 

■ 
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Cannot decide on the best sequence of instructions until we know which reg!»ters will 

be used and which operands will be in registers. 

The global allocation problem is hard. Sethi [Set75] has shown that the general 

problem is hard even for straight line programs. Not only is the problem of finding a 

good (i.e. near optimal) allocation polynomial complete, but merely determining 

whether a given function which associates registers with program nodes is a valid 

allocation is also a polynomial complete problem. 

2.2 Local vtnables 

The TNBIND model treats user declared local variables in the same way it treats 

temporary storage needed for expression evaluation. This is a logical extension 

since the programmer uses the abstract computational facility provided by the 

language in the same way the compiler uses the facilities provided by the target 

machine. The programmer expresses his operations in terms of the language 

primitives just as the compiler expresses the language operations in terms of the 

hardware primitives. The programmer uses his local variables to temporarily hold 

intermediate results. By treating the local variables like compiler generated 

temporary storage the programmer reaps the benefits of keeping some, if not all, of 

his results in registers. The TNBIND model differs from other views of register 

allocation by declaring, at the outset, that user variables will compete on equal basis 

with compiler variable^ for use of the registers. 

•ÄMOÜA 
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2.3 Input to TNBIND 
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loca' variable must (or must not; be kept in a register. The restrictions, may include 

concepts such as "must be a register," "must not be a register," "must not be register 

0," or "must be an even-odd register pair." These restriction decisions are made by 

an earlier compilation phase which has knowledge of the semantics of the language as 

well as the characteristics of the machine. Earlier phases have also decided the 

evaluation order of subexpressions and have made the target path decisions. A 

global flow analysis phase has identified common oubexpressions and noted the 

points at which each such expression must actually be evaluated. There may be more 

that one distinct common subexpression identified from each set of formally identic«! 

expressions [Ges72, Wul75]. 

Figure 2-1 shows the structure of the input to TNBIND for an assignment 

■statement. Each operator node contains the operator, a TN (which may be nuil), and 

pointers to the operands. In the figure the target path operands are marked with the 

symbol "•" which appears in the pointer field. The leaf nodes of the tree structure 

are variables and literals. The leaf nodes which represent user variables to be 

treated by TNBIND also contain TNi. In the figure, the variables "A" and "J" have 

been assigned TNs. 

2.4 Actions of TNBIND 

Given the input described above, the function of TNBIND becomes one of 

bind'ng the TNs to actual storage lociiions (regsters, memory, etc.). This proceeds 

in f.evcral subphases as shown in Figure ?-2. In the figure each box represents 

one of the subphases. Boxes stacked vertically represent independent processes 

which may be done in parallel. Each element of a vertical stack is dependent on one 

or  more   of   the  elements  of  the stack  on  its  left.    Thus  the  vertical  dimension 
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Figure 2-1.  The TNBIND input for an assignment statement. 
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represents potential parallelism whila the horizontal dimension represent« required 

sequential execution.  Each o( the subphases in Figure 2-2 Is described below. 

targeting and 

preferencing 

data gathering 

Figure 2-2.  The subphases of TNBIND. 

2.4.1 Terg«ting and Preferencing 

TargeUnB is the process of trying to cause each result to be computed in the 

place the result will be needed, thereby eliminating non-productive data moves. The 

values of subexpressions are targeted or directed toward producing a final result in 

the TN in which the result will eventually reside. The targeting process attempts to 

take advantage of the opportunities recognized in the target path decision (Section 

1.2.2). 

The process is carried out in an execution-order tree walk. Each node passes 

its own TN to its target path subnode saying, in effect, "This is where I would like 

you to leave your result." The subnode considers the desirability of generating its 

result in the target TN.   The considerations include whether the subnode is a common 

...■:.-^a ;■.,-; J-.._   ..■,.l..:v.,...J_^. 
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subexpression or a user variable anJ whether the restrictions on the two TNs 

(ancestor and descendant) are compatible. If the target TN is a reasonable place to 

compute the result, the two TNs are "bound together," i.e. they will henceforth be 

considered to be the same TN. We refer to this successful operation as "making the 

target." The ancestor is informed of the decision made at the subnode. If the 

subnode could not maKe its target, the ancestor has the option of asking that some 

preference be given to assigning the two TNs to the same physical location in the 

later packing phase. The operation of expressing this preference is called 

preferencing. There may be several degrees of preference forming a spectrum from 

weak preference to strong preference to actual binding together 

2.4.2 Data gathering 

In parallel with the targeting and p-eference class operations, the tree nodes 

are numbered and a flow graph is built. (Flow information collected during the flow 

analysis phase may not be accurate since later phases may have changed the order 

of expression evaluation. Flow information collected during flow analysis may be 

used if the data collected is sufficiently robust to provide the information needed by 

TNBIND. It is not important to know how the information is gathered.) The flow graph 

is represented as a sequence of linear blocks. A linear block is the largest piece of 

the program having one entry, one exit and no internal branches. Each linear block 

also has pointers to each of its possible successors. 

A record is kept for each TN indicating at which nodes the TN is referenced. 

The references are separated into two classes: those that replace the value with an 

unrelated new value and those that use or modify the value. Changing one field of a 

variable which contains several packed fields is considered a modification.   For the 
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purpose of this record, each node is assigned a linear order number (Ion). (The Ion 

values will be more precisely defined in Chapter 4.) This information is used together 

with the linear block information to determine at which nodes in the program the TN 

must contain its proper value. The determination can be made by a machine 

independent procedure which will be described in Chapter 4. 

Another item of information recorded for each TN is the cost of its use.   This 

cost is  a  function of  the number of instructions, memory cycles, etc.   which  are 

required to perform the specified operations on the TN.   A separate cost is Kept for 

each class of storage to which the TN may be bound so that the savings in program 

size/speed resulting from any particular binding may be evaluated.   The cost function 

may  include  some  frequency of execution data  depending on what  information  is 

available   from   the   source  language.    The  specification  of  the  cost   functions   is 

essentially what determines the optimization criteria.  In general a cost may have two 

parts:   a static cost Cs and a dynamic cost Cd.   Cs represents the cost in terms of 

code space.   Cd represents the cost of performing the access and is multiplied by the 

nimber of times the access is performed.   Thus the basic flavor of the optimization 

can be changed by changing the relative values of Cs and Cj.   Increasing Cs relative 

to Cj tends to optimize for minimum code size while increasing Cd relative to Cs 

tends to optimize for minimum execution time (not necessarily implying an increase in 

code size).   For any access a which is performed na times the cost is Cc + ^C^.   The 

total cost for a TN is given b/ the expression 

21 (C, * *acd> 
a 

In practice it may be necessary to use an approximation for the number of executions 

of each access. When the data on branch probabilities is available it is considered in 

calculating na. 
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2.4.3 Lifetime determination 

37 

In using the concept of TN lifetimes, we recognize the fact that in general it is 

not necessary to retain the value of any TN throughout the execution of the program; 

it is only necessary that the value be available when required. The analysis of 

lifetimes has been given many names. Day [Day70] calls a data item "active" if it may 

be referenced before it is redefined. Allen has discussed "live-oead «nalysis" 

[AII71b]. Other authors have referred to variables as being "free" or "busy" [Low69]. 

There is a basic difference in the emphasis of the analysis done by these authors and 

the analysis required by the TNbi'iD model. Past work has been concerned almost 

exclusively with determining whether it is feasible or desirable to keep a copy of a 

variable in a fast register over some part of a program. The TNB1ND model is geared 

toward keeping TNs permanently in registers while identifying the points in the 

program at which the register may also be used to hold other values. A detailed 

description of the lifetime ard the method of determining it is presented in Chapter 4. 

2.4.4 Importance ranking 

After the information described above has been collected the TNs are ordered 

according to their relative "importance." This is a measure of how important it is for 

to program optimization to bind a given TN to a particular kind of location. The 

importance of a TN is a function of the sum of Cs and Cd for each access as well as 

the restrictions on the binding of the TN. Those TNs restricted to a single storage 

class are given the highest priority to be bound to that storage class. The ranking 

phase is really nothing more than the creation of a number of sorted lists which will 

serve as input to the packing phase. The purpose of the ranking is to select the 

order in which the TNs will be considered by the packing phase. The most important 

TNs will be considered first. 
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2.4.5 Packing 

Tht packing phase does the actual assignment of locations to the TNs (or TNs 

to locations).   A perfect assignment is one which satisfies all of the restrictions and 

preferences and assigns each TN to a member of the most desirable of its allowed 

storage   classes.    In   practice   it   is   not   always   possible   to   make   such   perfect 

assignments.    The  function of  the packing  phase in  this  case is  to  minimize  the 

increase in cost over the perfect solution.  When it is not possible to assign all TNs to 

their desired locations, we attempt to select a minimum cost solution from the set of 

all  possible assignments.   This set may be very large.   If there are k  classes of 

storage  to  which  TNs  may be  assigned  and there  are n TNs, then there  are  kn 

possible assignments.   Chapter 5 describes how this solution space may be searched 

efficiently for a minimum cost solution. 

2.5 Summary of the model 

The TNBIND model is summarized by the following statements: 

1. A   unique  name  (TN) is  generated  for  each  entity  for  which  the 

compiler must choose a physical location. 

2. Using knowledge available from the program tree and knowledge 

about the target machine, cosU and patterns of use are determined. 

3. TNs which should be bound to the same location are identified. A 

record is kept when it is desirable (from the optimization viewpoint) 

that two TNs share the same location, but such sharing may not be 

consistent with the semantics of the program or may not be the best 

decision in a more global context. 

4. Lifetimes for each TN are determined from the use patterns and 

program flow information. 

5. Finally, TNs are bound to physical locations such that the cost due to 

inability to make perfect assignments is minimized. 
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Chapter 3 

Describing the Language and Machine 

The TNBIND model relies on attributes of the target machine. It can be adapted 

to a new target machine by respecifying machine attributes including the types and 

number of temporary storage locations to be used and the characteristics of the 

various operations that the target machine can perform. The model treats programs 

at a much higher level than traditional register allocation methods. Since the details 

of the instruction set of the target machine are not explicitly encoded in the model, 

the respecification needed to effect a change of target machine is the relationship of 

target machine capaNlities to language coi.^trurts rather than the format and 

semantics of the instructions. 

The various language dependencies and machine dependencies affect the first 

phases of the TNBIND process. There is a specific routine for each node type. 

These routines perform the targeting, preferencing and data gathering functions for 

all of the TNs in the program unit being compiled. As mentioned in Chapter 2, we will 

assume that the unit of compilation is the subroutine. TNBIND considers the nodes of 

the program tree in execution order. That is, the first node considered is the first 

node for which code will be generated. In a tree representation of the program, the 

first nodes to be considered are the leaves. The descendants of a node represent 

the computations which must be performed before the computation specified by the 

node itself. TNBIND accomplishes the execution order examination of the modes by 

using a recursive tree-walk algorithm. At each node the algorithm is invoked to 

examine the subnodes. When the algorithms is invoked on a target path subnode, a 

target TN is passed.   When the bottom of the tree is reached, the necessary TN 

39 
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> processing for the leaf node is performed, and the result is returned to the ancestor 

node. When all of the descendants of a node have been processed. The node itself 

is processed and then returns to its ancestor. In order to clarify this structure, we 

present below a few examples of the node types and the actions necessary to 

process them. 

3.1 A typical binary operator 

3.1.1 The necessary functions 

Let us consider the actions that are necessary during the TNBIND processing of 

a typical binary operator. We will assume that this operator is one which is 

represented directly by the hardware, i.e. there is a hardware instruction which 

implements the basic operation. For example, tt, "ADD" instruction directly 

implements the "+" operator. The TNBIND processing is identical in form to the actual 

code generation process. By this we mean that the code generator traverses the 

tree in the same manner in order to generate code. The difference is that the 

TNBIND phase does not involve the actual instructions, bu» rather the control flow and 

the number and Mnds of references made to temporarily stored data. The processing 

of a binary operator usually proceeds as follows: 

1. process first operand 
2. process second operand 
3. move targel path operand to temporary 
4. operate on temporary with non-target operand 
5. leave result in temporary 

The TNBIND processing mimics the actions of the code which will eventually be 

produced. (If the target machine organization dictates some other sequence of 

evaluation for a binary operator, then the TNBIND processing will change 

accordingly.) 
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First the two operands are processed by TNBIND with the current node's TN 

being passed as a target to the target path operand. This processing occurs 

recursively until the bottom of the tree is reached. After the two operands have 

been processed, we look to see whether the target path operand "made its target." If 

not we must allow for the move of the value of the target path operand from the TIM 

where it exists to the TN of the current node by increasing the costs of both TNs by 

the cost of the move. In this case we also record the fact that we prefer that the 

two TNs (target path TN and current node TN) be assigned to the same location. If 

they can be assigned to the same location by the later packing phase, the data move 

can be eliminated. We next update the cost values of the non-target TN and the 

current .tode's TN to include the cost of the one.-ation. Lastly we decide whether to 

bind the current node's TN to the target that was passed in from above. Thus 

targeting decisions are made by the recipient of the target request, and targeting Is 

done by the requestor when the targeting request is rejected. 

In order to specify these actions we need to be able to talk conveniently about 

nodes, operands, TNs and costs. We need to define the basic operations to be 

performed and describe the sequence of these operations that should be performed 

for each node type. 

The primitives we need for the typical binary operator described above are 

TNP(node,target) 

node:  a tree node 

target:  a TN or 0 
Invoke the TNBIND processing on "node" passhg "target" as the 

target.   When no target is being passed, "target" is 0.   This is the 

function   invoked   for   each   node   by   the   recursive   tree-walk 

algorithm.    Common actions are performed by TNP and then the 

node-specific function for the node type is invoked. 
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PassTarget(node,target) 

node:   a tree node which is an operand of a binary operator 

target:   a TN 

Evaluates to "target" if "node" is the target path operand. 

Otherwise the value is 0 meaning no target, "his conveniently 

expresses the notion that the target is passed only to the target 

path operand without assuming which operand of a binary operator 

lies on the target path. 

NoteUse(t,when) 

t:   a TN 

when:  a Ion value 

Add "when" to the list of nodes which are uses of "t". 

NoteCreation(t,when) 

t:   aTN 

when;   a Ion value 

Add "when" to the list of nodes which are creations of "t". 

Move(tfrom)tto) 

tfrom:   a TN or tree node 

tto:   a TN or tree node 

If   there   is   a   TN  associated  with   "tfrom"  then   invoke   NoteUse 

passing the TN and the current Ion value.   Similarly for "tto" except 

invoke NoteCreation. 

PrefMove(tfrom,tto) 

tfrom:  a TN or tree node 

tto:   a TN or tree node 

Indicate that the TNs associated with "tfrom" and "tto" should be 

assigned   to   the   same  location  if  possible   (preferencing),  then 

invoke Move(tfrom,tto). 
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( 
Operate(oplollo2) 

op:  c. machine operation 

ol:  a TN or tree node 

o2:  a TN or tree node 
Invoke NoteUse and/or NoteCreation as appropriate for the action 

of executing "o2 «- o2 op ol". For example, the call 

"operate(+,X,Y)" means that the action "X «- X + Y" is • use of ooth 

X and Y and therefore invokes NoteUse on both X and Y. For 

unary operators we omit "o2M. Some operations are specified 

generically, e.g. "test" meaning "test for true or false". 

Bind(tl,t2) 

tl: a TN 

t2: a TN 
Bind the two TNs together.   That is, force them to refer to the 

same locution.  This is the action when a node "makes its target." 

In addition to these primitives we need a few notational conventions to simplify 

the explanation of the processing routines. We will use the notation "X[fielQ name]" 

to represent the value of the named field of the item named X. Thus 

"q[first operand]" will refer to -irst operand of a node named q. We will also make 

use of the following abbreviations. 

Abbr. meaning 

MyTN node[temporary name] 

Oprl node[first operand] 

0pr2 node[second operand] 

OpType node[operation] 

We are now in a position to state the actions necessary to process a binary 

operator node in terms ot   le primitives. 

TNP(0pr 1 ,PassTarget(Opr 1 ,MyTN)) 

TNP(0pr2,PassTarget(0pr2,MyTN)) 
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PrefMove(node[tarBet path],MyTN) 

Operate{OpType,node[non target path],MyTN) 

3.1.2 An examplo 

Let us consider the processing of the assignment statement of Figure 2-1. The 

tree is reproduced in Figure 3-1 with names attached to the nodes so that we can 

refer to them easily. TN processing begins with node Nj, th. assignment operator. 

The assignment operator invokes TNP on each of its operands, passing no targets 

since neither operand is flagged as the target path operand. Figure 3-2 shows the 

complete sequence of invocations. The calls to PassTarget are not shown; rather the 

result of the PassTarget evaluation is shown explicitly in subsequent calls to TNP. 

In Figure 3-2 we see the TN processing recurring until the bottom of the tree 

is reached. This first happens when W^ processes node D. After N4 has processed 

both of its operands, it sees that its target request to node D was rejected and 

therefore invokes PrefMove to indicate that the value of D must be moved into h. At 

this time PrefMove updates the costs of tj and tp, invokes NoteUse and NoteCreation 

on tD and t1 respectively, and adds each TN to the other's preference list. N4 then 

invokes Operate to update the costs of the TNs involved in the operation. Finally N^ 

invokes Bind to bind its own TN to the target TN. 

After processing its second operand, N3 sees that N4 accepted the target 

request meaning .hat the value of N4 will be left in t2. N3 invokes Operate and Bind 

and returns to N2. N2 invokes Operate and returns to Nj which calls PrefMove to 

update the costs for the data move from 13 into A, 

The results of this processing are: 

1.     t^, t2, and t3 will  all  refer to the same location.   This means  that the 

-" ""-'■-■"■ ---^ - ■ niiirilfciiillnirh VJ k* - '■"'• 
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A<-B»(D»2 + C) 

Figure 3-1.   An expression tree to be processed by TNBIND. 

■ ■ 
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controlling 
node action 

TNP{N1,0) 
Nl TNRA.O) 

TNP(N2.0) 
TNP(B(0) 

N2 

N4 

TNP{N3,t3) 
TNP(N4,t2) 

TNP{D,t1) 

N4 jmz.o) 
N4 PrefMoveCO.ti) 

N4 
0perate(^,t1,2) 

N4 

N3 

Bind(t2;1) 
TNP(C,0) 

N3 Operate(+,t2,C) 

N3 
N2 

Bind(t3,t2> 
0perate(*,t3,B) 

Nj PrefMove(t3,A) 

Figure 3-2.  A trace of TN processing actions. 

3. 

expression on the right hand side of the assignment will be evaluated 

without any unnecessary data moves. 

tD is preferenced to t^ If this use of D happens to be the end of a 

lifetime segment, then tD and tj will be assigned to the same location thus 

eliminating the initial data move. 

tA is preferenced to tg. If the lifetimes of tA and t3 have no points in 

common, tA and t3 will be assigned to the same location thus eliminMina 

the final data move. 

3.1.3 The store operator 

The store operator is considered to be a special properties. These properties 

are due to the special optimizations which may be performed on store operations. In 

general we evaluate the right hand side leaving the result in some TN and then we 

move the value from the TN to the location named by the left hand side.   We would 

-"-■"—'— 
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like to eliminate the final data move when the store operation is inherently simple. 

We say that a store operation is simple when it is possible to bind the TN of the right 

hand side to the location of the left hand side.' We define a predicate in order to 

identify the simple cases: 

SimpleStoredeft.right) 

left: a tree node 

right: a tree node 
True if it is possible to bind the TN of "right" to the location of 

"left"! faUt otherwise. 

A few of the operations which might be simple on some machines are 

1. A«-A*K     (k a constant) 

2. At-B+k 
3. At-A op B(op one of some set of operators) 
4. A<-A op e(e an expression) 

3.2 Other operators 

3.2.1 Unary operator 

With the notation established, we can easily describe the actions required by 

other types of tree nodes.  The simplest of these is the typical unary operator: 

TNPKDprl.MyTN) 

PrefMove(Oprl,MyTN) 

Operate(OPTYPE,MyTN) 

As noted in the discussion of binary operators, the actions taken in TN processing 

mirror the code that will be used to implement the operation. 

t The exact definition of  which store operations are simple is dependent on the 
capabilities of the target machine, but the concept is machine Independent 

■iMttaiiMiyflHI 
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3.2.2 IMhan-elea 

The processing for more complex nodes, such as if-then-else. is also easily 

expressed in terms of our primitives. 

TNP(node[boolean],0) 

Operate(test)nodD[boolean]) 

TNP(node[then partyMyTN) 

PrefMove(node[then part],MyTN) 

TNP(node[else part],MyTN) 

PrefMcve(node[else partJ.MyTN) 

Note that this presumes that the if-then-else has a value.   If the language does not 

provide for an if-then-else expression then the calls to PrefMove and the passing of 

targets to the then and else parts may be eliminated. 

3.2.3 Simple hops 

The processing /or a while loop is also very straightforward. Remembering 

thet at this point we need not know what instructions will be generated to implement 

the loop, we need only process the subnodes of the while in the order In which the 

code will be executed. The fact that the body of the loop may be executed several 

times is irrelevant to the basic processing, but should be considered in the cost 

corputations. 

TNPinodeLbooleanj.O); 

Operate(test)node[boolean]) 

TNPOiodetbodyLO) 

Note that in this case we make no provision for the value of the while loop. If, 

for example, we wanted to specify that the value of the loop was the value of the 

last evaluation of the body, we could pass MyTN as a target to the body and insert a 

PrefMove at the end of the processing routine. 

, „ 
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3.2.4 Complex operations 

Up to this point we have discussed language constructs that are common to 

most algebraic languages and easily implemented on most computer hardware. One of 

the advantages of the TNBIND model of using temporary storage is the ability to 

handle new and more complex language constructs much closer to the language level 

rather then fat the machine instruction level. 

Consider a language which implements lists of items as a primitive data type. 

There might be a language construct which allowed a sequence of statements to be 

performed on each element of a list.  A programmer might write something like 

forall I in L do begin tj; sgi S3) ■ ■ ■; sn end) 

The tree node for such a construct would have three subnodes:   one for the Item 

name (I), one for the list name (L) and one for the body.  The processing in TNBIND 

might look like 

NoteCreation(node[item name],node[lon]) 

Operate(end-of-list-test,node[item name]) 

TNP(node[body],0) 

Operate(next-item,node[item name]) 

where the  linear block information would show that the end-of-.'ist-test was the 

successor of the next-item operation.   This example is rather explicit in its use of a 

TN to hold each element of the list in turn.  It is easy to imagine, however, that the 

same treatment could be given to other constructs. For example, it might be the case 

that  the  "forall" construct  was only an internal  representation produced by the 

semantic analysis phase so that the programmer's 

L ♦- sqrt(L) 

is transformed into 

forall I in L do I «- sqrt(I) 

MTtairffliiiiiiiiili^ — -   ■ 
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3.3 Cost computations 

A very important part of the TNBIND process is the computation of the costs 

associated with each TN. One of the simplest measures of cost to compute is object 

code size. It is easy to calci'late the size of the object code required for a given 

access to a TN. This is a particularly interesting cost measure for a machine which an 

instruction which accesses a register is smaller that an equivalent instruction which 

accesses a memory location. On other machines some other me&sure may be more 

appropriate. The point is not what the measure is, but rather that the cost 

computation can be separated from the rest of the processing and modified 

independently as desired. 

As discussed in Chapter 2, \«e want to collect relative cost measures; the 

absolute measures are of only marginal interest. In terms of a code size measure, 

the cost da'a we want to get information such as "Assigning variable X to a register 

instead of a memory location will save 8 words of code." We can then say that the 

cost of (failing to allocate a register for) X is 8 words. If code size is our only 

measure then it makes no difference whether the 8 is the difference between 2 and 

10 or between 100 and 108. 

The costs are calculated in very much the same way that the TN processing is 

carried out, i.e. by having separate routines to handle the specific information about 

each node type and a driver routine to handle the common inforn ation. The cost 

calculations can be included in the TN processing routines, or they can be separated 

into a separate pass ofer the tree. 

The cost computations rely most heavily on the attributes of the target 

machine. The data that must be available for the cost computations includes the 

following values for each of the storage classes to be considered. 
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The cost of a simple access of a TN. 

The cost of isolating a subfield of a TN, 

The cost of implementing non primitive functions, e.g. the cost of 

performing the "exclusive or" operation on a machine which does 

not have ■ corresponding hardware function. 

In traversing the tree, all references to a TN are analyzed and the costs are 

accumulated. Those TNs which must be assigned to a register are assigned arbitrarily 

high costs to assure that they are treated first in the packing process. The TN 

processing phase attempts to keep the lifetimes of such TNs as small as possible, 

relying on the preferencing operation to eliminate loads and stores when possible. 

3.4 Mechanically generating TNBIND 

It should be possible to generate the TNBIND model of a compiler mechanically 

from a description of the input language and the target machine. This is not to say 

that there is an obvious algorithm which accepts BNF and ISP descriptions as input 

and produces program text as output, but rather that there is a systematic way of 

using knowledge about the language and the machine to generate the necessary 

TNBIND routines. 

One possibility for specifying the language is to provide functional descriptions 

of the operators which look very much like the descriptions in this ciapter. That is, 

specify for each node type the sequence P* actions it should take during program 

execution. The information is not very specific, but rather a much more general 

description of the order in which the subnodes are evaluated and how the values of 

the subnodes are to be used, Any initial attempt to specify a new language for 

TNBIND will most certainly involve writing out the processing routines for each node 
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type in the tree representation of the language.   In TNBIND we are concerned not 

with the syntax of the input language but with the semantics. 

Several pioces of information about the target machine obviously must be 

supplied. These include the types of locations to be used for temporary storage and 

the number of locations of each type. TNBIND must also Know the functional 

characteristics of the various operations which can be performed by the target 

machine. For example, if the target machine is of the "general register" variety 

without no memory-to-memory instructions, TNBIND must know that there must be a 

TN associated with the right hand side of every assignment, and that that TN must be 

bound to a register. One candidate for specifying such information is Newcomer's 

attribute sets and transformations [New75]. Building TNBIND requires both the 

knowledge of what the attributes and transformations are and the costs of making the 

transformations. The appropriate cost measures and values are not readily 

determined from classical descriptions of computer hardware. 

The advantage of the TNBIND model is that it provides a mold into which we 

can fit descriptions of languages and machines. In this role the model serves to point 

out options and keep the treatment of Operators uniform. 

_ -•  
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Chapter 4 

Determination of TN Lifetimes 

One of the assumptions made in discussing the problem of register allocation is 

that it is in fact a problem. As computer hardware advances are made, the number of 

registers which can reasonably be made available increases. As long as there are 

more registers available than there are data items to store in them, there is .0 real 

problem. On the other hand, in such cases, we begin to th:;.K of new ways to use the 

registers to increase the efficiency of our programs. When machines moved away 

from the single accumulator model, it became possible to consider using registers for 

purposes other than expression evaluation. 

A number of articles have appeared describing methods of program 

optimization though judicious use of the registers. Lowery and Medlock [Low69] 

describe the analysis done in the FORTRAN H compiler to keep the values of 

frequently used variables in registers within loops. This type of optimization is 

frequently referred to as "load-store motion" [AII71a]. 

A good deal of work has been done in the area of program control flow for the 

purpose of finding the paths along which the value of a variable may be retained in a 

register. Allen [AI170] and Beatty [Bea71] discuss the use of graph theory and the 

concepts of regions and intervals of a graph to determine the aspects of control flow 

relevant to register allocation. 

The current state of computer hardware provides us with (in most cases) more 

than enough registers to evaluate the most complex expressions occuring in 

programs.  In order to improve the efficiency of our programs we would like to keep 

53 
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the values of frequently used variables in registers where they can be accessed with 

more speed and sometimes with shorter instructions. A simple approach is to first 

allocate the registers necessary for expression evaluation and then use the remaining 

registers, if any, to hold one variable each, inserting the necessary load and store 

instructions into the code at the beginning and end of the program segment being 

considered (the most frequent piece of program used with this method is the loop as 

in [Low69]). A more ambitious goal is to multiplex several variables into each 

register. This idea has oeen discussed in [Day70] and [Bea71]. The approach taken 

in the TNBIND model is of the multiplexing variety, but with a different emphasis. In 

the TNBIND model variables are either assigned to a register throughout their 

lifetimes or they are not. This is conceptually much simpler than a model which loads 

and stores several variables during the course of executing a program. The 

disadvantage is that some variables used heavily in the inner loop of a program may 

not be assigned to registers by TNBIND. We might encourage the assignment of 

registers for variables used in loops, or we might seek a way to incorporate the loop 

optimizations into the TNBIND model.   The latter possibility is discussed in Chapter 7. 

This chapter describes a method of determining the lifetime of temporary 

names. We want a characterization of the lifetimes which is not only accurate but 

also very precise so that we can make maximal use of the registers by assigning 

several TNs to each register. The lifetime of a TN is the set of those segments of 

the program during which the value of the TN must be available. The complexity 

involved in determining the lifetime of a TN is related to the type of TN, e.g. TNs 

which are compiler generated temporaries generally have much shorter and more 

easily determined lifetimes than TNs which are user variables. A few definitions will 

help in the discussion of lifetime determination. 

fctffe   f nWi' AiA, 
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4.1 Definitions 

A program point, p, is used to label an instant in the execution of a program. 

The term is also applied to the static program and essentially names a particular 

object code instruction. A program point represents a node in the graphical 

represintation of the program. A successor of a node is an element of the set of 

instructions which may be executed immediately after the instruction represented by 

the node. In terms of the program tree, the successors of a node are either brothers 

or immediate ancestors. 

A flow path is a sequence of program points pj pn such that for all i 

(lii<n) pj+1 is an immediate successor of pj. A flow path describes a possible 

sequence of nodes in the program flow graph. The length of a fow path is the 

number of transitions necessary to move from the initial point to the final point of the 

path, i.e., the length is one less than the number of points in the path. 

A UM of a TN is any reference to the TN which requires the value stored in it. 

This includes simple loading of the value or assigning a new value which Is a function 

of the old value.   The latter Kind of reference may be called a modification. 

A creation of a TN is a reference which stores a new value (not a function of 

the old value) into the TN. 

A ton, or linear order number, is a unique number assigned to each node in the 

program graph. The Ion values are used to name the program points. The values 

increase along any flow path throi-gh the program graph except in the case of loops. 

For loops the successor of the loop has a Ion which is greater than the Ion of every 



■ J I   IUUL.HPWJUWIII1 ■<' '''^-"'^ "-   ^^"^HISHi^lBH^BBi 

56 An Approach to Global Register Allocation 

node in the loop.1" Within a linear block the Ion values are consecutive. 

A TN is aiiva at a point p| Lff there exists a flow path Pj,.. ., Pn such that pn is 

a a*« of the TN and for every pj (i<j<n) on the path, Pj is not a creation of that TN. 

The initial point of the path, p,, need not reference the TN at all. The essential idea Is 

that the value of the TN must be preserved at every point along the path. 

The lifetime of a TN is the set of points in the program at which the TN is alive. 

The kind of information we need to determine lifetimes is similar to that used in global 

common subexpression recognition. In order to recognize common subexpressions 

we need to know when the value of a variable changes so that we can find all of the 

expressions involving that variable and mark them as changed. This is essentially an 

analysis of program flow and has been discussed by several authors [AII70, Coc70, 

Ges72]. 

For the purpose of describing the lifetime determination, we will assume the 

following information is available; (1) a description of the linear blocks of the 

program in terms of their starting and ending Ion values, (2) the starting Ion values of 

each successor, and (3) a list for each TN indicating, by Ion value, the nodes which 

are creations or uses of the TN. 

A connection matrix is a matrix of binary values representing the successor 

relationships among the nodes of a graph. The connection matrix C of a graph of n 

nodes is an n x n matrix (C|j-1 if node j is an 'mmediate successor of node I, Cjj-O 

t  The assumption here is that we are not burdened with the unrestricted contro 
structures that can be constructed by using an arbitra-y golo.  This is not to say that 
the method to be described will not work for such structures.   Rather the simplymg 
assumption merely makes the exposition of the method less complex, 

t A linear block has exactly one entry, one exit, and no internal branches.  It is, in the 
most restrictive sense, "straight line" code. 

^^^gH^H^gg. 
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otherwise). II the nodes ot a program 8raph are npmber.d by Ion as defined above 

then some generai.zations about the corresponding connection m.lri, may be stated. 

W,hin a line,r blocK the onty successor of a node is the nod. with the next highest 

ion veiue, i.e., if node i is not the last node of a linear blocK then e,,-! if« H*l- 

Cons,der   two  linear  blocks  LB,   and  LB2 composed of  nodes  a, ..I b  and 

d| „»,  respectively.   By the definition of linear block w. know that the two 

slcuences have no points in common and that, except possibly at the endpoint.. no 

„ode of one block is a successor of any node in the other block.   In the connection 

matrix 

asi<b A dsj<e implies Cjj - 0 - Cjj 

Moreover, if we think about a matrix representing the connections among lineer 

biocks, we know that LB2 is a successor of LB, iff cbd.l and LB, is . successor 0. 

LB2 iff c„.l. By knowing the composition of the linear blocks we can readily 

convert bVck and forth between the full connection matrix and the matrix of linear 

block connections. 

4.2 An example 

A sample program graph with ton values, linear blocks, and the linear block 

connection matrix is shown !„ Figure A-l.   T mple prog  99 tree node. 

broken down into 7 linear blocks. Consideration of the connection matrix of linear 

biochs instead of the connection matrix of nodes yields a significant reduction in the 

amount o. date required. Unfortunately this abstraction does not contain all of the 

information from the original connection matrix, although the lost information may be 

recovered. 

P^arily because of the increased storage efficiency, w. would like to be able 

  ••^, ■— "•' "-■■' 
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el 
*— 
e2 

e3 

e4 

A 
e5 

v 
e7 

e6 

Ion values linear blocks 
el - 1-20 1 -el 
e2 -21-25 2 -e2 
e3 - 26-42 3 - e3; e4 
e4 - 43-47 4-e5 
e5 -48-71 5 -e6 
e6 - 72-84 6 -e7 
e7 - 85-93 '/ - e8 
e8 - 94-99 

connection matrix 
12   3   4   5   6   7 

1 0 1 0 0 0 0 0 

2 0 0 1 0 0 0 1 

3 0 0 0 1 1 0 0 
4 0 0 0 0 0 1 0 

5 0 0 0 0 0 1 0 

6 0 1 0 0 0 0 0 
7 0 0 0 0 0 0 0 

e8 
el; while e2 do (e3j if e4 then e5 else e6; e7)i e8 

Figure 4-1.   The example program. 

to perform matrix operations on the full connection matrix by manipulating the smaller 

linear block connection matrix. In order to do this vie must transform the linear block 

connection matrix into a more accurate representation of the full connection matrix. 

In Figure 4-2 the connection mat'ix has been modified to include entries labeled "S" 

(for sequential) along the main diagonal. The connection matrix is now a shorthand 

for the much larger node-level connection matrix. In our shorthand matrix, each 

element represents a submatrix of the full connection matrix. The interpretation of 

the values in the shorthand is 

0 -» mj(j - 0 Vi.j 
1 "* ml,n " ^ mi,j " 0 for other 'tJi n 's the number of rows in the submatrix 
S "* mi,i+l " ^ mii>J] " 0 for J^*1 

Figure 4-3 shows an expandeo section of the matrix from Figure 4-2. The 

rows and columns in Figure 4-3 are labeled with Ion values. The lines within the 

matrix show the partitioning. 
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12 3 4 5 6 7 
1 S 1 0 0 0 0 0 
2 0 S 1 0 0 0 1 
3 0 0 S 1 1 0 0 
4 0 0 0 S 0 1 0 
5 0 0 0 0 S 1 0 
6 0 1 0 0 0 S 0 
7 0 0 0 0 0 0 s 

Figure 4-2.  Connection matrix with "S" entries. 

16 ]7 18 19 20 21 22 23 24 25 
16 0 1 0 0 0 0 0 0 0 0 
17 0 0 1 0 0 0 0 0 0 0 
16 0 0 0 1 0 0 0 0 0 0 
19 0 0 0 0 1 0 0 0 0 0 
20 0 0 0 0 0 1 0 0 0 0 
21 0 0 0 0 0 0 1 0 0 0 
22 0 0 0 0 0 0 0 1 0 0 
23 0 0 0 0 0 0 0 0 1 c 
24 0 0 0 0 0 0 0 0 0 1 
25 0 0 0 0 0 0 0 0 0 0 

Figure 4-3. Expanded section of connection matrix.   (Linear 

block 2 and a portion of linear block 1). 

A second modification to the matrix is based on the information we wish to 

obtain from the program, namely what nodes in the program are on flow paths leading 

vo any use of a particular TN. In this context any cre?fion of the TN effectively 

terminates the path, More simply, a creation node has no predecessors. This is 

reflected in the matrix by setting the columns corresponding to the creation nodes to 

0 (indicating that they cannot be successors of any node). In the shorthand matrix 

this is done by first making the creation nodes separate linear blocks. If we consider 

a TN with creations at nodes 6, 67, and 80 (in linear blocks 1, 4, and 5) the resulting 

• 
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shorthand matrix will appear as shown in Figure 4-4. The columns labeled lb, 4b, 

and 5b are the new blocks, each consisting of a single node. Although the matrix we 

must now consider has increased in size from 7x7 to 13x13, it is a far cry from the 

potential 99x99 matrix we would have i' we considered each node separately. It ic 

important to keep the size of the matrix to a minimum since from this point on the 

algorithm must be performed separately for each TN. 

la lb 1c 2 3 4a 4b 4c 5a 5b 5c 6 7 
la S 0 0 0 0 0 0 0 0 0 0 0 0 
lb 0 0 1 0 0 0 0 0 0 0 0 0 0 
1c 0 0 s 1 0 0 0 0 0 0 0 0 0 
2 0 0 0 s 1 0 0 0 0 0 0 0 1 
3 0 0 0 0 s 1 0 0 1 0 0 0 0 
4a 0 0 0 0 0 s 0 0 0 0 0 0 0 
4b 0 0 0 0 0 0 0 1 0 0 0 0 0 
4c 0 0 0 0 c 0 0 s 0 0 0 1 0 
5a 0 0 0 0 0 0 0 0 s 0 0 0 0 
5b 0 0 0 0 0 0 0 0 0 0 1 0 0 
5c 0 0 0 0 0 0 0 0 0 0 s 1 0 

6 0 0 0 1 0 0 0 0 0 0 0 s 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 s 

Figure 4-4.  Connection matrix with creations partitioned. 

The matrix we are considering (actually the complete matrix it represents) 

shows only the connections along paths of length one. That is, Cjj-1 when there is a 

flow path of length one from node i to node j. In order to bo able to answer the 

question about where a TN is alive, we must know about all paths of any length. Wc 

know from the use of connection matrices in graph theory that the boolean product 

of the connection matrix with itself will produce a matrix showing paths of length two. 

Let us consider why this is so.   First recall that the boolean product of matrices is 

ii^iiiliiiHiiiiiiii'iiin  ill   lii liliTi 
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just like the algebraic product except that multiplication and addition are replaced by 

the and and or operations respectively. Thus each element of the product matrix is 

produced by giring together several elements which have been produced by ending 

corresponding elements of the original matrices. 

The boolean product P of matrices A and B is defined by 

A is of order n x k 
B is of order k x m 
P is of order n x m 

k 
P - A ♦ B iff  pji -   v (ajr A brj) 

'     r-1 ' 

By this definition we see that Pjj-1 iff 3x ) ajx-l and bxj-l.   For the product 

of a connection matrix with itself we have 

n 
Pij - ^(Ci, A crj) 

- 1 iff 3x j Cjx-1 and cxj-l 

This is exactly the statement that there is some program point px such that there is a 

flow path pj, px, p: in the graph of the program; i.e., there is a path of length two. 

If we call the original connection matrix C^ indicating that it reflects paths of 

length one then Cl»Cl-C2 which reflects paths of length two. Similarly C^-cUc2, 

C^-C^C3, etc. Forming the element-wise or of two or more of these matrices 

produces a new matrix whose elements indicate paths of any of the constituent 

lengths, i.e., C1 or C2 indicates paths of length two or less. The boolean sum C1 or. 

C2 or.... or. C00 is the matrix we are seeking, the one which indicates whether there 

is a path of any length between any pair of nodes. In practice it Is only necessary to 

accumulate terms of the sum until it converges since in a finite graph there is a finite 

maximum length path which does not contain cycles. If the graph contains n nodes 

then the sum will converge in no more than n steps since a path of length n+1 or 

r-.  
,   „V,,,,,.,- .,,.       ,,-  ..nii^ai 

nur   mil   ^   -   ' -" 



I ~^-w—w  ^PiWWWIWIWilllWWPWiWWillW^^ 

62 An Approach to Global Register Allocation 

greater must contain a cycle. The converged sum is called the closur« or transitiv« 

closure of the connection matrix. Clearly we can find the closure of a connection 

matrix by forming the products and oring them together. This solution is unattractive, 

however, since the operation of finding the product is itself an n0 algorithm. Steven 

Warshall [War62] devised and proved an algorithm which will determine the closure of 

a connection matrix in time proportional to n^. The basic approach of the algorithm is 

to operate on rows of the connection matrix. Wh^n processing the tth row, any row 

which has a 1 in the ith column is ored into the ith row, Warshall shows that when 

the rows and columns are selected in the proper order the closure is formed in a 

single pass over the matrix. The algorithm performs nicely on our shorthand matrices 

when we define the or operation on the shorthand elements as 

0 v X -0 
1 vX - 1 
S v S = S 

where X r-.ay take on any of the three values (0, 1, S) and our interpretation of the 

symbols in the shorthand for the closure is changed to 

0 -» mjj - 0 Vi.j 
1 -» mjj - 1 Vi,j 
S -» mj: - 1 Vj,i 

Remembering that the elements of the shorthand matrix correspond to the 

linear blocks of the original graph, it is easy to understand the definition and the 

change of notation. In the closure the element representing a linear block (the S 

elements) will hc-e at least all I's above the main diagonal because there is a path 

from any node in the block to any later node in the block. The 1 elements in the 

connection matrix represented connections between blocks, but clearly if there is a 

path from one node of one block to a node of a second block, then there must be a 
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path from every node in the first block to every node in the second. The S entries 

serve only to remind us of the interior detail of the connections of the nodes. 

Indeed if there is a path from a linear biocK back to itself ther the entry for the 

block will change from S to 1 (S v 1 - 1) indicating that there is a path from every 

node in the block to every other node in the block. Figure 4-5 shows the closure 

of the matrix from Figure 4-4. 

la lb 1c 2 3 4a 4b 4c 5a 5b 5c 6 7 
la S 0 0 0 0 0 0 0 0 0 0 0 0 
lb 0 0 1 1 1 0 0 0 0 0 1 
1c 0 0 s 1 1 1 0 0 0 0 0 1 
2 0 0 0 s 1 0 0 0 0 0 1 
3 0 0 0 0 s 0 0 0 0 0 0 
4a 0 0 0 0 0 0 0 0 0 0 0 0 
4b 0 0 0 1 1 0 1 0 0 1 1 
4c 0 0 0 1 1 0 s 0 0 1 1 
5a 0 0 0 0 0 0 0 0 0 0 0 0 
5b 0 0 0 1 1 0 0 0 1 1 1 
5c 0 0 0 1 1 0 0 0 s 1 1 
6 0 0 0 1 1 0 0 0 0 s 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 s 

Figure 4-5.  Closu-e of partitioned matrix. 

Let us reflect for a moment on the information contained in the closure of the 

connection matrix. By zeroing the columns associated with creations, we have 

assured that no path in the matrix passes through a creation node. The interpretation 

of the elements of the closure is that the i,j element is 1 t/y there .s a path from node 

i to node j that does not pass through a creation. If there exists a j such that node J 

is a use and element i,j of the matrix is a 1, then it follows that the TN is alive at node 

i.   The lifetime of the TN is obtained as a bit vecto»1 by oring together the columns of 

L. nnlklii »rtilWrilliiWi mill     — ■'■  -      ■       ii    II litiMTlitMUa^tllTil 
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tho closure matrix that correspond to the uses of the TN.  Like the other operations, 

this too can be performed in terms of the shorthand matrix. 

Suppose now that our hypothetical TN has uses at nodes 32, 74, and 99. In the 

matrix of Figure 4-5 these nodes are in linear blocks 3, 5a, and 7. Qring those 

columns together produces 

01111011S111S 

The S entries come from blocks 5a and 7 and indicate that the TN is alive in those 

blocks before (and including) the last use in each block.   The 1 entries indicate that 

the TN is alive throughout blocks lb, 1c, 2, 3, 4b, 4c, 5b, 5c, and 6.  In particular the 

TN is not alive in blocks la and 4a and in block 5a after the use at node 74. 

4.3 Reflection on lifetimes 

Let us reflect on the importance of this method. The result is very important. 

By repeating the process for each TN we produce a precise specification of the 

lifetime of each TN, This means that we can determine easily and accurately whether 

two TNs interfere. Two TNs are said to interfere or conflict with each other if there 

is any program point at which they are both alive, i.e. if the element-wise and of the 

lifetime vectors for the two TNs contains any non zero elements. This is exactly the 

knowledge needed to make efficient use of the registers in the compiled code. We 

may assign two TNs to the same location only if they do not interfere. Note also that 

the method is completely independent of any language or target machine. Cnce we 

are given the linear blocks and their successors along with the creation and use 

points the rest is a mechanical process. Warshall's algorithm for finding the closure 

allows us to transform a matrix into its closure in a single pass over its elements. 

At this point let us ask why it is necessary and/or desirable to expend the 
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computational effort required to generate the connection matrices and their closures. 

There are much simpler  algorithms which will produce good approximations of the 

lifetimes with much less effort.   First, we must remember that our ultimate goal is to 

produce   compilers   which   generate   the   best   possible   code   (the   metric   being 

determined by the implementor).   The simpler algorithms will always lead us to safe 

decisionsj that is, we will never be told that two TNs do not interfere when in fact 

they do.   The problem is that the approximate lifetimes may exclude the best solution 

from the set of feasible solutions.   As long as the extra effort is not unreasonable, 

our  goal  requires that we use the exact solutions to such problems.   Second, we 

recognize  that the simpler algorithms do yield exact solutions in many cases.    To 

exploit this fact we use the simpler methods when possible by dividing the TNs into 

two classes:   interesting and uninteresting.   The uninteresting TNs are those whose 

lifetimes  may  be  determined exactly by  a simple method.   Their  lifetimes  always 

consist of a single segment of the program graph from the first reference to the la»t 

reference.   The method described in this chapter is used only for the interesting TNs, 

those which might have lifetimes composed of disjoint program segments.   In general 

the interesting TNs are user variables and common sdbexpressionsj the uninteresting 

TNs are compiler generated temporaries.   We make the division into the two classes 

by declaring that any TN which has more than one creation or is referenced in more 

than one linear block is interesting.   One of the two conditions is necessary (but not 

sufficient) to produce a lifetime of disjoint segments. 

 ^ " ,--*t**M^.   .^....        ..,.| C.^ 
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. 

4.4 Summary of Lifetimes 

In this chapter we have presented a method of determining the lifetime of I TN, 

that is, the points in the program at which the value contained in the TN must be 

preserved. The method depends only on collection of data about creation and use 

points and on knowledge of the flow of control. Because we would like to have a 

very precise representation of the lifetimes, we want to consider each program node 

separately. However, even with ^Marshall's algorithm, finding the closure of the 

connection matrix is an n* process and n grows very quickly. This realization led to 

the development of a shorthand matrix on which the closure could be performed. 



.——..-—i«ll... I..—   I«!..   I     ■! 

Chapter 5 

The Packing Problem 

This chapter will describe an algorithm which assigns the TMs to the physical 

locations available within the target machine.   The lifetime information generated by 

the procedure described in the previous chapter is taken as an input to the packing 

algorithm.   The costs associated with each TN and the restrictions placed on the 

assignment of the TN to physical locations are the other inputs.  In the ideal case, it is 

possible to assign each TN to a location which minimizes its cost; in practice, this is 

frequently   not   possible.    Thus   the   pa-king   algorithm   must  handle   two   slightly 

different but related problems.   The first problem is related to problems known in 

operations research as "cutting-stock" or "knapsack" problems [Gil66].   The locations 

to be used for temporary storage represent the stock from which pieces (TNs) are to 

be cut or the knapsacks into which items (TNs) are to be packed.   The measure of 

space in both cases is in terms of program points.   The TNs not only require a given 

number of points but particular points.   In this respect the TN packing problem is 

more constrained than the cutting-stock or knapsack problems.   If a TN is placed into 

a location, it must be at a fixed position and orientation in the space of program 

points within that location.  In a cutting-stock problem ii.e task is to cut pieces from a 

piece of stock.   The exact position and orientation of the pieces is not specified.   The 

second problem  deals with the selection of TNs to be assigned to the preferred 

locations (usually registers).   The problem is to minimize the increase in cost over the 

cost that would have realized if all TNs could have been packed into their preferred 

locations. 

The algorithm described considers only two classes of storage — registers and 

67 
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memory. The algorithm is also based on the implicit assumption that most TNs should 

b« assigned to registers if possible. These assumptions simplify the algorithm 

considerably and are a reasonably accurate characterization of current computers. 

Extension to more than two classes of storage will be considered after the algorithm 

is presented. The algoiithm described will produce an optimal solution to the packing 

problem, i.e. will minimize the increase in cost due to inability to assign all TNs to 

registers. 

5.1 The problem 

The problem of assigning the TNs to the set of available registers is the many- 

few allocation discussed by Day [Day70], That is, there are a number of TNs which 

must be assigned to relatively few locations. When the number of TNs is not larger 

than the number of locations then the solution to the problem is trivial. Added 

complications are the preferences noted during TN processing and the restrictions on 

the locations to which certain TNs may be assigned. Let us first consider the many- 

one allocation problem, that is, reduce .'he problem to consider only one register. 

Assume that the TNs are rtpresented by a sequence T in which the tth element 

Tj represents the tth TN in some ordering. Define a vector p of which each element 

p^ is the profit associated with assigning the ith TN to a register. The profit is taken 

to be the difference between the two cost measures calculated for the TN during 

temporary name processing as described in Chapter 2. A selection vector • is used 

to identify which TNs have been selected for assignment to the register (s:;-! if T; is 

assigned to the register, x^O otherwise). 

Two TNs are said to interfere if their lifetimes have any points in common. 

Total interference exists among the TNs in a set N if nj interferes with nj for all 
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I 

rij.nj < N, Mj.   Let N* be a subset of N such that there is total interference among the 

elements of N*.  Let N** be a set of subsets giving a complete description of the total 

interference data; N** = {N*. N*, . . ., N*).   This implies that if n^ interferes with np 

then there exists at least one i such that N* i N** and {nj,np} cN*.   Let A be an 

interference matrix  (which has dimension (m x k) when there are k TNs) such that 

a;: - 1   if  n: < N*:  otherwise  a:: - 0.   The selection  vector  «  is  a solution  to  the 
• J J      i IJ 

assignment problem. The solution is feasible if no two TNs selected by x interfere. 

This condition is expressed by Ax<l, i.e. each element of the product of A and x is 

Si meaning that there is at most one TN occupying the register at any program point. 

The optimal solution to the many-one assignment problem is the solution of the 

integer programming problem; 

maximize z * px 
subject to Ar<l 

where «t < {0.1} 

•ij « {0,1} 
pi > 0 

This problem is described by Balinski [Bal65] as a weighted set matching problem. 

There is no known solution to this class of problems aside from examining all possible 

selection vectors and evaluating the objective function of each. Fortunately it is not 

necessary to actually calculate the values for each solution (remember that for n TNs 

th3re are 2n solutions). 

The following definitions are due to Day [Day70] and Geoffrion [Geo67]. A 

complete solution is an assignment of a binary value to each element of x. A partial 

solution Sp is an assignment of binary values to some of the elements of * with the 

other elements remaining free. A completion of Sp is an assignment of binary values 

to each of the free elements of Sp.   Explicit enumeraticn is the process of excluding 

—    .-»  -f "" 
•-*»-.      JL-.     ...,.-. .■■.- .^..JAA£^ Jti* 
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a complete solution from the set of possible optimal feasible solutions. ImpUcit 

enumeration is the process of excluding a set of solutions from the set of possible 

optimal feasible solutions without the explicit enumeration of each element of the set 

being excluded. Let z' be the value of the objective function ipx) for the most 

profitable feasible solution yet obtained. To fathom a partial solution Sp is to 

determine that either there is no feasible completion of Sp with profit greater than z' 

or that there is a most profitable feasible completion of Sp with profit z">z'. If a 

partial solution Sp is fathomed, then the set of completions of Sp is implicitly 

enumerated. The key to finding an optimal feasible solution is finding an effective 

fathoming procedure. 

Before discussing the solution further, it is interesting to note that the 

procedure used to find an optima solution to the many-one problem may be used to 

find an optimal solution to the many-few problem. An obvious approach to the many- 

few problem is to treat it as a sequence of many-one problems. With this approach 

an optimal assignment is found for one of the registers. The remaining TNs are then 

used as input to a second many-one problem for a second register. The process 

continues until either the supply of registers or TNs is exhausted. This approach has 

two disadvantages: it may produce a non optimal solution and, more importantly, it 

does not allow the preference data to be consideied. 

A more general approach to the many-few problem is to expand the many-one 

problem by a factor of m, the number of registers to be considered. The structure of 

this problem is identical to that of the many-one problem with only the maKeup of the 

matrices changing.   The problem is stated as 

tttttütiäkatiumaMt'. -_-_ --    - -■■- -- ■ ma ■ i l^•|^■■l■^r■^'-v-•^:~-^ 
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maximize 
subject to 
where 

z - pV 
AV<I 
*tM0,i} 
ajj < {0,1} 
Pi>0 

Here p is a sequence pj, P2, ■ • •. Pm where each p; is identical to the original profit 

vector p of the many-one problem. Similarly x* is a sequence »Cj, x2, . . ., xm where 

Xj is the selection vector for the ith register. A* is a matrix compcsed of 

submatrices. 

A, i ■ I| an identity matrix of order (n x n) 

when i«j+l, Aj. - A, the original interference matrix; order (p x n) 

otherwise, A.., - 0, i^j a zero matrix of order (p x n). 

The form of ma'.nx A* is shown in -igure 5-1. The addition of the identity elements 

assures that no TN car be assigned to more than one register. In the abstraction of 

the integer programming problem this constraint is necessary to eliminate solutions 

wiNch might achieve a high profit by assigning a particularly profitable TN to all of the 

registers. 

5.2 The procedure 

The complete enumeration of the solutions to the assignment problem is 

obtained by a branch and bound procedure [Mit70]. Such methods use a branching 

procedure to generate an ordered sequence of partial solutions and a set of 

bounding rules to provide a lower bound on the value of the objective function for 

each possibly optimal feasible completion of each partial solution. The procedure, 

shown in Figure 5-2, begins with no TNs assignee to registers.   One by one TNs are 

.^-.--.^■A....   ^-. --.-- ^...^ ^■^■.■. ....tJ.<MiAjM^.. 
•YT    ipp J..,™       .,.S.-J^ 
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I 1 ... I 

A 0 ... 0 

0      A       ...       0 

0      0 A 

Figure 5-1.   The expanded interference matrix. 

assigned to a register (maintaining the feasibility of the partial solution) jntil the 

resulting partial solution is fathomable. At this point the complete solution with the 

largest value for the objective function is remembered and all completions of the 

current partial solution are implicitly enumerated. The last TN assigned in the partial 

solution is then removed from its register and the procedure :; repeated from the 

fathoming step.' The process terminates when all solutions have been enumerated, 

i.e. when the initial (empty) partial solution is fathomable. 

5.2.1 Tho fathoming procodura 

The fathoming procedure is fairly simple. If the current partial solution is Sp, 

then let us define S^ to be the completion of Sp which assigns to registers all TNs 

which are free in Sp. If the value of the objective fui ttion associated with Sp is not 

greater than the largest objective function value yel observed, then there is no 

completion of Sp which will produce a larger value and Sp Is fathomed. Othe-wise Sp 

is not fathomed and the procedure of Figure 5-2 will try to assign the next TN to a 

t If there is a possibility that assigning the removed TN to a different register may 
produce a better feasible completion then this may be t'ied. 

-j'v-"1"—*:   -'■- ■'-' ■^"-^-  
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set last 1 to 0 
free all later 

elements 

generate new partial 
solution by assigning 
a value to the first 

free element 

yes 

yes 

JL 
remember new 

solution 

Figure 5-2.  The Branch and Bound Algorithm. 
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register. Regardless of whether the attempt to assign the next TN to • register is 

successful, the result is a new partial solution derived from the old solution by 

assigning a vaLe to one of the free elements of the old selection vector. This new 

partial solution is then presented to the fathoming procedure. 

5.2.2 Backing up 

When a partial solutior. is fathomed, the next step is to "undo" the mos'. recent 

assignment of a TN to a register reflected in Sp, i.e. the last 1 is changed to 0. All 

laments of Sp following the changed element are free. An attempt is now made to 

fathom the nev partial solution. Following this procedure, the partial solutions 

fathomed have more and more free elements. Wh^n a partial solution containing k 

free «lements is fathomed, 2k solutions are implicitly enumerated. 

5.2.3 Assigning another TN to a register 

The process of attempting to assign a new TN to a "-egister consists of trying 

sf veral steps to find a location to which the TN can be assigned without interfering 

with any TN already assigned. In the following discussion of the steps, a register is 

said to be open it there ar? any TNs assigned to it and cbsed otherwise. 

1. If the TN has a preference for assignment then try to assign the TM 

to one of N" - prefered location1:. (This step is expanded in Section 

5.2.4.) 

2. Try to find an open register to which the TN can be assigned. 

3. If there are any closed registers, open one and assign the TN to it. 

4. If steps 1 through 3 fail to assign TN to a location then the attempt is 

unsuccessful. The new partial solution will have the corresponding 

element of the selection vector equal to 0. 

. 
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5.2.4 Honoring preferences 

As discussed in Chapter 2, some TNs are "prefe-enced" to other TNs. The 

intent of a preferencing operation is to indicate that there is some additional benefit 

to be gained by assigning the * . TNs to the same location, be it register or memory. 

In terms of the generated code, failing to honor a preference means that at some 

point a value will have to be moved from one TN to the other. 

Suppose the TN being considered by the assignment algorithm is T and that T 

has preferences P^ . . ., ?„.'* The algorithm for honoring preferences iterates 

through the P|V If any Pj has been assigned to a register and T can be assigned to 

that register, then tht assignment is made and the preference is honored. It may 

happen that none of the preferences has been assigned to a register, or that T is 

unable to fit into any of the registers to which Pj's have been assigned, In these 

cases the preference usually cannot be honored. However, it may also happen that 

some preference P; has been assigned to a memory location. If the profit associated 

with T is not greater than the cost of a move from memory to a register, then 

assigning T to the preferred memory location will result in a better overall solution. 

If nr ne of the preferences have been assigned to locations or T cannot fit into any 

of the preferred locations then the preference cannot be honored. 

Note that at this point the only TNs which have been assigned to memory 

locations are those which are restricted to be in memory. No feasible solutions which 

might have higher profit are lost when a preference for a memory location is honored 

as long as the profit loss due to such an assignment is not greater than the cost of a 

move from memory to a -egister. 

t In a typical Bliss-11 program, the value of n is small (2 or less).   Constructs can be 
generated, however, which result in large numbers of preferences. 
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5.2.5 An intuitiv« view of the procadur» 

An Approach to Global Register Allocation 

The above procedure can be viewed as a packer operating on a vector of TNs. 

The TNs in the vector are arranged in order of decreasing importance. As we have 

described importance this means that the TNs we would most like to have assigned to 

registers are considered first. In this way we are more 'ikely to be able to assign 

the important TNs to registers because the registers are "less crowded" when the 

important TNs are considered. The packer considers each TN in the vector in turn, 

assign! tg as many as possible to registers. When the end of the vector is reached, 

an initial complete solution has been generated. The packer has assigned as many 

TNs as possible to registers, given the order in which they were considered. The 

only fact that keeps us from stating that this is an optimal solution is the possibility 

that -«»moving some set of TNs from the registers might allow the assigning of some 

other set of TNs with a larger combined importance. 

After producing the initial complete solution, the packer works backward in the 

vecvor reconsidering the assignments. At each step the packer asks whether 

removing the current TN from its register might lead to a more profitable complete 

solution. Sometimes the answer is that there can be no more profitable completion 

and the packer continues backward in the vector. At other times there is a more 

profitable completion nd the packer moves forward in the vector again to investigate 

the feasibility of the more profitable complet'on. When there is no more profitable 

completirn, all of the sc unions in all completions are implicitly enumerated. The 

algorithm terminates when there are no solutions (i.e. completions of the empty partial 

solution) which can produce a larger profit than the most profitable solution already 

obtained. 
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5.3 The oracticality of obtaining an optimal solution 

The algorithm desci ibed above is essentially the same as the OPTSOL algorithm 

described by Day for sol' ing the many-one assignment problem. Day proves that the 

algorithm terminates only after enumerating all solutions and yields an optimal 

solution. Mitten [Mit7C} also gives a proof of the general branch-and-bound 

procedure, ^ay reports experimental reiuUs of using OPTSOL to solve 400 randomly 

generated assignment problems. The results show fiat the time required to solve a 

problem is a function of both the size of the problem (number of TNs) and the density 

of nonzero elements in the interference matrix C. Execution time was directly related 

to problem size and inversely related to C matrix density. The disheartening result is 

that the average execc-tior ever all densities of C are large and grow very rapidly. 

For one register the following average execution times (on an IBM 360/65) were 

observed 

number TNB lime (sec) 

24 <1 
32 2 
^8 6 
64 46 

We see that for moderate sized problems the execution times quickly become 

unreasonable. Day indicates tha* ror more than one register the times grow much 

faster. Appealing to the argument of Section 4.3, we cannot expect that the branch- 

and-bound algorithm to guarantee an optimal solution in a reasonable amount of time. 

What we can do is measure the rate of progress of the algorithm toward termination 

or the fraction of the total number of solutions enumerated.   Care in choosing the 

t In real programs observed by the Bliss-il compiler, the number of TNs per routine 
averages less than 20 because routines tend to be 3mall. However routines having 
50 or more TNs are fairly common. 

■—*  -*-—*- nrini-iiiriki 



jiiMiiM    mmmmum '^mrnmammmmm .uinw*pii pw.i.ii. in.i.iij.i ■v^tf^p^K^p^Rvvwm 

78 
An Approach to Global Register Allocation 

order in which TNs are added to partial solutions will increase the probability that an 

optimal or near optimal solution it found early in the search.   The branch-and-bound 

procedure is more effective if a feasible, near optimal solution is taken instead of the 

empty   solution as  the starting point.   Day gives a procedure  for  finding  such a 

solut-nn  quickly  and notes  that the profit of  the initial  solution is  almost always 

greater than 907. of the profit of an optimal feasible solution.   Day suggests that the 

initial solution is a close enough approximation to an optimal solution to make it usable 

and can be computed quickly enough to make it practical.   It should be noted here 

that Day's results are for randomly generated profits and interference matrices.   The 

initial solution described in Chapter 6 for real programs almost always produces an 

optimal solution. 

5.4 Formulation of the more general problem 

Section 5.1 describes the formulation of the general integer programming 

problem for assigning TNs to one of several registers by replicating the profit vector 

and interference matrix for each register. In this section we show how this same 

reasoning can be used to express a much more general problem. Thus far we have 

assumed that there are only two classes of storage available for TNs, a limited 

number of identical registers and an unlimited number of memory locations. 

Suppose that the machine for which we wish to compile code has more than two 

classes of storage. For example the Umvac 1108 has 47 registers available to user 

programs. Of this number 11 are index registers, 12 are arithmetic accumulators, 4 

are both index registers and accumulators, 17 are fast memory locations, 2 have 

special functions in certain instructions and 1 is modified by real time clock interrupts. 

In such a machine, there are several levels of trade-offs when trying to decide which 

of the many classes of storage should be u.sd for any particular TN. 

._A..^\.^.^. 
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♦ r - (r, r  ] of m profit values such that n is the 
For each TN compute a set r - l^, . . ., rmj 

worst case solution.  The problem is now 

maximize 
subject to 
where 

z - pV 
A*x*<l 

•ij « {0,1} 
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chapter, Is the problem o( binding • 

5.5 Summary of packing 

The packing problem, as described in this 

concerned with the solution o, the general packing problem, concentrated on 
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[    > 

and one generally uiidesirable. We have shown that the problem can be formulated 

as an integer programming problem and that the form of the problem is essentially the 

same regardless of whether we consider one register, several registers, or several 

classes of storage each containing several distinct locations. Section 5.2 described a 

branch-and-bound procedure which yields an optimal solution to the problem. We 

have also noted that while the number of possible solutions to be examined by the 

procedure is exponential in the number of TNs, the algorithm terminates much sooner 

if we can determine a feasible, near optimal solution from which to begin the search 

of the solution space. 
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Chapter 6 

A Test Case 

This chapter will describe the implementation of the TNBIND algorithms in the 

compiler for Bliss-11, a dialect of Bliss [Wul71] for the PDP-11. The essential 

features of both the language and the machine are describe below, The standard 

version of the Bliss-ll compiler uses an initial version of TNBIND and thus provides a 

good comparison for some of the more advanced ideas. The fact that the language is 

Bliss does not have a significant effect on the implementation; the language 

dependencies for any AlROi-like language would be nearly identical. The target 

machine has significant effect on the TNBIND algorithms, but mainly influences the 

cost measures and the kinds of targeting and preferencir.g done. 

The decision to use Bliss-11 as a test has both advantages and disadvantages. 

On the positive side, the existing compiler is highly modular and it was easy to 

"unplug" the sxisting register allocation phase and "plug in" the new TNBIND with 

relatively few changes to the rest of the compiler. This would not have been the 

case with a compiler which started with a more traditional register allocation method. 

It is also intended that the new TNBIND will become a part of the standard compiler 

thus providing real world benefits. On the negative side, in order to produce a 

working compiler, TNBIND had to incorporate all of the functions provided by the 

original version. These included assigning TNs to those nodes which needed them, 

generating linear block information, and assigning labels for the final code stream. 

The fact that the TNBIND algorithm has been implemented for only one language- 

machine pair raises the question of whether the algorithms would perform as well on 

other languages or, more importantly, other machines.  TNBIND does not include some 
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of the more traditional register optimizations because these were not critical to the 

goals of Bliss-11. Chapter 7 will discuss how these operations can be easily 

incorporated into the TNBIND philosophy. 

6.1 About Bliss 

Bliss falls into the class of Algol-like languages. It has the features normally 

associated with such languages: block structure, recursive routines, loops, 

conditionals, local variables. Bliss was designed as a systems implementation 

language and therefore presumes little or no runtime support. The emphasis is on 

flexibility and runtime efficiency. Bliss provides the p.ogrammer with the ability to 

perform arbitrary address calculations at runtime and to address parts of words when 

appropriate. More complete descriptions of the language may be found in [Wul71], 

[DEC74], and [Wul75]. 

The programming style of Bliss tends to be considerable different from Algol or 

other languages.   Because there in little overhead in routine calls, programmers are 

encouraged to wr.te small routines.   In addition the control structures observed in 

Bliss programs tend to be well structured because there is no goto statement in Bliss. 

The control structure of Bliss makes the linear block analysis quite easy.   The smaH 

size of the routines usually means that the numbers of linear blocks and TNs are 

small.   These two factors combine to make the first pass implementation of TNBIND 

acceptable in terms of computing time required.   As routines get larger and have 

more linear blocks and TNc, the time required for the TNBIND algorithms increases 

dramatically,   On the one hand this tells us that we will need better algorithms in 

order to deal effectively with large routines.   On the other hand we can argue that 

smaller  routines and simpler control  structures are the "wave of  the  future," and 
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therefore it is not unreasonable to design algorithms which perform better for small 

routines than for large routines. 

6.2 About the POP-11 

.The PDP-11, manufactured by Digital Equipment Corporation [DEC71], falls into 

the class of "mini-computers." It has a 16-bit word length which is addressed in units 

of 8-bit bytes; thus a 16-bit word can address 216 bytes or 215 words.  Instructions 

come in 0- 1- and 2-operand formats and may be 1, 2, or 3 words in length.   Each 

operand uses six bits of the first instruction word and may require one additional 

word to hold a 16-bit address or index quantity.   The PDP-11 has eight registers; six 

of these are general registers, one is used by both hardware and software as a stack 

pointer,   and   one  is   the   program  counter.    Instructions   whose   operands   are  in 

registers are both faster and smaller.   The fact that any instruction can have any of 

its operands in registers or memory locations means that almost all TNs are of the 

kind that can be assigned to either a register or memory location.   This makes the TN 

packing a simple cost minimizing procedure with few restrictions on the locations to 

which any TN may be assigned. 

Bliss makes use of locations in the stack for local storage when there are no 

registers available. Because the PDP-11 hardware uses the same stack, e.g. to save 

the processor state during an interrupt sequence, all stack locations must be allocated 

before they are used. A stack location is allocated when it is at or below the location 

pointed to by the stack pointer register. Stack locations are allocated explicitly by 

adding a constant to the stack pointer register or implicitly by pushing parameters. 

 ^-r- 
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6.3 Bliss-U implementation of TNBIND 

In the Bliss-11 compiler TNBIND is presented with a tree representation of a 

routine to be compiled. The tree is traversed in a recursive depth-first tree walk. 

There is a separate routine for each type of troe node. Several of these routines 

were shown in Chapter 3. A switching routine, TNP, performs some common functions 

(like updating the Icn value) and calls the appropriate routine for each node, 

language. A complete listing of the TNP routines tor Bliss-U appears in appendix A. 

The interesting parts of TNBIND are those that are affected by decisions made by the 

language designer/implementer. Below we discuss two areas in which non obvious 

processing is done in the Bliss-11 version of TNBIND. 

6.3.1 Subroutine parameters 

In most machines there are several ways to call subroutines and pass 

arguments. In Bliss-U the programmer may specify whether arguments to a 

subroutine are to be passed in registers or on the stack. The caller is responsible 

for removing parameters from the stack after a call, while the callee is responsible 

for restoring the contents of any registers used by its code (except for the register 

in which the value of the subroutine is returned). In processing a subroutine call 

node, TNBIND performs the following actions for each argument. 

1. Call TNP to do TN processing for the argument expression. 

2. Generate a new TN and assign it to the location in. which the argument 

will be passed (either a specific register or a stack location). 

3. Preference the TN of the argument to the TN of the location. 

TNBIND thus simulates the machine code implementation of the subroutine call which 

might be expressed as 

-- 
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for each argument do 
begin 
compute value; 
store value in proper place 

end; 
call subroutine 

Lifetimes are generated at this time for the TNs which identify the argument 

locations. These lifetimes extend from the Ion value at which the argument will be 

stored to the Ion value of the actual call. This prevents the argument locations from 

being used by any computations necessary to produce succeeding argument values. 

These TNs are part of the initial state input to the packing phase. 

After the subroutine call, the locations used for any arguments passed on the 

stack remain allocated.  Rather than deallocate these locations immediately, the caller 

keeps track of the number of such locations on the stack at all times and adjusts the 

stack pointer only when two or more flow paths join and the stack depth is not the 

same on all of the paths.  This has two effects:  the number of instructions necessary 

to adjust the stack pointer after subroutine calls is reduced, and the locations on the 

sta^   may be used for temporary storage by later calculations or local variables. 

These   locations   are   called   dynamic   temporaries   because   they   are   dynamically 

allocated and deallocated at run time.   Since the allocation of these temporaries is a 

byproduct of a routine call, there are no additional instructions needed to allocate 

these  locations.   Thus we have a group of dynamically allocated locations whose 

allocation anci deallocation overhead costs are zero. 

Temporary locations, i.e. registers and stack locations, may be either "open" or 

"closed". In general a location is "open" when it is available for use in a particular 

routine.   When refering to registers, "open" means that some TN has been assigned to 
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the register and consequently the contents of the register will have to be saved and 

restored. When refering to stack locations, "open" means that the location is 

allocated, i.e., below the current value of the stack pointer. Registers are either 

open or closed throughout a routine, but stack locations may be open and closed at 

several points within the routine. Each location is represented by a list of the TNs 

assigned to the location. A location is closed when its list is ^mpty; dummy TNs are 

used to mark the locations as open. When a dynamic temporfry is closed, a dummy 

TN with a lifetime corresponding to the closed period is added to tne appropriate list, 

thus making it unavailable for use by other TNs during the closed period. 

6.3.2 The store operator 

SimpleStore (Section 3.1.3) is very important in Bliss-ll. Because the PDP-11 

can perform general memory-tc-memory operations, a great many store operations 

f.re simple, A store operation may be cimple even when the left hand side is an 

expression or an own or external * ariable. The important feature of the SimpleStore' 

predicate is that the machine specific details of which operations are simple is 

encoded entirely within the predicate. It is not necessary, for example, to moJify the 

routine processing the "+" operator to take account of the fact that many "+" 

operations are simple. The routine processing the store operator evaluates the 

SimpleStore predicate for each store operation and performs the binding when 

possible. When the store is not simple, the right hand side is preferenced to the left 

hand side jus( in case the lifetimes of thw TN's involved are such that the binding is 

possible after all. 

-■' »~.^' --■ ■-■  --^ -•-■ 
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6.3.3 Cost computations 

The Bliss-11 vsrsion of TNBIND counts memory references as the cost of 

accessing a IN, The counts include both the reference to the actual value and the 

reference to memory which is necessary to pick up an address or index value in a 

multi-word instruction. This measure tends to minimize both execution time and code 

size by putting heavily used TNs in registers, which results in faster and shorter 

instructions. The size of the object code is used as a static indicator of the 

effectiveness of the optimizations. 

A TN assigned to a register requires no memory references for a direct access 

and one memory reference for an indirect access. A TN assigned to a memory (stack) 

location has a cost of two for a direct access (one to get the stack offset and one to 

access the stack location) and three for an indirect access. Other forms of access 

are similarly assigned costs. Indexing, for example, has a cost of two if the TN is in a 

register because the hardware will handle the addition. If indexing is required for a 

TN in memory, the hardware function will have to be simulated by sortware which has 

a cost of between five and nine depending on whether there is a free register at the 

moment the indexing is required. 

During the TN processing tree walk, a minimum and maximum cost Is computed 

for each TN.   The cort of a TN is the sum of the costs computed for that TN by the 

t Because TNBIND cannot always assign all TNs to registers, the code generation 
phase of compilation is sometimes presented with these nasty problems. In the case 
of indexing the code generator will load the value of the TN into a free register if 
there is one and then proceed normally. If no register is available, then code must 
be generated to explicitly simulate indexing. This predicament is a result of the 
decision that a TN is assigned to a single location throughout its life. There may be a 
register available at the time the indexing is needed, but unless the register is 
available throughout the lifetime of the TN, it will not be used by TNBIND. It is 
comforting to note that in real programs it is seldom, if ever, necessary to index by a 
memory location. 
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nodes that reference it. The cost computed at a node is the product of the cost of a 

single reference and the number of references required to execute the function 

represented by the node. 

6.3.4 Lifetimes 

During the TN processing, creation ruu use points x..\ terms of Ion values) are 

noted for each TN through calls on NotöCreation and NoteUse as described in Chapter 

4. NoteCreation and NoteUse also oiled some additional information to simplify the 

lifetime computations. 

The first (smallest Ion valu?) and Idst access are noted for each TN, and TNs 

which have more than one creation or are accessed in more than one linear block are 

flagged as possibly having lifetimes composed of disjoint program segments. As 

described in Chapter 4, this partitions the TNs into interesting and uninteresting 

subsets. The lifetime of an uninteresting TN is simply all of the Ion values between 

the first and last accesses. Most compiler generated temporaries, notably those used 

for expression evaluation, fall into the uninteresting subset because, in general, they 

have one creation and one or more uses within a single linear block. The interesting 

TNs are those whose lifetimes may consist of noncontiguous sequences of Ion values. 

These TNs are subjected to the complete lifetime computation describee! in Chapter 4. 

There are two types of TNs which are not treated by the lifetime phase 

because their lifetimes jre determined when they are generated. Tt.ese are the TNs; 

which hold the arguments to a routine call and the dummy TNs used to close the 

dynamic temporaries. 
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6.3.5 Ranking 

The ranking phase computes the difference between the maximum and minimum 

cost measures for each of the TNo which may be assigned either to a register or to a 

memory location. This value is the profit associated with assigning the TN to a 

register. The output of the ranking phase is a list of all of these TNs sorted by 

' ofit. Those TNs which must be assigned to a register but which do not require a 

specific register are added to the list after being assigned arbitrarily large profit 

values. 

6.3.6 Packing 

The packing ph^se is responsible for the actual binding of TNs to locations. 

The objective is to maximize the sum of the profits of the TNs which are assigned to 

registers. A secondary goal i,i cases where all TNs are assigned to registers is to 

minimize the number of registers, since the corients of any register used will have to 

be saved and restored. 

The packing phase first assigns »W TNs which require specific registers. These 

TNs represent arguments passed to other routines in specific registers, the values 

returned by other routines, or a request from the programmer to put some variable in 

a specific register. The packing phase then deals with the sortcj list of TNs 

prepared by the ranking phase The algorithm used is a slightly modified 

implementation of the algorithm described in Chapter 5. 

The TNs are considered to be elements of a vector sorted by profitability with 

the most profitable TN first. Corresponding to this vector is a binary vector 

indicating (with I's) which TNs are assigned to registers.   The binary number formed 

r.        • -   
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by the ones and zeros of this vector can be taKen as a numbering of the solutions of 

the problem of which TNs are bound to registers. Thus when there are n TNs to be 

considered, there are 2n solutions. Ignoring for a moment the TNs which are 

restricted to specific registers, there are really (m+l)n solutions where m is the 

number of registers available. Nearly not all of these solutions are feasible. The 

goal Of the packing algorithm is to select the most profitable feasible solution. 

There are several approaches to selecting a feasib;? solution, Below are listed 

three possible approaches. The three are given in order of increasing complexity 

and computing time required. This is also the order of increasing probability of 

producing an optimal solution since each method considers a larger portion of the 

solution space than the preceding method, 

1. Beginning with the most important TN, try »o bind each TN in turn to 

some register. When a TN is bound to a register (using a spatial 

analogy we say it "fits") it remains there and the corresponding 

element of the binary vector is set to one. At the end of the TN 

vector the solution i epresented by the binary vector, i.e. the one we 

have built during the algorithm, is used, 

2. Same as 1 except that when a TN will not fit into any register we try 

to move the TNs with which it conflicts into other registers. This 

operation, called resliuffUng, is aimed at correcting decisions made 

earlier in the algorithm. Whenever we find a register into which a TN 

will fit, we bind it there without regard for whether it might also fit 

into some other register. 

3. Same as 1 initially. When the end of the vector of TNs is reached, we 

back up in the vector and set the corresponding binary vector 

element to zero. We remember the profit value and the bindings of 

the most profitable solution yet obtained. If it might be possible to 

obtain a more profitable solution by binding the TN just removed to a 

different register or by not binding it to a register at all, then trying 

this alternate solution by moving forward in the sequence again as 

described in 1. 

I ■■       I >MI1MM MMh^A   ■ -  «MM  '  ttlM . 



A Test Case 91 

The reshuffling operation described is method 2 is interesting. The term is 

derived from the effect on the TN assignments. No TNs are removed from registers 

or added to registers. The TNs assignments to specific registers are merely 

permuted or shuffled. The reshuffling in method 2 is called "bottom level" because it 

is invoked at the bottom of the packing search. In method 3 the reshuffling is implicit 

in the search algorithm, but is performed at the top level, i.e. a TN «ssignment is only 

chan&«»d to another register when all when the search is backing up. 

■Method 3 is equivalent to the branch and bound procedure described in 

Chapter 3. It will always produce an optimal solution, but may explore a large 

fraction of the (m+I)n solutions in the process. Success in using procedure 3 

depends on being able to decide quickly whether a new path is worth exploring. It is 

easy to tell whether the best completion of a partial solution will produce a solution 

with a larger profit than any solution yet obtained. The key is to able to determine 

the profit of the best feasible completion without generating the completion. For the 

purposes of measurement and comparison, all three methods were implemented. The 

results are reported in Section 6.4. 

When a particular TN, t, is to be packed by the packing procedure, the available 

locations are considered in a particular order.  The order of consideration is 

1. Register preference. If t has been preferenced to some t' and t* has 

already been bound to a register, then the register to which t' is 

btund is considered. If reshuffling is being done at the bottom level 
then it is invoked if necessary. 

2. Stack preference. If t is preferenced to some t' which has been 

bound to a stack location, then the stack location is considered only if 

the profit associated with the TN is no larger than the cost of loading 

or storing a register (see Section 5.2.4). 

i 
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3. Open register. The open registers are considered in an arbitrary 

order.  When applicable, bottom level reshuffling is invoked. 

4. Closed register. A closed register is selected and opened. Ideally 

this step is only invoked when the profit associated with t is greater 

than the cost Of saving and restoring the register. In practice it is 

almost always correct to open another register because the register, 

once opened, can be used for TNs to be packed later. 

After the packing algorithm terminates there may be TNs which have not been 

bound. These TNs are bound to stack locations. Dynamic temporaries are used when 

possible. As a last resort the TN is bound to a static temporary, a stack location 

which is explicitly allocated/deallocated at routine entry/exit. 

6.3.7 A new kind of restriction 

Becaur.e there fire usually enough memory locations there is no incentive to 

expend   large   amounts   of   computing   time  to   produce  an   optimal   packing   of   the 

t remaining TNs into the smallest number of memory locations. 

Because of the nature of the variable length instructions of the PDP-11, it is 

sometimes desirable to load the address of a frequently used variable or a frequently 

called routine into s register and then reference the variable or routine indirectly 

through the register. The semantic analysis phase can generate TNs to hold the 

addresses when the number of accesses passes some threshold. A problem arises, 

however, if the solution produced by the packing algorithm does not bind one of 

these TNs to a register. If a TN used to hold a fixed address is bound to a memory 

location, the resulting code is worse (by any metric) than if the TN had not been 

t Clearly we can produce programs which require any arbitrarily large number of 
memory locations to hold TNs. The concern here is to do very well under ordinary 
circumstances and not worry too much about "pathological" programs. 
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generated. In order to accommodate this type of TN, a new type of restriction was 

devised. Just as some TNs are marked "must be a register" or "must be a specific 

register," these TNs generated to hold addresses are marked "register or forget it" 

meaning that if binding to a register is not possible then the TN should not be bound 

to a stack location but rather should be bound to the variable in question, This type 

of TN opens the way for including many of the classic register optimizations into the 

TNBIND philosophy. Because these optimizations are not included in the Bliss-11 

compiler, they will not be discussed here; Chapter 7 will describe these optimizations 

and how they would be included in TNBIND. The possibility of including these 

optimizations increases the credibility of TNBIND as a method for register allocation 

for other languages and particularly for other machines. 

6.4 Measurements of TNBIND 

This section will present a comparison of several variations on the TNBIND 

philosophy. The intent is to measure TNBIND, in terms of quality of output code and 

compilation speed, as compared with more traditional methods of register allocation. 

We also want to explore the space of possible TNBIND algorithms not included in the 

Bliss-U compiler. It is not reasonable to build several register allocators merely in 

order to make these comparisons. Instead we simulate the actions that would be 

taken by several different register allocators by "turning off" various pieces of the 

TNBIND optimizations. 

The compilers we will be considering are: 

1. PB - The "production version" of the Bliss-11 compiler. This compiler 

is in use daily for many programming projects. It incorporates an 

initial   version   of   TNBIND  with   simplified  lifetimes   and   has   been 
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carefully tuned to produce high quality code over a perio1-! of several 

years. 

2. TB - The compiler with all TNBIND features enabled. This includes the 

matrix closure to produce exact lifetime representations and the full 

branch and bound search for an optimal solution to the packing 

problem. (As a practical matter, the search was limited to a small 

fraction of the solution space by limiting the number of solutions that 

were examined. Because of the nature of the search, finding an 

optimal solution for very large routines could take many hours of 

computing time.) 

3. TBR - The same as TB except that simplified reshuffling is done at the 

bottom of the search rather than the top. That is, when a TN will not 

fit into any register or will not fit into a preferred register, a search 

is made to see if moving any one TN would allow the fit. This action 

brings the reshuffling closer to problem it attempts to solve at the 

cost of not enumerating all possible solutions. 

4. TBS - Instead of the complete enumeration in the packing phase, TBS 

uses a simple, one pass algorithm in which the packing of each TN is 

attempted only once along with the bottom level reshuffling of TBR. 

The TNs are considered in order of decreasing cost. 

5. DUMB1 - All of the "clever" parts of TNBIND are disabled. In 
particular 

a. All lifetimes are taken to be continuous from first access to last 

access. 

b. TNs are considered for packing in order of first access. This 

simulates a register allocator making a pass over the object code 

assigning registers as they are needed. 

c. All "register or forget it" TNs are forgotten. 

d. Preferencing is turned off 

e. There is no attempt at reshuffling. 

f. No user declared local variables are assigned to registers. 

6. DUMB2 - This is DUMB1 with most of the other optimizing features of 

the compiler turned off. This gives some idea of the code that might 

be compiled by an unsophisticated compiler. The rationalization for 

this is that Bliss-11 has many optimization features that tend to be 

partially redundant, i.e., when one optimization is disabled, another 
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optimization may partially compensate to prevent an accurate 

assessment of the effect of the disabled optimization. Optimizations 

are not generally additive; the whole is less than the sum of the 

parts.  The additional features disabled in DUMB2 are 

a. Common subexpression recognition. 

b. Peephole optimization. The last phase of compilation which 

performs transformations on the object code to produce 

equivalent, but more efficient, sequences of instructions. 

There are some optimizations in the compiler that cannot be easi'y disabled for 

the purpose of these measurements. The most notable of these is the extensive 

special case analysis performed in the code generation phase. 

6.4.1 The programs 

Five programs with a total of 128 routines were selected for the 

measurements. With one exception these are "real" programs as opposed to 

programs written explicitly to test the compiler. The programs were written by five 

different authors and thus represent somewhat different programming styles. The 

authors have spent varying amounts of time tuning their programs to th^ 

optimizations performed by the standard compiler. The five programs are described 

briefly below. 

CODGEN. The code generation phase of a FORTRAN compiler. Although this is a 

"real" program in the sense described above, it has been used as a benchmark of the 

progress of Bliss-11 over the last three years. 

SPQQK. A daemon process which periodically examines the state of an operat'ng 

system.   This program was under development when the measurements were taken. 

EVLSTK.  The stack evaluation modu'e of an interactive interpreter. 

TXQMS.    A  simple  queue  management  system.   This  is one  of  a  series  of 
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programs designed to test the original Bliss-11 compiler. 

KA612. One module of a powerful interactive debugging system designed for 

us« with Bliss-ll programs. This program contained the largest routine in any of the 

test programs (>500 words of code). 

6.4.2 Th9 numbers 

The cost measures used for Biiss-11 are desifned to minimize code size for 

two reasons: (1) in a computer with a small addressing space such as the PDP-11 

minimal code size is important, and (2) in the PDP-11 minimum code size almost always 

means minimum run time. In the discussions that follow, the terms "less code" and 

"better code" are taken to be synonymous. 

Figure 6-1 shows the code sizes proouced by PB and the three TBx compilers 

Each column shows the absolute number of words of code produced and the ratio of 

this number to the code size produced by PB. PB is taken to be a state-of-the-art 

compiler against which the other compilers are measured. The DUMB* compilers are 

not shown in this figure because they are not really comparable to the optimizing 

versions. 

Figure 6-2 shows the processing times in seconds for the TNBIND portions of 

the four optimizing compilers as well as the ratios to the PB times. Again, the DUWBx 

compilers are not included because their times are not representative of the times 

that wo.ild be observed from an unsophisticated compiler. This is because the DUMBx 

compilers contain all of the generality of the more complex compilers with only the 

benefits removed. 

In figure 6-3 we see the ratios of the overall compile times to the P9 compile 

i —Kiln    iiiiiiiriiiiiiitiirlrlMiiilKiiiiMi aihiiniiimirtnintf'r'iräiiiiin lijaüaftiim^Mi  1 ij.hM-^^^^^^M'^a^^^W..... .^- ».„...^JM^Ito 



r 1    ■ 

A Test Case 97 

. 

CODGEN 
SPOOK 

EVLSTK 

TXQMS 
KA612 

total 

PB 73 TBR TBS 
2234(100) 2235(100) 2226(100) 2224(100) 

627(100) 654(104) 649(104) 649(104) 

1245(100) 1190(96) 1181(95) 1188(95) 

302'J 00) 299(99) 301(100) 302(100) 

2089(100) 2141(102) 2138(102) 2136(102) 

6497(100) 6519(100) 6495(100) 6499(100) 

Figure 6-1.  Code sizes (percent of PB size). 

CODGEN 
SPOOK 

«EVLSTK 
TXQMS 
KA612 

PB TB T3R TBS 
14.6(100) 69.7(477) 35.2(241) 32.9(225) 

3.5(100) 12.4(354) 8.3(237) 7.7(220) 

6.5(100) 75.6(1163) 27.7(426) 26.8(412) 
1.5(100) 9.7(647) 3.3(220) 3.1(207) 

17.2(100) 339.5(1974) 310.6(1806) 247.7(1440) 

Figure 6-2.   Seconds of TNBIND run time (percent of PB time). 

PB TB TBR TBS 
100 154 126 125 
100 131 128 128 
100 274 173 154 
100 176 132 137 
100 314 309 280 

CODGEN 
SPOOK 

EVLSTK 
TXQMS 
KA612 

Figure 6-3. Ratio of total compile times (percent). 

time.   This is a measure of how the more complex TNBIND operations affect the total 

compile time. 

Figure 6-4 shows a breakdown of the differences in routine size by overall 

size of the routine. The numbers represent the difference produced by the "best" of 

the TBx compilers using PB as a base. By "best" we mean that the size difference 

reported is the difference between PB and the smallest amount of code produced by 

and on the TBx compilers.  All 128 routines are included. 
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Size number size difference 
from PB observed numb er of routi nes 

1-10 30 no differences 

11-25 35 -5 
1 

-1 
4 

0 
28 

>3 
1 

+4 

1 

26-50 29 -3 -2 -1 0 + 1 +3 +4 +6 +7 
1 1 18 4 1 1 2 1 

51-100 15 -6 -5 -4 -3 -2 0 +6 +15 
1 1 1 2 1 7 1 1 

101-200 14 -36 -11 -6 -5 -a ^3 -2 -1 0 + 1 
1 1 2 1 i 1 i 1 3 1 

>200 5 -23 0 ♦1 +6 +20 ♦24 
1 0 1 1 1 1 

+6 
1 

Figure 6-4.   Differences in code size by routine. 

code s si-^e run time 
DUMB1 DUMB2 DUMB1 DUMB2 

2679(120) 2888(129) 15.6(107) 14.6(100) 
760(121) 894(143) 4.5(129) 4.2(120) 

1651(133) 1924(155) 9.0(138) 9.1(140) 
414(137) 480(159) 2.2(147) 2.2(147) 

2889(129) 3642(151) 19.1(111) 19.0(110) 

C0DGEN 
SPOOK 

EVLSTK 

TXQMS 
KA612 

Figure 6-5.  Code sizes and TNBIND runtimes for DUMBx compilers. 

Figure 6-5 shows the code sizes and compile times produced by the DUMBx 

compilers along with the percentage of he PB sizes and times. These numbers do 

not represent actual compilers and therefore should not be taken to be the results 

one might obtain from compilers producing code with the same degree of 

sophistication. In particular the r^n times of the DUMBx compilers are slightly larger 

than the run times for PB.   The run times for the DUMBx compilers are useful only for 
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comparisons with the TBx times to see the costs the particular operations omitted in 

the DUMBx compilers. 

6.4.3 Discussion 

We see from Figure 6-1 that there is relatively little difference in the code 

sizes produced by the PB, TB, TBR, and TBS compilers. This may be attributed to the 

fact that the TBx compilers actually add relatively little to the TNBIND processing 

already performed by PB. The point of the comparison is that the TNBIND in PB has 

grown piecemeal over the last three years while the TNBIND in the TBx compilers is 

the product of about a month's work. Working from the general model it was 

possible in a short time to produce a TNBIND that compares favorably with a finely 

tuned production compiler. 

Although we might expect that the code quality (size) would get progressively 

better as we moved from TBS through TBR to TB, we see from Figure 6-1 that this is 

not always true. One reason for this anomaly is the interaction of optimizations in the 

compilers. TNBIND can make optimization decisions only on the basis of the cost 

measures supplied. While these decisions are made on a global scale as far as the 

register allocation is concerned (see discussion of global vs. local allocations in 

Section 2.1), the decisions are local in the sense that they are made without 

interaction with other phases of compilation. Even optimal solutions to the allocation 

problem based on the cost measures defined within TNBIND may not produce the best 

code when considered in the context of the other compiler optimizations. 

It is interesting to note that even in the worst case the code produced by 

DUMB2 is less than twice the size of the code produced by the other compilers.   One 

-- ■-- 
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would expect that a truly unsophisticated compiler would be worse than the 

0ptim1Zing compilers by a factor of three of four at least. The fact that the DUMB 

compilers do as well as they do in the s,Ze comparison is a tribute to the opt.mization 

and extensive special case analys.s done in the other phases of the compiler. 

The data in Figure 6-2 is more disturbing.   The TBx compilers require much 

more time than the PB compiler to perform the same task and produce approximately 

the same results.   It is expected that the TBx compilers would require more time 

since they are doing more computation, but the deferences are large both relatively 

and absolutely.   Consider the case of KA612 which uses about 17 seconds for TNBIND 

in PB and more than five minutes for TNBIND in TB.   Closer exam.nat.on of the timings 

shows that the bulk of the difference is accounted for by the lifetime computations. 

PB uses a simplif.ed lifetime characterization which is computed on-the-fly (in linear 

time) during its TNP phase.   There is no increase in the cost of lifetime determination 

due to routine size.   TB uses the full matrix closure algorithm of Chapter 4 for all 

interesting TNs.   This algor.thm experiences an J increase in running time as the size 

(number of linear blocks) of a routine increases,  Nearly half of the TNBIND t.me used 

in KA612 is accounted for in the lifetime determination for a single routine.   This 

routine,   the   largest   in   the   measured  programs,  has   160  linear   blocKs   and   70 

interesting TNs.   The resulting code for the routine is 575 words from PB and 595 

words from TB.   The effect of the lifetime computation on run time can be seen in the 

differences between the TBS values in Figure 6-2 and the values for DUMB1 from 

Figure   6-5.    It   must  be  noted  at  this  point  that  the  DUMBx   compilers  are  not 

"lightening  fast" for  two basic reasons.   (1) The TNBIND phase accounts for only 

about 107. of the total compile time and therefore even reducing the TNBIND time to 

zero would not produce drastic changes overall.   (2) The DUMBx compilers have to 
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< pay the price of many of the more sophisticated algorithms, e.g. lifetimes and packing, 

without reaping the benefits. The DUMBx compilers were generated mainly to show 

code size and not compile times. 

The other major difference in runtime between PB and TB is the complete 

enumeration packing algorithm. The packing done by PB is essentially the same as 

that done by TBS. The only basic difference is that PB uses a more elaborate 

reshuffling scheme. PB will reshuffle several TNs and may recur several times in 

trying to make room for a new TN. TBS will try to reassign only one TN and will not 

recur if the reassignment is not possible. The difference between the TB and TBR 

column's in Figure 6-2 is the cost of the complete enumeration.1" In only a few cases 

did TBR examine more than the initial complete solution. The difference between the 

TBR and TBS columns is the overhead of maintaining the mechanism for the 

enumeration algorithm. TBS does no backtracking or state saving; its solution is the 

initial solution from which TB and TBR begin to search. 

In Figure 6-3 we see that the compile time for the TBx compilers increased 

over the PB time by just over a factor of three in the worst case and less than a 

factor of two in most cases. This performance is quite respectable, considering that 

this was the first implementation of a general model of register avocation. 

Figure 6-4 shows how the TBx compilers compared with PB. An example of 

how to read the table is probably the best explanation of what the data represents. 

The routines are separated into groups based on the size of the code produced by 

t As noted above, the enumeration was actually limited to a fraction of the solution to 
avoid the exponential computing time that would be required by large problems. In 
compiling programs to collect the test data, the search was limited to examining 50n 
solutions where n is the number of TNs to be packed. This limit was reached by 17 of 
the 128 routines. 
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the PB compiler. Lets consider the routines which were compiled into 11 to 25 words 

of code by PB. This is the second group of numbers in the table. The second column 

tells us that there 35 routines in this size range. In the third column we see that the 

TBK compilers produced code which was five words smaller than the PB code one 

time, one word smaller four times, the same size 28 times, three and four words 

larger one time each. The intent of V,s table is to report all of the size differences 

without making separate entries for each of the i28 routines. The routines are 

separated into groups by size to give some idea of the percentage differences. 

An interesting statistic in gauging the effectiveness of the various parts of the 

TNBIND orocedure is the relative score of the four optimizing compilers on the 128 

test routines. Each compiler is given a point when it is the simplest compiler to 

produce the smallest amount of code for a rout.ne. No points are given if all 

compilers produce the same code. Simplicity is measured by how many of the 

sophisticated TNBIND algorithms are included; thus PB is the simplest followed by 

TBS, TBR and TB.   If for some routine the code sizes produced by the compilers are 

PB    20 words 
TB    18 
TBR 18 

TBS 19 

then TBR would get one point.   Computing this measure over the 128 test routine 

gives the following ; esult: 

PB 19 
TB 6 
TBR 5 

TBS 12 

This result is interesting because it points out the import-ce of precise lifetimes as 

opposed to the sophisticated packing algorithm.   There were 23 routines for which 
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1 

better code was produced by one of the TBx compilers. Twelve times out of that 23 

the best code was produced by the addition of only the more precise lifetime 

characterization. The only essential difference between PB and TBS is the lifetirrv- 

characterization. In the test cases, TBS was actually actually a restricted version of 

TB. It is roasonable to conclude that adding the more precise lifetimes to the PB 

compiler would result in a compiler better overall than any of the four tusted. In 

reaching this conclusion we assort that the cases in which PB produced better code 

than any of the TBx compilers are due to a combination of tuning and chance. The 

tuning argument states that is is reasonable that a finely tuned simpL algorithm will 

sometimes produce better results than a more sophisticated general algorithm. The 

question of chance brings us back to the issue of compensating optimizations. TI.e 

peephole optimization phase of Bliss-11 can have drastic effects on the amount of 

code produced by combining unrelated sequences of instructions which happen to be 

identical. When a TN will fit into more than one register, we arbitrarily choose the 

first one we find. It might be that some other choice would allow or disallow 

combining sequences of instructions. Examination of the code produced by the 

various compilers showed that the largest differences (both positive and negative) 

were mainly due to the action of the peephole optimization rather than the TNB1ND 

actions. Since the packing algorithms of PB and the TBx compilers are different, it is 

not necessary that these arbitrary choices would be the same in any two compilers. 

6.4.4 Evaluation 

One of the goals of this thesis is to explore extensions to register allocation 

algorithms. In pursuing that goal we have looked specifically at the TNBIND model 

and the lifetime and packing phases of that model.   The test results have shown that 
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it is possible to produce according to the general TNBiND model a compiler which 

compares favor&bly in code quality with a state-of-the-iwrt optimizing compiler. 

The TBx compilers cannot match the PB compiler in execution speed, but the 

increase is not (with one exception) an unreasonable tradeoff for the efficiency in 

production of the compiler. A slowdown by a factor of 2-10 is tolerable for a first 

try at using the general model. Although there are no statistics generally available, 

one would expect that similar degradations in performance were experienced by the 

first automatically produced parsers. 

Another point to consider in evaluating the results is that while the lifetime 

computation is an n2 algorithm in the size of the routine being compiler, the trend in 

programming is toward smaller routines. Indeed a compiler which produces very 

good code but require« long compilation for large complex routines can be a factor in 

encouraging programmers to write smaller, more easily understood routines. In 

addition, studies such as that by Knuth [Knu71] have shown that programs in general 

are very simple implying that the complex cases which require large amounts of 

computing should be relatively rare. 
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Chapter 7 

Conclusion 

In this chapter we consider again the overall view of what is usually called 

register allocation. The view is on a higher level than that on which register 

allocation is usually discussed, and does not explicitly include some of the 

optimizations frequently performed by optimizing compilers. We will show that the 

TNBIND philosophy can easily be extended to incorporate other optimizations which 

can be expressed at the source level of the program. 

This chapter also summarizes the contributions of the thesis and considers 

directions for future research in this area. 

7.1 The TNBIND Model - Review 

The TNQIND model of temporary storage allocation is more closely related to 

the source level of the program than to the object level. As a result, the model it 

easily adaptable to new languages or machines.  The basic points of the model are 

1. Information local to some part of a program is computed, stored, and 

used over contexts larger than a single statement or expression. 

2. Within some piece of program which can reasonably be considered as 

a unit, a compiler has the responsibility to allocate physical resources 

to hold the computed information. 

3. There is no inherent difference between the intermediate results 

produced by a compiler in the process of evaluating arithmetic 

expressions and the intermediate results produced by a programmer 

in the process of performing some complex algorithm. 

Chapter 2 expanded these ideas to a model of implementation.   That model 

described the assignment of unique names (TNs) to the items of information to be 
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stored, the collection of data to deftrmine lifetimes and preferences, and finally the 

association of each TN with some physical location in the target machine. 

The advantage of the model is that it deals with representations of the source 

program which still contain much information about the semantics and control flow of 

the program. This high level analysis makes global allocations easier. Recall from 

chapter 1 that a local allocation occurs entirely within linear blocks while global 

allocations consider larger contexts. With a local allocation, interblock transfer of 

information must be via memory locations which can be fixed throughout the program 

segment being considered. Since registers are a scarce resource (relative to main 

memory), traditional compilation techniques have reserved the use of registers to 

those data items which are used only in local contexts. 

Traditional register allocation methods deal with actual machine instructions for 

which the allocator must assign registers. Without knowledge of what registers will 

be available, the code generator must compile code for the worst case. In the 

TNDIND model the register allocator, presented with the constraints, chooses a set of 

bindings of TNs to locations which will minimize the cost (maximize the profit) of the 

resulting object program. The code generator is then able to produce code which is 

specifically tailored to the TN bindings. 

The TNB1ND model was based on the compiler structure of Bliss-11. A question 

naturally arises as to what effect the adoption of this compiler structure has on the 

TNBIND concept. The lifetime, ranking, and packing subphases of TNBIND are 

independent of any change in the compiler structure. Those subphases require only 

that flow information be available and that certain decisions, e.g. evaluation order, 

have been made.   If we can determine the connection matrix and the creation/use 
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points of the TNs, we can perform the lifetime, ranking, and packing operations at any 

point in the compilation. In that sense a good deal of TNBIND is independent of the 

compiler structure. 

On the other hand, if we had not started with the Bliss-11 decomposition we 

might not have developed the model as we did. One can argue, we believe, that the 

Bliss-U structure is the "right" structure for a highly optimizing compiler. 

7.2 More traditional optimizations 

Ther^ is no reason why any optimization of register utilization which can be 

expressed at the source level of a program cannot be incorporated into the TNBIND 

model. One such optimization which has been discussed frequently is the use of a 

register to hold the value of a frequently accessed variable during the execution of a 

loop. This is done by inserting instructions to load the value into a register before 

the loop and to store the value after the loop. If it can be determined that the va'-ie 

of the variable cannot be changed within the loop then the store instruction can be 

eliminated. This is the optimization described by Lowery and Medlock [Low69]. To 

incorporate this optimization into an implementation of TNBIND we simply assign a TN 

to hold the value of the variable during the loop and add the necessary load and 

store as assignment nodes in the parse tree. The TN is is marked "register or forget 

it" so that failure to assign a register to the TN will result in the TN being bound to 

the location of the variable. Presumably the code generator in a compiler which 

includes these optimizations is clever enough to ignore requests to assign the value 

of a variable to itself. 

The addition of such optimizations at the level of TNBIND rather than at the 

source level means that the TNs generated for the optimization are considered as 
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equal competitors for the registers available to the allocator. Ve can then assert 

with reasonable confidence that choosing registers fc some such TNs and not for 

others is the correct decision. 

7.3 Contributions of the thesis 

This thesis has presented a high level model of a global register allocation 

process. The model in fact deals with the more general problem of assigning 

locations to hold computed values during the execution of a compiled program. Tne 

model is not restricted to the situation which allows only two classes of locations to 

be used for such temporary storage. The model defines a cost which is associated 

with each entity to be stored and each class of storage location. The concept of 

targeting values to particular locations is not new, but its application in terms of the 

model is different. Preferencing is a new concept and is very useful in providing 

direction to what would otherwise be an arbitrary decision. 

The fact that the registers are bound before code generation means that 

meaningful special case analysis can be profitably applied during code generation. 

The TNQIND model also provides a starting point from which to generate this phase of 

a compiler automatically. The basic knowledge needed by TNBIND is a list of what 

operands of what operations must or must not be in a particular class of storage. 

The cost measures can be as simple or as complex as the compiler designer wishes. 

It may be observed that some of the ideas reported here are also presented in 

[Wul75]. In the thesis we have taken the basic compiler structure of Bliss-11 as 

given, but we have not taken the details of the implementation.   We have developed 

t Correct in the sense that the decisions minimize the cost of the object program as 
we have defined the cost measures. 
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the general model of register allocation and explored some new dimensions of the 

solution space. The emphasis of the thesis has been on providing a framework within 

which specific solutions to particular problems can be explored. The intent is that the 

register allocator of a compiler should be produced (either manually, mechanically, or 

more likely a combination of the two) according to the TNBIND model and then tuned 

to the pecularities of the language and machine. It is expected that this tuning will 

usually take the form of adjusting the cost measures and introducing preferencing. 

Preferencing is a particularly powerful technique, because it allows us to indicate the 

code we want to generate in the normal case without precluding what we must do in 

the worst case. 

7.4 Future research 

7.4.1 Batter algorithms 

As shown by the timing data in chapter 6, the lifetime determination can become 

very costly for large routines. On the other hand, adding the more precise lifetime 

characterization to the Bliss-11 compiler produced better code in about 107. of the 

routines examined in chapter 6. We need to develop better algorithms for dealing 

with very large problems. Equally as important is the development of fallback 

positions of lifetime characterizations which are accurate but possibly less precise 

and less costly to determine. 

7.4.2 Automatic TNQIND generation 

One of the long range goal:; for research in this area is to enable the automatic 

production of optimizing compilers.   Some parts of TNBIND are independent of both 
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the language and the machine and thus could be copied directly to new environments 

(modulo the language in which the compiler is implemented). In this category are the 

lifetime determination and the basic cost collecting functions. The actual cost valups 

depend on the target machine and the desigier's criteria for optimizatior.. 

The TNP phase requires knowledge about the language to be compiled and 

some way of determining wha^ code sequences might be used to implö.nent each 

construct in the language. Some work in the latter area has been d)ne by Newcomer 

[NewyS], but further work is nocessary to iron out the differences in the interfaces 

expected by tt • various phases of the resulting compiler. 

As suggested in chapter 1, the step from the TNB1ND model to a program which 

produces a running TNQIND is "merely a matter of implementation." At the current 

time, however, a good deal of judgement is required to make (he transition. 

* 
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Appendix A 

The TNP Routines 

Listed below are the actual unadulterated TNP routines from the Bliss-il 

compiler. The interesting point is not exactly what each routine does, but that the 

operations for most node types are highly similar. The routines become complex only 

we wish to exploit special features of the hardware (e.g. in the store operator) or to 

make clever implementation decisions (e.g. routine calls). The macros TLRDEF and 

NDRDEF are used to consolidate the common features of most of the TNP routines. 

««cro TLROEMNRME.BOOY). 
routine  IO(TL)NRnE(NODE,TflRGET)m 

( ii«p CTVEC NODE,  TNUORD TfiRGET,  BODY)   .NODEIREGF] )$| 

macro NDRDEF (NRKE.BODV). 
POUtim   It) (NlDNflHE (NODE,TARGET). 

( map GTVEC NODE,  TNUORD TARGET)  BQDV, novalut)S| 

TLRDEF(NULL, (ACCESS (.MYTN))  NOTEDTD))j 

N0RDPF(B,( 
local TOPI,T0P2,TOR,NTfiR; 
T0Pl^T0P2^e; 
II .NODE(TPRTH) 

thon irevorsa order 
begin 
TOR*.NODE 10PR2); NTfiR^.NODE(OPRl)| 
TOPZ-.HYTN) TOPUBi 
enrt 

•Ise 'normal order 
begin 
TRR-.NODE tOPRl];   NTflR-. NODE (0PR2)| 
TOPK.riYTN)  T0P2^ei 
and; 

TNP(.NDDE(0PR1],.T0P1)) 
TNP<.N0DE(OPR21,.TOP2>( 
PnEFI1DVE(.T«R,.(1YTN>| 
OPERATE (.NTRR,.(1YTN)( 
>)| 
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NDRDEF(U,( 

TNP(.N0DEI0PRl),.n 1N)| 
PREFf10VE(.N00E{Pori],.nYTN>| 

N0RDEF(UX,< 
TNP(,N00E(0PRlJ,e)| 
PREFMOVE(.N0DElOPRni.f1VTN)l 

)>: 

N0R0EF(PTR,( 

TNPt.NODEIOPRll.e); 

PREFM0UE(.N0DEI0PR1),.MYTN)J 

If   .NODE(SIZEF)   eql   6 Ihon 

If   .NO0E(POSF]  eql  6 thon 

RCCESSCNOOEIOPRlDi 

N0R0EF(00T, ( 

TNP(.N0DEI0PR1)1.MVTN>| 

If   (.NOOEIflODEJ  eql  1N0EXE0) or  (.NODEtflOOEJ  eql  IN0EK£0*DEFERRE0)   than 
t1flKESfll1E(,nYTN,.N0DE[0PRl)), 

>)| 

routine  ISBITCLEX). 

begin 

m»p LEXEME LEX; 

bind CTVEC N0DE.LEX| 

If   .LEXtLTYPFl  eql  GTTYP 

then   II   .N0DE(N0DEXJ  eql  SBITOP 

then  (TNNEEDED)1 ♦ 1 
end; 

N0R0EF(REL,( 

locel  LOP.ROP; 

bind B1TLEFT »ISBIT(.N0DE(0PR1J), 

BITRIGHT.ISBIT(.N00E[0PR2J)| 
LOP^ROPHO; 

H BITLEFT then LOP-.MYTN cite 

If BITR1GHT thon ROP-.tmN; 

TNP<.N0DE(0PRl),.L0P>i 

TNP(.N0DE(OPR21,.R0P); 

If  BITLEFT then  (PREFfOVE(.NQDE 10PR1), .tlVTN),  COMPARE (. HYTH, .hOOECOPRZ)))  else 

If BITRTHT then  (PREFMOVE (.NODE (0PR2J, .MYTN),  COMPARE (.flYTN, .NODE I0PR1)))  else 
(COMPRRE(.NODEI0PR11,.NODEI0PR2)>i HOVE(8..HYTN)>. 

>), 
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!>r 

N0R0EF(FPRR,l 
local  GTVEC U0P:PRRM; 
bind LEXEME PflRtlLEK»PflR(1{ 
TNP(PflRI1e.N0DEl0PRl),lf  .NODE ICSC0I1PLI   l*q nRCIC2 Ihtn .I1VTN tlM 6), 
PREFMOVE(.NO0ElOPRn,.HYTN)) 

))| 

NDROEFdOnDNODE, ( 
local U0P,ii.*tm  0P1) 
TNPCOPl^.NODEIOPRn.e); 
it .0P1ILTYPFJ net, BHDVRR 

than PREFI10VE(.0P1,.I1VTN) 
alia nOVE(.OPl,.nVTN)| 

))| 

NORDEF(flDDSUB,( 
local  T0Pl,T0P2,TflR,NTflRi 
T0Pl.-T0P2.-ei 
If   .NODE(TPflTH) 

than   Iravarsa order 
btfln 
TflR^.N0DE[0PR21|  NTflR^.NOOE (OPRl) | 
T0P2^.l1YTNj  TOPUBj 
and 

alia   Inomal  ordar 
begin 
TflR-.NODE(0PR11|  NTRR».NODE(0PR21i 
T0Pl».nYTN(  T0P2.-e; 
and; 

TNP(.N0DE(OPRn,.TOPl)t 
TNP (,NODE'OrR2),.TOK2)) 
if   (NOT  .NOOEIKCMTFl)  and  (NOT .NOOEIRCMOFI) 

thf/n (1R>;ESflME(.riyTN,.TflR> 
• IJS PREFI1DVE(.TflR,.nYTN>) 

OPERflTE(.NTflR,.riYTN), 

>>) 

routine BINDSTORE (LOP.ROP). 
bogm map GTVEC LÜP:R0P; 
bind LEXEME LLOPHLOP; 

ROP-BRSZTNLROP); 
i«   .ROP   leq 7  then return NOURLUE; 
if   .R0P(REQ01   neq 6  then return NOVRLUE) 
if   .LLOPILTYPFJ   aql  LITTYP 

than begin 
ROPtREQO-nEMHEQDDj 
R0P1TNLITBIT1*!; 
ROPITNLITLEXJ^.LOP) 
R0P(BN0TYPl*8i 
return NOVRLUE 
end; 

ROPIREQDl-tlEMREQDB; 
ROPIREGFJ^.LOP) 
N0TEUSE(.L0P,.R0PlL0HFU))) 

I 
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NOVALUE 
and; 

routln« FINOLEK (LEX,THEE), 
beg In 
Mp   -EXEIIE LEX,  G fVEC TREE; 
bind LEXEME TLEX-1REE; 
iwcro FINONCSE(NOOE). 

(ra»p CTVEC NODE; 
M   .NOOEIREGF]   Itq 
If   .GTI.NODEIRECF) 

7  than raturn 6 alta 
BNOTYPJ  neq BHDHCSE  than raturn 8 alaa 

NODE-.GTt.NODE IRECF).OFFSETF]; 
If   .NODEtTYPEF)   aql  GRRPHT  than raturn 0; 
NODE<LT,''F>-BNDUfiR)$) 

If   .LEXILTYPFJ   eql  GTTYP  the.. FINONCSE (LEX); 
If   .TLEXILEXPfiRTJ  aql   .LEX ILEXPfiRT]   than raturn Ij 
If   .TLEXtLTYPF)  aql  GTTYP  than 

if   .TREE(NODEX)  aql SiNNULL  than  (FINONCSE(TREE);  raturn FIN0LEX(.LEX,.TREE)) 
■ IM 

Incr  I   fro« 6 to  .TRE£(N00CSIZEF)-1 do 
If FINOLEX(.LEX,.TREElOPERflND(.I)))   than raturn 1; 

0 
and; 

rout Ina FINDLEFT (LN,RN). 
boqln   local   X,Y| 
map CTVEC LN:RN;  bind LEXEME LRN.RN; 
If   .LRN1LTYPF]  naq GTTYP than return 8; 
If   .RNINOOEX)  aql  S00T0P  thou return  (.RNI0PR1)  aql   .LN); 
If NOT   (ONEOF(,RNlN0DEX))BIT5(Sfl0D0P,SMINOP,SfiHD0P,SOROP,SSHflBOP>) 

or 0NE0F(.RNINDDEX)-2,BITG(SSHlFT0P-2,SR0T0P-2, 
SMnXOP-2,SMINNOP-2,SEQVCP-2,SXOROP-2))) 

than return 8; 
If   .RNITPfiTH)   than   (X-.RN(0PR2)jY-.RNIOPRl)) 

else  (Y-,RNtOPR21iX-.RNICPRl]); 
If   .RNINODESIZEF)  aql  2  than 

If  FIN0LEX(,LN,.Y)   than return 8; 
If   (YvFINOLEFT(.LN,.X)) neq 8 than .Y+l alsa 8 
and; 

-  ■ m —-*^~-'— --—■■'—*i'-^ liiil iTiMüilüiimiT i     in—^■^^- —"■- ■■ --■' —;- A 
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routlnt ISNECNOT(LN,RN). 
boy in 
m«p GTVEC LN:RNt 
IOCKI CTVEC LRN:LLRNi 
b. ■ LEKEnE LNLEX.LN^NLEX.RN^RNLEX.LRNiLLRNLEX-LLRN) 

. .RNLEXILTYPF) nnq GTTYP than rtlurn 6) 
14 .RNINODEX) neq SN'EGOP than 

M .RNtNOO'.X) neq SNCTOP than raturn 8; 
LRN^.RNIOPRll) 
I« .LRNLEXILTYPF) neq CTTYP than ratgrn i\ 
i« .LRNINODEX) neq SLJTOP than return i\ 
LLRN^.LRNIOPRH) 
M EQLP0SSI2E(.LN,.LLRN)   than return 1| 

and) 

routine SI(1PLE3T0RE(LN,RN>. 

begin 

fl  "SIMPLE" STORE  IS,  BY DEFINITION, ONE UHICH DOES NOT 

NEED R SPECIAL TEflPORRRY FOR THE RHS. 

VALUE RETURNED: 
-1   : i   UE HAVE R STORE OF THE FOM 

(EXPRl)  ► . (EXPR1) OP  (EXPR2), 

OR  (EXPRl)   ► NOT  .(EXPRl) 

OR   (EXPRl)   ► -   . (EXPR2); 

THE •RCt1TF, BIT OF THE 'OP' (OR 'NOT' OR '-•) NODE 
SHOULD RE TURNED OFF. 

1 it HE HOVE SOME OTHER KIND OF SItlPLE STORE, E.G. 
VRRl ► .VRRS ♦ 3; 
THE 'RCtlTF' BIT OF THE 'OP' NODE SHOULD BE LEFT AS IS. 

Bn THE STORE ,.u PRE DERLINC WITH IS NOT SIMPLE. 

macro 
RDDORS'JDnONEOF (.RNINODEX), BIT: (SflDD0P,SHIN0P>)$, 
RN0DRIOR=0NE0F(.r, 'tNDDEX) ,BIT2(SflN00P,S0R0P>)», 

SPECIRLCRSES» 
NOT ONEOF(.RNINODEX), (BIT3(SPLUS0P)SX0R0P,SEQVDP) or 

BHSi:X(SCTR0P,6)  or 

BMsmsGTRUop.emsi 

ni*p GTVEC LNiRN; 

local  GTVEC LRN:LLRN,  RRN; 
bint) LEXEME LNLEX=LN:RNLEX^RN:LRNLEX=LfNiLLRNLEX.LLRN; 

bind SIMPLEVRLnSj 
routine SIMPLOP(NODE)=   (map G'VEC NODE; 

\{   .NQDEINODEX)   leq MRXQPERRTOR  then 1 alta 

14   .NODEtNQDEX)   eql  SYNNULL  then 1 else 

If   .NODEINODFXl   eql  SSTOROP then 
SIMPLOPd«   .NOOEITPRTH)   then .NOOEIOPRll  alaa  . NODE tOPR2)))) 

routine  ISPSOMLN.RN). 

bogln 

m«p GTVEC LNiRN) 

bind LEXEME LNLEX-LN:RNLEX»RN( 

kcal  SSP| 

mm — - — tmim^m^^mmmmm •*' -   '-.■  ■ ■      ■       v^ -. ^^—  
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iMcro  ISBISORBJCa 

(M  RNOORIOR   then 

(loctil  LEXEHF RhN:LRKj 
If   .RNITPflTH) 

thon   (LRN".RNI0PR2);  RRN^.RNIOPRll) 

als«   (LflN^.RNIOPRl);  RRN<-.RN(0PR2)); 
(1 »ni   (.RRNIKNOTF]   eqv   (.RNtNODEX)   eql   SflH00P>M 

+  .LHNtt;NUTF)*2    ))$) 

M«cro  ISINCORDEC- 

(If «DDORSUB   thin 
If  «bB(rXTElD(.RMOrFSETFJ))   eql   1  «hen 

(.HNlRCfll-,   or  .RN(RCSF}))$| 

nmcro ISCOhORNEGp 

(If   .RNINCD'K)   «ql  SPLUSOP  than 

(.RNIRCCF)  or .RNIRCNTF)) )$( 

SSP^.LNLEXISSPFh 
If .SSP laq PFei6 

than TRUE 
alia If .SSP laq PF06 

than (if ISINCOROEC than TRUE 
elsa if ISCOHORNEG then TRUE 
else 1SB1S0RB1C) 

else (ISBISORBIC eql 1) 
and) 

If .RNLEXILTYPFJ naq CTTYP then return 8) 
If .LNLEXILTYPF) aql CTTYP than 

begin macro PHOCEEOuexitblockS) 
If .LN(NODEX) aql SYNPOI than 

If ISPSOi:(.LN,.RN> than PROCEED) 
If NOT Slt1PL0P(.LN> than return 0 
erdi 

If .LNLEXILTYPF} eql BNOVfiR than 
begin local X| 
if .LNLEXtLEXPPRT; eql .PCREG thon return 0; 

I LRTER THIS WILL BE EXTENDED TO ALL 
! VOLRTILE L0CRTI0NS. 

If NOT ISPS0M.LN,.RN> than return 0) 
If (X.-FINOLEFT(.LN,.RN)) naq 6 

then If .X leq (SinPLEVRL*l)/(l-f(.LN(tlODE) naq CENREO) than raturn 
end; 

if .RNINDDEX1 aql SPLUSOP than 
return 

If .RNtOCCF] eql 1 
then if .RNICSCOMPL) eql 6 then 1 «Isa 

if ISNKGN0T(.LN,.RN[0PR1)) than -1| 
If .RNINOOEX) aql SFSTORE thon return 1) 
If .RNINOOEX) laq MfiXOPERRTOR than 

if .RN(NOOEX) aql S00T0P thon return 8 ell« 
If .RN(NODEX) eql SSURBOP then return 1 elia 

If .RNIN0DESI2EF] aql 2 than 
begin 
macro PR0CEED>>ex i tblockS) 
I« .RNITPflTH) 

then (LRN-.RN!0PR21| RRN^.RNIOPRll) 

-- - — -     ^ — MM ..^^A.^^:^-.. 
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| • Ise   (LRN^.RNIOPRD)  RRNfc.RNI0PR2)) | 
If  .RNIREGFJ  eql   .LRH(RFGF)   then 

I«   .RN1CSC0MPU  g»r SlflPLEVRL  then PR0CEE0| 
H FINÜLEX(.LN,.LRN>   then 

If SPECIRLCRSES thon PROCEED ill« rtturn 0; 
If   .LNLEXtSSPF)  gtr PFBIB  then PR0CEE0| 
If   .LRNLEX(LTYPFJ  eql  CTTYP then 

If  .LRNtNODEX)  eql  SFSTORE  then return 0) 
return 1 - FINOLEX (.LN,.RRN) 
end; 

If begn 

m«ci o TRUNC <X)- (X-tinxC°ERflTOR)f j | 
ONECP (TRUNC (.RN tNODEX)) (BIT4 (TRUNC (SYNIF) .TRUNC (SYNCfiSE), 

TRUNC(SYNSEL),TRUNC(SYNLflBEL))) 
end 

then return  1 

else   If   .RNINOOEX)   leq MflXOPERfiTOR then 
begin 

LRN-if   .RNITPflTH)   thon  .RNtOPR2)  else .PN(OPRl)) 
if   .LRN1.EX(LTYPFJ   noq CTTYP  then return 8; 
If   .LRNINODCX)   eql  S00T0P  then 

bocj in 

LLRN-.LRNIOPRDt 

if   .LLRN eql   .LN thon return -(SPECIflLCRSES) 
elte   If EQLP03SI2E(.LLRN,.LN> 

thon  if  SPECIflLCRSES 

then  (LRNtCODEOM; 

LRNIflODEl^O) 

LRNtREGF)^.RN!RECF)j 
return -1): 

end: 
snrt; 

6 

end; 

rout ine TRYSIMPLESTORE (N0DE,LN,RN) = 
bogin 
tnap GTVEC N0DE:LN:RN; 
bind LEXEME LNLEX=LN:RNLEXrRN, 
if .NOSIUPLESTORE then return 6; 
uhile 1 do 

begin 
necro 00BINDn( 

ceie  (SII1PLEST0RE(.LN,.RN)+1) of 
eet 

tes 

Uit    (6IN0ST0RE(.LN,.RN(REGF))|  RNIRCtUFJ-Ulit), 
/ 0,'    0, 

%  1/. If not .NOSIUPLESTORE then BIN09T0RE (.LN, .RNfREGF) > 

>t| 
if   .RNLEXtLTYPF)   neq GTTVP  then return NOVflLUE; 

If   .RNrNOOEXJ   leq flflXOPERflTOR  then return 00BIN0| 
select   .RNINOOEX)  of 

nset 

SYNIFs 

begin 

if  DOBIND  then 

-     ■   ■ — mamm^^^mti t^am ..j^»^,—,1^,..   .—ai 
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(TRYSinPLEST0RE(.N0DE,.LN,.RNI0PR31)i 
TRYSIf1fLEST0RE(.N0DE,.LN,.RNl0PR4)) >) 

return NOVRLUE 
•nri; 

SYNCRSE: 
bt()in 
l< DOBINO Ihon 

incr I from 2 to . RNINODESIZEH-2 do 
TRYSII1PLESTORE(.NOOE,.LN,.RNIOPERflN0<.I)))| 

rsturn NOVRLUE 
tnd| 

SYNSELi 
bagln 
M 00BIN0 than 

incr I from 2 to .RN(N0DE9IZEF]-3 by 2 do 
TRYSItlPLESTORE (.NODE, .LN, .RN(OPERRND<. D)) i 

rtturn NOVRLUE 
•nd) 

SYNCOMP: 
CONTINUE RN...RN[OPERflN0(.RNINODESIZEF)-l))| 

SYNLRDELs 
(OODINO; return N0VflLUE>; 

SFSTOREi 
OODINO; 

«lH«yBi 

rtturn NOVRLUE 
tMfl| 

•nd| 
NOVRLUE 
• nd; 

- ■--—iiiiMHiiliiiüii-iiii ■ iiiiiiiiiiii'i ti i 
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NOROEF(STORE,( 
lool  LEXEME L0P:R0P,  GTVEC T,  T1,T2; 

Tl^T2^eJ 

If   .NODElTPflTH) 

then  (LOP-.NODE(0Pfl2J(  ROP-.NODE(OPRl))  Tl^.HYTN) 
• In   (LOIv.NOtinOI'Rlli  R0P-.N0DEI0PR21I  T2-.MYTN), 

TNP(.NODElOPRn,.Tl>) 

TNP(.N0DE(0PR21,.T2>) 

If   (U.nVTN) mq 6  thin 

bigln 

If   .T[REQDI  iql  nEHREODB Ihm 
If  .TIREGFl  iql   .ROP(flDDRP)   thin 

T-B) 

•nd| 
PREFI10VE(.R0P,.I1YTN>1 

If   .T iql  6 
thin 

bogln 
TRYSII1PLEST0RE (.NODE, .LOP, .ROP) | 

PREFH0UE(.ROP,.LOP)| 

end 

• In PREFf10VE(.nYTN,.L0P>i 

»I 

macro   INITPRRIIDESC« (LNKCO-.LNRHE ILNKGDESCF] |  PflRHN0>-8)S, 

NEXTPPRHDESCn 

big In 
If   (PflRMNO-.PRRHNO+l)  gtr  .LNKCDILNKCSIZEF) 

thin PUSTPCKPRRM 

• lie 
(PT-.LN(:GO(PflRHTYPE(.PRRI1NO))t 

PL-.LNKGD(PRR(1LOC(.PflRMNO))) 
• nctt; 

routine SPRNPRHMSn 
bigln 
local  GTVEC T,   ITEfl Lj 
dicr I  froii .Cfll.LSTt: (CURDl   to 6 do 

FORflLLTN(T,CflLLSTK ILSELEM (. 1)1, 
L-.TtTNLIFELISTJi 
If  .LILIFESTOP)   In .LON thin LIL1FEST0P)*.L0N 

>l 
NOVRLUE 

•nri; 

■ mm mmmm ■MMM --—~   - 
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macro 
INITCRLL»lNITSTK(CflLLSTK)$, 

PUSHCflLLoPUSHSTK (C(U.LSTK>$, 
NOTECflLL«flDDT0T0S(CflLLSTK,TNREP(.SUBHODElRECF))>$, 

POPCRLL.P0PSTK(CRLLSTK)$, 
RELE9SECflLL=RELERSESPflCE(GT,.CflLLST»;,STKSI2£)$) 

TLRDEF(COLL,( 
ext«™«!  LIFEBLK; 
bind SHITCHREGISTER»  177578; 

bind STVEC LNflHE»NODEI0PR11| 
local  CTVEC SUIHODElTHiUKM,  0L0N,N,PRRf1H0,PT,PL,FSP| 

TNP(.N0DEl0PR2),e)l 

INITPflRIIOESC; 

FSP^l-, 
M .NODEINODESIZEF) gtp 2 thon 

begin 
PUSHCRLL; 
Iner 1 «roii 2 to .N0DE(N00ESIZEF)-1 do 

betjm 
NEXTPPRMBESC; 
SUBH0DEH.NODEIOPERRN0(.1))I 

OLOH^.LON+1; 
TNPt.SUDNODE.e); 
TN^.SUDHODEtREGF); 
TN(TNLIFELISTJ^LIFEBL>;(.LON,.L0N)t 
NQTECRLLj 

SPRNPRRMSOi 

C.EB    .PT    Oi 

(«1 

^6;   ItMlt  p»rit % 
begin 

M   .FSP thtn 
begin  local D; 
FSP^B;  DH.DTDSTKILOTDII 

N-.DTEHPSICURDl) 

SRVOTDj 
H   ((.OTEtlPS(CURD)  nog .0) 

or  (.NODEINODESIZEF)  eql  3) 

or   (.NODE(NOOESIZEF)  eql 5))   «ban 
i« TRYSPDYTFI1P(.TN,.N)   than 

ex I tease   (TN1REQ0) ►f1EHREQDB> 

end; 
M  not  TRYSPOVTEtlPf.TN.N^.N+l) 

then OPENDYTEHP<.TN(.0L0H,e)| 

0T0STK(LDT01*.Ni 

TNtREQDl-nEMREQDD 

and; 
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Zli cpecK ic ragitttr Z 
bogln 
loc«l LEXEME SUBSUD.TTN; 
SUBSUB>-.SU6N0DE(0PR1]| 
If .SUBSUBtLTYPFJ eql GTTYP then 

bogln 
TTN-.GK.SUBSUB.RECFJi 
If   -TTN qeq 8 than 

TNtTNPEmilTK.TTNi 
WMI| 

TNSRREQO(.TN,.PL>| 
•nd| 

XZi   (I I tar«I)  memory X 
begin 
TNITNL1TBIT)*TRUE; 
TNtTNLlTLEX)^LITLEXEI1E(,PL)( 
TNtREQDl^nEflREQOB 
•nd; 

Z3: (nniiert) memory X 
begin 
TN1REGF)*.PL) 
TNIREQOI^nEnREQOD 
■nd 

'•«■; 
If not  .FSP then 

KILLP0TE(1PS<.SUBH0DE, 
(If   (.OTEMPSICURD)  nql  .N) or  (.1 •ql  .NOUEINODESlZEFJ-l) 

then .N else .N*l)) 
•ndj 

POPCRLL 
•nd; 

NOTEOTO; 
if not   .FSP  then POPDTO; 
if   (.DTEtlPStCURD)  goq  (STKSIZE-.flflXPflRHS)) or .CUTBflCKSTBCK 

then KILL0YTEnPS(.N00E»i 

If   .LNBMEtLNKCTFJ   neq  INTRRPTLWGT than 
begin 
if   .HYTN  Iss 6 then tlYTN^GETTNO ( 

TNSRREQD<.t1YTN,VRECNUI1>i 

• nd; 
If   (TN^.flYTN)  noq 6 then 

If   .N0DE(X0PR2J  agl   .LXHflLT 
the', 

bogln 

TNIREQOKHEMREQDB; 
TNtTNLITBIT3*TRUE) 
TNIRECFJ-SHITCHREGISTERi 
•nd 

• !■• 
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TNSRREaD(,T(t,VRECNUtt)) 

N0TeUSE(.N0DE10PR2J>.L0N)) 
NEXTLON; 
NOTECRF.RTION(.TN,.L0N); 

UPORTELON; 
SETBOUND; 

routine LOnDRÖ(NODE)» 
begin 
m»p GTVEC NODE; 
local  GTVEC TXj 
i(   (TX^.NODE(RECF))  eql  0 then return 8-, 
TXieNOTYP)^BNnREGi 

TXCREQDI^SRREaDB; 
TX(R£GFJ.VREGNUH; 
TXIßNOLSTHOR)►REGS (VREGNUM) t 
H   ISCLOSEOl.REGStVREGNUMJ) 

then OPENLIST(REGSIVSECNUMl<8,0>>| 
.TX 
end; 

TLROEF(rout Ine, ( 
extern«!  LBPRTCH.LBRETLIST; 
loc«l   STVEC RNRI1E:LNRME:L0ESC,  GTVEC TNiTL; 
LBRETLIST^B; 
RNRHE-.NODEIOPRZ); 
RNRHEIRETLRBK.NODE; 
LDESC^.GTtLNflf1E^.RNRIIElLNt;CNI1F),LNKG0ESCF), 

if  not   .flNYENRB   then 
begin 
deer  I   from 5  to 6 do NULLLST(REGSt. 11) | 
Incr  I   fron 1  to  .LDESCtLNIXSIZEF)  do 

If .LDESClPflRMTYPE(.l)) eql RECPRRM 
then ÜPENL1ST(REGSI.LOESCIPRRHLOC(.!>))) | 

end; 
If  not EMPTY(.RNflHriRECrORMLSTJ>   then 

beg in 
locel  LSTHDR L.ITEfl I; 
NL^-RNRHEIREGFORHLSTI; 
until   (lo.HRLlWO) eql  ,L do 

bagm 
TL^GETTNO; 
PREFMOVE (.TL, .GTt. I (RORTITEtKl)) .REGFJ)) 
TUBNOLSTHDRl-REGSMlLORTITEfld))]) 

TLIREQOl^MEItREQOD; 
TLtREGFJ^-HLDflTITEIKl)); 
UPDRTE(.ItRDflTITEn(l)),l,2) 
end 

end; 
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if   (TN-.NODE[REGm  nac| 6 than TN-L0PDRe<.N00E)| 

H   .SIHPLELIFE  then NODE{REGF)*GETTN() | 

TNH(.N00E(0PRl],e); 
LBPRTCHC.LBRETLIST); 

UPDflTELONf 

PREFflOVfct.NODE tOPRl),NODE IRECFJ*.TN>) 

"I 

NOROEF<flNOOR,< 

le:nl  LOP.ROP.OPlj 

loc»l   ITEM LBLOPjLBROPi 

bint! LEXEME LE)(2<N0DE [0PR211 
LOPHROP^O; 

If   .NODEITPPTH) 

thon  (ROP^.MYTNjOPU.NODEtOPRZl) 

else   (LOP*.nVTN;OPU.NODElOPRl))i 

TNP (. NODE lOPRll,. LOP); 

If  FLOIIRES  than 
bogin 

LBLOP-NEHBLK^); 
LBLOPILBSUCC<l)]<-.CBSTflRTi 

SflVDTOj 

enri; 

TNP(.NODE[OPR2),.ROP)( 
if FLOWRES than 

begin 

LBROP^NEHBLK(l), 
LBR0PILBSUCC(1)).-LBL0PILBSUCC(2>)-.CBST«RT| 
if   .0TE(1PS(CUR01  naq .OTDSTKILOTOJ   then 

(KILLOYT£MPS(.N0DE(OPR2))(  SETNOTFPRRH)( 

POPDTOi 
return 

end; 

If  not RESREQ then return) 

PREFf10VE(.0Pl,.f1YTN)) 

))i 

NOROEF(COriP,( 
incr   I   fro» 0 to  .NODE :N00ES12EM-2 do 

TNP(.NOPEIOPCRflN0<.I)],O); 
TNP(.NODE ILRSTOPCRRNDl,.nYTN)) 
if  RESREQ  then PREFf10VE(.N0DE(LRSTOPERRN01, .IIYTN)) 

*mmM - ■ - - -   ■ —'-^-" --- 
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NDROEFdt, ( 

loc«l  DTIMVEN; 

loc«l   ITEM LBBOOLiLBTHENiLBELSE) 
Br.ULST(.NODÜIOPRll)| 

TNP(.N0DE(0PR2),e)i 

LBB00L-NEUBLK(2)| 

LBBO0L(LBSUCC(l))^.CBSTflRT) 
SnVDTO; 

TNP(.N0DEt0PR3J,.MVTN>| 
LBTHEN^NEIJBLK(l)) 

LBD00LILBSUCC(2))^.CBSTflRT) 
RESETOTO; 

TNP(.NODE(OPR<iJ,.riVTN)i 

LBELSE.-NEIIÜl.K(l)( 

LBTHENILBSUCC(l)ULBELSElLBSUCC(l))^.CBSTnRT) 

OTUNEVEN^<.OTEnPSICUrtO)   neq .OTOSTK(f10TOJ); 
MINOTO; 
i«   .OTUNEVEN then 

begin 

KILLFORCOVTEflPS (.NODE (0PH3) ) | 

KILLFORKDYTEflPS (.NODE I0PR4)); 
SETNOTFPfiRM 
• nri; 

POPDTD; 

M  RESREQ  than 

(PREFfl0VE(.N0DE(0PR3)>,riYTN)|  PREFMOVE (.NO0EIOPR4), .IIYTN)) | 
BINDLST(.N0DE(0PR5J)i 

»I 

NORDEF<c«Be, ( 

locol   T.RES.HTUNEVEN.CTVEC SUBNODEj 

loco I   ITEM LBSEL:LBFRi;,  FRKX, GTVEC LBFRKV; 
DTUNEVENf-Bi 

BlNDLST(.NODEIOPRl))) 

TNP(.N0DE(0PR2),e)i 

LBSEL^NEHOI.n.NOOEtNOOCSIZEFj-S); 

LBFRKV^GETSPRCE (GT, .NODE (NODESIZEF) -3)) 
SflVDTO; 

incr   I   (roil 2   to  .NODE [NODESIZEF)-2 do 
boyin 
SliDNODE.-.N0DE(OPERflH0(.I))| 

LBSELtLBSUCC<.I-l))».CB£:fPRTj 
TNP(.SUBNODE,.nVTN)) 

LBFRi;VI.I-2ie,36)^LBFRUNEUBLK(l)) 

PREFMOVE (.SUBNODE,,nVTN> | 
M   .I  gaq 3  than 

M   .OTEMPSICUROl  naq .0T0STK1I10T0)   than 0TUNEVEN*1| 
M   .1 naq  .N0DE!N0DESlZEn-2 than RESETOTO alta t1INDT0| 
tnri| 

Incr  I   »ro» 1  to  .NODE(N0DESIZEF)-3 do 

(LBFRK^.LBFRKVr.1-1,8,36);  LBFRCtLBSUCC(l))*.CBSTflRT)| 
RELEflSESPflCE(GT,.LBFR);V,.N0DEtN0DESIZEF)-3)) 
If   .OTUNEVEN  than 

bogln 

incr  I  «ro« 2  to .NODE{NC0ES)Z£F)-2 do 

KILLF0RK0YTef1PS(.N0D[[0PERflN0(.I)))| 
SETNOTFPBRH 
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- 

•nd| 
POPDTO; 
BINOLST (.NODE (OPERAND (.NODE (NOnESIZEF)-!)))) 

routine FLOOP (NODE,TARGET,TYPE>- 
bogin 
!   TNP  «or Hhll«-rto( untll-do, do-Mhll«,  and do-untll 
!  C«I«B 8 through 3 o<  type rtipsctlvaly 
mop GTVEC NODE-, 
local  L1,L2| 
local   ITEM LBB00L:LBB0DV,L00PT0P; 
BINDLST(.N00El0PRll)i 
6INOLST(.N0DE(OPR2])| 
MVOTOi 
ENTLOOP; 
LBBOOL^NEWBU(l))  LBBOOLlLBSUCC(l))«-LOOPTOP^.CBSTflRT| 

TNP(.N0DE(0PR3)ie>| 
I«   .TYPE/2 

«O-H/UÄ than  (LBBODY-NEHBLni))  LBB0DY(LBSUCC(1))^.CBSTRRT) 
XU/U-DX else  (LBBO0L^EMBLi;(2)) LBBOULlLBSUCC(l)K.CBSTflRT), 

M   (not   .TYP£(-l)) 
or   (bind LEXEME OPa.NODEtOPRft)|   .OPAtLTYPFJ  naq CTTYP) 

then   (RESETOTO;  KILL0YTEnPS(.N0CEI0PR31))| 
TNP(.N0DE(0PR't))e)i 
H   .TYPE/2 

■/O-W/UX than 
begin 
Ln&ÜL*NEUaLK(2>| 
LBB00L(LBSUCC(1))«-.L00PT0P| 
LBB00LtLBSUCC(2>j4-.CBSTflRT 
and 

/U/U-OZ alia 
begin 
LBBODY*NEM0Lni)| 
LBB0DYILBSUCC(1))«-.L00PT0P| 
LBB00LlLBSUCC(2))*.CBSTflRT 
enrij 

RESETOTO)  XITLODP; 
KILL0YTEMPS(.N0DEI0PR4])i 
►;iLL0YTEf1PS(.N0DE)) 
POPOTO) 
H   .tlYTN neq 8 then H0UE(L1TLEXEI1E (-1), .MYTN)) 
end; 

uttAtt^akAttMi^uiriauafliaikiuLUtfuihAM^a^«  --^- ■ .^.   .^   -^^^^ ^AJ^, ai''ii  JUmiltti 
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NDROEF WO,PL00P(.NODE,. TARGET,e>)i 

NDROEF(UD.FLOOP(.NODE,.TfiRCET,1))| 

NDRDEF(0U,FL00P(.N0DE,.TfiRCET,2))( 

NDRDEF(0U,FL00P(.N0DE,.TRRCET,3>)( 

NDRDEF(1DL00P,( 

loc»l   L,   CTVEC CV; 

local   ITEM LDPRE:LBB0DVt 

TNP(.N0DEt0PR21,8)| 

TNP(.N0DE[QPR31,0)| 
T,-'P(.N0DE(0PR4)19), 

BIN!)LST(.N0DEtOPR^)( 

BINOLST(.N00EIOPRG))| 

PREFf10VE(. NODE I0PR2J,. NODE (OPRIDi 

CV^.NOOEtOPRU) 
SRVDTDj 
ENTLOOPj 
LBPRE-NEUBLt;^);  LBPRE[LBSUCC(l))».CBSTflRTi 

TNPC.NODEIOPR?)^); 

LßB0DY^NEWBLi;<2); 

LBBODYtLBSUCC(l)K.LBPREILBSUCC(l))) 
LDBO0Y(LBSUCC(2)KLBPRElLBSUCC(2))<-.CBSTflRT) 

OPERATE (. NODE {0PR3),.NODE lOPRl)) | 

COMPRREC. NODE lOPRll,. NODE I0PR«))| 

RESETOTD;   XITLOOPj 

KILL0YTEHPS<.N0DEI0PR7))i 

POPDTD; 

lf   .«VTN nBq 8 then HOVE (LITLEXEtlE(-l), .flYTN) | 

))| 

TLROEF(l«bal,( 

•ytBrnnl   LBPRTCHj 

TLC0HMDN<.NODE,.TARGET) j 

LBPRTCH (. NODE ILBPRTCHLIST]); 

KILLPDTEMPS (. NODE,. DTEtIPS (CURO)) | 
SETNOTFPARtl; 

)'l 
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TLRDEF(l««vt,( 

local  CTVEC H| 

N^.ST{.NODE(OPR2),LIN»;FL01| 

TNP(.NO[)ElOPRni.N[RECF))( 

MUSTPRTCHCNtLBPflTCHLISTl); 
PREFH0VE(.N0DE10PRl),.NtREGF))( 

NOTEOTDi 

»| 

TLROEF(RLEnVE,( 

•xttrn«!  LBRETLISTt 

local  CTVEC RNTN) 

RNTN^.NODE I0PR2))  RNTN^.RNTNIRETLRB)) 
TNP(.N0DEtOPRl], .RNTNtREGFJ); 

PREFNOVE (.NODE(OPRll,.RNTNIREGF))) 

nUbTPflTCH(LBRETLIST>) 

NOTEOTDi 
UPDRTELON; 

)>) 

127 

TLROEF(SYNNULL( ( 

IOCHI  CTVEC PRR; 

bind LEXEME LEX=N0DEi 
PRR-.NODEtCSPRRENT)! 

If not   .PRRIBOUNDl   than 
beg In 

M not   .PRRIOELRVEOl   than NONBOuUS (PAR) i 

It   .PRR neq  .LEXIRDDRF]   then 

TLLIST(FflSTLEXOUT(CTTYP,.PflR>,e)| 

■nd{ 

NOTEOTDi 
UPDRTELON; 

RCCESS(.NOOE>t 

>>; 

NDROEF (select,( 
local  OTHERENO.DTUNEVEN.SRVDTC,  LEXEME L, CTVEC OTHtRTNj 

local   ITEM LBSEL.LBLEFTJLBRICHTI 

DTUNEVEN^Bj 

OTHEREND-LtTVflLUE<.N00E!LflST0PERRH01)| 

it   .OTHERENO eql  8 

then OTHtSTN-B 
tlst NÜDE(OPERRN0(.N0DEIN0DESIZ£FJ-2)]*LEX0UT(TNTYP,OTHERTN^GETTN())| 

TNPt.NODEIOPRD.B); 
LBSEL-NEUBLK(1)| 

LBLEFUOi 

MOVE (LITLEXEME (8), .OTHERTN) j 
Incr  I   fron 1  to  .NODE(NODESIZEF)-3 do 

begin 

L-.NODE(OPERRND<.I)]| 

It   .1 

than I Ittt part 
begin 
If .LBLEFT neq 8 

- •    -   --  -"■ 
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Ihsn LBLEFTtLBSUCC(2))»,CBSTflRT 

else LBSEULBSUCCan-.CBSTnRT) 

I«   .LILTYPF)  naq SELTYP then  {TNP(.L,e) iCOMPflRE (.NODElOPRll, .L>> | 
LBLEFT^NEWBLK(2>) 
end 

else   ^Iqht  pert 
beg in 

If   .1  eq!   2   then SRVOTC-.DTEtlPSlCUROl ( 
SnVDTD; 

LBLEFT[LBSUCC(1)U CBSTflRT; 
TNP(.L,.HYTN>j 

LBRIGHT^NEHUl.K(l); 
LBRIGH1 CLBSUCC(l))».CBSTflRT; 

If   .DTEMHSICUROl  neq .SfiVOTC then 0TUNEV£N»1| 
RESETDTDj 

KILL0YTEf1PS(.L)j 

P0P0T0; 
enri; 

if   .1   leq .OTHERENO  ther flCCESS<.OTHERTN) 
enrtj 

LBLEFT(LBSUCC<2))^.CBSTflRT| 
If   .DTUNEVEN 

then SETNOTFPflRM 

else 

Incr  I   fro» 2  to  .NO0EINODESlZ£F)-3 by 2 do 
begin 

locel  LEXEME OP; 

bind CTVEC SUDN0BE=0P; 

OP^.NODEIOPERflNn«.!)); 
If   .OPdTYPFJ   eql  GTTYP 

then SUBNODE (OTDELETE)*0T00NTCflRE 
end: 

)); 

TLROEFfENflBLE.f 

SETBOUHO; 

LOflnR0<.N00E); 

NOTEOTOj 

UPORTELOH; 

TNPf.NOOEtOPRD.B), 

))) 

■     iMrlia"»iin *•'''*■■ ■  ia-. 
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N0R0EF(SICNfiL,( 
exHrnnl  LBPfiTCH,LBRETLIST| 
local  CTVEC TL) 
TNP(.NODE lOPRl),e>( 
L0nDR8<.N0D£)l 

IIUSTPOTCH(LBRETLIST)) 
PREFMOVE(.NOOEIOPRI),.(IVTN;I 
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Appendix B 

Ths Basic Packing Routine 

Listed at the end of this appendix is the code for the basic loop of the packing 

procedure.   The routine EVAL is called recursively to evaluate the maximum profit 

that can be obtained by packing subsequent TNs.   Below are descriptions of the 

important routines called by EVAL. 

POSTUPDATE remembers the current complete solution as the most profitable 

thus far examined. When the algorithm terminates, the last 

solution remembered is an optimal solution. 

REALIZABLE tries  to pack its second argument Into a register.   The  first 

argument is true when REALIZABLE is called during reshuffling. 

The value returned is true if the packing succeeded «nd false 

otherwise. 

BESTCASEWITHOUT returns the value of the most profitable completion of the 

current partial solution without the current TN. The most 

profitable completion may not be feasible. 

UNDESIRE removes its argument from the current solution. 

130 
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routine EVflL (PflSTVflL.ME). 
bogin 
tnjip  TNREPR  HE; 

Ubal   tlOVERIGHTi 

M«cro B0TTOH0FTREE(X).(.X[RLINK)  «ql LHEflQ<C,e><t| 

macro TRYUPQRTE^ (i4  -.nvvm   eql   .GLBLnflK than PSSTUPORTE())S| 

local  TEMP,MINflCCEPT.nRKSON.PREFmSSED,TNREPR SON; 

bind MYVflLnPRSTVfiL; 

EVfl'.CNU.EVfiLCNT.»!; 

nElTNFL0(TNREC3TRlE0>)^.RESERVED; 

II NOT REflLI2flBLE(<alsa,.t1EtTNPTR))   than raturn 6; 

H   .SItlPLERESHUFFLE 

than PREFMISSEO-e 
else PREFMISSE0^(.I1EITNFL0(PREFF)J  naq 8»  and  (.nE[TNFL0(BN0TVP))  naq BNOPREF); 

ME ITNFLD (TNCONFNUH)UNOCONFSEEN; 

If   (MYVflL^.PfiSTVnL+.ME[TNFLO<TNCOST))-.PR£FMISSEO)  qtr .CLBLMflX 

than   (CLBLMflX.-.MYVflL;   MYVflL—.MYVRL); 

HINflCCEPT^.CLBLMflX-aba(.MYVflL)) 

MflXSON^O; 
If  BOTTOMOFTREE(ME) 

then   (TRYUPDRTE;  UNDESIRE (.MEtTWTRl),  00RESHUF.-1) 

eli« 
do    begin 

SON^.ME; 
Hhlla (SOK-.SON(RLINKl) neq LHERD<e>e> do 

MOVERICHTi 
begin 

M .EVRLCNT gtr .MflXREBS then (CUTOFF^true; exltloop); 
it .SON(TNFLD(BNDLSTHOR>) neq 0 then leave MOVERIGHT; 
if .SON(TNFLD(TNCSUM>, laq .MINRCCEPT then exit loop; 
If (TErP.-EVfiLUbB(.MYVflL>,.SON>) gtr .HflXSON then 

(if (MflXSON^.TEMP) gtr .MINRCCEPT then MINRCCEPT*.TEMP); 
If 6ESTCflSEUITH0üT(.S0N(TNPTR]> 'eq .SONITNFLO(TNCOST)] then exit loop; 
end; 

TRYUPOflTE; 
UNÜES1RE(.MEITNPTR))I 
If .TEMP aql .SONITNFLO'TNCSUM)) then 

if .SONILLINK) aql .ME then I optimal completion, don't try any «ore 
ex i tloop; 

If .SIMPLERESHUFFLE then exit loop; 
end 

until NOT REflLIZf)BLE(false,.ME(TNPTR)); 
re turn (.HE ITNFLO (TNCOST) U.MRXSON-.PREFHISSED) 
end; 

 ■ --  -  - - -  '■"■ -^-^ --_  ■— 



132 An Approach to Global Register Allocation 

Bibliography 

AII70      Allen, F. E„ "Control Flow Analysis," SIGPLAN Notice«, July 1970. 

AII71a Allen, F. E. and John Cocke, "A Catalogue of Optimizing Transformations," 

Design and Optimization of Compilers, (R. Rustin, ed,), Prentice-Hall, 1971, 1-30. 

AII71b Allen, F. E., "Control and Data Flow Analysis," Computer Science Dept. 

colloquium series, Carnegie-Mellon Univ., April 1971. 

Bal65 Balinski, M. L, "Integer Programming: Methods, Uses, Computation," 

Management Science 12, 3 (November 1965), 253-313. 

Bea71 Beatty, James C, "A Global Register Assignment Algorithm," Design and 

Optimization of Compilers, (R, Rustin, ed.), Prentice-Hall, 1971, 65-88. 

Bea72 Beatty, James C, "An Axiomatic Approach to Code Optimization for 

Expressions," JACM 19,4 (October 1972), 613-40. 

Bel66 Belady, L, A., "A Study of Page Replacement Algorithms for a Virtual Storage 

Computer," IBM Systems Journal 5,2 (1966), 78-101. 

Bru74 Bruno, John and Ravi Sethi, "Register Allocation for a One-Register Machine," 

Computer Science Dept. Technical Report No. 157, Penn State University 

(October 1974). 

Coc70 Cocke, John anr J. T. Schwartz, Programming Languages and their Compilers, 

Courant Institut J of Mathematical Sciences, New York University, New York, 

19" 0. 

Day70 Day, W. H. E., "Compiler Assignment of Data Items to Registers," IBM Systems 

Journal 9,4 (1970), 281-317. 

DEC71 Digital Equipment Corp., PDP-11/20/15/R20 Processor Handbook, Maynard, 

Mass., 1971. 

DEC74    Digital Equipment Corp., Bliss-11 Programmer's Manual, Maynard, Mass., 1974. 

Geo67 Geuffrion, Arthur M., "Integer Programming by Implicit Enumeration and 3alas' 

Method," SIAM Review 9,2 (April 1967), 178-190. 

Ges72 Geschke, Charles M., 'Global Program Optimizations," Ph.D. thesis. Computer 

Science Department, Carnegie-Mellon University, 1972. 

Gil66 Gilmore, P. C. and R. E. Gomory, "The Theory and Computation of Knapsack 

Functions," Operations Research 14,6 (1966) 1045-74. 

--   -     -  >**~~^~    -  ':— J-^....—^~^~< 



■*WV»"**^( j v. ■ 

Bibliography 13S 

Han74 Hansen, Gilbert J., 'Adaptive Systems for the Dynamic Run-Time Optimization 

of Programs," Ph.D. thesis, Computer Science Department, Carnegie-Mellon 

University, 1974. 

Hop69 Hopgood, F. R. A,, Compiling Techniques, American Elsevier, New York, 1969, 

91-103. 

Hor66 Horwit-, L. P., R. M. Karp, R. E. Miller and S. Winograd, "Index Register 

Allocation," JACM 13,1 (January 1966), 43-61. 

Knu71 Knuth, Donald E., "An empiracle study of FORTRAN programs," Software-- 

Practice and Experience 1,2 (April/June 19"1), 105-133. 

Low69 Lowery, E. S. and C. W. MedlocK, "Object Code Optimization," CACM 12,1 

(January 1969), 13-22. 

Luc67 Luccio, F., "A Comment on Index Register Allocation," CACM 10,9 (September 

1967), 572. 

Mit70 Mitten, L. G., "Branch-and-Bound Methods: General Formulation and 

Properties," Operations Research 8, 1 (January-February 1970), 24-34. 

Nak67 Nakata, Ikuo, "On Compiling Algorithms for Arithmetic Expressions," CACM 

10,8 (August 1967), 492-94. 

New75 Newcomer, Joseph M., "Mach.ne-independent Generation of Optimal Local 

Code," Computer Science Department Ph.D. ihesis, Carnegie-Mellon 

University, May 1975. 

Red69 Redziejowski, R, R., "On Arithmetic Expressions and Trees," CACM 12,2 

(February 1969), 81-84. 

Set70 Sethi, R. and J. D. Ullman, "The Generation of Optimal Code for Arithmetic 

Expressions," JACM 17,4 (October 1970), 715-728. 

Set75 Sethi, Ravi, "Complete Register Allocation Problems," SIAM Journal on 

Computing 4,3 (September 1975), 226-248. 

War62 Warshall, Stephen, "A Theorem on Boolean Matricies," JACM 9,1 (January 

1962), 11-12. 

Wul71 Wulf, W. A., D. B. Russell and A. N. Habermann, "BLISS: A Language for System 

Programming," CACM 1,12 (December 1971), 780-790. 

Wul75 Wulf, W., R. Johnsson, C. Weinstock, S. Hobbs and C. Geschke, The Design of 

an Optimizing Compiler, American Elsevier, New York, 1975. 

 —^.^»a^  -^—  


