I RSP S

T RSP . -, P TR
— —— e e B o i P

ADA024942

N b

NUSC Technical Report 5303

-

Spectral Analysis of a Univariate Process With /
Bad Data Points, Via Maximum Entropy,
And Linear Predictive Techniques

Avpert H. NuTtTALL
Office of the Director of
Science and Tachnology

NAVAL UNDERWATER SYSTEMS CENTER
New London L aboratory

Approved for public release; distribution unlimited.




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



e

s ——— . T s i e e il - A — -

PREFACE

This research was conducted under NUSC Project

No. A=7562~05,\"Applications of Statistical Communication .

Theory to Acoustic S8ignal Processing'; Principal Inves-
tigator, Dr, A. H. Nuttall (Code TC); Navy Project No,
ZR00001; Program Manager, T, A, Kleback (MAT 03521),
Naval Material Command; and under NUSC Projeot No,
A=758-02, "Computer-Aided Detection, Localization, and
Classification (CADLAC)"; Principal Investigator, H, 8,
Newman (Code TD111); Navy Subproject SF 11 121 701;
Program Manager, D, Porter (NAVSEA 06H1),

The author would like to acknowledge several helpful

discussions held with Captain H, Cox during the progress
of this investigation, and his technical review of this
report.

n/-

Hns

JG L TR (]
Liti A [
JLsnEcAnaN.

[ D / REVIEWED AND APPROVED: 2 March 1976
Wale 8 s f |

Ahs by b

o
j
! W. A. Von Winkle
l

" Director, Science & Technology

FI\THILMIOM AVI‘IH“IN Voeeox

st RRAL e

The author of this report is located at the New London
Laboratory, Naval Underwater Systems Center,
New London, Connectiout 06320,

it e s o R Gt e it . ol OB ¥, =

—hm

. eafe

" Y



SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

o * ' UNC LASSIFIED

REPORT DOCUMENTATION PAGE [T e, READ INGTRUCTIONS -

e 2. GOVT ACCKSS8IO
DA / ) !
. _ / y
‘ T v {11}
’ Spectral Analysis of a Univariate Process ,ﬁith L___ ¥
Bad Data Points, ¥1a Maximum Entropy and Llnear )
6. PERFORMING ORO, REPOART NUMBER 4

7,
— e b e T e em e

Predictive Techniques . - .
A W AUTHOR(S) y WY NU e 3

. ]

; ' (J0]) Awert 1 Ausan

SR O i - s | e | |
3 New London Laboratory / ZR 000 01 {

i New London, CT 05320 SF 11 121 701 E
”\ 1. CONTROLLING OFFICE NAME AND AGDRERS TRTD i “W’ .

i : Chief of Naval Material (MAT 08621) 26 Ma 76 % o _f ‘
v Washington, DC 20310 T 20 f, L

$. SECURITY CLASA. (of this

-l N lLoC,-‘A 751 - ¢ UNCLASSIFIED
| ZRooo-0/ e pE—— |

Approved for public release; distribution unlimited,

. } 17. DISTRIBUTION STATEMENTY (of the abatract entered in Btock 20, 11 different ltom Report)

18. SUPPLEMENTARY NOTES

| ; 19. KEY WORDS (Continue on raveras aide if necessary and identily by bloak number)

: Spectral Analysis Linear Prediction Burg Techn!que

- ] Bad Data Points Forward and Backward ‘Yule-Waiker Equations
T g Maximum Entropy Averaging Resolution, Bias,

i Autoregression All-Pole Filter Model Variability

"". ‘ 10. ABYNAACT (Continue en roverse slde il nocesssry and ideniify by block number)

¥ i ~=='A comperison of several methods for spectral estimation of a univariate process,

§ with equi-spaced samples, including maximum entropy, linear predictive, and auto-,;
- ' £ regressive techniques, is made. 'The comparison is conducted via simulation for i
] situations both with and without bad (or missing) data points. The case of bad data

:' points required extensions of existing techniques in the literature and is documented . v"“+'
i | ' fully here in the form of processing equations and FORTRAN programs. It i con- '_)v .
i l ‘.-4 cluded that the maximum entrepy (Burg) technique is as good as any of the methods -~

Y

’.f}
|

L - DD l:gs‘.‘" 1473  xoIvioN OF 1 NOV 68 18 s UNCLASSIFIED
- ”"‘ 0102-014- 6601 | 420& 64 RCURITY CLAGMIFICATION OF THIS FRGE (Whan Dora Butwred)

,"




Seimp -t et r et o s

UNC LASSIFIED

JLULURITY CLASSIFACATION OF THIS PAGE(When Dete Entered)

-\%onsidered, for the univariate oase, The methods considered are particularly

20. (Cont'd):

advantageous for short data segments. o)

S This report also reviews several available techniques for spectral analysis under
different states of knowledge and presents the interrelationships of the various approaches:.
in a consistent notation. Hopefully, this non-rigorous presentation will clarify this
method of speoctral analysis for readers who are nonexpert in the field. o~

UNCLASSIFIED
SXCURITY GLASMIFICATION OF THIS PAGE(When Dais Bntered)

* :

’ Caa




o

TR 6303
TABLE OF CONTENTS
Page
LET OF ILLUSmATIONs [ ] L] L ] L] L ] L) . » (] . [ L L] L[] [ ] ’ L] L] L[] L ] 111
LY LET OF TABLES [ ] . . [ ] L ] L] . » L ] . * . L] [ ] L] L] [ . . [ L[] [ ] L] [ ] ‘ll

LIST OF ABBREVIATION! ANDSYMBOLS , . + ¢+ v « 4+ ¢ ¢ s & » o iv

i e T h e o
e A& e . _a

1. INTRODUCTION . v v ¢ ¢ ¢ o o ¢ o ¢ ¢ o o o s 2 o 4 o ¢ o 1
2. CORRELATION KNOWN EXACTLY FOR ALL ARGUMENT
_ VALUES .+ v 4 4 v o o oo o v v o v o ot v o o mu oo a 3
! 2.1 Linear Prediction BasedonInfinite Past . . . « « + « + . 3
’ 2.2 Linear Prediction Based on Infinite Future , . . . « . . . 8
2.3 Linear Interpolation Based on Infinite Past
and FUuture . o v v v ¢« ¢ ¢ o v s 2 ¢ o 5 8 8 s 0w 7

3. CORRELATION KNOWN EXACTLY FOR A LIMITED
RANGE OF ARGUMENT VALUES . ¢ ¢« « v v s ¢ ¢ s s o o 2 & 11
3.1 Maximum Entropy Spectral Analyais (MESA) . « + +« + « & 11
3.2 Linear Predictive Flltering . . « « « « v ¢« + v o 4+ o + & 17
3.3 All-PoleDigital Filter Model . . . . . « ¢« + + « ¢ « & & 21

4. CORRELATION UNKNOWN; FINITE DATASET . . . + . . . « . 27
4.1 Yule"walker Equations L I O I R T R T B TR I L 27

‘L 4,2 Unbiased Version of Yule~Walker Equations, . . . . . . . 33
! 4.3 Least-Squares Estimates of Box and Jenkins . . . . . . . 34
i 4.4 Approximate Maximum Likelihood Estimates
g of Boxand denkins . . + « + « 0 o v 0o o000 35
\ L, 4.5 Prediction Using Valid Error Points . . . « « « v « & « 36
E 4.6 Forward and Backward Prediction Using Valid
ErrorPoints . . « & & v 4 v v ¢ v v e e e e e e 38
. 4.7 Burg Technique . + + o ¢ v v v v ¢ ¢ v 0 0 v v 0 0 o s 41
4.8 Summary of Properties of Techniques . . . ., . . . . . . 47

5, CORRELATION UNKNOWN; FINITE DATA SET WITH
BADDATAPOINTS ¢ v o o ¢ o o o ¢ s 5 o o o o v s o o s s 49
5.1 Forward and Backward Prediction Using
ValldError Points . « ¢ & ¢« ¢« v 4 ¢ ¢« v o o o o ¢ o o s 49
5.2 Burg Technigque . . + . « o ¢« v o ¢ ¢ & o o » o « + s @ b3




SXEP IR

Tt

RS- SN SR

[ L
- ) .

TR 5303 \

TABLE OF CONTENTS (Cont'd)

e A e

e

Page

6 L] GOMPARISONS L] . L] . L) L] L] . L] [ . L] . . . . » L] L . L] L] L3 57
6.1 NO Bﬂd Data Pomts ¢ o & & & s 8 e @ ¢ ¢ & & 8 ¢ s 57
6.2 Bad Data Pomts *® % & & 4 8 ¢ & & & & 2 & v s 0 e e s s 61

Redmer Lede mfd itine

7. DISCUSSION AND CONCLUSIONS .« & « ¢ ¢ ¢ o ¢+ s o o ¢ ¢« o & 81
APPENDIX A. RECURSIVE SOLUTION , . v v v s ¢ s s « o A-1
! APPENDIX B, EVALUATION OF MAXIMUM ENTROPY . . , . . B-1
; : APPENDIX C. IMPLICATIONS OF ASSUMF IION OF
o WHITE SPECTRUM FOR MINIMUM
o ] ERROR; KNOWN CORRELATION . , + . « » . . OC=l
APPENDIX D. STABILITY OF RECURSION RELATION ., . . . . D-1
APPENDIX E, IMPIICATIONS OF ASSUMPTION OF
i ' WHITE SPECTRUM; UNKNOWN
v CORRELATIONOOAIICOtll'..!.l E'l
“ ! APPENDB Fu BOUND ON CROSB"GAIN L R T Y I I R ] F"l
APPENDIX G, CLOSENZESS OF ERROR MEASURES, . . . « . . G-1

APPENDIX H. SCALE FACTORS IN SPECTRAL ESTIMATES . . H-1

. APPENDIX 1. PBIASEDNESS OF BURG'S CORRELATION
“ . ESTIMATE.-cooc-cuuonuooooo I"l

APPENDIX Jo FORTRAN PROGRAMS. L T T T T S T L Y T T J"‘l

REFERENCES.'.Q.O.QC.lc..'..to.lnOO. R"l

-l i

L s,



TR 5303

LIST OF ILLUSTRATIONS

Figure Page
. ' 1 Block Diagram of Predictive and Whttenmg Operations e 4
X 2 Generation of All-Pole Process . « + « s « « s s o o o+ & 22
k , 3 Chain Interpretation of Burg Teohnique . + « + o + « « + & 43
: 4 Yule-Walker; N=40, B=0. , . . . . ¢ 4 ¢ v o o o« s 83
5 Yule~Walker, Unbiased; N=t4:, B20 . . , + + 4 « « « 84
o 6 Least Squares of Box and Jenkins; N= 40, B=0, . , ., . . 65
it 7 Approximate Maximum Likelihood of Box und
o : Jenking; N=40, B=0 ., . . . v v v s o s o o o o v o s 66
8 Prediction, Valid Error Points; N=40, B=J, . , . . . . 67
J i 9 Forward and Backward Prediction; N= 40, B=0 . . ., .. 68 i
; 10 Burgi N=40, B2 0, o o v v o v v v v ¢ v s v 0 o 0 o 68 1
i i1 Burg, Uniform Noise; Nm40, B=0 . . . v 4 o ¢ o & « & 70 1
AN B 12 Forward and Backward Prediction; N= 40, B=4 , , . ., . 71 '
13 Burg;yN=40, B=4. . v v v v v v v v v v v oo 0. T2 i
S| _ 14 Forward and Backward Prediction; N= 100, B=0 , , . ., . 73
15 Burgi N=100, B=0 . . . 4 ¢ v o o o o s s 2 o 0 o o o 74
i 16 Forward and Backward Prediction; N= 100, B=10 . . . . 76
! 17 BurgiNw100, B=104 4 v v v o v v v oo v oo v us . T8
i 18 Forward and Backward Prediction; N= 100, B=20 , . . . 71
5 19 Burg; N=100, B=20. . 4+ o « 4« o o ¢ s o s ¢ s o « 4 » 78
k 20 Forward and Backward Prediction; N=100, B=30 . ., . . 79
[ 21 BurgiN=100, B=30. o + v v v v v s o oo v e ass s 80
Ly i
| )
: p LIST OF TABLES
; 4 Table Page ]
) '
- 1 Properties of Estimated Correlation Matrices , , ., . . . . 48 :
. 2 Simulation Examples . . . v .+ v b b0 0 e e 0 000 s 68
Lo 3 Execution Times; No B dData Points. . . . . . . « . . . 82 ‘
1
. .
: : . _ 1




TR 5303

MESA

x(t)

‘k

Overbar

txt

~? =$°2

=

E;

iv

‘LIST OF ABBREVIATIONS AND SYMBOLS

Maximum Entropy Speotral Analysis
Time

Random process

Sampling interval in time

Sample value x(na)

Defined aa

Correlation of x(t) at delay kA

Conjugute

Number of samples availeble

Frequency

Spectrum of provess {xp}

J-1

Predicted value of x)

n-th coefficient of predictive filter
Instantaneous errov at time ka

Ensemble average

Ensemble average magnitude-squared error
n-th optimum predictive filter coefficient
Minimum-error sequence

Correlation of minimum-error sequence

s

tey




G(f)
A

e
Superscript T

Cky

S T

o o s et e A oy -

TR 5303

LIST OF ABBREVIATIONS AND SYMBOLS (Cont'd)
Spectrum of minimum-error sequence
Transfer function of whitening filter
Complex variable
Unit oircle in complex z-plane
Crosscorrelation betweenj, and x) at delay ja
Cross-spectrum between ¥ and X

Order to which Ry is known; assumed order of predictive
filter

28 ' 2a,
Approximation to Gy (f)

Integration over (— L 1)

Lagrange multipliers

Auxiliary function; (37)
Auxiliary polynomial; (38), (56)
Constants

Counlerclockwise integration around unit circle O in com~
plex z-plane

Kronecker delta; = 1 if k=J; = 0 otherwise
Correlation matrix; (47)

Column matrices; (48)

Transpose

Element of inverse of matrix R; (61)

-t et

[
K
{
4

Py

- e e e L e . y — e S




T s
DRI g

T

g

TSR _BiA LT

PR

L N P RO

TR 6303

LIST OF ABBREVIATIONS AND SYMBOLS (Cont'd)

8

Superscript H
]

Supersoript caret
Wk

Yk

H(z)

Gy(f)

Pn

Gy )

det

F, F,, F®), p0)

Spem» Sam

vi

Arbitrary real constant

Conjugate transpose

Column matrix of {ay}

Estimate of quantity under caret

White noise

All-pole filter output process

Digital filter transfer funotion

Spectrum of {wy}

Digital filter coefficient

Spectrum of {yy}

Determinant

Average magnitude-squared error for a member function
Summations *
Sample crosscorrelation between Ty and xi
Backward-predicted value of xy

Backward error

Estimate of Ry

Auxiliary variable; (147)

Forward and backward residuals

Cross-gain




TR 5303 k.

;‘ 4 : } LIST OF ABBREVIATIONS AND SYMBOLS (Cont'd)

‘ _ _' i Numn(p), Den(p) Numerator and denominator, respeoctively, of (L66) or (193)
; 3P @), 8P)z)  Tranefer functions

G(fp) #), Gt(,p ) (f) Spectra of residuals

X

[\ ' ) ' B Number of bad or missing points

Location of j~th bad point in data sequence

Summation over good data points; (170A) '

Set of integers to be skipped; (173)

L

Number of distinoi integers in Ip which are >p+1 and <N

Not contained in

S e A o A
o)

o1

Averuge forward and backward errors, respectively

B =it
——

4 . AIC Akaike's Information Criterion .

“I . ’ [:
i }

.".'P . ‘.

[ X4

r;;l )

'J“:' T

th

i !

& ( !
BN t

3 Vo

v 0

vl

n’

K ‘
o

*

Aoy s

vil/viil
REVERSE BLANK

- I SRR

TIPS e

R PR
LT - e - R

A : i s . . P S . L . SN Py at e PR . .
M . M ‘ . . 0 L e ! et o N .1. - - et -7 " e Ny )
! X - . E N .o U gt e RN T Al g aed e s
T ix v b e e W - R e T e LN e R An bRy 1R (YRS
] Pl " JIVARN . o YRRV AUl A N
AP, ~ s L . . y — T e




TR 5303

T Te— T DT v SRR

SPECTRAL ANALYSIS OF A UNIVARIATE PROCESS WITH
BAD DATA POINTS, VIA MAXIMUM ENTROPY AND
LINEAR PREDICTIVE TECHNIQUES

e i i B O e o o R— ——e

1. INTRODUCTION

The analysis of power density spectra of random processes via maximum
entropy, linear predictive, and autoregressive techniques has attracted much
attention recently, especially for short data segments. In particular, a good
review article (reference 1) recently appeared in which 115 references are
F ; listed on the topic of linear prediction. Another good paper on this method of
K
F
3
]

e m e e S

spectral analysis (including a comparison of techniques) is available in refer-
ence 2, where 66 references are cited., Additional related references, that this
author 18 aware of, are given in references 3 through 16 of this report. The
close links that exist between maximum entropy spectral analysis (MESA),
autoregressive spectral analysis, predictive error filters, noise-whitening fil-
ters, and least-squares model building are pointed out very well in reference
14,

. ——

PR adt sk cen .

. g, The purposes of this report are to review and interrelate several available
techniques for spectral analysis under different states of knowledge, for equi-
spaced samples, in a consistent notation; collect and compaye the techniques

t via simulation in order to determine the best available technique(s); and extend
i the best technique(s) to handle the case of bad (or missing) data points and com-
{ pare them via simulation. The only detailed comparison of techniques for no

: missing data points available thus far in the literature is that in reference 2,

' where the Burg technique and the Yule-Walker approach are compared. Here
A i we will extend the comparison to include the Burg technique, the Yule-Walker

4 3 approach, an unbiased version of the Yule~Walker approach, the approximate

[ k maximum likelihood and least-squares approaches of reference 16, the auto-

E , i correlation and covariance approaches of reference 1, and an extended version
| |

:!
?
%
z
1
-i
31
|
i

of the covariance approach. (A comparison with the maximum likelihood tech-
nique is reserved for a future report.) Also, we will corapare the best of these
approaches for the case of bad (or missing) data points and present FORTRAN !

programs for the recommended techniques,
1 ' Throughout this report, we assume we are dealing with equispaced samples

of a statlonary zero-meun random process x(t); that is, x(nA), where Ais the j
|

!

i
i
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sampling interval in time, In section 2, we will assume that the correlation
funotion of the sampled process, {xn}, namely,*

Rk =X x;_k = Rfk, (1)
is known exaotly for all k, and shall present fwo lternative equations to deter-
mine the spectrum of {xn} ; the latter of the two equations serves as a guide to
the MESA, linear predictive, and autoregressive approaches., In section 3, it
wil! be assumed that Ry is known only for a limited range of values of k, and
three alternative approaches will be considered and shown to lead to identically
the same spectral approximation. Next, in sections 4 and 5, the practical
problem of an unknown correlation function and only a finite data set of {xn} ,
n=1, 2, ..., N, some of which may be bad, will be addressed, and several
candidate techniques for spectral estimation will be presented. Finally, a com-
parison of the techniques, via simulation, will be conducted and conclusions
drawn regarding the best available technique, both with and without bad data
points, FORTRAN programs for the best technique for both situations will also
be presented. _

*The case of complex samples is treated, so that we can handle complex
envelope or complex demodulated processes. ‘Specialization to real processes
is immediate, and (1) becomes Rk = R.x. An overbar indicates an ensemble

average.
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2, CORRELATION KNOWN EXACTLY FOR ALL ARGUMENT VALUES

Suppose the correlation function in (1) of process {xn is known for all k.
The standard (double-sided) definition of the spectrum of ixn} is then (see, for
example, reference 14, equation (10))

D
- : 1
G () = & k{_,—w R, exp(-2nfka), ifi< =, (2)

Gy(f) 18 real and nonnegative, but need not be even in frequenoy f for complex
{Ri}.

2.1 LINEAR PREDICTION BASED ON
INFINITE PAST

Suppose that sample values Xk.1, Xk.2, +.. are available and are used to
linearly prediot the value of xix, Thenthe one-step predicted value, based on the
infinite past, is (for a zero-mean process)

® :
X = Z 8 k-n" @
n=1

The values of the complex predictive filter coefficients {an}(f are chosen such
that the one-step prediction error

”~
¢ = X =X, =

K K K a x (ao= -1) 4

0 n k-n

7 Me

has minimum ensemble average magnitude~squared value, Figure 1 depicts the
interrelationships.

The ensemble average magnitude-squared error is, employing (1), given by

memca— w

P
E= |¢k| = X a &R _ . (6)
m,n=0

For a minimum, we first compute (see reference 17, appendix A)
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PREDICTION
LINEAR ~

1
I

PREDICTIVE | *x 2 | M S
I
d

FILTER *

(°]I 020‘") - ]

WHITENING FILTER (co, o 02"')

Figure 1. Block Diagram of Predictive and Whitening Operations

am

JE
E. ¥

sa.  m=0 f-m

and set it equal to zero, obtaining the optimum predictive filter coefficients
{%m} T as the solution of the set of equations®

@
m{:o R’_m2m= 0,421 (¥ =8 =-1).

The minimum-error sequence {%)} then possesses correlation

[19]
ok =
E = Q9 m?;:ozmzﬁ XgemXk=g-n

m a " @0
Z 'Emz:; Rj+n-m= 2 B’n E R

T,
m,n=40_ n=0 m=0 jtn-m m

*The same result, (7), can be obtained by setting the partial derivatives of
E, with respect to the real and imaginary parts of a,, equal to zero.
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where we have employed (4) and (1). Now the innermost sum on min (8)is 0
for §+n 21, by (7). Andif § >11in (8), then j +n >1 since n 2 0 in the outer~
most sum in (8). Therefore, EJ = 0 for j 21. Also since E_j = E]‘, we have

Ej-omrj#o; (8)

that is, the mintmum-error sequence {71‘} is uncorrelated and therefore pos-
sesses a white spectrum, The linear filter characterized by coefficients

{%,}0 1 a whitening filter; see figure 1.

The correlation of {¥}} for zero time delay is the power of the minimum
error and is given by

Eo= ,7k|2= i a;*x f Rn-m‘zm

n=( m=90

0 ®
Bk = - .
=& Y R T =R - ¥ RAT (10)
m=0 m=1

where we have used (8), (7), and (1). The spectrum of ’71:} is therefore
(using (9))

exp(-1271)a) = AE_, Ifi < L (11)

[+
Ge®) =4 Y E T

J=-w

J

which is wl}ite. as mentioned above,

But sinoe the error sequence is given by a linear transformation of process

{x.} according to (4) and figure 1, the spectrum of {¥} is given by the stand-
ard linear filter rolation

Gplh) = iA(f)I?‘G‘(f). (12)
where
(1]
Aff) = En exp(-12nfna) (13)
n=90
6

-

N PRI SRR o
G i YR N T v
mm

L .
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is the transfer functlon of the whitening filter and is assumed to be stable,*
Combining (11)~(13), we obtain an alternative expression to (2) for the spectrum

of {xx} as

G-‘-(f) AEO 1
Gx(f) u lAmlz a = 2 Ifl < 25 (14)
)y i’n exp(-i2rfna)
n=0

Given the correlation values {Rk} » utilization of (14) requires solution of the
set of equations in (7) for the filter coeffioients {'En} and subsequent substitu-
tion in (10) and (14), Although this is not a praactical alternative to (2) in this
oase, it does serve to indicate that there is possibly some potential in the idea
of determining predictive filter coefficients to minimize the average magnitude~
squared one-step prediotion error and thereby obtain a white speotrum; this
idea will prove to be quite fruitful later on.

As an agide, if we allow a_; ¥ 0 in (3) and minimize lx}2, we find E, ¥ 0,
although E; = 0 for j 22, Thus, the minimum-error sequence would not be
white, and a convenient expression like (14) would not reault,

It should also be noted that the orosscorrelations between the minimum-
error sequence {'i‘k} and all past values of the input, {xk} ,» are zero; this
follows by use of (4), (1), and (7).

2.2 LINEAR PREDICTION BASED ON
INFINITE FUTURE

If sample values Xy..q, Xipos oo are available and are used to linearly
"prediot" the value of x) aocorcfmg to & backward regression (that is,
combine future values),

o
S?k = 3 Lk (15)
n=1

—

*That is, nz 0 Bfnz-n has all its poles inside the unit circle, O, in the com-
plex z-plane.
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then the one-step error
(2] "
.k!ﬁk -x = » WX on @,=-1 (16)

has average magnitude-squared value

2 [+ 4]
"k' = mzn-o ama; Rn--'m' an
"

whioh is identical to (6), Thus, the same optimum filter coefficients in (7) that
minimized (5) would also minimize (17). The minimum-~error sequence in (16)
would also be white, and an expression for the spectrum of {x, | identical to
(14) would result. The point of this result is that an equivalent expression for

‘the spectrum of {xy} is obtained by the backward regression (16), rather than

the forward regression (3) of the preceding subsection. Thia idea will prove
useful later when we have to deal with finite data sets and unknown correlation
funotions.
'|
The orosscorrelations between the minimum-error sequence and all future
values of the input are zero; this follows by use of (16), (1), and (7).

2,3 LINEAR INTERPOLATION BASED
ON INFINITE PAST AND FUTURE

If we attempt to combine the approaches of the previous two subsections,
we are led into considering linear interpolation according to

Re= 2 ax . (18)
ns-=w
0
The error
A & 1
‘= X X" n?;_m Y ¥k-n  @B="1 (19)
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has average magnitude-squared value I TR B S R O
-————n- m|

iy 1t . *

o Een |k' in?n maman R o (20

using (1). Setting AE/da} = 0 for £4+# 0, we.obtain for the optimum filter qoeffix
oients

i

(i Y !"él '
$ R T =04k Geageen. e
ms =m
T R R N O LU I ¥ SR T R TR I T L alh T T § O BN
'rhere iollows. by use of (1),1. B e e g b
: . o !-( e 1 g o T LIRS et e
T R S F R S PRI .-..v'.A'ﬁ'_ -3 Iﬂ Gy e e (22)
s vt Trerve 0 j J N TN L P i T Y S W P
The correlation of the mtnimum-prror sequef?ce h’k} is now 'y I\n. . N
e - v} -
€ = L
E.J * % ‘k-y 2 Emzn J+n m
et et T T N =00 ! NEETEN NEI| '
w'"l ~* '('” 'E' (PR ~* lml |-'E ol 'E . -
=X B Y T Rim iy 2 Ep R mm%E, @3)
n=-w m==w .r{‘=.",“’. L o o

where we haye employed (19), (1). (21), and (22) It is generally nonzero for
§# 0, “The | spectrum of the minimam-error sequenoe_ is therefore '

N [88) ~ ) - . -1_—
‘_ Gy = - aE_ 32 % exp(-12nfja) = - 8E A(M), 1< gz, (24)

=~ . ' |.
. '

where we have used (23) and assumed A(f) to be stable. This spectrum is not
white; in fact, employing (12), (24) can be expressed as

2,2
. Gy(f) » == G (f) i< &, (25)

which is the inverse of the input speotrum.
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If we instead. eliminate G (f) from (12) and (24), we obtain an expresston
for the input sPeotrum in terms of filter A(f) in (24) a

N Vo PR TER B

L L (N LY L S T T I P R L o
o AR T AR o
L e e A Lo SRR < )

ot A"'(f): : A(f) ’ 2A' .
the realness of A(f) follows from (22).

There is an uncorrelated property hetween the minimum crror and the input
in the present case also. Namely, the crosscorrelation between the minimum-
error sequence and the input is

e —— a
= & - an
Cj" 1”kxk-j ; 'zn k-n k j ﬁ t R -n Eo“oj' @7
n=-w Am "‘D
using (19), (1), (1), and (23). Thus, the minimum-error sequence is uncorre-
lated with all past and future values of the input except at the same time instant,
The cross-spooﬂ'dm is

1

G..(f)=AZ: C T

j=w

exp(~121f}4) = AE_, 111 < &= (28)

}

which is white.

Although (26) and (21) offer an alternative to (14) and (7) in the present case
of known correlation function {Rk , it suffers in the practioal case of unknown
correlation and a finite data set, by virtue of the gstiinate of the real denomina-
tor of (26) going through zero (or being complex if (22) is ignored) at some
values of f. This is not a significant problem for (14) since both the real and
imaginary parts of the estimate of (1.3) must simultaneously equal zero there,
in order to constitute a problem.

Another important practical drawback of this interpolation approaoh is that
ensemble average |!k|E would probably be approximated by ﬁ 1‘k\ , where

the sum is conducted over those values of k at which a meaningful value of
error ep can be formed for a segment of a single member function of an en-
gemble. But since the minimum-error sequence {ek} is not uncorrelated in
this case (see (23)), minimization of ‘ﬁ \ k\ for a single member function

segment is not synonymous with minimization of “k\ ; rather, the minimiza-

o b e L e s B
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I tion of ﬁ |¢k\2 will spuriously involve correlation between adjacent terms

i ; which are not included in |, |“ and which will bias the filter coefticients.

N | ‘ Several simulation runs (on real data) confirmed this oonclusion by yielding

- ; severely biased (and negative) estimates of spectrum Gy (f), even when (22) was

- Yy | taken into account. ‘Accordingly, the interpolation approach was dropped from .
| further consideration.
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3, CORRELATION KNOWN EXACTLY FOR A LIMITED
RANGE OF ARGUMENT VALUES

In this section, R of (1) is assumed to be known exactly for ki < p and
unknown for |kl > p, Since we are unable to compute the exact spectrum Gy(f),
given by (2), in this case, a different approach involving approximation to Gx(f)
is required. Three different techniques will be considered and shown to yield
identically the same approximation to Gx(f).

3.1 MAXIMUM ENTROPY SPECTRAL
ANALYSIS (MESA)

The method in this subsection was originally given in reference 18 and
elaborated upon in reference 18, We begin with (2) and note that

L

24

j df G_(f) exp(i2nfks) = J' df G (f) exp(i2nfka) = R, . (29)
! 1/a

2

We wish to approximate G_(f) by a real nonnegative function G(f) such that its
entropy (reference 18, equation (1))

A f dfdn G(f) (30)
1/a
is maximized, subject to the integral constraints

df G(f) exp(i2nfka) = Rk. kl<p. (31)
1/4

To this aim, we form the quantity
p
f df dn G(f) - 2 My f df G{f) exp(i2rfka), (32)
1/4

Q

fli

k=-p 1/A
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where Lagrange multipliers u_j =4y, becauss of the restriction R,y = Ry, as
shown in (1), We perform a variation of (32) according to

: T * S \ o g s
QHQ J. dfﬂn [G (f)+up (I)] Z M { fG Af) + cq(f)] axp(ﬂaka) .
. I/A o . | k‘(_p I.|). I/A e .ll“| Ly III;' ,ll'. | (33)
where G (f) is the "optimum" approximation to Gy (f) under oriterion (30), ‘dnd
obtain, upon setting

BT A

Qﬁa‘:—a.@-()atquo' o ‘ (34)
the relation
1 1
G @ = > RS (35)
2 My exp(i2rfka) L
kz-p

Go(f) is real since u_j = uﬂ . Since it is also to be nonnegative, we can express

1 . : Co

G () » —, IfI< =, (36)
o |‘r(f)|2 | 24
where
P 1
vd) = 3 oy exp(i2nfka), |f] < w= T .(37)
kua

and whure y(f) has no zeros in the upper-half complex f-pléne. that is, poly-
nomial

P "k R :
B@) = ) a 2 . (38)
k=0 ' .

‘e

12
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’< a : has no zeros inside the unit 0if'cld, O, In tHe tbinplex z-plane. A'proof that: '
{ k B(2) in (38) has no zeros inside O is given in reference 11, page 7, for exam-
{ ' | ple.* Specifically, it is shown that B(L/z) has Lll its polea and zeros ingide O;
S \ : that is, B(1/z) is minimum phase. , ., . e 3
;..f
-In order 10.determine the, .oensmnts {qk} 0 in (37). We. expreqs (36) as
\" AT MR TE Y I B B A [ " . AR R '__~'\(|_(:.',';
h, ’ T T T DS IR I * ..L.u. AE ..L. o S N R . Y
¢ S ot G ‘f)y (f), '7(:). '|-..‘2A_..,.-;.| T T lcsgx)

(We could equally well have multiplied by ¥(f) in the following.) Therefore, for
all values of 4, !

! dfGo(t)v‘"(f) exp(12nffa) = I df -_-1-!(-5 exp(i2n£L4) .., ., (40)
/a 1/a

'But using (37), this dan be expresged aé' '

T
e et e e m——— i § S prtiog Wi Shmi . . s gl e L

: : p

‘.' . > oot | dre, o ewuznt-kia) @ f - df p"""P“z"f“’w L, all L. ()
L } k=0 1/A C e Y ey expgntka)

£

. \ k=0

o ': 5 o ] A , !

£ 1 Now if 4 is an integer in the range (0, p], the integzjal on the left side of (41) is
! ,' equal to Ry_y (via (29}) for any value of k in its ran [0, pl; this is where the
;';. constraints are employed.,| d Therefore, we have for mteger 4,

¥ o p ‘

b,, 0¢4.%p, (42)

'3

b | R ak = :
. - g V=3
: , 2 k-!O -k "k :
L - 2 Lo
P o where b
P |
W +
: | l by = d— WML ogggp o
; { 1/ 3 oy exp (2rfk 4)
Co k=0 '

: |
l | : *The proof is oouohed in terms of the recursive solution of (46) presenwd
' ; in appendix A, a
E

}

!

i
z
{

14
3
|
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;* In (43), letting z = exp{i2nf4) and uaing (38), we have
. 1 fdz z!
s b "y T B(z)' 0<L<p, 4
g ) .
'y, # )
where ¢ denotes counterclockwise integration around the unit oirole O in the
complex z-plane, Now B(z) has no zeros inside O by construction. Further-
‘ more, B(z) can have no zeros on O, for then ¥(f) would be zero for some £, and '
- - Gg(f) would possess infinite power, contradioting Ro< w. Then (44) ylelds
by w5, L0525 | (48)
! A, 0" 777 P
-
l ]
fl \ ‘ and (42) hecomes
Ik f P A
2 , ZR AF o e 3, 0< L <P, (46)
' This 18 ptl linear equations in p+1 unknowns,*
h
Now let correlation matrix R be defined as
E(lll po
| R, R, .. R_p]
; _ R'1 R'0
i,.‘- ‘ . .
= ) )
.’“ R R
X L P o
. and define two oolumn matrices
4 T T
| =01 0 0 .., 017, ®= [a a ... ap] (48)
t.‘._' ,
‘ ; *The recursive solution of (46) is presented in appendix A.
8 [ .
P i
{ | 14
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)
) ; R is Hermitian, Toeplitz, and nonnegative definite. 7Then (46) can be expressed
as
; Ra* = —Lo (49)
) ) Aagq
1 , with solution
4
) =L rly . (60)
q Aa
0
‘iA
[ Now let the inverse matrix
L
K ¢ ‘e o
00 ol op
' ' c ¢
lo 11
| R s | (61)
? :
]
i. © c
E | po o ;
- ] Then (50) and (48) yield
i E
. / o \1/2
; : L ¢. 1, =(—9-‘-’) exp(Lo) (52)
E ag 2ag 00" \aol 2 %0’ % A pio),
k where 0 is an arbitrary real constant. (cyg is always real,) Utilizing this re-
v sult and (15) in (50), there follows
- ! o 3
‘i. I al*‘=- exp(-10), 0<k<p, (53) k
’ ; ™ AOOO :‘
b i |
oo ¥
| o N
{
g |
:. , 16 ]
j
\

i
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and (37) becomes

p
i) = 210 2 of expi2ntka), £l < L (64)

J_——l’ ZA.

Finally, using (36), the "optimum' spectrum (called the maximum entropy
spectrum) is

Acoo 1
, Il < 2—A' .

G @) = (69)

P 2
z %o exp (- 127fk A)

Equation (565) gives the maximum entropy spectrum in terms of the first
column of the inverse of the correlation matrix R of available known correlation
values; see (47). The forms of (66) and (46) are similar to those encountered
earlier in (14) and (7), respectively; see also appendix A, The maximum value
of the entropy defined in (30) is evaluated in appendix B and is given by In (a/cy,).

Substitution of (53) in (38) yields

D
B(z) = ZeLLO) T o 2, (56)
QIAC k=0

oo
p

Thus, investigation of the zeros of B(z) depends on the polynomial k§ 0 Cko zk;

it must have no zeros inside the unit circle O, But if we combine (46) and (53),
we can write that

p

P
Now reference 1, page 567, declares that all the zeros of ¥ Cko z~K must le

inside O since R is a correlaticn matrix, Therefore, polynomial B(z) has no
zeros inside O.

16
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3.2 LINEAR PREDICTIVE FILTERING

Here, as in the previous subsection, the available information is knowledge
of Ry for ki< p. A linear one-step prediction of x), based on the past p values,
XK-1s ¢+ 0 Xgaps is to be accomplished with minimum average magnitude-
squared error; see figure 1. Now, however, instead of (3), we have for the
predicted value the finite sum®

P
X=X oax . (68) .
n=1
The instantaneous error is
~ p .
Ry DR (69)
n=0 '

(Equations (68) and (59) constitute stable digital filters regardless of the choice
of coefficients.) The ensemble average magnitude-squared error is

P
22 % a a*R__ = afRa, (80)
mn n=-m
m,n=0

where we have used (1) and (47) and defined

rI\

TREE ap] . (61)

a=[a a
[0

We now wish to minimize E by choice of filter coefficients {an} . How-
ever, we have the constraint on a4 in (59); this can be expressed mathematically
as

a8 =-1, (62)

where 8 1s defined in (48), In order to minimize (60) subject to (62), we form
the quantity

*

p *
The more general form 1neludingrf\;1 b, % _, 18 not considered here.

17
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lHRn- AlHl- )\*aTO*

H 2 H -1

Loy - nZelaly, (63)

@ - lR R(a - AR"

where R-1 is defined in (51). Since R is nonnegative definite, being a correla-
tion matrix, (63) is minimized by the choice of coefficlents

7 =ar7ls, (84)

The Lagrange multiplier A is obtained by substituting (84) in constraint (62), and
using (61) and (48):

A"‘;Hn'16=-1. ""OL‘ (85)
00
Then (64) ylelds
[+]
% o=-22, 0ck<p. (66)
00

The minimum value of the error power is found by utilizing (64) and (66) in
(60):

cr R n2e¢Hplon™l, o 122 .1
E0=|ek| = IMN8TRTRR™T 8 = I Coo 5 (67)

where {'Z“k} is the minimum-error sequence obtained by employing (66) in (59).
(A re :ursion relation for Eg’) is pregented in (A-7); it can be staried with

1 /cgg =R,.) Notice from (87) that 0 must be positive, for non-negative
definite R.

The transfer function of the optimum error filter from input x to output ¢
in figure 11is, from (59) and (66),

18
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P
Ay = 3 ’xkgxp(-iznfkm
k=0
el o expr-iznfka), Ifl < L 88
o X o, exp(-i2nfka), 5 (68)
00 k= (

Furthermore, the speoctra in figure 1 are related by
2
Gz) = jA@|” G (). (69)

Now let us assume that the spectrum of the minimum-error sequence is
white over the band (-i—, 2—]['1-); this 18 in line with the property (11) which held

for the case when the infinite past was available. Then we say

E
Bolfy = = o L L
Gz = 77 ccm.|f|<2A, (70)

where we have used (67). Substitution of (68) and (70) in (69) yields the linear
predictive spectrum approximation to the input spectrum according to the defi-
nition

R é~(f) ac
6 @ = - : — = o0 , 1fl < 312-. (1)
ami® | < 2
3 o, exp(-i2rika)
&, o

This is identical to the approximation (656) obtained by MESA. It is oritically
dependent on the assumption that the spectrum of the minimum-error ¥ in fig-
ure 1 is white.

Since (71) is.I identical with the maximum entropy spectrum, (66), it must
follow that

df &x(f) exp(i2nika) = R, for |kl <p; (12)

1/a

k
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that is, although not speocified in the current approach, the correlation function
formed from the linear predictive spectrum ﬁx(f) in (71) has the same values at
ka for |k|<p as the known correlation values {Ry} .

The implications of the assumption (70) of a white spectrum for the mini-
mum error are investigated in appendix C, It is shown that the crosscorrela-
tion function between input x and output ¥ of figure 1,

= x®
C; = 7k Xee s (73)
must then satisfy
1/000. 4=0
C[ = ) (74)
0 , 221

that is, minimum-error sequence {?‘k} is assumed uncorrelated with all the
past values of the input. It is also shown that the unknown correlation values
Ry for k> p can be approximated according to

P ¢ Y
no
R, = - 2 ~=R .= ) ‘Ennk_n. k> p+l. (765)
n=1l 00 n=1
This recursion relation, starting with known values Ry, ..., Ry, can be con-

sidered to be an exirapolation of the known correlation values into regions
where they are unknown, Equation (76) is shown in appendix D to be a stable
recursion when B(z) of (66) has no zeros inside O; this property has been dis-
cussed under (38), (56), and (A-9). It can also be shown that Fourier transfor-
mation of the extrapolated correlation approximants yields precisely (71). It is
interesting to note that (75) has the same form as the prediotive equation (58) for
indivicual data values.

Since ~ .
J’ df Gx(i‘) exp(i2nfka) (76)
1/A

is the autocorrelation at delay ka4, it is given by (72) for |k| <p, and by (75) for
k >p + 1, where the lalter correlations aro extrapolated values, This follows

.
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from setting G(f) white and choosing G, (f) by (71), according to the analysis in
appendixes C and D,

If sample values Xk+1, +s 4y Xgep Were used to linearly 'predict" xi ac-
cording to backward regreasion

P

~ = 0 !

Re = L 8K (17A)
n=1

the one~step error ey = f‘k - Xk has average magnitude-squared value

p

(=3 = * : 22 -
Ex | °= £ a R - @=-1), (17B)
m.n=

which 1s identical to (60)., Thus, the same optimum filter coefficients in (66)
that minimized (60) would also minimize (77B), and an approach similay to that
above would yleld a spectral approximution identical to (71). The equivaleno?
of the results of this backward regression to that of the forward regression in
(58) will prove useful later when we deal with finite data sets and unknown
correlation functions.

3.3 ALL-POLE DIGITAL FILTER
MODEL

The available information about process {xk} is the same as In the previ-
ous two subsections, namely, knowledge of Ry for ki< p. Consider a sampled
autoregressive proceas { yk} in steady state generated by a stable all-pole
digital filter, H(z), excited by discrete white noise {wk} ; see figure 2. The
noise is characterized by correlation

w 0! all n, (78A)

" -
k wk-n 6n
witii no loss of generality, and has spectrum

1
Gw(f) =4, Il < 24
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wk ALL-POLE Yk
B —— DIGITAL FILTER -
H(z)

Figure 2. Generation of All-Pole Process

The digital filter is characterized by a p~th order autorégreaslve relationship,

p
z b Yi-n = Wk (79)
n=0
with transfer function
1
Hz) = o . (80)
T Bz
n=0

We aroe going to choose digital filter coefficients {Bn}g 80 that autoregres~
sive process {yk} has the same correlation values as proocess {xk} y up
through order p; that is, we will set

* =
Y ¥ =R for inl<p. (81)

Then the spectrum of autoregressive process {yk} , glven by

2
Gy(f) =G, () ‘H (exp(ianA))‘

= 2 £ < =i (82)

p
> B, exp(-12nfna)
n=0

?D ZA,

(ot
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will be used as an approximation to the spectrum of {xk} « The spectral rela-
tion in (82) holds only if H(z) is stable; that is, all the zeros of the denominator
of (80) must lie inside O.

In order to evaluate the filter coefficients {Bn}g , we notice that

w v = _
Wi ¥ k-n 0forn>0 (83)

since noise samples {w} are uncorrelated (see (78)) and filter H(z) is realiz-
able (see (79)). The first astep we take is to express (79) as

P
1
Yk * Fo- [wk - n};:l B yk-n] : 34)

Then using (78) and (83),

* o ok
W Vi 'ﬁ'g'o (85)

Now multiply both sides of (79) by yjt_, and average; there follows

P

1
> BnRg-n'B; 610.05.0Sp. ) ©8)
n:=

upon use of (81), (83), and (85). Now if we let B, =JA ap, (86) becomes iden-
tical to (46). Therefore, we can use solution (63) to obtain for the filter coeffi-
clents

{
c
00
ﬁ = exp(-io), 0<n <Py (87)
n looo
where 6 is an arbitrary real constant,
23
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Substitution of (87) in (82) yields the autoregressive spectrum approximation
tp the input spectrum as

Acoo 1
, £l < -EK.

G, =G0 =

) €0 exp(- i2nfna)
n=0

This is identical to the maximum entropy spectrum (65) and the linear predice«
tive spectrum (71). The discussion surrounding (76) is relevant here also.

Substitution of (87) in digital filter (80) yields

/c exp(i9)
H(z) = ——

This is stable if the denominator contains all its zeros within O; that is, H(z) is
stable if and only if B(z) of (66) has no zeros inside O, This property has
already been shown true in the discussions under (38), (66), and (A~8).

The relationship in (86) can be extended to 4 = p + 1 with the result that
Y

L ARy ™ O o)
n=0

where Rp+ 18 now interpreted as the val{xe of yx Yﬁ-p—l' and was never speci-
fied. If we combine (90) with the last p equations of (88), we obtain

n=o,1gﬂ.5 p+l. (91)

In order for this set of p + 1 linear equations to possess a nonzero solution for
{Bp}? (as it did above), we must have
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] . .
qd ’ _ \.‘ :
1 R, B, R, .. R
‘ R2 Rl RO e Rz_p
2B det =0, (92)

i This can be solved* for Rp+1. But since this is identical with reference 19,

equation (1), we see that the all-pole digital filter model i8 identical to choosing
Ry, suoh that

. l R R, e R_p R_p_:;
Rl Ro
det E \ (93)
Rp Rp-l R-l
' _Rp 1 Rp vee Rl Ro |
| is maximized, Additional interpretations of (93) in terma of maximum uncer~
tainty and entropy are presented in references 20 and 14,

e b et

*Of course, a far more practical method is given by (80) and (87), and
more generally by (76).
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4, CORRELATION UNKNOWN; FINITE DATA SE'T'

In this section, the correlation values {Rk} are unknowu, and the only
information available about the random proceas x(t) is a finite set of N samples
X1 0o XN from which we remove the sample mean, From these N samples,

‘we desiresn estimate nf the spectrum G, (f). Yet we can not minimize or utilize

any ensemble averages us was done in sections 2 and 3, since we have only a
finite segment of one member function to work with,

The MESA and autoregressive methods of subsections 3.1 and 3.3 are not
easily directly extended to the case of unknown correlation, because they make
explicit use of this correlation information; see (31) and (81), respeoctively. A
direct extension of these two methods would require us to decide on the form of
the correlation estimates a priori, and could unnecessarily restrict the quality
of the spectral estimate we finally obtain, The linear predictive method of sec-
tlons 2and 8. 2, onthe otherhand, requires that the ensemble average magnitude-
squared error be replaced by some estimating quantity that can be readily calculated
from the available data {x.n} ; as n by~-product, we may get estimatuae of the cor-
relation. Several candidate processing techniques based on subsection 3.2 will
therefore be considered, and their processing equations derived. Also, some
of the results of subsection 8.1 on MESA will be adapted and combined with the
linear predictive approach to form u viable approach to spectral estimation;
this technique was originally presented by Burg in referencs 21. In section 6,
all the techniques will be compared by means of simulation.

4.1 YULE-WALKER EQUATIONS
We begin by definin,, in this subsection

X, = 0 for k<1, k>N, (94)

k
since these sample~ are unavailable. Taking (68) in subsection 3. 2as a gulde, we
attempt a linear prediction according to

P
R = El BX all k, (96)
n=

where the cholce of p is arbitrary for the moment. It should be noticed that

although ik is defined for all k, it is not expected to have a good chance of ac-
curately predicting x) for k <p or k >N + 2 since some zero values of xi have

217
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been utilized in those regions, according to (94). Nevertheless, we define an
instantaneous error

p
‘= S?k -x = ngo X oll k @, ==-1); (98)

it is expeoted to be valid or meaningful, however, only f k >p + 1 and k < N
(error ¢).; must utilize a zero value for xN+1). Digital filtering operations
(85) and (96) ure stable for any cholce of coefficlents {ay} .

Since we cannot compute an ensemble average magnitude-squared error
now, an average magnitude-squared error is defined for the available data of
the single member function as

p
F—- ..1_ 2 = * _1. *
Fo= N Z I'kl Z ®m®n N 2xl:c-n'xxk-n’ 7
k m,n=0 k

where £ denotes summation over all nonzero values of the summand |‘k|2 ,
regurdless of how meaningful they are. The normalizing factor 1/N is some-

what arbitrary; there are N-+p nonzerc terms in the first sum in (97), but only
N-p meaningful terms.

We define, for all n,m
. > ox  xf =g (98)
n-m -~ N " k-m"k-n m-n'
in which case (97) ylelds

F= Y aa 8 . (99)
m,n=0

This relation uses 8y only foridl < p. In order to minimize F by choice of filter
coeffiolents {an}‘; , we compute

¥
aar OS’_mam, 1<d <p. (100)

A
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The optimum ocoefficients {’!n}!])_ are therefore solutions of the p linear equations

p
s, T =0,1<8<p  @=a=-1) (L01)
m=0
or
p
P sl_m'afm=s,, 1<2 <p. (102)
m=1

These are the Yule-Walker equations for the optimum filter coefficlents. The
method here is called the autocorrelation method in reference 1. (As anaside, in
analogy to subsections 2,2 and 3.2, ldentically the same equations (102) result
when X is predioted on the basis of p future values, rather than p past values
as was done here in (95); see (6) and (17) ot seq. and (77) et seq.)

The minimum value of average error F is obtained by substituting (101) in
(97) and (99):

p p p
= 4L I a * -
Fo “ N E I‘kl Z 311 Z n—mum a‘o Z S-m m
k n=0 m=0 m=0
p p
=~ Y S;'n.'ﬁ'm =8 - ) S;‘n 'Em, (103)
m=0 m=1

where we have employed (98) and (101).

Thepxpmatrix [S, ] P on the left side of (102) has the form of a legal
correlation matrix in that it is Hermitian, Toeplitz, and nonnegative definite.
The last property follows from

p p
* x 1 *
. Eﬂl 1-m%*m% . r§11:—1 Im® N z Xl k-1
’ 1 =
1« | ¢
=3 21_‘ > eem | 20 (104)
¢ | m=
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for any am}l])_ . Since (104) is greater than zero with probability one, (102)
will possess a solution with probability one.

A convenient method of obtaining this solution is to comhine (101) and (103)
to get

P
- m20 8 ¥ = Fy b0 052 <DL (105)

Written out in detail, this is

8, 8, . SJ 17] F ]
8, 8 X, 0
= (1086)
8 S -8 0
| P o | | P I

(The (p+l) x (p+1) matrix in (106) is nonnegative definite, as & simple extension
of (104) shows,) But (106) is identical in form to (A-3), and the recursive solu-

tion presented in (A~4) through (A-T) applies directly.

The spectral estimate we adopt follows from results (68) through (71) in sub~
section 3.2 on linear predictive filiering for known correlation values: firat,
the optimum transfer function leading from {xk} to minimum<-error ssguence

{7k} m@8) 15

p
Ad) = 3, ’dn exp(~i2nfna). (107
n=0

However, we have a problem in trying to acourately estimate the average mini-
mum-error power that would be used in the numerator of the assumed white
gpectrum for the error in (70). Although minimum averuge error Fg of (103)
could be used, it is not recommended becuuse not all the error terms in the
sum in definition (97) aro meaningful. Therefore, becuuse of our inability to
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acourately estimate the average minimum-error power in this case, we shall ;
adopt as our speoctral estimate

gz

~ _ Al A 1l 1
G (f) = 2= T > Ifl<-—2A. (108) E
Y, T exp(-i2rfna) 8
n 3
n=0 i

*

This is tantamount to assuming the average minimum-error power equal to )
unity (in addition to assuming the minimum=~error spectrum white), This pro- ‘,
cedure also eliminates level perturbations in the spectral estimate (108) due to ‘
random fluctuations in the absolute level of the sample set {xn}iq ; that is, from
(102) and (98), it is seen that the optimum values of the filter coefficients,

{a }p y would be the sa.me if {Kxn} N were the avallable samples, for any K. A

Therefore. eatimate Gx(f) in (108) is also independent of the absolute level of
the available samples. The cholce (108) allows for convenient comparisons of
the spectral estimates obtained by the various methods presented here.

e —— o ————— . -F

As an alternative, (108) could be numerically integrated over (--2% . zk) .
and then (L08) could be scaled so that the area under the estimated spectrum is
equal to the sample power, ﬁ» z |xn; , if desired.

e e

The implications of the assumption in (108) that the minimum-error se-
quence has a white speotrum are investigated in appendix E. It is shown that
the sample crosscorrelation between input sequence {xk} and minimum-error
sequence {?‘k} , defined for the available data of the single member function as

T e e an pmmm—— 1

‘ D, =X z ?’k xk_ ,all 2, (109) 1
3 is assumed to satisfy b
' D, =0, 1<4; (110)
| |

' that is, the minimum-error sequence is uncorrelated (on a single member func-
! tion basis) with all the past input. It is also shown that the quantities S, de-
5

31

| 'L e e o I e

. L -
L . s, o N 1 .
N S R T

S ) L o i 8 vl Sttt B kst




b anlar SRR

diial aaht RSl sinad 4

TR 5303

fined in (98) (of which only 8, for Iﬂlg p were used in (99) et seq.) can be

estimated for £ >p + 1 according to

p
8 = zl'a‘ns’_n,.fz >p + 1, (111)
n=

This relation, (111), which may not be true for the quantities S, actually ob-
tained from data {xp} 1 via (88), is due directly to the assumption that the

sample spectrum of the minimum-~error is white; see appendix E, The recur-
sion relation (111) is stable, according to appendix D, if

1- L T (112)

possesses all its zeros within O, But since matrix [§,_,] in (102) has the
form of a legal correlation matrix, we appeal directly to reference 1, page
567, to state that this property does indeed hold. Therefore, recursion (111)
is stable,

It is worthwhile noting that no direct estimation of unknown correlation val-
ues {Rk} wasg attempted in this approach; rather, we minimized the average
error defined in (97) and solved directly for the filter coefficients in (102),
However, if we rewrite (105) in the form

p
> 8. % =-F_ &

0<l <
_ s <Kk <P, (113)
m=0

and compare with (C-3), we see that the quantity S; could be adopted as an esti-
mate of R for |41 € p; that is, using (98), we could say

Rp=s =3 & xxt ,12i<p, (114)

(and then (111), with R replacing S, could be used to estimate R, for 1 41>p + 1,
rather than (98)). This is in fact the approach adopted by some authors; ses,
for example, reference 2, equation (19). However, (114) ylolds biased esti-
mates because

34
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- R =8, = . (116)
0, otherwise J

It is interesting to note that if (114) were adopted a priori as estimates of
the unknown correlation values {Rk} » then the MESA and autoregressive ap-
. proaches of subsections 3.1 and 3.3 could be utilized directly, if the right sides
of (31) and (81) were replaced by {ﬁk} . The spectral estimates would then be
glven by results identical to (108), except for a scale factor. The major draw- y
back of this approach is the need to commit oneself to a specific form for the g
correlation estimates, such as (114), rather than letting the technique itself
yleld alternative estimates. The specific form used for the correlation esti-

4 " , ' mates could limit the quality of the spectral estimate obtained; this contention
‘ - _ 18 proven true by simulation in section 6,

L | 4.2 UNBIASED VERSION OF YULE-
¥ ; WALKER EQUATIONS

One method of obtaining unbiased estimates of the correlation values {R,}
is to define estimators

N

1 8 o 1 " - L " <

Rp=gg L XXk~ = N-1 z X Xy for 0s 4<p. e .
_ k k=1+1 ]
! f Of course f‘l_l = ﬁ;‘ . These could then be used in (102) in the form
‘
; P, . K

: r R ¥ =R 1<l<p, ) ;_

g me1 ¥

o to solve for the filter coefficients {'Em} I; . And (108) could again be adopted for
: the spectral estimate. The solution for the coefficients in (117) minimizes no
i error criterion; it merely utilizes unbiased correlation estimates. The dis-

. cussion under (115) is relevant to this approach; how good the technique is will
be ascertained in section 6,

The matrix [ﬁf -m] ¥ of estimated correlation values on the loft side of g
(117) is Hermitian and Toeplitz; however, it is not necessarily nonnegative ‘
definite, (This last property is shown by consldering the example p = 2, N = 3,

33 i
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with x; = 2, X, = xg = 8, for then ﬁo = 22/3, and ﬁl = 15/2.) The recursive

solution of appendix A could again be applied to a modified form of (117); see
106) and (106), If the recursive technigue in (111) were utilized to extrapolate
¢ according to

Rp=eT TR _,23p+1 (118)

and (118), it need not be stable unles [ﬁ, _m]l{ ia nonnegative definite. Even if

~ (118) were unstable, (108) could still be used as a spectral eatimate of Gx(f);

there would, however, be a greater tendency of some pole-pairs of (108) to
drift close to the unit circle, O, in thé z-~plane and give rise to spurious large
peaks in the spectral estimate. This tendency is reduced for stable recursions
(118), that is, if (112) possesses all ita zeros within O.

4,3 LEAST-SQUARES ESTIMATES OF
BOX AND JENKINS |

In reference 16, appendix A7,6, a likelihood function approach to estima~
tion of the coefficients in an all-pole (that is, autoregressive) filter model for
generation of the process {xn} s oonsidered. The end result (in our notation)
is glven in (A7.58.7) for real data by

N

i)
1 1
e = - <
Sij =N D1+1,j+1 N k§1 Xk 0t j<p (119)
and in (A7.5.15) by
p
jzl 88 = 8- 141 <P, (120)

This constitutes p linear equations in the p wiknowns {'&‘j}‘; . The matrix [8yj) l{
ocourring in (120) is symmetric, not necessarily Toeplitz, and not necessarily
nonnegative definite. (The last property is shown by considering the example
N=5, p=2, with xg = x3 = x4 = 1, for then 8;; = 3/6, 812 = Sg; = 2/6, Spg =
1/6, and the determinant is - 1/25.) The quantities {Su} also yleld biased
estimates of {RH} , because

34
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—— N-1{-
5, = —FL R (121)

Nevertheless we will adopt (108) for our speotral estimate in this case. The
faot that we encounter a non-Toeplitz matrix in (120) disallows the use of the
recursive technique for solution in appendix A.

If the solution to (120) is substituted in (112), the zeros need not all lie in-
side O, Therefore, there would be a greater tendency for some pole-pairs of
(108) to drift close to O than when all the zeros must lie inside O, as for sub~
section 4.1,

4.4 APPROXIMATE MAXIMUM LIKELIHOOD
ESTIMATES OF BOX AND JENKINS

This technique is a slight modification of the previous one in subsection
4.3. Namely, in reference 16, ‘'under (A7.5.18), the coefficients are solutions
of

él sij ?{j =8, 1<i<p, (122)
where (see (119))
1 g N
Sij ol e Di+1,j+1 ol oy e kgl %X 0<i,j<p. (123

The matrix [Su]? ocourring in (122) is symmetric, not necessarily Toeplitz,
and not necessarily nonnegative definite. (The last property is shown by con~
sidering the example N= 5, p = 2, with xg = 2, x3 =1, x4 = 2, for then 8;; = 3,
S12 =891 = 2, Sgg = 1, and the determinant cf these coefficients is -1). The
quantities {Sy;} yleld unbiased estimates of {Ri_e‘} ; however, every element in
a particular diagonal can be different, even though they are estimating the same
quantity. Also, the number of terms (in the sum in (123)) along a particular
diagonal varies with the position of the element, thereby ylelding diffuring de-
grees of stability, Equation (108) can be used with (122) to obtain the spectral
estimate. Recursive solution of (122) is not allowed because of the non-Toeplitz
character of the matrix [S{j]¥. The comments at the end of subsection 4,3
are relevant here also.
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4.5 PREDICTION USING VALID ERROR
POINTS

The method of subsection 4. 1 utilized an average error measure defined over
all nonzero error terms; see (97). However, as noted under (86), instantaneous
error ¢ is meaningful only if k> p + 1 and k ¢ N. Here we define an average
magnitude-squared error by summing only over the set of valid error points:

N
1 2
T = e e . (124)
N pk-l'p+1 I kl

There are N - p terms in this sum, le» procedure is tantamount to not running
off the edges of the available data {xn} 1+ Employing (96), (124) oan be writ-
ten as

P
*
F= 3 apas$8 , (126)
m,n=0
where
L N

B e * * 6
Snm " N-p E xk--mxk-n = smn' (126)

k=p+1

This quantity always contains N - p terms for 0 <n, m < p. In order to
minimize F, we compute

9F P
-O_TH Z Slmam. ls,ﬂgp. (127)

a
£ m=mo

The optimum predictive coefficlents are therefore sclutions of

X - o= .,1
> Sy, =% 1<L<p @ =a=-1), (128)
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The method here ia called the covariance method in reference 1.

The minimum value of the average error F is obtained by substituting (128)
in (124) and (126):
N P p

1 ok
F = = 3 & Z s ¥ =7
0 N k-—p+1 ne 0 n =0 nun m 0

Z Smoa‘m"’ Z qm m'
m=1

where we have used (126) and (128),

The p x p matrix [S,] Fl’ on the left side of (129) is a legal correlation
matrix in that it is Hermitlan and nonnegative definite, The last property fol-

lows from

p

LI

p

2
—— Y a Xl 20 (131)
N-p k=p+1ljm=1 m m

for any {am}p . Since [Sym] is not necessarily Toeplitz, however, the re-
cursive solution in appendix A is not applicable. Numerical computation of
(Sym] is eased by taking advantage of 4 recursive relation between 8¢+1, m+1

and Sfm'

The spectral estimate we adopt is given by (108), However, note that we
could, if desired, get an estimate here of the average minimum error power
Ey, used in (70), according to
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E =F 132
0™ %o (132)

This quantity is meaningful because (130) involves only the valid error terms,

Equation (129) is similar to, but not identical with, the form of (117). The
quantities {8} , defined in (126), yield unbiased estimates of {Ry_p} ; how-
ever, svery element in a particular diagonal can be different, even though they
are estimating the same qua.itity,

If the solution to (129) is substituted in (112), the zeros need not lie inside

0, despite the nonnegative definite property demonstrated in (131), (The ex-~
ample

L d

p=1, N=2, ylelds & = x,/x, (138)

and gives a zero location of (112) which can lle anywhere in the z~plane,)
Therefore, the comments at the end of subsection 4,3 are relavant here also.

4,6 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

It was noted in subsections 2.2, 3,2, and 4.1 that "prediction' based on
future values of the input {xk} yielded an equivalent spectral estimate to that
obtained by prediction based on past values. Here we combine the two tech-
niques. The forward-predicted value of xi is

p

xkaz:lanxk_n,p+lsk$N, (134)

whare we limit k to the range [p + 1, N], in anticipation of the fact tl.at we can
only measure valid errors in that range; see (96) et seq. The backward-pre-
dicted value of xy is

p
¥ = 2 8y x. » LSk<SN-p, (135)
n=1

where we again limit the range of k. (See, for example, (15), (22), and (77).)
The forward and backward errors are, respectively,
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p
?kz?(k-'xk- > anxk_n.p-i-ISksN,
n=0
{136)
p .
¥ -xk-x = 3, a"' Xeap' 1SKSN-p,
n=0

where a = - 1.
0
An overall average magnitude--aquaraed error is defined as
1 ( N 9 N-p 2 P
F=y )> li‘| + Y |!|>= Y a_a*s8 _, (137
(N-p) kmp-+1 k K1 k m.pe 0 m n nm
where, in this aubsection,
N-p | '
. L
S 2(N'p)( E xk -m k-n kz-;l xk+nxk+m> ) (138)

This quantity always containa 2(N-p) terms for 0 <n, m < p. Two useful prop~
erties of snm are immediately available:

§ =8* .8 - g% (139)
mn nm’ “p-n, p-m nm :

These properties, plus a recursive relation relating Sy+1, m+1 and S;,,, ease
the numerical computation of matrix [8p,) .

We minimize F by choice of {am}g. getting (see (127) - (129))

P

2, snmtm =8 ,+1<ngp. (140)

m=]l

The minimum value of F is (see (130))
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F'o = Soo - E Bmc:: m’ (141)
m=]1

The mathod here is an extended version of the covariance approach in refer-

ence 1,
2)
>0
(142)

for any {am} However, this matrix is not necessarily Toeplitz; therefore,
we cannot applly the recursive solution of appendix A.

The matrix [Sy) 2 is Hermitian and nonnegative definite:

N-p

2+E

P

L m”k+m
m=}

Z o k-m

fym=m] k=p+1jm=1

P 1 N
"
Z_ Sm%m% =.:_2(-N.'-p)( 2

The speotré.l estimate we adopt is obtained by substituting the solution of .
(140) in (108). An estimate of the average minimum error power E,, used in
(70), is available here according to

A
E =F , (143)

if desired, where F, is given by (141). This is meaningful becauss (137) util-
ized only the valid error terms.

In analogy to (126), the quantities {Snm} in (138) yleld unbiased estimates
of {Rn-m}. Nevertheless, if the solution to (140) is substituted in (112), the
zeros need not lie within O, despite the nonnegative definite property shown in
(142), Forp=1, we find

.. KL R Y Ry
o e Y Y PR N L Y
2171 2 X3 N-Z N-l N (144)
And since .
X X
Ik k-ll <1, (145)

1 Z 1] 12
zl"k-ll +2|ku
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it follows that
|zl| <1, (146)

8o for p = 1, the zero of (112) must lie within O, (unless xi = A exp(ikB) for all
k, in which case it lies on O), However for p = 2, N = 3, and real data, the
X x
1 +°3
zeros of (112) lle at r +4/r" ~ 1, where r - So if Ir| €1, both zeros
Xy

lies on O, whereas if Ir| >1, one zero lies outside O. Therefore, the com-
ments at the end of subseoction 4.3 are relevant here also,

4.7 BURG TECHNIQUE

The key to this technique, first presented in reference 21, is the observa-
tion from equation (A-6) in appendix A that if the particular p-th order coeffi-

clent a
oients R

A-~3) even if {Rp
0' ﬁl’ S0

rn be evaluated, the rest of the p~th order predictive filter coeffi-
1<ksp-1,
ooeffioients. This relation (A-8) holds true for the solution of normal equations

could be evaluated from (p - 1)~th order

} are replaced by estimated values, Explicitly, if estimates

-1, and a g’) are considered known in the matrix equation
"~ = ~
R &, ... R [ p®7]
0 -1 -p
& a8 e
RJ' R0 a 1 0
= (2.47)

i) R -a® 0

|p o L p L 4
then we have p + 1 linear equations in the p + 1 unknowns a(f) s veey (‘1)1. ﬁp, '

PY’, (Notice that whereas was known and a,," unknown in (A-3), the situa-

tion is reversed here for these two variables.) I;’I‘he golutions are given, for
p2>1, by

® _ .e-1) _ _©
" - _ap

(;)l:') » k= -l’ 2. XER] p - 1 (notel‘msifp=l) (148)
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p p
Ro=F & o l(f), 5, - 1‘21 B al(f), (149)

' 2
p® _ p&-1) (1 i Ia(m

The quantities {pk} in (149) are the estimated normalized correlation ooem-
ofents {Ry/R_} . The recursion (160) is started with

0) =a 1 al 2
PO a2t T |5 - (161)
n=1

whioh is the sample power of the available samples, ° A method of evaluating
ap ) for p 21 is treated below,

The method presented here is a combination of references 21 and 7. It
begins by defining zero-th order forward and backward sequences acocording to

© _ (0 |
fn xn ’ bn xn, 1<{n 4N, (152)

The p-th order forward and backward sequences (residuals) for p >1 are de~
fined according to .

(®) @) e
n n

P n-1
for p +1 gn €N, (163)

®) (p-l) _oox g(B-1)
bn = n-l gp fn

(These can be interpreted as one~step forward and backward prediction errors.)
A chain interpretation of (163) is presented in figure 3. (From the known
correlation results in subseotton 3.2, if we define

' L
I I
f( " k§1 n-k ' °n " nep k=1ak “n-pk

we find that figure 3 results, with By replaced by a:)P).)

42
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2

) {p)
féP by
Figure 3, Chaln Interpretation of Burg Teohnique

The average magnitude-squared value of the p-th order forward anc back~
ward sequences is

e 2 (1 )
"Z(I*X-op)m“p_’_1 n n

N ' 2
1 (p-1) (p-1) P-1) _ (p 1)
2(N-p) nap 1 ln P n-1 n-1 | (164)

We wish to minimize this average power at the p~th stage by choice of cross-
galn ¥p We find the optimum choice to be

. N
2 T ) D
n=p+l n n-l Num(p)

Den(p) Dpzl.

gp ;: (Ifl(:;-l)lz . Ib(p l)' )
nap+1

(169)
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t

When (155) i8 substituted in (163), the results ace oalled the residuals, The
minimum value of the residual power at the p-th atage is obtained by substitu-

ting (166) in (1564) and 12 expressible as .

The quantities necessary for this evaluation are available when (166) is evalu-
ated. The value of (166) will never be mnaller than (141), since the procedure
here is a step-by-step prooedure, not a simultaneous procedure as used in
subsection 4. 8.

An immediate recursion for the transfer funotions of the p-th stage in fig-
ure 3 is

/1

5 ® g - 3(p-l)(z) - gpz-]'&p-l)(z)

with starting values
5(0)('/!) - B(o)(z) = 1 .
If we let transfer funntions

p
Bw)(z)nl~ 5 al({p) z-k,
k=1

(p)* Z-k +

- - * .
I MOLHEN

&

9

the solution Is

® N
av’ o= =1, 160
o gpo P < (160)

with the lower order coefficionts given by (L48), Thus, the only remaining
quantity, B ) , that was neceasary for solution of (147) - (150) is given by (160)
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and (156), along with (152) and (163). To the thrue lowest orders, the solutions
are given by

b=0, »9. -1 )I'i* xn'z (161)
n=1
p=1, a{l) = g
R =&, ail)
p@ - p© (1 . lail)li’) (162)

= (2) e
P ",‘l a’z gz

@ _ 1 @ L
b T T |

8 W 1@ @)

R2 -\Rl a, +R a

p@ - pM (1 - |a;2)|2). (163)

It will be ohserved that for p = 1, a(ll) is identical to (144); in fact, the proce-
dures uare }\dentical in this case. It should also be noted *hat at each stage, an
estimate, R, of the true correlation value Rp becomes available via (149), and
is unchangeg by the addition of any further stages (larger p).

It was demonatrated in (A-9) that the magnitude of ®) was bounded by

unity if the known correlation matrix R was nonnegative definite. The same
property,

<1, (164)

P

is true here in the case of unknown correlation when z‘,()p ) is determined by (160)
and (165); see appendix F, This is sufficient to show that all zeros of (A-10)
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lie inside O; see reference 11, for example. Therefore. the recursion (149)

- can he usad in the form

g

: p ®)
R= T R, o) dzp+1, (168)
k=1

to extrapolate the estimated correlation values beyond p~th ordar, with the p=th
order coefficients {ak } P and is guaranteed to be stable. Division of (185) by
ﬁo yields the normalized correle.tion coefficients. Recursion (166) is similar

The guantity P(p) that results as the solution (150) of matrix equation (147)
is not the minimum average inagnitude-gquared exror as it was for known cor-
relation; see (A-3), (A-7), and (67). In fant, P(P) has no direct physioal sig~
nificance; it is merely the variable left over in that position in the normal equa-
tions (147) \ghen modified from the case of known oorrelation velues, (A-3),
Rather, F5 ' in (164) and (166) is the minimum average magnitude-squared
error of the forward and backward residusls, (i63), of the available data.
Thus, as far as picking an "optimum'' value of p at which to terminate the re-
cursion in (147) - (150) is concerned, the latter quantity has more physical sig-
nificance. However, the two quantities are very cluse to each other for no bad
data points, especially for N-p large; see appendix G. Both quantities are
readily caloulated at any stage via (160) and (108), respectively.

The transfer functions from input x to the p-th order reslduals are given in
(169). Therefore, the spectra of the residuals are given hy

' 2
0P = P = | 5® (expazetn)|” o 1. (L66)

Now if the chain in figure 3 has been carried to the stage where further values
of cross-gain g, would be substantially zero, then the residuals are approxi-
mately white., Therefore, an estimate of the input spectrum is availaole from
(166) and (168) accoxding to

A " A 1 .
G, @) = ——s = = 1t <5 (167) ;
1= }: a.” exp(~-12rfka) -
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where the residual power has been set at unity; see the disoussion under (108),

Two alternatives to this scale factor are discussed in appendix H; namely, it is
shown that P®) and F{P) are both meaningful scale factora that could be applied
to (167). - : o '

The estimated correlation values in (149) are genarally biased. . This may
be anticipated from the complicated forms of {149), (148), and (1€5), sipne
additlonal statiatios than sinip%'_xk;pxk" need to be known in order _tl_}gt%, be

p depends on much more than just Xk+pxk, for
the Burg method. This blasedness may be proven for a simple exurxle with
p=1, N=3. ®,in (151) is unblesed; and for p = 1, N= 2, we find Ry = x9x} ,
which 18 unbiased.) For real data, with random variables {xk} 3 beiig zero~-
mean unit-variance Gavssian, and X3y = X3 = -":J}’ X3¥%; = 0, we find (in

A" 112-243 1 -
pendix I) that R, = + = @+ = (,0484), The bias fa slight but non-
ap by —5—- : | t non;

Z
zero,

In summary, the Burg algorithm for data processing consists of initiaii~a-

tion (162); followed by the cross-gain caloulation in (156); filter coefficients via
(160) and (148); and norraalized correlation coefioients (149) (X deaired)

at every stage. The update required at each stage is given by (163), and

the extrapolated normalized correlation coefficients at any stage are svallahie
from (185),upon division by &,.

4,8 SUMMARY OF PROPERTIES OF
TECHNIGUES

The solution for the {ter cuefficients in the techniques conaidered above
can be put in the form

AT =F_ 3. (168)

The properties of the estimated correlation matrix A (if desired) are tabulated
in table 1. (Actually, several of the '"No'" entries should be ‘'Noi Necessarily.'')

It will be seen that none of the techniques possesser a 'Yus' for all the
properties, The Yule-Walker and Burg techniques possess everything but the
unbiased property; however, the unbiased property, per se, of the correlation
estimates 1s not neceasarily a desirable feature for spectral estimation, as will

47




TR 5303

Table 1, Properties of Estimated Correlation Matrices

Nonneg-
| Correlation ative | Stable

Technique Estimates |Unbiasad | Hermitian| Toeplitz | Definite | Recursion
Yule-Walker 114) No Yes Yes | Yes Yos
Unbiased ' ,
Yule-Walker (116) Yesu Yos Yes No No
Least Squares
of Box and - (119) No Yes No No No
Jenkins
Approximate
maximum

. | likelihood of (123) Yes Yes No No No
Box and
Jenkins
Prediction (128) Yes Yes No Yos No
Forward and
Backward (138) Yes Yes No Yes No
Prediction
Burg (149) No Yos Yes Yeu Yos

be seen by later simulation results. On the other hand, simultsneous satisfuc-
tion of the three properties of Hermitian, Toeplitz, and nonnegative definite
guarantees that a stable recursion and nonspiky spectral estimates result; see

referenne 1, page 667,
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F B. CORRELATION UNKNOWN: FINITE DATA SET
g WITH BAD DATA POINTS

- In some applications, some data values can be bad as a result of malfunc:-- i)
y ., ‘ tioning equipment or human errors in reading osr recording, for example. Also,
e some data values can be missing as a result of equipment being inadvertently

L 4 or intermittently turned off for callbration purposes, for example; or some sec-
, . tions of data can be contaminated by strong burst-like noise and be virtually
" | useless in those sections. All of these problems can lf\? charaoterized mathe~

matioally by saying that of the available data set {xn} » the values xy for the
distinct integers

My, ... M (L69)

1’ B

” , l n=M
are known to be bad (or missing). The B bad locations {M } B are presumed 3

to be known. The bad data points can be regularly spaced, or randomly spaced, 3
or a combination, depending on the applioation, it will make no difference to )
the techniques to be developed here.

In this section; we wish to estimate the input spectrum despite the presence
of known bad points. The last two methods in subsections 4.8 and 4.7 will be
extended to cover this case. The reason we do not extend the other methods in

seotion 4 will become clear when we compare the various techniques by simu- 4
lation in section 6, _

o ) b | - ~i—p - -
o

6,1 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

The method to be presented here is very similar to that given earlier in
subsection 4. 6; accordingly the treatment will be briefer, For convenience and
to enable a better estimation of the true spectrum with a limited number, p, of
parameters, we subtract the sample mean of the N~B good data points so that

yoy ); x =0, (170A) ,
n=1 ;

i = | e g 7 e+ B P b sl N

, where ¥ denotes that we skip those values of n in the set (169); that is, we
3 simply ignore the bad data points -~ this is, in fact, the main theme of the
- methods to be presented, We attempt no interpolation on the bad points, nor do

| { 49
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we set them equal to zero or the sample mean. We also scale the good points
so that the sample variance is unity:

1

12
N-B-T & I"n' o8
n=1

This helps avoid overflow and underflow problems in the numerical raanipulation
of large arrays encountered for large p.

A forward prediotion of xik is afforded by

P
’ﬁka ) B X +P+1SKSN,

(171)
n=l

pI‘OVided that k"l. k"z. sy k"p # Ml. M2’ sy MB. Then a Valid forward
error can be defined as

p

~
]

”~ .
k’xk_xk=n§0anxk-n (ao=~1),p+1gk_<_N, (172)

provided that k, k-1, ..., k~p # M;, Mp, ..., Mp; that is, ¢y is defined for
p+1 < k<N except for k in the set of integers

/ Ml' M1 + 1,

M M2+1,

\MB, My + 1, M

p'P

If any numbers in set I, are <p+1 or > N, they are not encountered in the error
definition (172), Let By, denote the number of distinet integers in I which are
> p+1 and <Nj this 1s the number of gaps (bad points) in the error sequence
(172).
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We now define an average forward error over the valid error points as

~ 1 N 2
=55 ) lekl , (174)
P k=p+1
k Ip

where e denotes ''not contained in,'" and N-p = Bp is the number of terms in the
sum, Substituting (172) in (174), we obtain

p N
F = v 1 *
F= 3 & o §op-B PIRE NN (176)
m,n=0 P k=p+1

k&L,
A backward prediction of x is available as

P

v = X -

X = 21 Bt X 1<k <N -p, (176)
n=

provided that k+1, k+2, ..., kip # M{, Mg, ..\, Mg. And a backward error

v

P
= X, - = * = - < -
X -x = 3 arx (@,=-1), 1<k <N -p, @A77

n=0
is available if k, k1, ..., kip # M1, Mg, ..., Mp. Letting £=k+p in (177),
we can write

p
( = * < f) <
.I'P ngo 9‘nx'l--p+n' prlslsN, (178)

if 4 is not contained in the set Ip defined in (178). The we cun define an average
backward error over the valld error points as
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2
v 1 v "
Foeg——e ¥ i ‘ | (178)
P=By japs+y | 1P
',
p 7\ N
= ) a_a" Yy ox x* , (180)
m n N=-p-B l=-pin f-p+m
m,n=0 P P t=p+1 P P

where we have substituted (178).

We are now in a position to define an overall average error as

p
N - "
F=5F +hH= T a_a%s (181)
m,n=0
where, from (175) and (180),
1 N
§ o e— Y (x K kx K . (182)
nm 2(N-p—Bp) K=o 41 k-m k-n k-p+n kp+m)
kélp

It should be noticed that (182) does not tell us merely to sum over the '"good"

products, but rather to exclude set Ip. The number of terms in the sum (182)
is the same for 0<n, msp and is N-p-Bp. (For no bad points, (182) reduces to
(138).) Two useful properties of Sy are

] ¥ *
Smn snm’ Sp-—n. p~-m - Snm ’ (183)

The quantity Spm 18 an unbiased ostimate of Ry~ however, the presence of
bad points will inorease the variance of Shm: 8ee reference 5. The matrix

( Snm]l; Is Hermitian and nonnegative definite,

The optimum predioctive filter coefficients {'B.‘m} IZ are obtained by mini-
mizing (181):
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8
1

"M

The minimum average error is

Q =2 - * it .
Fo=8, - % St % . (186)

And since the sample variance of the good data points was set equal to unity in
(170B), (185) is a relative error measure that can be used to decide what value
of p should be used in (171) and (176); see reference 1, equations (41) and (89)

ot seq. The spectrul estimate we adopt 18 obtained by substituting the solution
of (184) into (108), as usual. The quantity F, in (186) could be used as a scule
factor, if desired, nccording to

A
E =F . (186)

5,2 BURG TECHNIQUE

The problem setting is the same as that for the previous subsection, in-
cluding (169) ~ (1.70). The solution is identical to that for subsection 4.7, up to
(160), Now we define zero-th order forward and backward sequences as

©_ . O )
£ = x b e x 1;n$N,n4‘Io. (187)

whure we again employ the definition (173). The first-order sequences are de-~
fined as

L _ O ©
fn fn i""1 bn—l

for 3 < n sN,né'Il, (188)
O _ O O
By = by "B L

where the restriction of set Ij is due to the fact that the first-order sequences
vonnot he formed (evaluated) in set Iy. We choose cross gain g to minimize
the average orror
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P el § ('f(l)lz + ]b(1)|2> (189)
SIN-1-B) <, |'n ni /)
ngly

where N-1-B; is the number of terms in the sum. The solution is given by

)*

© (0
Zanbl

n=2
n¢Y

g = .
(10" + )

n¢l

(190)

1

With this value of g;, we can now compute values for residuals f( ) b,(xl) in
(188) and continue the procedure, v

At stage p, we have
(@) -1 _ b(p 1)
n  n & "n
forp+1gngN,n¢1p. (191)

L f(p"l)

® _ (1) _
bn bn-l gp n

The choice of crogs-gain Bp that minimizes average error

w5y I (lf“”| D) E0 g am

P n=
né]Ip
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is N
®-1 , @-1*
’ n'-2 +1 n Pn-1
ngl
- ) Num
&, N o2 o-1[2)  Dea) (193)
2 (lfn | ¥ bn-l ‘ >
n=p+l
nél
and the minimum value of (1982) can be expressed as
® _ 2 Den(p) 0
Fa ('1 lgp| ) 2(N-p-Bp) (Fo 1) ) (184)

This is also a relative erro., due to the normalization (170B), and can be used
as an indicator when to termis.ate the recursion procedure in (191),

It may be seen from (182) and (183) that the sums are merely taken over
those values of n where the summands are defined, The number of terms in all
the sums is N-p-Bp.
l As in subsection 4.7, the filter coefficients are given by

o P

» b 21, 195
o "By P2 (185)

and for p >2, by

®) , g0~ _ a(p) agf_;‘l)*. L kgp -1, (196)

" T % p

Equations (147) through (160) still hold true, The starting value of P(0) is now
1, by virtue of normalization (170B). Recursion (165) for £ >p+1 is still valid
and is stable since

W@
Y

= 19
|gp| <1, (1o7)

as may be seen from (193) and appendix F. The spectral estimate is again
glven by (167), The discussions in appendixes G and H are relevant here also.
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6. COMPARISONS

All the techniques considered in section 4 will now be compared in terms: of
their resolution capability, bias, and statistioal stability, by means of a simu-
lation approach, In particular, the fourth-order autoregressive process which
was intensively investigated in reference 2 (see figures 4a and 5a) will be the
basic process of intexest here also, It is charaocterized by

4
= LoepXy gt W (198)
n=1
where
o, = 2,7607, @, = - 3.8106, a, = 2.6636, a, = - 0,938,  (199)

and where {wk} is Gaussian white noise. We restriot consideration to real
processes here. We will not address the problem of how best to plck the valve
of p used in the techniques of sections 4 and 65, but shall instead sel p equal to
the known value, 4, and concentrate on the ability of the various techniques to
estimate the parameters in (199), and thereby the spectrum of {"k} , from a
finite set of N data points,

The simulation method coneists of the generation of 100 independent reali-
zations of the process in (198) in steady state, The coefficlients in (198) are
estimated for each of the 100 realizations, and the corresponding 100 estimated
spectra are computed by means of (108), for every technique in sections 4 and
6. The examples to be considered are summarized in table 2, where N is the
number of data points in each realization (trial), and B is the number of bud
points in each realization. The corrosponding figures are collected toguther at
the end of this section. '

6.1 NO BAD DATA POINTS

In figure 4A, the 100 different estimated spectra, one for each of the 100
independent trials, are plotted for the Yule-Walker approach, and for N = 40
data points, In figure 4B, the (power) average spectrum of the 100 estimated
spectra is plotted, along with the truc spectrum of process (198) und (199),

'The true spectrum is scaled go that its area is equal to that of the average
spectrum, It will be seen from figure 4A that there is a great doz’ of variabil-
ity in the individual spectral estimates. From figure 4B, we observe that the ™




' TR 5303
Table 2, Simulation Examples
¥Figure .| Number of Numbenr of
Number | Data Points Bad Points
N B Technique
; 4 40 0 Yule-Walkex
B 40 0 Yule-Walker, Unbiased
: 8 40 0 Least Squarev ¢i Box and Jenkins
: 7 40 0 Approximate Maximum Likelihood
of Box and Jenkins
1 8 40 0 Predioction, Valid Error Foints
i
' 9 40 0 Forward & Backward Prediction
I; 10 40 0 Burg
A 11 40 0 Burg, Uniform Noise
12 40 4 Forward & Buackward Prediction
13 40 4 Burg
14 100 0 Forward & Backward Prediotion
15 100 0 Burg
16 100 10 Forward & 8Backward Prediction
17 100 10 Burg
18 100 20 Forward & Backward Prediction
19 100 29 Burg
20 100 30 Forward & Baockward Prediction
. 21 100 30 Burg
| .
| b8
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' average spectrum does not resolve the two narrowband peaks of the true spec- o
trum*; in faot, this same conclusion 1is true for the individual spectra in figure P

|
} , 4A, A severe hias exists in the skirts of the average spectrum, which gives a
g - grnes overektimate of the power in bards away from the peaks., Thus, the
1 Yule-Walker approach has poor regolution, severe bhias, and substantial vari-

\" abil ity .

The corresponding results for the unbinsed version of the Yule-Walker ap-
proach are displayed in figure 56, Rather than improving the situation, it is
fowid that tae speotral sstimates are worse in every regard., The spectral
estimntes with strong spikes near f =y are manifestations of pole-pair looca-
tions .. cstimate (108) that are very close to the unit circle O, Recall from
subsection 4.2 that the zeros of (112) need not lie inside O; see the discussion
below (118).

The unbiasod correletion estimates utilized above in the normal equations
| , are of the same form as those suggested in reference 5 for missing data, when
' spectral estimation is attempted directly via (2). But sinoe the performance of
these unblased correlation estimates is 8o poor here, they are not considered
worthwhile in the presence of bad data points, when spectral estimation is ac-
complished via (108). Whether they are worthwhile for use in (2) is not known,

Results for the least-squares approach of Bey and Jonkins are given in fig~
ure 8, The variahility is less than that for the Yule~Wulker estimates in figure
4A. And some resolution is achieved in figure 6B, in addition to good skirt
pelectivity., There is still, however, a large numbes of spiky speotral esti-
matos, as anticipated in the disoussion under (121),

Conditions are not much improved for the approximuste maximum likelihood
_ method of Box and Junkins presontod In {igure '!. There happens o be one par-
4 tloular speotral estimate with a very large spike (4 zero virtually on O) that
severely influencss tho average powexr level, Tha variability in the estimated
akirt level 1s quite small for this technique (aa well as for the previous one).

In figure &, the resulis for prediction using only the valid error points are
presented, 'The resolution and bias in figure 8B are observed to be very good,

*This same conclusion is reached in raference 2, figure 6b, for the samo

! number of data. points, Increasing p (above 4) does recover some ot the regolu-
! , tion of the two narrowbund peuks, but it does not reduce the severe bius of tho

| Yule-Walker approach,

N

e,
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and except for some spiky estimates in figure 8A, the variability of the individ-
ual estimates is fairly small,

The situation is still belter when we consider forward and backward pretioc-
tion, using only the valid error points, in figure 9. There are a couple of spiky
estimates, but they are not excessively large, as they were previously., The
bias and resolution are very good in figure 9B, Although the zeros of (112) need
not remain inside O for this technique, it was found that in all 100 trials, no
zeros were ever located outside of O. The presence of the two spiky estimates,
however, indicates that on two occasions,a zero came close to the periphery
of O,

One of the major drawbacks of this technique is the need to invert a non-
Toeplitz matrix (or an equivalent operation) in order to evaluate the optimum
fiiter coefficients; see (140). For large p, this is a significant numerical prob-
lem. We therefore attempted to convert the matrix {Sy,] in (140) to a Toeplitz
matrix, so that the recursive solution in appendix A could be utilized. We first
averaged [Sym) }i down the diagonals and left the right-hand side of (140) as is;
however, we lost resolution and got badly biased and more variable spectral

estimates. Next we diagonally averaged [Syy,] P and left the right-hand side of
(140) alone, but got the same bad effects. Finalfy, we diagonally averaged
{S,m]g and also replaced the terms on the right-hand side of (140) by the ap-
propriate averages, but again to no avail, Thus, we are unable to significantly
modify (140) without dire effects on the spectral estimate,

Finally, when the Burg techuique is considered in figure 10, we observe the
complete absence of spiky estimates; this is due mainly to the guaranteed loca-
tion of the zeros of (A-10) inside O. In other respects, the results of figures 9
and 10 are very simlilar, There is a small bias in figure 10B, with the peaks
being rounded off and the valley filled in; this is similar to figure 5 in refer-
ence 2,

All the results above have heen conducted for Gaussiar. white noise {wk} in
(198). To see the effect of the statistics of {wy} upon the spectral estimates,
wo changed to a uniform distribution. The results in figure 11 are virtually
identical to those in figure 10, Accordingly, Gaussian stetistics are kept for the
remainder of the simulation,
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6.2 BAD DATA POINTS

By virtue of the results of the preceding subseotion, further consideration
is 1imited to the forward and backward prediction technique and the Burg tech-
nique. The first example we consider is B = 4 bad duta points out of a total of
N = 40 data points; that is, in each of the 100 realizations of 40 data points, 4
points (no more, no less) were randomly selected as heing bad, and the corre-
sponding values of xk were suppressed. In some of the veelizations, the four
data points may have been close together (for example, .19, 12, 14, 15), whereaa
in other realizativns, they might have been far apart (for example, 1, 14 21,

40),

The resulting spectral estimntes are given in figures 12 and 13,  The vari-
ability in the skirts is lass for tha forward and backward prediction technigue
than for the Burg technique. However, the spiky nature of the former technique
is quite evidert in comparison with the latter technique. Both technigues kave
suffered a significant loss of resolution near the narrowband peaks. :

The reason for the significant degradation in performanoce of both tach~
niques is that although only B/N = 4/40 (10%) of the points are bad, the numbexr
of valid error points, N-p-Bp in (174) and (192), can decrease significantly.
For example, for p=4 and spaced bad points at Mj = 11, Mg = 16, Mg = 21,
My = 26 (see (1.69)), we have

=20, N=p-B_ =16, 0
B, =20, N-p-B, =16 (200)

On the other hand, for contiguous bad points at My =1, Mg = 2, M3 =3, My=
4, we have

B. =4, N-p-B = 32, 201
b p-B (201)

Thus, anywhere from 16 to 32 valid error points can be achieved, The stability
of the speciral estimate for (200) will be less than that for (201). Generally,
contiguous bad points are less damaging thon spaced bad points, because more
valid error points can be formed when the bad points are contiguous,

One of the points of the above example is that 4 bad data points out of 40 is
rather detrimental, We consider now N = 100 data points., The first example
of interest will serve as a comparison case and is B = 0, The results of spec-
tral estimation for the forward and backward prediction technique and Burg
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technique are given in figures 14 and 15, respectively. The results are virtu-
ally identical; there is excellent resolution and almost no bias for both tech-
niques., :

When B is increased to 10, the results in figures 16 and 17 ave obtained.

Despite 10% bad points, good performance in terms of stehility, blas, and reso-

lution is attained. The number, N-p-Bp, of valid data points cin vary from 46
to 86; however, the likelihood of realizing as few ns 46 on a random basis is

~very remote, The Burg technique has less-apiky estimatea near the narrow-
~ band peaks, as expeoted; huwever, it is more variable in the skirts than the

forward and bachware prediction technique,

"When B is incroased to 20, -the results in figures 18 and 19 indicate that the
Burg technique has more variability, but is less spiky and has better resolution.
The ssme conclusions hold true for B = 30 in figures 20 and 21; however,
neither technique resolves the two narrowband peaks for this many bad data

- poluts,
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7. DISCUSSION AND CONCLUSIONS

Several methods of spectral estimation via linear prediotive techniques have
been considered for a univariate process, both with and without bad data points;
the bad points can be regularly spaced, randomly spaced, or a combination,
Two partioular methods have been found to have better performance than the re-
mainder, namely, the forward and backward prediction technique and the Burg
technique. The former technique tends to have less variability on the skirts,
but has more spiky estimates near the peaks of the spectrum; the latter tech~
nique has very few spiky estimates. Both techniques have comparable resolu-
tion and bias,

Sinoe the best cholce of filter order, p, is not known a priori, it is neces~
sary In practice to make several guesses at this parameter and compute some
error oriterion that indicates when to terminate the recursion, In partioular,
Akaike's Information Criterion (reference 22) is often adopted as a termination
procedure; it takes the form (reference 1, equations (91) and (41) or reference
22, page 719)

AIC = In (Relative Error) +-§P- (AIC(p=0)=0), (202)
(-]

where Ng is the "effective' number of data points, and is taken as N-p (or
N-p-B,, for bad pointg) here, at the p-th stage. The vaiue of p at which (202)

i a mfnimum is taken as the best estimate of this parameter; however, oriterion
(202) is not absolute, and the user can adjust it to fit his application (reference 1,
page 575). A wide range of values of p may have to be investigated if little is
known 9bout the true spectrum a priori; an upper bound on p is given by Akaike
as 3N1/2 (1bid).

One of the ramifications of this successive guessing procedure is that for
the forwurd and backward prediotion technique, adifferent px p matrix [Snm]
must be inverted (or an equivalent operation conduoted) at each stage (see
(140) and (138)) in order to determine the filter coefficients and minimum
errvor, (141). Although the matrix terma can be updated according to

X x* + X xX
S(p+1) N-p (p) _ _ptl-m p+l-n N—p+n N-p lm
nm N-p-1 nm 2(N-p-1)

(203)

in addition to the relations in (139), the size of the matrix lsnm] 1 Brows with
p, and the solution of (140) cun he a time-consuming procedure, if many large
valuos of p must be investigated. This fuct, coupled with the fact that this

speotral estimation technique can yleld spiky estimates and an unstable recur-
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sion relation (149), leads to the conclusion that, of the methods considered, the
Burg technique is the recommended procedure for spectral analysis of univari-

ate progesses. A comparison with the maximum likelihood technique (reference
23) is underway and will be documented in a future report.

The solution for the filter coefficients in the Burg technique is accomplished
recursively as shown in subsection 4.7 and automatically progresses through
successively larger values of p at which error measures (150' and (156) are
readily caloulated. There is, of course, the need to update the forward and
backward residuals via (163), and the calculation of cross-gain gp in (166), both
of which t:ke time to effect, But the effort required actually decreases as p
increases, since fewer terms are involved in (153) and (166); in exchange, the
stability of the estimates also decreases.

FORTRAN programs for the Burg technique, both with and without bad data
points, are given in appendix J, Some representative exevution times on the
Univac 1108 for the computation of the filter coefficients (SUBROUTINE BURG)
are given in table 3, where N is the number of data points and PMAX is the
maximum order of filter considered. The times are approximately linearly
proportional to N and PMAX, The execution time [or the evaluation of the
power density estimate itself is governed by the FFT technique employed to
evaluate (167) (SUBROUTINE POWERS),

Table 3. Execution Times; No Bad Data Points

N PMAX Time (sec)
100 10 | 0.038
100 20 0,073
1000 10 0.33
1000 50 1,78
10000 50 17.9
10000 150 48,4
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The presence of bad data points is easlly accommodated in the Burg tech-
nique, as shown in suhseotion 4,7. If the bad data points are contiguous, the
loas in stability of the estimates is not ag great as when the bad data points are
spaced. The worst possible locations of bad data points occur when the closest
spacing is >p + 1, since each bad data point causes the loss of p + 1 valid error
points. Interpolation of spaced bad data points has proven poorer than the tech~
nique utilized here (of ignoring bad points) when the spectral content of the input
process extends fairly close to the Nyquist frequency (24)=1, Since the exact
extent of the input spectrum is unknown a priori, interpolation can be a damag-
ing procedure in some cases,

The spectral estimation technique investigated here is particularly advan-
tageoun for short data segments, where other methods are inapplicable. For
example, if a piece of equipment fails frequently, short disjointed pieces of data
may be all that are available, Or if a process i8 nonstationary, it may be nec~
essary to out the total data record into small segments in each of which it is
believed that conditions are substantially stationary. For longer data records,
where atandard FFT techniques can be applied, it has heen recommended that
both spectral estimation procedures be applied and the results plotted together
to glean maximum information about the true spectrum (see reference 12).
This seems particularly useful when some pure tones are preseni in the input
data; the standard FFT technique is ideally suited for the analysis of pure tones
or very narruwband components.

83/84
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Appendix A

RECURSIVE SOLUTION

If we employ (62) in (46), there results

p ai: 1
Z Rﬁ-k;‘-=r 610.0£.05p. (A-1)
k=0 0 00
Now define
*
o
k
:—i-=-a£_)), 0<k<p, (A-2)

where the dependence of the coelficients on the order p in (31) is indicated ex-
plicitly. Then (A-1) becomes

[ 1 7, T L ®]
R, R, .. R 1 /o
®)
}El1 Ro -al 0
= (A-3)
®)
R R -g 0
\. p o o L lp . L -4

where the matrix R iz Hermitian and where we have slso indicated that the real
quantity oyo is dependent on p; see (47) and (51). Equation (.A)‘-a) constitutes

p+1 linear equations in the p+1 unknownsa a ). veey , 1/000 .

The solution to (A-3) oan be obtained recursively as follows (see, for ex-
ample, reference 11 or reference 24, appendix B):

® _ Ao 1 _|(1)2_ )
ay Rl/Ro' 0(1) Ro R__l 8, R, (1 a; l ), (A-4)

00

A-1
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for p > 2:
p-1
RP ) E ul((l"'l) Rp-k p-1

a(p) k=1 — - E (p...l) (p 1) A-5

= = = 8y, . » (A-5)
’ R - Zl a1 g k=1 %

(o] KL k k
»”
a‘ip) = nl((p-l) al()p) ag::) y k=1,2, .viy p-1, (A~6)

p p-1
A LR - O R ) LR R
® R, - L& Re=R -a’ R El B By (p 1)( )
%00 ke s (A~1)

The last step in (A-7) is obtuined by subhstituting (A-6) and employing (A-5). It
iy very important to notice from (A-8) that ouce Vig vpecified, all the p-th
order filter coefficients can be calowlated from (p~1)th order coetficients. Tha
same I8 true of (A=T).

1f we use (A-2) and (563), the mazimum entropy spectrum in (F5) can be ex~
pressed as

Al ®)
00

1
=, 1l <3 (A=8)

G () =~
0 p ®)

> B exp(-i2nfka)
k=0

The simllarity in form to (14) will be complete wher. it is shown (In (67)) that

1/0 (p) 18 the minimum value of the average magnitude~squared error for a p-th
order prediciive filter; therefore o(%) must be pesitive for all p, for non~negative
definite R. Equation (A 7) offers a recursive caloulation of the average error; it

oan be started with —(T" . (In fact, (A-5) through (A-7) can be uved for p > 1
when that starting vaﬁte 18 usod )
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Sinoe cg:)) must be positive for all p, (A-7) indicates that
|al(‘k).51for k=1, 2, .e., P (A-D)

This 18 equivalent to having all the zeros of

)¢]
}_‘ a

l(‘p) K (A-10)
k=0

(where the remaining coefficients are determined via (A-6)) inside the unit cir-
cle, O, in the complex z-plane; see reference 1, page 667, Therefore

p K
8P = 3 a® 2F (A-11)
k=0
has no zeros inside O,
A-~3/A-4

REVERSE BLANK
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Appendix B

EVALUATION OF MAXIMUM ENTROPY

The optimum speoctrum is given by (38) and {(37). The maximum entropy
then follows from (30) as

Ent = Af df 4n Go(f) = -4 f df [fnvy@) +Lavy* ) = €1 +52.
1/a L,a

(B-1)
Congider
p
El moa f df 4n { Z @, exp(iz.’.ﬂt‘kA)} . (B-2)
1/a k=0
Loetting z = uxp(12»f4A) and using (38), (B-2) becomes
=L fde , -

61 - 121‘ g, ﬂn B(‘)I (B 3)

where f denotes gounterclockwise integration around \he unit oirele, O, in the
complex z-plane. Now

p p
- k
B(z) = ), o E= @ nm @-o) (B-4)
k=0 k=1
where, from (A-14), zero locations {o)} sutisty
o] > 1o all ki (B-5)

that is, all the zeros of B(z) lle outside O. (There can be multiple-orver
zeros In (B-4),) Also assume p >1 for now. Then (B-3) cun be expressed us
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p 7
1 dz
A v "z‘[ﬂ“‘p*szn @ - oy

[Jlna + }: -—f—ﬂn (z = o)) « (B-6)

But

In (z-ok)a,lln (- ok) + dn (1--57'—)
k

z z z . .
= fn (- Ok) --O-l:- (6;) - +a. for o—-l(l, (3-7)

that is, expansion (B-7) converges for |zl <|ogl|. But since loj| >1, the region
of integration in (B-6) remains in the convergence reglon of (B-7). Therefore,
the integral in (B-6) is

: 2
1 4 dz 1 {dz 2 zZ
e ZAn @m0 = ?z';f?{ﬂﬂ'%)-;; ("k') } =dn oy (B8

Then from (B-6) and (B-4)

P
€ = [ﬁnap+ Y, dn(-o )] =-ﬂn[ap nl (—ok)]

k=1 k=

= - fn B(0) = ~4n a . (B-9)

And from (B-1) and (B-4)

62 = =4 j' df 4n 'y*(f) =- A df ﬂn{z a exp(i?rrka)}
1/A 1/a k=0

RPN, I A S

B Y T O

- ot =

e . -
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1 J dz P k 1 f[dz _J.,
dz . « -k{_ _ L H%2 "
="T27§z“n{2 ' } mnfzﬂ“BQ)
k=0
P
. - " 1_ o«
mﬂf > In{ap Iy (z ok)}
k=1
p
UL PO &- o)
- & z[ﬂnap+ b In\z - o
k=1
> 1. [dz 1
" 1 *
= - [ﬂn ap + ): mf-z' ﬂn(z - ok)] . (B-10)
k=1 _
Now :
¢
1 *\ o ok _l ;
.lln(z - ok) ﬁn( ok) + n <1 ;f;;>
=J2n(- oﬁ)—-;};-(;%)z- voo for 3-];'; <1; (B~11)
k k k
that is, expansion (B-11) converges for lzl >|'0er‘ But since okl > 1, the
region of integration in (B~10) remains in the convergence region of (B-11).
Therefore, the integral in (B~10) is
2 .
-—l—ﬂ ..1.:._*=_];__d.£ _*_,_]'___L_ = _ o
12nJ % ﬂn(z ok) 2r/ z iﬂn ( Ok) ol"“z (ol";z> z _Qn( ok)'
(B-12)
Then from (B-10) and (B-4)
. p P
€2= -[ﬂnap + 3 1n(-o’£)] a --.Qna; I (-o'l"‘)
k=1 k=1
= - fn B*0) = -~ fnag . (B-13)
B-3
. ; e A . t ’ -
L i B e LT j
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Combining (B-9) and (B-13) in (B~1), there follows for the maximum entropy L.
2 ,
Ent = - {n |a°| = fn (a/c ), (B-14)

where we have also employed (62), (For p = 0, a separate derivation yields
(B-14) also.) Recall from (61) that oy is the upper-left corner element of R-1,
where R ig defined by (47). '

I o 3
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Appendix C

IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM
FOR MINIMUM ERROR; KNOWN CORRELATION

We define the crossocorrelation function between minimum error ¥ and input
x in figure 1 as :

—
Cp = T X, alld. (C-1)

Substituting (69) and utilizing (1), this becomes

. A MdiLa Qi Gl y
ettt AL RN SEMIL S SR AAISE SR il do ARt Mk del. i Alliad 4¢ ot O
" " . T . N | - Nt ey e . i . . an —mw-m- i

E T R, 0 alld. (C-2) Y
n=0 F
L
Now from (64) and (66), we can express k
-~ 1 !
Rl=--5—-l. (C=3) 0
00 {
. Thus, (C-2) immediately ylelds (é
!E -1/000 ’ I/ 0 ;
l_ CP = ) (C"4) !
] 0, 1€ 4<p j
that 18, minimum error value ¥ is uncorrelated with the past p inputs xg.1, ,
ey xk_pn !
Now using (59) and (C-1), the.autocorrelation function of the minimum
error is
* K " -
=T, " zzn i *ket ):?i it 1L (C-B)
C-1
B - e e S _ 7
s bt i ST WA AR 'h. ' '\‘WH' “‘ vt
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In particular, using (C-4),

B =¥ C (C=6)
But from (C-2) and (66),
p P e .
Cp+1 n n§0 zn l.“p+1.—r1 - Rp+1 ngl _5; Rp‘i-l-n * ©-7)

Therefore, assuming F; = 0 is equivalent to assuming Cp+1 =0, (that is, mini~
mum error ¥ uncorrelated with input xk-p-1), which in turn is equivalent to
requiring

c p
no
R‘1:;4-1 o n2=:1 %0 R'p+1--n - n¥1 tn R;:.+1--n ’ ©-8)

This relation, which may not be true for the actual process {xy}, is a direct
result of assumption (70); the quantity Ry.j in (C-8) is really an approximation
to the true (unknown) correlation value.

Next from (C-~5),

a L L P -
Ey =% Con * T Coip- (C-9)

Assuming Ey = 0 (in addition to E = @) {8 equivalent to also assuming Cp+z = 0
which in turn from (C-2) and (66) requires that we approximate according to

P o P
no
R --2.._..3 uza‘R . (C-10)
. + +2- +2 -
. pt+2 n-1°00 p+2-n n-ln p+2-n

Continuing in this way, it follows that assuming white noise for {¥y}, that
is, assuming

E, = 0 for 4 21, (C-11)

is eguivalent to assuming that C, = 0 for £ > p + 1; that is, the minimum srror
is uncorrelated with all past inputs, There follows the approximations

R T R L - P T Y . S
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P o P

no ¢

Rg== 25— R 4" X T Ry for L2p+1. (C-12)
n=1 00 n=1

This recursion relation (starting with known values Ry, Ror 4y R{,) can be
considered to be an extrapolation of the known correlation values into regions

where they ure unknown.

If we augment (C-12) according to

R l-'n;‘ for 4> p+l , (C-18)

then it can be shown that the speotrum defined by

) A/OOO
A 3 R, exp(-12xfld) = - (C~14)

J =N

'E'n exp(-12»fnd)

M-

1-
net

-

whioh 18 identical to (71). The transform in (C-14) converges if |R,| decays
with inoreasing l_ﬂ] , that is, if B(z) of (66) hac no zeros inside O,

C-3/C-4
REVERSE BLANK
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Appendix D

STABILITY OF RECURBION RELATION

The recursion relation for approximated correlation value. ', is given in
(C-12)and (76) us

p .
Ry= 3 T R, ford>p+1, (D-1)
k=1
Therefore,
& -2 P k& - 1+k
U= 3 R,z = r % 2 D R, ? . (D-2)
(ap+1 k=1 f=p+l
But
{D _’+k W "j p "J
2 R, % = 2, Rz = Py R,z
fmp+] jmp+1 <k jep+l-k
-~ -}
) Rz = V(@) + U@, (D-3)
j=p+1
where
=~ (p+1l-k) v ' fa) s ~p -
Vk(z) = Rp+1-k 4 + Vk_l(Z) , k22 l(Z) Rp z ", (D-4)
Vk(2) involves the starting values Rp+1_k; ey Rp for 1< k<p. Employment
of (D~3) in (D-2) yields
P " P " |
Uz) = kzl T oz V() + U k§1 L (D-5) ]
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or

p

P -k -k
3 Tz V@ kz o,z Vi@
U(z) = k=1 5 N - - ﬂlp " . (D-6)
1 - Z zk z° 2 oko 2’

k=1 k=0

where we have utilized (66), In order that recursion (D-1) be stable, the de-
nominator of (D-68) must possess all its zeros within the unit circle O in the
complex z-plane. Therefore, B(z) of (56) must possess all its zeros outside
O if recursion (D-1) is to be stable, This is guaranteed by the results in
(A=9) et seq.

D-2

I RIS I TR et e Mg UM A de Ay e

et e eyttt et < ran e ¢ o ey waamemar o - A‘-.,,....A -
. . V - .
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Appendix E
IMPLICA'TIONS OF ASSUMPTION OF WHITE SPECTRUM;
UNKNOWN CORRELATION
The minimum error sequence is given by (96) and (101) as
p
'rk = n);:o 'a‘n Xy n® all k. (E~1)

The sample autocorrelaticn of {¥,} is defined here as
1 " P
- = = * -
=y z T Y )y !m'un 8 1in-m (E-2)
k m,n=0

using (E-1) and (88). The sample spestrum of ‘?‘k} is defined here as

[14) 2
Hy(®) 24 3, F, exp(-i2rff4) = Hx(f)\A(f)l . |f|<-élA-, (E-3)

la ~w

where we have employed (E-2) and (107) und defined the sample spectrum of
X} as
{xh

H () =4 1?:(0 S, exp(-2n£da), If1 < -513-. (E-4)

Therefore, (E~3) ylelds
Hy (D iy »
H () = ER in <, (E=5)

Now we will assume that the sample spectrum of {'!"k} is white; that is, we
sot
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1
Hy® = Ka, 1< ==, (E-6)

where K is a constant, We then adopt an estimate of the sample spectrum of
sequence {xn}ll‘J according to

. Ha
H (O = ‘ _‘2 5 KA , 11 < 513. (E-7)
Al ) 'd‘nexp(-iznan)
n=0

and adopt a scaled version of this quantity as a spectral estimate of process

{xn}:
A A
6.me= s -, HE (E~8)
Y 'ﬂ‘n exp(-i2nfna)
n=0

The white assumption in (E-6) forces us to assume that

F, = 0 for 240, (E~9)

ag (E-3) shows. In order to see what this implies, we utilize the definition of
the sample crossoorrelation in (109), along with (96) and (98), to obtain

p
. .1' ~ * = -
Dp=y 2 TeXx , = X 8 §_ ., 8l (E-10)
n=0
Use of (101) then shows that
D, = 0 for 1<4 <p. (E~11)

Meanwhile, the sample autocorrelation in (E-2) can be written in the form

p
F,o= 3 a';‘ D, 8l g, (E-12)
ns=
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upon employment of (E-10), There mmediately follows from (E-9), (E-11),
and (E-12)

= B* us -
F =%D, =0 (E-13)

But then (E~9) and (E~10) indicate that

p
sp+1 a ):1 Y sp flen’ (E-14)

>

where {'En}f are the solutions of (102). But relation (E-14) may not be true
for the quantity Sp4q actunlly obtained from data {xn}iq vie (98). Thus, as-

sumption Fq = 0 is forcing us to assume that S,,1 oan be obtained via (E-14)
and (102), when {S ,}Ep are obtained from (98?.

Next from (E-12) and (E-11),

R PR

y ——

. o Yk * -

; F2 'Ep-l Dp+1 4 'ﬁp Dp+2 . (E-16)
Ay

1; Assuming Fg = 0 (in addition to F; = 0) is equivalent to also assuming Dp+2 =0,
; which in turn from (E-10) requires that

k) ) p

E h Sp+2 = E 'E‘n Sp+2-n' (E~-16)
E‘ . n=1

\‘ *. Continuing in this way, it follows that assuming

. F, = 0 for {321 (E-17)

is equivalent to assuming D, = 0 for 4>p +1; that is, the minimum-error se-
guence is uncorrelated (on a single member function basis) with all past inputs.
There follows the estimates

p
8y = Zl T8, .+ 4zp+ L. (E-18)
n=

Stability is discussad in (111) et seq.

E-3/E-4
REVERSE BLANK
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Appendix F

BOUND ON CROSS-GAIN

The value of the cross-gain g, in (165) can be written as
P

S A 2(,, I )
n n -1 - +]_In l n=p+1 n-lf

n=p+1
172
(pn) T (lfr(?-nl b(p-1)|>

"o P+l (F-1)
The first factor in (F-1) is of the form of a correlation coefficient of the (p~1)-
th order forward and backward sequences and can never exceed unity in magni-
tude (by Schwarz's inequality), The second factor in (F-1) is almost always
very close to 1: let the palir of sums

N
(£ oo m §

n=p+1 n=p+l

n=p+1 n=p+1

12
br(ﬁ 11) } = {A and A(l+r)} , (F-2)

where >0 without loss of generality, The second factor in (F~1) then equals

(1)t
Tw which i{s never larger than 1 and {s tabulated below, Thus, 8y in

(F-1) is virtually identical to the correlation coefficient of the forward and back-
ward sequences, since r {8 near zero with high probability,

Table F.1 Second Faotor in (F-1).

r | 0 .1 2 i 4 .5

a1/2
(1 +r) ] 1 .999 .996 . 991 .086 .980
1-+r/2

F-1/F-2
REVERSE BLANK
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Appendtx G o

CLOSENESS OF ERROR MEASURES

T

Two possaible arror meuurea for the Burg teohnique were presented in
(150) and (166), Forp= 0, employing (154) and (152).

F(O)zll—q' % lx'nlz-. N T S (é'..l)
n=1

Comparing this result with (161), we find

r - @, S (eeR)
Thus, the two error measures are.identical for p = 0.

Next from (150) and (161)

P 0 -"!|;§1>|2>' < | ml )

x ]2 N .(G-3)

whereas from (166), (160), (166), and {1562),

@ _ f; . |,@}) Den@d)
Fo ( ! |2> ZN-1) |

(

- (1 . agl) 2) - ;_1) z (lf(ml 'lbx(aq-)i'z)'

2||2||2’ * Pl Pl +3fef
- (s - a(l)?-Ll 1| X3 1 TR ) Il i |N|
1 Nl R} L BN

{G-4)

G-1

e b e omem L

R VTP ST SO
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But now reference to (151) and (G~-3) reveals that, for N-1 large,

2
) <1 - [ )P(o) - o), (G-6)
Continuing with (150),
2
p@) o ptl) (1 - Iaf)' ) (3-6)

And (158), (160), and (1865) combine to yield

F((,z) . (1 ) I“;z)lz) 2_&% ( I (z)l )2(N_2) Z (Ifu)l Ibml' )

(G-1)
But from (154),
Q ol )% L
f$ - £ (I« pE): -
Comparing (G-7) and (G-8), we see that, for N-2 large,
7@ o ( l (2)| ) (W G-
Then employing (G-5) and (G~6), we have
2
Ry <1 - [s] >Pm - 7%, (6-10)

which 18 the desired relationship. In gemeral, for no bad data points, we have

Fc()p) L] P(p) for N-p large , (G-11)

Numerical computations have borne this result out, with the two quantities not
g having any ordered relationship; that is, either quantity can be larger (or
i smaller) at different stages, p. (G-9) generalizes to

2 -
F(()p) L (1 - Ia‘()p)l >F(()p b for N-p large. (G-12)
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Appendix H

SCALE FACTORS IN SPECTRAL ESTIMATES

Instead of using a unity value for the average minimum error or residual
power in the numberator of (167), we could use the value given by (156), Then
our spaotral estimate would be

A ”c(,p) 1
Gx(f) = P o s £l <°2'-A-. (H-1)
1- 3 a.kp exp(-i2n fka)
k=1l

An alternative approach is to us2 an arbitrary scale factor K and choose it
so that the area under the spectral estimate is equal to the sample power (151),
as suggested under (108); that is, set

AK

RO

and force

24

L
)

|~

L
24

al(“” exp(-12 rfka)

n-l

2b

df G L0 = - p® -— Z inl

Subptituting (H-2) in (H-3), and using (169), we havo

N
|f|<2A,

(H-2)

(H-3)

B TN

. (H-4)

PP al  a Ak
L A 2" (m)
~5% 1- 3 8, exp(-i27fka) ; | H
k=1 m-l

&«mﬁhﬂ\mﬁw\wum J

LI
e s L T S N SRS -
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The last step in (H-4) is proven as follows: from (A-8) and (29), we know that

B YRR A

1

24

j' N df 11 NN R iJA.i . gt 'hh""cw) (H_a)
1

P 2 o oo’
-2 “k exp(-iznka)
k-l R e S T T

Lot e e T TR TR TR YR NTIRYY Y

| N T O L B R e N N LI

o i [ oo P
Blltfl‘om (A'?). C BTN . o b ' ! T

R PV
T f. ik

(H-6)
Ii'

4

where we have employed R, c&, = 1.. The relationghip in. (H-4) holds when the
fﬂter ocefficients are determined via (148). .. L e R

Therefore, (H-4) yields, with the aid of (150).
v ) ‘ P p -
k=20 ’ | (m)l ‘ Poc» (H=1)

j m-l

and the estimate (H~2) becomes

() '
AP 1
lfI <33

G, () = (H-8)

!
}:, ®) o1z rika)| "

The very close similarity of values between the alternatives (H-1) and (H~8) is
made evident by the results of appendix G, in particular (3-11), Thus, there is
virtually no difference between estimates (H-1) and (H-8), for no bad data
points.

H-2

g T S e et ek
e b ———r P ol TN
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Appendix I Lo

. BIASEDNESS QF BURG'S CORRELATION ‘ESTIMATE

cndl Py Ty el g et

\’ i ".}".i AT FENETRYE LR T L [CEER SURY B B RTINS gy

TFor the Burg technique with p = 1, N - 3. we find froya (162) and (LM) that
(fox'real data) TR : SRR ¥

I . !
. i

' 2 2 2)
%Xy ("1 * "3)("1 T Xy tXg
2

a 2
R 3

1 [ P T Il(l’lv)

g h

The mean of this random variable depends on more than just xle (nxaxz) in
fact, it depende on the third-order joint densrity of (%1, X3, Xg). As an exam-~
ple, let

X, =u, X, =& :/2.- @+v), X5 = v, (I-2) :'
where u and v are independent, zero-mean, unit-variance, Gaussian random |
variables. Then X, X3, X3 are zero-mean, unit-variance, Gaussian random
variables with

Xo X, = X, X, = + X X, =0, (I-3)

271 32
Employing (I-2) in (I-1), we obtain

oL L @rvieu’sau +3vd)
6 .

1 -\./_ \,\2+uv+v2

Therefore, "

D

-4

[~

0D

2, .2 2 ..2 2
1 W +v Y(u+v) (Bu +2uv+3v)
5 J‘J‘ dudvexp( 3 ) 3 3
a

u +uv+ty

=u>|
1]
I+

Y [

S

I-1
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P ’I»'.
S 111 s 2, F ©+8°@ec? +a08 +38% {
k| K n -_0;_/-2- i dr v exp(-r /2)] dé 2 2 v (1-5)

. C"+C8+8 .
o 0 -1 :

i where we have changed to polar coordinates and let C = cos 6, Sw sin 6, The

= integral on r in (I-5) is 2, and the integral on ¢ is 4n(2 - .1.) ' _
. Therefore, ‘ V3 2
ot . ‘z— 12 - 2 !

+9484), (1-6) IS

1

- 4 -+

)

%'IH

1

which is not equal to ’,

. . I-n f

!
1
'l
»
)
L4
'
)
| {
} . W
P t |
: ¥
r
¢
i
... I
4
! v T 7 - . s . . o ..'," ,".-" ERUFRRE .:"ll>;;‘l. -’ \
. . - ' . BRI N Y L,!._j.u','.(..(..r... - b -
L ke oy FOSUS S, .-

P r——



o
VT

g e = e, e

P e ——r.

A T T R e e - S T A W

e e e

TR 5303

Appendix J

FORTRAN PROGRAMS

The programs in this appendix are written for real data, but may be readily
generalized to complex data by means of the general equations in the main text.
From (H-8) and (H-T), for real data, the spectral estimate is given by

e

8 @ = —=L =) 1l <5, @-1)
1- Y a® exp-t2nfka)
kml
‘ ‘ Let frequenoy inorement
£
1 1 1 N
M=Ia" 3R 22 IR (a-2)

where fy; is the Nyquist frequency, and J is an integer. Then, using (H-3) and
the real behavior of the data,

1

1 24
: P 9, J/2
! p@ j da & @ % 2ap0 [ 31-:11(:‘)2 T 4.
X f
0 k=1 m=0
‘m
p ) 2
1 - kz al(f exp(~i2nma ka)
=1
P 2, J/2 ; J/2
2_(0) % (k) $ m
=P IT {1- z = ) ¢ P,
J k=1 ak me0 p 2 ma0 m m

1- 3 a]?)exp(—lzfrmk/J)

-

e e an e e o e
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where {‘m} 1s a set of integration weights (for example, trapezoidal). 8o we
can compute (Independent of time increment A) the quantity

P P 2
_m=3_H l-nl((k) : 1 :for0$m<£,
P(0) J K1 p ®) 2 =2
- 1 - -127mk/J){ .
k§1 8, exp(-127mk/J) J-4)
which represents the fractional power in the frequency band
TS T A (J-5)
that is,
J/2 P
—_— ] (J-6)
¢
mmo ™ pl®

if estimate Gy(f) in (J-1) has been sampled finely enough (that is, large J). The
denominator of (J~4) is recognized as a J~point FFT of p+1 nonzero numbers;
hence, J should be chosen as a power of 2 for speed purposes, The programs
below yield the fraction of power in frequency bands of width (JA)=1, {f J is an
integer large enough that the speotral estimate (187) or (H-8) is adequately sam-
pled to keep track of its peaks,

NO BAD DATA POINTS (SUBSECTION 4.7)

The data generation is accomplished via function IRAND, which génerates
integers uniformly distributed over (0, 235-1); by RAND, which generates num-~
bers uniformly distributed over (0,1); and by TINORM, which generates zero-
mean unit-variance Gaussian variables. The FFT used below is that presented
in reference 25.

J-2

-
] G Y . R i o A \ PO S
X L ST . . . . . E A0 A avbe s W EYRIN AN
_ it enb b e e mraaer o o o o e o ees o eas - L . PR

)R USSR S - AL s Yo b
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SPECTHAL ESTIMATION USER: CHANGE LINE 13 AND REPLACE LINES 37=33
N 3 NUMBER OF DATA POINTS
X(L)reavrXIN) & INPUT DATA
PMAX & MAXIMUM ORDER OF FILTIR
PBEST = BEST ORDER OF FILTe
ACL)rasotA(PBEST) & PkiuxctIVt FILTER co:rrxcxenvs
PROD = PRODUC1II-A(P)ttl) FOR Pxi T0 PBEST
RHULL) pos o s RHO(PMAX) B NORMALI2ED conaantxou COEFFICIENTS
J = SI2E OF FET (MUST BE A POWER OF )
XXi1)ranoroXa(us@el) B FRACTIONAL . Powtas. EROM DC TO NYQUIST FREQUENCY
CO(L)reaerCOCU/U4L) B QUARTER cosxut TABLE
Y AND YY ARE REQUIRED AUXILIARY ARRAYS
PARAMETER Nx 1000 PMAXELD) JER048) Juimy/4ed
INTEGER PBESY
DIMENSION X(N) oY (N)» A(PMAX) gRHO (PMAX) ¢ XX (M) 0 YY (W) 0 COCUHY)
¢ INPUT UATA IN X(3)reeenX(N)
LEFINE JRANDEZwS#wiB+((1=51ON(1s10Ba088))/2) 034359730367
ghF:NE RANDSFLOAT (1) 734359738367,
1628
NSTARTEN4400 % Tkl DISCARD INITIAL W00 POINTS
xX{1)20,
xXX{g)zo,
Xki3)a0,
AR(4)=0,
DO 11 LaBsNSTAKT
1a1RAND
AX{L)22,76070XX(Lal) =3, 83068XX(L"2) +2,65358XX (Lad)=
3092300 XX (L=4) +TINURM(KAND  $11)
11 CUnTINUE

oocccoofchor

0V 12 Im)N
12 x(l)=lx|l#NsTAR1-N)
: PRINT 1,
1. 1 FonmA?(/' INPUT WATALY)

FRINT 4y (X(E)oI=1eN)

¢ EVALUATE PKREDICTIVE FALTER CUEFFICIENTS
CALL HBUKG(N)PMAX s X¢YsPEEST o A»PRODyRHO9
FRINY 9 XIN)

1] FORMAT (/Y MEAN ='1EL4,8)
PRINT 100 Y(h)

10 FURMAT(* STANDARD WEVIATION 2'2E13,8)
PRINT 2, PuUgEST

é FORMAT (/Y PBEST 21913)
PRINT 3,

o FURMAT (/' PRELICTIVE FILTER COEFFICIENTSS?)
PRINT 4y (A(L) )1 ePBEST)

4 FURMAT (3£20,8)
PKRINT b, PROC

5 FUKRMAT (/Y FRODUCT(leA(P)we2) =,E13,8)
PRINT 6, -

\ o © FORMAT (/! NORMALIZED CURRELATION COEFFICIENTSSY)
- ' PRINT &) (RHO(1)oEE31sPMAX)
" Canl GTRCOS(CO0Y)
. ¢ EVALUATE FRACTIONAL PUWERS
CALL POWERS(PHESTrA9PRODIJp XXeYYCO)
PrINT 7,
ki FOKMAT(/t FRACTIONAL POWERSS')
h3J/7a+}
FRINT by (AX(2)elz1,L)
o 2:@nh1(2;:10£13.6)
(Y]
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; SUBROUTINE BURS(NsPMAXs X1 YoPBEST1A¢PRODRNO) & % FEb 1978

' THIS SUBROUTINE COMPUTES THE PREDICTIVE PILYER COEFFICIENTS 3
| N 8 NUMBER OF DATA POINTEI INTEGER INPUT

- PMAX = NAXIWUM OROER OF FILTER) INTESER TNPUT g

XCL:oX(2)rys00X(N) 3 DATA ARRAY ON INPUTY ALTERED ON OUTPUT
ON QUTPUT) X(3) X (R ooanoX{PMAX) E ACLIPMAX) ¢ ACRIPNAX) 1 sa 0 A(PMAXIPMAX)
V()oY (R)0,000Y(N) 8 AUXILIARY ARRAYS SCRATCH INPUY
ON OUTPUT» Y(3)oY(2)oears YIPMAX) & ALLILYsACRIR) 1444 e ALPMAXIPMAX)
ON OUTPUTs XIN) & MEAN, AND YIN) & STANDRRD GEVIATION OF INPUY DATA
PBEST o BEST ORDER OF FILTER) INTEGER oUYPUY {
ALY oA(R) 0400 rA(PBEST) & PREDIGTIVE FILTER COEPEICIENT ARRAY &
ACLIPOEST) yALZIPBEST) 1,40 s A(PHESTIPOEST)Y OUTPUT
PROD = PRODUCT(i=A(PIPREGT)esq) FOR Pyy YO PBEST) OUTPUT
RMOCL) 0 000 pRHO (PMAX) & NORMALIZED CORBELATION COEFFICIENTSS OUTPUTY
5 . OIMENSION X () o Y(N) r ALPMAX) 1 RHO (PMAX) 1% REQUIRED IN MAIN PROGRAM
: INTEGER PMAX:PAESTIP
CuuBLE PRECISION $A,58
DIMENSION X(3)eY(2)sA(L}RHOLL)
IF (PMAX,8T s 3+#5QRTIN)) PRINT R+ PMAXN
2 FURMATY (/1 PMAX m'slty? 1S TOO LARGE FOR NUMBER OF DATA POINTS N m?
$115)
C COMPUTE MEAN
S1s0,
U0 3 I3l
A S1aslex(1)
S13$1/N
4 suu;:ngt MEANs ANU SCALE To UNIT VARIANCE
20,
RO 3 t=1,N
' X(1)BX(1)=5)
. 3 S&xS2eX (1) ead
52xSART(52/ (N=1,)) \
Ts1,/82
00 B Isi,h
AI)aX{1)nT
5 Yilyaxin
¢ BEGLIN RECURSION
Pel
PrRUDUCEY,
AICMINEO, :
PLESTRO .
PRODSL . '
] PaF+d
C CALCULATE CROSS™GAIN) EQ, 189
SA=0,00
Su=0.U0
LaPel
DU 7 IzL,N
SASSA+A(L)eY(T=1)
? SIRSBIX (L) wn2eY(1=L) o0 )
. Ga2,*5A/5H 4
i ' FPROSUGBPRODUC # {3 ¢ ~0%G ) :
L o . CALiu:A?g FILTER COEFFICIENTS: EGSe 10043248 STORE IN Xil)ssemsX¢P) 1
’ T \r)s |
g \F(P.EG,1) 60 YO & :
i L=2P/R i
Uu 9 1=l
T2X (L) =Gek(P=1)
X\P=l)EX{P=L)uGuX (L)
Al)sT
CAL$ULA;§ NORMALIZED CORRELATION COEFFICYENT) EU, 149
=N
, IF (P4Eu,1) GO TO 14
i LzPw=l
Ly 16 Iz}l
15 T2T+A (1) wRHO{P=])
14 Fre(F) =)

TN
COoOOOOOOCOOONO0

el o 4
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CALCULATE AKAIRE'S INFORMATION CRITERIONS EQS, 1564202
RELERRS (3 o=@ ) »SNUL (SB) /7 (2, % (N=P))
ALCaL0G (RELERR) 42, #FLOAT () 7 (N=P)

Lr (AIC.GEWAJCMIN) G0 TO 10
ALCMINSAIC
~ rekSTap
PROUBPROPUC
ov 11 1mP
ALs)aX(Y)
IF(P+Eu,PmAX) GO TU 16

UPDATE FORWARD AND BACKWARL SEQUENCESI EQ, 1)
Larel
VO 18 lanele=}

TaA(L)=6eY(I=1)
Y(1)8Y{l=d)u@ax(l)

X(1)aT

Y(P)m@

60 10 &

Y(PNAX)RGQ

IF(PBEST £Q,PMAX) 80 TO &

COMPUTE IXTRAPOLATID NORMAL IZED CORRELAYION

COEFFICIENTS FROM PAEST+1 TO PMAX) Ka. 148
LuPBEST+)

DO 17 PrLsPNAX
A(P)=D,

Ta0,

00 18 lecioPBEST
T21+A (L) wBHO(P=])
RHO(P)aT

X(N)=S1

Y(N)RSR

RETURN

END

SUBROUTINE POWERS (PBEST ) A¢PROD»Jo XX Y?,CO)
THIS SUBROUTINE COMPUTES THE FRACTIONAL POHtRS IN BANDS 1/(JsDELTA)! EQ¢ Jmit
PHEST z BEST ORDER OF FILTER) INTEGER INPUY
ACL)raserA(PBEST) = FILTER COCYPICIENY ARRAVI INPUT
PROU = PRODUCT(i=A(P)esR) FOR Pri T0 p INPUT
J & S128 OF FFT (J/72+13NUMBER OF FREGUENCY POINTS)! INYEGER INPUT
XX =2 AUXILIARY ARRAY ON INPUT
XN(L)rasorXXiu/241) & FPRACTIONAL POWERE ON OUTPUT
YY ® AUXILIARY ARRAY$ SCRATCH INPUT
CO(L)r,aerCOLlU/841) B QUARTER COSINE TABLE FOR PFTI INPUY
DIMENSION XX (V) oYY (U)rCO(J/UL) IS REQUIRED IN MAIN PROSRAM
Dlan%:g:RA(PMAX) 16 REGWUIRED IN MAIN PROGRAM) WHERE PMAX,OE.PBEST

NTE PBE

DIMENSION ACL) e XX(1)eYY(1),CO(L)

FaPROD»2 /v

XX(i)mi,

YY(1)=0,

4 Inl,PBEST

XX(I+L)2pA(])

YY(I+1)%0,

LePBEST+3

0o 2 Izl

Xx(1)m0,

Yv{1)=0,

L), 442TeL0G(J)#.8 W LoekiJ)

CALL MKLFFT(XX)YY9COrlrwd)

LEJ/241

“o 3 Ixl,l

xxtxiaficxxtx)t.a¢vv(x)--a)

RETURN

END

e el b A . .‘.:t-....;-.;;lm‘a.za-‘
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LR VE]

mbAN &

VATA;
e b39BT096+01
wediTTib)¢0)
mydbbdbugdele
GUN01093+04
s J90Ub078+04
=,d4300p07+02
+R5081c09402
e 88371239¢02
987003710«
=~ B68733068+04
HbYSbORS+04
=e17980Ua0+04
«ddOBY073+0x
= 24830200404
01790387404
=y Ab106UYS+OL
19938b522+00
13023073402
=y 8080Lb%0+ 04
88403720404

11733513000
PUANUARD WEVIATION =

ruksY 2 &
PuLICTIVE FLLTER CUEFMICIen)al

8T8 0L

111340011402
coTu(eavsegl
wikllbboBeld
130074435902
27681677401
«, 39391610002
v 3680420002
*, 40389513002
o T343310e0d
=,00217300+02
12106791002
1080 19u0e01
v T88vu 77404
= 40T00beb2¢00
= L10A9% T+ 08
11éd0uateele
-y La632968eCid
XTI LI
weedub 7312408
103360344402

ceud0L00T402

=, 3T8ddnlbell

PROOUCT (L=alF)ael) N (49568 7=03
NURMALTZRU CUNRELAWTION COEFFICILNTS!

DOOCOOOONOODODOONOCN

» 1830¢390+00
-y d3197007400

J x SI2E OF FFY

18410446003
+ 39081750400

« 15902618402
«20020827400
-, 30993711 +02
«. 72342098401
+HO8TI206+02
= H2n81208+02
WNRL03BIL¢0R
=, 3938496p02
+3ITAWANBH0R
“,10088873+02
o }1789U3Re0R
0 L TO44800402
=e1401027800
+»d 3166870402
= d819074he0R
210899490708
-0 350 72248+02
vol L LRBOL 402
=0 7083633¢02
60409TTH0Y

2840612740

“ 59619489400
2 T683NBA300

SPECTRAL ESTIMATION FOR BAD DATA POINTE
LINE 17 AND REPLACE LINES 22=36 AND 4iwié
N 8 NUMBER oF DATA POINTS
K(L)raearXIN) &8 INPUT DATA
SMAX # MAXIMUM NUMBER OF BAD DATA POINTS
B = ACTUAL NUMBER OF BAD DATA POINTS
M{l)reasorM(B) & LOCATIONS OF BAD OATA POINTS
PMAX & MAXIMUM ORDER OF FILTER

PBEST = BEST ORDER OF FILTER
All)reesr A(PBEST) u PREDICTIVE FILTER COEFFICIENTE
PROD = PRODYCT(1=A(P)*s8) FOR Pel TO PBEST
AHO(L4) o0 s RHO(PMAX) ® NORMALIZED CORRELATION COERRICIENTS
(MUST B A POWER OF Q)
XX(3)oseerXX(U/@848) & FRACTIONAL POWERS) FROM DC TO NYGUIST FREQUENCY
CO(3)eeeerCOl/Uel) & QUARTER COSINE TABLE
Yo Yte AND 1P ARE REGUIRED AUXILIARY ARRRYS

s T49230984( ]
+198098%6002
1469u10874()
=, 483480869402
160280199002
=, 374373N9402
123748208902
=, 1517663402
+ 48979633901
42344041002
=,3201909%¢02
+d6891372402
LFE I LRTY 4TI
33928088402
=, 21179487402
1a9R142044D2
-e 38184243402
v UTT004 3402
« 01811747400
=, 22971400402

=, w387 71750e0¢

- 916u1970+00
W TPBANTOTHUO

BAD DATA POINTS {(SUBSECTION 8. 2)
USERT CHANSE

(MUST HAVE B,LE.BMAX)

PARAMETER Nz 100, BMAXZ 25, PMAXZL10, DuR04d, JUiBJ/4+)

INTEGER 5,PBEST

DIMENSION X (N} oY (N) gA(PMAX) s RHO(PMAX) s XX (W) 1YY (J) pCOLUHS)
- DIMENSION M(BMAX) ¢ XP(N)
¢ INPUT DATA IN X{1)reeesX(N)
DEFINE IRANOBX#S#wl18+((1=SIAN(1,14DaulB))/2)83434973836
DEFINE RANDSPLOAT(1}/734389738367,

1a5281

NSTAKTSN$400

@ WILL DISCARD INITIAL 400 POINTS

o 22787142408
«30803774401L
+38769337400

as Al 263470400
+391061 06000

=, 88956L82+0)

w o J09B4AL240E
+13AL3Q30002

w 34617383402
28678704402

= 30131017000
12923178402

« 37618088402
31645702409

19281720408
«13328n80+02

« 21167009400

« 37641u4de01
50241588 +00

e T934BB94+02

«,77?0lL27¢00
PINLUIR 24000

- v o il s

7.

- _‘(,;'-.'l-.-)&“”*-'l" :.“’.._\ - o -‘\ -
F '2ﬂtzhinhhlu.!dgw__"u~
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Xx{1)=0,
ald)so,
Ax{d)nl,
AX(W)20,
LU 11 LateNSTART
1= 1RAND
ARLL )82, 7607XX (Lwl)=d,8L008XX (L") +2 ,653BXX (Led)m
$0,92308X4 (Lwit) +TINORM{RAND 91 1)
is CONTINVE
0O 18 IxiiN
12 KL3)BEX{IPNSTART=N)
PRINY 1
FORMAT(/t INPUT UATALY)
PRINT #) (X(1)oXBLoN)
¢ ENTER 8¢ AND ENTER BAD DATA LOCATAIONS IN M(l)eeeerM(B)
bad

M(l)=d
mMi2)a? N
M(3)xid )
Miw)212
m(B)=l9
¢ EVALUATE PREDICTIVE FILTER COEFFICIENTS
Chkl BURGBU (NyPMAX XoB Mo IP) Y1 PEEST Ay PROD)RHO)
PRINT 9y X(N)
9 FORMAT (/) MEAN m'9oEL4,8)
PRINT 10y Y(N)
10 FORMAT (' STANDARD DEVIATION =')E13.81
N PRINT 2, PUESY
8 FOMMAT (/1 PBEST 32°:14)
PRINT 3,
3 FURMAT (/Y PREDICTIVE FILTER COEFFICIENTS!I')
) PHINT &) (A(L) o131 0HBEST)
f , N FORMAT (BERQ  ¥)
)
6

PRANT By PROU
;qu#T(/! PRODUCT (1wA(P)#w2) =',EL3,8)
RINY 6
FOKMAT (/v HNORMALIZED CORRELATION COEFFICIENTSE?)
PRENT 4y (RRO{X) o 1BL.PMAX)
‘ ] CALL GTRCUS(LOV)
. ¢ EVALUATE FRACTIONAL POWERS
E CAlkL POWERS(PBEST A PRODJeXXsYYCO)
' PrINT Ty .
: T FURMAT (/1 FRACTIONAL POWERS!')
Lauza+d

" | PRANT 8y (AX{2)el2lsl)

A o EORMAT(ZK!IOEIS.O)

: [y [v]

SUBROUTINE BURGED (V) PMAX e XsRoMeIP, Y PBEST+AsPROD/IRHO) & & FEB 1976
THIS SUBROLTANE COMRUTES THE PREDICTIVE KILTER COEFFICIENYS FOR B BAD POINTS
N a NUMBER OF DATA POINTS) INTEGER INPUT
PHAX = MAXIWUM ORDKB OF FI_TER) INTEGER INPUT
XCL)oX(B)ropeaX(N)} B DATA ARRAY ON INPUTY ALTERED ON OUTPUTY
ON OUTPUTs XC1)oX(R)000e s XIPMAX) X ACLIPMAX) 1A (RIPNAX) 1004 o A(PMAX I PMAX)
B x NUMBER QF BAD DATA POINTS) INTEGER INPUT
ML) gM(@)oggerMiB) B LOCATIONS OF BAD DAYA POINTH! INTEGER INPUTS
THESE LOCATIONS MUST BE OISTINCT AND LIE IN THE RANGK ClN)
IP(L)9IP(R) qanst IPIN) = AUXILIARY ARRAY) SCRATCH iNPUT
YOO oY (@) pygeaYIN) 3 AUXILIARY ARRAY) SCRATCH INPUT
ON QUTAUTY Y(L) 1Y (@) roaer Y(PMAX) 8 Af313)0A(202) 10000 A(PNAXIPMAX)

ON QUTPUT» X(N) = MEAN, AND Y(N) = STANDARD DEVIATION OF INMUT DATA
PEEST = BESY ORDER OF FILTER! INTEGER OUTPUT

ACL)oA(R) 9, yorALPBEST) = PREQICTIVE FILTER COEFFICIENT ARRAY =
ACLIPBEST) yA(21PBEST) 144 o+ A(PBESTIPBEST) ¢ OUTPUY

OO NOC OO0 OC
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PROD = PROQUCT(1=A(PIPBEST)»w2) FOR PE1 Y0 PBESTI OUTPUT
RHOCL)poos oRHO(PMAX) 2 NORMALIZED CORRELATION COEFFICIENTS) QUTPUT
OIMENSION X(N)oY(N) 1 ALPMAX) s RHO (PMAX) 1§ REGUIRED IN MAIN PROGRAM -
DIMENSION M(BMAX) ) IP(N) IS5 REQUIRED IN MAIN PROGRAM
INTEGER PMAX+8/PBEST P,BP
DOUBLE PRECISION SA,S8
DIMENSION X¢1)oM(1)XP(A) e Y(L)sALL2IRMO(L)
IF(8.,07,0) 90 TO &1
CALL BURGIN,PMAX X YoPREST » A2 PROD)RHOY
RETURN
2] L.aN=8
IF (PMAX,OT 3¢ *SQRT (L)) PRINY 20 PMAX)L
P3 FOR:AT:I,GSMAX a'y14y? 15 TOO LARGE FOR NUMBEK OF 8000 DATA POINTS
$ n=B 5,1
C SEY UP IF ARRAY FOR Pm0) Eg@s 173
DO 22 IaisN
22 P(l)sl
DU 23 LaysB
IzM(L)
23 IP{l)a0
¢ COMPUTE MEAN OF Q00D UATA POINTS
S120,
DO 1 Isy,N
IF(IP(1),EQ,0) €0 TO §
SinsSieX (1)
b CONTINVE
51851/ (NuB)
SUB;RAST MEAN:s AND SCALE TO UNIT VARIANCE, FUR 600D DATA POINTS
480,
D0 3 Ixy,N
IF(IP(1) 4£Q,0) GO TO 3
X(1)EX(I)=5]
Sanga+X (1)
3 CUNTINUE
S2RSART (S2/ (N=biml,))
Tai,/52
D0 8 IziyN
IF(IPt1),EQ,0) GO TD &
X(I)ax{xr)sy
Y(i)mx(l)
b CONTINUE
¢ BEGIN RECURSION
P30
PHRODUCEL 4
AICMINZQ,
POEST=0
PROp®Y,
6 Pzpel
¢ UPUATE 1P ARRAYS EQ, 473
CO 24 L=1.d
IaM(L)ep
IF(L.QT.N) 60 TO 24
Ir(g)a0
<4 CUNTINVE
BPR=0
LEP+)
00 28 i=LN
5 BrpPel=IP(])
KENwPepp
IF(KeLT,258) PRINT 260 K,P
b FURMAT (/1 NUMBER OF VALID ERROR POINYS IS ONLY' I3+ FOR PR'9I3)
(4 CALguLATg CROSS=GAINI EQ, 3193
AZ0.00

[2X s X oK 23

[ 2]




$820,00
LaP+l
3ay,
lFl Ptl).tu 0) 60 YO 7
SASSSOX (1)evil-1)
Sasg +x(x!ot¢+7(x-t)o-a
CUNTINUE
Q2R ,45A/58
PRODUCEPRODUCH {1 1=006)
cALcuLA?l FILTER COiFFICIENtsa EQS, 1984296, STORE IN X{l)ssaeoXIP)

W
tP.te,x) $C T0 0
LaP/
[V1v] 9 llloL
VIA(LI=GuX{P=i}
K(Pal)EX(P=]1)=04X(1)
Xil)sT
CALCULA;E NORMALIZED CORRELATION COEFFICIENTI EQ@, 149
Taaq
IF{P.Eu,y) €0 TO 14
%100 Y
Lo 18 I=ztib
TaTeX (L) sRHO(P=])
RHG(P)BT
CALOUVLATE AKAIKE'S INFORMATION CRITERIONY EQS, 19ua202
RELERRZ (1,=G9@) »SNOL (S8)/(2,¥K)
AlCaLOG (RELERR) +2 4 *FLOAT(P) /K
IF(ALC.QE,AICMIN) @90 TO 10
AXCMINRALC
PdEsTaP
PRODSPRODUC
00 A1 IzLeP
AL4)ax(I)
0 IF(P.SG,PMAX} GO TO 16
UPDCT% FORWARD AND BACKWARD SEQUENCESY ER,191
sPe)
00 12 IeNely=1
IF(IP(I),EG,0) Q0 To 12
Tax(1)=GuY(I=1)
Y(1)=Y{Ind)=0uX(1)
A(L)=ET
CONTINVE
Y{P)s6
60 TO 6
Y(PMAX) 26
IF(PBEST Ew,PMAX) GO TO &
COMFUTE EXTRAPOLATED WORMALIZED CORRELATION
COEFFICIENTS FROM PBEST+1 1O PMAXI EQ. 165
L=FBEST+1
DO 17 Pzl ePMAX
A(P)=20,
T=0,
UO 18 1=).FBEST
TaT+A(1)sRHO(P=~])
RAV(P)=T
X'N)=SL
Y(N)=S2

HRETURN
Eni
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SUBROUTINE POWERS (PBEST A ,PRODJoXX0YY4CO)

| C THIS SUBROUTINE COMPUTES THE FRACYIONAL POWERS IN BANDS 1/(JeDELYA)) EQ, Jek
k|- C PBEST = BEST ORDER OF FILTER! INTEGER tNPUI ]
- C AC3)r,0rA(PBEST) B FILTER COEFFICIENT ARR Vl !NPUT )
N . C PROD = PRODUCT(i=A(P)esg) FOR Pmi TO PBEST .
) C J 2 SI2€ OF FFT (J/241uNUMBER OF FR(OUGNCY PO:NTS)! INTEOER INPUT
: : C AX 3 AUXILIARY ARRAY ON INPUT
; ' C XX(L)poporXXiJrRel) = FRACT!ONAL POWERS ON OUTPUY
x C YV ®= AUXILIARY ARRAYS SCRATCH INPUY
€ CO(Ll)rpeerCO(U/B4L) & QUARTER cOIINl TABLE FOR FFT) INPUY
C OIMENGSION XXCJ)rYY{J)eCOlUZUol) 18 REQUIRED IN MAIN PROGRAM
! C OIMENSION A{PMAX) I8 REQUIRED IN MAIN PROGAAM; WHERE PHAX.OE.PIIST
... - INTESER PBEST
N ‘ DIMENSION A(L)rXX(L)eYYIL)eCOLY) :
By TEPRODeR, /Y
. . XX{3)83, y
- YY(1)%0, !
Ny ’ DO A 1m1/PBESTY
XX(3+1)m=A(1)
| 1 YY(I+1)m0,
LBPBEST+2
! DO 2 laLv
! ’ XX{3)=20, ,
. ) . 2 YY(1)=0, 3
. ’ LBL 04RTeLOG(J)+¢8 Loez(J) .
CALL MKLFFT(XX:YYeCOoby=1)
LEJ/2¢4 3
00 3 Is1ib -
b i 3 AX(I)RF/Z(XX({)nn2¢YY (1) 6eQ)
Y ' EEEURN

|
I

gf . | i J-10
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