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ABSTRACT

The Kolmogorov-Smirnov goodness-of-fit test is exact only

when the hypothesized distribution is continuous, "but recently

Conover has extended the Kolmogorov-Smirnov test to obtain a

test that is exact in the case of discrete distributions.

Reasons for using this procedure instead of the regular

Kolmogorov-Smirnov test when the hypothesized distribution

is discrete are given. A computer subroutine is developed

to allow easy use of the procedure. The subroutine is then

used to demonstrate the conservatism of the regular Kolmogorov-

Smirnov test in this case and to investigate some properties

of the asymptotic distributions of the test statistics.
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I. INTRODUCTION

Various statistical problems reduce to the choice of a

parametric form of a probability distribution of a population.

A one sample goodness-of-fit test is a test of the hypothesis

H
Q : F(x) = H(x) for all x, where F is the unknown cumulative

distribution function of the population in question and H is

the hypothesized cumulative distribution function. There are

various test statistics that can be used in goodness-of-f it

tests. The choice of which statistic to use depends on the

nature of the sample, whether F is continuous or discrete,

whether all of the parameters of H are known or are estimated

from the sample, or whether H is a member of a certain class

of distributions. The two most commonly used tests are the

Chi-square and Kolmogorov-Smirnov (K-S) type goodness-of-fit

tests

.

The Chi-square test is based on a test statistic that is

asymptotically distributed as a Chi-square random variable,

and therefore is used when the sample size is relatively large,

The Chi-square test does not require major assumptions on the

hypothesized distribution and can be used when the parameters

of the hypothesized distribution are estimated from the sample

The hypothesized distribution may be either discrete or contin-

uous and the data may be observations of the population or

grouped observations of the population.



The Kolmogorov-Smirnov test statistic has a known distri-

bution for all sample sizes which makes the test exact. The

K-S test may be preferred to the Chi-square test when the sample

size is small because of the exactness of the K-S test. There

is some controversy as to which of the two tests is more power-

ful. The relative power has been studied (see Massey, C^J)
and the K-S test appears to be more powerful in some cases

while the Chi-square test is more powerful in others. Tradi-

tionally, a major requirement for the K-S test has been that

the hypothesized distribution, H, must be continuous. If H

is not continuous, then a test of the hypothesis H using the

traditional K-S tables is known to be conservative (see Noether,

f9j)
Unfortunately, the exact degree of conservatism is not

known. W. J. Conover 2^~3_7 derived a method to use a K-S type

test when the hypothesized distribution is discrete or when

the data has already been grouped (see Darmosiswoys /~5_/)

»

but the computations using this method are long and involved.

In what follows, a program is developed to be used on a digital

computer employing Conover' s method. This program is then used

to investigate the asymptotic distributions of the test statis-

tics.

A description of notation used herein is contained in the

following list:
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Notation Description

S Empirical distribution function of an random sample of size n.

n Sample size.

a Level of significance of test.

« Critical level of test.

F Unknown distribution function of a
random sample.

H Hypothesized distribution function.

X., ,X«. . . . ,X Random sample of size n.
1 2 n

X/,v iX/«x , . . . ,X/ v Ordered rearrangement of the random^ ^ 2 ' ^ n ' sample X, , . . .
,X in ascending order.

H A null hypothesis in test hypotheses
o

H An alternate hypothesis in test
1 hypotheses



II. DESCRIPTION OF CONOVER'S PROCEDURE

A. KOLMOGOROV-SMIRNOV TYPE TESTS AND TEST STATISTICS

One sample K-S type tests are goodness-of-fit tests that

compare the empirical cumulative distribution function of a

random sample to a hypothesized cumulative distribution

function. If the empirical cumulative distribution function

is not close, in the sup norm sense, to the hypothesized

cumulative distribution function, then the conclusion is

made that the random sample did not come from the hypothesized

distribution.

Let X., ,X , . . . ,X be independent random variables ( obser-
1 2 n ^

vations) each having the same unknown distribution F. If

X/, \ X/p\,...,X/ i represents the rearrangement of X, ,X ?I . . .

,

X in asending order, then the empirical cumulative distri-

bution function S is defined by:
n J

if x-^X/-^

S
n
(x)

|

k/n if x
( k )-

x<x
( k+i)'

k = l,2,...,n-l

1 if x>X
(n)

The K-S test may be used to test the three following hypotheses

1. H : F(x) = H(x) for all x
o

H , : F(x) / H(x) for some x

2. H
Q

: F(x)>H(x) for all x

H-, : F(x) < H(x) for some x

10



3. H
q

: F(x)<H(x) for all x

H,: F(x)>H(x) for some x

In each hypothesis, H is a specified distribution function.

One of the following test statistics is used depending on

the hypotheses "being tested:

1. D = sup
x

|H(x)-S
n
(x)

|

2. D"= sup
x

(H(x)-S
n
(x))

3. D
+
= sup

x
(S
n
(x)-H(x))

For each of the three hypotheses, a sufficiently large obser-

vation of the test statistic indicates that the null hypothesis

should be rejected. If a is the level of significance desired

in the test of either hypotheses 1, 2, or 3. then critical

values c, c~, or c are determined as follows, according to

which set of hypotheses is being tested:

1. P(D>c) = a

2. P(D~2r c") - a

3. P(D
+> c

+
) - a

"P" in the above equations is the measure associated with H.

+ - +
If the observation d, d , d of the statistics D, D , or D ,

respectively, exceeds the corresponding critical values, that

null hypothesis is rejected at a level of significance of a .

Instead of determining the critical values, we may compute

the critical level, a , which is the smallest significance

level at which the null hypothesis would be rejected for the

11



given observation d, d , or d , and compare it with a . If

a < a, then the null hypothesis is rejected while if a > a,

the null hypothesis is not rejected. The two methods are

equivalent and the level of significance in both is a .

If H is true and H is continuous, it is known (see

Darling, Z~^_7) that the distributions of D, D~, and D are

independent of H. Tables of critical values for various

— +levels of significance of the test statistics D, D
, and D

are available for use in the K-S test when H is continuous.

When H is discrete, the distributions of D, D~ , and D are

not independent of H and the standard K-S tables cannot be

used to find the critical levels of the test statistics. When

H is discrete, the standard K-S tables can be used to give an

approximation of the level of significance of the test because

of the following demonstration. Let Y be a discrete random

variable with distribution function R. If a-., a,-,*... are

points of discontinuity of R with associated probabilities

P-iiP ?
then, let Z be any continuous random variable with

distribution function T such that T(a.) - T ( aj__]_)
=

Pj_ >
i = L

2, . . . , a is any point such that a < a-, . Then

R(a
i

) = T( ai ), i = 1,2, ... (1)

Let Y, ,Y„,...,Y be a random sample from R. This random
1' 2 n

sample can be thought of as having been determined by a random

sample Z-ifZg, . . . ,Z
n

from T by setting Y
fc

- a
i

if a
i _ 1

< Z
k
—

a. , i = 1,2, ... , k = 1,2, ... , n. If R
R

is the empirical

12



distribution function of Y, ,Y ? Y and T is the empirical

distribution function of Z,,Z_,....Z , then12 n

(2)R
n (ai ) = T

n(ai ) , i = 1,2, . .

.

Let D' = sup R (a)-R(a)
*a ' n Since R is discrete,

D' SUP: Rn(a.)-R( ai ) (3)

(1) and (2) imply R
n
(a

i
) - R(a

i
) = ^(a^- T(

&i )

i = 1, 2 Then,

for all

D' = sup. R (a. ) - R(a.

)

*! n l l
SUP: T

n (ai ) - T(
&i )

sup
a

T
n
(a) - T(a) = D

which implies P(D > c) ^P(D > c) for any c. The same argu-

ment can be used for D~ and D to show that P(D~' > c)

^

P(D" > c) and P(D
+ '>

c) < P(D
+ ^ c) . Therefore, if the

standard tables are used to construct a test when H is discrete,

the test is conservative.

Slakter /""l0_7 demonstrates the conservatism of the contin-

uous K-S test when H is discrete using a computer simulation

to calculate an estimate of the actual level of significance,

a , , of the hypothesis H where H is the discrete uniform
K J r O

distribution with k mass points. Ten thousand random samples

were generated from the hypothesized distribution and the

statistic D was evaluated.

proportion of the ten thousand replications in which H
q
was

rejected. This process was repeated f r various sample sizes

a. was then estimated as the
k

and various k and in all cases a, was considerably less than

13



the true a. For example, with k = 10 , 50 observations,

and a = .05. a, turned out to be .0166.

The use of a conservative test might at first seem desir-

able since it guarantees that the actual probability of

rejecting the hypothesis when it is true is less than the

predetermined probability of rejecting a true hypothesis.

Unfortunately, this causes a decrease in the power of the

test. This unknown amount of decrease in the power of the

test leads us to desire that we could calculate the exact

significance level of our test when H is discrete.

- +
Since the distributions of D, D , and D depend on H it

would require a prohibitive number of tables for use in

testing H when H is discrete, even for simple distribution

families. For this reason, the use of K-S tests when H is

discrete has not been investigated until recently when W. J.

Conover demonstrated a method for finding the exact critical

level (approximate in the two-sided case) in this instance.

The program presented in this thesis makes use of Conover'

s

procedure a practical reality.

B. CONOVER' S PROCEDURE

1 . Distributions of Test Statistics

Conover derives the distribution of D, D , and D for

H continuous or discontinuous in £~?>J'• He shows that P(D 1> t)

= 1 - e . , where the e.'s are defined recursively as follows:
n+1 l

e. = 1 and for k = 2, 3 n+1

Ik



e-
= x - E (5"i) e

o
f"

*

< 4 >

with f
k

P{x.< H- 1
/
n
^
+1

- tj} , l<k <n+l (5)

omThe X.'s are the independent identically distributed rand

variables with distribution function F. H~ (p) is defined as

sup { x: H(x) — p | for < p — 1 and as minus infinity if

p ^ . If H is continuous, then with the use of the proba-

bility integral transform, it is easy to see that

k+

1

f. = 1 - - t and (^) reduces to the form of the regular
k n to

K-S statistic obtained by Birnbaum and Tingey /~~2_J7. We note

that if k > n(l-t)+l, then from (5), f
fc

= and the distri-

bution of D becomes

m.m

(6)

3=-

where m, is the greatest integer in n(l-t)+l. The distri-

bution of D~ is very similar to D' and is given by P(D"^ t)

=l-"b +1 , where the b-'s are defined recursively as follows:

b. = 1 and for k = 2,3,...,n+l

3=1

with c
k

= P{x
i

=> H" 1
/ ^- + tU , 1 ^k ^n+1 (8)

15



If k >n(l-t)+l, then ^pp + t >1 in (8) which implies

c, = and the distribution of D~ becomes

m

pot**)- i:(A)^ cr
+1

.+P(D > t) is approximated by P(D > t) = P(D > t) + P(D" — t)

and the following bounds for P(D > t) are given:

P(D
+ > t) + P(D~ > t) - P(D

+ > t) P(D~ > t) ^

P(D>t) =£ P(D
+ > t) + p(d" > t) (10)

In most tests, P(D > t) and P(D~ > t) are small and therefore,

the maximum error in this approximation is very small.

2. Calculation of Critical Levels

a. Critical Level for D

Let d = sup (H(x) - S (x)) be determined from
x n

the observations. For each k such that 1 ^ k *=i n(l-d~) + l,

k-1 -
draw a horizontal line with ordinal value of + d on

n

the graph of H. c, is then 1 - (—p— + d~) unless the line

intersects H at a discontinuity in which case c, is one minus

the height of H at the top of the jump. The t>
k
's are then

computed from (7), and (9) is used to compute the critical

level, P(D~ > d~)

.

b. Critical Level for D

Let d
+

= sup (S (x) - H(x)) be determined from
X XI

the observations. For each k such that l^k < n(l-d ) + 1,

draw a horizontal line with ordinal value of 1 - (~~ + d )

16



on the graph of H . f^ is then this ordinal value unless the

line intersects the graph of H at a discontinuity of H in

which case f. is equal to the height of H at the "bottom of

the jump. The e
k
's are computed using (k) , and (6) is used

to compute the critical level, P(D > d )

.

c. Critical Level for D

Let d = sup H(x) - S (x) be determined froma n

the observations. P(D~> d) and P(D > d) are computed using

(9) and (6) as described above, and (10) is used to put bounds

on the critical level, P(D > d)

.

D. SUBROUTINE "DISKS'*

The calculations of critical levels as described above

can be very time consuming, especially as the number of

observations increases. For this reason, subroutine DISKS

(Appendix A) was developed to perform these calculations.

Subroutine DISKS will calculate the critical levels of equa-

tions (6) and (9) and the bounds on the critical level of D

as in (10) for most discrete distributions (see Appendix A

for restrictions) . Subroutine DISKS was used to calculate

critical levels for various examples and verified with cal-

culations of the critical levels made by hand.

Subroutine DISKS can be modified slightly to calculate

the exact size of a critical region for a test. For example,

with a sample of size 10, the critical region determined from

the standard tables for continuous distributions of size .1

17



consists of all values of D greater than .369. By insert-

ing the value of .3^9 for d in a modified version of DISKS

and the hypothesized distribution H, the exact size of the

test when H is discontinuous (which we know is less than .1)

can be calculated.

18



III. ASYMPTOTIC DISTRIBUTIONS OF TEST STATISTICS

A. ANALYTICAL DISTRIBUTIONS

+
The asymptotic distributions of D , D , and D have been

studied by several people for the case when H is not continu-

ous. Schmid /~8_7 showed that the limiting distributions of

+
D , D , and D do exist, but are no longer independent of H.

The limiting distributions depend on the values of H at the

discontinuity points. Schmid showed, for example, that if

H is discontinuous at x = x. , i = l,2,...,c, H(x. - 0) = f
2j-l'

H(x.) = f ., and f_ , n = 1, then
J 2j

'

2c+l

lim P(D

G (k) = ^2 (-D
1

) = G(k) where

an

1=_ co

exp

(."*

2c

2
i
2

1 b

i E a.

IA

x .x
jm j m

dx-, . . . dx,-.
1 2c

i .m=l

JiL ±±
(V-V (f

J
" fM>

a
-1

JiJ-1 J-l.J f j-l

a- • = for i < j-l or i > j+1
J

= (2w) -n
2c+l

3=1

(f- - f. -,)
2

19



and
00

Ai= U {-t<x2M + 2k(P
J

+ if
2j-i^ k -

?-]_ P
c

= -°°

-k-x
2

. + 2k(P. + kf
2
.)<k , j=i c l

Unfortunately, G(k) becomes undefined when H is discrete

since the a's blow-up and b becomes zero. Conover Z~3_7

tried, as did this author, using the distributions of Section II

to derive the asymptotic distributions, but the attempts were

unsuccessful. For these reasons, a computer routine using

subroutine DISKS was used to investigate the asymptotic pro-

+
perties of the distributions of D , D , and D. Since formulations

in the literature of the limiting distributions involve multi-

ples of the inverse of the square root of the sample size, it

was decided that values of k would be determined such that

lim P(D S: —-)= a for various values of a . The asymptotic
vn

n—- co

distributions of D and D were not studied since they display

the same basic characteristics as the asymptotic distribution

of D.

B. COMPUTER PROGRAM USED

Subroutine DISKS was modified to search for the value of

k such that P(D>J=- ) was as close to, but always less than,

a predetermined value of a as possible. Values of n between

thirty and one hundred in increments of five were used to

20



I/-

determine k such that P(D > — ) = a from (10). Values of n
_k

Vn
between eighty-five and one hundred were sometimes not used

since significant errors in calculations occurred, even with

double precision calculations.

The modified subroutine was used to investigate the

asymptotic distribution of D when H was one of the following

distributions:

1. Discrete uniform with parameter m:

if x <1

— k<x<k+l, k = 1,2 m-1

1 x > m

2. Poisson with parameter /l :

[x] - u k
v—\ e

/
J-

H(x) = y -r-j , where [x] = largest integer <x

k=0

3. Geometric with parameter p :

[x]

H(x) = ^2 p(l " P )

k-1
l> K-L - p )

k-1

Each distribution v/as investigated for various values of its

respective parameter. The values of k determined for the

various values of n for each particular parametric distribution

were examined to determine if they appeared to be converging

to some common value. The fact that the distribution of D is

discrete suggested that the values of k would not converge in

a uniform manner to some value, but it was hoped that, even

21



though it jumped around some, the convergence to a common

value would be evident. By varying the values of the para-

meters of the various distributions, these discrete distribu-

tions would approach (in the weak convergence sense) a continu-

ous distribution and the limiting value of k should approach

the known limiting values of k for continuous distributions.

For example, as m in the discrete uniform distribution increased,

H has smaller and smaller jumps at each mass point and becomes

"smoother" looking. If we think of the mass points being evenly

distributed between zero and one, then, as the number of mass

points increases, H behaves in most respects more and more like

a continuous uniform distribution function between zero and one.

Similarly, as the parameter of the Poisson gets larger and

larger and as the parameter of the geometric gets smaller and

smaller, these hypothesized cumulative distribution functions

have smaller and smaller jumps at their points of discontinuity

and the distribution functions get smoother and smoother.

Since the usual K-S test is conservative when H is discrete,

the approximating values of k for the discrete case should be

always smaller than these knov/n limiting values of k for the

continuous case.

C . RESULTS

For each parametric distribution considered, as n increased,

the sequence of values of k did appear to converge although,

22



as anticipated, not monotonically . Typical example values

of k determined for various values of n are tabulated below:

n k

30 1.095
35 1.183
^0 1.10?
^5 1.193
50 1.131
55 1.1^6
60 I.162
65 1.178
70 1.165
75 1.155
80 1.1^8
90 I.160

These values of k were determined for the discrete uniform

distribution with 10 mass points and a = .05. The variation

in k as n increases is apparent, but the value of k does appear

to be fairly constant for n greater then 50. As the parameters

of the three distributions were changed and the discrete dis-

tributions became "smoother" looking as described in Section III

B, the variation in k became less than that in the table above.

In each parametric case that was examined, the values of k for

n > 50 rarely varied from each other more than .03 as in the

above example. The general tendency was for k to increase as

n increased and then become relatively stable for n>50. For

n> 50 , the smallest value k thus obtained was recorded and then

all the values of k for the various values of the parameters

of each distribution were plotted. Figures 1, 2, and 3 show

a smooth curve approximation through the plotted k values for

the three distributions with dotted lines representing the

asymptotic value of k for the continuous case.

23



Figure 1 shows the values of k for the discrete uniform

distribution for various numbers of mass points. The conserva-

tiveness of the continuous K-S test is readily apparent from

this plot. For example, with twenty mass points the asymptotic

k approximation is 1.16 while in the regular K-S test the

asymptotic value of k is 1. 36. As the number of mass points

increases, the value of k is increasing toward the continuous

K-S value. One of the surprising results is how slowly k

converges to the continuous K-S value. Even with two hundred

mass points at n = .05. k = 1.30, which differs from I.36 by

an amount larger than expected.

Figure 2 depicts the values of k for the Poisson distri-

bution with various values of the parameter. The curves have

the same general appearance as those in Figure 1 and the same

comments made about the discrete uniform apply here.

Values of k determined for the geometric distribution

with various values of the parameter are plotted in Figure 3-

The curves here are similar to the two preceeding distributions

with the apparent convergence of the value of k to the continu-

ous K-S value of k as the parameter decreases. With this

slight modification, all of the previous comments apply here.
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IV. SUMMARY AND CONCLUSIONS

1. The K-S test using the standard tabled critical values

is conservative when the hypothesized distribution, H, is

discrete. The test is sometimes substantially conservative

as indicated in Figures 1, 2, and 3. The power of the test

is reduced when the test is conservative and, therefore, it

is desirable to know the exact size of a test instead of a

conservative estimate.

2. Conover's procedure can be used to obtain exact (approx-

imate in the two-sided case) critical levels for a K-S test when

H is discontinuous or when the data have been grouped. The

procedure can also be used to find the exact amount of conser-

vatism of a K-S test if the standard tables are used. The

only drawbacks to the procedure are the lengthy and tedious

calculations required.

3. Subroutine DISKS was developed and tested to calculate

the critical levels in Conover's procedure for many discrete

distributions.

**-. As the sample size increases, the limiting distribu-

tions of the test statistics D, D" , and D for discontinuous

H exist, but, of the closed form limiting distributions

investigated, they are degenerate when H is discrete. Sub-

routine DISKS may be modified slightly to obtain an approxi-

mation to the limiting values of k such that P(D —z^-) = a

for any — rx ~ 1.
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5. The limiting values of k above were approximated as

described for three distribution families. As n increased,

k had a general tendency to increase and become fairly constant

for n> 50. As the parameter of each family changed such that

H had smaller jumps at mass points and become "smoother" looking,

k approached the limiting value of k found in the standard

K-S tables. Significantly, this convergence of k to the limit-

ing value for the continuous case was much slower than antici-

pated.

6. Figures 1, 2, and 3 indicate that each family of

distributions has distinctive sets of similar curves. Further

investigation seems warranted to attempt to find an easy and

quick means to modify the existing K-S tables for use in a

K-S test when H is discrete. This would involve determining,

for each family of discrete distributions, a function depending

on n, a , and the parameters of the family that would modify

the critical values in the standard K-S tables for continuous

H into critical values for that particular family of distribu-

tions .
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APPENDIX A

I. USE OF SUBROUTINE DISKS

A . PURPOSE OF SUBROUTINE

Subroutine DISKS uses Conover's Z~3_7 procedure to compute

the critical level, (the probability of getting a value of the

test statistic as large as the observed value when H
n

: F(x)

= H(x), for all x is true), of a Kolmogorov goodness-of-fit

test when the hvpothesized distribution is discrete. If Sj r n

is the cumulative empirical distribution of the sample, then

the following test statistics are used for the specified

alternative hypothesis: (1) alternatives of the type F = H

use D = sup H(x) - S(x) , (2) alternatives of the type

F H use D~ = sup (H(x) - S(x)), while (3) alternatives of

the type F H use D = supv (S(x) - H(x)). For a given hypothe-

sized distribution and sample of the distribution to be tested

the subroutine determines the observed values of D, D , and D .

If these observed values are d, d~ , and d , respectively, then

the subroutine computes the double precision quantities PDMNS,

PDPXS, PDL, and PD where:

PDMNS = Prob(D" > d")

PDPLS = Prob(D
+

^r d
+

)

PDL ^Prob(D> d) ^ PD
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B. INPUT TO SUBROUTINE

1. ITYPE = 1

If all of the possible mass points of the hypothesized

distribution are represented in the data, then ITYPE = 1 and

the following quantities must be provided:

X -- N-dimensional vector containing the sample

H -- (M+l) -dimensional vector containing the values

of the hypothesized cumulative distribution

M -- the number of distinct data points

N -- the total number of data points, less than

or equal to thirty (30)

S -- a dummy vector of length (M+l)

2. ITYPE = 2

If all of the possible mass points of the hypothesized

distribution are not represented, then ITYPE = 2 and the above

input is modified by making X a dummy vector and S a vector of

the values of the cumulative empirical distribution.

C

.

LIMITATIONS

The only limitation to the subroutine is that N be less

than or equal to thirty (30). For N larger than thirty (30),

the user need only modify the second and third dimension

statements of the program by changing 30 to the number desired.

The user should be cautioned that, as N gets large (about one

hundred (100)), the nature of the calculations causes signifi-

cant errors to propagate even with double precision calculations.
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D. TIME AND CORE REQUIREMENTS

All of the times and core requirements that follow are

based on runs of DISKS at W, R. Church Computer Center, Naval

Postgraduate School, Monterey, California on an IBM 360/67

.

The subroutine requires approximately 11K of core for storage

and 6.5 seconds to compile. Execution time is approximately

.**- seconds for N = 10 , .5 seconds for N - 20 and ,S5 seconds

for N = 30.

E

.

VERIFICATION

Fifteen examples were used to verify that subroutine DISKS

calculated the desired quantities correctly. In each example,

the calculations were performed by hand-calculations using

Conover's procedure and then compared with the computer-calcu-

lated values. Examples v/ere formulated to exercise each "if"

statement and each branching point in the subroutine at various

levels of M and N. The following are three examples used in

the verification process and are listed here to indicate the

general types of examples used:

1. This is example 1 from Conover /~3_7. ^Let H be the

discrete uniform distribution with 5 mass points on the inte-

gers 1, 2, 3, ^, 5- Suppose a random sample of size 10 with

(ordered) values 1, 1, 1, 2, 2, 2, 3, 3. 3, 3 is drawn from

some population. Hand-calculation shows d = 0.0, d = .4,

and d = .4 yielding:

P(D" > d") = 1.0

P(D
+ > d

+
) = .02081

0.0^119 ^P(D^r d) < 0.0^162
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Subroutine DISKS yielded:

PDMNS =1.0

PDPLS = 0.0 20809

PDL = .041184 , PD = .04161?

2. This example is from Darmosiswoys £ 5_7\ page 24.

H has mass points 1, 2, and 3 such that P(X = 1) = .3624,

P(X = 2) = .4167, and P(X = 3) = .2209 (X is a function of

an exponential random variable, Y, with parameter 6.0 defined

byX = 1 if SY ^2.7. X = 2 if 2.7 <Y <9.09, and X = 3

if Y > 9.09). This is an example of how to handle data that

has been grouped and the original sample cannot be recovered.

A random sample of size 15 with values 1, 2, 3t 2, 3. 3» 1> li

2, 1, 3» 3 1 li 3i 3 is drawn from some population. Hand-

calculation yielded:

.05506 ^P(D>d) <0.0557

Subroutine DISKS yielded:

PDL = 0.055174 ,
PD = 0.055817

3. This example illustrates how to handle discrete dis-

tributions with a countable number of mass points. Let H be

the Poisson distribution with parameter 0.7. Suppose a

random sample of size 10 with values 1, 3» 2, 1, 0, 1, 3» 2,

1, 2 is drawn from some population. Hand-calculations

yielded:

P(D" > d") = .014774

P(D
+ > d

+
) = 0.84238

0.02316 <P(D^d) <0. 02386.
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Since the number of distinct mass points is infinite, some

value of M must be decided upon to use in the program. H is

truncated such that all the probability associated with mass

stpoints beyond the (M+l) ' mass point is assigned to the

s t
(M+l) mass point with a corresponding grouping of sample

data if necessary. With M = 4, ITYPE = 1 and P(X>3) = 1-H(3)

= .0291 is added to P(X =3). In this case, DISKS yielded:

PDMS - 0.01^768

PDPLS =1.0

PDL = 0.023152 , PD = 0.023277

With M = 6, ITYPE = 2 and P(X^5) = 1-H(5) = 0.0001 to four

decimal places. In this case, DISKS yielded:

PDMNS = 0.01-;+772

PDPLS = 0.8^2311

PDL = 0.023156 , PD = 0.02382

The actual hypothesized distribution is a truncated distri-

bution, but, if the probability of all the mass points beyond

s t
the (M+l) mass points is relatively small, as in the above

case with M = 6, the critical levels calculated by DISKS are

very good approximations to the critical levels of the untrun-

cated hypothesized distribution.
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II. SUBROUTINE TO COMPUTE CRITICAL LEVELS

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

JU*J. -.-. - w »', V- »'. -' ~U ., -. .JL- *lf ^l> , #$;)£# ;|;^^J!f^^^^.*}c^^^^^*^^*^ •!< #

:

^SUBROUTINE DISKS(X,H,M,N, ITYPE, S, PDMNS, PDPLS ,PDL , PD )*

*
4*

*
*
•fa

*

*

*

SUBROUTINE DISKS COMPUTES THE CRITICA
THE THREE K-S STATIS T ICS ACCORDING TO
PROCEDURE ( JOURNAL OF THE AMERICAN S
ASSOCIATION, SEPT. t 1972, VOL 67, NO 3

WHEN THE HYPOTHESIZED DISTRIBUTION IS

PARAMETERS

X

L LEVELS FOR *
CONOVER' S *
TATISTICAL *
£>9,PP5<H-6) *
DISCRETE. *

N-DIMENSIONAL VECTOR CE DATA POINTS THAT
ARE REQUIRED ONLY IF ITYPE = 1

H - M+1-DIMENSIONAL VECTOR CF VALUE
HYPOTHEZIZED CUMULATIVE DISTRIB
FUNCTION AT EACH DISTINCT VALUE
H( I) = 0.0 AND H(M*1I = 1.0

S CF THE
UTIQN
OF X WITH

M - NUMBER OF DISTINCT DATA POINTS

N - NUMBER OF DATA POINTS

ITYPE - 1 IF ALL POSSIBLE MASS POINTS ARE
REPRESENTED IN THE DATA

2 IF NOT ALL POSSIBLE MASS
REPRESENTED

S - VALUES OF THE EMPIRICAL DISTRIB
FUNCTION AT MASS POINTS. INPUT
ITYPE = 2

PDMNS - DOUBLE PRECISION OUTPUT CRI
FOR D-MINUS

PDPLS - DOUBLE PRECISION OUTPUT CRI
FOR D-PLUS

PDL - DOUBLE PRECISION OUTPUT LOWER
CRITICAL LEVEL FOR D

PD - DOUBLE PRECISION OUTPUT UPPER
CRITICAL LEVEL FOR D

USAGE - REJECT HYPOTHESIS F(X> = H(X)
TERMINED CRITICAL LEVEL IS GR

REJECT HYPOTHESIS F(X) GREATE
IF PREDETERMINED CRITICAL LEV
GREATER THAN PDMNS

REJECT HYPOTHESIS F(X) LESS T
PREDETERMINED CRITICAL LEVEL
THAN PDPLS

POINTS ARE

*
*

*

UTICN
ONLY IF

TICAL LEVEL
J,

TICAL LEVEL
*

BOUND ON

BOUND ON

IF PREDE- *
EATFR THAN PD-

R THAN H(X)
EL IS

HAN HIX) IF
IS GREATER

*

*%»* o* +i* %*. »y o^^^.Uw v- ,», v* -ju j*. *i, .a, .*, w -.- *j. j . j. v Of %y *j- *jr **- iV -i* *v wu *V *v o* y* **- **t -** •** y* v- wt- ->' o# J' Vf y- y- y? >£ ^t*r f *r '.* -r* <-<* -r- *r- -** «* '.- -**• -v *t- t* -v *<* *r *? a- 'f* 3,. 3? v »i1 '•• 'v<* -^ ¥ v ^ ^¥ -^ *? -r* -** '<* -V -r *? *„~ -r- *r n" *•** V nr •v -r *r *> fc

SUBROUTINE DISKS ( X , H, M, N , ITYP E , S , PDMNS ,

DIMENSION X(N),H(N) ,SON) ,C0(30, 30), J (30 )

DIMENSION BOO), E(30), BD(30), ED(30),
RE AL*8 CO , F , CD , F D , B , E , B D , E D , C , B SUM , E SUM

,

REALMS PDN,PDP, Y, PDL,PD
NM = N-l

PDPLS, PDL, PD)
,F( 30) ,CD< 30)
C(3C), FD(30)
PDMNS, PDPLS
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c
c
c
c
c
c

c

c
c
c
c
c
c
c

RN = FLOAT (N)
DMNS = 0.0
DPLS = 0.0
MP1 = M + l

EFS = •
c — 6

IF ( ITYPE.EQ.2) GO TO 8

3^ >|- ## * f. ^ * r^ =? #** * # * * * £ * * * * * * * * * * * * * V # * £ =fc ** * J£* * #£#£:£;!<£ fc £ :£ :£

* SORT X'S IN ASCENDING ORDER. J IS SORTED INDEX *

- - -~ »•- ..u o. j. v$$#$#$$:*$ $$$$*$#$:$:£$£$$$#jfc~V*******~* ****##* *******

DC 1 K I =1 ,

N

J(K1) = Kl
1 CONTINUE

DC 3 K2=1,NM1
IY = K2+1

DC 2 K3=IY,N
IF (X( J(K2)) .LE.X< J(K3) ) ) GO TO 2
I CUM - J(K?)
J(K2J = J(K3)
J(K3) = IDUM

2 CONTINUE

3 CONTINUE
,L J, O. .. J ,'. . - ,l

. .J, >»» ,,'. o. v»- «.*" -'- -'- -V *'- **- »'' -'- - »' - • '- -"- »'- -- -'- -1' -'- >'- -'' -' -1- -'- ^- *'r -*' -V -'• > • -1' »'- -' -*- -'' Ve **- «v", -V V- • -.»,
^* *r -i* **' "T vf- *(* "i" T- T* Ji- *r ^* -»- r *r -v n* "V- '<* -v *r n* nr *r n* *r* *•* *i* *P ^r V *.* *r -r *f *r* -r *r *r "»* ^* T *r- ^ *«- *p n* vt* t> -i*-t-

* *
* COMPUTE EMPIRICAL DISTRIBUTION FUNCTION, S *

a. y- »•« V- » * w *•* *- oi* ,y J- ^ vi. J. %v .', ^- . > o, -fcj, y, .JL s-, -<, -*-. Vj* »** *" W »** *V *»V **- *"* *** u- -J* JL. ,*, sV J» »i- J* Jl- J> X >v ;V a X *0 ^ *^ j,

S( 1) = 0.0
SUM =0.0
K = 2

I = 1

4 IV - 1+1

DC 5 K4=IY r N
IF (X( J(K4)) ,GT. X( J(I ) ) ) GO TO 6

5 CONTINUE

6 I = K4
SUM = SUM+(K4-IY+1)/RN
S(K) = SUM
K = K+l
IF (K4.EQ.N) GO TO 7
GC TO 4

7 S(K) = 1.0

* COMPUTE DPLS, DMNS, AND D *

6 DC f) K17 = 2,M
DIFF = H(K17)-S(K17)
0IFF2 = -0IFF
IF (DMfMS.LT. DIFF) DMNS=DIFF
IF (DPLS.LT.DIFF2 ) DPLS=DIFF2

9 CONTINUE

D = DMNS
IF (DPLS.GT.D) D = DPLS
NMNS = PN*(1.0-3MNS)+0.9999
NFLS = RNv<

1

,0-OPLS) +0.9999
ND = PN*( 1.0-0) 1-0.9999
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c
c
c
c
c
c

c

c

c
c
c
c
c
c
c

* COMPUTE C'S AND F'

S

^j?**^

3p 3gi *!* 5|* Xv *[C 5jc 37c ,,;

!

NC = 1

.O %l. .', ,v v'y ^'
. -Y» *y "V -f -y -T

*

PC 14 K18=lti>!MNS
ORE = DMNSMK18-1.0I/RN

DC 10 K19=NC,MP1
IF (0RD.LT.HIK19) ) GO TO 11

10 CONTINUE

11 IY = K19-1
Cf<H = QPD-H( IY)
IF (ABS(OMH) .LE.EPS) GO TO 12
C(K10) = 1.0-H(K19)
GC TQ 13

12 C(K13) = 1.0-ORD
13 NC = IY
14 CONTINUE

NC = 1

CC 19 K20=1,NPLS
CRD = 1 .0-DPLS-1K20-1 . ) / RN

DC 15 K21=NC t MPl
NB = MP 1-K21 + 1

IF (ORD.GT.H(NB) ) GO TO 16
15 CONTINUE

16 IY = NB+1
HNO = H{

I

Y)-ORD
IF (ABS(HMC) .LE.EPS) GO TO 17
F(K20) = H(NB)
GC TO 18

17 FIK20) = ORD
18 (\C = .MP1-N3
19 CCN1 INUE

..-«.,%•, »i, »», .j, »«, o- vv -'- .w JL. -O* *A# ou <Jr o- a- ^u ..-,<. .u *»- -J- «.».» *»* o- v- i*- -4 - -"' -V -a^ -V iV -1- -1- -1 ' *'' *

* COMPUTE CD' S AND FD f S

-V • - — -'
-

-' --V -1 - -' *- **- **- - ' «*- *L- »'- -** ~»- ^* -V °^ -t -1- ~'' ^'- »'' "V -° -1- -'- -'- -v y- »'' *'< *V ^- -'' ~'-- -'' J' **• -J- •'' *'- *V *'- *'' -x •*- »u -V *c iV i1-
T 'i' ^t <i* ^ '•» *r a» -** *»* 'i- *r i' ',* ^f- -v J« 'r *v- -T" *<* f» -* "i< ^ o* *r *i* ^ *r ^- 'r *r '* ^* •»* *r 1* -i* ?.- ^f- *»' -r -.* *^ -.» '^ t ^r *r *r ^* Ji*

NC = 1

DC 24 K22=1,ND
ORD = D+IK22-1.0) /RN

DC 20 K23=NC,MP1
IF (ORC.LT.H(K23) )

20 CONTINUE
GO TO 21

2 1 IY = K2 3-1
OMH = 0RD-H( IY)
I F ( ABSiOMH) .LE.EPS)
CCIK22J = i.0-H(K2 3)
GC TQ 23

22 CC(K22) = 1.0-ORD
23 NC = IY
24 CONTINUE

NC = 1

CC 29 K24 = l,t;D
OPD = 1 .0-D-(K24-1.0)/RN

GC TO 22
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c
c
c
c
c
c
c

c
c
c
c
c
c
c

DC 25 K25=NC,ftPl
N6 = MP1-K25+1
IF (GRC.GT.H(NB) ) GO TO 26

2 5 CCMINUE

26 IY = NB + 1

Hi'C = HUYJ-ORD
IF (ABS (HMO .LE.EPS) GO TO 27
FD(K24) = H(N3)
GO TO 2 3

21 FC(K24) = CRD
2 8 NC = MP1-N3
29 CONTINUE

****************************************************$*

* COMPUTE CO(ItJ), COM8S 1-1 TAKEN J-l AT A TIME *
* *

MP1 = N+l

DC 31 1=2, NP1
CC< I, i) = 1.0
IM1 = 1-1

DC 30 JJ = 2, I

JM1 = JJ-1
C0(I,JJ) = (C0( I , JM1 )*< I-JJ+1.0) )/( JJ-1)

3C CONTINUE

31 CONTINUE

V *P -.* -r *>* -i* *? ** *v "r *r
' U ..•«- ,v a. -.'. o. <-*.- -1 -

* COMPUTE B'S, E'S, BD » S , AND ED»S ••'•

* *
»«- »•- »'„ >0 »», %> -v *A» -J* »W dU *» Af -«V -JL- *-- w ,i, .'^ J OL- -JU *l* «J- «JU V* *A» *»- *x, *Jb *** "'* •"»'* ****** -V "*'* \V «•** *•» 'V **- %V *V *V *•* Vf *¥ *** *V *>* r*- *•«• *•*
-p ^~ -- -- ^^. *,» -,* ^ » *f. -} sp #

(

, «f. >x -v •,...,'.,,. *,» ,,, _ v «-* «|*^^ ',* -*» *r> -,» *i^ *? *,* -v- *,* -»* -r «»* *f> ',•> *i* *r -y -/• *»* -i
5 *y V -> *r* Jr *v *r *r -r

B( 1) = i.O

C

c

DC 33 K26=2,NMNS
BSUM = 1.0
IY = K26-1

DO 32 K27=l, IY
BSUM = BSUM-CaiK26»!<27)*<C(K27)**(K26-K27) )*3<K27)

3 2 CONTINUE

BU26) = BSUM
3 3 CONTINUE

E( 1) = 1.0

DC 35 K28=2,NPLS
ESUM = 1.0
IY = K28-1

C

C

C

DC 34 K29=l, IY
ESUM = ESUK-CO(K28,K29)*(F(K29)**(K23-K29) )*E<K29)

34 CONTINUE

E(K28) = ESUM
3 5 CONTINUE

BCU) = 1 .0
ED(li = 1 .0

DC 37 K30=2,ND
BSUM = 1.0
ESIM = 1.0
IY s K3 0-1
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c
c
c
c
c
c
c

c
c

DO 36 K31=lt IY
BSUM - BSUK-CO< K30 ,K31 ) *( CD ( K3 I

)

**(K30-K31 ) )*BD( K31

)

ESUM = ESUM-CU(K30,K3i)*(FD(K31)**<K30-K31) )*ED(K3i)
3o CCNTINUE

BC(K30) = BSUM
EC(K30) = ^SUM

3 7 CCNTINUE

************?,:*****************************************
* *
* COMPUTE CRITICAL LEVELSt PDMNS, PDPLS, AND PD *
* *
»'- -. , , v^ -v *•'- -** -*~ »-- V' - ' »'- *"- -' -' • i **- -*- *i- A »•* ^ "** *'* *** *° Y> -'* -'* **' A *** •** 5

1
-' *'* V* **- *r ^r **f »'**- ^r J- u- -ju *•* *v »V ««# -J* j. o, j-

~f -,. - ,* ^ . *,\ *-,» - ,». »,. -,» j,- -, . -,-. j,~ -,- -,
• '^ - • -r* v *¥* *

1

-v -^ t -i - 'i" v *v t 'c */* *v *v -v* -v* nr* "i* *t* "t* *r- *v* *v Tr T* *r» -nr "p -v- *i* *** *r *r* "V* t-

FDMNS = 0.0
PDPLS = 0.0
PCP = 0.0
FDM = 0.0

CC 38 K32=1»NMNS
PDNNS = POMNS+C'JiNPi t K32)*B(K32)*{C{K32)**{N-K32 + l) )

38 CCNTINUE

DC 39 K33=1,NPLS
PDPLS = PDPLS+C0(NP1 ,K33) *E( K33 )* (F(K33 )**(N-K33+1 )

)

39 CCNTINUE

DC 40 K34=1,ND
IY = N-K34+1
Y = C0(NP1,K34)
PCM = PDM+Y*BD(K34)*(CD(K34)**IY)
PDF = PDP+Y*ED(K34)*( FD(K34)**IY)

40 CCNTINUE

PD = FCM+PDP
PDL = PC-PCM*PDP
RETURN
END
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