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SPECTRAL ANALYSIS OF A UNIVARIATE PROCESS WITH
BAD DATA POINTS, VIA MAXIMUM ENTROPY AND

LINEAR PREDICTIVE TECHNIQUES

V 1. INTRODUCTION

The analysis of power density spectra of random processes via maximum

entropy, linear predictive, and autoregressive techniques has attracted much
attention recently, especially for short data segments. In particular, a good
review article (reference 1) recently appeared in which 115 references are
listed on the topic of linear prediction. Another good paper on this method of
spectral analysis (including a comparison of techniques) is available in refer-
ence 2, where 66 references are cited. Additional related references, that this
author is aware of, are given in references 3 through 15 of this report. The
close links that exist between maximum entropy spectral analysis (MESA),
autoregressive spectral analysis, predictive error filters, noise-whitening fil-

ters, and least-squares model building are pointed out very well in reference
14.

The purposes of this report are to review and interrelate several available
techniques for spectral analysis under different states of knowledge, for equi-
spaced samples, in a consistent notation; collect and compare the techniques
via simulation in order to determine the best available technique(s); and extend
the best technique(s) to handle the case of bad (or missing) data points and com-
pare them via simulation. The only detailed comparison of techniques for no
missing data points available thus far in the literature is that in reference 2,
where the Burg technique and the Yule-Walker approach are compared. Here
we will extend the comparison to include the Burg technique, the Yule-Walker
approach, an unbiased version of the Yule-Walker approach, the approximate
maximum likelihood and least-squares approaches of reference 16, the auto-
correlation and covariance approaches of reference 1, and an extended version

j of the covariance approach. (A comparison with the maximum likelihood tech-
nique is reserved for a future report.) Also, we will compare the best of these
approaches for the case of bad (or missing) data points and present FORTRAN
programs for the recommended techniques.

Throughout this report, we assume we are dealing with equispaced samples
of a stationary zero-mean random process x(t); that is, x-yx(nA), whereAis the

.. .. .81 6.....
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sampling interval in time. In section 2, we will assume that the correlation
function of the sampled process, jxn, namely,*

R -x X* '(
k n n-k R-*k(

is known exactly for all k, and shall present two ialternative equations to deter-
mine the spectrum of {xn: ; the latter of the two equations serves as a guide to
the MESA, linear predictive, and autoregressive approaches. In section 3, it

Iwll. be assumed that Rk is known only for a limited range of values of k, and
three alternative approaches will be considered and shown to lead to Identically
the same spectral approximation. Next, in sections 4 and 5, the practical
problem of an unknown correlation function and only a finite data set of IxnI
n - 1, 2, ... , N, some of which maybe bad, will be addressed, and several
candidate techniques for spectral estimation will be presented. Finally, a com-
parison of the techniques, via simulation, will be conducted and conclusions
drawn regarding the best available technique, both with and without bad data
points. FORTRAN programs for the best technique for both situations will also
be presented.

*The case of complex samples is treated, so that we can handle complex

envelope or complex demodulated processes. Specialization to real processes
is immediate, and (1) becomes Rk = R-k. An overbar indicates an ensemble
average.

2

4 . ... .. .. ,* 7 7,, .*1. ...+ +,+-+;++ .+ . +..,. + ?++ ;.+.-? :.• .+ . ,+
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2, CORRELATION KNOWN EXACTLY FOR ALL ARGUMENT VALUES

Suppose the correlation function in (1) of process Ix1  is known for all k.
The standard (double-sided) definition of the spectrum of jXnj is then (see, for

Sexamnple, reference 14, equation (10))

G (f) = A E R exp(-i2ffk4), fI< (2)

Gxlf) is real and nonnegative, but need not be even in frequency f for complex
jRk1.

2.1 LINEAR PREDICTION BASED ON
INFINITE PAST

Suppose that sample values xk.1, xk_2, ... are available and are used to
linearly predict the value of xk, Then the one-step predicted value, based on the
infinite past, is (for a zero-mean process)

CD

k - anXk-n " (3)
n= I

The values of the complex predictive filter coefficients {an}w are chosen such
that the one-step prediction error

((4)
'k a- xk . X k a • nXk-n (ao=-l (4)

n=-O

has minimum ensemble average magnitude-squared value. Figure I depicts the

interrelationships.

-The ensemble average magnitude- squared error is, employing (1), given by

E a a* R aa*)
m,n= 0 n n-i

For a minimum, we first compute (see reference 17, appendix A)

19: **K ... .I.:,: ,.:.. .
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INPUT PR-EDICTION- -
NUT LINEAR A ERROR

Xk J • PREDICTIVE %

WHITENING FILTER (a0 , F a 2 o.)

FIgure 1. Block Diagram of Predictive and Whitening Operations

OE E =I- E" . ,A Ž1 (6)

and set it equal to zero, obtaining the optimum predictive filter coeffioients
TOO as the solution of the set of equationsd

E • Z =0,(T (0o=ao--j. (7)
The-O -rn rn

The minimum-error sequence {Tk} then possesses correlation

j kfk - j m~n xk-rnik-j-n
m, n= 0

m n J+n-m n
m,n=O n=O =O J ,r18)

*The same result, (7), can be obtained by setting the partial derivatives of
E, with respect to the real and imaginary parts of a,, equal to zero.

4

S---.-.-.---- .--..-----.... ....... ~-----._
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where we have employed (4) and (1). Now the innermost sum on m in (8) is 0
for j+n 2!1, by(7). AndifJ lin(8), thenj +ný1 sincen,0intheouter-
most sum In (8). Therefore, Ej = 0 for J Ž!1. Also since E_.j Er, we have

E j . 0 for j j 0 (9)

that Is, the minimum-error sequence lik1 is imcorrelated and therefore pos-

sesses a white spectrum. The linear filter characterized by coefficients
tn1 is a whitening filter; see figure 1.

The correlation of t 7kI for zero time delay is the power of the minimum
error and is given by

2D

0 R*'S , . (10)
S=0 m~l

(using (9))
OD O

G-,(f) =1 A El ep(-i2nfJA) = AEo, Ifi < -,()
a* F R- (10)

which is white, as mentioned above.

But since the error sequence is given by a linear transformation of processh er x w a vcorng to (4) and figure 1, the spectrum of TkI is given by the stand-

ard linear filter relation

'G 1-(f> = IA(f)12G (f) ,(12.)

A(f) p ( exp(-i2fnA ) (13)

n- 0 4

UD

5

...... is whte a,. mentione abve

Bu sinc the ero seuec is given by a liea transormaionf proes

- II acc n to () ad f e 1, .... spectrum of is givn by te s

_________ard_ linea filter relatio
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is the transfer function of the whitening filter and is assumed to be stable.*
Combining (11)-(13), we obtain an alternative expression to (2) for the spectrum
of ixd as

G1 f) 4E°

T~Trn ~0 eP(-~ffn if i 2 < If (14)

Given the correlation values iRk1, utilization of (14) requires solution of the
set of equations in (7) for the filter coefficients ji~n and subsequent substitu-
tion in (10) and (14). Although this is not a practical alternative to (2) in this
case, it does serve to indicate that there is possibly some potential In the idea
of determining predictive filter coefficients to minimize the average' magnitude-
squared one-step pxediction error and thereby obtain a white spectrum; this
idea will prove to be quite fruitful later on.

As an aside, if we allow a_, ý1 0 in (3) and minimize 11k12, we find E1 ý 0,
although Ej - 0 for j Ž2. Thus, the minimum-error sequence would not be
"white, and a convenient expression like (14) would not result.

It should also be noted that the crossoorrelations between the minimum-
error sequence 1 WkI and all past values of the input, IxkF, are zero; this
follows by use of (4), (1), and (7).

2.2 LINEAR PREDICTION BASED ON
INFINITE FUTURE

If sample values xk+1, xk+9, ... are available and are used to linearly
"predict" the value of xk according to a backward regression (that is,
combine future values),

(i

X a* xk,(5
n=I.

*That is, Z 0 zn has all its poles inside the unit circle, 0, in the com-

plex z-plane. n n

6

I -
L ': ,"-... -.. .. .-- : , : . ' : . : : . .• : . . . T " i ,
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": 1.

then the one-step error

4 ýk Xki &naxxJ+ n (a 0-1) (.L6)
n-0

has average magnitude-squared value

I In
mn-0 n Rn-r

which is identical to (5), Thus, the same optimum filter coefficients in (7) that

minimized (5) would also minimize (17). The minimum-error sequence in (16)

would also be white, and an expression for the spectrum of ixkI identical to
(14) would result. The point of this result is that an equivalent expression for
the spectrum of Ixku is obtained by the backward regression (15), rather than
the forward regression (3) of the preceding subsection. This idea will prove
useful later when we have to deal with finite data sets and unknown correlation
futnctions.

The crosscorrelations between the minimum-error sequence and all future
values of the input are zero; this follows by use of (16), (1), and (7).

* 2.3 LINEAR INTERPOLATION BASED

ON INFINITE PAST AND FUTURE

If we attempt to combine the approaches of the previous two subsections,
we are led into considering linear interpolation according to

x k ~k -n' (18)

ny•O

I The error

nI 'k- - (a- (19)
• j = = an~k- n 0a "1,

I' 7

I . . .. . :. . . .*. - .' , : ,, . . .-
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has average magnitude-squared value .. ... .

W~Ik. ~ aa (20)1~

using (1). Setting aE/aa- 0 for 0 • 0, we.obtain. forIthe eptimum- filter qoeffit
"dcents

I-n M. 0 04., (21)m -w

There follows, byuseof,(l),.

,, , : . . . . . . - , IiiI1
" ' , ' ; " ' " i • . .' *i I, , l .' , , , . 1

The correlation of the mn nimum-,rror sequei now
130 . •* '; "'

OD

rk- k - m n- rn m ,+n-m
, ., .. . .. • . ... m n , o . ,, , . . . ,,,I . ,, : : - , . . . ,

wX (1) (I)
* OU 5 R W W -Eh (23)n E J+n-m "J1 Ir., , .. , 0.n= -w m=-(X m= -w

where we have employed (19), (1), (21), and (22).. It is generally nonzero for
J 0" ýhe spectrum 'of the miinmum-eri'io_" s'qience ia'thet46te

(11
= Go(f) AE aexp(-12irfjA) =-.E A(f), IfI< , (24)

where we have used (23) and assumed A(f) to be stable. ThLB spectrum is not
white; in fact, employing (12), (24) can be expressed as

2 E2
G (f) IfI< (25)

G ( (f) f 2

* . which is the inverse of the input spectrum.

8 . , • .,••. . . -. . . - .

'"..4, '* • ",, .-..

• • • ',r =, ,"_ .,,:; ;..;•.:;:..._ .--., • •--•, .
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jjI. we, !2stea. lixi)ne G7(1).fron (12 and (24),,,we obtain an expression,
for the us trum ii terms Qffilter A(f) (2n a

'0 , ... 4<1,, ',o., :I0 . . , , .. ,. , . * f): A f)

the realness of A(f) follows from (22).

* IiThere is an uncorrelated property between the minimum error and the input
in the present case also. Namely, the crosscorrelation between the minimum-
error sequence and the input is

Ik k t JR -E ,(27)
k-n k-n k-i n 0- oojSn=-a ---D

using (19), (1), (21), and (23). Thus, the minimum-error sequence is uncorre-
lated with allpast and future values of the input except at the same time instant,
The cross-spoatkm is

G;Cx(f). C exp(-12wrfjA) = E 'I I < (28)
t 

J= J: 0(J

which is white.

I Although (26) and (21) offer an alternative to (14) and (7) in the present case
I., of known correlat.on function IRk , it suffecs in the practical case of unknown

correlation and a finite data set, by virtue of the estinate of the real denomina-
tor of (26) going through zero (or being complex if (22) is ignored) at some

I. values of f. This is not a significant problem for (14) since both the real and
imaginary parts of the estimate of (1.3) must simultaneously equal zero there,
in order to constitute a problem.

Another important ractical drawback of this interpolation approach is that
ensemble average IekIz would probably be approximated by • l.k12, where

the sum is conducted over those values of k at which a meaningful value of
error #k can be formed for a segment of a single member function of an en-
eamble. But since the minimum-error sequence I 7k I is not uncorrelated in
this case (see (23)), minimization of j lkY2 for a single member function

segment is not synonymous with minimization of I*k 12; rather, the minimiza-

2 '9

iL j* .. 7 "'.U...,.:
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tion of I 1'k 12 will spueijouf involve correlation between adjacent terms

which are not included n I Fkli and which will bias the filter coefficients.
Several simulation runs (on real data) confirmed this conclusion by yielding

" tseverely biased (an4 negative) estimates of spectrum Ox(f), even when (22) was
taken into account. \Accordingly, the interpolation approach was dropped from
further consideration.

10

,.-- - -. - - - - - - - - - . . .,4:, ... .1.. . ...
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3. CORRELATION KNOWN EXACTLY FOR A LIMITED
RANGE OF ARGUMENT VALUES

. In this section, Rk of (1) is assumed to be known exactly for Iki < p and
unkniown for IkI > p, Since we are unable to compute the exact spectrum Gx(f),
given by (2), in this came, a different approach Involving approximation to Gx(f)

7 is required. Three different techniques will be considered and shown to yield
identically the same approximation to Gx(f).

3.1 MAXIMUM ENTROPY SPECTRAL
ANALYSIS (MESA)

The method in this subsection was originally given in reference 18 and
elaborated upon in reference 19. We begin with (2) and note that

2A

d• Ix(') cxp(i2irfkA) _ G (f) exp(l21kA) Rk. (29)

We wish to approximate G (f) by a real nonnegative function G(f) such that its
entropy (reference 18, equation (1)p

A| dfin G(f) (30)

is maximized, subject to the integral constraintsj

df G(f) exp(i2irfk&) R I ki p . (31)

* 1/A

To this aim, we -form the quantity

p
Q df9n G(f)- df G(f) exp(12#fkA), (32)

f/4 k=-p f

1411

-, , . . o..* / , .

1-I 1 I.,I. 1 I
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where Lagrange mu.tipltrb .-.k 'us, beoause) of, the -restriotion R.ku Rk, as
shown in (1). We perform a variation of (32) according to

Q÷AQmj df An.[Mo(f)+'i(i)) -" .. tp '." P(JQ2fkA).
I ' . " . ... k -p '"'k / " Ij" I (

where Go(f) is the "optimum" approximation t6bx(f) unide•r crterion (30), 'dnd'
obtain, upon setting ,

,(Q+Q), , 0 at 0 = 0, (34)

the relation

G(f)- Ifl < 1 (35)

0 p ' 2

.up • , ,k ep(lA )k= -p

G (f) is real since )A-k" M ' Since it is also to be nonnegative, we can express

Go(f) m Tl., Ilf< I

where

P 1

7(f) M F! E k exp(i2wfkA), IlI < L(3i)

and wh.ire 7 (f) has no zeros in the upper-half complex f-plkne; that is, poly-
nomial

P
B(z) a a zk (38)

S~k"
km 0

12
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has no zeros inside the unii'"c,61ol, 0•,:in tlie'b6fnpleý zý;Olane. A'.pboi tht.
B(z) in (38) has no zeros inside 0 is given in reference 11, page 7, for exam-
ple.* Specifically, it Is shown that B(1/z) has :ll its poles and zeros inside 0;
th!at is, B(I/z) is minti*ium phase. ,.

In order. to. determine the.fonstants: '.Oklpin (37)%,we pexpreAs,3.)

(We could equally well have multiplied by Y(f) in the following.) Therefore', for
allvalues of ,

df Go(f)y*(f) e xp(12rA)
0 f, / /A

'13Ut using (37), this dan be expressed as6

df G (f) exp(i2fff(I-k)4) 6 df allg )

k=0 t/A .... Pk=O

Now if I is an integer in tlei range (0, p], the integral on the left side of (41) is
equal to RI.k (via (29)) fo•" any value of k in its range [0, p ; this is where the

*. constraints are employed. Therefore, we have foi integer A,

R3 Rkxb,. 0•.p, (42)
kol I- ak

where i

' i b• • f df ~ ~~~exp(12ifla) 0' •p ... (4)

''i

*The proof is couched in terms of the recursive solution of (46) presented
in appendix , A. " ....

11'3
* i, i *

, -1
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In (43), letting z- exp(12ff 4) and using (38), we have

"bz 0 ! .9 5 p (44)b, 1 2ira Tz B(z)

where f denotes counterclockwise integration around the unit circle 0 in the
complex z-plane. Now B(z) has no zeros inside 0 by construotion. Further-
more, B(z) can have no zeros on 0, for then y(f) would be zero for some f, and
Go(f) would possess Infinite power, contradicting Ro < w. Then (44) yields

b L o 0 <p, (45)
t o'A00

and (42) becomes

R a 0 P . (46)
k=0

This ts p+1 linear equations in p+1 unknowns.*

Now let correlation matrix R be defined as

"Ro0  R. ... R~p

RU Ro

R f(47)

* I

L R Rp 0

and define two oolumn matrices

t=[.00..0T T
=100 o 01 [oT 0 a, "ap] (48)

'II

*The recursive solution of (46) is presented in appendix A.

14
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R is Hermitian, Toeplitz, and nonnegative definite. Then (46) can be expressed

as

Re* = I (49)

with solution

,R= .1_L R- . (50)
AaO

Now let the inverse matrix

o a

00 ol op

C*o I o C

R- _ . (51)

0 0

pC pp

Then (50) and (48) yield
i,/2

where o i0 oo(C)o exp(iO), (52)

where 0 is an arbitrary real constant. (Coo is always real.) Utilizing this re-
sult and (15) in (50), there follows

* 0 k
k* =--o exp(-iG), 0•_k<p, (53)k .

15
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and (37) becomes

'. e P 1i54
(f) (0) c* exp(i2irfkA), IfI < (54)440/"-.7 k= 0 k _

k00

Finally, using (36), the "optimum" spectrum (called the maximum entropy
spectrum) is

AcAGof OM P, IflI < -. (55)

E cko exp (- i2nrfkA) 2

1k=0I

Equation (55) gives the maximum entropy spectrum in terms of the first
column of the inverse of the correlation matrix R of available known correlation
values; see (47). The forms of (55) and (46) are similar to those encountered
earlier in (14) and (7), respectively; see also appendix A. The maximum value
of the entropy defined in (30) is evaluated in appendix B and is given by In (A/coo).

Substitution of (53) in (38) yields

B~) xp-i ) p k (6
]3(Z)= • Mýt CkoZ z (56)

4n7 k=0
00

p
Thus, investigation of the zeros of B(z) depends on the polynomial I o0 ozk;

k=0
it must have no zeros inside the unit circle 0. But if we combine (46) and (53),
we can write that

p R -ko R2 , 1 <A p (57)

k= 0 00

Now reference 1, page 567, declares that all the zeros of k 0 k° must lie
k= 0

inside 0 since R is a correlation matrix. Therefore, polynomial B(z) has no
zeros inside 0.

16
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'4 3.2 LINEAR PREDICTIVE FILTERING

Here, as in the previous subsection, the available information is knowledge
Sof Rk for IkI <_ p. A linear one-step prediction of xk, based on the past p values,

Xk.-1, ... , Xk..p, is to be accomplished with minimum average magnitude-
squared error; see figure 1. Now, however, instead of (3), we have for the
predicted value the finite sum*

P
-k x E an~- " (58).
k n=1 -

The instantaneous error is

Sk a I k - k E anxk-n (a0 =-I). (59)
n=0

(Equations (58) and (59) constitute stable digital filters regardless of the choice

of coefficients.) The ensemble average magnitude-squared error is

n- rn = (HR (60)
4 m,n= 0

where we have used (1) and (47) and defined

T
[a 0 a(61)

We now wish to minimize E by choice of filter coefficients Ian . How-
ever, we have the constraint on ao in (59); this can be expressed mathematically[ ~ ' as

a S| -1, (62)

where I is defined in (48). In order to minimize (60) subject to (62), we form

the quantity

*p
The more general form including bn xkn is not considered here.

i

1 17
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a H R H - *aT S*

.(a - R(, - R'1ii) - I)R2 1 H1H(a (63)

where R-1 is defined in (51). Since R is nonnegative definite, being a correla-

tion matrix, (63) is minimized by the choice of coefficients

X R' 6. (64)

The Lagrange multiplier X is obtained by substituting (64) in constraint (62), and

using (51) and (48):

•' H R -1a 1 - , - - .(66)

00

Then (64) yields

Je-;-. 0 <_ k < p. (66)
00 (6

The minimum value of the error power is found by utilizing (64) and (65) in

(60):

E k2 = = 2a I 2 0 -- (67)
o k0 0

00

where {kjk is the minimum-error sequence obtained by employing (66) in (59).
(A re ursion relation for E? is presented in (A-7); it can be started with
l/0(- Ro0 .) Notice from (67) that c must be positive, for non-negative

0Q 00
definite R

The transfer function of the optimum error filter from input x to output "
in figure 1 is, from (59) and (66),

18
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p
A(f) n E: " exp1-i2frfkA)

km 0

SOko exp(-i2wfkA), If < (68)

00 km 0

Furthermore, the spectra in figure 1 are related by

GT(f) - JA(f), 2 Gx (f) . (69)

Now let us assume that the spectrum of the minimum-error sequence is1 1
white over the band (-n, - this is in line with the property (11) which held

for the case when the infinite past was available. Then we say

E1
G -1(f)=a a0- 1f1 < - (70)

00

where we have used (67). Substitution of (68) and (70) in (69) yields the linear
predictive spectrum approximation to the input spectrum according to the defi-
nition

A G 6(f) Ac 0
G x (f) -- jA=fj p 2 (71)

E )ko exp(t2it fkA) 2
1k=O

This Is identical to the approximation (55) obtained by MESA. It is critically
dependent on the assumption that the spectrum of the minimum-error 7 in fig-
ure 1 ia white.

Since (71) is identical with the maximum entropy spectrum, (55), it must
follow that

,* • I df Gx()exp(12?rfk,&) R kfor Iki < p; (72)

119
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that is, although not specified -in the current approach, the correlation function
formed from the linear predictive spectrum x(f) in (71) has the same values at •.
kA for Ik Ip as the known correlation values {Rk.

The implications of the assumption (70) of a white spectrum for the mini-
mum error are investigated in appendix C. It is shown that the crossoorrela-
tion function between input x and output T of figure 1,

C X*- (73)

must then satisfy

C, - ; (74)

that is, minimum-error sequence ITRk is assumed unoorrelated with all the
past values of the input. It is also shown that the unknown correlation values

Rk for k > p can be approximated according to

SP a p
R= -j rio Rk-n ' k p+1. (75)

o k-n nk-nml 00 n=l

This recursion relation, starting with known values R 1 , ... , can be con-
sidered to be an extrapolation of the known correlation values into regions

where they are unknown. Equation (75) is shown in appendix D to be a stable
recursion when B(z) of (56) has no zeros inside 0; this property has been dis-
cussed under (38), (56), and (A-9). It can also be shown that Fourier transfor-

mation of the extrapolated correlation approximants yields precisely (71). It is

interesting to note that (75) has the same form as the predictive equation (58) for

- Individual data values.

Since ( p k
J df (f) exp(i2vfka) (76)

ie the autocorrelatton at delay kA, it is given by (72) for IkI <_p, and by (75) for

k > p + 1, where the latter correlations are extrapolated values. This follows

20
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from setting Gb(f) white and choosing Gx(f) by (71), according to the analysis in
Sappendixes C and D.

If sample values xk+1, ... , xkpwere used to linearly "predict" xk ac-
cording to backward regression

p
x an xk+n' (77A)

the one-step error Gk xk k Xk has average magnitude-squared value

P
E = m *n n-m (au=-1) (77B)

mjn=0

which is identical to (60). Thus, the same optimum filter coefficients in (66)
that minimized (60) would also minimize (77B), and an approach similar to that
above would yield a spectral approximation identical to (71). The equivalence
of the results of this backward regression to that of the forward regression in
(58) will prove useful later when we deal with finite data sets and unknown
correlation functions.

3.3 ALL-POLE DIGITAL FILTER
MODEL

The available information about process {xkI is the same as in the previ-
ous two subsections, namely, knowledge of Rk for IkI< p. Consider a sampled
autoregressive process jYkj in steady state generated by a stable all-pole
digital filter, H(z), excited by discrete white noise {wk} ; see figure 2. The
noise is characterized by correlation

wk w_ = ,all n, (78A)
kk-n no

with no loss of gpnorality, and has spectrum

G (f) A , If< 2A ' (78B)

21
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iwk ALL-POLE i Yk
kDIGITAL FILTER :-

H(z)

Figure 2. Generation of All-Pole Process

The digital filter is characterized by a p-th order autoregressive relationship,

p
F fln Yk-n w Wk '(79)

n-0

with transfer function

11(z) 1 (80)
p
PzZ;n

n=0

We are going to choose digital filter coefficients gn P so that autoregres-
sive process Yk has the same correlation values as process IXk, up 4
through order p; that is, we will set

Y y* =R for In<p. (81) <
k k-n n

Then the spectrum of autoregressive process I Yk given by

G y(f) :- G w(f) I H(exp (12Tr fa))I

S -< 2 (82)

En P exp(- 12i fna)
1n=0 !

22 *1
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will be used as an approximation to the spectrum of Jxki . The apeotral rela-
tion in (82) holds only if H(z) is stable; that is, all the zeros of the denominator
of (80) must lie Inside 0.

In order to evaluate the filter coefficients iPn 3 P we notice that

wky 0 for n > 0 (83)k k-n

since noise samples iwkI are uncorrelated (see (78)) and filter H(z) is realiz-
able (see (79)). The first step we take is to express (79) as

"/3 Y (84)
YkTPO° k n k-n]

n-in-1

Then using (78) and (83),

k (85)
0

Now multiply both sides of (79) by y. and average; there follows

p
P RO<, ! <, (86)

n= 0 o0 1

upon use of (81), (83), and (85). Now if we let n3n =J ", (86) becomes iden-

tical to (46). Therefore, we can use solution (53) to obtain for the filter coeffi-
cients

C
00

Pn oexp(-i1), 0 Kn <p, (87) !J

where 0 is an arbitrary real constant.

41;
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Substitution of (87) in (82) yields the autoregressive spectrum approximation
Sthe input spectrum as

Ac
Gy L M 00 2 < (88)

E c no exp(- 12itfnA) _

in-U no

This is identical to the maximum entropy spectrum (55) and the linear predic-
tive spectrum (71). The discussion surrounding (76) is relevant here also.

Substitution of (87) in digital filter (80) yields

* I exp(i O)
H(z) = . (89)

n-0

This is stable if the denominator contains all its zeros within 0; that is, H(z) is
stable if and only if B(z) of (56) has no zeros inside 0. This property has
already been shown true in the discussions under (38), (56), and (A-9).

The relationship in (86) can be extended to A = p + 1 with the result that

p
On Rp+l-n = 0, (90)

n= 0

where Rp+j is now interpreted as the value of Yk Yk-p-1, and was never speci-
fied. If we combine (90) with the last p equations of (86), we obtain

p
J2 E nR(-n = 0, 1 <_. < p+1. (91)

n=0

In order for this set of p + I linear equations to possess a nonzero solution for
O•np (as it did above), we must have

24
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"1 R0 R.1 . R1-p

R2 RF R ... R
2 1 0 2-p

dot ,0. (92)

R + R p R ..1 :,

This can be solved* for Rp+l. But since this is identical with reference 19,
_ equation (1), we see that the all-pole digital filter model is identical to choosing

SIRp+ 1 such that

-R° R _ I R p R p -1

RI Ro

det : . (93)

Rp p-1 R-1

R p+l Rp R, RI R°0I

is maximized. Additional interpretations of (93) in terms of maximum uncer-
tainty and entropy are presented in references 20 and 14.

\.

I.

*Of course, a far more practical method is given by (90) and (87), and
more generally by (75).
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4. CORRELATION UNKNOWN; FINITE DATA OLT

In this section, the correlation values IRkI are unknown, and the only
information available about the random process x(t) is a finite set of N samples
xs ... 0 xN , from which we remove the sample mean. From these N samples,
we desire an estimate nf the spectrum Gx(f). Yet we can not minimize or utilize
any ensemble averages as was done in sections 2 and 3, since we have only a
finite segment of one member function to work with.

The MESA and autoregressive methods of subsections 3.1 and 3.3 are not
easily directly extended to the case of unknown correlation; because they make
explicit use of this correlation information; see (31) and (81), respectively. A
direct extension of these two methods would require us to decide on the form of
the correlation estimates a priori, and could unnecessarily restrict the quality
of the spectral estimate we finally obtain. The linear predictive method of sec-
tions 2 and 3.2, on the other hand, require s that the ensemble average magnitude-
squared error be replaced b some estimating quantity that can be readily calculated
from the available data Ixcn t as a by-product, we may get estimates of the cor-
relation. Several candidate processing techniques based on subsection 3. 2 will
therefore be considered, and their processing equations derived. Also, some
of the results of subsection 3. 1 on MESA will be adapted and combined with the
linear predictive approach to form a viable approach to spectral estimation;
this technique was originally presented by Burg in reference 21. In section 6,
all the techniques will be compared by means of simulation.

4.1 YUJLE-WALKER EQUATIONS

We begin by definin6, in this subsection

x k a 0 for k<1, k>N, (94)

* since these sample,- are unavailable. Taking (58) in subsection 3.2 as a guide, we
attempt a linear prediction according to

p
k k anxkn, all k, (95)

n=1

where the choice of p is arbitrary for the moment. It should bo noticed that
although xk is defined for all k, it is not expected to have a good chance of ac-
out ately predicting xk for k < p or k > N + 2 since some zero values of xk have

27

. . .. -. .. .. .. .. .. ... .. . .. . . * . •, .* +.. ,
" :. :'. • " i,: +'" •. . . '¾ , ' . :



TR 5303

been utilized in those regions, according to (94). Nevertheless, we define an

instantaneous error

p
tk k- Xk - k' all k (ao--1); (96)

n-O

it is expected to be valid or meaningful, however, only if k > p + 1 and k < N
(error #N+1 must utilize a zero value for xN+1). Digital filtering operations
(95) and (96) are stable for any choice of coefficients Ian .

Since we cannot compute an ensemble average magnitude-squared error
now, an average magnitude-squared error is defined for the available data of
the single member function as

=a a* p1 Exk
S. • 'k - F, am n N _.Xki-k (97)

k m,n-0 k

where denotes summation over all nonzero values of the summand I'kj2'
regardless of how meaningful they are. The normalizing factor 1/N Is some-
what arbitrary; there are N+p nonzero terms in the first sum in (97), but only
N-p meaningful terms.

We define, for all n, m

= - x s (98)
S .m k-n rn-n

k

in which case (97) yields

p

F a a a n-m' (99)E 0 m n n-m

This relation uses Sp only foral. < p. In order to minimtze F by choice of filter
coefficients an P we compute

P
8F S_ am <_. • p. (100)

m--O

28
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The optim'mn coefficients Tn P are therefore solutions of the p linear equations

p
S T - 0, <ýA < p (ao• a -a ) (101)

m0 IM m o 0

or

p
F, S I-mTrn = St <_I t<p (102) •

These are the Yule-Walker equations for the optimum filter coefficients. Thb
method here is called the autocorrelation method in reference 1. (As an aside, in
analogytosubsecdtons 2.2 and 3.2, identically the same equations (102) result
when xk is predicted on the basis of p future values, rather than p past values
as was done here in (95); see (5) and (17) et seq, and (77) et seq.)

The minimum value of average error F is obtained by substituting (101) in
(97) and (99):

F 2n
k n0O m=O m=O

-- p p(131" • ~S', m -a S E S*m m (103)

Sm=O m=I

where we have employed (98) and (101).

Thepxpmatrix [Sm P on the left side of (102) has the form of a legal
correlation matrix in that it is Hermitian, Toeplitz, and nonnegative definite.
The last property follows from

p p

* 1
1¼n1 0-r 1l m 1 N kj~ *k-rn k-

p2
= . am k X 0 (104)

29
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for any lanP Since (104) is greater than zero with probability one, (102)
will possess a solution with probability one.

A convenient method of obtaining this solution is to combine (101) and (103)
to get

P

- S , .mIm- - F0 6to, 0 ,p• (105)
m=0

Written out in detail, this is

S S ... S 1 F
o -1 -p

S. So -1 0

(106)

S S -a 0p 0 p

(The (p+l) x (p+I) matrix in (106) is nonnegative definite, as a simple extension
of (104) shows.) But (106) is identical in form to (A-3), and the recursive solu-
tion presented in (A-4) through (A-7) applies directly.

The spectral estimate we adopt follows from results (68) through (71) in sub-
section 3.2 on linear predictive filtering for known correlation values: first,
the optimum transfer function leading from jxký to minimum-error sequence
17ki in (96) is

p
A(f) '= a exp(-12fnA). (107)

n=0

However, we have a problem in trying to accurately estimate the average mini-
mum-error power that would be used in the numerator of the assumed white
spectrum for the error in (70). Although minimum average error Fo of (103)
could be used, it is not recommended because not all the error terms in the
sum in definition (97) arc meaningful. Therefore, because of our inability to

30
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I accurately estimate the average minimum-error power in this case, we shall
' adopt as our spectral estimate

G f f (108)
L iEn exp(- 12,rfnA)

1n=.

This is tantamount to assuming the average minimum-error power equal to
unity (in addition to assuming the minimumn-error spectrum white). This pro-
cedure also eliminates level perturbations in the spectral estimate (108) due to
random fluctuations in the absolute level of the sample set jxn I N ; that is, from

(102) and (98), it is seen that the optimum values of the filter coefficients,
I - , would be the same if 1Kxn} were the available) samples, for any K.

Therefore, estimate Gx(f) in (108) is also Independent of the absolute level of
' the available samples. The choice (108) allows for convenient comparisons of
: the spectral estimates obtained by the various methods presented here.

As n atenatve (108) could be numerically integrated over (- , )

and then (108) could be scaled so that the area under the estimated spectrum is

The implications of the assumption in (108) that the minhnum-error se-
quence has a white spectrum are investigated in appendix E. It is shown that

i the sample crosscorrelation between input sequence JXkj and minimum-error
i- sequence J~kj defined for the available data of the single member function as

Do -- k X Iall _4(109)
k

is assumed~to satisfy

DI 0 , 1 < . (110)

that is, the minimum-error sequence is uncorrelated (on a single member func-
tion basis) with all the past Input. It is also shown that the quantities S, de-
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fined in (98) (of which only B1 for IL- , p were used in (99) et seq.) can be
estimated for A > p + I according to

*1 p
S1 = 5 - " P > 1. (111)

nin=1

This relation, (111), which may not be true for the quantities S, actually ob-
N

tained from data ixn 1 via (98), is due directly to the assumption that the
* I sample spectrum of the minimum-error is white; see appendix E. The reour-

sion relation (111) is stable, according to appendix D, if

pi-Y: ,n (11 2)

n=1

possesses all its zeros within 0. But since matrix [SImi in (102) has the
form of a legal correlation matrix, we appeal directly to reference 1, page
567, to state that this property does indeed hold. Therefore, recursion (111)
is stable,

It is worthwhile noting that no direct estimation of unknown correlation val-
ues {Rk1 was attempted in this approach; rather, we minimized the average
error defined in (97) and solved directly for the filter coefficients in (102).
However, if we rewrite (105) in the form

p
S- m =" F a 0 <A • p, (113)

m=0

and compare with (C-3), we see that the quantity S, could be adopted as an esti-
mate of RIfor IA I_ p; that is, using (98), we could say

X x .41 <p, (114)

k

(and then (111), with R replacing S, could be used to estimate Rj for LQI_>p + 1,
rather than (98)). This is in fact the approach adopted by some authors; see,
for example, reference 2, equation (19). However, (114) y.elds biased esti-
mates because
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-N-1 R
R-, . (115) I t

0, otherwise

It is interesting to note that if (114) were adopted a priori as estimates of
the unknown correlation values Rk , then the MESA and autoregressive ap-
proaches of subsections 3.1 and 3.3 could be utilized directly, if the right sides
of (31) and (81) were replaced by IftkI . The spectral estimates would then be
given by results identical to (108), except for a scale factor. The major draw-
back of this approach is the need to commit oneself to a specific form for the
correlation estimates, such as (114), rather than letting the technique itself

• yield alternative estimates. The specific form used for the correlation esti-

mates could limit the quality of the spectral estimate obtained; this contention
is prover. true by simulation in section 6.

4.2 UNBIASED VERSION OF YULE-
WALKER EQUATIONS

One method of obtaining unbiased estimates of the correlation values $R,
is to define estimators

N

Rx .. L x x0* for 0• e • <p. (116)
N-1 kxk-1 N k- 1+1 k-~k kmi+1

A I

Of course R.-1  R* . These could then be used in (102) in the form

m iRm ' m R <_A<p, (117)

to solve for the filter coefficients J jPr. And (10s) could again be adopted for
the spectral estimate. The solution for the coefficients in (117) minimizes no
error criterion; it merely utilizes unbiased correlation estimates. The die-
cussion under (115) is relevant to this approach; how good the technique is will
be ascertained in section 6.

The matrix [ _Rm] P of estimated correlation values on the left side of
(117) is Hermitlan and Toeplitz; however, it is not necessarily nonnegative
definite. (This last property is shown by considering the example p = 2, N 3,

33
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with x 1 - 2, x2 -x 3 3, 3 for then Re -2/3, and R1I 15/2.) The recursive
solution of appendix A could again be applied to a modified form of (117); see

* -105) and (106). If the recursive technique in (111) were utilized to extrapolateSi " :; R•according to

-- .- .'rh nR1n I _9p + 1 (118)

Sand (116), it need not be stable unles [ 1.ml P is nonnegative definite. Even if
(118) were unstable, (108) could still be used as a spectral estimate of Gx(f);
there would, however, be a greater tendency of some pole-pairs of (108) to
drift close to the unit circle, 0, in the z-plane and give rise to spurious large
peaks in the spectral estimate. This tendency is reduced for stable recursions
(118), that is, if (112) possesses all its zeros within 0.

4.3 LEAST-SQUARES ESTIMATES OF
BOX AND JENKINS

In reference 16, appendix A7. 5, a likelihood function approach to estima-
tion of the coefficients in an all-pole (that is, autoregressive) filter model for
generation of the process jxnj is considered. The end result (in our notation)
is given in (A7.5.7) for real data by

1 1N-i-J
=N-j N X±+kX 0 1i, J < p (119)

Sij =2 R Di+1' j+1 -N i+j-

k-1

and in (A7. 5.15) by

P

Sji a Si 1,• i p. (120)
j=1

This constitutes p linear equations in the p uiknowns aiiP. The matrix [Sl P,
occurring in (120) is symmetric, not necessarily Toeplitz, and not necessarily
nonnegative definite. (The last property is •shown by considering the exampleN = 5, p = 2, with x2 = x3 = x4 = 1, for then S 11 = 3/5, S12 = S 2 1 = 2/5, S 22 =

1/5, and the determinant is - 1/25.) The quantities 1Sij also yield biased
estimates of IRi_j. , because

34
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ij N Hi-j2

Nevertheless we will adopt (108) for our spectral estimate in this case. The

fact that we encounter a non-Toeplitz matrix in (120) disallows the use of the

recursive technique for solution in appendix A.

, If the solution to (120) is substituted in (112), the zeros need not all lie in-
side 0. Therefore, there would be a greater tendency for some pole-pairs of
(108) to drift close to 0 than when all the zeros must lie inside 0, as for sub-
Ssection 4.1.

4.4 APPROXIMATE MAXIMUM LIKELIHOOD
ESTIMATES OF BOX AND JENKINS

"This technique is a slight modification of the previous one in subsection
4.3. Namely, in reference 16, under (A7.5.18), the coefficients are solutions
of

p
S tj= SiT , 1 < _p (122)

j=1ii

where (see (119))

1 N.-i-jN 1

S - D 10x< 0 I <p. (123)ij N-i-i , j+1.+ N-i-- " k Xi+kXj+k,' k=1

The matrix [Sij I occurring in (122) is symmetric, not necessarily Toeplitz,
and not necessarily nonnegative definite. (The last property is shown by con-

*1 sidering the example N - 5, p = 2, with x2 = 2, x3 = 1, x4 = 2, for then $11 3,
S1 2 = S21 - 2, S22 - 1, and the determinant of these coefficients is -1). The

' 1 quantities ISiji yield unbiased estimates of Ri_j. ; however, every element in
, a patrticular diagonal can be different, even though they are estimating the same

quantity. Also, the number of terms (in the sum in (123)) along a particular
diagonal varies with the position of the element, thereby yielding differing de-
grees of stability. Equation (108) can be used with (122) to obtain the spectral
estimate. Recursive solution of (122) is not allowed because of the non-Toeplitz
character of the matrix [Sij] I. The comments at the end of subsection 4.3
are relevant here also.

3
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4.5 PREDICTION USING VALID ERROR
-• I.POINTS

The method of subsection 4. 1 utilized an average error measure defined over
al.l nonzero error terms; see (97). However, as noted under (96), instantaneous

error o k is meaningful only if k > p + I and k - N. Here we define an average
magnitude-squared error by summing only over the set of valid error points:

N
1 2

k-p+1

There are N - p terms in this sum. TIU• procedure is tantamount to not running
off the edges of the available data Xn . Employing (96), (124) can be, writ-
ten as

p
Fa a* S , (125)

S i, nsm 0 n nm0

where

N

S R 1 E Xk - * (126)
rim N-p +l k-n m

This quantity always contains N - p terms for 0 < n, m < p. In order to
minimize F, we compute

OF P
S = 01m am <I 4 p. (127)

The optimum predictive coefficients are therefore solutions of

P
p S '~ 0, 1<I-P (T=ao-1), (128)

m=0 m 0 06m=O

36
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• 1 or

p
S a BSo 1• < p. (129)

1*-
The method here is called the covariance method in reference 1.

The minimum value of the average error F is obtained by substituting (128)
in (124) and (125):

1 N 2 p P

F E ,rF s W~* F, Sk=P+ I n= 0 om= 0 mm 0 = 0

p p
s*s* (130)
mo m co m m (3

m=O m=1

where we have used (126) and (128).

The p x p matrix IStm] P on the left jide of (129) is a legal correlation
matrix in that it is Hermitian and nonnegative definite. The last property fol-
lows from

p p N

Pmff N pi m N-p kp> 0. k-1

N-p k=p+1 E Im

am P. Since [SIm] is not necessatily Toeplitz, however, the re-"itfor any }1~ii "~ N (1

Scursive solution.in appendix A is not applicable. Numerical computation of
(Sim] Is eased by taking advantage of a recursive relation between S+,, In +1
and ST i'

The spectral estimate we adopt is given by (108). However, note that we
could, if desired, get an estimate here of the average minimum error power
Eo, used in (70), according to

: 37
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E -F. (132)0 0

This quantity is meaningful because (130) involves only the valid error terms.

Equation (129) is similar to, but not identical with, the form of (117). The
quantities 1Snml defined in (126), yield unbiased estimates of JRn.mj ;how-
ever, every element in a particular diagonal can be different, even though they
are estimating the same quLatity.

If the solution to (129) is substituted in (112), the zeros need not lie inside
0, despite the nonnegative definite property demonstrated in (131). (The ex-
ample

p =1, N 2, yields 'a x/X (133)1 2 1

and gives a zero location of (112) which can lie anywhere in the z-plane.)
Therefore, the comments at the end of subsection 4.3 are relevant here also.

4.6 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR. POINTS

It was noted in subsections 2.2, 3.2, and 4.1 that "prediction" based onfuture values of the input {xk i yielded an equivalent spectral estimate to that

obtained by prediction based on past values. Here we combine the two tech-
niques. The forward-predicted value of xk is

P

x k -R an xk-n p + 1 k N , (134)

where we limit k to the range [p + 1, N], in anticipation of the fact tlat we can
only measure valid errors in that range; see (96) et seq. The backward-pre-
dicted value of xk is

p
•k E a* xk+n1 k<NN-p, (135)

n=1

where we again limit the range of k. (See, for example, (15), (22), and (77).)
The forward and backward errors are, respectively,

38
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M - a x p+ I 1kN,
k k Xk k n k-nn=0

I ~(136) "

p
I~~n s'k<N -p.

Ik 'k -k n k+n' k• -n,' 0 •

where a° 1.a

An overall average magnitude--squared error is defined as

N 2 1 kI+ N k 2 am a*Sm, (137)

where, in this subsection,

Xk-m + X (+138
nm 2 (N-p) \k +- k--i

This quantity always contains 2(N-p) terms for 0 < 14 m < p. TWO useful prop-
erties of SUM are immediately available:

S S* ,S -S* (139)
mn nm p-n, p-m nm

These properties, plus a reeursive relation relating Sn+j, mrl and Snm, ease

the numerical computation of matrix [ Snm]

We minimize F by choice of lami P, getting (see (127) - (129))

p
SS1m•. n nor. p (140)

minin

The minimum value of F is (see (130))

r
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p-S -s • S
Fo oo S (141)0 00 m,,In

rn-1

The method here is an extended version of the covarlance approach in refer-
enoe 1.

The matrix [S im] p is Hermitian and nonnegative definite:

E S I mam :2(N-p( E E am Xkm E 1 Fl m* )Xk+ _

P, m l .' • k = p + I M 1k 1 m 1 , (142)

for any iamlp. However, this matrix is not necessarily Toeplitz; therefore,
we cannot apply the reoursive solution of appendix A.

The speotril estimate we adopt is obtained by substituting the solution of
(140) in (108). An estimate of the average minimum error power Eo, used in
(70), is available here according to

S0 F o, (143)

if desired, where F is given by (141). This is meaningful because (137) util-
ized only the valid error terms.

In. analogy to (126), the quantities jSnmj in (138) yield unbiased estimates
of tRn-mj . Nevertheless, if the solution to (140) is substituted in (112), the

zeros need not lie within 0, despite the nonnegative definite property shown in
(142). For p = 1, we find

2 1 + Xx,* + ... + N-1

1 2 + 212 + Ix3 2 + ... XN 12  + XN1I +• I 4)
+ ... N-+x-1+ 2 X

(144)

And since

_112~I + 2IxkI

40
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it follows that

IaI 1. (146)

So for p - 1, the zero of (112) must lie within 0, (unless xk - A exp(ikB) for all
k, in which case it lies on 0). However for p - 2, N - 3, and real data, the

Ux 1+x 3zeros of (112) lie atr_+ , wherer- r o. of Ifrl : 1, both zeros

lies on 0, whereas if IrI >1, one zero lies outside 0. Therefore, the com-
ments at the end of subsection 4.3 are relevant here also.

4.7 BURG TECHNIQUE

The key to this technique, first presented in reference 21, is the observa-
tion from equation (A-6) in appendix A that if the particular p-th order coeffi-
cient a(P)) on be evaluated, the rest of the p-th order predictive filter coeffi-
oients,PaT¶ ,, l k p - t, could be evaluated from (p - 1)-th order
coefficients. This relation (A-6) holds true for the solution of normal equRtions
A-3) even if •R•are replaced by estimated values. Explicitly, if estimates

d..., - a ) are considered known in the matrix equation

•o •-1 " -p •"•

^ -a 1  0

(1,47)

Lp o j p _ L J
then we have p + 1 linear equations in the p + 1 unknowns a I) ,

'P-). (Notice that whereas was known and a('- unknown in (A-3), the situa-
. tion is reversed here for these two variables.) ýhe solutions are given, for

p p>1, by

a)= (p-i) a(p) a(p-i)*
ak -a p a , k= I, 2, ... , p - 1 (no terms if p l) (148) I

41
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p ()p

,RP_ ak P ~ )(149)
RP •: pk I P pP k'

- kai k-i

"1 P)-p (I) - 1. •' (150)

The quantities in (149) are t ie estimated normalized oorrelation Ooeffi- '.
clents IRk/R~o . The recursion (150) is started with

(0) 1 N 2
p Ro - N lx (151)

nal

':iwhich is the sample power of the available samnples, A method of evaluating
aP) for p 1> is treated below.

* P

The method presented here is a combination of references 21 and 7. It
begins by defining zero-th order forward and backward sequences according to

f(o) (X , b(°) - x , ln:rN. (1)
n ri n n

The p-th order forward and backward sequences (residuals) for p 1 1 are de-
fined according to

(p) f(p-1) (p-1)
n n "p n-1

for p + I •n <N. (153)

(p) (p-1) (, I-.o))n - b bn- ' 9p fn

(These can be interpreted as one-step forward and backward prediction errors.)
A chain interpretation of (153) is presented in figure 3. (From the known
correlation results in subsection 3. 2, if we define

SnP) bP (P)
i~p) = - (P~) X~, x ,

(p )we find that figure 3 results, with g replaced by ap.)
p p

42
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I ,
j P

Ftigure 3 Chain Interpretation of Burg Technique o s

The average magnitude--mquared value t p-th order forward and back-ward osquenees is

f N

2 (N-p) 0 n

n- p + 11(1564)

We wlsh to minimize this average power at the p-th stage by choice of cross-
,. ' gain gp, We find the optimuml choice to be

N

(I N .. .. . ....1 ) ) D en(p)

"43
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When (155) is substituted in (153), thn resuets awe oalled the residuals. The

minim-um value of the residual power at the prth stage is obtained by substitu-
ting (155) in (154) and le expressible as

F (p) " 2).Den(p) (156)

The quantities necessary for this evaluation are available when (155) is evalu-
ated. The value of (150) will never be tsnaller than (141), since the procedure
here is a step-by-step procedure, not a simultaneous procedure a3 used in
subsection 4. 6.

An immediate recursion for the transfer functions of the p-th stage in fig-

ure 3 is

,¶ (4(z). ý(P')(Z) - gpz lOP')(Z)
Sp >. 1 (157)

with starting values

U(0) 1 °)1. (158)

"If we let transfer funotions

Pa(p) z-

kk=1

(P)(z) p- a(p) -k -+ :,"p z-p (P)* 119

k=o

the solution is

a = , pŽ.l, (160)
p p

with the lowyr order ooefficients given by (148). Thus, the only remaining
quantity, a} , that was necessary for solution of (147) - (150) is given by (160)

44
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and (155), along with (152) and (153). To the three lowest orders, the solutions
are given by

N
P~O 0 (O,~ P x (161)

0' /
lao'1 2)

n=1

(1) 

(

p =2, a = 91

R Re o

a( 1  -a(0) (22) (162)

(2)
p ffi2. a2 = g2

1a a I -ý a

R a 2

P (2) = p(1)1- 1 (2)2). (163)

It will be observed that for p = 1, a•") is identical to (144); in fact, the proce--
1dures are identical in this case. It should also be noted that at each stage, an

* estimate, R , of tle true correlation value Rp becomes available via (149), and
* is unchangerby the addition of any further stages (larger p).

It was demonstrated in (A-9) that the magnitude of a was bounded by
* unity if the known correlation matrix R was nonnegative definite. The same

property,

•1,) (164)

(p)is true here in the case of unknown correlation when E.) is determined by (160)
and (155); see appendix F. This is sufficient to show ibat all zeros of (A-10)

45
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lie inside 0; see reference 11, for example. Therefore, the recursion (149)
can be used in the form

p V
t a P), >A p + , (165)

km I

to extrapolate the estimated correlation values beyond p-th order, wIth the p-th
order coefficients la(p)l P, and is guaranteed to be stable. Division of (165) by

.o yields the normalized correlation coefficients. Recursion (165) is similar
in form to those encountered In (75), (111), and (118).

The quantity that results as the solution (150) of matrix equation (147)
is not the minimum average magnitude-squared error as it was for known oor-
relation; see (A-3), (A.-7), and (67). In fact, P(P) has no direct physical sig-
nificance; it is merely the variable left over in that position in the normal equa-
tions (147) When modified from the case of known correlation values, (A-3).

Rather, F(p) in (154) and (156) is the minimum average magnitude-squared
error of the forward and backward residuals, (153), of the available data.
Thus, as far aa picking an "optimum" value of p at which to terminate the re-
cursion in (147) - (150) is ooacerned, the latter quantity has more physical sig-
nificance. However, the two quantities are very close to each other for no bad
data points, especially for S-p large; see appendix 0. Both quantities are
readily calculated at any stake via (150) and (106), respectively.

The transfer functions from input x to the p-th order residuals are given in
(159). Therefore, the spectra of the residuals are given by

Gf ((f = G(P)) 0 j,(p)exp (12irfA) )I G~ (f). (166)

Now if the chain in figure 3 has been carried to the stage where further values
of cross-gain g. would be substantially zero, then the residuals are approxi-
mately white. T1herefore, an estimate of the input spectrum is available from
(166) and (159) acoo,-ding to

x2(f) - IfI < , (167)
- a ) exp(-i2wfka) 2 2

k-1
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where the residual power has been set at unity; see the discussion under (108).
Two alternatives to this scale factor are discussed in appendix H; namely, it is
shown that P(P) and Fn') are both meaningful' scale faotorn that could be applied
to (167).

The estimated correlation values in (149) are generally biased. This may
be anticipatqd from the complicated forms of (149), (148), and (165), sne.
"additional stitiStics than sml,'--k need to be kno-wn in order th hej capable of evaluation; that is, Wp depends on much more tha n Just xkx-, for
the Burg method. This biasedness may be proven for a simple example with
p - 1, N - 3.. (fo in (151) is unbiased; and for p = 1, N - 2, we find i1 = x 2 x,.
which is unbiased.) For real data, with random v'ariables _Xkk 3 bebig zero-

mean unit-variance Gavesian, and 1 3ad ! - 3•/ 2 - -3x, so0, we find (in

appendix I) that - + + -1 (. 9484). The bias is slight but non-

zero.

In summary, the Burg algorithm for data processing consists of initialiF'a-
tion (152); followed by the cross-gain ualculation, in (155); fliter coefficients via
(160% and (148); and normuallzed correlation coeioients (149) (&'t desired)
at every stage. The update required at each stage is given by (163), and
the extrapolated normalized correlation coefficients at any stage are eov*1lable
from (165),upon division by fo.

4.8 SUMMARY OF PROPERTIES OF
TECHNIQUES

The solution for the 'ilter coefficients in the techniques considered above
can be put in the form

R (I F 5. (168)
0

* The properties of the estimated correlation matrix ' (if desired) are tabulated
in table 1. (Actually, several of the "No" entries should be "'Not Necessarily.")

It will be seen that none of the techniques possesseo a "Yes" for all the
properties. The Yule-Walker and Burg techniques possess everything but the
unbiased property; however, the unbiased property, per se, of the correlation
estimates Is not necessarily a desirable feature for spectral estimation, as will
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; Table 1. Properties of Estimated CorrelationMatrices

- Nonneg-
Correlation ative Stable

Technique Estimates Unbiased Hermitian Toeplitz Definite Recursion

Yule-Walker (114) No Yes Yen Yes Yes

Unisd(116) Yesl Yes Yes No No SUnbiased
"Yule-Walker

Least Squares
- - of Box and (119) No Yes No No No

Jenkins

Approximate
m nximum
likelihood of (123) Yes Yes No No No
Box and
Jenkins

Prediction (126) Yes Yes No Yes No

Forward and
Backward (138) Yes Yes No Yes No
Prediction

Burg (149) No Yes Yes Yes Yes

JI,

be seen by later simulation results. On the other hand, simultaneous satisfac-
tion of the throo properties of Hermitian, Toeplitz, and nonnegative definite
guarantees that: a stable reoursion and nonepiky spectral estimates result, see
referenoce 1, page 567.
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6. CORRELATION UNKNOWN: FINITE DATA SET
WITH BAD DATA POINTS

In some applications, some data values can be bad as a result of malfunc-
"tioning equipment or human errors in reading or recording, for example. Also,
some data values can be missing as a result of equipment being inadvertently
or intermittently turned off for calibration purposes, for example; or some see-

j " tions of data can be contaminated by strong bvrst-like noise and be virtually
useless in those sections. All of these problems can I& characterized mathe-
matioally by saying that of the available data set jXn , the values xn for the

•i~i distinct integers

n = M , M2 , ... MB (169)

are known to be bad (or missing). The B bad locations Mj I B are presumed

to be known. The bad data points can be regularly spaced, or randomly spaced,
or a combination, depending on the application, it will make no difference to
the t.echniques to be developed here.

In this section, we wish to estimate the input spectrum despite the presence
of known bad points. The last two methods in subsections 4.6 and 4.7 will be
extended to cover this case. The reason we do not extend the other methods in
section 4 will become clear when we compare the various techniques by simu-
lation in section 6.

5.1 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

K

The method to be presented here is very similar to that given earlier in
subsection 4.6; accordingly the treatment will be briefer. For convenience and

* to enable a better estimation of the true spectrum with a limited number, p, of
parameters, we subtract the sample mean of the N-B good data points so that

1 N
N-B n ~0 , (170A)

*1 1n=1

* Iwhere denotes that we skip those values of n in the set (169); that is, we
simply ignore the bad data points .-- this is, in fact, the main theme of the
methods to be presented. We attempt no Interpolation on the bad points, nor do
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we set them equal to zero or the sample mean. We also scale the good points
so that the sample variance is unity:

N-B-i N Ix n 1.. (170B)
n-1

This helps avoid overflow and underflow problems in the numerical manipulation
of large arrays encountered for large p.

A forward prediction of xk is afforded by

p
xk !M F an xk-n' p + I < k _<N, (171)

no I

provided that k-i, k-2, ... , k-p y MIP M2 , ... , MB. Then a valid forward
error can be defined as

p
I k -xk = k anfxk-n (ao=-1), p + 1 k_<N, (172)

nf0

provided that k, k-i, ... , k-p ý M1, Mj, ... , MB; that is, Sk is defined for

p +1 • k 5 N except for k in the set of integers

M 1 , MI + 1, ... , M p

M2 , M2 +1, .. , M2 + p

p
I: (173)

MB, MB+ 1, ... , +P

If any numbers in set Ip are < p + 1 or > N, they are not encountered in the error
definition (172). Let Bp denote the number of distinct integers in lv whiuh are
Sp +1 and <N; this is the number of gaps (bad points) in the errof sequenoe
(172).

50
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We now define an average forward error over the valid error points as
N

F 1 (14

N-p-B N jkl (174)
/ P k=i+
Ckilp

where $ denotes "not contained in," and N -p - BP is the number of terms in the
sum. Substituting (172) in (174), we obtain

p N
F a a* 1 x* (175)

am n N-P-Bp Xk-m k-n(m,n-0i " kffp+l
S~kfIp

A backward prediction of xk is available as

p
L a' 1 < k N - p, (170)

Xk n- n k+nn-i

provided that k+1, k+2, ... , k-p d M1 IM2 , ... , MB. And a backward error

P
a =x X (a , _ - ,(17)

k k nk '2 Xk+n (a0-1), ik"N p,
n- 0

is available if k, k+1, ... , k+ip ý M1 , M2 , ... , MB. Letting .1 k+p in (177),
we can write

p
'2 a*x p+ .I N, (178)

I-p n I-p+nn=0

if .Q is not contained in the set Ip defined in (173). The we can define an average
backward error over the valid error points as
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N
•F-N-p-B I -p1

I. 
I

p_ N

a a* X * (180
"mn" 0 p I(p+1

where we have substituted (178).

We are now in a position to define an overall average error as

P
F 0 + 'f) - F a aC(8)2 M n nm

m, n0

, where, from (175) and (180),

N

n- 1 km k-n k-p+n k p+m)n
n r2n-0P- k 1 "p +(2

k~lp

It should be noticed that (182) does not tell us .erely to sum over the "good"
products, but rather to exclude set Ia. The number of terms in the sum (182)
is the mamie for o05n, mop and is N--BP (For no bad points, (182) reduces to
(138).) Two useful properties Of Snm are

S S• 1 a* S (183)mn nn p-n p-r nm

The quantity nm is at unbiased oestimate of rnem; however, the presence oi
bad points will increase the variance of Slm see reference B. The matrix

Ism th sis Hermnitian and nonnegative definite,

The optimum predictive filter coefficients nmnI P are obtained by mini-mizing (181):
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p
s o S 1_. <p. (184)I2 S m 10om= 1

The minimum average error is

/p
"rF = S - E s* •m (185)So oo mem0 m= 1

And since the sample variance of the good data points was set equal to unity in
(170B), (185) is a relative error measure that can be used to decide what value
of p should be used In (171) and (176); see reference 1, equations (41) and (89)
et seq. The spectral estimate we adopt is obtained by substituting the solution
of (184) into (108), as usual. The quantity Fo in (185) could be used as a scale
factor, if desired, according to

E - F (186)

0 0

5.2 BURG TECHNIQUE

The problem setting is the same as that for the previous subsection, in-
cluding (169)- (1.70). The solution is identical to that for subsection 4.7, up to
(150). Now we define zero-th order forward and backward sequences as

f() *-x t b x , ,-n .r N, n lop (187)
n n n n

whure we again employ the definition (173). The first-order sequences are de-
fined as

f(t) 211 f(0) _ . ,(0)
ffor 2 N, n (188)

b.(') = b(O) _, ,.(O)
n n-i in

where the restriction of set 11 is due to the fact that the first-order sequences
aunuot he formed (evaluated) in set II. We choose cross gain g, to minimize

the[ averago error
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where N-1-B 1 is the number of terms in the sum. The solution is given by

2 f(O)n b(O-)
n-2

Wt t (R0)I2  
+ 1 b•I) )190)

n.2 0 n n 1

With this value of gj, we can now compute values for raisiduals fn1)
(188) and continue the procedure.

At stage p, we have
f(p)n , f(p-l)n - p b(P'n-1 )

-for 
p + I < n <(N, n (191)

n n_1 gp n I

The choice of cross-gain gp that minimizes average error

N
() 1 (fI 2  ( b')) (F0)~1 12

a2(N-p-B()+bn F 112nP7 +1\I I
, ~n Ip
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1s N
I (p- 1) *-.'ii 2 . f(p-) b

n +1 n nI

n N 2P Num(p) (193)Nb1 + 1'2) Den(p)'
S nm•+ n

n* Ip

and the minimum value of (192) can be expressed as

F ()' = IX-Igp12) _Den~p, (F0).1) (194)o 2(N - p (0o

This is also a relative erro.ý', due to the normalization (170B), and can be used
as an indicator when to termho.tte the recursion procedure in (191).

It may be seen from (192) and (193) that the sums are merely taken over
those values of n where the summands are defined. The number of terms in all
the sums is N-p-Bp.

As in subsection 4.7, the filter coefficients are given by

a(p) - gp, p > (195)
p

*tand for pŽ2, by a) = -1 ) _ a)a1P• k p -1. (196)
ai:a p p-k - ' •

Equations (147) through (150) still hold true. The starting value of p(O) is now
S* 1. 1, by virtue of normalization (170B). Recursion (165) for A2 Žp+1 is still valid

* I and is stable since

~a P)( - jgj • 1, (197)

as may be seen from (193) and appendix F. The spectral estimate is again
given by (167). The discussions in appendixes G and H are relevant here also.
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6. COMPARISONS

All the techniques considered in section 4 will now be compared in terms of
their resolution capability, bias, and statistical stability, by means of a simu-
lation approach. In particular, the fourth-order autoregressive process which

C wao intensively investigated in reference 2 (see figures 4a and 5a) will be the
basic process of inte-eest here also. It is characterized by

, 4
k aXk + wk, (198)

n=1

where

a= 2.7607, a 2  - 3.8106, a = 2.6535, a= - 0,9038, (199)

and where lwk} is Gaussian white noise. We restrict consideration to real
processes here. We will not address the problem of how best to pick the value
of p used in the techniques of sections 4 and 5, but shall instead set p equal to
the known value, 4, and concentrate on the ability of the various techniques to
estimate the parameters in (199,, and thereby the spectrum of jxk , from a
finite set of N data points.

* The simulation method consists of the generation of 100 independent reali-
zations of the process in (198) in steady state. The coefficients in (198) are
estimated for each of the 100 realizations, and the corresponding 100 estimated
spectra are computed by means of (108), for every technique in sections 4 and
5. The examples to be considered are summarized in table 2, where N is the
number of data points in each realization (trial), and B is the number of bad
points in each realization. The corresponding figures are collected togither at
the end of this section.

6.1 NO BAD DATA POINTS

In figure 4A., the 100 different estimated spectra, one for each of the 100
independent trials, are plotted for the Yule-Walker approach, and for N = 40
data points. In figure 4B, the (power) average spectrum of the 100 estimated
spectra is plotted, along with the truc spectrum of process (198) and (199).
The true spectrum is scaled Lo that. its area is equal to that of the average
spectrum. It will be seen from figure 4A that there is a great doit'. of variabil-

P '. ity in the individual spectral estimates. From figure 4B, we observe that the

,1 7
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Table 2. Simulation Examples

Figure Number of Number of
Number Data Points Bad Points

N B Technique

4 40 0 Yule-Walker

5 40 0 Yule-Walker, Unbiased

6 40 0 Least Squaree o£4 Box and Jenkins

7 40 0 Approximate Maximum Likelihood
of Box and Jenkins

8 40 0 Prediction, Valid Error Points

9 40 0 Forward & Backward Prediction

10 40 0 Burg

11 40 0 Burg, Uniform Noise

12 40 4 Forward & Backward Prediction

13 40 4 Burg

14 100 0 Forward & Backward Prediction

15 100 0 Burg

16 100 10 Forward & Backward Prediction

1.7 100 10 Burg

18 100 20 Forward & Backward Prediction

19 100 20 Burg

20 100 30 Forward & Backward Prediction

21 100 30 Burg
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average spectrum does not resolve the two narrowband peaks of the true speo-
trum*; in fact, this same conclusion is true for the individual spectra in figure

-I4A. A severe bias exists in the skirts of the average, spectrum, which gives a
gross overestimate of the power in bards away from the peaks. Thus, the
Yule-Walker approach has poor resolution, severe bias, and substantial vari-
ability.

The corresponding results for the unbirsed version of the Yule-Walker ap-
proach are displayed in figure 5. Rather than improving the situation, it is
fowid that tUe spectral bitirmate's are worse in every regard. The spectral

estimates with strong spikes near f x are mauifestations of pole-pair loca-
tions . estimate (108) that are very close to the unit circle 0. Recall from
subsectioan 4.2 that the zeros of (112) need not lie inside 0; see the discussion
below (118).

The unbiased correlation e.atimatus utilized above in the normal equations
are of the same form as those suggested In reference 5 for missing data, when
spectral estimation is attempted directly via (2). But since the performance of
these unbiased correlation estimates As so poor here, they are not considered
worthwhile in the presence of bad data points, when spectral estimation is ac-
complished via (108). Whether they are worthwhile for use in (2) is not known.

Results for the least-squares approach of Bcx and Joenkins are given in fig-
ure 6. The variability is less than that for the Yule-Walker estimates in figure
4A. And some resolution is aclieved in figure 6B, in addition to good skirt
aelectivity. There is still, however, a large number of spiky spectral esti-
mates, as anticipated in the discussion under (121).

Conditions are not much improved for the approxirnte max'mum likelihood
method of Box and Junlkns presontod In figure 7. 1. here happens to be one par-
ticular spectral estimate with a very large spike (a zero virtually on 0) that
severely indlueaoes the average power level. Tha variability in the estimated
rikirt level is quite small for this technique (asi well as for the previous one).

,* In figure 8, tho resulta. for prediction using only the valid error points are

presented. The resolution and bias in figure 8B are observed to be very good,

*T'his same conclusion is reached In ref'rence 2, figure 5b, for the samo
number of data points. Increasing p (above 4) does recover some of the resolu-
tion of the two narrowband peaks, but it does not reduce the severe bias of th-

Yule.-Wtdker approach.
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4 I and except for some spiky estimates in figure 8A, the variability of the ivdivid-

ual estimates is fairly small.

The situation is still better when we consider forward and backward predic-
tion, using only the valid error points, in figure 9. There are a couple of spiky
estimates, but they are not excessively large, as they were previously. The
bias and resolution are very good in figure 9B. Although the zeros of (112) need
not remain inside 0 for this technique, it was found that in all 100 trials, no
zeros were ever located outside of 0. The presence of the two spiky estimates,

however, indicates that on two occasions, a zero came close to the periphery
of 0.

One of the major drawbacks of this technique is the need to invert a non-
Toeplitz matrix (or an equivalent operation) in order to evaluate the optimum
filter coefficients; see (140). For large p, this is a significant numerical prob-
lem. We therefore attempted to convert the matrix [Spm] in (140) to a Toeplitz
matrix, so that the recursive solution in appendix A could be utilized. We first

averaged [Sim] P down the diagonals and left the right-hand side of (140) as is;
however, we lost resolution and got badly biased and more variable spectral

estimates. Next we diagonally averaged IS nli P and left the right-hand side of
(140) alone, but got the same bad effects. Finalfy, we diagonally averaged

Sim] P and also replaced the terms on the right-hand side of (140) by the ap-
propriate averages, but again to no avail. Thus, we are unable to significantly
modify (140) without dire effects on the spectral estimate.

Finally, when the Burg teclmique is considered in figure 10, we observe the
complete absence of spiky estimates; this is due mainly to the guaranteed loca-
tion of the zeros of (A-10) inside 0. In other respects, the results of figures 9
and 10 are very similar. There is a small bias in figure 10B, with the peaks
being rounded off and the valley filled in; this is similar to figure 5 in refer-
once 2.

All the results above have been conducted for Gaussiar. white noise Iwk inn
(198). To see the effect of the statistics of JwkI upon the spectral estimates,
we changed to a uniform distribution. The results in figure 11 are virtually
identical to those in figure 10. Accordingly, Gaussian stp.ttitics are kept for the
remainder of the simulation.
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86.2 BAD DATA POINTS

By virtue of the results of the preceding stibsection, further consideration
is limited to the forward and backward prediction technique and the .Burg tech- '.
nique. The first example we consider is B = 4 bad data points out of a total of
N = 40 data points; that is, in each of the 100 realizations of 40 data points, 4
points (no more, no less) were randomly selected as being bad, and t'he corre-
sponding values of xk were suppressed. In some of the realizations, the four
data points may have been close together (for example, .1,, 12, 14, 15), whereas
in other realizations, they might have been far apart (for example, 1, 14, 27,
40).

The resulting spectral estimntes are given in figures 12 and 13. The vari-
ability in the skirts is loss for th3 forward and backward prediction technique

;*. than for the Burg technique. However, the spiky nature of the former technique
is quite evident in comparison with the latter teclhique. Both techniques have
suffered a significant loss of resolution near the narrowband peaks.

The reason for the sigmLficant degradation in performance of both toch-
niques is that although only B/N = 4/40 (10%) of the points are bad, the number
of valid error points, N-p-Bp in (174) and (192) can decrease significantly.
For example, for p=4 and spaced bad points at M1 -11, M2 = 16, M3 = 21,

M 4 = 26 (see (169)), we have

Bp = 20, N -p - Bp = 16, (200)

On the other hand, for contiguous bad points at M1 = 1, M2  2, M3  3, M 4 =

4, we have

B = 4, N-p- B - 32. (201)
p p

Thus, anywhere from 16 to 32 valid error points can be achieved. The stability
of the spectral estimate for (200) will be less than that for (201). Generally,
contiguous bad pointsi are lses damaging than spaced bad points, because more
valid error points can be formed when the bad points are contiguous.

One of the points of the above example is that 4 bad cata points out of 40 is
rather detrimental. We consider now N = 100 data points. The first example
of interest will serve as a comparison case and is B = 0. The results of spec-
tral estimation for the forward and backward prediction teolmique and Burg
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technique are given in figures 14 and 15, respectivoly. The results are virtu-
ally identical; there is excellent resolution and almost no bias for both tech-
niques.

' When B is increased to 10, the results in figures 1,6 and 17 are obtained.
Despite 10% bad points, good performance In terms of stability, bias,. and reso-

I lution is attained. The number, N-p-Bp, of valid data points can vary from 46
to 86; however, the likelihood of realizing as few as 46 on a random basis is1 very remote, The Burg technique has less-spiky estimatea noar the nazrow-

band peaks, as expected; however, it is more variable in the skirts than the
forward and back-ware prediction technique.

"When B is increased to 20, the results in figures 18 and 19 indicate that the
Burg technique has. more variability, but is less spiky and has better resolution.
The some conclusions hold true for B = 30 in figures 20 and 21; however,

'V... ineither technique resolves the two narrowband peaks for this many bad data

poin~ts.

Ili : . ,. I ,

I. .. ,.
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7. DISCUSSION AND CONCLUSIONS

Several methods of spectral estimation via linear predictive techniques have
been considered for a univariate process, both with and without bad data points;
the bad points can ba regularly spaced, randomly spaced, or a combination.
Two particular methods have been found to have better performance than the re-
mainder, namely, the forward and backward prediction technique and the Burg
technique. The former technique tends to have less variability on the skirts,
but has more spiky estimates near the peaks of the spectrum; the latter tech-
nique has very few spiky estimates. Both techniques have comparable resolu-
tion and bias.

Since the beet choice of filter order, p, is not known a priori, it is neces-
sary in practice to make several guesses at this parameter and compute some
error criterion that indicates when to terminate the recursion. In particular,
Akaike's Information Criterion (reference 22) is often adopted as a termination
procedure; it takes the form (reference 1, equations (91) and (41) or reference

* 22, page 719)

AIC =.2n (Relative Error) +-M (AIC (p = 0) = 0) , (202)N

where Ne is the "effective" number of data points, and is taken as N-p (or
N-p-B for bad pointp) here, at the p-th stage. The value of p at which (202)
Is a mLnimum is taken as the best estimate of this parameter; however, criterion
(202) is not absolute, and theuser can adJust It to fit his application (reference 1,
page 575). A wide range of values of p may have to be investigated if little is
known qbout the true spectrum a priori; an upper bound on p is given by Akaike
as 3N1/2 Ibid).

One of the ramuifications of this successive guessing procedure is that for
the forward and backward prediction technique, a different p x p matrix [Snm P

.. must be inverted (or an equivalent operation conducted) at each stage (see
(140) and (138)) in order to determine the filter coefficients and minimum
error, (141). Although the matrix terms can be updated according to

x x + X* 5 (p+l) N-p s(p)) pp+1-m p+.-n N-p+n N-p+m (203)
nm N-p-1 nm 2(N-p-1)

in addition to the relations in (139), the size of the matrix [Snm] grows with
p, and the solution of (140) can be a time-consuming procedure, if many large
values of p must be investigated. This fact, coupled with the fact that this
spectral estimation technique can yield spiky estimates and an unstable recur-
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sion relation (149), leads to the conclusion that, of the methods considered, the
Burg technique is the recommended procedure for spectral analysis of univarl -
atte processes. A comparison with the maximum likelihood technique (reference
23) is underway and will be documented in a future report.

The solution for the filter coefficients in the Burg technique is accomplished
recursively as shown in subsection 4.7 and automatically progresses through
successively larger values of p at which error measures (150. and (156) are
readily calculated. There is, of course, the need to update the forward and
backward residuals via (153), and the calculation of cross-gain gp in (155), both
of which take time to effect. But the effort required actually decreases as p
increases, since fewer terms are involved in (153) and (155); in exchange, the
stability of the estimates also decreases.

FORTRAN programs for the Burg technique, both with and without bad data
points, are given in appendix J. Some representative execution times on the
Univac 1108 for the computation of the filter coefficients (SUBROUTINE BURG)
are given in table 3, where N is the number of data points and PMAX is the
maximum order of filter considered. The times are approximately linearly
proportional to N and PMAX. The execution time for the evaluation of the
power density estimate itself is governed by the FFT technique employed to
evaluate (167) (SUBROUTINE POWERS).

Table 3. Execution Times; No Bad Data Points

N PMAX Time (see)

100 10 0.038

100 20 0.073

1000 10 0.33

1000 50 1.78

10000 50 17.9

10000 150 48.4
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The presence of bad data points is easily accommodated in the Burg tech-
nique, as shown in subsection 4.7. If the bad data points are contiguous, the
loss in stability of the estimates is not as great as when the bad data points are
spaced. The worst possible locations of bad data points occur when the closest
spacing is >p + 1, since each bad data point causes the loss of p + 1 valid error
points. Interpolation of spaced bad data points has proven poorer than the tech-
nique utilized here (of ignoring bad points) when the spectral content of the input
process extends fairly close to the Nyquist frequency (2 &)-1 . Since the exact
extent of the input spectrum is unknown a priori, interpolation can be a damag-
ing procedure in some cases.

The spectral estimation technique investigated here is particularly advan-
tageous for short data segments, where other methods are inapplicable. For
example, if a piece of equipment fails frequently, short disjointed pieces of data
may be all that are available. Or if a process is nonstationary, it may be nec-
essary to out the total data record into small segments in each of which it is
believed that conditions are substantially stationary. For longer data records,
where standard FFT techniques can be applied, it has been recommended that
both spectral estimation procedures be applied and the results plotted together
to glean maximum information about the true spectrum (see reference 12).
This seems particularly useful when some pure tones are present in the input
data; the standard FFT technique is ideally suited for the analysis of pure tones
or very narrewband components.

i

I
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Appendix A

RECURSIVE SOLUTION

If we employ (52) in (46), there results

k 1*
k 1~ 6 ,0!A P. (A-1)

k=0 o 0o

Now define

kk k(P) (A-2)0= k < p

where the dependence of the coefficients on the order p in (31) is indicated ex-
plicitly. Then (A-1) becomes

R° RI ... R 1 (P)
I -1 p /000

"R I R -a 0
0 1

(A-3)

R •R 0 P 0I p o° P

where the matrix R is Hermitian and where we have slao indicated that the real
quantity coo is dependent on p; see (47) and (51). Equation (A-3) constitutes
p+1 linear equations in the p+1 unknowns a?), .... 4), 1/o).

The solution to (A-3) oan be obtained recursively as follows (see, for ex-,
ample, reference 11 or reference 24, appendix B):

a1  =R/Ro- -R a1) R (I al) (A-4)

1 0 (1) 001 ~

A-i

. • . . • , • , ." .. . ,§ 1
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for p 2: SP-1

R " •-i) R .

k(P1

R0 k = ak * R k

S .km ,1

(. ) a(- p) -I)* k= 1, 2, .. p- 1, (A-6)

_ý k p-ip a -

(P 1 R R-m a~ R - a~" R~ a- p
0 k o p p E- k 7p5 \~~I00 00 (A-7)

rhe last step in (A-7) is obtuined by substituthng (A-6) and employing (A-5). It
1i very important to notice from (A-6) that oziue 9 is specified, all the p-tb
order filter c.oefficients can be calcu.lated from (p-1)th order coeFficients. Tha

same is true of (A-7).

If we use (A-2) and (53), the rniigtmam entropy spectrum in (55) oan be ex-.
pressed as

/,(P)

G M 0 < (.).(A-8)Gof0 P 2• 2'
(P exp (-12 ,r fkA)i

k-O

The similarity In form to (1.4) will be complete wher. it is shown (in (67)) that
i/0•) is the minimum value of tLe average magnitude--squarod error for a p-th

order predicive filter; therefore o(oP) must be positive for all p, for non-negative
definite R. Equation (A-7) offers a recursive calculation of the average error; it1
can be started with - R . (In fact, (A-5) through (A-7) can b6 aeed for p > 10

when that starting vafue is used.)

A-2
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Since c(p) must be positive for all p, (A-7) indicates that00

aý) < I. ior k - 1, 2, .,p. (A-9)

This Is equivalent to having all the zeros of

P k(p) -k (A-10)•"a z

k=O

(where the remaining coefficients ace determined via (A-6)) inside the unit cir-
cle, 0, in the complex z-plane; see refE'rence 1, page 567, Therefore

p
B ( .) ( -EE a' )Zk (A-11)

k-[. k='0

has no zeros inside 0.

I,
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Appendix B

- IEVALUATION OF MAXIMUM ENTROPY

I The optimum spectrum is given by (36) and (37). The maximum entropy
then follows from (30) as

Ent , -a / d.n (f)A j dfn(f) 4.jny,*(1F) M el +62B

(B3-1.)

Consider

I p
A (f2nfkA) (B-2)1 /4 k=0

* Letting z = uxp(i2trfA) and using (33), (B-2) becomes

- .2n B(z). (B3-3)
I

where denotes counterolockwlse integration around ine unit circle, 0, in the
complex z-plwie. Now

3 (z- k k (B-4): B~z) • 2: ak z = p ' (z V k B4

k= 0 k-1

where, from (A-1.4), zero locatiozu 1Ok0 satisfy

{ " 
k1 > 1, all k; (B-5)

that is, all the zeros of B(z) lie outside 0. (There can be mtulttple-oroer
zeros in (B-4).) Mso assume p I1 for now. Then (B-3) can be expressed as

i P,..'

- I. 
- v :q
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In + An (z o k]
1 ~k-1.

p1
- na + F, .-- A In (z - ok]. (B-6)

p k=1i.f zk

But

In (z - ok) An (- ok +In (1-

I n (- ok ( k-L - ... for zj <1; (13-7)

k 0 k ~0k/ 10k

that is, expansion (B-7) converges for IzI < 1I,0. But since IOk >1, the region
of integration in (B-6) remains in the convergence region of (B-7). Therefore,
the integral in (B-6) is

i2f z In (z-°k) J 0y - n (-°k 0 k -'" z 2In('°k).(B-8)

Then from (B-6) and (B-4)

p 
.. p[I.t= np + ., n (- =-.] n [ 17 -k=1 k) I

= n B(0) = -Inn a° (B-9)

And from (B-1) and (B-4)

dfan*(f) /A df A a * exp(i2, i fkA)
l=0

B-2
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i•ffj"Tn i•f y '"[, z
1.ka 0£p

* -- n

P k=f

1 fdz

- (B-10)

Now--na,- :: -11.:. f~l•I i (B-li)

! tha isexpasion(B-il) converges for Iz•l-•i . But since Iokl >1l, the

Sregon o inegraionin (B--i0) remains in the convergencoe region of (B-il).

' Theefore theintegral in (B-10) is
*no) + 1( -* - (- o.)

(B-i.2)

, Then from (B-t0) and (B-4)

r i Pr

e2 = "I n a+ An (- o - -.]
P k=1

A-.n B*(O) =I.n o. 
(B-13)

k k)-3v

, .. . •, , : , ,4;• ,,.,,..,• ..
An 

.fo < 1;.

.•J•,~ ~~ ~~ . • .. .
z .... ,,..'.•.... •,,,L' i ;. "--.:;"
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Combining (B-9) and (B-13) in (B-1), there follows for the maximum entropy

Ent A le iIn (/c 0 0(B-14)

where we have also employed (52). (For p = 0, a separate derivation yields
(B-14) also.) Recall from (51) that coo is the upper-left corner element of R-1,
where R is defined by (47).

B-4

* I

S ¾•... : + : , i • " . • + . , . . .• *

' ,,

• .',

4+ . . . . .•, l -i'• .+ . +" .-. +L +. . . . , +" J.+ ,,+ + ' .. + '""
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Appendix C

IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM
FOR MINIMUM ERROR; KNOWN CORRELATION

We define the orossoorrelation function between minimum error 7 and input
x in figure 1 as

C, all. (C-i)

Substituting (59) and utilizing (I), this becomes

P
c ,- E 7n R1_n, all. (C-2)

no 0.

Now from (64) and (65), we can express

A-N._ S. (C-3)
00

Thus, (C-2) immediately yields

C1 = ; (C-4)
o, 1 _, _ p

that is, mini mum error value T k is uncorrelated with the past p inputs xk.1,

""k-p-

Now using (59) and (C-1), the~autooorrelation function of the minimum
error is

p PE 'I' * = I: '* 'r .- F,-* C ,al, (-6
jE = k-k n=- n k nk-- C , al " n (+-5)

C-1

- -- = : ' " " . ... . ... .• .. .. i • '. : " ! ' : " ' . , , . . " " " ... . ...-4,
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In particular, using (C-4),

But from (0-2) and (66),

C_, F, I R -R E 'R (C-7)
p -i n p+i-n p+i = 00 p+i-n

Therefore, assuming Ej - 0 Is equivalent to assuming Cpl 0, (that is, mini-
mum error ?j1 uncorrelated with' input xk-p-A), which in turn Is equivalen~t to
requiring

R + - nmo R R . (C-B)
nu E 0 p+1- In --

This relation, which may not be true for the actual process {xkj~ is a direct
resu~lt of assumption (70); the quantity Rp+i in (C-8) is really an approximation
to the true (unknown) correlation value.

Next from (0-5),

E 2=-1*V C p+1+V C p2(0-9)
2 p-ip. pp2

Assuming E2 " 0 (in addition to El = 0) is equivalent to also assuming Cp+2 -10
which in turn fromi (C-2) and (66) requires that we approximate according to

Pc P
R 1:0no pF p(-0P+2 n=1 ~00 R+2-n n-1 n p+2-n (-0

Continuing in this way, it follows that assuming white noise for j~j that
is, assuming

-f 0 for 2 2:1, (C-1i)

is equivalent to assuming that C, 0 for I > p + 1; that Is, the minimum error
* ~is uncorrelated with all past inputs. There follows the approximations

C-2
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Pa P

R z no R T Ri for 2!p +1I (C-12)
n-1 00 n=1

This recursion relation (starting with known values R1, R2 ... o Rp) can be
considered to be mi extrapolation of the known correlation values ino regions
where they are unlmown.

If we augment (C-12) according to

R u-'R for ~p+ 1 (C-13)

then it can be shown that the spectrum defined by

A/C

A Rt exp(-12rfgA) = co - -' ' (C-14)

:1 ' exp(-t2wfnA)
n~'

which is identical to (71). The transform In (C-14) converges if IARpj decays
with increasing I.j , that is, if B(z) of (56) hac no zeroc inside 0 .

C-3/C-4
REVERSE B -ANK

, '?' *" .j; .... . . . . .
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Appendix D

STABILITY OF RECURSION RELATION

The recursion relation for approximated correlation val~ue. is given in
"(C -12)and (75) as

S ) I l "• • L'kfor I• > p + 1 (D- 1)
, ; k=1

Therefore, )k -k -. (3

I1) P-k I+k

("-p+1 k-I I-p+1

But

-I+k P P
R 1-k R 1  z F, R z

I=p+l Jmp+l-k J-p+l-k

CD
U~ l ,.-I Vk(z) + U(z), (D-3)J-p+1

where

, z R -(+i-k)zp (D4
Vk(Z) t Rp+l-k z + Vk-i(z), k>2; '(z) zp (D-4)

Vk(z) involves the starting values Rp+1.-k* "., Rp for 1 < k < p. Employment
of (D-3) in (D-2) yields

P P

U k z -kU vkz (z) rk Ak , -5
k-l k-1

D3-I

• I t" •-'-*. "........ .- - -----.... . • " . , w. ** . . ..
.. " ' < . . . -. -,, .
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or

p P

W -k z Vk(z) cko z Vk(z)
k-i k-iU (z) ,k= M k- I (D-6)

P -k P - k
Uz - "k z F- p ko z

kal k=O

where we have utilized (66). In order that recursion (D-1) be stable, the do-
* ' nominator of (D-6) must possess aU its zeros within the unit circle 0 in the

complex z-plane. Therefore, B(z) of (56) must possess all its zeros outside
O if recursion (D-1) is to be stable. This is gtaranteed by the results in
(A-9) et seq.

i

1)-2

• ., I -"..•.-l ; :. ' _"' - , , .!
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Appendix E

IMPLICATIONS OF ASSUMPTAON OF WHITE SPECTRUM;
UNKNOWN CURRELATION

The minimum error sequence is given by (96) and (101) as

P

alkk
n- 0

The sample autocorrelation of J"kj is defined here as
ip

F -nN ()+n-m
k m,n-0

using (E-l) and (98). The sample spectrum of I{kj is defined here as

H-(f) a F exp(-i2irfIAe) - H (f)A (f) , IfI < 1 (E-3)

where we have employed (E-2) and (107) and defined the sample spectrum of
1XkI as

H X(f) _8 S , Se xp(-i2,ffia), I f I < 2. (E-4)
x ' I -A

Therefore, (E-3) yields

HT(f) I"x -F"-1(f) f, ,(ff)2(E5

Now we will assume that the sample spectrum of {tko is white; that is, we
set

E-1

L _____________A_4.:__

' ' " z ; , , ' ' ' . "' ' # •
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Hi- (f) =KA, If I < i_ (-6

where K is a constant. We then adopt an estimate of the sample spectrum of
sequence iXn} N according to

Hx f H = H = _n___0_KA , If : <(E_

S• P2 n 2 2A
E T exp(-i2ivfnA)

zinn- n

and adopt a scaled version of this quantity as a spectral estimate of process

Gx _2 If I- (E-P)

Tn exp(-i2irfnA)n

The white assumption in (E-6) forces us to assume that

F, - 0 for A 0, (E-9)

as (E-3) shows. In order to see what this implies, we utilize the definition of

the sample crossoorrelation in (109), along with (96) and (98), to obtain

p
kDt ENx an 91S- all .(E-10)

k n=O

Use of (101) then shows that

D, 0 for i <_ p. (E-11)

Meanwhile, the sample autocorrelation in (E-2) can be written in the form

1~ p

F, " D allA, (E-12)

n= 
0

E-2

t,,.
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upon employment of (E-10). There tmmediately follows from (E-9), (E-11),
and (E-12)

F =�D �0. (E-1.3)I. p p54

But then (E-9) and (E-1O) indicate that

p

S (E-14)

n1 p-s-i-n'
where � am the solutions of (102). But relation (E-14) may not be true
for the quantity � actually obtained from data � � via (95). Thus, as-

sumption F1 - 0 ii forcing us to assume that S can be obtained via (E-14)

and (102), when obtained fromj Next from (E-12) and (E-11),

F �r D 4�*D . (E-15)2 p-i p+l p p+2

Assuming F2 = 0 (in addition to F1 0) is equivalent to also assuming D�+ 2
which in tum from (E-l0) requires that

p
S �V'�S (E-16)

n p.1-2-n
n=1

Continuing in this way, it follows that assuming

F1 =Ofor A>I (E-17)

is equivalent to assuming D1 0 for � �p 1- 1; that is, the minimum-error se-
quence is uncorrelated (on a single member function basis) with all past inputs.
There follows the estimates

* p
S1  L � S,� 2Žp + 1. (E-18)

n= I

Stability Is discuswad in (111) et seq.

E-3/E-4
REVERSE BLANK

** -
jz . .;
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Appendix F

BOUND ON CROSS-GAIN

The value of the cross-gain gp in (155) can be written as

N (N

Tnhe+ np =P+) nmp+, "lgp N -)2 i (r1\n-)e),

n-p +1 n.p+1 n +

The first factor in (F-1) is of the form of a correlation coefficient of the (p-I)-
th order forward and backward sequences and can never exceed unity in magni-

4 tude (by Schwarz's Inequality). The second factor in (F-1) is almost always
very close to 1: let the pair of sums

~ (P-1) 2  N P1 i21 nSn f and b n-1 A and A(l+r) (F-2)
i'n=p+l n-p+l

where 2 0 without loss of generality. The second factor in (F-1) then equals
'+r/) , which is never larger than I and is tabulated below. Thus, gp in

(F-1) is virtually identical to the correlation coefficient of the forward and back-
ward sequences, since r is near zero with high probability.

0 Table F.1 Second Factor in (F-i).

r.0r.1 .2 .3 .4 .5

!l r1/2
1 .999 .996 .991 .986 .9801 +r/2

F-1/F-2

REVERSE BLANK

I.''--- ~ -. . . . .. . . . . . ....... ......... .. . .
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Appendix G

CLOSENESS OF ERROR MEASURES

Two possible error measuires for, the Burg technique were presented in
(150) and (156). For p - 0', employing (154) and (152),

( ).N 2E'
n1l

Comparing this result with (151), we find

Thus, the two error measures a~rq Identical for p -0.

Next from (150) and (1561)

~(0) -I(1)I1
2 ). (1 jal)2 ' xI

whereas from (156), (160), (155), and (152),

F = -IL 1 2(N-1)

a(' 1 ()2 +J() 1)
1± 2) (N-1) nj + n-1I

n=2

Ia1' 1Ii2 + x12 + 1x312 +..+INI+IxlI+IX *
+IIx2 x 3 N x-i .'+JN12+~x

la 1 DGN-
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But now reference to (151) and (G-3) reveals that, for N-1 large,

F(1) (W .( ( O1)2 ) . P (1) (G-5)

Continuing with (150),

.(2) (1) -az2)I
2  (0-6)

And (156), (160), and (155) combine to yield

02(N-2) -
(-1 )

But from (154),

N 2  
(

o 2(N-1) n-1

Comparing (0-7) and (G-8), we see that, for N-2 large,

IF'2  (1 - I a(2)12) Fj. (G-9)

Then employing (G-5) and (G-6), we have

(2, ( (2)12 p (1) p (2)0

which is the desired relationship. In general, for no bad data points, we have

F(p) W P(P) for N-p large (G-11)

"0

Numerical computations have borne this result out, with the two quantities not
having any ordered relationship; that is, either quantity can be larger (or
smaller) at different stages, p. (G-9) generalizes to

F(P) I -a(p) )F(P-) for N-p large. (G-12)

0-2

S........... ........ i .......'"i: .......... i: ........................... .i...... i........ i . ... ....... ...... ....... ...... ...-...-... -......i.....



TR 6303

Appendix H

SCALE FACTORS IN SPECTRAL ESTIMATES

Instead of using a unity value for the average minimum error or residual
power in the numberator of (167), we ould unse the value given by (156), Then
our spectral estimate would be

A F(p)
A (f) a ,0 .. .. ' I < •^ (H- )

_ __1_-_ _( P ) _ _ _ _ __f f A 11 2

SAn alternative approach to to usa an arbitrary scale factor K and choose it
so that the area under the spectral estimate Is equal to the sample power (151),
as suggested under (108); that is, set

A AK 1

.. ...2' 2l <.A'(HZ

Q - ( p Vexp(-121rfka)

and force

2A N
J dfG(f),P(0 , 1 ( (H-3)

I %N n,12

Subatituting (H-2) in (H-3), and using (159), we havo

p(O) df 2 K (H"

"" 1 - exp(-l2jyfkA) 17 ).-

7k-1

H-i
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The last step in (H-4) is proven as follows: from (A-8) and (29), we know that

N 14

2. a

II

But from (A-7),... ... .,

R 1
Ro 000 (H-6)

0 00 - p)12" ,oo a' -ý .a l P _ I (.0, 2

M-1:~

where, wýe ,hys employed Ro 0o), - 3. The relationship in, (4-4). holds when the
filter ,oeffloqeaqts qre doterinied via (148).. ,, . ,.

Therefore, (H-4) yields, with the aid of (150).

K 0P, 17 Lm1 P (H-7)

and the estimate (H-2) becomes

^ •P(P)

.p ) 2.IIIfl <1(H-8).• l .. )exp'(L-12ff'.k ) ,,

The very close similarity of values between the alternatives (H-1) and (11-8) is
made evident by the resu.lts of appendix CIO th partioular (d-11), Thus, th'eie:i's
virtually no difference between estimates (H-i) and (H-8), for no b*d data
points.

H-2

!! ~~~~~~. . . . ... . . . . . ....... -. ".. •. ...... '-."-.:..:.-. * " i ~ i..

**, . . , • • . , * , .* ,... .. .~ . . ,
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App4dlx I

, ,B.ASEpý,SS 9?F PVRG'S CORRELATION ESTIMATE

S. •I.,., I'

For the Burg teohnique with p 1, N - 3, we find frotn (162) and (144)+that
(foirreal data) ,11 r ,_

^ 2 C 2 +x 2)

1. 32 . . ., ... .. , (+-1,)
1 2 3

,x 11

The mean of this random variable depeuds on more than Just W (w i=)2 in
fact, it depends on the third-order joint density of (xl, x2 , x3 ). As an exam-
ple, let

x1 . u, x -2 (u+v), x 3 = v, (1-2)

where u and v are independent, zero-mean, unit-variance, Gaussian random
variables. Then x1 , x2 , x3 are zero-mean, unit-variance, Gaussian random
variables with

x X1 --= -xo. (1-3)2 1 3 2 F+7,31

Employing (1-2) in (1-1), we obtain

2 2 2
1 + 1 u+v) 23u +2uv+3v (1-4)RI --/•6 u2 2 t

1~u 2 +uv+y 2

Therefore,

-7- OD u 2 + V2 ) 2i + v) , (u 2 4-2v + 3v 2
R 1- 7 IS0du dv exp 2 Uv u 2 + uv +3v2

1-1

-. , ,- - .-- •

• • ' I **I I |'I II **-4'
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1 r3 /2 (C + S) (3C + 2CS + 38
- 6 _ i _ p(-r2 ) dG 22 (I-5)2f C9 + CS+B

0 -i,

where we have changed to polar coordinates and let C m con 0, 8 m sin 0. The
integral on r in (1-5) Is2, and the integral on0 is 4w(2 -)

Therefore,
R 11' = -+ 1 (.9484), (1-6)

which is not equal to

xX X X x (1-7)
2 1 3 2

1-2

.'4
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Appendix J

FORTRAN PROGRAMS

1,i
The programs in this appendix are written for real data, but may be readily

generalized to complex data by means of the general equations in the main text.
From (H-8) and (H-7), for real data, the spectral estimate is given by

A /7 - (k) P(O)

e,(f) If 2' I < -.;- (-1
k-1

Let frequency increment

11JN (J-2)

where fN is the Nyquist frequency, and J is an integer. Then, using (H-3) and
the real behavior of the data,

1.

-p 2- ) J/2

(0) 2 f df "- (f) • 2 'a ) e - J)
P k= 1 a m=0

p)2
I - a~p) xp(-i2irmA~kA)~E akk-1

2(0 2 J/ J/2
1 P (0 17 1 k

k-1 M=e p(-iP)kJ 2 M= M I
kI - Fa xp1 f k0

k-1 (J-3)

J-I.

S . ' - i. . . , " '. - . ' . . . ' . .. ' ' .. : " ' -" . '

4 U4
• 

Lj. 
t".
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where I Imn is a set of integration weights (for example, trapezoidal). So we
can compute (independent of time increment A) the quantity

In 2 (kfr •m

k--1

which represents the fractional power in the frequency band

In2 2• / (J-5)
JA ' JA J

that is,

J/2 P

mO m I P() 
(J-6)

if estimate Gx(f) in (J-1) has been sampled finely enough (that is, large J). The
denominator of (J-4) is recognized as a J-point FFT of p+1 nonzero numbers;
hence, J should be chosen as a power of 2 for speed purposes. The programs
below yield the fraction of power in frequency bands of width (JA)-1 , if J is an
integer large enough that the spectral estimate (167) or (H-8) is adequately sam-
pied to keep track of its peaks.

NO BAD DATA POINTS (SUBSECTION 4.7)

The data generation is accomplished via function IRAND, which generates
integers uniformly distributed over (0, 235- 1); by RAND, which generates num-
bers uniformly distributed over (0, 1); and by TINORM, which generates zero-
mean unit-variance Gaussian variables. The FFT used below is that presented
in reference 25.

* J-2

"'. ... ., ". . .

- I . . ' • , . . ' i. . ' , . ' . . ' ' " ; " ,, , - . : . P .
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L. SPIECTMAL ESTIMATION USER: CHAN69 LiNt 13 ANO REPLACE LINLS 17-31
C N a NUMBi~ER OF UATA POINTS
C X(I),....X(N) a INPUl DATA
c PIAAX a MAXImUM ORDER OF FILTER
G P09UT x BEST ORDLR OF FILT0.R
C A(1)e...eA(POIST) N PkEVICTIVE FILTER COEFFICIENTS
C PROD a 3RqJQUClI-lA(P)**l) FOR Pal TO PIEST
4. 14NU(I),...,gOO(PMAX) 8 NORMALIZED CORRELaTION COEFFICIENTS

CJa U1ZE OF FFT (NUSl 0E A POWER OF 8)
C XX(l)#svsoXXW2+.Ia) U FRACTIONAL POWERS. FROO DC TO NY0UIS1 FREQUENCY

I!C CO(I)....,C0(J/'4+I) a SUARTER COSINE TABLE4 C Y ANU YY ARK REQUIRED AU'(ZLIARY ARRAYS
PANAMLENh Na LOW. PMAXXLOP 020O48p JI4lmJ/'O*1
INThOER PbEST
DIMENSIONi X(N)oY(N),A(PMAX),RHO(PMAX)eXX(J)PYY(,J)CCO(tJ41)

16 INPUT UATA IN X(I),....E(N)
Cjh.PINE IRANOUI*5**I5+( (I-SlN(Lle Is~e5) )iQ)03435973S357
Wh.INE RANDUFLOAT (1)/34359730367.

NSTAI4TXN,400 re 4"LL DISCARD INIIIAL 1400 POINTS
KI((I)vol

XX (3) 30.

Do 11 Lv6eNSIAkT
WzRANQ
XX(L)3a.76O7*XX(L-I)-3.MO6~*XX(L-gI*a.,b~b.XX(L-3I-

IG.9135*XN (L-'4)*TINDRM(kANDS1Il)
11 Cf,4TYINUE

Ug 12 lIIN
&I X(I)sXAlI INSTART-N)

PRINT I.
1 FOKMAT(1#9 INPUT 9AlA1')

G EVALU.ATE ONLUICTIVE FALTER COEFFICIENTS
GALL Mukb(NI~NAXXeYoPbESTAPRODRHOI
PKINT Vl, X(N)

S FOKNAYC/? MEAN 0#9L1i40)
pHHNT lot Y(h)

10 FoNmAT(' STANDARU IJEVIAT1ON Xle~l3ed)
PRINT 2p PISEST

S FORMAT(It POWs alt13)
PKINT 3 v

S F~giAT(/f F~RE61CTIVE FILTLIR COF.FFICIENTb~')

* I ' FvmMAT(5E2O 6)
PRINT be PROD

b Fi~kMAY(/? PRODUCT(I-A(P)**2) =1#913@81
P14INT be.

b PURI4AT(/? NORMALILLU CORRELATION COEFFICIENTS11)
* ~P14INT 14, (HHO(I)#I~lpPMAX)

C LVALVATE FRACTIONAL POWERS
CALL PQWEk(IPMkSTpAtPRQUutJpXXYYfCQ)
PkINT 7o

7 FOkt4AT(/f F.RACTIONAL P041E1Slf)
L:J/2*1
PAINT be (WXI)P131LOW

J43

i~ ii~ **.*; -7 .. ___



SWIROUTINE SUNSGINPMAXoXY.PIISTA.PRODRHO) 9 1 FED 1976
G THIS SUBIROUTINE COMPUTES THE PREDICTIVE FILTER COEFFICIENTS DT

C RNOv)NUMBER OF DMAX PONS INTRA~EGR CINPULTINCEFIN OPU
C.PA IMEN~UM RDONO F~YNeAPAILTR$OIPMAX 1 INPGUT R0~MI RGA

C~IL Xl'XlPRECsIOXN) DATAARYOdEUI LEE NOTU

C ON NSONTU~ XMIX.(1)eA(LeRoMO(1 (IPA~AEPMXPostPAIM

G O OUPUA.Te 141 GRICNa YPRINT a, PAilivq 1Aps IAPAOM
COOUPUT# XAN) a MEAN ueAN,' Y(S TO STNAGIORD NUMOETN OF IAAONPUT DATA

C 0 FUS a 3. BETODROIITE1IT0A U
C AUMIRACT MEAN, ANULSC)aLPEDTUICTIV VARIANCOEFCETERA

L H~ e~RH(MX a NORALZ9 COREATON OEFIIENS$OUPU

DOUBLE PRECURSIONSA

IFPAX6e.*.R() PRIN 2tNUO.#

C COPUTEMEA

C CCULAT CiOS-AN 1218h

Dwo 3 .U0I

SAtlsAX(J.)*T(~

PAolCuMjOO, C(.w6

C. CALCUL.ATE FILOk. COEFICN .TI EEh. 1551..STf~ t

1DOPC0 7O TO G

SCALCvLATE NULTRALE COFRECLATSIO CEFFIC0061EN TOREu N11.9~ o~P

IFCpoEdi.L) so TO 11
V ~~~Li=. l IL

Lv 1=10L.X

J-4 ~ zt-l-*XL

CALC6AT NORALIED CRREATIN COFFITENT EQ*L4

T..I d .-L-x. " .' iLq,(MF)~ ~ ~~~~"7~
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GCALCULATE AKIKAgLIS INFORMATION CRITEIRONI ELOS, 15660d

AL~sLOG(RELERR)+*2*FLOAT(IP)/ (N-P

uA1r(FAtC0fARU ANO BAKW0I. T EO ECE 10G.1

1uQ 11 Is~lel
Le VFF9fiPMA )60TO1

ll t1)3YZ4.*1
Y(P)mv
So TO 6

IFIpflKSTdIQ.PMAX) 6O TO '4

Do 17 P&6pPmAX
A(P)NOO

C THIS SUBROUTINE COMPUTES THE FRACTION&L. POWER$ IN SANDS 1/4iJ.OEL1A)I Co. J-'4GPOSaBETODRO ZZO INTEGER INPUT

GYY 2 AUXILIARY ARRAY$ SCRATCH INPUT
C CO(l)pssovCQ(.Jlf4+I) * QUARTER COSINE TABLE FOR PFTO INPUT
G DIMENSION XXMW)oYY(.J)#CO(4./'4+1) I RE*UREO IN MAIN PROGRAMC DIMENSION AIPMAX) IS REQUIRED IN MAIN PROGRAMo hMKRE PMAX.fE*PIEST

INTEGER POLST
DIMENSION AILtX9(l)pYYCL)tCO(1)

F . IDO I MODsPEST

DQ I IzL#J

a YY(12.O'
Lm#4'427.LQI.j)+*.5 hl LOGAW.)
CALL MWLFFT(XX#YY#COPLP"L)

I.'O 3 laliL
3 XX(I)zF/IXX(I)**2+YY(I)**l)

AETUHN
ENU

J-5
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INI'J UA7A
b 1*00L0 159oa415B2 74Aoa8 -.9271T7143+01

*JbbbBO b?681617+01 .'468712014+08 060860199#2 396oao
-a3lL+8 -.banslao"4oa -.3l'4373A9#09o ..S595664+0~1

*I.U~9~ .%365Bi4a&#Cg .'*103511.I0t .a7aaoa34940 ..469546a~120
-,B3L.~*a ,.%o~d~bl3+08 -.35354968#01 .15176634#09 .130611593640P~
.JO7&J71Og .733IJ318#Oa 0J3780II45402 .1976I'O33+01 -.3%6E17363442
-5b360 -.*0817300*08 -.10665a73+02 dAA3k4q'41#0& *118&?7674409

.'469b!0b25+0 lkln -11?39'431#01 -.340O900*0 *3.Oa?#)
-f119sbuho+Qd .14019O" *lhO *e.064w900#0 ,d6§4iI?1+02 .891316741+02

vdb5u3*k )a5*i.??+cL -.1'4015275+01 -.311136i*5i~ .,3ThL1i5SB*up
-.2463'abo~Od -.%b75bda6A0 dl6aQ0 .35915062+02 .3t1'457024op
410%3957+04 -611049'47008 -.a61987'e44+02 -.4Ll7qi9*viIj -.19831724401

-,IblomiJvb+OL l&aJQfA"4+Q4 .A$99450
7
*01 &$9f1A4964+00 *LJ3lSi~i.op

..3"*boaI 00 -*ld3&d&3a.c9 657900 -o~SdI.I43,O -4uaIeMev+0

.13023)073+04 .mOioyo oQ4lkl01+0? ,44170043409 674Qdo
-,bO.bboOI+0 ".004b?3i2+i0l -,o7eII6J3342 *,UBA11747+0 50CDft
.Sb'4037ab+c4d .*3bC34.4+09 .bO040977'4+01 *.ldsc .7934II.5q+Ot

O-LAN L ll73Jb33#oo
ý.1ik,ULANH wL.l~UI&C4 x ;36olk

i1ut*T a '4

4kkVUCT(1-AMO~*ýI M *.60400~-03

NUhALIkUCQkLLTIQIJ OLFICN

BAD DATA POINTS !,(SUBSECTION 5.2)

C SPCCTRAIP ESTIMATION FOR BAD DATA POINTS U6IRO CH4ANGE
C LINE 1? AND REPLACE L.'N9S 29-36 AND '.&w46
C N a NUMBER OF DATA POINTi
C X(L)....X(N) a INPUT DATA
C iMAX a MAXIMUM NUMBER OF BAD DATA POINTS
C S n ACTUAL NUMBER OF BAD DATA POINTS (MUST HAVE 3.L1.SMAX)
G M(L),..,N(g) 81 LOCATIONS OF BAD DATA POINTS
C PMAX a MAXIMUM ORDER OF FILTER
C PBEST a BEST OROXR OF FILTER
C A(LD....,A(PSEST) 8 PREDICTIVE FILTER COEFFICIENTS
C PROD a PAODWCT(&-A(P)**&) FOR Pat TO P09ST
C RHO(lb...,#RHO(PMAXl a NORMALIZED CORRELATION COEFFICIENTS
C 4J a SIZE OF FFT (MUST SE A POWER OF 4)
C XXg1)tsos#XX(~J/a+L) 2 FRACTIONAL POWERSo FROM DC TO NYQUIST FREOUCNCY
C. CO(l~fss*,CQ(~J/'..q) B QUARTER COSINE TAISL
C Yo lYe AND IP ARE REQUIRED AUXILIARY ARRAYS

PARAMETER Na 1000 BMAXE 25# PMAXz&Q, DollO'.. #J.1841'.+1
INTEGER 50POEST
DIMENSION X(N)eY(N),A(PMAX),RHO(PMAX),zX(,J),YY(J).CQ(,J'.1
DIMENSION M(BMAX)rIP(N)

C INPUT DATA IN X(l)#v..,X(N)
DEFINE AOU**I, L IO (4*t))a*'39 Ie'
DEF INE RANDUPLOAT (I)/,3'35973*367*
1:528L
N~lAkT=N+'.OO W WILL DISCARD INITIAL '.00 POINTS

--
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I: RAND

XX(L)U8.7bO7*XA(L.1)-3.8LOS.XX(L-8ý,3.653b*XXCL.I)m

EOTEH 8, AND ENTEIN BADDAAN PLOCTN NM))..MS
I: COTIU

Do La I) 3
12 x&) 37 +NTRT

PRINT 4p (Xll)oll

P1., (0) Rig)
Q0 EVALUATE' PRDITANVAE FIATERIOEFFICIENTS

PRINT go PUEST
9 FOMMAT(/ KAN~ 3'IPE4ob

PRINT 10I YN
10 FORMAT0/ STNDRDICiVE ILTIOR C~oFICIEN5I'

PRINT '4, PA(),1STST
4 FQKMATI/j OEST2914

PRINT as
6 VOHRiAT(/l PREDAICTIV COIRLATERION FFICIENT6 TI)

PRINT '4 KO(pIlMX

CALL QTRCUSICOoJ)
C EVALUATE FHACTIONAL POWERS

CALL POWg.RS(P8eSlsApPRtODo~.JXXYYpC0)

: IllAT(? F14ACTI NAL PowRS19

END

SUBROUTINE *URGBDCNPMAXXSeMIPeTPSESTAPRODeRHO) 6 2 FEB 1976
c, THIS SUBROUTINE COMPUTES THE PREDICTIVE PILTER COEFFICIENTS FOR a BAD POINTS
C N a NUMBER Of DATA POINTS I INTESER INPUT
C P14AX W MAXIMUM ORDK6 OF FILTERs INT909A INPUT
& XCI~oXjl~...,9X(N) a DATA ARRAY ON ZNPUT4 ALTERED ON OUTPUT
C ON OUTPUT, W(*#X(2b...,#X(PMAX) a A1IOPMAX),A5IOPMAXD,,..,AIPMAXIPMAX)
C 5 a NUMBER gP BAD DATA POINTS; INTEGER ZIPqUT
C 5(~M*,..MB LOCATIONS OF SAD DATA POINTS; INTEGER INPUTS
C THESE LOCATIONS MUST GE DISTINCT AND 6:E IN THE RANGE E1,N3

*~~~~~ 3 ~IPBh.ePN AUXILIARY ARRAY$ SCRATCH INPUT
C Y(I)tY(A)p##eYCN) a AUXILIARY ARRAY; SCRATCH INPUT
C ON OUTPUT. Y(ll3Y(&)p*@*#Y(PMAX) 8 A(~II)A(ll3)os,.,A(PMAXlPMAXW
G ON OUTPUT. X(N) a MEAN, AND Y(N) 8 STANDARD DEVIATION OF INPUT DATA
C PBEST a BEST ORDER OF FILT9RI INTEGER OUTPUT

* ~C A(.l),A(&)e.,.eA(PdEST) 9 PREDICTIVE FILTM COLFPZCIINT ARRAY
C A(W.IBEST ,(2IPBKST)f,*.,A(P0ESTIP5(ST)9 OUTPUT

J-7
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C PROD aPRODUCT(L-ACPIPBESTI*oa) FOR PfI TO P81STO OUTPUT
C NOCl)p..,,RHOCPMAX) 9 NORMALIZED CORRELATION C09FFICIENISI OUTPUT
C IMENSION XlN),Y(N)oAtPMAX)PRHO(PMAX) IS REQUIR90 IN MAIN PROGRAM'

C DIMEN4SION MCSMAX)OIPCP4) IS REQUIRED IN MAIN PROGRAM
INTEGER PMAX*SPNE$ToPtSP
DOUBLE PRECISION SAPS@
DIMENSION X(1),M),IIP(1),YCI).ACIIRRIO(L)
IF(DoOT 00) 60 TO 21
CALL BURG(NPMAXoCeYPbESTAPRODRNOI
R..TURN

al LON-0
IF(PMAXvGTe3**SQRT(L)) PRINT go PMAXoL

it FORMAT(/l PMAX stIi,' IS TOO LARGE FOR NUMBER OF 6000 DATA POINTS

C SIT UP IF ARRAY FOR P801 EQo 173
008&a IssoN

X3 IpCI)aI
C OMUTE MEANO .0:: UATA POINTS

00 L IsioN
IFCZP(IbEQ.D) 0TL
S1861,X'I)

I CONTINUE
SIESI/(NuB1

C SUBTRACT MEAN, AND SCALE To UNIT VARIANCE# FOR 0OOD DATA POINTS

00 3 mIslN
IF(IPCI~dEQ@O) 0D TO 3

* I X(I)EX(II-Si

*3 CONTINUE
SaxsGRTcs2/(N~e-i, ))
Tal. .58
00 5 IS1,N
IF(IPCI).LQ,O) go To s

Y(I)OXII)
b CONTINUE
C BEGIN RECURSION

PxO
PAODUC8id
AICMINzo.
PdEST=O
PRCJU21.

c wpwArt IP AHRAYf Ego 173
DOU 24 Lauod

.1 IF(I&GT.N) GO TO 2'4
Ip(I)mO

~4 CONTINUE
LUP+I
00 25 1:LPN

IF(KsL7*a5J PRINT 26o KoP
k6 FQHMAT(/l NUMBER OF VALID ERROR POINT9 IS ONLYIP13PO FOR PCIP13)
CCALCULATE CROSS-GAINI Ego 193

SAcOaDO

J -8
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tlPMA60t.~) 60 TO 7

7 COhTINUt

P OOoCJGpRtODucUCS$,-0.S)
C CALCULATE FIL.TER C0OFFICIENrSO E05. 1254196. STORE IN~ XfILb....XIp)

I (p.~ago1) to To a
LaP/a

J9IP-z)XXtp-I)-G*X(I)
Xi)*

C CALCtU6.ATE NORMALIZED CORRELATION COEFF.ICIENT$ EQ. 149
a IUA(P)

Iftp.ew,f) 60 To 14

00 15 Iml#L

CCALCULATE AKAIKEVS INFORMATION CAZIERIONS EQ$. 1944202

AIC;LO6ImKL9RR)+ls*FLOAT(P)/K
IF(AICo6E.AZCMIN) 60 TO 10

PdESTUIF
D&ItNA IC~p

11 A(4)UX(l)
1o ZI1P.E5.MAX) GO TO 16
C UPUATF. FORWARDi AND OACKWARD SEQUENCES4 E0.191

DO 12 IcNpL#-1
IFIIP(I).EQ*0) 00 To 12

T.a(t)-amYCI-1)

I12 CON71NUE
V (P)2G
69 TO 6

16 YMAX: OMAZE CMELTO
IF(PwESTLw.PmAX) GO TO 4

£COEFFicIENTs FROM PBESTa-1 TO PMAXI EQ. 165
6=PSLST,1
Lw 17 PULeP~MAX

00 la I:1,FBEST

0 RmiucP)=T

Y(N)mS2

kR4TURN

J-9
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SUBROUTINE poWERS(P8E5T#AvPNO~eJvX~oYYvCO)
C THIS SUBROUTINE COMPUTES THE FRACTIONAL POWERS IN BANDS 1/440DELTA~I [to 9-4
C PIES? a 0EST ORDER OF FILTER$ I NTEIER INPUTV NUC AC1ovottA(PBOT) 0 F14TER COMMICENT ANNYIINU
C PROD a PRODUCT(I-AIP)**g) FOR Pal TO PSESTO INPUT
C ji a SIZE OF FFT (~J1A*13NUM3ER OF FREQUENCY POINTS)1 INTEGER INPUT
C XX a AUXILIARY ARRAY ON INPUT
C XX(l12p,,.XX(..WA*1) 0 FRACTIONAL POWERS ON OUTPUT
G YY N AUXILIARY ARRAY I SCRATCH INPUT
C CO(l).,,esCO(/44) a QUARTER COSINE TABLE FOR FM1 INPUT
C DIMENSION XX J)oYY(JI),CO(J/iI,1) IS REGUIRED IN MAIN PROGRAM
CDIMENSION A(PMAX) IS R1KQUIRED IN MAIN PROGRAM, WHERE PMAX.GE.PBEST

DZMEN6ION A~l)rXX1l)#YY(1)#COI1)
FsPROD0291iq

I YY(I1)504

00 A ImLoJ
a YY(I)uO§

CALL MKLFFTIXXPYYPCO#Lt-l)
LKJI8*L
00 3 1mlvL

RETURN
END

J-10
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