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DUDLEY

ABSTRACT

This study evaluates and compares the production use of

three nonlinear programming codes. The three codes and

their developers are: SUMT by W.C. Mylander, R.L. Holmes and

G.P. McCormick, GRG by L.S. Lasdon, A.D. Waren, M.W. Ratner

and A. Jain, and GRAVES by G.W. Graves. This is the first

computer ccrrpariscn of these three particular codes. Each

code was evaluated with respect to the time and

sophistication required of the user and the degree of

mandatory or potential interaction between the code and the

analyst. The comparison criteria were accuracy, robustness,

efficiency and ease of utilization.

Eight current and realistic test problems employing

from 9-100 variables and 2-20 constraints were used.

The results revealed that no single code was superior

or inferior in all aspects. The choice of an optimal code

among these three would be dependent upon the problems to be

solved, the ability of the analyst and the desire of the

analyst to alter the code for his own purposes.
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I. INTRODUCTION

This study compares and evaluates the production use of

three nonlinear programming codes. The analyst was not an

author of any of the codes, had some prior programming

experience in a standard classroom context but had no

previous exposure to a production nonlinear programming code

or numerical solution of nonlinear programming problems.

Obtaining a solution to a nonlinear problem of more

than a few variables requires the utilization of two

components: an algorithm coded for a computer and an analyst

with an understanding of the problem for which a solution is

desired. Finding the solution for a nonlinear problem

reguires an interaction between the man and the code-a

complex interaction with subtle relationships between each

component. Every problem will require a different degree of

expertise free, both the analyst and the code and it is

precisely this variation between problems that prevents the

separation of the analyst's responsibilities from those of

the nonlinear programming code. Excellent nonlinear

programming production codes provide a multitude of

approaches, but the analyst is the one controlling the

avenue selected. A production type code has to be general.

The code must be able to respond to the variation in problem

characteristics: in variables, many or few, objective

function, linear or highly nonlinear, constraints, many,

few, linear, nonlinear, equality or inequality. An adequate

code is able to handle all of these possibilities with some

degree of success. In many instances however, the degree of

success is dependent upon the ability of the analyst and his

familiarity with the internal actions and reactions of the

code and its mathematical approach.

A user of a nonlinear programming code must be able to



communicate with the code, he must be able to provide the

code with a useable interpretation of the problem and he

must be able to interpret the results provided by the code.

This requires the ability to program the problem in the

computer language employed by the code, the ability to

compute derivatives, a knowledge of the correct parameters

to select for the code and, even more important, enough of

an understanding of the printout to determine if a global

minimum has been obtained and if not what changes might

remedy the problem. A nonlinear programming code is a black

box requiring quality input in order to provide quality

output. The most sophisticated code is of little value

without a capable user.

A practical evaluation of any nonlinear programming

code must first examine the analyst-code interaction, an

interaction loaded with frustrations. All codes require

subroutines provided by the user to evaluate the objective

function and constraint functions. Host codes also need

first derivatives, and some require second derivatives, in

order to determine directions for improved solutions. The

code has nc knowledqe of the functions other than what is

available frcm these subroutines. A general evaluation

criterion is the relative ease with which the user can

formulate these subroutines, especially the first time user.

The code cannot operate without these function and gradient

routines; the accuracy and correctness of these function

evaluations determines the code's ability to interact with

the user.

There always exists the element of human error in

coding these subroutines, errors which if undetected will

result in inaccurate solutions. A code which leaves the

user with no clue as to the type and location of such errors

will cause delays in debugging. The total cost of reaching

a solution is not solely a function of the computer time



used but is jointly dependent on the time of the man and

machine. This author's experience indicates that, while an

analyst does over a period of time develop an increased

efficiency in using a code, for large difficult nonlinear

problems the cost of the analyst's time will always be a

significant part and often will be the largest single

component of the total cost.

This study is also a comparison of the codes, hopefully

a guide to potential users as to which of the three

nonlinear prcgramming codes might best satisfy a particular

need. Numerous nonlinear programming codes have been

developed over the years without a similar degree of

interest being shown in testing and comparing their specific

convergence abilities. The three codes chosen will be

referred to as GRG, SUMT, and GRAVES. The GRAVES code was

formulated in 1964 by Professor G. W. Graves and was

utilized in March 1974 to obtain a solution to a sortie

allocation nonlinear programming model prepared for the

Department cf Defense Program Analysis and Evaluation. The

GEG code, a Generalized Reduced Gradient Algorithm, was

developed jcintly by L.S. Lasdon, A.D. Waren, M.W. Ratner

and A. Jain as members of the Computer and Information

Science Department, Cleveland State University and the

Department of Operations Research, Case Western Reserve

University. The SUMT code was developed by W. Charles

Mylander, R.I. Holmes and G. P. Mccormick as members of the

Research Analysis Corporation, McLean, Virginia.

This is the first computer comparison of these three

particular codes. The GRAVES and GRG codes do not, at this

time, have widespread usage and (before this study) have

been primarily utilized by the authors and their close

associates. For easier evaluation of the results the SUMT

version 4 NIP code was chosen as the third and final code

because of its more widely known qualities and limitations.



This study was to compare the codes from the standpoint

of a user with only limited knowledge of the internal

operations of each. Although studies and tests performed by

someone thoroughly familar with the vagarities and intrinsic

behavior of a code do reveal the upper bounds of a code's

capabilities, it was desired to test the accuracy and ease

of utilization when each code was used by an analyst in a

normal production atmosphere. If the input routines and

tuning tolerances were originated by a user other than each

code's author would they continue to perform satisfactorily?

The codes were compared on the ease of preparation for

the first tiire user and on their response to an analyst's

effort to interact with the internal operations of the code.

After developing a feel for the weaker characteristics of a

code are alterations and improvements possible? The

generality of large production codes is such that an

innocent alteration in one area of the code may cause

complete disruption elsewhere. Perhaps all-purpose codes

are not really desirable for an analyst who over a period of

years may wish to alter an algorithm to suit his specific

needs. These three codes have very different approaches to

the need for interaction between the code and the user and

in comparing the user-code communication for each of the

three codes one must keep in mind the fact that the needs

and talents of each analyst vary as will the code best

suited to these needs.

These routines are coded in the same programming

language (FORTfiAN) and run on the same machine, the IBM

360/67. This eliminated the necessity of attempting to

compare run times from two or more different machines. The

IBM 360/67 is a multiprogramming machine; there may be a

variation in run times of identical jobs of as much as 25%

depending on the loading of other work on the macnine at the

10



time of execution. There is no effective way to deal with

this problem. All the codes were run under the same

conditions.

The best known study to date is a paper [Kef. 1]

presented by Colville in 1967, comparing 28 different codes

which were grouped according to four general

classifications:

1. Direct search methods

2. Small step gradient methods

3. Large step gradient methods

4. Second derivative methods

Colville chose eight problems from among a large

selection made available to him by the participants. Each

participant was then asked to solve this set of eight

problems using his own NLP code and the computer facility of

his choice. The results of Colville's study revealed many

difficulties, inaccuracies and discrepancies inherent in any

cooperative effort of this size. Of course, the time and

effort required for one person to program and test 28 NLP

codes would be prohibitive. Colville concluded that the

efficiency and performance of a nonlinear programming code

can be greatly affected by the method and efficiency of

inplementaticn on a computer. Several codes utilizing

identical mathematical approaches had a large variance in

accuracy and time. Algorithms which were identical from the

theoretical viewpoint were not at all comparable in

reliability, accuracy and efficiency because of considerable

differences in the method of programming these algorithms

for a computer.

11



In attempting to standardize the solution times from

different computers Colville developed a FORTRAN standard

timing program which simply inverts a 40 x 40 matrix ten

times. However, the comparison of standardized times is not

a precise measure and the Colville study revealed quite a

discrepancy between the standardized times of different

computers when using the same programming code to solve

identical problems.

In any comparative analysis it is first necessary to

develop a measure of effectiveness. The criteria necessary

for evaluating a nonlinear programming code are complex and

there exists no one formula which accurately weighs the

various advantages and disadvantages of each code. For

instance, the number of function evaluations is the total

number of times it is necessary to evaluate the objective

and constraint functions, in addition to any first and

second derivative evaluations, before reaching the final

solution of the problem. Although some studies have used

the number of function evaluations required to reach the

optimal solution as a measure of the code's efficiency, this

is not a very useful criterion for constrained problems.

The time required to determine the next point for function

evaluation will vary greatly among codes. Thus, the time

allotted for function evaluations may be quite insignificant

relative to the total solution time and the scalar used to

denote the number of function evaluations is really not a

fair factor for comparing the efficiency of different

nonlinear programming codes. On the other hand, actual

computer ccmputation time seemed to be the soundest and

simplest measure of efficiency of the codes. However, the

quality of solutions can be as important as their cost in

terms of computation time.

A. Comparison Criteria

12



The comparison of the three codes will be based on the

following criteria.

1. Accuracy of the final solutions

In evaluating general purpose codes a primary

criterion must be whether or nor the algorithm can solve the

problems presented to an acceptable degree of precision.

2. Robustness of a code

Although any solution which lccates a local

minimum must be considered somewhat successful, a code which

repeatedly attains global minima from both feasible and

ncnfeasible initial points is certainly more desirable.

3. Speed of solution

Total solution time is a function of the degree of

precision desired in the values of the objective functions,

the independent variables and the constraints. Because the

degree of accuracy depends on the termination criteria

employed to stop the computation, an attempt was made in

this study to vary the termination parameters so that each

code attained similar degrees of accuracy in all functions.

This procedure was not always successful for each different

test problem because of the variety of termination criteria

for each of the codes. The stopping criterion may be a

function of the numerical components of the gradient,

complete Kuhn-Tucker satisfaction, or a minimum absolute

change may be required in the objective function between

iterations. A steep slope or a relatively flat minimum can

cause each code to attain a different level of precision

even though the actual user supplied tolerances may be

identical.

13



Not all codes are designed to obtain the same degree of

precision. A fast, good solution may be needed or a

solution with extreme accuracy may be desired. The code's

design determines the ability to react to these different

precision requirements and requiring precision beyond

reasonable limits will completely distort time comparisons

between codes. Thus, in order to achieve comparable times

for each code in terms of accuracy, parameters were altered

after successful solutions had been attained until similar

but not identical degrees of accuracy were attained.

Perhaps the most accurate timing comparison between the

codes would be net computation time required for each

problem since net time does not include the time for

processing read and write statements and delays caused by

other unrelated machine activity. However, these additional

times do affect the actual turnaround time, an important

factor for any analyst working against a deadline. As the

study progressed it was discovered that the solution times

were typically significantly different for most problems and

therefore total CPU time was chosen as an adequate criterion

for the comparison data.

4. Ease of setting up the user supplied subroutines

for the evaluation of the objective function and the

constraint equations

In order to utilize any nonlinear programming code

it is necessary for the user to supply one or more

subroutines. Every code requires a routine for evaluating

.the objective and constraint functions and many require the

first derivatives, while a few even need the second

derivatives. The physical size and degree of difficulty of

the setup subroutines that must be prepared for code

utilization are two very important factors. Difficult and

lengthy codes are very vulnerable to human error. The

14



coding and debugging of first and second analytical

derivatives (especially problems without very sparce, or

recurring special structure in the constraints such as block

diagonal, angular, staircase, or other form) can be a trying

procedure. A significant factor is the value of the user's

preparation time. In some circumstances a less efficient

algorithm that can be easily coded for use is more practical

than an efficient code requiring many man hours for setup.

A comparison along these lines is highly subjective and will

vary from situation to situation but the relative degree of

difficulty involved in using each code must certainly be

considered.

5. Output available to aid in debugging new programs

Improperly coded functions and derivatives are

bound to occur for almost every problem. It is important

for a code to provide appropriate output to aid in locating

the particular mis-coded equations which are preventing the

attainment cf the solution. Most nonlinear programming

codes do have the capability of providing output designed

for checking for consistency between the function and

gradient evaluations.

6.. Computer memory region required

At most computer centers main memory requirements

largely determine the priority of job requests and as such

codes requiring large amounts of core will have much longer

turnaround times. Also many commercial data centers charge

for computer service on a kilobyte-second basis making

region equally important with time of computation.

7. Failure mode

All codes fail at some time or another, usually

15



for one of two reasons: either they are not suited for the

particular type of problem involved and a solution can not

be reached, cr one of the user supplied parameters or

perhaps even the initial starting point needs to be altered.

Some codes fail "hard" and the user cannot determine the

cause from the available output while others fail "soft"

with pinpoint details as to the last available point,

function and gradient values and, in the case of a binding

tolerance, the particular parameter that needs to be

altered. Quick and accurate determination of the cause of

failure can save an analyst many trial and error computer

runs. This is especially valuable in the case of long

turnaround times.

8. Growth possibilities

Contemporary nonlinear problems of 100 variables

or less are really small or moderate sized and the prospect

of expanding a code for hundreds and even thousands of

variables is considered. The growth in code and CPU time is

certainly not linear and a code's basic structure may

severely curtail its feasibility for expansion.

B. Test Problems

For this study eight problems were selected

encompassing various degrees of difficulty. The number of

variables and constraints range from 9 to 100 and 2 to 20

respectively. Most of the problems contain combinations of

linear, nonlinear, equality and inequality constraints. Six

of the problems have been previously published with the best

known solutions.

In testing any nonlinear programming code a prior

knowledge of the global minimum is certainly helpful in

evaluating the precision of the code. The last two problems

16



were expansions of models with fewer variables and each code

was tested against the smaller problem with only changes in

the initial parameters necessary for the actual test

problems

.

All three codes are sensitive to problem scaling,

therefore, ro problems with significant (or contrived)

magnitudes of difference between the independent variables

were utilized. Initially it was intended to test the codes

with hundreds of variables but this problem dimensionality

was not achieved because of computer memory and time

limitations. One problem, developed by the U.S. Army

Concepts Analysis Agency, consisting of 500 variables and 45

constraints was dropped because, although the Graves code

could solve it using 200K bytes of main memory, the SUHT and

GRG codes would require well over 1500K.

17



II. DESCRIPTION OF CODES

SUM!

The SOMT computer code was developed by the Research

Analysis Corporation in the 1960's and improved throughout

the decade. SOMT implements the Sequential Unconstrained

Minimization Technique for nonlinear programming and other

computation techniques developed in Chapter 8 of the book by

Fiacco and McCormick [Kef. 2], SUMT is coded in FORTRAN IV

and employs double precision arithmetic. The mixed

interior-exterior penalty function is used and several

options are available for minimizing the penalty function.

Specifically the SUMT code addresses the question of

locating the N dimensional vector x(«) that solves

minimize f (x)

subject to g (x) > 0, j = 1,2,. ..,m
J

h (x) =0, j = m+1,...,m+p
j

The SUMT algorithm has been developed to solve the

nonlinear programming problem in which the objective

function and the inequality constraints can be nonlinear

functions of the variables but in order to guarantee

convergence the equality constraints should be linear

functions of the independent variables. However, very

accurate SUMT solutions have been obtained in many problems

with nonlinear equality constraints.

The SUMT approach is to solve repetitively a sequence

of unconstrained problems whose solutions in the limit

18



approach the minimum of the constrained nonlinear

programming problem. To convert problems the SUMT code uses

the penalty function

m p

pfx ' r y = f < x >
+ -"i k ) )

h
± (

x / " r / ln g.
(
x

)

L
i=1 i=m+1

where the factors r are positive and decreasing as the

minimization progresses. As r is reduced, the barrier

effect is reduced and x(») may move closer to an inequality

constraint boundary. For the equality constraints the sum

of squares is used, thus, as r approaches zero the equality

constraints are closely satisfied. If an initial feasible

point is not provided by the user, repeated application of

the SUNT method is used to obtain an x (*) vector that is an

interior feasible point. However, in the case of highly

nonlinear constraints a great deal of time may be used to

initially locate a feasible point. When available the user

should provide a feasible starting point.

Utilizing the first feasible point and the initial r

O)
value provided by the user x is determined by minimizing

(1)( (0) (0)\

l
X

'
r

/
*'/ . Then r' is computed and utilized to

( O) on
determine x by minimizing P Ix ,r J and so forth until

a minimum is obtained. Although three possible settings are

(0)
available, r =1 is the most practical. Computation time

(0)
becomes longer for larger initial values for r . Too

large an initial r distorts the initial P function and

forces x(«) too far into the feasible interior while too

(0)
small a r starts x(») too close to the boundary

19



Overall, r
(0)

1 is a good penalty setting.

The direction of search for locating a new minimum of

the P function is obtained by Newton's Method. This

requires multiplying the inverse of the Hessian matrix by

the gradient of the P function. Not only is the time

element quite high but the inverse of the Hessian matrix can

become ill-conditioned. Thus as the extremum is approached

the search directions may become misleading necessitating

additional time for the code to backtrack in search of

another feasible direction. Once the search direction is

established, SOMT uses a Fibonacci search to locate the

minimum of the P function.

1. Documentation

The necessary steps for SUMT operation are clearly

and thoroughly presented for the first time user. Reference

3 by Mylander, Holmes and McCormick greatly facilitates the

use of the SUMT code by the unfamilar programmer. This

document concisely presents a brief summary of the

theoretical background for the algorithm implemented by

SUMI. The step by step logic of the computer routine is

developed and accompanied by a flowcnart of the minimization

process. Reference 3 continues with a general description

of the computer program listing and discusses the StJMT

internal subroutines. The program is modular in structure

to allow for easy changes in options, input, output and

tolerances for determining when the optimum solution has

been obtained. A table is included which details the

relationship between the subroutines with inter-routine

communications being handled by labelled COMMON regions.

One or more paragraphs are allotted to each subroutine

indicating its function and general logic.

20



A separate chapter discusses the user supplied

subroutines. A complete and detailed description of the

necessary common regions for parameter passing between the

SUMT main minimization program and the user routines is

supplied, along with the input and output requirements of

the four subroutines.

The parameter cards and their necessary formats are

covered including a complete description of the available

options and a recommended setting for each of the tolerance

parameters. Three dimensional figures are included showing

the data deck structure necessary for the SUMT code setup.

Finally the the document presents a complete problem

formulation and solution. Starting with the initial

equations, illustrations are provided which display the

exact input deck setup and the actual computer output with

final and intermediate solutions.

2 . I implementation

To implement SUMT the user must supply four

subroutines: READIN, P.ESTNT, GRAD1 and MATRIX.

a. READIN

READIN is called only once and allows the

user to read in the coefficients necessary for objective and

constraint function evaluation. This routine was utilized

in this study to initialize an array which tabulated the

number of calls to each user supplied subroutine. Of

course, any initial printout desired by the user can be

handled in READIN also.

b. RESTNT (I,VAL)

21



If I =

I # 0, VAL = g (x)
i

the common region.

0, RESTNT returns VAL = f(x). For

The current x (o) values are found in

c. GBAD1 (I)

When 1=0, GRAD1 must place the gradient of

the objective function f (x) in the array DEL(»). When

1*0, DEl(e) must contain the gradient of the constraint

corresponding to I.

The SUMT main program contains a subroutine DIFF1 which

evaluates the gradient by a numerical differencing routine.

DIFF1 can be called by GRAD1 if explicit derivatives are not

possible or feasible to compute.

d. MATRIX (J,L)

This routine places the Hessian of the Jth

eguation in a N x N array where N equals the number of

variables in the x(«) vector. SUMT also provides a

subroutine DIFF2 which can be used to evaluate the Hessian

by numerical differencing.

For data input the user must supply a parameter card,

two option cards, a tolerance card and cards containing an

initial x(«) vector. The format for these cards are preset

in SUMT. The two most critical parameters are EPSI and

THETAO. These two tolerances determine, respectively, when

an unconstrained minimum has been achieved for each

subproblem and if the solution to the NL? problem has been

approximated. The trivial constraint that all x > can be
i

set automatically by the option cards and extrapolation

through the last two or three minima can be utilized if

22



desired. Any coefficients necessary

evaluations must be input here also.

for function

3. Printout

SUMT provides a listing of all input parameters,

initial x (•) vector values, initial objective function value

and the values of the initial constraint functions. The

output is controlled by an option card parameter and can be

set at two levels, either providing printout after the

solution cf every subproblem or after every intermediate

point. Final and intermediate x(«) vector values are

provided along with the minimized objective function.

Lagrange multipliers are printed along with "first-" and

"second-order solution estimates." These multipliers and

"order" estimates are printed out after each minimum is

obtained. These estimates [Ref. 2] are obtained by

extrapolating through two and three minima to explore the

trajectory of these points. This trajectory accelerates

algorithm convergence and provides a close approximation of

the local or global minimum early in the minimization

progress.

Any subroutine requiring the evaluation of as many

as 100- variable functions and complicated first and second

derivatives is very susceptible to hard- to-detect

programming errors. SUMT contains a subroutine called

CHECKER which provides a listing of all first -and second

derivatives cbtained by the analytical methods of GRAD1 and

MATRIX. A printout then immediately follows containing the

same derivatives computed by the numerical differencing

subroutines DIFF1 and DIFF2. Any large discrepancy between

the evaluation techniques would indicate which subroutines

and equations should be double checked.

23



5. Alterations

Two of SOMT's internal subroutines DIFP1 and

DIFF2 were altered slightly for this study. Originally the

value used for the differencing was a small positive user

supplied value of approximately 10 or 10 . This constant

value proved inefficient in problems with a large range in

the magnitude of the independent variables. Four FORTRAN

statements were changed in DIFF1 and DIFF2 so that the value

used for differencing was equal to 10 x (the absolute

value of the variable x (•)) or 10 , whichever larger.
i

This change proved more efficient in Problems 5 and 8 and in

comparing the analytical and numerical derivatives in the

CHECKER subroutine.

B. GRG

The GRG code was developed jointly at Cleveland State

University and Case Western Reserve University by L.S.

Lasdon, A.D. Karen, M.S. Ratner and A. Jain. GRG uses the

Generalized Reduced Gradient Algorithm to locate the vector

x'(*) which selves

irinimize g (x)
M+1

subject to g (x) = 0,
i

i = 1 , . . . ,NEQ

< g (x) < UB (N + i) , i = NEQ+1,...,M
i

LB(i) < x < UB(i) , i = 1, . .. ,N
i
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The functions g are assumed to be continuously
i

dif ferentiable.

The generalized reduced gradient algorithm uses a

modified gradient to solve nonlinear objective functions and

nonlinear constraints. By using linear or linearized

constraints the method defines new variables that are normal

to some of the constraints and transforms the gradient to

the new basis. The code operates in two phases, first

finding an initial feasible point, and second minimizing the

user supplied objective g (x) . Of course, time is saved
M+1

if the user supplied starting point is feasible. If the

starting point is nonfeasible the GRG code will locate a

feasible point by minimizing a phase I objective function,

which is the sum of the constraint violations.

Once a feasible point is obtained the algorithm

determines which constraints are binding for the current

x(») vector. A constraint is binding if it is within EPNEWT

of its u^per or lower ranges. EPNEWT is a small positive

number supplied by the user with a default value of 10 ,

GRG solves for K of the natural variables, where K is the

number of binding constraints at that time. These are basic

variables and are solved in terms of the remaining natural

variables. The binding constraints may then be solved by

using the reduced gradient to determine a search direction d

which is employed in a series of one dimensional searches

whose goal is
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minimize f(x(») + 0(d)

&>Q

To guarantee that the direction d is always a direction of

descent

d Vf (x) <

must hold. A variant of Newton's Method is used and if

convergence is attained and no constraints are violated a

new cf value is selected and the one dimensional search

process continues.

Once a solution is found the constraints are checked

for violations. Then the current objective value is

compared to the previous best value and the best values for

the variables, constraints, objective function and stepsize

are stored. If the Newton Method has not converged the

stepsize is cut back until no improvement is noted in the

constraints for ten iterations or until the maximum

constraint violation is less than EPNEWT.

Newton's Method is used to compute the values of the

basic variables for given values of the nonbasic variables

and then the search direction is determined by using the

inverse cf the basis matrix. This requires two J x J

matrices where J eguals the number of binding constraints.

In large problems the main high speed computer memory

required for the storage and inversion of these matrices

becomes a majcr issue.

For the initial estimates of the basic variables the

user may select quadratic extrapolation or a tangent vector

is computed. If the basis is degenerate a separate
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subroutine is used to compute the search direction using the

tangent f :t.oi to construct a feasible direction. The

(NxN)/2 nartcix required for this basis is another array

contributing to the high memory requirements of GRG.

The usual stopping criteria is satisfaction cf the

Kuhn-Tucker conditions to within EPSTOP, a user supplied
_ 3

tolerance level with a default value of 10 . The code also

employs as stopping criteria limits for the total number of

iterations and number of Newton iterations without

convergence, or if the relative change in the objective

function is less than EPSTOP for three consecutive

iterations tre present solution is considered to be a

minimum.

1 • Document at ion

The GRG code is documented by two technical

memoranda published in November, 1975. "GRG System

Documentation" [Ref. 4] and "GRG User's Guide" [Ref. 5] both

authored by Lasdon, Waren, Ratner and Jain. Reference 4

briefly describes the version of the Generalized Reduced

Gradient Algorithm that is being utilized by the GRG code.

A short overview of the entire code is given followed by

tables listing all the subroutines with a concise

descripticn of each routine's function and its relation to

each of the ether routines. GRG is coded in FORTRAN IV and

uses double precision arithmetic. inter-routine

communication is handled by labeled COMMON regions. Several

flowcharts are included which detail the use and derivation

of variables and the utilization of parameters and

tolerances to influence the logic of the GRG code.

Reference 5 provides the first time user with explicit

instructions as to the mandatory and optional subroutines

which are provided with their necessary input and output. A

27



complete description of the data cards and the options

available for each of the input parameters is given along

with several suggestions for possible alterations of the GRG

main program and subroutines in order to revise data and

output. An example problem is given. Beginning with the

objective and constraint equations a step by step solution

is given including the actual user supplied subroutines and

data cards. Actual computer output is also reproduced.

2» IJ?£lem££taJ:ion

To implement GRG the user must supply one

mandatory subroutine, GCOMP. Two additional routines, PARSH

and SUHRY, may be provided if the user so desires.

Arguments for all subroutines are double precision.

a. GCOMP (G,X)

GCOMP computes the constraint functions and

the objective function at the x(«) vector which contains the

N variables at their present values. The array G(*) then

returns these values from GCOMP to the internal subroutines.

No COMMON area is necessary although it is available if the

user needs additional variable values for the computations.

Any coefficients may be supplied by data cards.

b. PARSH (X,G,M,N,GRAD)

PARSH computes the gradients for each of the

constraints and the objective function and returns these

values to the main program in the (M + 1) x N array GRAD(«).

Any coefficients needed for derivative computations can be

held in COMMON with GCOMP. If analytical derivatives are

not highly nonlinear or are extremely expensive to evaluate

GRG contains a PARSH routine of its own which uses forward

numerical differencing to establish the derivatives.
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c. SUMRY (N,M,X,G)

This subroutine is available if the user

desires any additional calculations and printing after GSG

has arrived at a final solution. For any data in addition

to the argument list COMMON blocks can be used. For

example, the Lagrange multipliers are available for

checking.

Using format statements which are preset by GRG the

user must supply about ten cards containing parameters and

tolerances for determining when final convergence has been

obtained. In addition initial values for the x(«) vector

must be supplied and any variables having finite upper and

lower bounds must be listed on separate cards.

3

.

Printout

GRG initially prints out a summary of all initial

parameters, tolerances and initial x(») vector values along

with their upper and lower bounds. Several levels of output

are available. It is possible to receive, in very readable

form, the objective function value, constraint function

values, x(®) vector values, gradient vectors and other

computational aids such as stepsize and explicitly violated

constraints. These values can be requested after each

iteration or only after the final solution. The last

printout delivers final values, binding constraints and

number of calls for function and gradient evaluations.

4. Debugging Aid s

In much the manner of SUMT, GRG provides a means

of checking derivatives by two methods. These aids of

course won't catch every programming error but they do help
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.Jl'- determining if the problem is in the function evaluation

ents. To check GRG gradients it is necessary to

aft&E -.. _-tput level and run the problem twice, first with

the user's PARSH routine with analytical derivatives and

again with the PARSH that is an internal subroutine and

delivers derivatives by use of numerical differencing. GRG

then prints out the initial gradient values for all

eguations and stops without attempting to solve the problem

until the "user is satisfied the gradient and function

evaluation subroutines are consistent.

C. GRAVES

The GRAVES code was developed by G. W. Graves of

U.C.L.A. and has been used over a period of twelve years to

solve a wide variety of real world problems. The GRAVES

nonlinear program is a linear approximation algorithm cf tne

feasible direction class. GRAVES specifically solves the

problem:

M
minimize g (y ,y ,...,y )12 N3

1
subject to g (y ,... r y )

= 0, i = 1,...,M2
1 N3

with

g (y r-../y ) ^ o, i = m2+i,...,m
1 N3

LB < y < UB i=1 f . . . ,N3
i i i

9 (Y) (i = 1/«-«/ M ) must be continuously
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dif ferentiable functions.

The GRAVES code solves general nonlinear programs by

solving a sequence of local linear problems which in the

limit converge to a local stationary point. The local

linear stationary points are global or local minima, or

saddlepoints if the original nonlinear system is feasible.

However, the test of practicality of an algorithm is not the

existence of convergence but the speed with which a solution

is obtained. This algorithm has been developed over the

years and has evolved in response to actual problems. The

code has performed well when used by its developer and

analysts familiar with the extensive interior features,

options and tuning mechanisms.

Linear programming is applied repeatedly to the

linearized nonlinear problem in such a way that tne

solutions to the linear subproblems can converge to the

solution of the nonlinear problem. Linear approximations of

nonlinear functions are obtained by using first order Taylor

series approximations expanded at y(«) to replace the

nonlinear functions in the original problem. The code has

been termed a "local," "gradient," "stepwise" correction

descent algorithm because of the method of selection of new

o

points in the minimization process. Given a point y the

o

next "step" is y = y + kAy where the step length is

determined by the scalar k which is based on the behavior of

o

the system in the neighborhood of the current point y . The

step direction is determined by the gradients of the

i
functions g (y) (i=1 # . . . ,M-" 1) . The direction of improvement

is obtained by estimating the remainder term in the Taylor

o

series approximation to g (y +Ay) and solving the
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associated local linear programming problem. The remainder

terms make the local linear approximations more sensitive to

the behavior of the approximated functions because they are

measures of the magnitude of local nonlinearity [Ref. 6],

The generic local linear programming problem is:

Subject tc the constraints

i o i o i
vg (y )Ay * -g (y ) - fcr i=i,...,m~i

m o

choose y to minimize vg (y )Ay-

l
The r are constants used in place of the Taylor series

remainders (for convenience these are estimated from

function behavior over the most recent step) and are equal

to zero for strictly linear functions. The k is used to

parametrically adjust the solutions of the local linear

problems; as k decreases, improvement in feasibility becomes

easier but the gain in the nonlinear problem decreases.

This scaling parameter is also used to insure that once a

feasible point has been located each successive point is

also feasible.

After solving each local linear program and calculating

the Taylor series remainders an interval determination is

used on each constraint to determine a feasible movement

interval. Each constraint is replaced by a quadratic Taylor

approximation for determining the interval of feasibility

along the Ay solution of the local linear program. If

feasibility is impossible along Ay within the approximation

range of the functions, the interval is modified to that

corresponding to 1/2 the current solution infeasibiiity

,

then 3/4 the current infeasibiiity then 7/3 etc. until a
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nonempty interval is found. The minimum of the objective

function over this interval is then estimated by one of the

optional ray search mechanisms, a new solution is obtained

and another local linear program is begun.

The solution of a particular nonlinear problem requires

the user to specify (or use the default values for) several

of the algorithm's parameters including:

ZL a "zero level" for variables (used

throughout the nonlinear and linear

programming routines)

ZT a "zero tolerance" for functions

TL
M

a "tolerance level" for G (y) used for

termination of solutions by bounding

the objective

1X1 a "print priority" for intermediate

output during solution

1X2 a "problem type indicator" for problems

with special structure

(for instance, pure L.P.)

IPC, IfN permutation limits for variable classes in

hybrid pricing schemes (for large

scale problems)

ICYCLE a nonlinear iteration limit between calls

to the user control modules

HEGF pricing mechanism control (e.g. first

negative, most negative, or candidate set
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size for large scale problems)

JM a ray search mode selector (e.g. quadratic

fit, lattice/binary search, etc.)

RELAX a relaxation mechanism to allow weighted

gains in the objective function for

infeasible intermediate solutions

KERNF a kernel flush threshold for relaxation

solutions (minimum explicit basis dimension

in the local L.P. before gain check)

EB the "equation bandwidth" to permit

movement of solution in the presence

of nonlinear equality constraints.

AR the "approximation range" over which

functions will be expected to behave

reasonably with respect to second order

Taylor series approximation

NP the "number of points" for the direct

ray search lattice option

IMIN the "number of (binary) minimizations"

for the direct ray search option

M, N3, M2 the problem dimensions

Convergence for the algorithm may be rigorously proved

[Ref. 7] for the usual class of quadratic problems

(necessary assumptions are required for all problems

concerning Kuhn-Tucker regularity and bounded steps from the

local linear programming problems) . Although the algorithm

is a first order descent method, second order problem
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representations can be accomodated [Ref. 8], The imtedded

linear programming algorithm has been described in Ref. 9;

it is designed to facilitate primal and dual manipulation of

the local linear programming problems, (especially basis

changes brought about by parametric adjustment of the right

hand side via k) as well as to deal with degeneracy, local

inconsistencies and locally unbounded solutions.

The termination criterion for the code is a vector y'

which satisfies

M B

g (y') * g (y) + e

where e is a small user supplied value (TL) . An e value

which is scaled to the magnitude of the objective function

H
g (y') is very important to prevent unreasonable consumption

of computer time when the gain in convergence is very small

for each new solution. A. maximum nonlinear iteration count

(ICYCLE) is also used to interrupt progress.

1. Documentation

The GRAVES code has not been released to the

general public and presently little documentation exists

that is devoted explicitly to detailed discussion of the

algorithm. Reference 10, "Sortie Allocation by a Nonlinear

Programming Model for Determining a Munitions Mix", by R.J.

Clasen, G.W. Graves, and J.Y. Lu is a report published by

the Rand Corporation in 1974 for the Department of Defense

to study the maximization of effectiveness of tactical

sorties assigned to air-to-surface missions. The Rand study

used a PL/1 version of the GRAVES method but a FORTRAN IV

double precision version of slightly later vintage was

utilized for this comparison. Chapters III and IV of the
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Rand document are devoted to the theoretical background of

this algorithm and the application of the programming code

to the specific tactical air support problem. Appendices A

and B present the alterations necessary to utilize the code

for other nonlinear problems. A flowchart of the logic and

the calculations performed by the code is presented along

with a listing cf the internal subroutines and variables.

Variables which may or must be set by the user are denoted

along with default values. Appendix C describes an

additional program called CONTEST which is available for

checking the consistency of the user's subroutines. A

flowchart for the CONTEST program is included.

The user of the GRAVES code must supply four

FORTRAN subroutines: SETUP, FCNGEN, COLGEN and RESET.

a. SETUP (I NAM)

SETUP is called only once at the start of

each nonlinear solution attempt by the main GRAVES code. It

does all of the data reading for the main code and provides

the coefficients for function and derivative evaluation in

other user supplied subroutines. SETUP shares COMMON blocks

with the GRAVES internal subroutines. All variable input is

done in the SETUP subroutine. All the values for all

initial points and parameters must be input here; the user

can call any outside FORTRAN program of his own for input of

these values. Any data structure may be employed that will

provide information for the following function generator

routines.

b. FCNGEN (JP)
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M
FCNGEN is called to calculate only g (y) (the

objective function) if J? = 1. If JP =
r then all M

functions will be evaluated and stored in the array G (») .

G(1), G (2) , . . . , G (11-1) are the values of the constraints and

G (M) is the objective function value.

C. COLGEN (JC)

COLGEN computes the gradient of the variable

JC for each constraint and the objective function. On call

the procedure must place the JCth column of the gradient in

CA ( 1) , CA (2) ,. . . ,CA (H) . The method of determining the

derivative may be analytical or a numerical differencing

routine. The value of the primal variables y(») vill not

have changed since the last FCNGEN call, thus the function

values from that call are still valid.
i

d. RESET (LPC)

RESET is called only after the internal

control routines have determined that a termination

condition exists. This allows the user to diagnose the

nature of the termination, to print any additional output

that he needs, or closely monitor and interact with the

solution progress. The user maintains complete control of

the code and it is possible to restart the solution, alter

the initial point, change functions or tuning parameters, or

even run a continuing sequence of nonlinear problems.

3 . Printout

The output level can be varied by use of a

parameter in SETUP. The amount of output can be controlled

from extremes of none to voluminous detail within the local

linear programming solutions. If not inhibited the GRAVES
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code prints the initial parameter values and tolerance

levels. Final output typically includes the ncnzero

variables, the final values for the objective and constraint

functions as well as the Lagrange multipliers if the user

desires.

**« Debugging^Aids

GRAVES provides an additional main program named

CONTEST (consisting of only about 100 FORTRAN statements)

which can be used to debug the user's SETUP, COLGEN and

FCNGEN routines for mathematical consistency and logical

program compatability . The program, acting as a surrogate

nonlinear package, prints the derivatives for the variables

and compares these to the results from differencing.

Initial values for y (?) and evaluations of objective and

constraint functions are also provided for checking.

CONTEST also checks for individual function linearity and

convexity, properties of potential use to the analyst, and

thus (after providing information for the debugging of the

user subroutines and data) can also be utilized to gain an

intuitive feel for the problem. CONTEST can provide the

user with the appropriate zero and tolerance levels,

approximate range for the Taylor series over the specified

domains and an insight as to the degree of nonlinearity of

each constraint .
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Ill METHOD AND RESULTS OF STUDY

The first step in the study was to obtain the three

codes and documentation for each. The codes were

permanently installed on a program library at the NPGS

Computer Center and subsequently only the user subroutines

and initial parameters were needed for each problem.

Of the eight problems five were received on computer

cards from Professor Lasdon already encoded for GRG with the

optimal parameter settings already determined. This degree

of professional tuning was not really desirable from an

experimental point of view but the GRG solutions for the

three remaining user coded problems were similar in accuracy

and time so this bias was actually found to be minimal. A

sixth problem was selected from the Himmelblau collection

[Ref. 11] and the remaining two were adaptations cf an

inventory model and an entropy model which were specifically

designed to illustrate real world problems with few

constraints but many independent variables. The test

problems selected were considered typical of the small to

medium size problems being solved today. The structure and

degree of difficulty among the eight are quite varied and

represent a fair sample of available relevent problems.

No attempt was made to keep an accurate accounting of

the man hours necessary for preparation of the problems for

each code since any analysis along these lines would be

extremely biased because of the learning curve for each

problem and the head start given in this respect to GRG.

Once subroutines for evaluating the objective and constraint

functions and the gradients had been coded for one of the

nonlinear programs it was quite simple to adapt them to

either of the other two codes. For most of the problems the

GRAVES code was utilized for the initial programming because
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of its superior turnaround time which is made possible by

its very low memory requirements. Turnaround time may be of

small importance for comparing the results of several

different initial starting vectors or termination parameters

but for the initial coding and debugging phase quick,

turnaround is highly desirable. In addition the GRAVES code

has the special routine CONTEST, which is a main program

rather than a subroutine, for checking the feasibility and

consistency of the function and gradient subroutines without

utilizing the main nonlinear package. Although SUMT and GRG

have accurate and easy to use procedures for checking the

consistency of the gradient and function evaluation

subroutines they both require utilization of the main

nonlinear codes with their high core and corresponding time

requirements.

Himmelblau estimated preparation times for a typical

problem and experienced user of from one to six hours for

both GRG and SUiiT [ Ref . 11 pg. 381]. SUHT preparation times

for unfamiliar users were considered to be two to five tiwes

as great. These figures are based on problems with less

than 50 variables and are in keeping with this author's

experience. Occasionally coding errors arose which required

literally days to debug but these were oversights of the

user and did not appear to be inherent to any one particular

code.

The SUMT code required a third computational subroutine

to evaluate the Hessian matrix and this subroutine required

on the average a great deal more time than the gradient and

function subroutines. For extremely nonlinear problems the

calculation, coding and debugging of second derivatives was

tedious and there were many opportunities for errors.

The GRG and GRAVES code require comparable preparation

time for the computation subroutines although parameter
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setting and alteration for the GRAVES code was consideraoly

quicker and easier. All tolerances and initial values could

be input in the GRAVES subroutine SETUP through the use of

individual cards or Do Loops. The GRG code requires a

complete listing in a pre-set format of all initial x{»)

values as well as any upper and lower variable bounds that

need to be provided. The format for these bounds allows

only one bound per card thus entailing 200 separate cards

for a hundred variable problem. Both SUtfT and GRG use

parameter and option cards which are difficult to initiate,

alter and comprehend. With the exception of the two or

three parameters which were consistently altered for each

problem it was necessary to carefully consult the user's

manual in order to change any of the tolerances for tuning a

final solution. The GRG default values worked quite well

for most of the test problems (which may be due to the

tuning performed by the originators) but when the need for

alteration arose the manual was a necessity.

The documentation for both the SOMT and GRG codes was

excellent. Instructions for initial deck arrangements and

the parameters required along with the recommended values

for the tolerances were clear and sufficient. The GRAVES

code is not presently a publicly distributed package and as

such the documentation is not comparable to SUMT and GRG in

regards to the proper tolerances and parameters to be

utilized

.

The SUMT and GRG codes are production type codes which

are intended to solve a variety of problems without the user

attempting to make any significant changes in the logic and

methods of the codes. The GRAVES code is intended to be a

production code of a personalized nature which requires that

the analyst be aware of the internal logic and be able to

interact with the code. Although the code has been steadily

expanded over the years to solve a constantly enlarged list
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of real world problems (in fact, other versions have been

produced for nonlinear integer GUB problems) the alterations

have been enacted to solve specific problems without

sufficient attention given to the global effect on all

problems in a given class.

Although not planned as part of the original study,

Professor Graves was contacted and did provide recommended

parameter settings for several of the problems based on a

description of the performance of his package on early

trials. These suggestions measurably increased the

efficiency of the code.

After successful solutions were obtained for all the

codes, parameters and tolerances were adjusted in the codes

in order to obtain comparable objective function values and

constraint tolerances. In most cases the GRG solutions were

allowed to stand and the SUMT and GRAVES codes were

adjusted. This procedure was adopted because of the prior

tuning of the GPG problems. In most instances the GRAVES

code did not achieve the same level of accuracy as GRG while

SUHI tended in some cases to compute for several iterations

without showing a significant increase in solution accuracy.

By terminating SUMT at the accuracy level of GRG f CPU time

in excess of 15% was saved in some problems.

Once comparable levels of precision had been attained

two new initial vectors were selected for each problem and

the algorithms were run again. The objective function

values and solution times for all three initial points are

listed in Table III-1.
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1910.0 -1906.

1

103 a

1910.4 -1906.1

114 3

1910.4 -1906.

1

99 4

Table III-1. Solutions and times from three
initial starting points

Test problems run on an IBM 360/67 using FORTRAN H compile
for main code and FORTRAN G compile for the user subroutines.

GRG SUflT GRAVES

Problem 1

f (x) -«1866.2

Time 36

f (x) a -1882.1

Time 35

f (x) t -1875.0

Time 26

Problem 2

f(x) -47.75 -47.76 -47.76

Time 2.57 9.34 14.83

f(x) a -47.76 -47*73 -47.75

Time 3.22 10.50 13.20

f (x) b -47.76 -47.73

Time 2.49 9.93

Problem 3

f (x) 32.35 32.35 32.92

Time 6.63 13.70 37.07

f (x) a 32.35 32.35 32.88

Time 6.80 13.71 73.80

f(x) b 32.35 32.35 54.99

Time 7.04 13.99 51.72
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GRG SUMT GRAVES

Problem 4

f (x)

Time

f(x) a

Time

f(x) b

Time

-0.866

3.07

-0.866

2. 1 1

-0.866

4.24

-0.866 -0.862

6.7 14.40

-0. 675 -0.861

6.70 12. 12

-0.866 -0.575

6.31 14.71

Problem 5

f (x)

Time

f(x) a

Time

f(x) b

Time

0.0557

13.85

0.0567

11.05

0.0557

14. 15

0.0557

385.00

0.0557

393.00

0.0557

393.00

0.0557

Problem 6

f (x)

Time

f(x) a

Time

f(x) b

Time

1735.0

51

1733.0

48

1731.0

50

1735.0 -1720.0

123 53

1735.0 -1722,0

111 49

1735.0 -1723.0

116 49
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Problem 7

f (x)

Time

f(x) i

Time

f(x) ;

Time

GRG

80.893

96

91.191

120

263.639

49

SUMT

80.72:

245

80.72!

166

80.72)

161

GRAVES

193.032

234

376. 144

233

527.614

233

Problem 8

f (x)

Time

f(x) a

Time

f(x) b

Time

-3.40

32

-2.96

21

-3.41

44

-3.47

54

-3.47

54

-3.47

55

-3.46

150

-3.46

142

-3.21

59

a,b initial points for alternate solutions

are listed with respective problem

description in Appendix A.
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Efficient computer coding of the user supplied

subroutines will be a very important consideration in the

amount of CPU time a particular algorithm requires and an

attempt was irade to determine which code is most dependent

on the programming capabilities of the user. The GRG code

records and prints as part of the final output the number of

calls that were made for function and gradient evaluations.

Similar counters were inserted in SOMT and GRAVES and the

total calls for each are presented in Table III-2.

Obviously because of the inherently different

approaches taken for gradient evaluations by the codes these

numbers alone do not represent an accurate picture of the

importance of the user supplied subroutines. While StfMT

calls for the gradient of one constraint at a time and

GRAVES evaluates the gradient of one variable at a time

relative to all the constraints, GRG evaluates all

constraints in one call necessitating a N x N matrix and

thus showing only one gradient call for each N calls made by

SOMT and GRAVES. In addition SUMT requires a Hessian

routine while GRAVES and GRG have no comparable evaluation

requirement

.
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Table III-2 Subroutine calls for each code

Problem SOMT GRG GRAVES

F
G
H

F
G
H

F
G
H

F
G
H

15929
1479
1479

257
54

2432
156
156

172
13

4982
414
414

546
35

9151
656
656

244
18

44255 #
92127 #
3234

303
31

3193
310
310

375
69

3447
147
84

1605
76

563
1320 #

28

223
13

26
2609

412
8681

9 64
39407

520
1425

28
1851

449
52397

200
3019 34

603
63144

F-function calls G^gradient calls H-hessian calls
#-numerical differencing was used for some constraints

47



Notes for Table III-2.

a-Each SUMT function call and gradient call required

evaluating only one of the H constraints. Thus, M+1

subroutine calls are needed to obtain the same results as

one GRG subroutine call.

b-Each GRG function and gradient call required evaluating

all M constraints and the objective function.

c-Each GRAVES function call requires either all constraints

and the objective function or the objective function alone.

Each gradient call evaluates the gradient column for all M

constraints and the objective function associated with one

of the N variables, thus N gradient calls are required to

obtain the same results as one GRG gradient call.

In order to present an accurate evaluation of the

importance of the user's efficiency in programming while

avoiding any misguided attempt to standardize the number of

function and gradient calls for the different codes each

problem was re-run a second time using an added Do Loop in

each user subroutine. This loop required the evaluation of

each subroutine twice whenever it was called by the main

nonlinear programming code. The increase in time for each

problem represents a fair estimation of the total CPU time

being spent in the user subroutine. These results are shown

in Table III-3. Each problem's percentage is an average for

the three different starting points that were used for that

problem.
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Table Hl-3

Proportion of compute time spent in user subroutines

GRAVES

.373

.507

. 083

.212

.569

.723

.413

.635

#-numerical differencing was used for some

constraints

oblem SUMT GRG

1 .231 .042

2 .800 .459

3 .419 .465

4 .093 .154

5 .886 # .332

6 .111 .412

7 . 108 .362

8 .704 # .938

A. Algorithms' performance for each problem:

The actual objective and constraint equations for

each problem along with the results for each nonlinear

programming code are included in Appendix A.

Problem 1~— ""**——— -^

Problems 1 and 2 are both examples of

determining the chemical composition of a complex mixture

under conditions of cheicical equilibrium. Problem 1

included 45 independent variables and 16 linear equality

constraints. SUMT and GRAVES returned the best solutions

and GRAVES solved the problem approximately 25 times faster

than SUMT. SUMT and GRAVES obtained identical results for

all three initial points while GRG fluctuated slightly. The
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objective function and derivative subroutines for Problem 1

were demonstrated by Professor Graves to be inconsistent as

x approaches zero and he provided a special alteration of

this problem for his code, which requires continuously

dif ferentiable functions over the entire bounded region of

yC) •

Problem 2

Problem 2 was also a chemical equilibrium

problem which had been redefined in the Himmeiblau study

from a Bracken and McCormick problem [Ref. 12], All three

codes solved the problem handily with GRG having the best

time. GRAVES was not able to obtain a feasible point from

one of the alternate initial points.

Problem 3

Problem 3 was formulated by the Shell

Development Co. for the original Colville study and

consisted of 15 variables and 5 nonlinear inequality

constraints. SUMT and GRG returned identical solutions :oj

all three initial vectors but the GRAVES solution was less

precise.

Problem 4

The problem was maximize the area of a

hexagon in which the maximum diameter was unity with 9

independent variables, 13 nonlinear inequality constraints

and

and

lower bound of zero for x The consistent results

low tiires in Table III-1 belie the difficulties

encountered by the codes. GRG consistently returned with a

local minimun value of about -0.<i (-0.866 is the global
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minimum) until a phone call to Professor Lasdon resulted in

an alteration to one of the tolerances utilized in the

internal GRG subroutine DEGEN. Without this professional

aid from cne of the co-founders of the code it is doubtful

that GRG would have ever attained the global minimum.

GRAVES was not able to attain the same level of accuracy as

SUi'lT and GBG. This problem contains many local minima and

SDMI and GRAVES each converged to -0.675 from one of the

alternate initial points.

Problem 5

Problem 5 is probably the most difficult

test case in this study. It includes a linear objective

function, 24 variables, 12 nonlinear equality constraints, 2

linear equality and 6 nonlinear inequality constraints. The

independent variables are also bounded to positive values.

GRG returned a quick and accurate solution from three

different starting points. However, with an initial point

x = 0.4 GRG was not able to obtain a feasible point while
i

SUMT was able to reach the global minimum from all of these

points. SUMT, which is not expressly designed to handle

nonlinear equality constraints, required over six minutes

for each cf these solutions. GRAVES, which appears to be

more sensitive to the initial point than the other two codes

had the best solution time from the original point but was

not able tc locate a feasible solution when using the

alternate starting points.

Because of the complexity and nonlinearity of the first

12 constraints SUMT's numerical differencing subroutine

DIFF2 was utilized to compute the Hessian matrix for these

constraints.

Problem 6
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Problem 6 was a weapon assignment problem

with 130 independent variables, a nonlinear objective

function, 12 linear constraints and zero lower bounds for

the variables. All three codes returned approximately equal

objective solutions although the actual variable values were

quite diverse. GRAVES and GRG were twice as fast as SUMT.

Problem 7

This problem was adapted from an inventory

model created by D.A. Schrady and U.C. choe [Ref. 13]. The

x («) (i=1,...,50) represent the reorder quantity for 50
i

inventory items and x (») (i=51 , . . . , 1 00) represent the
i

reorder points for the same 50 items. SUMT as usual

obtained consistent results from all three initial starting

points but GRG encountered severe numerical problems from

the alternate starting points x (*) - 10 and x («») = 1000
i i

(i= 1, . . . , 100) and as a result produced correspondingly

inferior solutions. GRAVES was not able to reach the global

minimum apparently because of the utilization of an external

FORTRAN subroutine to approximate the culmulative normal

-7
distribution. This subroutine was accurate only to 10 and

the gradient calculations showed inconsistencies because of

this lack of precision. Again to guarantee convergence the

GRAVES algorithm requires continuously dif f erentiable

functions.

Problem 2

Problem 8 was adapted from an entropy model

proposed by A.J. Scott [Ref. 14], The nodes in Figure A-1
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illustrate 46 population centers connected by a

transportation network, represented by the connecting arcs.

Using a congestion cost function the model yields an

equilibrium solution that identifies nodal populations as

entropic functions of the total cost of the journey to work.

All three codes returned similar solutions with SUMT leading

the way while GRG made its worst showing. Starting with

x (•) = 10.87 (i=1,...,46) GEG located a local minimum of
i

-2.96 (global minimum was -3.47). SUMT was generally twice

as fast as GRAVES when they both returned global minima.

B. Conclusions and Summary:

Perhaps the easiest way to summarize the results of

this analysis is to return to the evaluation criteria which

were listed in Chapter 1.

1. Accuracy of the final solutions:

SUMT was able to attain the best solution for

all eight problems while GRG fell short on Problem 1 and

Problem 8. GRAVES found the global minimum in five of the

eight problems.

2. Robustness:

Again SUMT was superior going to a local minimum

only once (Problem 4) while GRG had variances in the

precision attained for Problems 1,5,6,7,8. GRAVES in two

problems was not able to locate a feasible point when

starting frcm one of the alternate initial vectors.

3. Speed of Convergence:

SUMT, while very reliable, was also very
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deliberate and could not compare with GRG in the CPU time

category. GRG was anywhere from 3 to 30 times as fast as

SUNT. The solution times for GRAVES were inconsistent but

for problems 1 and 5 GRAVES was from 1 to 9 times faster

than GRG.

4. Ease of preparation for user subroutines:

SUMT required the most effort because of the need

to evaluate the Hessian matrices. GRAVES was considered the

easiest to use because of its superior technique employed

for initiating and altering tolerances.

5. Aids for Debugging:

All three codes provided fine methods for comparing

the consistency of the gradient and function subroutines but

GRAVES was clearly superior because of its additional main

program CONTEST which required only about 95K bytes of main

memory for 100 variables and 50 constraints.

6. Readability of final and intermediate output:

All three codes have very comprehensive output but

SUHT only allows two levels of printout while GRG and GRAVES

have six possible levels.

7. Failure mode:

The GRG code would explain in very concise but

clear language the reason for terminating its solution

attempts. A simple cure for most SUMT difficulties was to

give it mere time. GRAVES had many options available for

the user tc employ when the solution was not forthcoming.

Unfortunately there were too many options and the user at

times was overwhelmed with possible alternatives.

54



All three codes have advantages and disadvantages with

the choice of which to use being controlled by each problem

and user's special circumstances. SUMT is always very

accurate. GBG is usually fast, quite accurate but reguires

a substantial amount of memory space. The GRAVES code when

properly tuned provided tremendous results with low time and

memory requirements.

The GEG code, except in computer centers with

restricted memory availability, is probably the superior

choice of these three codes although SUMT was able to

consistently attain the global minima from all initial

points. Although not a generally distributed code, because

of its lew core reguirements, the GRAVES code seems to hold

premise for Jarge problems.
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APPENDIX A

TEST PROBLEMS AMD RESULTS

Problem 1

Source: ft. P. Jones, "The Chemical Equilibrium Problem: An

Application cf SUMT," Research Analysis Corporation, McLean,

Va., RAC-TP-272, 1967 [ Ref . 15].

No. of variables: 45

No. of constraints: 16 linear equality constraints

Objective function:

Minimize: f(x) =

k^1

V

1=1

j*
c + In
jk n

IK

3 = 1

jk

Constraints

:

h. (x) =
l

k=1

/.A
E x
ijk ijk

-b =0 i = 1 , . . . , 1

6

i

j=1

x > j = 1 , . . . , n k=1,...,7
jk k
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b 's and c 's for Problem 1

J jk

jk jk

1 0.6529581 1 1 0.0 6 3 0.

2 0.281941 2 1 -7.69 7 3 2.2435

3 3.7C5233 3 1 -11.52 8 3 0.0

4 47.00022 4 1 -36.60 9 3 -39.39

5 47.02972 1 2 -10.94 10 3 -21. 49

6 0.C8005 2 2 0.0 11 3 -32. 84

7 0.08813 3 2 0.0 12 3 6. 12

8 0.04829 4 2 0.0 13 3 0.0

9 0.0155 5 2 0.0 14 3 0.0

10 0.0211275 6 2 0.0 15 3 -1. 9023

11 0.0022725 7 2 0.0 16 3 -2.8889

12 0.0 8 2 2.5966 17 3 -3.3622

13 0.0 9 2 -39.39 18 3 -7.4854

14 0.0 10 2 -21.35 1 4 -15. 639

15 0.0 11 2 -32.8<i 2 4 0.0

16 0.0 12 2 6.26 3 4 21.81

13 2 0.0 1 5 -16.. 79

1 3 10.45 2 5 0.0

2 3 0.0 3 5 18. 9779

3 3 -0.50 1 6 0.0

4 3 0.0 2 5 11.95 9

5 3 0.0 1

2

7

7

0.0

12. 899
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E Data for Problem 1

ijk

jk
10 11 12 13 1U 15 16

x

i i

2 1

3 1

4 1

1 2

22

32

A 2

52

02

7 2

62
X 1 1

92
X 1 1
10 2

/

X
-

1 1 1

11 2
r

X 1 -1 1

12 2
l

X
13,2

f
X 1
13

23

33

43

53

63

73

8 3

X
93

1 1

X
1 -3

1 1

X H,3 1 1 1

X
12 3

i

X
13 3

r

1 -1 1

1

-1

--1

1

1

-1

-2

-1
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J*

1 4

15

1 6

1 7

1 8

14

24

34

1 5

35

1 6

26

17

27

10 11 12 13 14 15 16

-1

1

-1

-1

-1

-1

-2

-3

-4

1

1

1 -a

-4

Alternate Initial Points:

a) x 0.01 j=1,..„,n k=1,...,7
jk k

b) x 1.0 j = 1 , . . . , n k = 1 , . . . , 7
k
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Results for Problem 1

initial GRG SUMT GRAVES

f(x) -30. 958 -1866.2 -1910.4 -1906. 1

X
1 I

0. 1 1.3E-01 1.8E-06 4.0E-02

X
2 1

0. 1 2.7E-01 2.5E-01 2.4E-01

X 0. 1 3.3E 00 3.7E 00 3.5E 00
3 1

X
4 1

0. 1 1.7E 01 2. 5E-01 2.0E-05

X 0. 1 5.2E-01 6.5E-01 6.1E-01
1 z

X 0. 1 0.0 1.2E-03 2.0E-05
22

X 0. 1 4.2E-01 4.0E-04 2.0E-05
32

X 0. 1 0.0 3.8E-07 2.0E-05
4 2

X 0. 1 0.0 1.2E-06 2.0E-05
5 2

X 0. 1 2.0E-02 7. 2E-02 6.5E-02
62

X 0. 1 5.0E-02 8. 8E-02 8.3E-02
7 2

X 0. 1 2.4E-02 3.5E-02 9.9E-04
82

X 0. 1 1.8E 01 4.4E 01 2.9E 00
9 2

X 0. 1 0.0 2.6E-02 2.0E-05
10.2

r

X 0. 1 0.0 2.5E-02 2.0E-05112
r

X 0. 1 1.5E-02 4. 1E-05 2.0E-05
12.2

X 0. 1 1.6E-02 1.6E-02 1.6E-02
13 2

9

X 0. 1 0.0 1. 1E-07 2.0E-05
1 3

X 0. 1 0.0 6.6E-05 1 .7E-02
23

X
3 3

0. 1 2.5E-02 3.6E-05 2.3E-01

X 0. 1 0.0 1.8E-07 2.0E-05
4 3

X 0. 1 0.0 4.5E-07 2.0S-05
53

X 0. 1 6.0E-02 7.6E-03 1 .5E-02
63

X 0. 1 3.8E-02 2.5E-04 5.5E-03
73

X 0. 1 2.4E-02 1. 3E-02 4.7E-02
8 3

X 0. 1 1.2E 01 2.4E 4.7E-02
9 3

X 0. 1 3.2E-04 3.2E-03 4.4E 01
10 3

X 0. 1 0.0 5.4E-07 2.0E-05
1 1 3

X 0. 1 0.0 1.0E-05 6.6E-04
12 3

X 0. 1 2 . 1 E- 2 2. 1E-02 2. 1E-02
13 3

X 0. 1 2.2E-03 2.3E-03 2.0E-05
14

f
3
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X 0. 1 0.0 7.4E-07 1.0E-03
1 S 3

X 0. 1 0.0 1.0E-07 2.0E-05
16 3

X 0. 1 0.0 4.9E-08 2.0E-05
17

r
3

X 0. 1 0.0 3.6E-08 1 .3E-03
18 3

t

X 0. 1 0.0 1.5E-07 2.0E-05
1 4

X 0. 1 0.0 5.7E-07 2.0E-05
2 4

X 0. 1 0.0 2. 1E-06 6.1E-03
34

X 0. 1 0.0 1.3E-07 2.0E-05
1 5

X 0. 1 0.0 3. 1E-07 2.0E-05
25

X 0. 1 0.0 2.0E-06 2.0E-05
35

X 0. 1 0.0 5.4E-06 2.3E-03
1 6

X 0. 1 0.0 3. 2E-06 2.2E-02
2 6

X 0. 1 0.0 6.3E-06 2.0E-05
1 7

X 0. 1 0.0 1.8E-06 2.0E-05
2 7

h
t

(X) 0.647 -2 . 2E- 15 7.2E-06 0.0

h
2

(x) 0. 818 6.6E- 17 5.0E-06 0.0

h
3

(x) -3.405 1.9E- 15 5. 5E-06 0.0

*\ <
X >

-46.70 7.5E- 14 1.0E-05 0.0

h
s

(x) -45.93 6.9E- 14 8.4E-06 0.0

hjx) 0. 12 1.8E- 16 2. 7E-06 0.0

h
?
(X) 0. 112 2.8E- 16 3.3E-06 0.0

\(X) 0. 152 1. 1E- 17 2.5E-06 0.0

h
9
(x) 0.085 1.7E- 18 3.5E-06 0.0

h (X) 0.079 0.0 2.3E-06 0.0
10

h11<x ) 0.498 1.1 E- 17 2.0E-06 0.0

h (X) -1.3 2.4E- 15 -3.2E-07 0.0
12 V

h (X) -0.7 0.0 1.6E-06 0.0
13

h
14

(X) 0.3 0.0 2.4E-06 0.0

h (X) -0.2 0.0 3.0E-07 0.0
15

h (x) -0.2 0.0 1.9E-07 0.0
16

Time 3 6 sec 116 sec 5 sec
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Problem 2

Source: D.M. Hiwmelblau, "Applied Nonlinear Programming,"

McGraw-Hill, Inc., New York, 1972, p. 396.

No. of independent variables: 10

No. of constraints: 3 nonlinear equality constraints

Objective function:

Minimize : f (x) =

10

T=T

10

c + x - In
i i

i=1

Constraints:

x x xxx
1 2 3 6 10

h(x)=e +2e +2e + e +e -2 =

X xxx
4 5 6 7

h(x)=e +2e + e +e -1 =
2

xxx xx
3 7 8 9 10

h (x) = e +e + e +2e +e -1 =

where c = -6.089 c = -17.164 c = -34.054 c = -5.91412 3 *

c = -24.721
5

c = -14.986
6

c = -24.1000
7

c = -10.708
8

c = - 26 . 662
9

c = -22.179
1 o
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Results for Problem 2

f(x)

X

10

h
i

(X)

h
z
(x)

h
3

(x)

Time

initial

-21.015

-2.3

-2.3

-2.3

-2.3

-2.3

-2.3

-2.3

-2.3

-2.3

-2.3

-1.298

-0.499

-0.398

GRG

-47.75

-3.61

-1.92

-0.246

-5.58

-0.723

-5.64

-3. 82

-4. 14

-3.39

-2.19

2.4E-05

1.8E-05

8.0E-06

2.57 sec.

SUMT

-47.76

-3.17

-1.88

-0.254

-6.58

-0.723

-7. 19

-3.61

-4.02

-3.22

-2.31

4.6E-09

-5.4E-09

2.0E-09

9.34 sec,

GRAVES

-47. 76

-3. 84

-1. 58

-0. 316

-5. 92

-0. 726

-6.,04

-3. 55

-4. 22

-2.,93

-1. 88

0.,0

0.,0

0.,0

14.83 sec

Alternate Initial Points:

a) x 2.0

1) x = -5.0
i

i=1, ,10

i = 1,. . ., 10
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Problem 3

Source: Shell Development Co. (cited in Colville, IBM N.Y

Sci. Center Rept. 320-2949, June, 1968, p. 22).

No of variables: 15

No. of constraints: 5 nonlinear inequality constraints

15 bounds on independent variables

Objective function:

10

Maximize: f(x) =

1=1

b x
i i L

5

yz - 2

3=1 i=i 3*1

d z

J

where y=c x
ij (10+i)

and z = x
(10 + j)

Constraints:

10

2 / y + 3d z + e - / ax > j = 1,...,5
J J 4—- ij i

i=1 i=1

x > i = 1, . . ., 15
i
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Data for Problem 3

.

1 3

1j
L

2j
L

3j
i

Hj
L

5j
I

6j
L

7j
t

8j
L

L

10j

15 -27 -36 -18 -12

30 -20 -10 32 -10

20 39 -6 -31 32

10 -6 10 -6 -10

32 -31 -6 39 -20

10 32 -10 -20 30

4 8 10 6 2

16 2 1

-2 0.4 2

-3.5 2

-2 -4 -1

-9 -2 1 -2

2 -a

-1 -1 -1 -1 -1

-1 -2 -3 -2 -1

1 2 3 4 5

1 1 1 1 1

bb bbbbb b12 3456 V 8

-40 -2 -.25 -4 -4 -1 -40 -60

b b
9 10

Alternate Initial Points:

a) x = 5.0
i

i=1, . . . , 15

t) x = 15.0 i-1,...,15
i
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Results for Problem 3

initial GRG SUMT GRAVES

f (X) 2400. 1 32.34 9 32.349 32. 92

X
1

1. OE-04 0.0 1.7E-06 0.0

X
2

1. OE-04 0.0 3. 1E-05 0.0

X
3

1. OE-04 5.2 5.2 5.4

X
4

1. OE-04 0.0 4.4E-05 0.0

X
5

1.0E-04 3.06 3.06 3. 07

X
6

1. OE-04 11.85 11. 84 12.26

X
?

6.0E 01 0.0 1 .6E-06 6.3E-04

X
e

1. OE-0 4 0.0 1. 1E-06 0.0

X
9

1. OE-04 0.1 0. 1 0. 16

X
1

1. OE-04 0.0 8.9E-05 0.0

X
1 i

1. OE-04 0.3 0.3 0.29

X
1 2

1. OE-04 0.33 0.33 0.34

X
1 3

1. OE-04 0.39 0.40 0.40

X
1 4

1. OE-04 0.43 0.43 0.44

X
1 5

1. OE-04 0.22 0.22 0.24

h
f

(x) 4.5E 01 4. 9E-08 2. OE-04 1 .4E-01

h
2
(x) 3.3E 01 2.5E-11 1. 8E-04 1 .8E-01

h
3

(x, 2.4E 01 4. 9E-06 1.5E-04 8.8E-01

h
4

< x > 4.2E 01 8. 8E-08 1 . 4E-04 1.8E-01

h (X)
5

4.8S 01 1.8S-07 2. 7E-04 4 .5E-02

Time 6 . 93 sec 13.7 sec 37.07 sec

Problem 4

Source: J. D. Pearson, On Variable Metric Methods of

Minimization, Research Analysis Corp. Rept. RAC-TP-302,

McLean, Va. , May, 1968 [Ref. 16].
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No. of variables: 9

No. of constraints: 13 nonlinear inequality constraints

1 upper bound

Objective function:

Maximize:

f (x) = 0.5 (x x -xx + xx -xx +xx -xx)
14 23 39 59 58 67

Constraints

- 2 2
1 - x - x >

3 a

1 - x >
9

2 2
1 - x - x >

5 6

1 -

1 -

1 -

1 - x - (x - X12 9

(X - x ) - (x - X
1 5 2 6

(x - x ) - (x - X
1 7 2 8

(X - X ) - (x - X
4 6

(x - x ) - (x - X
3 7 4

1 - x - (x - x
7 8 9

>

>

>

>

>

>

xx - x x >
14 2 3

xx > C
3 9

-xx >
5 9

xx - x x >
5 8 6 7

x >
9
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Results for Problem 4

initial GRG SUHT GRAVES

f(x) 0.0 -0.866 -0.866 -0.862

X
1

1. -3.0E-05 -0.530 -0.014

X
2

1.0 2.0E-05 -0.333 -0.572

X
3

1.0 0.866 0.469 0.852

X
4

1.0 -0.5 -0.883 -0.512

X
5

1.0 0.0 -0.530 -0.015

X
6

1.0 -1.0 -0.848 -1.000

X
7

1.0 0.866 0.469 0.858

X
8

1.0 0.5 -0.369 -0.081

h (x)
i

-1.0 2.03-13 4. 9E-06 1. 1E-0 2

h (x)
2

0.0 -6.6E-05 7.4E-01 8.2E-01

h (x) -1.0 0.0 2.8E-07 7.9E-05

h (x)
4

0.0 -2.5E-05 5.8E-06 1.0E-03

h (x) 1.0 4.1E-05 7.4E-01 8.2E-01

h (x) 1.0 -2.5E-05 1 . 1E-05 0.0

h (x) 1.0 2. 1E-13 1.2E-05 9.4E-03

h (x)
8

1.0 -1.5E-06 7.4E-01 8.1E-01

fa (X) 0.0 -2.5E-05 1. 1E-05 5.7E-03

h (X)
10

0.0 -2.7E-06 6.2E-01 4.9E-01

h (X)
11

1.0 0.866 2.4E-01 3.6E-01

h„W -1.0 -1.6E-19 2.7E-01 6.6E-03

h
l3

(x) 0.0 0.866 5.9E-01 8.6E-01

h
i4

(x) 1.0 1.0 5. 1E-01 8.6E-01

Time 3.07 sec 6.7 sec 14.4 sec

Alternate Initial Points:

a) x = -1.0
i

i=1,. . . ,8 x =0.0
9

b) x = 5.0
i

i=1,...,9
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Problem 5

Source: E.A. Paviani, Ph.D. dissertation, The University of

Texas, Austin, Tex., 1969 [ Ref . 17].

No. of variables: 24

No. of constraints 12 nonlinear equality constraints

2 linear equality constraints

6 nonlinear inequality constraints

24 bounds on independent variables

Objective function

Minimize: f (x) =

24

/
i=1

a x
i i

Constraints

:

h. (x) =
l

(i + 12)

24

c X
i i

12

/ i/ 40b /
(i+12)Z /b iZ Sb

3=13 j j=1 j

= i = 1,.. .,12

24

h (x) =
13

i=1

x -1=0
i
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±L 24

14
+ f - 1.671 =

i=1 i=13

where f = (0.7302) (530)
14.7

40

h (x)
(i+14)

- x + x J
\± <i+12)j

e > i = 1, 2,3
24

z.
j=1

h . „
(x)

(i+14)

|X + X
• .r

(i+3) (i+15)
+ e > i = 4,5,6

U-

s
x > i = 1, ... ,24
i
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Data for Problem 5

a

1 0.C693 44.094 123.7 31.244 0.1

2 0.0577 58. 12 31.7 36. 12 0.3

3 0.05 58.12 45.7 34.784 0.4

4 0.20 137.4 14.7 92.7 0.3

5 0.26 120.9 84.7 82.7 0.6

6 0.55 170.9 27.7 91 .6 0.3

7 0.06 62.501 • 49.7 56.708

8 0. 10 84.94 7. 1 82.7

9 0.12 133.425 2.1 80.8

10 0. 18 82.507 17.7 64.517

11 0. 10 46.07 0.35 49.4

12 0.09 60.097 0.64 49.1

13 0.0693 44.09a

14 0.0577 58. 12

15 0.05 58. 12

16 0.20 137.4

17 0.26 120.9

18 0.55 170.9

19 0.06 62.501

20 0. 10 84.94

21 0.12 133.425

22 0. 18 82.507

23 0.10 46.07

24 0.09 60.097
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Results fcr Problem 5

f (x)

1

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

2 3

24

\ (x)

h
2
(x)

initial

0. 14696

0,,04

0. 04

0.,04

0.,04

0.,04

0. 04

0. 04

0. 04

0. 04

0. 04

0. 04

0. 04

0. 04

0. 04

0.,04

0.,04

0.,04

0.,04

0.,04

0.,04

0.,04

0.,04

0..04

0..04

-2.9E-01

2..2E-02

GRG SUMT GRAVES

5. 566E-02 5.566E-02 5.566E-02

2.8E-09 2. 1E-07 0.0

1. 1E-01 1. 1E-01 1. 1E-01

1. 1E-01 1. 1E-01 1 .1E-01

0. 1.3E-07 0.0

4.9E-14 2.8E-08 0.0

0.0 2.7E-08 0.0

7.6E-02 7.6E-02 7.6E-02

0.0 9. 1E-07 0.0

0.0 6. 1E-07 0.0

0.0 1.4E-07 0.0

0.0 1.3E-05 4.0E-07

1, 1E-02 1. 1E-02 1 . 1E-02

0.0 1.5E-06 0.0

1.9E-01 1 .9E-01 1 .9E-01

2. 9E-01 2.9E-01 2.9E-01

0.0 1. 1E-07 0.0

0.0 1.3E-07 0.0

0.0 4. 02-08 0.0

2. 1E-01 2. 1E-01 2.1E-01

0.0 3.7E-07 0.0

0.0 7.6E-08 0.0

0.0 1.5E-07 0.0

0.0 6.5E-07 0.0

4. 1E-04 4 . 1E-04 4.1E-04

-3.3E-08 1.3E-09 0.0

4. 9E-07 -1.7E-09 0.0
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initial GllG SUMT GRA\r ss

h (x)
3

-1.5E-02 1.7E-08 -1 .4E-09 0.0

h
4

(X) 2.8E-02 7.0E-20 7.2E-11 0.0

h
=

(x) -5.6E-02 1.7E-13 -9.0E-10 0.0

hjx) 1. 1E-02 7.7E-21 -1.3E-09 0.0

h
?
(x) -2.4E-02 5. 1E-07 9.6E-10 0.0

h
8

(x) 5.9E-02 5.7E-27 1. 5E-10 0.0

h
g

(x) 4.3E-02 3.6E-35 1 . 9E-09 0.0

\o (X > 4. 1E-02 7.3E-21 -5. 3E-11 0.0

h
Il(

x) 1. 3E-01 -2.9E-33 3.6E-10 0.0

h,
2
(x) 1.0E-02 3.3E-09 6. OE-10 0.0

h
j3

(x) -4.0E-02 -9.6E-17 -4.6E-10 0.0

\,.< x) -7.3E-01 2.4E-11 4.8E-12 0.0

h
,5

(X) 1.6E-02 1.0E-01 1.0E-01 1.0 E-•01

h
16

(X) 2.2E-01 -6.1E-10 2. 6E-06 0.0

h
i7

(x, 3.2E-01 -9.8E-11 1 . 6E-06 0.0

h
1 a

(X) 2.2E-01 1.2E-02 1. 2E-02 1.2E-•02

h (x)
1 9

5.2E-01 6.0E-01 6.0E-01 6.0E-•01

h (X)
20

2.2E-01 3.0E-01 3.0E-01 3.0E-01

Time 13.85 sec 385 sec .85 sec

Alternate Initial Points:

a) x = 0.08
i

1=1,. . . ,24

b) x = 0.02
i

i = 1,. . . ,24
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Problem 6

Source: J. Bracken and G. P. Mccormick, "Selected

Applications of Nonlinear Programming," John Wiley & Sons,

Inc., New York, 1968, p. 26.

No. of independent variables: 100

No. of constraints: 12 linear constraints

100 lower bounds on the variables

Objective function:

20

Minimize: f(x)

3=1 i=1

a
1D

-
ij

Constraints:

i=1

x - b > j = 1,6,10,14,15,16,20
ij J

20

j»1

x +c > i = 1 . . . ,5
ij i

x > i=1 , . . . ,5 j=1 , . . . ,20
ij
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Data for Problem 6

ID
b «s
J

u 's
j

1 1 .84 .96 .92 30 60

2 .95 .83 .95 .94 50

3 1 .85 .96 .92 50

4 1 .84 .96 .95 75

5 1 .85 .96 .95 40

6 . 65 .81 .90
•

.98 100 • 60

7 .90 .81 .92 .98 35

8 .85 .82 .91 1 30

9 .80 .80 .92 1 25

10 1 .86 .95 .96 .90 40 150

11 1 .99 .91 .95 30

12 .98 . 98 .92 .96 45

13 1 .99 .91 .91 125

14 .88 .98 .92 .98 50 200

15 .87 .97 .98 .99 70 200

16 .88 .98 . 93 .99 35 130

17 .85 .95 1 1 100

18 .95 .84 .92 1 1 100

19 .85 .93 1 1 100

20 .85 .92 1 1 10 150

200 100 300 150 250
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Results fcr Problem 6

initial GRG SDMT GRAVES

x(«) 100.0 below below below

f (X) -1755.0 -1735.0 -1735.0 -1720.0

h
i

(X) -1800.0 18.0 20.8 21.6

h
2
(x) -1900.0 -4.8E-13 6. 4E-02 0.0

h
3
(x) -1700.0 12.0 11.2 37.7

h (X)
*

-1850.0 -3.4E-13 8.7 15.7

h (X)
s

-1750.0 6.3E-13 0.1 12.8

h (X)
o

470. 18.0 6,8 17.5

h
?

(x) 400.0 52.4 52.3 50. 1

h (X)
e

460. 9 . 1 E- 1 3 G. 4E-02 0.0

h (X)
9

450. 6.5E-13 1.7E-02 0.0

h
,.

|x » 430. 1 . 1 E- 1 2 5.6E-02 0.0

h
ii(

x, 465.0 8.2E-13 3. 1E-02 0.0

b„W 490. 8.3E-13 5.4E-02 0.0

Time 51 sec. 123 sec. 49 sec

Core 270K 194K 138K

Alternate Initial Points:

a) x 10.0
1j

x =7.5
4j

x = 5.0
2j

= 12.5
5j

3j

j = 1,. .. ,20

15.0

b) 10
13

i = 1 , . . . ,5 j=

1

s . . . ,20
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Target
3

10

11

12

Wea pon Type i

1 2 3 4

-8- -5-

-6-
(14)
14

-6-
(2)

-9-

1?

-15-

-6-

-9- -12-

*S3>22

-11- -23-

<?§)
18

-74- -10-
(99) Q)
98 2

-3 3-
(39)
37

-24-

(?P27

-20-
lt°J21

-10-

Total

-13-

-40-
(51)
48

-53-

48

-19-
(43)
18

-40-

69

-2,8-
(48)
49

-34-
(48)
49

-34- -54-

24

-3- -37-
(21)
27

-1- -15- -100-
(100)
100

-33-
(39)
37

-24-
(27)

-20-
(20)
21

-40- -65-
(51)

-13-
(33)
27

-27-

1!'

-40-

-24-
(41)
37

-9-

7

-46-
(41)
44
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Weapon Type i

Target
3 1 2 3 4 5 Tota

13
-13- -33- -46-

(54)
54

14
-5- -3-

9

-11- -46-
(58)
41

-66-

50

15
-10- -20-

(26)
26

-44-
(44)
44

-16- -1- -91-
(70)
70

16
-1- -8-

(2U,
-8- -36-

(18)
45

-53-
(42)
53

17
-10- -38- -48-

(75)
50

18
3

-7- -41-
(57)
57

-48-
(57)
60

19
-8- -38-

(64)
64

-46-
(64)
64

20
-4- -12- -38-

(62)
62

-1- -55-
(62)
62

Totals
-200-
(199)
200'

-100-
(99)
99

-300-
(300)
300

-149-
(150)
150

-250-
(250)
250

denotes GRAVES variables

( ) denotes SUMT variables

no brackets are GRG variables
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Problem 7

Source: Adapted from a model proposed by D.A. Schrady and

U.C. Choe, [Ref. 13].

No. of independent variables: 100

No. of constraints: 1 linear constraint

1 nonlinear constraint

50 lower bounds on the variables

Objective function:

minimize f (x) =

where

50

T^T

B (x + 50)
i i

1 r 2 2~\

\ (x +50) = — s + d
(f,

i i 2 i ij X

/d \

i
c:

I i/
!4i </>

2

d \

and d = x - m
i (i+50) i

i>
(x) J e

\/2TT

*2

. f
(j)(r) = \ 0(x) dx
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Constraints:

50

K -

i=1

i + x - m— (i + 50) i
>

50

K -
2

>

i=1

x > i = 1, ... ,50
i

K = 200,000
1

K = 300
2
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Data for Problem 7

L «s
i

c ' s
i

m s
i

s •

i

1 1000 1 100 100

2 1500 10 200 100

3 2000 20 300 200

4 1100 17 200 100

5 1900 23 100 100

6 700 8 2 00 200

7 400 12 200 200

8 1200 19 300 100

9 2000 2 500 200

10 1300 5 300 100

11 1900 21 100 100

12 900 16 200 200

13 1400 13 400 200

14 1500 19 500 i 300

15 2200 7 400 100

16 1700 4 300 100

17 1800 12 200 200

18 800 5 100 100

19 700 18 100 100

20 1100 16 100 100

21 1000 14 200 100

22 1800 21 200 200

23 1500 6 400 300

24 2100 6 500 100

25 1600 14 100 100
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I «s
i

c ' s
i

m ' s
i

s »s
i

26 700 2 100 100

27 2000 12 200 200

28 1800 3 500 300

29 1700 1 200 200

30 700 18 3 00 200

31 1200 19 100 100

32 1100 12 - 100 100

33 1700 9 500 100

34 600 8 3 00 100

35 400 1 200 100

36 1000 3 100 100

37 1900 17 400 300

38 1500 15 2 00 200

39 1400 18 400 300

40 1200 16 500 300

41 1300 5 100 100

42 1900 12 200 100

43 2000 15 300 200

44 2200 20 4 00 200

45 800 23 100 100

46 1900 17 200 200

47 2100 16 500 200

48 2000 4 500 300

49 500 8 100 100

50 900 12 100 100
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Results fcr Problem 7

f (x)

1

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2

2 1

2 2

23

2 *

25

2 6

2 7

initial GRG SUNT GRAVES

2008.2 80.89 80.73 193.03

300.0 319.18 441.75 353.57

300.0 201.55 202. 13 263.48

300.0 235.40 235.52 350.71

300.0 154.48 153. 15 195.25

300.0 171.36 168.97 139.96

300.0 235.21 213.68 199.96

300.0 189.50 181.01 181.23

300.0 154.2 3 152.95 2 33.91

300.0 472.64 479.21 307.91

300.0 249, 19 247.75 230.58

300.0 175.54 173.38 136.72

300.0 203.45 203.56 224. 15

300.0 239.65 232.42 201.47

300.0 294.19 286.03 285.43

300,0 2 6 6.53 269.92 179.99

300.0 289.56 304. 16 257.52

300.0 252.24 253.34 344.82

300.0 208.60 2 3.41 266. 16

300.0 132.43 131 .50 89.60

300.0 157.06 155.69 236.01

300.0 157. 71 156.65 172.25

300.0 228. 17 228.01 244.51

300.0 344.97 335.74 328.76

300.0 300.04 281.65 326.07

300.0 186.27 18 4.75 282.89

300.0 271. 19 277.62 164.98

300.0 259.50 261.33 240.90
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2 8

2 9

30

3 1

32

3 3

34

35

3 6

3 7

38

3 9

4

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

5

5 1

5 2

5 3

5 4

55

5 6

initial GRG SUMT GRAVES

300.0 397. 19 431.79 365.20

300.0 423.59 598.64 528.20

300.0 192.39 19 2. 76 351. 17

300.0 154.25 152.90 104.03

300.0 170.06 169.53 220.08

300.0 228.43 220.55 175.01

300.0 159.39 155.54 218.90

300.0 298.67 293,51 200.04

300.0 262. 18 272.91 268.90

300.0 308.01 299.71 343.80

300.0 229.81 230.32 254.82

300.0 295. 16 283.78 439.54

300.0 295.71 278.89 299.69

300.0 240.84 247.65 267.84

300.0 208.46 207.65 190.48

300.0 248.06 248.49 210.33

300.0 240.71 2 4 1.18 273.48

300.0 130. 71 129.77 255.60

300.0 238.75 239. 13 2 24. 15

300.0 252.70 248.52 311.52

300.0 407.32 409.01 507.23

300.0 147.50 146.09 107.56

300.0 158.38 158.08 95.74

300.0 311.03 297.76 375.11

300.0 334.79 334.50 252.24

300.0 554.60 554 .64 477.52

300.0 321.88 322.53 225. 55

300.0 201.42 202.46 194.65

300.0 533.48 543.68 486.93
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5 8

5 9

60

6 1

6 2

6 3

6 *

6 5

6 6

6 7

6 8

6 9

7

7 1

72

7 3

7 *

7 5

7 6

77

7 8

7 9

8

8 1

8 2

8 3

initial GRG suht GRAVES

300.0 517.88 523.81 498.57

300.0 416.59 417. 16 368.46

300.0 893.45 889.23 811 .32

300.0 455.31 456.33 4 95.29

300.0 205.00 205.83 246. 11

300.0 488.69 488.64 409.38

300.0 690.71 695.32 572.72

300.0 916.04 918.54 765.45

300.0 538.04 537.61 588.42

300.0 459.55 457. 11 524.78

300.0 494.65 494.78 399.30

300.0 264.98 264.70 199.96

300.0 226.60 227. 10 233.91

300.0 223.96 224.66 236.01

300.0 330.03 330.70 286.07

300.0 452.63 453.08 403.50

300.0 940.70 944.58 816.66

300,0 639.98 642.67 672.35

300.0 222.06 222.85 184.75

300.0 290.09 289.03 370.36

300.0 492.25 492.03 392.38

300.0 1 105.45 1095.59 918.73

300.0 654.97 624. 10 5 56.15

300.0 582.95 5 8 2.95 551.76

300.0 216.58 217.18 250.88

300.0 233.56 2 34.21 220.03

300.0 633.98 635.33 589.73
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initial GfiG suriT GRAVES

a 4

8 5

8 6

8 7

8 8

8 9

90

9 1

9 2

9 3

9 4

95

9 6

97

9 8

9 9

X
100

h
x
(X)

h
2
(x)

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

80650.0

68.0

454.69

412. 1 1

275.54

823.92

483.80

824.73

938.50

259.25

324.3 1

576.67

652.48

215.22

469.03

768.47

1069.70

258.91

236.84

1.7E-13

2.4E-05

456. 13

412.73

273.65

827.30

483.34

826.95

945.03

256.37

324.64

576.45

652.38

215.85

468.47

770.50

1068.96

2 5 8.82

237.43

7.2E-01

1 . 9E-04

478.23

375.56

208.42

768.80

383.05

709.39

721.15

199.96

305.69

472.27

510.78

255.60

387.54

665.23

1096.86

215.21

220.03

7.9S-06

3.6E-05

Time 96 sec 24 6 sec 234 sec

Alternate Initial Points:

a) x = 10
i

i=1, . . . ,100

b) x. = 1000 i = 1,. . . ,100
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Problem 8

Source: Adapted from a model proposed by

A.J. Scott [Ref. 14J.

No. of independent variables: 46

No. of constraints: 1 nonlinear inequality constraint

1 linear equality constraint

46 lower bounds on the variables

Objective function:

x / x
i i

Minimize f (x) = / — In —
___ T T

1=1

Constraints

T - / x =0
i

46

i=1

cy +ady >
i i i i

where y. = x
Z.

J C A(i)

A(i) consists of all arcs (in figure A1-1) that

converge directly and indirectly upon node i.

x >
i

i = 1, . . . ,46
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Data for problem 8

a = 0.05

b = 1.50

T = 500

S = 10000

1 o

l 3

1 6

1 9

22

25

2 8

3 1

34

37

4

43

5.0

7.0

6.0

12.0

21.0

9.0

20.0

6.0

11.0

15.0

8.0

12.0

16.0

8.0

11.0

l l

1 4

1 7

2

2 3

2

2 9

3 2

3 5

3 8

4 1

4 4

4 6

4.0

7.0

4.0

14.0

23.0

10.0

5.0

3.0

6.0

10.0

14.0

14.0

9.0

11.0

18.0

13.0

1 2

1 5

18

2 I

24

27

30

33

36

39

4 2

4 5

5.0

8.0

3.0

10.0

8.0

13.0

8.0

8.0

18.0

8.

11.0

18.0

2.0

12.0

20.

d = c
i i

i=1 ,. . .,46
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Figure A 1-1. Transportation Routes for Problem 8
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Results for Problem 8

f (x)

1 o

i l

12

1 3

1 4

1 5

1 6

1 7

i e

1 9

20

2 1

2 2

23

2 4

25

26

27

28

29

initial GRG SUMT GRAVES

-3.249 -3.401 -3.468 -3.462

40.000 34.86 39.08 37. 14

26.667 35.66 45.24 44.36

86.667 72.80 36.46 40.81

10.000 13.22 19.36 18.99

13.333 13.99 19.25 19.32

13.333 13.35 17.02 17.73

13.333 13.53 19.97 20.65

23.333 19.37 23.45 22. 16

23.333 22.06 31.56 30.48

3.333 8.48 7. 17 6.76

3.333 7.58 6. 18 6.03

3.333 9.26 8.30 8.79

3.333 4.49 3.75 3. 39

3.333 3.72 3.28 3.03

3. 333 9.60 8.67 8.20

3.333 9. 13 8.02 8. 19

3.333 8.67 7.43 6.87

6.667 5.86 6.70 6.38

3.333 4.56 4. 15 4.07

46.667 34.63 19. 96 21. 93

6.667 7.99 9.86 8.99

26.667 9.46 11.06 12.56

10.000 10.62 14.91 14. 16

10.000 9.02 11.14 1 1.25

10.000 7.42 8.82 8.44

20.000 16.12 16.33 16.71

3.333 1.00 1.85 1.57

3.333 2.96 3. 17 3.24

10.000 3.29 4.83 4.71
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initial GRG SUMT GRAVES

X
3

13.333 4. 82 5.62 6.28

X
3 1

3.333 7.93 7.67 7.46

X
3 2

3.333 5.3a 4.91 4.92

X
33

3.333 5.21 4 .69 4.29

X
34

3.333 4 .81 4.36 4.39

X
3 5

3.333 2.82 3.07 3.21

X
3 6

3.333 1.62 2.35 2.40

X
3 7

3.333 5~. 82 4.61 4.22

X
3 8

3,333 8.92 7.72 7.78

X
3 9

3.333 12.24 13.67 13.46

X
4

3.333 9.39 8.35 7.77

X
4 1

3.333 8.01 6.63 6.99

X
4 2

3.333 1.14 2.05 1.67

X
4 3

3.333 1.27 2. 19 2.61

X
4 4

3.333 1.72 1.59 1.57

X
45

3.333 4.91 1.40 1.57

X
4 6

3.3 33 1 .29 2.20 2.45

h
f
(x) 80.330 -1 .2E-05 8.9E-01 32.99

h
2

(x) -6.8E-13 -7.3E-15 6. 2E-07 3.46

Time 32 sec 53.8 sec 150 sec

Alternate Initial Points:

a) = 10.87

x = 75.0

10.0

= 3.26

i=1, . . . ,46

1=1,2,3

J. *~ ^ • • • f £ 3

i=24, . . .,46
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