o '—71—1‘.-'-’v- -

. SRR

T * rmﬂéhiv
AFOSR - TR- 765 - "800 8

An Approach to
Global Register Allocation

Richard Karl Johnsson

17"

December 1975

ADAO24966

DEPARTMENT et
of

COMPUTER SCIENCE

AIR FORCE OF“T”V OT “”IVWTIFIC RESEARCH (AﬁSC)

NOTICE OF TEAL dT™an 19 BDC
This teoln T n reviawed end is

! aunrcys Fall rersdya® LAw ar 3 1ou=12 (7b).
Dr».- hewitd .‘. LeU.

{ A. .
Toclh:ical inferwation Officer

Carneqie-Mellon University

TR G o ke e



Ay L

't .‘v

UNCLASSTFIED : ' ﬁ
SECURITY C%FICATION OF THIS PAGE (Whun Data Entered)
. READ INSTRUCTIONS
( |4 BEPORT DOCUMENTATION PAGE BEFORE CONBEETING FORM
P un .o , GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER
/191 AIOSTTTR\?() /(X(;y{ H/
T4, TITLE (and Sobtttio) 5. TYPE OF REPORT & PERIOO COVERED
¥ -y
f ég APPROACH TO §LOBAL’BEGIGTPR ALLOCAFION,I \ Interim el 4
3 , : “RE

TR N

o L—

3

7. 4UTHOR(S) i o E;CONTRACT OR GBA_N_IJJWBE (s)
\Richard Karl/Joh.xssonj /_C F44620-73-C-d074

st ol - - }»
9. PEKFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT, PROJECT, TASK
ﬁREA & WORK UNIT NUMBERS

LN

Carncgie-Mellon University

Computer Science Dept. l./ A" STL91D
Pittsburgh, PA 15213 By i AUyHih

11, CONTROLLING OFFICE NAME ANO AOLRESS ,-“"'F WE«-’
Defense Advanced Resecarch Proj dency /~ Dec i 75) /
1400 Wilson Blvd. -
Arlington, VA 22209~ lamf ff

14. MONITORING AGENCY NAi4

OORESS(il different from Controliing Ollice) I8, SECLURAI

Air Forc ice of Scientific Research (NM)
i AFB, DC 20332 ) UNCLASSIFIED ]
15a, OCCL ASSIFICATION/DOWNGRAOING
SCHEOULE

16. DISFRIBUTION STATEMENT (ol this Report)

roved for public release; distribution unlimited

/;*/‘7""/ /}.ﬂj” -—)/7/44

NSTETEMEN T (of theeetratBeT enlcrod rﬁﬁ"mrmm

Approved for public re‘léa’—se; distribution unlimited.

18. SUPPLEMENTARY NOTES

ol o Tt

19, KEY WOROS (Continue on reverse side .I necessary and identily by block number)

20. ABSTRACT (Continue on reverse side il neceasary and identily by block number)

S Y

sce back of this page

Y2 pNg L~

Dh ,':23"!,3 1473 EOITION OF | KOV 6515 OBSOLETE - UNCLASSIFIED




UNCLASSIFILD

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod)

The thesis presents an approach to the problem of global register allocation as
performed by an optimizing compiier. The problem considered is actually the more
general one of choosing what physical resource within the target machine will be

used to hold the results of various compuiations in a running program. The resuiis

i may be the values of common (redundant) subexpressions, partial results develoved
during expression cvaluation,é or variables declared by the programmer: An
optimizing compiler can make betler use of ihe resources of the target machine if
these decisions are all considered together at or near the source level rather than
heing distributed throughout the c.ompiler and operating at both source and object

jo rels.

A decomposition of an optimizing compiler is presented with research focusing
on one part of the compiler, namely the part which assigns the computed results to
physical locations. _The entities for which locations must be assigned by tha compiler
are uniquely ident:hed by wemporary names (TNs). The process of binding the TNs to
actual locations is called TNBIND. A further decomposition of the TNBIND mede! yields

several interesting problems. Three of these problems are considered in greater
detail. '

(1) Specifying the way in which particular language constructs interact with

l particula'r target machine capabilities.

(2) Determining the lifetimes of TNs, i.e., the segments of the program during
_ which each TN contains a valid value. This is similar to what has been called live-

dead analysis.

-~

(3) Assigning a large number of TNs to the relatively few physical locations
available. This is related to so-called “knapsack" cr “cutting-stock” prodlems in

operations research.

Several versions of the TNBIND model are incorporated into the Bliss-11
compiler and compared with each other and with the original compiler in terms of

code quality and compilation time.

UNCLASSIFIED '




Bisl.

 ACCESSION for

DISTRIGUTION /AYAILABILITY COOES

White Section J

NS
eng Butf Sectin [
URALIYINCED 0

FUATTRTY 117, F

cesscsessessenastoseis

gt

&l a| s

This research was supported in part by
the Office of the Secretary of Defense
by the Air Force Office of Scientific Researc

An Approach to
Global Register Allocation

Richard Karl Johnsson

December 1975

Department of Computer Science
. Carnegie-Melion University
Pittsburgh, Pennsylvania 15213

Submitted to Carnegie-Mellon University in partial
fulfillment of the requirements for the degree of

Doctor of Philosophy.

public release and sale; its distribution is unlimited.

T e e A

JUN 1

DDC
U@Eﬂﬂﬂﬁ"_

1976 |

WILHU G
D

the Advanced Research Projects Agency of
(Contract F44620-73-C-0074) and monitored
h. This document has been approved for

SR TSty SIS

easitialiit e o

N
3



Abstract

The thesis presents an approach to the problem of global register allocation as
performed by an optimizing compiler. The problem considered is actually the more
general one of choosing what physical resource within the target machine will be
used to hold the results of various computations in a running program. The results
may be the values of common (redundant) subexpressions, partial resu'ts developed
during expression evaluation, or variables declared by the programmer. An
optimizing compiler can make better use of the resources of the target machine if
these decisions are all considered together at or near the source level rather than
being distributed throughout the compiler and operating at both source and object

levels,

A decomposition of an optimizing compiler is presented with research focusing
on one part of the compiler, namely the part which assigns the computed results to
physicai locations. The entities for which locations must be assigned by the compiler
are uniquely identified by temporary nanes (TNs). The process of binding the TNs to
2ctual locations is called TNBIND. A further decomposition of the TNBIND model yields
several interesting problems. Three of these problems are considered in greater
detail.

(1) Specifying the way in which particular language constructs interact with

particulai' target machine capabilities.

(2) Determining the lifetimes of TNs, i.e., the segments of the program during
which each TN contains a valid value. This is similar to what has been called live-

dead analysis.

(3) Assigning a large number of TNs to the relatively few physical locations
available. This is related to so-called "knapsack" or “cutting-stock" problems in

operations research.

Several versions of the TNBIND model are incorporated into the Bliss-11
compiler and compared with each other and with the original compiler in terms of

code quality and compilation time.




Acknowledgements

| am deeply indebted to all the membefs of the Computer Science
‘ Department, faculty, staff, past and present students. Together they

| create an atmosphere which is highly conducive to academic and personal
growth, '

My special thanks go to my advisor, Professor William Wulf, for his

ideas, suggestions, and tireless effort in the original programming of

TNBIND for the Bliss-11 compiler. Thanks also to the other members of

my committee, Professors Anita Jones, Mary Shaw, and David Casasent,

| for their helpful comments and criticisms. 1 must also thank Bruce

Leverett for his help and cooperation while | was building my test
versions of the compiler.

Finally my thanks go to Nancy and Elsa for their words of
encouragement when needed and their coercion when required.




»

Contents

1. Introduction

1.1 Background

1.2 Issues and Subproblems
1.2.1 Evaluation order
1.2.2 Target path
1.2.3 Machine requirements:
1.2.4 Run time environment
1.2.5 User variables
1.2.6 Interacticn with control flow

1.3 Previous work
1.3.1 Index register allocation
1.3.2 Evaluation vrder
1.3.3 Globa! assignment

1.4° Approach to the protlem

1.5 Thesis organization

2. A View of Global Register Allocation

2.1 The global register allocation problem

2.2 Local variables

2.3 Input to TNBIND

2.4 Actions of TNBIND
2.4.1 Targeting and Preferencing
2.4.2 Data gathering
2.4.3 Lifetime determination
2.4.4 Importance ranking
2.45 Packing

2.5 Summary of the model

3. Describing the Language and Machine
3.1 A typical binary operator
3.1.1 The necessary functions
3.1.2 An example
3.1.3 The store operator
3.2 Other operators
3.2.1 Unary operator
3.2.2 If-then-else
3.2.3 Simple loops
3.2.4 Complex operations
3.3 Cost computations
3.4 Mechanically generating TNBIND

4, Determination of TN Lifetimes
4.1 Detinitions
4.2 An exampie
4,3 Refiection on lifetimes

COONNOT D DN —




Vi

An Approach to Global Register Allocation

4,4 Summary of Lifetimes

5. The Packing Problem
5.1 The problem
5.2 The procedure
5.2.1 The fathoming procedure
5.2.2 Backing up
5.2.3 Assigning another TN to a register
5.2.4 Honoring preferences
5.2.5 An intuitive view of the procedure
5.3 The practicality of obtaining an optimal solution
5.4 Formulation of the more general problem
5.5 Summary of packing

6. A TestCase
6.1 About Bliss
6.2 About the PDP-11
6.3 Bliss-11 implementation of TNBIND
5.3.1 Subroutine parameters
6.3.2 The store operator
6.3.3 Cost computations
6.3.4 Lifetimes
6.3.5 Ranking
6.3.6 Packing
6.3.7 A new kind of restriction
6.4 Measurements of TNBIND
6.4.1 The programs
6.4.2 The numbers
6.4.3 Discussion
6.4.4 Evaluation

7. Conclusion _
7.1 The TNBIND Mode! - Review
7.2 More traditional optimizations
7.3 Contributions of the thesis
7.4 Future research
7.4.1 Better algorithms
7.4.2 Automatic TNBIND generation

A. The TNP Routines
B. The Basic Packing Routine

Bibliography

66

67
68
71
72
74
74
75
76
77
78
79

81
82
83
84
84
86
87
88
89
89
92
93
95
96
99
103

105
105
107
108
109
109
109

111
130

132




Chapter 1

Introduction

This thesis presents an approach to the problem of global register allocation as
performed by an optinizing compiler. The problem is actually more general than
merely choosing one register or another to hold a particular value. A compiler has
the freedom and responsibility to choos;e what physical resource will be used to
(temporarily) store information during the execution of a program. This is & freedom
given up by a programmer when he changes from an assembler to a compiler. ‘When
a program is being executed, many values are computed, stored temporarily, used and
then discarded. At the time of compilation a compiler must decide which values will
be stored in which locations at runtime. The thesis does not include questions of
dynamic storage allocation or other questions of large quantities of storage, but is

restricted to consideration of problems usually associated with register allocation.

In most computers.there are several classes of locations which may be used to
hold information (e.g. registers, main memory, stack). In addition there are usually a
number of (logically) identical locations within each class. Because the primary
function of a compiler is to transiate faithfully any algorithm presented to it, the
primary goal must be to make a consistent s- ¢ of decisions about where information
will be stored, i.e. the transiation must perform the algorithm described by the sourco
program. This thesis is concerned with the secondary goal of an optimizing compiler,
namely to select from the possible translations one that is somehow “better” than the
others. The concern here is only with the decisions relating to the use of temporiry
storage. Other areas of optimization, especially common subexpression elimination
and code motion will be discussed only as needed to provide context and motivation

for the discussion of temporary storage.

1
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2 An Approach to Giobal Register Allocation

1.1 Background

For many purposes the advantages gained by using an optimizing compiler are
far outweighed by the cost of analyzing the alternative code sequences in such a
compiler. In fact Hansen [Han74] has suggested that some types of programs are
raore naturally run in the environment of an adaptive compiler that initially interprets
programs and only compiles or optimizes as execution frequency warrants. On the
other hand, some applications demand highly efficient programs. In this latter
category coms operating systems, compilers, and other programs run constantly or
very frequently but which are compiled infrequently. Traditionally such programs
have been written in assembly languages. By programming at the machine instruction
level the programmer is able to use all of his experience and knowledge of both the
machine and the problem to make decisions about what code should be written to
implement various parts of his algorithm. Until we can accurately build a model of
human knowledge, reasoning and associative capacity into a compiler, there will
continue to be small programs or parts of programs on which an experienced
assembly language programmer can outperform any compiler (in terms of “"goodness”

ot output code).

The problem with the traditional approach is twofold. 1) Assembly language
programs do not lend themselves to unde.rstandability, modifiability and demonstration
of correctness as many higher level language programs do. 2) Tnere are not enough
good assembly language programmers. An optimizing compiler is an attempt to solve
this problem. The advantages of higher level languages (specifically
understandability, modifiability, and demonstration of correctness) are widely

accepted even by those who are not satistied with the etficiency of the code
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produced. The hope is that programs can be written in a high level language, and
that an optimizing compiler can provide translations which execute with the efficiency

of good assembly language prograins.

This thesis will consider only that part of an optimizing compiler generally
known as the register allocator. The problem considered is actually the more general
one of deciding where information may be temporarily stored at program execution
time; the locations chosen need not be registers. The idea is to make optimal
decisions, but optimality is both hard to define and hard to measure. In terms of
register allocation, optimality may mean minimum object code size, minimum execution
time, minimum number of registers used, mininum number of loads and stores, some
combination of these, or some other criteria. The word optimal was purposely
omitted from the title of the thesis because there can be no optimal solution to the
register allocation problem without a good deal of qualification on the meaning and
measurements of optimility, The emphasis here is on providing a general framework

in which particular optimization decisions car easily be made.

Although algorithms for specific aspects of the problem have been presented,
there has been little or no considera_tion of the overall problem, A primary goal of
this thesis is to present a model of r;gister allocation which shows the interaction of
the various subproblems and allows specifiz solutions to those subproblems to be

easily incorporated into a realization of that model.

In the long term this research is directed toward compiler compilers --
programs which produce compilers from a description of the source language and the
target machine. Just as formalization of language syntax led to advancements in

mechanically generated parsers, it is expected that the formalization of the register




4 An Approach to Global Register Aliocation

allocation problem will lead to advancements in this area of mechanically generated

optimizers.

1.2 Issues and Subproblems

There are many issues in the overall register aliocation problem. Most of these
issues arise because we want to produce code that is not only correct, but also
"good"; many of the issues become "non-issues” if we are concerned only with the

generation of correct code. The issues include at least these:

Evaluation order

Target Path '

Machine Requirements

Run time environment
Interaction with control flow

Each of these is discussed in more detai! befow.

1.2.1 Evaluation order

Since an expression must be evaluated by first evaluating its subexpressions
and then combining them, some decision must be made about the order in which the
subexpressions wili be evaluated and where the resulting values will be stored until
needed. A simple example will help illustrate the of*ons. Suppose we are required

to evaluate the expression

(a*b)+(cxd

Using a three address notation, our evaluation order choices are

a*b
cxd
t1+t2

{

Y
ta
t3

4 ¢

and

C*d-')tl
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asxb - 15

t1+tr = tg
The point is that the evaluation of the expression requires that the two
products be formed befire their sum can be formed. Mathematically, there is no
restriction placed on the relative order in which the products are formed. Indeed, if
our hardware permits, the two products could be produced In parallel. In oractice,
however, the evaluation order may be somewhat restricted. The restrictions may be
due to the language definition, e.g. the language might specify strict left to right
evaluation of subexpressions. The evaluation order may also be restricted because
of possible side-effacts of an operand. The issue of evaluation order is how to
decide which subexpression to evaluate first. In the example of Section 1.2.1 there is
no obvious preference ior choosing one or the other subexpression as the one to be
svaluated first. In some cases choosing the correct evaluation order is the

difference between "good" and "bad" code.

1.2.2 Target path

Although similar to evaluation order determination, the selection of target path
is in fact an independent decision. In the example above we avoided the target path
decision by using a three address notation. Very few computers have full three
address capability. The last of the three address instructions above

t1+t2 - ta

may have two realizations on most machines

tl - ta

AL TR
or

tz - ta

tj+tg = 3

SRR —

ko
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6 An Approach to Global Register Allocation

The target path is the sequence of subnodes which are first loaded into result
locations and then operated on by the indicated operators. We refer to an operand
lying on the target path as the target path operand, although we frequently refer to
an operand as being the target path since at any particular node the target path Is
uniquely identified by an operand. When the alternatives are made expliclt, we see
that the initial move instr.uction (t; =tz or ty > tg) may be eliminated if it is possible
that tg can be the same location as eitter t; or ty. In the simple case, t5 may be
assigned to either location and we mav make an arbitrary choice. In other cases
more global context may restrict our decisions. In the above example, let us suppose
that t; (i.e. axb) is a redundant subexpression whose value, once computed, may be
used several times without recomputation. In this case t3 must not he the same
location as t; since the value in t; must be preserved for later use. This additional

information leads us to choose t, as the target path.

1.2.3 Machine requirements

Ditferent computers place differing requiremenis on the operands of certain
instructions. Aside from the sp‘ecial instructions unique to a given machine, these
requirements are usually restrictions on the kind of location in which the vuerands of
the normal unary and binery operators may reside. The available kinds of locations

may include

main memory

register

top of stack

special register (e.g. floating point, index)
pair of registers

Any general model of the temporary storage management problem must provide for

these dirfering requirements.
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1.2.4 Run time environment

Language designers/implementors make decisions about the run time
p environment which must be considered by a general model of temporary storage
management. These decisions are essentially extensions of the machine
requirements. Some of the questions to be addressed here are

How many registers are available for system temporaries?

Which registers are safe and which are destroyed across subroutine
calls?

Are there display pointers? If so ure they fixed or dynamically
allocated?

How are parameters to, and return values from, subroutines ‘.andled?

What is the interaction with library and system functions including
debuggers?

The model must allow for some degree of freedom in making these decisions.

1.2.5 Uger variables !

Should variables declared and used by the programmer to temporarily hold

values be given the same treatment as those generated by the compiler? Program

size and execution time can be reduced if some user variables can reside in

o e A e

registers. If we are to consider allocating registers for user variables, it is logical
: . that we do that at the same time we allocate registers for compiler temporaries.
While machine restrictions and the run time environment force some decisions about
which values must or must not be in registers, we may be able to produce a "better"

I program if we place some user variables in registars, even at the expense of keeping

: 1‘ some compiler temporaries elsewhere.
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1.2.6 Interaction with control flow

In order to generate "good" code we must make the best use of the resources
available. In the case of registers, generally a scarce resource, this implies that we
must be able to recognize precisely when a registér contains valid information and
when it does not. \We say that a location contains a valid value when the value may
be referenced before a new value is stored into the location. We can do this In much
the same way a clever assembly language programmer does. When such a
programmer needs a register for some value, he follows the controlw flow to
determine where the registers currently in use are referenced and where values are
stored into them. A register can contain several logically distinct quantities as long
as no more than one of the quantities has a valid value at any point in the program,
This issue concerns the graph theoretic properties of the program. Suppose that
points x and y in the program flow graph ‘are uses of some variable A, and that at
point z a new value is stored into A, We want to ask questions such as “Is there a
path from x to y that does not pass through z?" If the answer is no, then the varlable

A does not contain a valid value between points x and 2.

Another aspect of this issue is the use of a register over a small piece of
program to hold a variable whose value is normally kept in memory., When a variable
is accessed frequently within a small segment ot code, program performance may be
improved by loading that variable into a register before the segment, thus eliminating
a memory reference for each access, and storing it back into memory after the code
segment. This optimization is most comn;OnIy applied to loops because the savings

are multiplied by the number of times the loop is executed.
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1.3 Previous work

This section presents some of the major results in the area of register
allocation. Published work in the area has generally been limited to consideration of
simple al.location problems in straight line programs and optimal evaluation order for
expressions. Little published material is available on the problems of register
allocation in the presence of control .flow constructs. The material below summarizes

the major results.

1.3.1 Index register allocation

[}

Horwitz, et. al. [Hor66] discussed index register allocation in a paper oriented
toward FORTRAN-like programs (and machines like the IBM 7090) which have simple
array accessing mechanisms. An index is presumed to be a simple variable whose
value must be retained either in a register or in memory at all times. Given the future
index requirements of a program, the allocation of the index registers of the machine
to the indices is considered. When all of the index registers contain values that will
be needed again later in the program, a decision must be made to replace one of

those vilues when a new index is required.

Horwitz considers the possibility that an index may be changed while it resides
in a register. If an index is changed in a register, and subsequently that register
must be allocated to another index, the changed value must be stored in memory. It
the value is not changed, it is not necessary to store the value back into memory
when the register is reallocated. This problem is analogous to the problem of page
replacement in a virtual memory system. It is less expensive to replace a page which
has not been changed since it was read from secondary storage because a valid copy

still exists elsewhere.
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For the purpose of this problem, a program can be considered to be a
sequence of steps each of which requires a specific index. The fact that there may
be steps in the program that do not require indices is not important. Consider the set

of program steps and associated indices

where x*

means that index x is changed in tha step where x* appears. When a step
calls for an index, that index must be in one of the index registers. The other index
registers may contain any configuration of indices. The indices in the other index

registers may or may not be in a modified state.

We may construct «ll of the allowable configurations for each step i, i.e. ail
combinatviOns of n of the indices used by the. program which include the index
required by step i (where n is the number of index registers available). Consider the
configurations to be nodes in a directed graph with branches from each configuration
of the ith step to each configuration of the i+1st step. Each of these branches can
be assigned a weight which is the cost of making the change in configurations
between steps i and i+l represented by the branch. The cost of changing between
configurations is defined as the number of memory references required to make the
change. Thus each new index which is loaded has a cost of one. Each starred index

which is replaced has an additional cost of one. Changir.; an unstarred occurrence of
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an index to a starred occurrence of the same index, or replacing an unstarred index

require no memory references and therefore have a cost of zero.

Given this representation of the poss’ble allocation of index registers, the
problem becomes one of finding the shortest, i.e. least expensive, path through the
graph from the first step to the last step. Although there are several algorithms for
finding the shortest path through a directed graph, the number of calculations
reguired for other than a small number of nodes makes these solutions impractical.
Since it is necessary to fing only one of the possibly many shortest paths through
the .raph, we may restrict attentioﬁ to any subgraph which contains a shortest path.
The bulk of the Horwitz paper is devoted to developing properties of these graphs
which lead to rules for eliminating nodes and branches from consideration. Horwitz
proves that the subgraph obtained by applying these rules does centain a shortest
path, and gives a procedure for finding that path. Six rules are given for generating
the subgraph from which an optimal index register allocation may be derived. Define
w(ny,np) to be the cost of changing the configuration from that of node n; to that of
node np. Define W(n’) to be the weight of a node given by minn(W(n)+w(n,n')), i.e. the
minimum over all n of the sum of the weight of n and the cost of changing from n to
n’. The weight of the initial node is zero. Given these definitions we may summarize
Horwitz’s rules:

Rule 1: Generate only minimal change branches and eliminate any node
which has no minimal change branches entering it. A minimal change
branch is defined as a branch from node n at step ¢ to node n' at step
i+1 such that either nodes n and n’ are identical or n' differs from n
only in the irdex required at step i+].

Rule 2: If ny and ny are nodes of step ¢ and W(n1)+w(nl,n2)sW(n2),
eliminate no.
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Figure 1-1. The result of applying Horwitz's Rule 1.
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Figure 1-2, Luccio’s six link types.
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\ Rule 3: n; and nj are nodes at step ¢ which differ in exactly one element.
Let z; be the element of n; which is replaced by 25 in np. Although
the exact explanation is somewhat more complex, the idea is that
node np can be eliminated when W(n{)sW(n5) and in the future z; will
be used before z,. This requires the ability to look ahead in the
program,

Rule 4: This rule is a consequence of Rule 3 and prevents generation of
nodes that would later be eliminated by Rule 3. It z; and 2z, are
elements of a node n at step i and the next use of z; comes before
the next use of z5, do not form a node at step i+1 which replaces z;
by the index required at step i+l.

Rule 5: Since we need only one shortest path, generate only one branch
b into each node a' such that W(n')=W(n)+w(b).

Rule 6: If a node n of step i which is not the last step has no branches
leaving it, eliminate node a.

Figure 1-1 (reproduced from [Hor66]) shows the result of applying Rule 1 to
the graph of the example program above when there are two index registers
available. Step O is added to indicate the initial configuration which contains two
indices not used in the program (xg and xg). Each branch is labeled with the cost of
.’ the change between the indicated configurations and each configuration is labeled

with the minimum cost to reach the configuration from step O.

Luccio {Luc67] showed that Horwitz's rules may restrict the graph so that at
some steps only one configuration is possible. The program steps before and after
such a step may be treated separately. Luccio neatly describes his technique in
terms of link diagrams. Six types of links are used to connect various combinations
. of starred and unstarred indices (Figure :-2. Links of types 1, 2, 3, and 4 are built

whenever a second occurrence of an index is seen. Links of types 5 and 6 are built

N

following occurrences of starred indices and are maintained up to the current step.

These are called temporary links since they will be changed to one of the other

types when a succeeding occurrence of the particular index is encountered.
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A link is said to cover all the steps along ‘ts extension excluding the extremes.
Only the first extreme is excluded for temporary links so that they cover the current
step. Luccio gives two rules for changing links of types 1, 2, 3, or 4 to links of
definite allocation (type 0). The index corresponding to a link of type O must be kept

in its regisier throughout the entire extension of the link.

If there are N reg ' ‘*ers available then

1. Alink Lof type 1 becomes type O if for eacih step k covered by { the

number of other links of types 0, 1, 2, 3, or 4 covring k is less than
N-1.

2 Alink { of type 2, 3, or 4 becon;ves type O if for each step k covered
by { the total number of other links covering k is less than N-1.

When the number of type O links covering a step k is N-1, the configuration for
k is fixed. The n registers must contain the N-1 indices corresponding to the type O
links and the index required by step k. At such steps the Horwitz method may be

applied independently to the preceding and succeeding steps.

The Horwitz method is related to Belady's algorithm for page replacement in a
virtual storage computer [Bel66]. Belady showed that in a paging environment, the
page to be replaced should be the paze whose next use is farthest in the future. In
addition he noted that if a page has not been written into, it need not be written out
(to secondary storage) but merely deleted. The abillty to determine which page

(register) is next used farthest in the future depends on knowing the future behavior

of a program.
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1.3.2 Evaluation order

Jkuo Nakata addressed the question of evaluation order in his paper describing
the register allocation phase of a FORTRAN compiler for the HiTAC-5020 [Nak67].
Nakata shows that the order of evaluation of the subexpressions of an expression
can affect the number of temporary values that are required at any one time.
Consider the expression asb+(c+d)/(e+f). A straight torward code sequence to

evaluate this expression is:

axb » R

c+d > Ry

e+t > Rj

R2/R3-) R2

R1+R2-’ Rl
Suppose, however, that this expression must be evaluated on a computer with fewer
than three registers. To use the same evaluation order with only two registers
available would require that one of the intermediate results (namely a*b) be stored in
some temporary memory location, On the other hand, by changing the order of

evaluation of the subexpressions, the expression may be evaluated using only two

registers and without storing intermediate resuits.

c+d - Ry

e+t > Ry

Ri/Rz~> Ry

axb - R2

Ra+Ry~ Fo
The central point of this example is that the subexpression (c+d)/(e+f) requires
two intermediate values. Since those intermediate results are not needed after the
division is performed, one ot the registers may be used to compute atb. Since the

result of the evaluation of an expression occupies only one register, it follows that

for any binary operator, the operand whose evaluatior requires the larger number of

registers should be evaluated first.
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The nur! er of registers required to evaluate the expression (a) <op> (b) where
(a) and (b) are a.rbitrary expressions and <op> is some pinary operator is given by
the following analysis. Let [ and m be the number of registers required to evaluate
(a) and (o) respectively. If either (a) or (b) contains no operators (it is a constant or
a simple variable) it requires zero registers. (Note that "require” here means the
minimum number of registers necessary to evaluate an expression without storing any

intermediate results).

There are {wo cases:

1. l=m=p. (a) can be evaluated first leaving the result in one of the (
registers used. Evaluation of (b) will require one more than the p-1
registers remaining giving a total of p+1 registers for the expression,

2. l¥m; max(,m)=p. In this case the operand requiring the larger number
of registers is evaluated first leaving p-1 registers for the other
operand. Since the other operand requires at most p-1 registers no
additional registers are needed and the expression can be evaluated
using only p registers.

In both cases p is a lcwer bound on the number of registers required and p+l

is an upper bound. In case 1 p+l is a lower bound, and in case 2 p Is an upper

bound.

Nakata gives an algorithm for labeling the nodes of a tree with the number of
registers required for evaluation of the node. Briefly, this algorithm assigns a label
La to each nod2 n of the tree such that if nis » leaf then Ln=0, otherwise the

immediate descendants of n have labels ! and r and La=min(max(i+1, r), max(l, r+1)).

Nakata's algorithm for code production involves first fabeling the nodes of the
tree by the above method, and then beginning at the root node, walking through the

tree generating code to evaluate the expression represented. At each node the
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operand requiring the larger number of registers is evaluated first. If the operands
require the same number of r:gisters, the left operand is evaluated first. Nakata
does not consider formally the question of what to do when the number of
simultaneous temporary values exceeds the number of registers. He does, however,
offer some heuristics for deciding which temporary vaiue should be stored. On most
machines the left operand of a division or subtraction operation must be in a register,
so the left operand of these operations should not be stored. This may conflict with
the other assertion that the value to be stored should be the one whose use is
farthest in the future, but Nakata conjectures that the efficiency of the code
produced will not be signiticantly affected by the choice of either of these courses

of action.

Using a graph theoretic approach, R. R, Redziejowski [Red69] later proved that
Nakata's algorithm does use the minimum number of registers. Redziejowski
transformed Nakata's tree into a "lineup" or linear sequence of vertices. Each vertex
represents a single operation in the tree and an arc is drawn from vertex z to vertex
v to represent a partial result which is computed at y and used at z. Choosing a
feasible evaluation order is equivalent to ordering the sequence of vertices so that
vertex y precedes vertex xz if there is an arc from z to y. (This is equivalent to

requiring that any partial result be computed before it is used.)

At any vertex x the number of partial results created before » and used after
% is represented by the number of arcs passing over vertex z. Redziejowski calls
this number the width of the lineup and develops an algorithm for producing a lineup
of minimum width. Redziejowski's algorithm is in principle the same as Nakata's

algorithm and therefore Redziejowski's proof of his algorithm can be considered as a
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formal proof of Nakata's algorithm. Redziejowski generalizes the algorithm to include
operators with more than two operands.

Sethi and Uliman {Set70] consider the mor2 general problem of minimizing the

number of program steps anc/or the numbe: of storage references in the evaluation

of an expression with a fixed number of general registers. They exploit the

associative and commutative properties of operators and assume that all elements are
distinct (no common subexpressions) and that there are no non-trivial relations

between operators (e.g. no distributive law).

Nakata's tree labeling scheme is modified slightly to account for commutative
and non-commutative operators. This change assigns a label of one rather than zero
to a leaf node which is the left descendant of its ancestor. The change means that
the 12ft and right operands of a binary operator may have different weights and

accounts for the gains which may be made by exploiting commutativity.

First considering only non-commutative operators, Sethi and Uliman prove that
their Algorithm 1 (which is essentially Nakata’s algorithm) uses the minimum number of
registers as well as the minimum number of loads and stores. Since the number of
binary operators 1s not changed by the allowed transformations, a program which has

a minimum number of loads and stores has a minimum number of program steps.

In Algorithm 2, Sethi and Ullman consider commutative operators by adding a
step to Algorithm 1 which interchanges the left and right descendants of a
commutative operalor when the left descendant is a leaf and the right descendant is a

non-leaf.

Associativity is treated only in conjunction with commutativity since in practice

most associative operators are also commutative. The approach used by Sethi and
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I 4 is to make the associative-commutative operators into n-ary operators,
reorder the operands so that the one or two operands requiring the largest number
of registers appear on the left, and then change back to binary operators associating
to the left. This is conceptually similar to Redziejowski’s treatment of n-ary

operators.

Sethi and Ullman prove that each of their algorithms generates an evaluation
sequence containing the minimum number of loads and stores under the assumptions
of the algorithm. They then show that this leads to the co'.clusion that the algorithms

also minimize the number of storage references.

In their conclusion, Sethi and Ullman point out that all of their algorithms can be
performed in time proportional to the number of nodes in the tree. They also show
that the algorithms can easily be modified to allow operations which require more

than one' register,

Beatty [Bea72] recasts the ideas of Sethi and Ullman in terms of axiom systems.
Beatty extends the Sethi-Uliman algorithm for associative-commutative operators to
include the unary minus and its relations to the other operators. These relations

include the equalities

a-b = a+(-b)
-(asb) « (-a)*b
-(a/b) = (-a)/b = a/(-b)

Beatty's proof of minimality is considerably more complicated than the Sethi-Uliman

proof due to the properties of the unary minus.

More recently Bruno and Setni [Bru74, Set75] have shown ihat the register
allocation problem for straight line programs is polynomial complete when .common

subexpressions are not recomputed. The specitic problems considered are (1) to use
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the minimum number of registers without storing intermediate results and (2) to
generate the minimum Iengt; code for a one register machine. While the optimal
register allocation/evaluation order may be easily determined in some cases, the
results of Sruno and Sethi tell us that in general there is no known nonenumerative

solution.

1.3.3 Global assignment

The work thus far discussed has dealt only with the question of optimal use of
registers in expressions. A paper by W. H. E. Day in the 18BM Systems Journal {Pay70]
considers the much broader probiem of global assignment of data items to registers.
Before describing Day’s work, it is necessary to explain the distinction between what
Day calls global assignment and what he considers local assignment. Informally, a
local assignment is one whizh makes assignments within basic blocks, i.e. without
control flow. A global assignment considers larger contexts which include control

flow. A more formal discussion follows.

Consider a programming language L. The terminal symbols of L are delimiters,
operators, constants, and identifiers. The constants and identitiers are the data items
of L. A program in L is a sequence of statements; a statement is a sequence of
terminal symbols. Statements in L are either descriptive or executabie, the latter
specifying operations to be performed on data items. A data item is said to be
defined in a statement when execution of the statement causes a new value to be
assigned to the data item. A data item is referred to when the value vuf the data item

is required for correct statement execution.

Let P be a program in L. A basic block in P is an ordered subset of elements

ot P which intuitively is "straight line code," i.e. a sequence of statements which can

i




B L T

Introduction 21

only be entered by branching to the first statement and which can only be left by
branching from the last statement. Py is a representation of P as an ordered set of
basic blocks. Pg is a representation of P as a directed graph with the elements of P
as the vertices and a set of arcs representing the flow of control among the basic

blocks of P. A region R, is a strongly connected subgraph of P', and P, is a

representation of P as an ordered set of regions:

PI‘E{RI’RZ""'RR}
RinRj-¢orR£<:ijori<j,

Ry =Py}

A computer has a set of registers G* whose elements are g, and for most
situations requiring the use of a register any available g; € C* may be assigned. Let d

cepresent an element of P, Py, or P and define:

G'={glgc¢ 6%, g; is available tor assignment everywhere in d }

N' ={n |n s adataitemin P, n; may be assigned to registersind }

Given these representations, Day offers the following cefinitions:

1. A local assignment is a {possibly multi-valued) mapping of N c N' onto
G c G for d € Py,

2. A global assignment is a (possibly muiti-valued) mapping of Nc N
onto Gc G ford €P,.

3. A one-one assignment is a one-one mapping of Nc N’ onto G G'. A
one-one assignment defines a one-to-one correspondence between N
and G.

4. A many-few assignment is a single-valued mapping of Nc N onto
G c G’ with cardinality(N) 2 cardinality(G).




IUUTES G S SRS A

BRSNS - IS Se—

22 An Approach to Global Register Allocation

5. A many-one 'assignment is a many-few assignment in which
cardinality(G) = 1.

A data item is active at a point in d if it may be referred to before being
defined subsequent to that point. Two data items interfere in d it they are both
active at some point in d. A necessary condition for the assignment ot NecNtogce

G in d is that n; must not intertere with nj for every n;, nj €N, L ¥

Local assignment, as defined by Dav, occurs entirely within basic blocks of a
program. The methods described by Horwitz, Nakata, Sethi-Ullman, and Beatty
provide algorithms which may be used to obtain optimal local assignments under the
assumptions dictated by those authors. Local assignment is not, however, able to

cope with data items ‘vhich may be active on block entry or exit.

Global one-one assignment partially solves the problem of active data items at
block boundaries by assigning data items to registers throughout an entire region.
With this type of assignment, precautions need be taken only at region poundaries to

assure that values of active data items are retained.

Assigning a data item to a register for an entire region may lead to inefficient
use of the registers. With accurate program flow information, it is possible to
determine the points at which a data item is active. When the active points of all data
jtems are knowﬁ, a set of data items which do not interfere may be determined and
the elements of that set assigned to the same register. The availability ot complete
and accurate flosws information is critical to efficient use of global many-one or many-
few assignments. In the absence of flow information, many-one and many-few

assignments degenerate to one-one assighments.

Day formulates global one-one, many-one, and many-few assignment problems
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as integer programming problems. He makes the intuitively reasonable assumption
there is some profit (>0) associated with the assignment of a data item to a register
and that this profit depends on the frequency and context of the use of the data item,.
Day gives several algorithms for solving the assignment problems. Some of these
give optimal results wﬁile others may produce non-optimal feasible results at a much
lower cost in computational complexity. Day’s formulations of the problems are

summarized below.

The global one-one assignment is the simplest of the three problems since no
interference data is required. Refering to the definition of a one-one assignment let
n = cardinality(N') and m = cardinality(G’) and let p be a vector of profits such that p;
is the profit associated with assigning n; ¢ N' to a register. Vector z Is a selection
vector such that z; = 1 if n; € N' is assigned to a register, otherwise %; = 0. Let be

“a vector of 1's of appropriate size so that {1z produces the sum of the elements of x;

then the problem is

maximize Z=px
subject to lxsm
where z; €{0,1} and p; > 0

The solution to the one-one assignment is simple: assign the m data items with the

largest profits to registers.

The global many-one assignment problem is similar to the one-one problem
except for the added restriction that no two data items which are assigned to the
register may interfere. Day expresses this condition in terms of a matrix of data item

interference values (C | cij = litn, n; eN', i ¥ jinterfere; c;j= 0 otherwise).

The many-few assignment problem is an extension of the many-one assignment

problem to more than one register. The problem is to select the best combination of
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many-one assignments. Day explicitly excludes multi-valued mapping which might

assign a single data item to different registers at different points in a region.

In his conclusion, Day reports the results of several tests of the actual
execution characteristics of his algorithms for many-few assignment. The OPTSOL
algorithm (which provides an optimal solution) requires much longer execution time for
relatively little gain over the estimating algorithms. (Sample values: for one register
and 48 data items t(optimal) = 6 sec., t(estimate) = 0.06 sec.). The total profits
produced by the estimating algorithms are consistently greater than 907 of the profit
produced by the OPTSOL algorithm and are significantly better than a one-one

solution to the same problem. Day concludes that his algorithms are sufficlently fast

to be included in an optimizing compiler.

1.4 Approach to the problem

In order to build the optimizing compiler mentioned earlier, it is necessary to
have a general overall model of the resulting compiler. Once we have this model we
can divide the task into subprobiems along the lines of the phases of the resulting
compiler and attach. the subproblems individually. The overall structure of the
compiler presumed in this thesis is the decomposition of the Bliss-11 compiler
[Wul75). The Bliss-11 compiler is decomposed into five major phases:

1. LEXSYNFLO -- lexical, syntactic and global flow analysis.

2. DELAY -- Program tree manipulation. Replacement of some nodes by
simpler but equivalent nodes. Determination of evaluation order and
target paths. General decisions about the code to be produced.

3. TNBIND -- Allocation of registers and other temporary storage.
4, CODE -- The actual code generation.

5. FINAL -- Peephole optimization and preparation of the code for final
output.
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In this thesis we will consider the TNBIND phase of the compiler. The name
TNBIND comes from Temporary Name BINDing. A temporary name (TN) is a name
assigned to any location to be used as temporary storage. A unique name is assigned
for each logically distinct entity, although several names may represent the same
physical location in the final code stream. It is assumed that the DELAY phase has
made the evaluation order and target path decisions described above. TNBIND must
make the actual bindings of TNs to locations after considering the other issues. Of
particular importance are the machine requirements and characteristics. Working from
the tree representation of the source program TNBIND determines the number and
context of the uses of each TN and decides how to bind the TNs to the available
locations so as to produce the “best” output code. There are two basic goals in
studying the TNBIND phase of the generalized optimizing compiler structure. (1) We
want to formalize some of the actions in a phase of compilation that is usually a
collection of unrelated algorithms at best, and completely ad hoc at worst. (2) We
also want to make the transition from a phase of a compiler for a particular
language/machine combination to a general mode! of the temporary storage problem.
The TNBIND mcde!l will include the assignment of TNs for user variables, and user
varlables will be considered as equal competitors with the compiler generated

temporaries in the allocation of machine resources. The model will also place a great

deal of emphasis on accurately determining the interaction of the TNs with control

flow in the program. The restrictions placed on the final bindings of TNs to locations
which arise from the machine requirements and the run time environment will be
considered in a general way so that changes in the machine, the language. or the

implementation can easily be incorporated into a new compiler.

The thesis can be seen as an extension of the work described in [Wul75). We




S s— R m— R N RN W T Sy R R — R E s i
- B — e e e e . e e e e ae o g o
Wﬁ‘

et e

26 An Approach to Global Registzr Allocation

take the relationship of TNBIND to the other phases of compilation as defined by the
Bliss-11 decomposition to be the correct relationship. From that point we expand the
TNBIND idea to a general model of temporary name binding applicable to a large class
of languages and machines. We also consider new algorithms for the solution of two
specific subproblems of the TNBIND model. The goal is to show how to produce a
TNBIND phase of a compiler when presented with the language and the characteristics
of the target machine. It is not proposed that the result of the research reported
here should be a piece of a running compiler compiler system. Rather we will oresent
a notation for describing a general model of a solution of the problem and indicate
how the specifics of a particular language or machine may be incorporated in the
model. Though it may be somewhat of an understatement, the step from the model

presented here to the corresponding piece of a compiler compiler is "merely a matter

of implementation."

The following description is an overview of the implementation suggested by
the model. We assume here that our only choices for assigning TNs are registers and
main memory. Each expression which must produce a value and each user variable is
assigned a unique TN. Two values are calculated for each TN: the cost* of accessing
the TN if it is assigned to a register and the same cost assuming the TN is assigned to
a location in main memory. We also collect for each TN a list of all points in the
program at which the value of the TN must actually exist in the assigned location.
The optimal binding of tho TNs to the available locations is the one which produces a
minjmum cost program (i.g. the sum of the costs of each TN for the type of location to
which it is bound is minimized) and no two TNs which must contain valid values at any

one point are bound to the same location. The really hard parts of the problem are

+ in terms of code size, memory references, etc.
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determining, accurately, the points at which any given TN must contain a valld value
and selecting a set of bindings to minimize cost without a compiete enumeration of all
feasible bindings. By changing the exact measures of cost, we can change the
emphasis of the optimization. If the cost minimization procedure is effective we will

produce at least very good, if not optimal, cxde as defined by our cost measures.

1.5 Thesis organization

Chapter 2 provides a detailed description of the model. This Includes the
decomposition of the problem into several subproblems Including cost computations,
lifetime determinations and the actual binding. Chapter 3 gives 8 notation for
describing the pertinent facts about the language and the target machine as they
relate to register allocation. This is the place where implementation declsions (e.g.
subroutine call-return conventions) and machine specific information are encoded.
The machine specific information needed here is not a description of each opcode,
but rather more general information such as the relative cost of accessing registers
and memory and what kinds of locations may (must) be used to hold the operands of

various operators.

Chapters 4 and 5 describe solutions to two specific subproblems: the
determination of litetimes (also knawn as tree-busy or live-dead analysls) and the
- problem ot binding a iarge number of temporary locations to the limited physical
resources of the target machine. Chapter 6 discusses the reimplementation of the
TNBIND module of the Bliss-11 compiler as a test case of the thesls. Chapter 7

reviews the model and considers the possible directions for tuture research.




Chapter 2

A View of Global Register Allocation

This chapter wi!l present a description of the TNBIND model of global register
allocation. Global register allocation as used here means making decislons about
which register (or other location) will be used to hold a particuiar value by
considering a context larger than a single expression or statement. While it will not

always be explicit in the following description, the intent of the model is to make al;

decisions in the context of a single subroutine. The model could be expanded to

consider an entire c...pilation or, with suitable intermediate storage of data, a set of
compilations, but the subroutine is the unit of program frequently considered by
other optimizations and is large enough to provide the opportunity for interesting

global decisions.

2.1 The globai register allocation problem

Most register allocation done in actual compilers is local. As defined in Chapter
1, a local allocation is an allocation done entirely within a basic block. This type of
allocation is much easier than a global allocation which makes allocations within a
region. It is possible that an entire program may be a single basic block, in which
case local and global allocations are identical, however such programs are a small
minority and are rather uninteresting. In order to do ihe global allocation, we must
have more information about the control and data flow of the program. In traditional

compilers this information is not available at the time register allocation must be done.

Traditional register allocation methods such as those described by Hopgood

[Hop69] operate on sequences of machine instructions. The instructions come from

28
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the code fenerator with the necessary registers specified symbolically. The register
allocator then associates ihe symbolic names with the actual registers of the machine.
A local allocation is the logical choice in this situation because the information
necessary to make global decisions is difficult to obtain from the machine code. Thus
the model of compiling that places code generation bzfore register allocation has to

some extent dictated the use of local allocation methods.

The TNBIND mddel differs from the traditional view by placing 'he register
allocation before the actual code ganeration. At this point the traditionalists will cry
"How can you assign registers before you know what instructions are to be used?"
The answer lies in the fact that the TNBIND model considers registers as more
general than just a necessary part of a machine instruction, This is reflected in the
choice of the term "temporary name" rather than "register” to refer to the entities In
question. A temporary name is, quite simply, the name of a place that can be used io
store information. It is possible to Identify the values (information) that must be
.computed by looking at the parse tree of a program.* If we couple the kn.owledge of
where these values are computed and where they are used with some basic
knowledge about the machine, we can assign actual locations to hold each of the
values without ever knowing the exact sequence of instructions that will be needed
to perform the computation. Indeed it may be the case that we cannot declde on the
exact instructions needed until we have determined whether certain values are being
held in rpgisters or not. Thus there is somewhat of a "chicken and egg" flavor to the
problem. On the one hand we can argue that we cannot assign registars until we

know what instructions are to be used, and on the other hand we argue that we

t In the case of a language construct that is not closely represented by the basic
hardware of the machine, it may be necessary to add some information to the nodes
of the parse tree during semantic analysis.
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cannot decide on the best sequence of instructions until we know which registers will

be used and which operands will be in registers.

The global allocation problem is hard. Sethi [Set75] has shown that the general
problem is hard even for straight line programs. Not only is the problem of finding a
good (i.e. near optimal) allocation polynomial complete, but merely determining
whether a given function which associates registers with program nodes is a valid

allocation is also a polynomial complete problem.

2.2 Local veriables

The TNBIND mode! treats user declered local variables in the same way it treats
temporary storage needed for expression evaluation.  This is e logical extension
since the programmer uses the abstract computational facility provided by the
language in the same way the com'piler uses the facilities provided by the target
machine. The programmer expresses his operations in terms of the language
primitives just as the compiler expresses the language operations in terms of the
hardware primitives. The programmer uses his local varlables to temporarily hold
intermediate results. By treating the local variables like compller generated
temporary storage the programmer reaps the benefits of keeping some, if not all, of
his results in registers. The TNBIND mode! ditfers from other views of reglister

allocation by declaring, at the outset, that user variables will compete on equal basis

with compiler variables for use of the registers.
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2.3 Input to TNBIND

Mc;st register allocation algorithms accept a skeleton code stream as input. The
skeleton code stream has the actual machine instructions to be generated with the
register tieids filled in symbolically. It is the function of the allocator to map the
symbolic names into physical assignments, Some authors have made a distinction
between allocation and assignment; the former merely reserving oné ot a number of
ragisters and the latter deciding which particutar register. In the TNBIND model we
use the terms interchangeably. A program may request more registers than are
physically available, but it will not require more registers than are physically
available. Because many of the operations _performed in the TNRIND model are
machine independent, having to deal with actual machine instructions introduces
unnecessary complications. TNBIND operates on a program tree with machine
dependence being supplied parametrically to its subphases as required. Each node of
the tree which Iproduces a real value? has been assigned a unique temporary name
(TN) to hold the value. A TN is a symbolic representation of the location which will
be used to hold the vaiue at run time. TNs are generated from an infinite pool,
although they will eventually have to be mapped onto the finite resources of the
target machine. Local variables and common subexpressions are also assigned TNs.
TNs which have particular restrictions on the type of location to which they may be
ultimately bound carry an indication of this restriction. The restrictions are the result
of the machine requirements and the implementation decisions as discussed in Chapter
1. In the case of ucer variables, the user may have restricted the options available

to the compiler, e.g. the Bliss-11 compiler allows the brogrammer to declare that @

+ A real value must be an actual bit representation ot a result. A flow value, on the
other hand, may be represented implicitly by changing the flow path. The value of a
boolean, for example, may otten be implicit in the selection of a subsequent flow path.
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loca! variable must (or must not) be kept in a register. The restrictions may include

concepts such as "must be a register,” "must not be a register," "must not be register
0," or "must be an even-odd register pair." These restriction decisions are made by
. an earlier compilation phase which has knowledge of the semantics of the language as
well as the characteristics of the machine. ECarlier phases have also decided the
evaluation order of subexpressions and have made the target path decisions. A
global flow analysis phase has identified common subexpressions and noted the
points at which each such expression must actually be evaluated. There may be more

that one distinct common subexpression identified from each set of formally identicel

expressions [Ges72, Wul75].

s

Figure 2-1 shows the structure of the input to TNBIND for an assignment
statement. Each operator node contains the operator, a TN (which may be nuil), and
pointers to the operands. In the figure the target path operands are marked with the

symbol "®" which appears in the pointer field. The leaf nodes of the tree structure
are variables and literals. The leaf nodes which represent user variables to be
treated by TNBIND also contain TNs. In the figure, the variables "A" and "J" have

been assigned TNs.

2.4 Actions of TNBIND l

Given the input described above, the function of THNBIND becomes one of
hinding the TNs to actual storage locsiions (reg.sters, memory, etc.). This proceeds
in several subphases as shown in Figure ?2-2. In the figure each box represents
one of the subphases. Boxes stacked vertically represent independent processes
which may be done in parallel. Each element of a vertical stack is dependent on one

or more of the elements of the stack on its left. Thus the vertical dimension




; A ew of Global Register Allocation . 33
1
* F
1 | TN = null
]
\ /
B
var s
] A | TN= t3
t #
A L _
//0 I
var —— +
®
el
( ] e
1 . L ——— var
TN =t c
|
/
]
var literal
D 2
'p
A<B«(Ds2+C)

| Figure 2-1. The TNBIND input for an assignment statement.
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represents potential parallelism whi'a the horizontal dimension represents required

sequential execution. Each of the subphases in Figure 2-2 is described below.

targeting and

. ranking
preferencing

— —p packing

litetime
determination

data gathering

Figure 2-2. The subphases of TNBIND.

2.4.1 Targeting and Preferencing

Targeting is the process of trying to cause each result to be computed in the
place the result will be needed, thereby eliminating non-productive data moves. The
values of subexpressions are targeted or directed toward producing a final result in
the TN in which the result will eveniually reside. The targeting procecs attempts to

take advantage of the opportunities recognized in the target path decision (Section

1.2.2).

The process is carried out in an execution-order tree walk. Each node passes
its own TN to its target path subnode saying, in effect, "This is where | would llke
you to leave your result." The subnode considers the desirability of generating its

result in the target TN. The considerations include whether the subnode is a common
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subexpression or a user variable anu whether the restrictions on the two TNs
(ancestor and descendant) are compatible. If the target TN is a reasonat;lo place to
compute the result, the two TNs are "bound together," i.e. they will henceforth be
considered to be the same TN. We refer to this successful operation as “making the
target." The ancestor is informed of the decision made at the subnode. If the
subnode could not make its target, the ancestor has the option of asking that some
preference be given to assigning the two TNs to the same physical location in the
later packing phase. The operation of expressing this preference is called
preferencing. There may be several degrees of preference forming a spectrum from

weak preference to strong preference to actual binding together

2.4.2 Data gathering

In parallel with the targeting and p-eference class operations, the tree nodes
are numbered and a flow graph is built. (Flow information collected during the flow
analysis phase may not be accurate since later phases may have changed the order
of expression evaluation. Flow information collected during flow analysis may be
used If the data collected i; sufficiently robusf to provide the Information needed by
TNBIND. It is not important to know how the information is gathered.) The flow graph
Is represented as a sequence of linear blocks. A linear block Is the largest piece of
the program having one entry, one exit and no internal branches. Each linear block

also has pointers to each of its possible successors.

A record is kept for each TN Indicating at which nodes the TN Is referenced.
The references are separated into two classes: those that replace the value with an
unrelated new value and those that use or modify the value. Changing one field of a

variable which contains several packed fields is considered a modification. For the
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purpose of this record, each node is assigned a linear order number (lon). (The lon
values will be more precisely defined in Chapter 4.) This informetion Is used together
with the linear block information to determine at which nodes in the program the TN
must contaln its proper value. The determination cen be made by & machine

independent procedure which will be described in Chapter 4.

Another item of information recorded for each TN is the cost of Its use. This
cost is a function of the number of instructions, memory cycles, etc. which are
required to perform the specified operations on the TN. A separate cost is kept for
each class of storage to which the TN may be bound so that the savings in program
size/speed resulting from any particular binding may be evaluated. The cost function
may include some frequency of execution data depending on what information s
available from the source language. The specification of the cost functions Is
essentially what determines the optimization criteria. In general a cost may have two
parts: a static cost C; and a dynamic cost Cy. Cq represents the cost in terms of
code space. C, represents the cost of performing the access and is multiplied by the
number of times the access is performed. Thus the basic flavor of the optimization
can be changed by changing the relative values of Cg and Cy. Increasing C, relative
to Cy4 tends to optimize for minimum code size while increasing Cy relative to Cg
tends to optimize for minimum execution time (not necessarily implying an increase in
code size). For any access a which is performed n, times the cost Is C; + n,Cy. The
total cost for a TN is given by the expres§ion

2 (Cg *+ nyCy
a
In practice it may be necessary to use an approximation for the number of executions
of each access. When the data on branch probabilities is available it Is considered in

calculating n,.
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2.4.3 Lifetime determination

In using the concept of TN lifetimes, we recognize the fact that in general it is
not necessary to retain the vaiue of any TN throughout the execution of the program;
it is only necessary that the value be available when required. The analysis of
lifetimes has been given many names. Day [Day70] calls a data item "active” It it may
be referenced before It is redefined. Allen has discussed "live-aead analysis"
[AlI71b). Other authors have referred to variables as being "free" or "busy” [Low69).
There is a basic difference In the emphasis of the analysis done by these authors and
the analysis required by the TN:!'D model. Past work has been concerned almost
exclusively with determining whether it is feasible or desirable to keep & copy of a
variable in a fast register over some part of a program. The TNBIND model Is geared
toward keeping TNs perm.anenﬂy in registevis while identifying the points In the
program at which .the register may also be used to hold other values. A detailed

description of the lifetime ard the method of determining it is presented in Chapter 4,

2.4.4 Importance ranking

After the.information described above has been collected the TNs are ordered
according to their relative “importance.” This is a measure of how Important It is for
to program optimization to bind a given TN to a particular kind of location. The
importance of a TN is a function of the sum of C, and Cy for each access as well as
the restrictions on the binding of the TN. Those TNs restricted to a single storage
class are given the highest priority to be bound to that storage class. The ranking
phase.is really nothing more than the creation of a number of sorted lists which will
serve as input to the packing phase. The purpose of the ranking Is to select the
order in which the TNs will be considered by the packing phase. The most important

TNs will be considered first,

e e s -
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2.4.5 Packing

The packing phase does the actual -assignment of locations to the TNs (or TNs
to locations). A perfect assignment is one which satisfies all of the restrictions and
preferences and assigns each TN to a member of the most desirable of its al'lowed
storage classes. In practice it is not always possible to make such perfect
assignments, The function of the packing phase in this case is to minimize the
increase in cost over the perfect solution. When it is not possible to assign all TNs to
their desired locations, we attempt to select a minimum cost solution from the set of
all possible assignments. This set may be very large. If there are k classes of
storage to which TNs may be assigned and there are n TNs, then there are kN
possible assignments. Chapter 5 describes how this solution space may be searched

efficiently for a minimum cost solution.

2.5 Summary of the model

The TNBIND mods! Is summarized by the following statements:

1. A unigue name (TN) is generated for each entity for which the
* compiler must choose a physical location.

2. Using knowledge available from the program tree and knowledge
about the target machine, costs and patterns of use are determined.

3. TNs which should be bound to the same location are identified. A
record is kept when it is desirable (from the optimization viewpoint)
that two TNs share the same location, but such sharing may not be
consistent with the semantics of the program or may not be the best
decision in a more global context. '

4. Lifetimes for each TN are determined from the use patterns and
program flow information.

5. Finally, TNs are bound to physical locations such that the cost due to
inability to make perfect assignments is minimized.




Chapter 3

Describing the Language and Machine

The TNBIND model relies on attributes of the target machine. It can be adapted
to a new target machine by respecifying machine attributes including the types and
number of temporary storage locations to be usea and the characteristics of the
various operations that the target machine can perform. The model treats programs
at a much higher level than traditional register allocation methods. Since the details
of the instruction set of the target machine are not explicitly encoded in the model,
the respecification needed to effect a change of target machine Is the relationship of
target machine 'capa’silitios to language coi.*tructs rather than the format and

semantics of the instructions.

The various language dependencies and machine dependencies affect the first
phases of the TNBIND process. There is a specific routine for each node type.
These routines perform the targeting, preferencing and data gathering functions for
all of the TNs in the program unit being compiled. As mentioned in Chapter 2, we will
assume that the unit of compilation is the subroutine. TNBIND considers the noaes of
the program tree in execution order, That is, the first node considered is the first
node for which code will be generated. In a tree representation of the program, the
first nodes to be considered are the leaves. The descendants of a node represent
the computations which must be performed before the computation specified by the
node itself. TNBIND accomplishes the execution order examination of the modes by
using a recursive tree-yam algorithm. At each node the algorithm is invoked to
examine the subnodes. When the algorithms is invoked on a target path subnode, a

target TN is passed. When the bottom of the tree is reached, the necessary TN

39
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processing for the leaf node is performed, and the result is returned to the ancestor
node. When all of the descendants of a node have been processed. The node itself
is processed and then returns to its ancestor. In order to clarify this structure, we
present below a few examples of the node types and the actions necessary to

process them,

3.1 Atypical binary operator

3.1.1 The necessary functions

Let us consider the actions that are necessary during the TNBIND processing of
a typical binary operator. We will assume that this operator is one which is
represented directly by the hardware, i.e. there is a hardware instruction which
implements the basic operation. For example, t. “"ADD" instruction directly

", "

implements the "+" operator. The TNBIND processing is identicatl in form to the actual
code generation process. By this we mean that the code generator traverses the
tree in the same manner in order to generate code. The difference is that the
TNBIND phase does not involve the actual instructions, but rather the control flow and

the number and kinds of references made to temporarily stored data. The processing

of a binary operator usually proceeds as follows:

process first operand

process second operand

move targei path operand to temporary
operate on temporary with non-target operand
leave result in temporary

s T~

The TNBIND processing mimics the actions of the code which will eventually be
produced. (If the target machine organization dictates some other sequence of
evaluation for a binary operator, then the TNBIND processing will change

accordingly.)
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First the two operands are processed by TNBIND with the current node’s TN
being passed as a target to the target path operand. This processing occurs
) recursively until the bottom of the tree is reached. After the two operands have
been processed, we look to see whether the target path operand "made its target.” If
not we must allow for the move of the value of the target path operand from the TN
where it exists to the TN of the current node by increasing the costs of both TNs by
the cost of the move. In this case we also record the fact that we prefer that the
two TNs (target path TN and current node TN) be assigned to the same iocation. If
they can be assigned to the same location by the iater packing phase, the data move
can be gliminated. We next update the cost values of the non-target TN and the
current aode’s TN to inciude the cost of the aperation. Lastly we decide whether to
ind the current node's TN to the targst that was passed in from above. Thus
targeting decisions are made by the recipient of the target request, and targeting is

done by the requestor when the targeting request Is rejected.

In order to specity these actions we reed to be able to talk conveniently about
nodes, operands, TNs and costs. We need to define the basic operations to be
performed and describe the sequence of these operations that should be performed

for each node type.
The primitives we nead for the typical binary operator described above are

TNP(node,target)
node: a tree node

target: a TNor O

Invoke the TNBIND processing on “node" passing "target" as the
target. When no target is being passed, "target” Is 0. This is the
function invoked for each node by the recursive tree-walk
algorithm. Common actions are performed by TNP and then the
node-specific function for the node type is invoked.
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PassTarget(node,target)
1 node: a tree node which is an operand of a binary operator
target: a TN
Evaluates to ‘"target" if "node" is the target path operand.
Otherwise the value is O meaning no target. This conveniently
expresses the notion that the target is passed only to the target
; path operand without assuming which operand of a binary operator
lies on the target path.

NoteUse(t,when)
t: a TN
when: a lon value
Add "when" to the list of nodes which are uses of "t".

NoteCreation(t,when)
L t: a TN
] when: a lon value
Add "when" to the list of nodes which are creations of "t".

Move(tfrom,tto)
tfrom: a TN or tree node
tto: a TN or tree node
If there is a TN associated with "tirom" then invoke Notelse
passing the TN and the current lon value. Similarly for “tto" except
invoke NoteCreation.

PrefMove(tfrom,tto)

tfrom: a TN or tree node

tto: a TN or tree node

Indicate that the TNs associated with "tirom" and "tto" should be
| assigned to the same location if possible (preferencing), then
invoke Move(tfrom,tto).
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Operate(op,01,02)
op: = machine operation
ol: a TN or tree node
02: a TN or tree node
Invoke NoteUse and/or NoteCreation as appropriate for the action
of executing "02 «o02o0pol". For example, the call
"operate(+,X,Y)" means that the action "X « X + Y" is a use ot both
X and Y and therefore invokes NoteUse on both X and Y. For
unary operators we omit "02". Some operations are specified
generically, e.g. "test” meaning "test for true or false”.

Bind(t1,t2)
tl:a TN
t2: a TN
Bind the two TNs together. That is, force them to refer to the
same location. This is the action when a node "makes its target."

In addition to these primitives we need a few ;\otational conventions to simplify
the explanation of the processing routines. We will use the notation "X[fielaj name]”
to represent the vealue of the nemed field of the item named X. Thus
"qlfirst operand]” will refer to ‘irst operand of a node named q. We will also make

use of the foliowing abbreviations.

Abbr. meaning
MyTN node[temporary name]

Oprl node[first operand]
Opr2 node[second operand]
OpType node[operation]

We are now in a position to state the actions necessary to process a binary

operator node in terms ot ‘ne primitives.

TNP(Opr1,PassTarget(Opri,MyTN))
TNP(Opr2,Pass Target(Opr2,MyTN))
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PretMove(node[target path],MyTN)
Operate(OpType,node[non target path],MyTN)

3.1.2 An examplo

Let us consider the processing of the assignment statement of Figure 2-1. The
tree is reproduced in Figure 3-1 with names attached to the nodes 50 that we can
refer to them easily. TN processing begins with node Nj, the assignment operator.
The assignment operator invokes TNP on each of its operands, passing no targets
since neither operand is flagged as the target path operand. Figure 3-2 shows the
complete sequence of invocations. The calls to PassTarget are not shown; rather the

result of the PassTarget evaluation is shown explic:tly in subsequent calls to TNP.

In Figure 3-2 we see the TN processing recurring until the bottom of the tree
Is reached. This first happens when Ng processes node D. After Ng has processed
both of its operands, it sees that its target request to node D was rejected and
therefore invokes PrefMove to indicate that the value of D must be moved into t;. At
this time PrefMove updates the costs of t} and tp, invokes NoteUse and NoteCreation
on tp and t; respeclively, and adds each TN to the other’s preference list. Ng then
invokes Operate to update the costs of the TNs involved in the operation. Finally Ng

invokes Bind to bind its own TN to tha target TN,

After processing its second oberand, N3 sees that Ng accepted the target
request meaning that the value of Ng will be leftin ty. Ny invokes Operate and Bind
and returns to No. Np invokes Operate and returns to Ny which calls PrefMove to

update the costs for the data move from tginto A

The results of this processing are:

Loty to, and tg will all refer to the same location. This means that the
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Figure 3-1. An expression tree to be processed by TNBIND.
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: controlling
node action
TNP(N},0)
Ny TNP(A,0)
] Ny TNP(N5,0)
Np TNP(B,0)
Np TNP(Ng,t3)
Na TNP(Ng,tp)
Ng TNP(D,t))
Ng TNP(2,0)
Ng PrefMove(D,t))
Ng Operate(t-,tl,Z)
Ng Bind(ty,t})
N3 TNP(C,0)
- N3 Operate(+,t5,C)
N3 Bind(ts,tz)
No Operate(*,ta,B)
b Np PrefMove(ts,A)

Figure 3-2. A trace of TN processing actions.

expression on the right hand side of the assignment will be evaluated

without any unnecessary data moves. 1
2. tp is preferenced to t;. It this use of D happens to be the end of a

litetime segment, then ty and t; will be assigned to the same lozation thus

eliminating the initial data move. |

3. tpis preferenced to tg. If the litetimes of ty and t3 have no points in
{ common, ty and tj will be assigned to the same location thus eliminating
the final data move.

3.1.3 The store operator

The store operator is considered to be a special properties. These properties
l are due to the special optimizations which may be performed on store operations. In

general we evaluate the right hand side leaving the result in some TN and then we

move the value from the TN to the iocation named by the left hand side. We would
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like to eliminate the final data move when the store operation is inherently simple.
We say that a store operation is simple when it is possible to bind the TN of the right
hand side to the location of the left hand side.’ We define a predicate in order to

Identify the simple cases:

SimpleStore(left,right)
left: a tree node
right: a tree node
True if it is possible to bind the TN of "right" to the location of
"oft"; false otherwise.

A few of the operations which might be simple on some machines are
1. A«A+k  (k a constant)
2. A<B+k
3. A«A op B(op one of some set of operators)
4. A<A op e(e an expression)

3.2 Other operators

3.2.1 Unary ooerator

With the notation established, we can easily describe the acllons required by

other types of tree nodes. The simplest of these is the typical unary operator:

TNP(Opr1,MyTN)
PrefMove(Opr1,MyTN)
Operate(OPTYPE,MyTN)

As noted in the discussion of binary operators, the actions taken In TN processing

mirror the code that will be used to implement the operation.

t The exact definition of which store operations are simple is dependent on the
capabilities of the target machine, but the concept is machine Independent
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3.2.2 If-then-else

The processing for more complex nodes, such as if-then-else, is also easily

expressed in terms of our primitives.

TNP(node[boolean],0)
Operate(test,node[boolean])
TNP(node[then part]MyTN)
PrefMove(node[then part],MyTN)
TNP(node[else part]MyTN)

PrefMcve(node[else part],MyTN)
Note that this presumes that the if-then-else has a value. If the language does not

provide for an if-then-else expression then the calls to PrefMove and the passing of

targets to the then and eise parts may be eliminated.

3.2.3 Simple Inops

The processing {or a while loop is also very straightforward. Remembering
that at this point we need not know what instructions will be generated to implement
the loop, we need only process the subnodes of the while in the order In which the
code will be executed. The fact that the body of the loop may be executed several
times is irrelevant to the basic processing, but should be consldered in the cost

cormputations.
TivP(node[boolean],0);

Operate(test,node[boolean])
TNP(node[body],0)

Note that in this case we make no provision for the value of the while loop. If,

for example, we wanted to specify that the value of the loop was the value of the

last evaluation of the body, we could pass MyTN as a target to the body and insert a

PrefMové at the end of the processing routine.
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3.2.4 Complex operations

Up to this point we have discussed language constructs that are common to
most algebraic languages and easily implemented on most computer hardware. One of
tﬁe advantages of the TNBIND model of using temporary storage is the ability to
handle new and more complex language constructs much closer to the language level

rather than at the machine instruction level.

Consider a language which Implements lists of items as a primitive data type.
There might be a language construct which allowed a sequence of statements to be

performed on each element of a list. A programmer might write something iike

forail [ in L do begin §13 §2i 831 . . .j §, end;
The tree node for such a construct wouid have three subnodes: one for the item

name (I), one for the iist name (L) and one for the body. The processing in TNBIND

might look like

NoteCreation(node[item name],node[lon])
Operate(end-of-list-test,node[item name})
TNP{node[body]},0)
Operate(next-item,node[item name})

where the linear block information would show that the end-of-list-test was the
successor of the next-item operation. This example is rather explicit in its use of a
TN to hoid each 'olomont of the list in turn. It is easy to imagine, however, that the
same treatment could be given to other constructs. For example, it might be the case
that the “forali" construct was only an internal representation produced by the
semantic analysis phase so that the programmer’s

L « sqgrt(l)

is transtformed into

forall Iin L do I « sqrt(l)
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3.3 Cost computations

A very important part of the TNBIND process is the computation of the costs
associated with each TN. One of the simplest measures of cost to compute is object
code size. It is easy to calcvlate the size of the object code required for a given
access to a TN. This is a particularly interesting cost measure for a machine which an
instruction which accesses a register is smaller that an equivalent instruction which
accesses a memory location. On other machines some other measure may be more
appropriate. The point is not what the measure is, but rather that the cost
computaticn can be separated from the rest of the processing and modified

independently as desired.

As discussed in Chapter 2, we want to collect relative cost measures; the
absolute measures are of only marginal interest. In terms of a code size measure,
the cost da*a we want to get information such as "Assigning variable X to a register
instead of a memory location will save 8 words of code." We can then say that the
cost of (failing to allocate a register tor) X is 8 words, It code size is our only
measure then it makes no difference whether the 8 is the difference between 2 and

10 or between 100 and 108.

The costs are calculated in very much the same way that the TN processing is
carried out, i.e. by having separate routines to handle the specific information about
each node type and a driver routine to handle the common inforn:ation. The cost
calculations can be included in the TN processing routines, or they can be separated

into a separate pass ofer the tree.

The cost computations rely most heavily on the attributes of the target

machine. The data that must be available for the cost computations Includes the

following values for each of the storage classas to be considered.

e a——
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The cost of a simple access of a TN.
The cost of isolating a subtield of a TN,

The cost of implementing non primitive functions, e.g. the cost of
performing the "exclusive or" operation on a machine which does
not have a corresponding hardware function.

In traversing the tree, all references to a TN are analyzed and the costs are
accumulated. Those TNs which must be assigned to a register are assigned arbitrarily
high costs to assure that they are treated first in the packing process. The TN
processing phase attempts to keep the lifetimes of such TNs as small as possible,

relying on the preferencing operation to eliminate loads and stores when possible.

3.4 Mechanically generating TNBIND

It should be possible to generate the TNBIND model of a compiler mechanically
from a description of the input language and the target machine. This is not to say
that there is an obvious algorithm which accepts BNF and ISP descriptions as input
and produces program text as output, but rather that there is a systematic way of
using knowledge about the language and the machine tc generate the necessary

TNBIND routines.

One possibility for specifying the language is to provide functional descriptions
of the operatcrs which look very much like the descriptions in this caapter. That is,
specify for each node type the sequence cf actions it should take during program
execulion. The information is not very specific, but rather a much more general
description of the order in which the subnodes are evaluated and how the values of
the subnodes are to be used. Any initial attempt to specify. a new language for

TNBIND will most certainly involve writing out the processing routines for each node

l
|
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type in the tree representation of the language. In TNBIND we are concerned not

with the syntax of the input language but with the semantics.

Several picces of information about the target machine obviously must be
supplied. These include the types of locations to be used for temporary storage and
the number of locations of each type. TNBIND must also know the functional
characteristics of the various operations which can be performed by the target
machine. For example, if the target machine is of the "general register" variety
without no memory-to-memory instructions, TNBINDvmust know that there must bé a
TN associated with the right hand side of every assignment, and that that TN musit be
bound to a register. One candidate for specifying such information is Newcomer’s
attribute sets and transformations [New75]. Building TNBIND requires both the
knowledge of what the attributes and transformations are and the costs of making the
transformations. The appropriate cost measures and values are not readily

determined from classical descriptions of computer hardware.

The advantage of the TNBIND model is that it provides a mold into which we
can fit descriptions of languages and machines. In this role the model serves to point

out options and keep the treatment of operators uniform.




Chapter 4

Determination of TN Lifetimes

One of the assumptions made in discussing the problem of regisier allocation is

that it is in fact a problem. As computer hardware advances are made, the number of

registers which can reasonably be made available increases. As long as there are

more registers available than there are data items to store in them, there is no real

problem. On the other hand, in such cases, we begin to think of new ways to use the

registers to increase the efficiency of our programs. When machines moved away

f from the single accumulator model, it became pocsible to consider ueing registers for

purposes other than expression evaluation.

A number of articles have appeared describing methods of program

: | optimization thiuugh judicious use of the registers. Lowery and Medlock [Low69)

describe the analysis done in the FORTRAN H compiler to keep the values of

tfrequently used variables in registers within loops. This type of optimization is

l
| frequently referred to as "load-store motion” [AI71a).
{

A good deal of work has been done in the area of program control flow for the 1

purpose of finding the paths along which the value of a variable may be retained in a

register. Allen [All70] and Beatty [Bea71] discuss the use of graph theory and the

concepts of regons and intervals of a graph to determine the aspects of control flow

relevant to register allocation.
: i

The current state of computer hardware provides us with (in most cases) more

I than enough registers to evaluate the most complex expressions occuring in

In order to improve the etficiency of our programs we would like to keep

programs.
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the values of frequently used variables in registers where they can be accessed with
more speed and sometimes with shorter instructions. A simple approach is to first
allocate the registers necessary for expression evaluation and then use the remaining
registers, if any, to hold one variable each, inserting the necessary load and store
instructions into the code at the beginning and end of the program segment being
considered (the most frequent piece of program used with this method is ’the loop as
in [Low69]). A more ambitious goal is to multiplex several variables into each
register. This idea has been discussed in [Day70] and [Bea71]. The approach taken
in the TNBIND model is of the multiplexing variety, but with a ditferent emphasis. In
the TNBIND model variables are either assigned to a register throughout their
lifetimes or they are not. This is conceptually much simpler than a model which loads
and stores several variables during the course of executing a program. The
disadvantage is that some variables used heavily in the inner loop of a program may
not be assigned to registers by TNBIND. We might encourage the assignment of
registers for variables used in loops, or we might seek a way to incorporate the loop

optimizations into the TNBIND model. The latter possibility is discussed in Chapter 7.

This chapter describes a method of determining the lifetime of temporary
names. We want a characterization of the lifetimes which is not only accurate but
also very precise so that we can make maximal use of the registers by assigning
several TNs to each register. The lifetime of a TN is the set of those segments of
the program during which the value of the TN must be available. The complexity
involved in determining the lifetime of a TN is related to the type of TN, e.g. TNs
which are compiler generated temporaries generally have much shorter and more

easily determined lifetimes than TNs which are user variables. A few definitions will

help in the discussion of lifetime determination.
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4.1 Definitions

A program point, p, is used to label an instant in the execution of a program.
The term is also applied to the static program and essentially names a particular
object code instruction. A program point represents a node in the graphical
represuntation of the program. A successor of a node is an element of the set of
instructions which may be executed immediately after the instruction represented by

the node. In terms of the program tree, the successors of a node are either brothers

or immediate ancestors.

A flow path is .a sequence of program points py, .. ., Py Such that for all i
(1si<n) Pi+1 is an immediate successor of p;- A flow path describes a possible
sequence of nodes in the program flow graph. The length of a flow path is the
number of transitions necessary to move from the initial point to the fina! point .of the

path, i.e., the length is one less than the number of points in the path.

A use of a TN is any reference to the TN which requires the value stored In it.
This includes simple loading of the value or assigning a new value which is a function

of the old value. The latter kind of reference may be called a modification.

A creation of & TN is a reference which stores a new value (not a function of

the old value) into the TN.

A lon, or linear order number, is a unique number assigned to each node in the
program graph. The lon values are used to name the program points. The values
increase along any flow path throvgh the program graph except in the case of loops.

For loops the successor of the loop has a lon which is greater than the lon of every
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node in the |00p.'r Within a linear block the lon values are consecutlve.

A TN is alive at a point p; iff there exists a flow path p;, ..., Py such that p, is
a use of the TN and for every p; (i<j<n) on the path, p; is not a creation of that TN.
The initial point of the path, p;, need not reference the TN at all. The essential idea s

that the value of the TN must be preserved at every point along the path.

The lifetime of a TN is the set of points in the program at which the TN is alive.
The kind of information we need to determine lifetimes is similar to that used in global
common subexpression recognition. In order to recognize common subexpressions
we need to know when the value of a variable changes so that we can find all of the
expressions involving that variable and mark them as changed. This is essentially an
analysis of program flow and has been discussed by several authors [All70, Coc70,

Ges72].

For the purpose of describing the lifetime determination, we will assume the
following information is available: (1) a description of the linear blocks* of the
program in terms of their starting and ending lon values, (2) the starting lon values of
each successor, and (3) a list tor each TN indicating, by lon value, the nodes which

are creations or uses of the TN.

A connection matriz is a matrix of binary values representing the successor
relationships among the nodes of a graph. The connection matrix C of a graph of n

nodes is an n x n matrix (Cij"l if node j is an ‘mmediate successor of node |, cij-O

+ The assumption here is that we are not burdened with the unrestricted control
structures that can be constructed by using an arbitrary goto. This is not to say that
the method to be described will not work for such structures. Rather the simplying
assumption merely makes the exposition of the method less complex.

+ A linear block has exactly one entry, one exit, and no internal branches. It is, in the
most restrictive sense, "straight line" code.

T T a
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otherwise). If the nodes of a program graph are numbered by lon as defined above
then some generalizations about the corresponding connection matrix may be stated.
Within a linear block the only successor of a node is the node with the next highest
lon value, i.e., if node i is not the last node of a linear block then c”-l iff jui+l.
Consider two linear blocks LB, and LBy composed of nodes @, a+l,..., b and
d, d+1,...,e respectively. By the definition of linear block we know that the two
sequences have no points in common and that, except possibly at the endpoints, no
node of one block is a successor of any node in the other block. In the connection
matrix | |
asi<b A dsj<e implies °ij'°'°ji
Moreover, |f we think about a matrix representing the connections among linear
blocks, we know that LB, is a successor of LBy itt cbd-l and LBy is a successor of
LB, itt Cea™l: By knowing the composition of the linear blocks we can readily
convert back and forth between the full connection matrix and the matrix of linear

block connections.

4.2 Anexample

A sample program graph with lon values, linear blocks, and the linear block
connection matrix is shown in Figure 4-1. The example program has 99 tree nodes
broken down into 7 linear blocks. Consideration of the connection matrix of linear
blocks iﬁstead of the conrection matrix of nodes yields a significant reduction in the
amount of data required. Unfortunately this abstraction does n-t contain all of the

information from the original connection matrix, although the lost information may be

recovered.

Primarily because of the increased storage efficiency, wo would like to be able
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el , .
< lon values linear blocks connection matrix
e2 el = 1-20 1=el 1234567
e2 = 21-25 2 w@? 1101 00 00O
e3 e3=26-42 3=03;64 2/10 0100 0 1
e4 64-43"47 4-85 30001 1 oo
eb = 48-71} 5 =eb 9 1 0
€6 = 72-84 6 =g7 410 0 0 0
o5 le6 7 =85-93 7 =e8 50000010
e8 = 94-99 601l 00O0O0DO
7!i1000 0000
e/
=8 e1; while 2 do (e3; if e4 then e5 else e6; e7); e8 :

Figure 4-1. The example program.

to perform matrix cperations on the full connection matrix by manipulating the smaller
linear block connection matrix. In or.der to do this we must transform the linear block
connection matrix into a more accurate representation of the full connection matrix.
In Figure 4-2 the connsction matrix has been modified to include entries labeled "S"
(for sequential) along the mzin diagonal. The connection matrix is now & shorthand
for the much larger node-level connection matrix. In our shorthand matrix, each
element represents a submatrix of the full connection matrix. The interpretation of
the values in the shorthand is

0- m ;- 0 Vvi,j

1> Min= 1, mj = 0 for other i,j; n is the number of rows in the submatrix

S - miiel = 1, mfi,j] = O for j#i+l

Figure 4-3 shows an expanded section of the matrix from Figure 4-2. The
rows and columns in Figure 4-3 are labeled with lon values. The lines within the

matrix show the partitioning.
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QO O W+ D O|b
QO WO = OO,
O W= - O O O,
VOO0 O = O

Figure 4-2. Connection matrix with "S" entries.

16 17 18 19 20 21 22 23 24 25

16l0 1 0 0 0|0 0 0O O O
1710 0 1 0 0|0 0 0 0 ©
110 0 0 1 0|0 0 O O O
1990 0 0 6 1 |0 0 0 O O
200 0 0 0 0[1 0 0 0 O
210 0 0 0 00 1 0 O O
220 0 00 00 01 0 O
23l0 0 0 0 00 001 ¢
2410 0 0 0 0 {0 0 0 O 1
250 0 0 OO0 O 0 0O

Figure 4-3. Expanded section of connection matrix. (Linear
block 2 and a portion of linear block 1).

A second modification to the matrix is based on the information we wish to
obtain from the program, namely what nodes in the program are on flow paths leading
(0 any use of a particular TN. In this context any creation of the TN effectively
terminates the path. More simply, a creation node has no predecessors. This is
reflected in the matrix by setting the columns corre_épon,ding to the creation nodes to
O (indicating that they cannot be successors of any node). In the shorthand matrix
this is done by first inaking the creation nodes separate linear blocks. If we consider

a TN with creations at nodes 6, 67, and 80 (in linear blocks 1, 4, and 5) the resulting
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shorthand matrix will appear as shown in Figure 4-4. The columns labeled 1b, 4b,
and Bh are the new blocks, each consist.ing of a single node. Although the matrix we
must now consider has increased in size from 7x7 to 13x13, it is a far cry from the
potential 99x99 matrix we would have if we considered each node separately. It is
important to keep the size of the matrix to a minimum since from this point on the

algorithm must be performed separately for each TN.

—
-

—
o

4a 4b 4c¢ 5a 5b
0 0 O

o
o
o

0
0
0
0
0
0
0
0
0
0
0
0

&

QO OO COOOO0OO0ODOCOWD
(el elNeNeoNeoNeoleoNeo Neo o o o o/
OO OO OO OOOOW— Ofrm
O~ OO0 OO OO OW— O O
QO OO0 QOO0 WO O Ojw
QO OO OO O0OO0OW+— OO0 OO
O OO OO0 OOO0OCCOO0O
QOO O0OOWr— OOOCOCO
OO OO WMWOOO—OO0O0
OOV OO0OO0OO OO0 COO0
OWNWr— OO~ OO0 O0CO OO,
N O OO0 OO0 O — O O O

0

Figure 4-4. Connection matrix with creations partitioned.

The matrix we are considering (actually the complete matrix it represents)
shows only the connections along paths of length one. That is, cij-l when there is a
flow path of length one from node i to node j. In order to be able to answer the
question about where a TN is alive, we must know about all paths of any length. W¢
know from the use of connection matrices in graph theory that the boolean produ-t
of the connaction matrix with itself will produce a matrix showing paths of length two.

Let us consider why this is so, First recall that the boolean product of matrices is
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just like the algebraic product except that multiplication and addition are replaced by
the and and or operations respectively. Thus each element of the product matrix is
produced by oring together several elements which have been produced by anding

corresponding elements of the original matrices.

The boolean product P of matrices A and B is defined by

Ais of order n x k
Bis of order k x m
Pis of order n x m

K
P=AxB iff pij - r:,].(air N b”)
By this definition we see that Pij'l itf 3x > a;, =1 and bxj-l. For the product

of a connection matrix with itself we have

n
plj - r:‘ll(cir A er)
= 1 iff 3x 3 ¢;,=1 and ij'l

This is exactly the statement that there is some program point p, such that there Is a

flow path p;, p,, Pj in the graph of the program; i.e., there is a path of length two,

If we call the original connection matrix cl indicating that it reflects paths of
length one then claclac? which reflects paths of length two. Similarly c3-cltc:2,
04-01#03, etc. Forming the element-wise or of two or more of these matrices
produces a new matrix whose elements indicate paths of any of the constituent
lengths, i.e., c! or 2 indicates paths of length two or less. The boolean sum cl or
c2 or ...or C®is the mlatrix we are seeking, the one which Indicates whether there
is a path of any length between any pair of nodes. In practice it Is only necessary to
accumulate terms of the sum until it converges since in a finite graph there is a finite
maximum length path which does not contain cycles. If the graph contains n nodes

then the sum will converge in no more than n steps since a path of length n+l or
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greater must contain a cycle. The converged sum is called the closure or transitive

closure of the connection matrix. Clearly we can find the closure of a connectien
matrix by forming the products and oring them together. This solution is unattractive,
however, since the operation of finding the product is itself an n3 algorithm. Steven
Warshall [War62] devised and proved an algorithm which will determine the closure of
a connection matrix in time proportional to n2. The basic approach of the algorithm is
to operate on rows of the connection matrix. Whan processing the ith row, any row
which has a 1 iﬁ the ith column is ored into the ith row, Warshall shows that when
the rows and columns are selected in the proper order the closure is formed in a
single pass over the matrix. The algorithm performs nicely on our shorthand matrices

when we define the or operation on the shorthand elements as

OvX=0
lvX=l
SvS=S§

where X may take on any of the three values (0, 1, S) and our interpretation of the

symbols in the shorthand for the closure is changed to

0 =+ mjj = O Vi,
1 -’mij- 1 Vi,j

‘S mij = 1 Y¥j,

Remembering that the elements of the shorthand matrix correspond to the
linear blocks of the original graph, it is easy to understand the definition and the
change of notatibn. In the closure the element representing a linear block (the S
elements) will he.e at least all 1's above the main diagonal because there is a path
from any node in the block to any later node in the block. The 1 elements in the
connection matrix represented connections between blocks, but clearly if there is a

path from one node of one block to a node of a second block, then there must be a
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path from every node in the first block to every node in the second. The S entries
serve only to remind us of the interior detail of the connections of the nodes.
Indeed it there is a path from a linear biock back to Itself ther the entry fcr the
block will change from S to 1 (S v 1 = 1) indicating that there is a path from every
node in the block to every other node In the block. Figure 4-5 shows the closure

of the matrix from Figure 4-4,

la 1b 1c 2 3 4a 4b 4¢c 5a 5b 5¢ 6 7
laj]$ 0 0 0 0 0 0000 0 0O
1bj0O 01 111 001 00O
lef0OS 1 1 1 001 0001
20 00 S 11 001 00O0°1
31000 0SS 1 0010000
4a00000$000000_0
410 0 01 1 1 01 1 0 01 1
4¢(0 0 01 1 1 0 S 1 001 1
520 0 0 0 0 0 0 0 §$ 0 0 0 O
0 001 !@1 001 01 1 1
%0 0 0 1 1 1 0 0O 1 0 S5 1 1
60001 1 1 001 0065651
710 0 000 0 0 O0O0O0O0OUOS

Figure 4-5. Closure of partitioned matrix.

Let us reflect for a moment on the information contained in the closure of the
connection matrix, By zeroing the columns associated with creations, we have
assured that no path in the matrix passes through a creation node. The interpretation
of the elements of the closure is that the i,j element is 1 iff there is a path from node
i to node j that does not pass through a creation. If there exists a j such that node j
is a use and element i,j of the matrix is a 1, then it follows that the TN is alive at node

i. The lifetime of the TN is obtained as a bit vector by oring together the columns of

.....
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the closure matrix that correspond to the uses of the TN. Like the other operations,

this too can be performed in terms of the shorthand matrix.

Suppose now that our hypothetical TN has uses at nodes 32, 74, and 99. In the
matrix of Figure 4-5 these nodes are in linear blocks 3, 5a, and 7. Qring those

columns together produces

Ohl 1 115013 S L LS
The S entries come from blocks 5a and 7 and indicate that the TN is alive in those
blocks before (and including) the last use in each block. The 1 entries indicate that
the TN is alive throughout blocks 1b, lc, 2, 3, 4b, 4c, b, ¢, and 6. In particular the

TN is not alive in blocks la and 8a and in block 5a after the use at node 74.

4.3 Reflection onlifetimes

Let us reflect on the importance of this method. The result is very important.
By repeating the process for each TN we produce a precise specification of the
litetime of each TN. This means that we can determine easily and accurately whether
two TNs interfere. Two TNs are said to interfere or conflict with each other if there
is any program point at which they are both alive, i.e. if the element-wise and of the
lifetime vectors for the two TNs contains any non zero elements. This is exactly the
knowledge needed to make efficient use of the registers in the compiled code. We
may assign two TNs to the same location only if they do not interfere. Note also that
the method is completely independent of any language or target machine. Cnce we
are given the linear blocks and their successors along with the creation and use
points the rest i_s a mechanical process. Warshall’s algorithm for finding the closure

allows us to transform a matrix into its closure in a single pass over its elements.

At this point let us ask why it is necessary and/or desirable to expend the

é
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computational effort required to generate the connection matrices and their closures.
There are much simpler algorithms which will produce good approximations of the
lifetimes with much less effort. First, we must remember that our ultimate goal is to
produce compilers which generate the best possible code (the metric being
determined by the implementor). The simpler algorithms will always lead us to safe
decisions; that is, we will never be told that two TNs do not interfere when in fact
they do. The problem is that the approximate lifetimes may exclude the best solution
from the set of feasible solutions. As long as the extra effort is not unreasonable,
our goal requires that we use the exact solutions to such problems. Second, we
recognize that the simpler algorithms do yield exact solutions in many cases. TO
exploit this fact we use the simpler methods when possible by dividing the TNs into
two classes: interesting and uninteresting. The uninteresting TNs are those whose
lifetimes may be determined exactly by a simple method. Their lifetimes always
consist of a single segment of the program graph from the first reference to the last
reference. The method described in this chapter is used only for the interesting TNs,
those which might have lifetimes composed of disjoint program segments. In general
the interesting TNs are user variables and common ~Jbexpressions; the uninteresting
TNs are compiler generated temporaries. We make the division into the two classes
by declaring that any TN which has inore than one creation or is referenced in more

than one linear block is interesting. One of the two conditions is necessary (but not

sufficient) to produce a lifetime of disjoint segments.
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4.4 Summary of Lifetimes

In this chapter we have presented 8j method of determining the lifetime of a TN,
that is, the points in the program at which the value contained in the TN must be
preserved. The method depends only on collection of data about creation and use
points and on knowledge of the flow of control. Because we would like to have a
very precise representation of the lifetimes, we want to consider each program node
separately. However, even with Warshall’s algorithm, finding the closure of the
connection matrix is an n2 process and n grows very quickly. This realization led to

the development of a shorthand matrix on which the closure could be performed.




Chepter 5
The Packing Problem

This chapter will describe an algorithm which assigns the Ths to the physical
locations available within the target machine. The lifetime information generated by
the procedure described in the previous chapter is taken as an Input to the packing
algorithm, The costs associated with each TN and the restrictions placed on the
assignment of the TN to physical locations are the other inputs. In the ideal case, it is
possible to assign each TN to a location which minimizes its cost; in practice, this is
frequently not pOSsibIe. Thus the paking algorithm must handle two slightly
ditterent but related problems. The first problem is related to problems known in
operations research as "cutting-stock” or “knapsack” problems [Gil66). The locations
to be used for temporary storage represent the stock from which pieces (TNs) are to
be cut or the knapsacks into which items (TNs) are to be packed. The measure of
space in both cases is in terms of program points. The TNs not only require a given
number of points but particular points. In this respect the TN packing problem is
more constrained than the cutting-stock or knapsack problems. If a TN is placed into
a location, it must be at a fixed position and orientation in the space of program
points within that location. In a cutting-stock problem iie task is to cut pieces from a
piece of stock. The exact position and orientation of the pieces is not specified. The
second problem deals with the selection of TNs to be assigned to the preferred
locations (usually registers). The problem is to minimize the increase in cost over the
cost that would have realized it all TNs could have been packed into their preterred

locations.

The algorithin described considers only two classes of storage -- registers and
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memory. The algorithm is also based on the implicit assumption that most TNs stould
Se assigned to registers if possible. These assumptions simplify the algorithm
considerably and are a reasonably accurate characterization of current computers.
Extension to more than two classes of storage will be considered after the algorithm
is presented. The algoiithm described will produce an optimal solution to the packing
problem, i.e. will minimize the increase in cost due to inability to assign all TNs to

registers.

5.1 The problem

The problem of assigning the TNs to the set of available registers is the many-
few allocation discussed by Day [Day70]. That is, there are a number of TNs which
must be assigned to relatively few locations. When the number of TNs is not larger
than the number of locations then the solution to the problem is trivial. Added
complications are the preferences ncted during TN processing and the restrictions on
the locations to which certain TNs may be assigned. Let us first consider the many-

one allocation problem, that is, reduce the problem to consider only one register,

Assume that the TNs are rzpresented by a sequence T in which the ith element
T, represents the ith TN in some ordering. Define a vector p of which each element
p; is the profit associated with assigning the ith TN to a'register. The profit is taken
to be the difference between the two cost measures calculated for the TN during
temporary name processing as described in Chapter 2. A selection vector # is used
to identify which TNs have been selected for assignment to the register (x;=1if T, is

ascigned to the register, z;=0 otherwise).

Two TNs are said to interfere if their lifetimes have any points in common.

Total interference exists among the TNs in a set N if n; interferes with nj for all
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npn; €N, i#). Let N? be a subset of N such that there is total interference among the
elements of N?. Let N** be a set of subsets giving a complete description of the total
interference data; N** = {NT, N*, - N;}. This implies that it nj interferes with Np
then there exists at least one i such that N: ¢ N** and {njinp} -C-Ni" Let A be an
interference matrix (whil'ch has dimension (m x k) when there are k TNs) such that
3y =1 it n; ¢ N?; otherwise aij=0. The selection vector z is a solution to the
assignment problem. The solution is feasible if no two TNs selected by = interfere.

This condition is expressed by Azsl, i.e. each element of the product of A and «z is

<1 meaning that there is at most one TN occupying the register at any program point.

The optimal solution to the many-one assignment problem is the solution of the

integer programming problem:

maximize Z=px

subject to Axzsgl

where z; €{0,1}
aU €{0,1}
p; >0

This problem is described by Balinski [Bal65) as a weighted set matching problem.
There is no krown solution to this class of problems aside from examining all possible
selection vectors and evaluating the objective function o each. Fortunately it is not
necessary to actually calculate the values for each solution (remember that for n TNs

there are 2" solutions).

The following definitions are due to Day [Day70] and Geoffrion [Geo67]. A
complete solution is an assignment of a binary value to each element of . A partial
solution Sp is an assignment of binary values to some of the elements of x with the
other elements remaining free. A completion of Sp is an assignment of binary values

to each of the free elements of Sp. Explicit enumeraticn is the process of excluding
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a complete solution from the set of possible optimal feasible solutions. Implicit
enumeration is the process of excluding a set of solutions from the set of possible
optimal feasible solutions without the explicit enumeration of each element of the set
being excluded. Let 2’ be the value of the objective function (pz) for the most
profitable feasible solution yet obtained. To fathom a partial solution Sp is to
determine that either there is no feasible completion of Sp with profit greater than 2’
or that there is a most profitable feasibie completion of Sp with profit z'>2’. If a
partial solution Sp is fathomed, then the set of completions of Sp is implicitly
enumerated. The key to finding an optimal feasible solution is finding an eftective

fathoming procedure.

Sefore discussing the solution further, it is interesting to note that the
procedure used to find an optimal solution to the many-one problem may be used to
find an optimal solution to the many -few problem. An obvious approach to the many-
few problem is to treat it as a sequence of many-one problems. With this approach
an optimal assignment is found for one of the registers. The remaining TNs are then
used as input to a second many-one problem for a second register. T.he process
continues until either the supply of registers or TNs is exhausted. This approach has
two disadvantages: it may produce a non optimal solution and, more importantly, it

does not allow the preference data to be conside: ed.

A more general approach to the many-few problem is to expand the many-one
problem by a factor of m, the number of registers to be considered. The structure of

this problem is identical to that of the many-one problem with only the makeup of the

matrices changing. The problem is stated as
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maximize z = p*x*
subject to A¥x*<1
where z, € {0,1}
au € {0,1}
p,>0
Here p* is a sequence py, Pp, . .., Py, Where each p; is identical to the original profit

vector p of the many-one problem. Similarly x* is a sequence X1s X9y .+ o X Where
x; is the selection vector for the ith register. A* is a matrix compssed of

submatrices,
AIj = |, an identity matrix of order (n x n)
when i=j+], A?j = A, the original interference matrix; order (p x n)

otherwise, A;'j, = 0, i#j a zero matrix of order (p x n).
The form of ma'rix A* is shown in Figure 5-1. The addition of the ic'entity elements
assures that no TN car be assigned to more than one register. In the abstraction of
the integer programming problem this constraint is necessary to eliminate solutions
witich might achieve a high profit by assigning a particularly profitable TN to all of the

registers.

5.2 The procedure

The complete enumeration of the solutions to the ussignment problem is
obtained by a branch and bound procedure [Mit70]. Such methods use a branching
procedure to generate an ordered sequence of partial solutions and a set of
bounding rules to provide a lower bound on the value of the objective function for
each possibly optimal feasible completion of each partial solution. The prOc;sdure,

shown in Figure 5-2, begins with no TNs assignea to registers. One by one TNs are
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Figure 5-1. The expanded interterence matrix.

assigned to a register (maintaining the feasibility of the partial solution) until the
resulting partial solution is fathomabie. At this point the complete solution with the
largest value for the objective function is remembered and all completions of the
current partial solution are implicitly enumerated. The last TN assigned in the partial
soluticn is then removed from its register and the procedure is repeated from the
fathoming step.? The process terminates when all solutions have been enumerated,

i.e. when the initial (empty) partial solution is fathomable.

5.2.1 Tho fathoming procedure

The fathoming procedure is fairly simple. If the current partial solution ls Sp,
then let us define S, to be the completion of Sp which assigns to registers all TNs
which are free in Sp. If the value of the objective fui <tion associated with Sy, is not
greater than the largest objective function value ye! observed, then there is no
completion of Sp which will produce a larger value and Sp is fathomed. Othe-wise Sp

is not fathomed and the procedure of Figure 5-2 will try to assign the next TN to a

t If there is a possibility that acsigning the removed TN to a different register may
produce a hetter feasible completion then this may be t-ied.
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null
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Figure 5-2. The Branch and Bound Algorithm.
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register. Regardless of whether the attempt to assign the next TN to a register is
successful, the result is a new partial solution derived from the old solution by
assigning a val.e to one of the free elements of the old selecticn vector. This new

partial solution is then presented to the fathoming procedure.

5.2.2 Backing up

When a partial solution is fathomed, the next step is to "undo” the mos’ recent
assignment of a TN to a register reflected in Sp, i.e. the last i is changed to 0. All
elements of Sp following the changed element are free. An attempt is now made to
fathom the nev: partial solution. Following this procedure, the partial solutions
fathomed have more and more free elements. When a partial solution containing k

free =lements is fathomed, 2% solutions are implicitly enumerated.

5.2.3 Assigning another TN to a register

The process of attempting to assign a new TN to a register consists of trying
sc veral steps to find a location to which the TN can be assigned without interfering
with any TN already assigned. In the following discussion of the steps, a register is
said to be open it there are any TNs assigned to it and closed otherwise.

1. 1t the TN has a preference for assignment then try to assign the TV
to one of . prefered locations. (This step is expanded in Section

5.2.4.)
2. Try to tind an open register to which the TN can be assigned.
3. If there are any closed reisters, open one and assign the TN to it.

4. 1t steps 1 through 3 fail to assign TN to a location then the attempt is
unsuccessful. The new partial solution will have the ~orrespondir.g
element of the selection vector equal to 0.
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5.2.4 Honoring preferences

As discussed in Cnapter 2, some TNs are “preferenced” to other TNs. The
intent of a preferencing operation is to indicate that there is some additional benefit
to be gained by assigning the ' .~ TNs to the same location, be it register or memory.
In terms of the generated code, failing to honor a preference means that at some

point a value will have to be moved from one TN to the other.

Suppose the TN being considered by the assignment algorithm is T and that T

has preferences Py,...,P T The algorithm for honoring preferences iterates

e
through the P;’s. If any P, has been assigned to a register and T can be assigned to
that register, then the assignment is made and the preference is honored. It mzy
happen that none of the preferences has been assigned to a register, or that T is
unable to {it iato any of the registers to which P;'s have been assigned. In these
cases the prefereace usually cannot be honored. However, it may also happen that
some preference Pj has been assigned to a memory location. If the profit associated
with T is not greater than the cost of a move from memory to a register, then
assigning T to the preferred memory location will result in a better overall solution.

If nrne of the preferences have been assigned to locations or T cannot fit into any

of the preferred locations then the preference cannot be honored.

Note that at this point the only TNs which have been assigned to memory
locations are those which are restricted to be in memory. No feasitle solutions which
might have higher profit are lost when a preference for a memory location is honored
as long as the profit loss due to such an assignment is riot greater than the cost of a

move from memory to a “agister,

+ In a typical Bliss-11 program, the value of n is small (2 or less). Constructs can be
generated, however, which result in large numbers of preferences.
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5.2.5 An intuitive view of the procedure

The above procedure can be viewed as a packer operating on a vector of TNs.
The TNs in the vector are arranged in order of decreasing importance. As we have
described importance this means that the TNs we would most like to have assigned to
registers are considered first. In this way we are more likely to be able to assign
the important TNs to registers because the registers are "less crowded" when the
important TNs are considered. The packer considers sach TN in the vector in turn,
assigni1ig as many as possible to registers. When the end of the vector is reached,
an initial complete solution has been generated. The packer has assigned as many
TNs as possible to registers, given the order in which they were considered. The
only fact that keeps us from stating that this is an optimal solution is the possibility
that *embving some set of TNs from the registers might allow the assigning of some

other set of TNs with a larger combined importance.

After producing the initial complete solution, the packer works backward in the
vecior reconsidering the assignments. At each step the packer asks whether
removing the current TN from its register might leao to a more profitable compiete
solution. Sometimes the answer is that there can be no more profitable completion
and the packer continues backward in the vector. At other times there is a more
profitable completion - nd the packer moves forward in the vector again to investigate
the feasibility of the more profitable completion. When there is no more profitable
completion, all of the sc'utions in all completions are implicitly enumerated. The
algorithm terminates when there are no solutions (i.e. completions of the empty partial
solution) which can produce a larger profit than the most profitable solution already

obtained. . -
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5.2 The practicality of obtaining an optimal solution

The algorithm desciibed above is essentially the same as the OPTSOL algorithm
described by Day for solving the many-one assignment problem. Day proves that the
algorithm terminates only atter enumerating all solutions and yields an optimal
solution. Mitten [Mit7C] also gives a proof of the general branch-and-bound
procedure. Tay reports experimental results of using OPTSOL to solve 400 randomly
generated assignment problems. The results show that the time required to solve a
problem is a function of both the size of the problem (number of TNs) and the density
of nonzero elements in the interference matrix C. Execution time was directly related
to problem size and inversely related to C matrix density. The disheartening result is
that the average execution cver all densities of C are iarge and grow very rapidly.

For one register the following average execution times (on an IBM 360/65) were

okserved
number TNs Lme (sec)
24 <}
32
48 6
64 46

We see that for moderate sized problemsT the execution times quickly become
unreasonable. Day indicates tha’ ror more than one register the times grow much
faster. Appealing to the argument of Section 4.3, we cannot expect that the branch-
and-bound algorithm to guarantee an optimal solution in a reasonable amount of time.
What we can do is measure the rate of progress of the algorithm toward termination

or the fraction of the total number of solutions enumerated. Care in choosing the

t In real programs observed by the Bliss-ii compiler, the number of TNs per routine
averages less than 20 because routines tend to be small. However routines having
50 or more TNs are tfairly common,

.
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order in which TNs are added to partial solutions will increase the probability that an
optimal or near optimal solution is found early in the search. The branch-and-bound
procedure is more effective if a feasible, near optimal solution is taken instead of the
empty solution as the starting point, Day gives a procedure for finding such a
solution quickly and notes that the profit of the initial solution is almost always
greater than 907 of the profit of an optimal feasible solution. Day suggests that the
initial solution is a close enough approximation to an optimal solution to make it usable
and can be computed quickly enough to make it practical. It should be noted here
that Day's results are for randomly generated profits and interference matrices. The
initial solution described in Chapter 6 for real programs almost always produces an

optimal solution.

5.4 Formulation of the more general problem

Section 5.1 describes the formulation of the general integer programming
problem for assigning TNs to one of several registers b).' replicating the profit vector
and interference matrix for each register. In this section we show how this same
reasoning can be used to express a much more general problem. Thus far we have
assumed that there are only two classes of storage available for TNs, a limited

aumber of identical registers and an unlimited number of memory locatlons.

Suppose that the machine for which we wish to compile code has more than two
classes of storage. For example the Univac 1108 has 47 registers available to user
programs. Of this number 11 are index registers, 12 are arithmetic accumulators, 4
are both index registers and accumulators, 17 are fast memory locations, 2 have
special functions in certain instructions and 1 is modified by real time clock interrupts.
In such a machine, there are several levels of trade-offs when trying to decide which

of the many classes ot storage should be used for any particular TN.
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Consider a machine with n storage locations divided into m classes. As before
we will consider main memory to be an additional class of unlimited size and we will
implicitly assume that ma.in memory is the least desirable class of storage for all TNs.
For each TN compute a set r={ry, ..o rm of m profit values such that r; Is the
profit realized by assigning the TN to a member of class i instead of to memory. This
Is identiéal to the profit vector calculated In Section 5.1 If the only two classes of
storage are class i and memory. Thus we consider all profits to be relative to the

worst case solution. The problem is nOwW

maximize z = p*x*

subject to A¥x*<l

where x, ¢ {0,1}
aij € {0,1}
p,> 0

as before, but the subvectors of p* are no longer identical. Recall that in the
formulation of the many-few register problem of Section 5.1, the subvectors of p*
were replications of the single profit vector. In the more general problem we choose
for the ith subvector the vector of profits associated with the ith storage location.
In terms of the abstract linear problem the solution to this problem is no more
difficult that the solution of the register-memory problem of the same size. In
practice, however, as the number of classes of storage increases, the number and

complexity of the restrictions placed on TNs tends to increase.

5.5 Summary of packing

The packing problem, as described in this chapter, is the problem ot binding 2
large number of TNs to a relatively small number of locations. While we are
concerned with the solution of the general packing problem, we have concentrated on

the situations in which there are only two classes of storage, one generally desirable
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and one generally undesirable. We have shown that the problem can be formulated
as an integer programming problem and that the form of the problem is essentially the
same regardless of whether we consider one register, several registers, or several
1 classes of storage eac;h containing several distinct locations. Section 5.2 described a
branch-and-bound procedure which yields an optimal solution to the problem. We
have also noted that while the number of possible solutions to be examined by the
procedure is exponential in the number of TNs, the algorithm terminates much sooner

it we can determine a feasible, near optimal solution from which to begin the search

of the solution space.




Chapter 6
A Test Case

This chapter will describe the implementation of the TNBIND algorithms in the
compiler for Bliss-11, a dialect of Bliss [Wul71] for the PDP-11. The essential
features of both the language and the machine are described bheiow. The standard .
version of the Bliss-11 compiler uses an initial version of TNBIND and thus provides a
good comparison for some of the more advanced Ideas. The fact that the language is
Bliss does not have a significant effect on the implementation; the language
dependencies for any Algoi-like language would be nearly identical. The target
machine has significant effect on the TNBIND algorithms, but mainly influences the

cost measures and the kinds of targeting and preferencing done.

The decision to use Bliss-11 as a test has both advantages and disadvantages.
On the positive side, the existing compiler is highly modular and it was easy to
"unplug” the zxisting register allocation phase and "plug in" the new TNBIND with
relatively few changes to the rest of th.e compiler. This would not have been the

case with a compiler which started with a more traditional register aliocation method.

It is also intended that the new TNBIND will become a part of the standard compller
thus providing real world benefits. On the negative side, in order to produce a
working compiler, TNBIND had to incorporate all of the functions provided by the
original version. These included assigning TNs to those nodes which needed them,
generating linear block information, and assigning labels for the final code stream.

The fact that the TNBIND algorithm has been impiemented for only one language-

machine pair raises the question of whether the algorithms would perform as well on

other languages or, more importantly, other machines. TNBIND does not include some
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of the more traditional register optimizations because these were not critical to the
goals of Bliss-11. Chapter 7 will discuss how these operations can be easily

incorporated into the TNBIND philosophy.

6.1 AboutBliss

Bliss falls into the class of Algol-like languages. It has the features normally
associated with such languages: block structure, recursive routines, loops,
conditionals, local variablés. Bliss was designed as a systems implementation
language and therefore presumes little or no runtime support. The emphasis is on
flexibility and runtime etficiency. Bliss provides the p:rogrammer with the ability to
perform arbitrary address calculations at runtime and to address parts of words when
appropriate. More complete descriptions of the language may be found in [Wul71],

[DEC74], and [Wul75).

The programming style of Bliss tends to be considerable different from Algol or
other languages. Because there in litlle overhead in routine calls, programmers are
encouraged to write smail routines. In addition the control structures observed in
Bliss programs tend to be well structured because there is no goto statement in Bliss.
The control structure of Bliss makes the linear block analysis quite easy. The smal
size of the routines usually means that the numbers of linear blocks and TNs are
small. These two factors combine to make the first pass implementation of TNBIND
acceptable in terms of computing time required. As routines get larger and have
more linear blocks and TNs, the tin.ﬂe required for the TNBIND algorithms increases
dramatically. On the one hand this tells us that we will need better algorithms in
order to deal effectively with large routines. On the other hand we can argue that

smaller routines and simpler control structures are the "wave of the future,” and
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therefore it is not unreasonable to design algorithms which perform better for small

routines than for large routines.

6.2 About the PDP-11

.The POP-11, manufactured by Digital Equipment Corporation [DEC71), falls into
the class of "mini-compu!ers." It has a 16-bit word length which is addressed in units
of 8-bit bytes; thus a 16-bit word can address 216 bytes or 215 words. Instructions
come in O- 1- and 2-operand formats and may be 1, 2, or 3 words In length, Each

operand uses six bits of the first instruction word and may require one additional

word to hold a 16-bit address or index quantity. The PDP-11 has elght reglsters; six

v of these are general registers, one is used by both hardware and software as a stack

S

pointer, .and one is the program counter. Instructions whose operands are in
registers are both faster and smaller. The fact that any instruction can have any of
its operands in registers or memory locations means that almost all TNs are of the
kind that can be assigned to either a register or memory location. This makes the TN
packing a simple cost minimizing procedure with few restrictions on the locations to

which any TN may be assigned.

Bliss makes use of locations in the stack for local storage when there are no

registers available. Because the PDP-11 hardware uses the same stack, e.g. to save
: , . the processor state during an interrupt sequence, all stack locations must be allocated
before they are used. A stack location is allocated when itis at or below the location
pointed to by the stack pointer register. Stack locations are allocated explicitly by

adding a constant to the stack pointer register or implicitly by pushing parameters.

4 s ittt e R
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6.3 Bliss-11 implementation of TNBIND

In the Bliss-11 compiler TNBIND is presented with a tree representation of a
routine to be compiled. The tree is traversed in a recursive depth-first tree walk.
There is a separate routine for each type of tree node. Several of these routines
were shown in Chapter 3. A switching routine, TNP, performs some common functions
(like updating the lon value) and calls the appropriate routine for each node.
language. A complete listing of the TNP routines for Bliss-11 appears in appendix A.
The interesting parts of TNBIND are those that are affected by decisions made by the
language designer/implementer. Below we discuss two areas in which non obvious

processing is done in the Bliss-11 version of TNBIND.

6.3.1 Subroutine parameters

In most machines there are several ways to call subroutines and pass
arguments. In Bliss-11 the programmer may specity whether arguments to a
subroutine are to be passed in registers or on the stack, The caller is responsible
for removing parameters from the stack after a call, while the callee is responsiblie
for restoring the contents of any registers used by its code (except for tlhe register
in which the value of the subroutine is returned). In processing a subroutine call

node, TNBIND performs the following actions for each argument.

1. Call TNP to do TN processing for the argument expression.

2. Generate a new TN and assign it to the location in which the argument
will be passed (either a specific register or a stack location).

3. Preference the TN of the argument to the TN of the location.
TNBIND thus simulates the machine code implementation of the subroutine call which

might be expressed as
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for each argument do
hegin
compute value;
store value in proper place
end;
call subroutine

Lifetimes are generated at this time for the TNs which identify the argument
locations. These lifetimes extend from the lon value at which the argument will be
stored to the lon value of the actual call. This prevents the argument locations from
being used by any computations necessary to produce succeeding argument values.

These TNs are part of the initial state input to the packing phase.

After the subroutine call, the locations used for any a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>