
AFWL-TR-75-83 

n 
AFWL-TR- 

75-83 

o 
< 

A 
A 

V 
V 

ANALYSIS OF MODES IN A FINITE-WIDTH 
PARALLEL-PLATE WAVEGUIDE 

T. Itoh 

R. Mittra 
^ 

University of Illinois 

Urbana, Illinois 61801 

April 1976 

Final Report 

•O 
oo 

v\\W ^/ 

Approved for public release; distribution unlimited. 

v 

AIR FORCE WEAPONS LABORATORY 
Air Force Systems Command 

Kirtland Air Force Base, NM 87117 

—^-•' ■ ^•---■^iiliiiTrtitir^^-'-'-^- 



AFWL,-TR-75-83 

This final report was orepared by the University of Illinois, Urbana, 
Illinois, under Contract F29601-74-C-001C, Job Order 37630102 with the Air Force 
Weapons Laboratory, Kirtland Air Fo-xe Base, New Mexico. Mr. William D. Prather 
(ELP) was the Laboratory Project Officer-in-Charge. 

When US Government drawings, specifications, or other data are used for any 
purpose other than a definitely related Government procurement operation, the 
Government thereby incurs no responsibility nor any obligation whatsoever, and 
the fact that the Government may have formulated, furnished, or in any way sup- 
plied the said drawings, specifications, or other data, is not to be regarded 
by implication or otherwise, as in any manner licensing the holder or any other 
person or corporation, or conveying any rights or permission to manufacture, use, 
or sell any patented invention that may in any way be related thereto. 

to the 
This report has been reviewed by the Information Office (01) and is re 
;he National Technical Information Service (NTIS). At MTIü, it will be 

able to the general public, including foreign nations. 

releasable 
avail- 

This technical report has been reviewed and is approved for publication. 

D. PRATHER 
Project Officer 

FÜR THE COMMANDER 

LARRY W. WOOD 
Lt Colonel, USAF 
Chief, Phenomenology & Technology 

Branch 

£ otL— 
JAMES L. GRIGGS, JR. 

^J^lonel, USAF 
'k CKief, Electronics Division 

DO NOT RETURN THIS COPY. RETAIN OR DESTROY. X 

i  



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entatad) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

2. GOVT ACCESSION NO. ECIPIENT'S CATALOG NUMBER 

2 
4.   TITLE (and Sub»»«; PERIOD COVERED 

ALYSIS OF BODES IN A FINITE-JJIDTH PARALLEL^PLATE 
WFßliTnt:      ^ # s> » ^- , ^AVEGUID 

^y 

& 

7.   AUTHORf»; 

iTTltoh 
R./Mittra 
9.   PERFORMING ORGANIZATION NAME AND ADDRESS 

University of Illinois 
Urbana, Illinois 61801 
11.   CONTROLLING OFFICE NAME AND ADDRESS 

Air Force Weapons Laboratory 
Kirtland Air Force Base, NM 87117 

ß^^V^Jm} 

14.   MONITORING AGENCY NAME ft ADDRESSff/ älllarent from ConlfonTn« OWca) 

F296«il-74-C-/£foy 
10.   PROGRAM ELEMENT. PROJECT, TASK 

AREA ft WOjätCUHIT NUMBERS 

13.   NUMBER OF PAGES 

24 
IS.   SECURITY CLASS, (ol thla raport) 

UNCLASSIFIED 
15«.   DECLASSIFICATION/DOWNGRADING 

SCHEDULE 

16.   DISTRIBUTION STATEMENT (ol this Raporl) 

Approved for public release; distribution unlimited 

17.   DISTRIBUTION STATEMENT (of (he abstract «ilered in Slock 30, 1/ dlUatent from Report; 

18.   SUPPLEMENTARY NOTES 

This study was performed under subcontract to: The Dikewood Corporation, 
1009 Bradbury Drive, SE, University Research Park, Albuquerque, NM 87106 

19.   KEY WORDS CConflnus on rever*« alda II nacaaaary and idantlly by block numbat) 

Electromagnetic Fields and Waves 
Waveguides 
Parallel Plates 
Modes 

^ 
20,   ABSTRACT (Conltnu* on ravaraa »Ida II nacaaaary and Idantlly by block numbat) 

An efficient method has been developed for analyzing modal characteristics of a 
finite-width parallel-plate waveguide. The method is based on an extension of 
Galerkin's procedure applied in the Fourier transform domain. Numerical values 
of propagation constants and field distributions have been obtained for various 
structural and modal parameters. 

OD   | JAN 73   1473        EDITION OF  1 NOV 6» IS OBSOLETE 
UNCLASSIFIED 

SECURITY CLASSI FlCATlON OF THIS PAGE fWA 

/ is? ^-p •n Oaf« Enterst* 

«Wrllfc-*   t ^..^«i:».. 



^apmniMM vuu'mmti 

SECURITY CLASSIFICATION OF THIS PAGEflWi«! Data Bittend) 

SECURITY CLASSIFICATION OF THIS PAGE(Wh»n Oa(« Enfnd) 

^M^fe^-^^--- 



CONTENTS 

Section 

I INTRODUCTION 

II FORMULATION OF THE PROBLEM 

III METHOD OF SOLUTION 

IV NUMERICAL PROCEDURE 

V NUMERICAL RESULTS 

VI CONCLUSIONS 

REFERENCES 

Page 

5 

7 

13 

16 

19 

22 

23 

■zrz 



} I 
ILLUSTRATIONS 

Figure 

1 

2 

3 

(a) Cross Section of a Finits-Width Parallel-Plate Waveguide 
(b), (c) Equivalent Structure 

Classification by Symmetry 

Field Distribution in the Cross Section of the Waveguide 

6 

18 

21 

■jyvv-.V;».-»^-!'.--. ^»i^.- . . 



TABLES 

i ft 

Table 

1 

2 

Classification by Symmetricity 

Computer Solutions of Propagation Characteristics 

Pa^e 

8 

20 

I 

3/4 



SECTION I 

INTRODUCTION 

Parallel-plate transmission lines are often employed as a guiding 

structure for electromagnetic pulse (EMP) simulators.  This type of transmission 

line, as shown in figure 1, has in addition to the dominant TEM mode an infinite 

number of higher-order modes.  Because of the open nature of the structure, the 

propagation constants of these higher-order modes are usually complex, 

representing the propagation as well as radiation loss of the modes. When 

an object to be tested is placed in the present structure, it is illuminated 

by electromagnetic waves consisting of a combination of TEM and a number of 

higher-order modes. The scattered field is also a superposition of TEM and 

higher-order modes.  Hence, the nature of the higher-order modes in the 

parallel-plate transmission line is worth investigating and the develop- 

ment of a computer program to obtain the propagation constant and the modal 

field distribution is important for EMP studies. 

The problem of parallel-plate transmission lines has beer, studied by 

several workers (refs. 1 and 2) using various approaches.  In this paper, 

a new method is presented for attacking this problem.  The method is an 

extension of Galerkin's procedure in the spectral domain.  The original 

version of this method, which has been applied to many microstrip-type 

transmission line structures (refs. 3 and 4), is extended here to apply to 

the structure with complex transverse propagation constants.  In the 

following sections, the formulation of the problem, numerical procedures, 

and some results are presented. 

rniWi^iröi'a«^iw**ät»;: 
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Figure 1.  (a) Cross Section of a Finite-Width Parallel-Plate Waveguide 
(b), (c) Equivalent Structure. 
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SECTION II 

FORMULATION OF THE PROBLEM 

The cross section of the parallel-plate transmission line is shown in 

figure 1. Assume that the plates are infinitely thin and that both the plates 

and the medium are lossless. It is well known that the dominant mode in this 

structure is TEM with the propagation constant identical to the free-space 

wave number. All of the higher-order modes may be classified into the two 

sets, TM and TE, with respect to the z-direction. Assuming exp(jut - j3z) 

variation, where the propagation constant 3 is complex, in general, all of 

the field components of the TM and TE modes may generally be expressed in 

terms of scalar potentials as 

TM modes 
2   2 

Ez = j 
k " e Mx.y) 

E =ü    £ =ü 
x  8x    y  3y 

ue. 

>k 

ißt. 

x    0 3y    y " 3 3x y 

(1) 

TE modes 

2  „2 v'- _ ^ *i*,y) 

E  - ""a 't 
x      6   3y 

E    = - 
y 

^0 3^ 
3    3x 

H   -|1 x      3x 
H 

y 
3ifi 

8y J 

(2) 

where k = 2TI/X  is the free-space wave number, and e» and y- are the permittivity 

and permeability of free space, respectively. The common factor exp^wt - Jßz) 

has been and will be omitted throughout this paper. 



In addition to the TE and TM classification, the symmetry of the structure 

allows us to further subclassify the modal spectrum. For instance, the 

symmetricity of the direction of the z-component of induced current on the 

plates allows us to subclassify the spectrum into the four cases listed in 

table 1. The detailed formulation will now be given for Cases 1 and 3 of 

TM modes only (odd TM modes), and only the resultant equations will be 

summarized for the rest of the cases. Because of the nature of the present 

method of analysis, the distinction between Cases 1 and 3 (and between 

Cases 2 and 4) is not necessary in the formulation process. 

Table 1 

CLASSIFICATION BY SYMMETRICITY 

Case x>0, y>0 x<0, y>0     x<0, y<0     x>0, y<0 

1 + + 

2 + + + + 

3 + - - + 

4 + - + 

+  J flows in the positive z direction 
z 

J flows in the negative z direction 

Such distinction is undertaken only at the stage of preparation for numerical 

computation. 

In the odd TM mode cases, it is only necessary to consider the equivalent 

structure shown in figure 1(b) where the y = 0 plane is an electric conductor. 

Since the structure is infinite in the x-direction, the electromagnetic 

boundary value problem is formulated in the spectral or Fourier transform 

domain as opposed to the conventional space domain formulation (refs. 3 and 4). 

-iaa-ar p 



To this end, let us define the Fourier transform $(a,y) of the scalar potential 

(Kx,y) via 

^(a.y) = / «t^Cx.y) e:lax dx (3) 

where 1-1 and 2 designates the regions 0 < y < d and y > d, respectively. 

The transforms of field components may be defined from equations (1) and (3) 

as 

-\ 

Ezi = j ^J^ ^(a.y) 

Exl = "ja *i(a'y) 

^0 3 
Hxi T^ Va'y) j 

(4) 

Since $.  satisfies the wave equation, (j). Is a solution of 

where 

^ - Y2) ^(a.y) = 0 

2    2  ^   a2        ,2 

(5) 

(6) 

Because of the boundary conditions E=E =0aty»0 and the radiation 

condition at y -► +00 , the solution of equation (5) is 

^(a.y) = A(a) slnh yy 0 < y < d 

*2(a,y) - B(a) exp[-Y(y - d)]      y > d 

(7a) 

(7b) 

where A and B are unknowns.  Note that Re y > 0 and Im y > 0 are to be 

satisfied so that equation (7b) represents a valid form for y -^ +» . 

■^-umissi^sm^m^--^ 



The next step is to apply the interface conditions at y ■ d in the 

transform domain.  Since 

E ,(x,d-) = E 0(x,d+)   all x 
zi       zz 

E ,(x,d-) = E 9(x,d+)   all x 

Hxl(x,d-) = Hx2(x,d-)   |x| > w 

the interface conditions expressed in the transform domain are 

E .(a.d-) = E ,(ot,d+) (8) 
zi        zl 

Exl(a.d-) = Ex2(a,d+) (9) 

Hxl(a,d-) - Hx2(a,d+) = Jz(a)                  (10) 

where J is the transform of the z-directed, unknown, induced current on the 
z 

plate at y = d.  Substitution of equations (4) and (7) into equation (8) gives 

the relation be:ween A and B. Equation (9) is automatically satisfied for 

A and B.  If these quantities are substituted in equation (10), A or B is 

expressed in terms of another unknown J (a). 
z 

B(a) = G0(a) J^a) (11) 

where G.(a,ß) =  fT^—rr—JT (12) 
0      üi)enY[l + coth yd] 

Now, the final boundary condition E (x,;d) = 0 for |x| < w is imposed in 

the transform domain.  Since E (x,d) is unknown but nonzero for x > w, it 
z 

can be written as 

10 
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r 

Ez(x,d) ={ 

V 

2   2 
J —Ö— u(x) 

(13) 

Hence, the transform is 

2   2 
E>,d) = j k : ß ü(a) 
z p 

(14) 

where 
-w jax U(a) = /  u(x) e-10131 dx + / u(x) ^  dx 

w 

Eliminating B(a) from equations (8), (11) and (14), obtain 

G0(ot,ß) Jz(a) = Ü(a) (15) 

It should be mentioned that equation (15) is the transform of the integral 

equation of the convolution form encountered in many conventional space domain 

analyses.  It may also be worthwhile to mention that equation (15) contains 

two unknowns, J and U; however, it is possible that in the solution one of 

the unknowns, U, may be eliminated and that equation (15) is solved for 

J only. 

Before concluding this section, let us summarize the resultant equations 

for other symmetries and polarizations. 

TM, even in y (Cases 2 and 4 in table 1) 

Ge(a,ü) Jz(a) = U(a) 

Je  ü)e_Y[l + tanh yd] 

(16a) 

(16b) 

11 



TE,  odd in y 

L0(a,ß) Jz(a)  = V(a) 

JtL L0(a)  =        2        2 
j(k   - r)[l + coth yd] 

(17a) 

(17b) 

TE,  even in y 

Le(a,(3) Jz(a) = V(a) 

Le(a)  = 772—2 
Jß_ 

j(k    - 3 )[1 + tanh yd] 

(18a) 

(18b) 

For TE cases. 

-w 
V(a) = /      v(x) e2aX dx + /    v(x)  eJaX dx 

w 
(19a) 

v(x)=^Hz(x,d) (19b) 

12 
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SECTION III 

METHOD OF SOLUTION 

In this section, a method of solving algebraic equation (15) is 

discussed. The method, which is applicable to solving equations (16a), (17a), 

and (18a) as well, is based on Galerkin's procedure applied in the Fourier 

transform domain. 

The first step expands the unknown J (a) in terms of known basis 
z 

functions J (a), n = 1, . . .,N. 
n        ' 

N 
J (a) = I c J (a) (20) 
z     L, n n ' 

n=l 

where c 's are unknown coefficients to be determined. The choice of J (a)'s 
n n 

i» such that they are the Fourier transforms of appropriate functions with 

finite support, viz., J Ws, the inverse transforms of J (oO's, are zero 

for |x| > w. 

Substituting equation (20) into equation (15) and taking an inner 

product of the resultant equation with one of J (oO's, m = 1,2 N, 

one obtains 

N 
I    K (3) c = 0 , m = 1,2, . . .,N (21) 

i mn    n 
n=l 

where 
K (e) = / J (a) Gn(ot,e) J (a) dcx (22) 
mn        m    u     n 

The right-hand side of equation (21) is zero using Parseval's relation 

/ J (a) 0(a) da =  r^ 5- / J (-x) E (x,d) dx E 0 
m . /, 2   „2v J       m     z 

j(k - ß )  -» 

because J and E are nonzero only over complementary regions of x. 

13 



When J Ws, whose transforms are to be used as basis functions J (oO's, 

are chosen, they must satisfy certain symmetry requirements in addition to 

being zero for ixl > w. For instance, in Case 1 in table 1, J (x)'s must be 
n 

symmetric with respect to the y axis, while in Case 3 they are required to be 

antisymmetric. Furthermore, it is desirable to use J Ws which well 

represent the edge condition at x = ±w where the actual z-directed current 

shows square integrable singularity. Using these basis functions, equation (21) 

is solved for unknown propagation constant ß which is usually a complex number. 

After 3 is obtained, the field distribution may be calculated as follows. 

Except for the normalization factor, the ratio of all c 's is determined, which 

gives the current distribution 

N 
J (x) = I    c J (x) (23) 
z     '', n n 

n=l 

The field distribution of E may be obtained from equations (7), (11), (15) 

and  (20) 

r      2       n2      N «=     . 
Ez(x,y)  = 

■ k    - g 
Yd 

I    c    /    ^^    ~GAa) J  (a)  e-jaX da (24a) L,    n J     sinh yd      0 n 
n=l 

i ( 0 < y < d 

2   2 N     co 
j - ß 

b I    cn / exp[-y(y - d) ] G^ct) J^cx) e"^ dct    (24b) 
n^l   -00 

y > d 

All the higher-order TE and TM modes in the present structure may be 

designated by a set of numbers (p,q) for each symmetric subgroup. The number 

p is associated with the field variation in the x direction and number q for 

the variation in the y direction.  In the present method, p can be predetermined 

by the appropriate choice of basis functions J for the current distribution 

14 
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on the plate. However, there is no built-in process to choose q in the 

analysis procedure. Rather, q is controlled in the numerical process of 

finding 3 by the judicious choice of a starting point in the root-seeking 

algorithm. 

^ 
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SECTION IV 

NUMERICAL PROCEDURE 

A numerical algorithm has been developed for TM modes of Case 1 with 

the mode index p = 0.  This choice of p corresponds to the higher-order 

modes with the least field variation in the x-direction. The basis functions 

have been selected so that the qualitative nature of the actual current is 

well represented.  Specifically the following functions have been employed: 

J1(x) =ri   |x| < w (25) 

vQ   otherwise 

J2(x) =| 1 + |x| < w      . (26) 

lv 0        otherwise 

The basis functions for equation (21) are the Fourier transforms of 

equations (25) and (26), which are 

T / \  2 sin aw , ^ 
j Jl(a) ä~ (27) 

}9(a) = 
4 sin aw-4- (1- cos aw)  . (28) 

f a w 

i i 
Although any number of functions similar to these given by the above equations 

could be used as a set of basis functions, N in equation (21) was set to two. 

Only two basis functions (27) and (28) were employed for economic reasons, 
i 
i 

that is, for minimizing the computer time.  It was found, however, that quite 
t 

satisfactory answers were obtained for many microstrip problems by using only 
\ 

j one or two basis functions of the type similar to equations (27) and (28) 

\ (ref. A). 

16 



Equations (27) and (28) are substituted into equation (22) to numerically 
;   I 

i compute K 's, and complex roots 0 of 
I   | ^    mn ' 

'   I v detlK (3)| = 0 (29) I ' nm  ' 

1   i 
are found by a complex root-seeking algorithm. This algorithm finds the 

I   I closest zero from a given starting point. At this stage, only the mode 

number p is given and another mode number q is left undecided.  It is possible 

to correlate the value of q and the appropriately chosen starting paint of the 

algorithm. 

The starting values of the route-seeking routine have been chosen in the 

following way. The present structure can be viewed as a fictitious closed 
j 

I waveguide with sidewalls with complex surface impedance. For well-guided 

modes, these sidewalls may be very close to the magnetic walls since for 

such modes, the radiation loss may be quite small. Hence, the propasation 
i    i 
j 

j constant 3 of waveguides with magnetic sidewalls may be chosen as a starting 
|      -     Ä s 

point of the algorithm.  (See figure 2.) For the present mode spectrum of 

f Case 1 and TM, 3 may be given from figure 2a 
r 

/2   2 
| ^s = ^ + % (30) 

M <• -\f\2 - ra2 • > - °. i. *. • • ■ 
q = i, 2, . . . 

i Note that we are concerned with p = 0 modes in the present numerical computa- 
I 
| tions using equations (27) and (28) for basis functions. 
i 

j      * It is hoped in the numerical algorithm that the zero of equation (29) 

closest to the value of 3 be obtained for a given q; such a zero is called 

the propagation constant 3  of the TM  mode of Case 1. 
pq     pq 

17 
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'L-J 
(a) (b) 

(c) (d) 

Figure 2.  Classification by Symmetry for the Determination 
of the Starting Value of ß. 
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SECTION V 

NUMERICAL RESULTS ' 

Some typical computer solutions are summarized in table 2 with d, w and 

the wavelength A being input parameters. Also, the p = 0 and q values are 

specified. 

In many EMP problems, the so-called transverse propagation constant a 
pq 

is raore preferable than the propagation constant ß  (ref. 1). The 

definition of a  is 
pq 

X?+ a2. = fB_   . (31) 
pq  pq 

The transverse propagation constant a  here corresponds to p given in 
pq n 

ref. 1. Notice, however, that unlike in ref. l,.a as well as ß carries two 

indices p and q because the structure in the present case has non-negligibie 

plate width. 

The magnitudes of the E field in the waveguide cross section, which 
z 

are computed using equation (24), are plotted in figure 3. It is clear that 

the field decays away from the waveguide in both the x- and y-directions. 

Although JE j must be zero on the plate at y = d, the numerical results did 

not predict that it would be zero, but would approach zero.  It is hoped that 

these values approach zero as the number of basis functions are increased. 

It is also seen that the number of peaks in the y direction for 0 < y < d 

coincides with the given value of q. 

19 



Table 2 

COMPUTER SOLUTIONS OF PROPAGATION CHARACTERISTICS 

(0,1) MODE 

w 
d 

d 
X 

2ß d 
s 

20    6 
pq 

1 2a™d 
pq 

No. 
Iter 

2.5 2 24.32 - J2.432 21.76 - J0.114 -.1972 + J12.58 16 

10 1 10.88 - jl.088 10.82 - jO.0652 -.1104 + J6.382 5 

5 2 24.32 - J2.432 21,72 - j0.0448 -.0728 + J12.644 12 

3.33 3 37.17 - J3.717 20.82 - jO.0335 -.0222 + J31.428 45 

2.5 4 49.84 - J4.984 55.92 - J6.68 -27.28 + J13.696 15 

2 5 62.5 - J6.25 54.1 - jO.163 -.276 + J31.96 24 

5 10 125.5 - J12.55 107.2 - J14.72 -22.28 + J70.80 7 

5 5 62.5 - J6.25 59.6 - J14.5 -28.46 + J30.36 25 

5 3.33 41.4 - J4.14 45.8 - jll.78 -25.52 + J21.14 29 

5 2.5 30.8 - J3.08 34.4 - J3.94 -15.92 + J8.52 8 

5 2 24.4 - J2.44 21.8 - jO.045 -.078 + J12.50 12 

5 1.67 19.98 - jl.998 16.74 - J0.060 -.080 + J12.58 12 

5 1.11 12.46 - jl.246 12.36 - jO.021 -.040 + J6.50 5 

5 1 10.88 - jl.088 10.78 - jO.044 -.074 + J6.46 5 

2 1 10.88 - jl.088 10.29 - jO.044 -.063 + J7.22 8 

1 2 24.32 - J2.432 19.28 - J0.068 -.081 + J16.12 15 

0.67 3 37.2 - J3.72 50.88 - J12.66 -36.3 + J17.70 27 

(0,2) MODE 

10 1 0.2 - J0.02* 0.078 _ jO.88 
x 10 

-7.6 x 10"7 12 
+ J9.56 

*The actual 2ßsd was 0.0 - jO.O.  However, 2ß d was shifted to 0.2 - J0.C2 

for numerical convenience. 

20 
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AT x=0 (0,l)MODE 
(0,aMOOE 

0     0.2 0.4   0.6    0.8     1.0 
y/d 

I 1 
1.2     1.4     !.6 

Jy/d=Q5 

0.2   0.4    0.6    08 
x/w 

10     1.2     1.4 

Figure 3.    Field distribution in the Crou Section of the (fctvaguide 
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SECTION VI 

CONCLUSIONS 

A simple and efficient numerical method has been developed for analyzing 

a finite-width parallel-plate waveguide. Sample computations based on this 

method predicted the propagation constants of the modes in such a structure 

and the field plots so obtained have shown the expected physical nature of 

these modes. 

22 
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