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ABSTRACT

Properties of a stationary sequence of random variables {x.}

which have exponential marginal distributions and random linear

combinations of order one of an i.i.d. exponential sequence {e.}

were discussed by Lawrance and Lewis (1976) ; they called this model

the EMA1 (exponential moving average of order one) point process.

This paper will investigate the estimators of the parameter 3 of

the EMA1 process, and some basic properties of the EMA2 process,

and then extend these results to the EMAk process.



TABLE OF CONTENTS

I. INTRODUCTION ___ ___ __ 8

II. A BRIEF REVIEW OF THE EMA1 PROCESS ----------- 10

III. ESTIMATING 3 IN THE EMA1 MODEL __________ 13

IV. COMPARISON OF THE ESTIMATORS -------------- 20

V. SOME BASIC ASPECTS OF THE EMA2 MODEL -- ______ 26

VI. DISTRIBUTION OF SUMS IN {x.} SEQUENCE OF
THE EMA2 MODEL --------------------- 31

VII. THE JOINT DISTRIBUTION OF X. AND X. , IN EMA2- - 35
l l+l

VIII. SOME BASIC ASPECTS OF THE EMAk MODEL ---------- 41

IX. CONCLUSIONS 49

APPENDIX A. METHODS OF COMPUTING JOINT EXPECTATIONS- - - - 50

APPENDIX B. LIST OF USEFUL JOINT EXPECTATIONS- - --- 53

LIST OF REFERENCES- -____--_-----_-_______ 56

INITIAL DISTRIBUTION LIST ----- - - ______ 57



LIST OF SYMBOLS

X. The ith element of the sequence of the time intervals
of the point process.

£

.
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I. INTRODUCTION

Properties of the stationary sequence of positive random variables

{x.} which are formed from an independent and identically distributed

exponential sequence {£.} according to the linear model

£. with probability 3,

X
i
s 1

(0^1;i=0,±l,+2,...)

^3?.+C with probability 1-

were discussed by Lawrance and Lewis [Ref. 1]. They gave a fairly com-

plete picture of this model, and called it the EMAl (Exponential Moving

Average of order 1) process. It is clear that the adjacent elements of

this sequence are correlated, but that the dependence is no greater than

order one, i.e. X. is independent of X. „, X. ^, ... and so forth for
l x 1+2 i+3

pairs and triples.

In this paper, methods of estimating 3 and the properties of the

estimates of 3 will be discussed, and then the properties of an

analogous second order process are investigated. The new process, called

the EMA2 model, is a sequence of positive random variables {x.} defined

by

^ C. w.p.3 ;

2 1 2

l
C + 3 £. w.p. (1-3 ){U0^3 ,3 ^l;i=0,±l,. . .) ;

2 1 1 1+1 2 * 2 1

13 S.+3 5 , +K. w.p. (1-3 ) d-3 ). (l.D
2 1 1 i+l 1+2 2 1

The purpose in the creation of this model is to provide models for

data with longer dependencies than that obtained with the first-order



model and to examine any tendencies of the upper bound on the serial

correlations to increase. For the EMAl model 0<p <l/4 and p, =0 for

k=2,3,... For the EMA2 model it is shown that 0<p , p <l/4 and

p =0 for k=3,4,... In fact, the {x.} form a sequence of exponential

random variables, and it will be seen from (1.1) that the successive

elements X., X. , , X. „ will be correlated. This model is also an
l x+1 i+2

alternative model to a renewal process.

The EMA2 model is shown to be a stationary point process. Distri-

bution of the sums of X. are discussed, and the joint distributions
l

of two adjacent intervals X. are derived and appear to be new bivari-

ate exponential distributions. Extensions of the model and estimation

problems are briefly discussed.

In developing the properties of the process, the similarities to

a backward second order moving average which is defined as

C w.p. 3 ;

2 i 2

X =U E + 3 E w.p. (1-3 )3 (0^3 ,3 ^l;i=0,±l, );
2 i l i-l 2 1 2 1

E +3 5. -K. w.p. (1-3 ) (1-3 )• (1-2)
2 i 1 1-1 l~2 2 1

will also be pointed out. Properties of the processes are very similar,

but those of the forward model (1.1) have simpler derivations.



II. A BRIEF REVIEW OF THE EMA1 PROCESS

The EMA1 model is a stationary point process with exponential mar-

ginal distribution of the intervals {x.} . Further X. is dependent

on X. and X. , but independent of all others, so the correla-

tion p = corr(X.,X. ) = 3(1-6)/ p =0 for k=2 f 3,
_L 1 l~r -L K.

The Laplace transform of the p.d.f. of T =X,+X„+. . .+X is^ r 1 2 r

A C A(A+23s) ]r-l
<j> (s) = r^l

( 2.i)
A+s UX+3s) [A+(l+3)s])

Let N be the number of events occurring in the interval (0,t] be-

ginning at an arbitrary event; and let F (t) denote the distribution

of T ; then
r

Prob{N^ f)
=r}=F (t) -F , (t)

.

r>0
t r r+1

with F (t)El for t>0 . The p.d.f. of N gives the generating

function as

N^ f)
cc cc r-l

E[z r
]=ip_(z;t)=E z

r
[F (t)-F , ( t) ] =1+ (z-1) E z F (t).(2.2)

f r=0 r r+1 r=l r

Inserting (2.1) in the Laplace transform of (2.2) gives

* 3(l+3)s 2 +[-3(l-3)z+23+l]As+A 2

i>
( Z;S )= (2.3)

f (s+A) [3d+3)s 2 +(l+23-23z) As+(l-z)A 2
]

10



Differentiating (2.3) with respect to z , then setting z=l , gives

the Laplace transform of the intensity function m (t) , as

* X(X+$s) [X+(1+B)s]
m (z;s)= , (2.4)
f e(l+3)s(X+s) [s+A/(e 2

+B)]

and inverting (2.4) gives

Ml4jmzIL le
-w<e 2 +s>_

e
-u

]) (b2+b?1)
m (t)={ .

X(l+6 3 Xte ) (3
2 +3=l)

The joint distribution of X. and X. , is a bivariate exponen-
l l+l c

tial. Using a double Laplace transform we get

**

X
i
,X
i+l

(s
i'

S
2
,SS* (es

l
) f S^( Bs

2
) + (1 " a) ^ (s

i
+es

2^ [2 + (l-e)^(s
2
)]

X 2 (X+Bs +Bs )

=
(X+3s

1
) (A+s

2
) (X+Sl+es 2

)' (2 * 5)

and using triple Laplace transform gives

***

X
i-l'

X
i'

X
i+l

(S
l'

S 2' S
3

)

-*(Bs ) rBij»(Bs ) + (l-3)^(s +3s
2
)] IB^(Bs

3
) + (l-S)^(s

2
+Bs

3
)] [8+ (1-3) i/> (s

3
) ]

Differentiating (2.5) with respect to s , setting s =0 , and

inverting with respect to s and then dividing by the marginal (exponen-

tial) density of X , gives

ECxJx^rW^^e-^™;

11



Similarly,

E(X.|x =t)=X [1+B-e J

The two conditional variances are given by

„ . . _ -2. 1-2B+2B 3 2B 2 (1+Xt) -(l-B)Xt/B B
2 -2(l-B)Xt/Bl

var(x
i
|x
i_1

=t)=x [
(1_B) 2

+ -rn— e "(I=BF e J

„ ,v . ., ,-2
r
l+B+B 2 -B 3

or B Xt. -X(l-B)t/B -2(l-B)Xt/B,
Var(X.|x

i+1
=t)=X {-^ 2[ — + r] e -e }.

12



III. ESTIMATING g IN THE EMA1 MODEL

The EMAl model is not time-reversible, and this comes out clearly

in higher order joint moments. The results lead to a method for esti-

mating 3 in the EMAl model.

C
2,l

0O=E(X
i
)W-E(X

i>
E < X

i+k
>'

which when k=l gives

C
li2

(l)=E(X.>:

2

i+1
)-ECX

i
)EO;

2

i+1
)
/

C
2ti

a)=ECX
2
X.

+1
)-E(X

2
)E(X.

+1
).

By the construction of EMAl, we have

.2
.
B
2e| w . p . B

2
/

X. ={
X

(0<$<1; i=0,±l,±2,...)
B
2 e2+26c.e. i1 +e?^ 1

w.p. (1-3) 2
,1 1 x+1 i+l

Hence, using straightforward combination, we get the joint expectation

2
of X. and X. , as

l i+l

E(X
2
X .

+1
)"E( SS3 e

2e .

+l)
g3+E( e

3e|e . +1+B
2e|e

1+2
)B

2 (l-B)

+E(B^ 2

i
e. +1+2^e. E

2

l+1+
Bc»

+1
)B(l-B) 2

+E(B3 c
2
Ci+i+2B

2, iC
2
i+i+6

2 £ 2 ei+2+26c . E . +ie . +2+Be 3

+i+£
2
i+iC .

+2
, a . B)

.

Simplification of this result leads to

E(X.X.,,) = -TT(2+43-2B 2 -2e 3
) which implies that C , (1)= ~r^> (1-3) (2 + 3)

.

1 X+l A /fl A

13



Similarly, we get

E(x x2 )=s
1

C2+23-23
3

)
which implies that r (i) = -|tj- (1-8) (1+3) .

i i+1 A -L*^ A

Therefore, if we let

C (1)

r= '

= (2+8)/(l + 8), (3.1)
L
1,2

U;

we have a function of 3 which decreases monotonically from 2 when

8-^0 , to 3/2 when 8~*"1 • Thus there is a unique solution for 8 for

any given r ; note that when 8 is or 1, the ratio is not defined,

Solving (3.1) we get

C (1)

2-
2 'A

C
l,2

(1)
2C

1 2
(D-C

2 X
(D

3=<2-r>/(r-l> = —g C^UFC^II) '

C
l,2

(1) "
"

For estimating 8 / define

C. ,(1)= -~ I X.XT. -(x)(x )

1,2 n-1. i l+l '

i=l

n-1

i=l

a i
n
;
1

2 -2 -
C
2,l

(1) =n^I ,l
X
i
X
i+l-

(x)W
'

- 2C
1 9

(1)_C
9 1

(1)
Thus _ 1>2 2,1

p- ^ ^ ,

Now we check all the estimators, to see if they are asymptotically

unbiased or not.

1. ~ 1
n
;
1

2 1 ? v 2
EtC. (1)]=-^- I E(x.xt

j_ 1
)-E(-V £ X. I XT)

,1/2 n-1 .*•_ l l+l n . , i. , l •

1=1 1=1 i=l

14



Examining the estimate of the product of the means we have

I x. •

J
x*-{x 1+x2+ ...«n ) <x

2
+x

2
+ ... +x

2
)

=nx*+2(n-l)B^Vl ) + <n"X) (n " 2, Vi±2 .

Thus

n n ~

E(_l Yx. YXT 1= -4-4 [6n+2(n-D (4+63~23 2 -43 3)+2n -6n+4]

l-J i-j

= -4r+^-(2+33-3
2 -23 3

) + —7 •

X° n n

— 2 q

and when n-*° , E(XX )->2/X?

2 2
Thus, since the estimators of E(X.X. , ) and of E(X.X. , ) are unbiased,

l l+l l l+l

we get that asymptotically,

E[C
1 2

d>]= -jj 3(1-3) (1+6);

EfC
2 1

(1)]= ~j 3(1-3) (2+3).

i.e. Both of these are unbiased estimators when n is large.

2. We now look at the ratio estimator of 3 / namely 3 to see if it

is asymptotically unbiased. Note that the denominator in the expression

for 3 is identically zero if 3-0 or 3=1 / so that in what follows

we assume that 0<3<1 . Let

2C
X 2

(D-C
2 1

(D=Y and let

C
2 1

(1) ~C
1 2

(1)=Z
*

Then

1 -~2_9R 3x =1E(Y)=2E[C. _(1)]-E[C_ . (1)]= -TT(23 z -23 J )=y w ; and
i t z £.

1
1 a y

E(Z)= E[C„ -(1)]-E[C. (1)]= -YT(23~23
2 )=y -

, y y/u y _y
Now we can write (Y/z) = -^

,

Y = — Y' (1+ —)" where Y'=Y/y , so that
y z/y y y y
z z z z

yv 7-A Z-P z 2
E(Y/Z)= -i- {E(Y«)-E[Y" (^—-)]+E[Y'(—-) ]- b (3.1.)

y
z

y
z

y
z

we assume that conditions for this expansion to hold as n-*=° are met,

15



Since U /u = B and E(Y')=1 , if 3=Y/Z is to be unbiased, we
y z

must show the rest of the terms in (3.1) are all zeros.

yhus look at

E[Y« (Z-y
z )/y z

]=E(YZ)/u u-1.

we have

(YZ) = [2C
1 2

(D-C 2/1 (1)] CC
2fl

(l)-C
lf2

tl)]

n-1 . n-1 n-1 n-1 „

= („- 1)- 2 [2EX
i4+i-;Ain ][ £ x2X

i+1
-EX.X

i+1 l

1= 1 1= 1 1 — 1 1— J-

n-1 2
n_1 2

-(x)(x 2
)( Z X^X - Z X X )/(n-l)

i=l l 1+1 i=l 1 1+x

9
n n

2 2
=[(2U-W) (W-U)]/(n-l) -[ Z X. E X. (W-U)]/[n (n-1)],

i=l 1 i=l

n-1 n-1
where u= E x x2 = £ u., i.e. U =X.X ,

i=l i i+l i=l
x X X 1+1

and W^Z X^X ^Z W , i.e. W =X*X .

i=l ! 1+ ± 1=1 X

2 r.7 2
In addition (2U-W) (W-U) =3UW-2tT -W z

.

Further we get

n-1 n-1 n-1 n-2
UW= ZU.W.+ ZU.W. H- Z U.W. , + Z U,-W. .,

i = l
1 1

i = 3
x ^ 2 i=2 x i-l i=l

1 1 + 1

n-3
+ Z U

i
W.

+2
+(n^-7n+12)U

i
W
i 3 ,

i = l

„ n-1 „ n-2 n-3
U = Z U +2 Z U.U.

n
+2 Z U-U. ^+(n-3) (n-4)U-U-,o ,

i=l 1 i=l x 1+1 i=l
1 1+2 X X±

2 n-1 2 n~2 n-3
W = Z W.+2 Z W.W-,,+2 Z W^W.

,
+(n-3) (n-4)W.W. a.,.

. n l . , i i + l • n ! 1 + 2 l i±3
1=1 1=1 1=1

16



It can be shown that all these joint expectations have finite expected

value so, when n-*°° , those terms only with coefficients n will go to

1 2
zero when multiplying by (——) . Thus asymptotically,

o 2 2 n">oc

E[(2U-W) (W-U)/(n-l) z ]=E(3UW-2U -W )/(n-l) 2 -*

3E(U
i
)E(Wi+3 )-2E(U i )E(Ui+3 )-E(Wi

)E(Wi+3 ) = (43-43 2
H-40 3 -83 £t + 4B

5 )/X 6
/

since E (U
i

) =E(X
i
X^ + 1

) = ( 2 + 26-23 3
) /A

3

,

E(W.)=E(X?X. 4. 1
) = (2 +43-26 2 -23 3 )/A 3

,

and x x 1+ -L

n n n-»-«

Similarly, e [ I X . Z XT (W-U) / (n -n) ] *
i=l X i=l x

E(X
±
)E(X*) [E (W

i
)-E(U

i
)]= (43-43 2 )/A G

f

1 3 4 5
Hence, E(YZ)= — (43 -83 +43 ), when n is large.

A
6

Asymptotically,

E[Y' (Z-yJ/y l
= (43

3 -83'+ +43 5
)/(yvy A

6 )-1=0.

In (3.1), the rest of the terms in the braces will also approach zero

when n is large, so E(3)=$, i.e. 3 is an unbiased estimator.

An alternative way to estimate 3 is to use

f=[A 3 C (l)]/2p -1
1/2 1

where p is an estimator of p the first order serial correlation

of EMA1, and p =3(1-3) . [Ref. 1, p. 5]

Define

Then

n-1
P
i"

X [

.f
X
i
X
i+1/(n-D-(x)^]

a n~ 1 n
E(p )=A 2

{ I E(X X. +J )/(n-l)-E[( Z X.)
Z
]/n 2 }.

1 i=l 1
i=l

x

17



Again using the same argument as above, we have

E(X
i
Xi+1

)=(l+3-3 2 )/X 2
.

Also n p n 2 n~^ n~ 2 n~i
( Z X.) = Z X-+2 Z X.X.^,+2 E Z X.X. .

,

i=l i i=l
x

i=l
1 1+1

i=l j=2 x 1H^

so that E[(x)
2
]=n~ 2 [2n/A 2 +2(n-l) (l+3~3 2 )/A 2

+ (n-l) (n-2)/A 2
] -1/A 2

.

Consequently E( £ ) =X 2
{ (n_ 1} (1+3 _ 3

2 )/[x 2
(n_U ] _E [ (x)

2
] } -3(1-3)

Thus p is an unbiased estimator for p when n is large.

Now assume n-*30 and let Y=A C
9 (D and Z=2p . Thus

E(Y)=23 (1-3X1+3) , and E (Z) --=23 (1-3) ,

y
y/^z

=1+e ' ^
y
K
z
=4(3 2 -3 3 -3 t,

+ 3
5

) ,

and by the expansion used above

yv Z " y z
Z ~^z ?E(Y/Z)=-ME(y')-E[Y" ( )]+E[Y' (

-)
Z
}- } (3.2)

y
z y z y z

We want to show that the terms in (3.2) beyond the first are zero, so

we look at

E[Y« (Z-y
z
)/y z

]=E(YZ)/y
y
y z

-l.

We have _-,

<YZ)=2A 3

? C
x /2

(l)=2A 5
[

n
E X±X /(n-l)-( IX./n) 2

)
1

i= l
1+ ±

ir=l
X

n-1
? n n ~

[ I X.X. +1/(n-l)- Z X. Z xf/i
i=l * 1+

i=l xi«l
X

18



Therefore

n->« 2
E (YZ) -*2A

5 [E (X
i
X
i + 1

)E (X
i
X
i + 1

) -E (X^^E (X
±
)E (xf

)

-B(X
i
)E(Xi )E(XiX?+1 )+E(Xi )E(Xi)E(Xi )E(X?)]

=4(3 2 -3 3 -3"+3 5
) ,

so that,

E[Y' (z-y )/yJ=E(YZ)/y
y
y z

-l=l-l-°-
z z

Similarly, we can show the rest of the terms in the braces of (3.2) all

approach zero when n is large. Hence

E (3) =E(Y/Z) -1=1+3-1=3,

/\
•\

i.e. 3 is also an unbiased estimator of 3 when n is large.
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IV. COMPARISON OF THE ESTIMATORS

S\ /\

It has been shown in the last section that the two estimators 3/ 3

are unbiased asymptotically, provided that 3^0, or $7*1/ but when the

sample size n is not large enough, the bias term should be considered.

For simplification, any finite term divided by the second or higher power

of n will be neglected.

For $ ,
let Y=2C.

2
(1) ~S 1

(1); Z=S 1
(1) "^1 2

(1) *
A11 the esti "

mators here are defined as before. Thus

E(Y)=23 2 (l-$)/X 3 -4(2 + 3$-3 2 -2$ 3 )/nX 3 =y ;

Y

E(Z)=23(l-$)/A 3 =y ;

E(Y/Z)=u u'V-tElYZj/uy -1] + } .

y * y z

Using those results listed in APPENDIX B and neglecting the higher power

terms, we have

E (YZ)=E(Y)E(Z)+ (-12-5603+14723 2 -114 83
3 +532

3

4 -1120$ 5

+740$ 6 + 248$ 7 -164$ 6
)
/
A6 n .

Hence E ($) = [2y vfE (YZ) ] /y*

1 1
= 3+ .

( 12+5 283-14 8 83 2 +12 123 3 -5 16$"
4$ 2 (l-$) 2 n

+1088$ 5 -7403 6 -2483 7 +1643 e
) . (4.1)

A _

For 3 , let Y=A C
2
(1); Z=2p

1
.

20



Again all the estimators here are defined as before. Thus

E(Y)=23(l-3) (l+3)-4(2+33-S
2 -23 3 )/n=u

y
,

and

E (Z)=2B (1-3) + (2+43-4

B

2 )/n=y
z

. < 4 * 2)

2
In (4.2), the maximum value of (2+43-43 ) occurs at 3=1/2 , and

equals to 3. when divided by n, it can be neglected, so y =23(1-3) .

z

Similarly as above we have

E(YZ)=E(Y)E(Z) + (4-163 + 3 43
2 + 243 3 -26 3't + 83

5 -243 6 )/n ,

and consequently

1 1

E( g )=B+ (-4 + 163-223 2 -323 3 + 143" + 243 6
) • (4.3)

43 2 d-3) 2 n

Now compare (4.1) and (4.3); both of them are divided by

2 2
4 3 (1~3) • When 3 approaches or 1, the values of bias term will

be very large, though both of the sums of the coefficients of the 3's

in the parentheses are zero when 3 approaches or 1. Figures 1 to 4

give the shape of the curves of f (3) and bias for different values of

3 . From the figures it is obvious that 3 is better than 3 .

The variances of those estimators are very messy for hand computa-

tion, and have not been worked out for this thesis.
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V. SOME BASIC ASPECTS OF THE EMA2 MODEL

The simplest aspect of the EMA2 model is the exponential marginal

distribution of the intervals {x.} ; in point process terminology

[Ref. 2] this is the synchronous distribution of intervals and refers

to the distribution of the interval from an arbitrarily chosen event to

the next two events. For the Laplace transform of its probability den-

sity function (p.d.f.) f (x) , we write
i

f
x (s)-EJe

x
i

using (1.1). Since the i.i.d. random variable £. have exponential

distributions with parameters A , their Laplace transform is A/(A+s) ,

Thus (5.1) becomes

>-h3
•

This demonstrates that the X. have identical exponential distributions

as asserted. The parameter A is the number of events per unit time

or the rate of the point process.

The correlation between X. and X. , can be obtained on considering
l l+l

the product of X. from (1.1) with

X
l+l"l &1+1+&UZ ***• (l"l^l' (°*!^i

tfl
»
i-0.*l.*2."">

26



Thus, again using straightforward conditioning arguments,

4£1+1f1+3)(i-P2)
2

(3
1
d4)

and simplification of this result leads to

cov(X. jX. .)

fr<-<VW^i^? -ft<Hy[i-ft(HyJ (5.2)

Similarly we have

P2=corx(X1 ,X1+2) 2̂
(l-p

2
)(i-p

i
) (5.3)
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By the construction of EMA2, p.=0 for j>3 . The result for p (5.2)

equals zero when 3 =0 and 3-.-1 > or 3
9
~1

, or $ =0 ; and will

approach its maximum value at 3, (1-3,) =1/2 . This occurs when

.
3 =1/ [2(1-3-) ] • The result for p (5.3) equals to zero when 3 =0

,

or 3-.-1 / or 3 9
= 1 ; and will approach its maximum value at 3 .,=1/2

and 3-,=0 . Therefore, the serial correlations of EMA2 are all non-

negative and bounded above by 1/4.

Now the stationarity of the EMA2 process will be discussed.

Define E (X.)=m(i) (5.4)

B{X
i
-m(i)](x

i+k
-m(Uk)]sCov(X ifX i+k )*(p[i t ifk). (5.5)

A stochastic process with a discrete time parameter is said to be

"stationary" (or stationary in the strict sense) if the distribution of

X. , X. , , , X. . is the same as the distribution of X. , ,

1 ' l+l ' 1+3 i+k

X. , , , , X. . , , for every finite set of integers {l,2 i

}

i+1+k ' l+j+k x ^ ' J

and for every integer k . This definition is equivalent to requiring

that the probability measure for the sequence {x.} be the same as that

of {x. } for every integer k . If the first-order moments exist,

stationarity implies that E(X.)=E(X. ) for all i,k=0, +1, +2,... (5.6)
1 ItK

Since (X.,X. ., ) has the same distribution as (X. ,
,X. , , ) , existence

1' l+l i+k i+1+k

of the second-order moments and stationarity imply

a(i,i+j)=0 (i+k,i+j+k) . (5.7)

Setting k= -i-1 gives a (i,i+j )=a [i- (i+j) ] =a
( j) . (5.8)

»

In the normal case properties (5.6) and (5.7) determine that the

stochastic process is stationary.
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A stochastic process is said to be stationary in the wide sense or

weakly stationary or stationary of second order if the mean function

and the covariance function defined as in (5.4) and (5.5) exist and

satisfy the relations (5.6) and (5.7); i.e. the mean is a constant, in-

dependent of time, and the covariance of any two variables depends only

on their distance apart in time. Obviously, any process which is

stationary in the strict sense and has finite variance is also stationary

in the wide sense. In the normal case discussed above stationary in

the strict sense and in the wide sense are equivalent.

We have proved that the X. have identical exponential distributions,

which implies that E(X.) exists and E(X.)=E(X. , . for all i,k=0,+l,+2,
l l l+k) — —

. . . Also we have covCX^Xj^H/a*

cov(X
1
,X
i±2)=^[fe(l.f2

)(l-?
1 )J,

ccv(X
i
,X,

4}t
)" 0. fox k-3,^,5

All these expectations and covariances are independent of time i, so we

conclude that the EMA2 process is stationary in the wide sense.

The independent exponential sequences and EMA1 models are the special

cases of the EMA2 model; these aspects of the EMA2 model are described in

the following table:
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Values of
2̂ &^

in EMA2 model
When we set X. sequence reduces to

?2- °» ?r?i M» e1+1*£!
SMA1 model

&-fe» ft-
1 &* EHA1 model

&&» Pi-
°

Now the adjacent
elements axe indep*

if keep £i+2
no change

EMA1 model

P2-ii <K V^i W,p
*

1 Foisson process (l 9 i.d)

P2
-0|^-1 V^i+i W 'P*

1 Poisscn process (i e i«d)

(5?
» 0|^» h~h±2 w * p -

* Foisson process (i.i.d)

This gives checks on most of the results, for the serial correlations.

In the 3rd case X. and X.,, are independent, so p =0; but X andli+l 1 i

X. are dependent, so p = 3 (1-& ) , which is the same expression of

p in EMA1. The serial correlations in the last three cases are all

zero, since all of them have i.i.d. elements.

Also, even the backward model (1.2) could be equally treated to

produce similar but different results. However, there is no time-reversi-

bility in the process, in the sense that {x ,X , X^ does not have

the same joint probability distribution as {x_ ,X_ , . . . .X_^} for all

finite k, where k>2 .
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VI. DISTRIBUTION OF SUMS IN {X . } SEQUENCE OF THE EMA2 MODEL

In the point process theory of the model, the distribution of the

sums T =X,+X^+...+X are very useful; if these can be obtained then
r 1 2 r

the distribution of counts, both in the synchronous and asynchronous

mode, can then be derived. It would, therefore, be a particularly

attractive feature of the EMA2 model if the distribution of the T could
r

be obtained. Unfortunately, it is not possible to get a simple expres-

sion of the Laplace transform of the p.d.f. of T as in EMA1

.

However, a general derivation will now be given. Define lp(s) as

the Laplace transform of the p.d.f. of the £. distribution; except

where otherwise remarked this distribution is exponential of parameter

X and so \\) (s) =X/ (X+s) . Define the triple Laplace transform of the

p.d.f. of T , e , and £ _ as* r r+1 r+2

<fc(. 1
..
8
..
3
)-E{o"

1,'''A+1-3H for r*3! i2,,, 6t,»e (6*1)

For r=l , we have

i
f

v „f
"s

l
x
l"
s
2£

2""s
3
8
3|

<f)
1
(s lfs2

,8-;=jiije -\J

-yr(^
2
8
1 )f^2

^/(B
2)7^(83

)+(l-^)
1̂
'^(^

1
8
1
+8

2
)l^(B

3
)

+(l-^)(l-^)^(p
1
B
1
+82)^(8 1

-te
3)J
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Now we relate d> (s.,s„,s_) and d> (s,,s_,s_) using the expression
r 1 2 3 r-1 12 3

^

'T
r-1

+PA

V? i+X -

».p. p8

Then we have

^r^s l»s2 ,83^E
f*

."i^r-l+^-a^l^:3cr+2;

ift

«[.-»
(^*^*^«)-Vr«-Vr«J

(1^)?

+E e
f

«s
l
(T
r-l

+^£r
+
Pl£r+i

+£r«)
-3
2^+l"s32r+3

(MUd-ft)

Continuing, we can write

+<
^r-2 (B l>( 2

s
l.Pl

E
l
+
(|

s
i)[P1 (--(|)^2)+(l-P2

)(l-p
i^(Sl+S2)J.

+4W8l4s
l»fr

s
l
+
(|
s
l>-

and solve it recursively; the procedure is difficult by hand but could

possibly be manipulated on a computer. Setting s =0 and s =0 , we

have the Laplace transform of the p.d.f. of T
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The first few sums have transforms as follows:

>

(j)., (s,0,0) = t-— which implies that T =X.~ exponential (A) as is
1 A+S J. X

expected. For T we have:

A a(v*2&b)
If we let 8^1 , (6.2) reduces to ££• (A+^s^)^^)" which is

the Laplace transform of the p.d.f. of T in EMA1 . [Ref. 1, p. 8]

A 2
If we let B-,-0 , (6.2) reduces to (t ) which implies that T

is the sum of two independent exponential random variables.

For T we have

a _a_ a
2
((a)(bHc)(c)J

where A-[S
2
(2g|+3(?

1^+^2 )+Ao (3 (
32+2 pi )+A

2
J(i.j}2 ) (6-3)

C-s2(?2+(|
+^2+2

?lfe
+
P?fe)

+A^^+2p2^1 P2)+P2A
2

D^3
(2j3^pi?

2
«.p

ip
2
)+As

2
(5(3

2

+6?iP2+^)+s
2
A(Jt p2+2p

,

i)+;
3

#

If we let 3, /3 9
equal to zero or one, we have some interesting results

When 8 =0
, (A) (B)=A

2
(A+s) (A+23 s)

2
and (C)(D)=0 , so that (6.3)

reduces to

\ r A(A+2plS ) f
A+s ( (A+p

1
s+s)(A+p«

l
s)J

which is the Laplace transform of the p.d.f. of T in EMAl for 8=3-, •
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When

fy-1,
AKl-(|)(A+(3

2
s+2s)(A+2P

2
s), BKA+P2s)C\+2s)C\+s+(|s),

0=P2(A+2s)C\+2s+P2
s) and D=(A+2p

2
s)(A+3+(3

2
o)

2
,

and this will give the same result as above for 3=3

When

(1-1 f
(A)(B)-O t (C)(D)-(A+2s+f.

1
s)0\^+P

1
s)3(A+2s),

3 3
(6.3) reduces to A /(A+s) , indicating that the {x.} sequence are

i.i.d. exponentials.

When

C-ft.(A-h3)(A-h3+pG) and D-C\+P2
s)

2
^+2p2s)

so that (6.3) reduces to

A 2
AU+2fes)

which means X and X form an EMAl model, X is exponential (A)

and independent of X and X

34



VII. THE JOINT DISTRIBUTION OF X. AND X . , IN EMA2
l l+l

We now discuss the joint distribution of X. and X. , which will
1 l+l

be a bivariate exponential distribution. Several authors have discussed

bivariate exponential distributions, including Downton (1970) , who makes

some comparisons with those of Gumbel, Moran and Marshall-Olkin. The

distribution to be discussed here does not appear to be one of the

earlier ones, although it is fair to say that in common with earlier ones,

it is not the 'perfect 1 bivariate exponential.

The double Laplace transform of the joint p.d.f. of X. and X. , is* J
i l+l

easily calculated using (1.1); the required expectation is

w
f.-&

ii«rt(«A^e«^?2
(i.4)(tfl)

+B
(

a

-6
l
( P'2

£
i
+
Cl
£i«

+^ )
-S2^2fl+l

+^i+2+£i+3)

J
(1.^)

2
(1.pi

)2
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which can be written

\ ,x
1+1
W•r-zH^A fz# fe»2>

+?
1 (l-P2 )

2
(l-?

1 )[l//(P1
s
1
+?2s2)l//(^2

)^(s
2
)+l//(^Sl+f2S2)l//(s 1+piS2)J

+(l-?
1
)
2(l-|)?#(?2

=
1)^(^ 1

+^2)^ 1*^2
)^(s

2)j]

A
8
{c\»g

1
e
1^1

B
a)^feBi*feB2)c\^ 1

)t^(i-
1̂
)•Atfe^HHj^t^rft^-feM

(7.1)

We note that (7.1) is not symmetrical in s and s , and this is to

be expected since the process is not time reversible; this is one

feature which distinguishes it from earlier bivariate exponentials. The

backward moving average model (1.2) corresponding to (1.1) has the joint

interval distribution which is specified by (7.1) with s and s in-

terchanged.

An explicit form of the joint distribution (7.1) can be obtained

directly, rather than by inversion of the transform which is less infor-

mative. By the structure of the model the joint distribution of
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(X..X. ,) is a mixture of the joint distributions of
1' l+l J

(

P

2e1+P1£1+1 .

P

2W . (P2Wi+i • P2£i+i
+^i+2

+W

•

with corresponding probabilities

These joint p.d.f.'s can be listed in an obvious notation as follows:

*Ag ac (3Cty)-(Vf2) «q?(-Wp2 ) exp(-Ay/f2) (x,y>0)

• exp(-Ax/?
2
)(ecp(-Ay/^

1
)-exp(-Ay/p

2)] (x,y >0)

h? oz +6f +£ fcdr)-A
2
[(i-4)(Prft)J"

1

.flKpWx/p
2){e«p(-Ay^^

(x,y>0)
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The other terms are more difficult. For example, take

tot x-?
2f^w , y-^l+l+^i+2' 2

-?l£i+2-
tbus

and the Jacobian equals to

1
/?2?i*

and
?2
x=

P2£l
+
P2Pl£i+l^i+?ly"Pl

z Khlch i^1163 *>»*

Thus when K x>fi y , we integrate with respect to z from zero to y ,

but when $ x<$ y , we integrate with respect to z from y-$ x/B.. to

y . Hence we have:

when P2*>&y>0

Sri <^i+i'^ri+i "1*1+2 * x *

when ^y>(^x>0

'^fl* ft,? +ft£
(x,y)-A

2#f1 P2
^)-1

.exp(-Ay/p
1
)-

fe£l ?l£i+l ' r^i+i «l
ci+2

{exp[-Ax(l-(y(3p/g^(-A:c/ft,)J

F°r ({&+&«• (^iH+^+W
^ x-|&+&£141 . y-|ei+i

+
?i£i+2

+^3' 2"^i+2» ""W thaB

£i+3^' fi«" ^i- Ew***^' ^-HftrV-ft^fy/As'

and Jacob ian vt*\
2 C j. a a f «*A

2 r +fl.v-&.z-G.w. which
flfa, also (^^Vl+lW^-M"' "
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impii es that (^x > (^y- (^z-^w z> fyw > (^y-j^z-fyx r^ w > y-s- f^*/^ J for

y<z+j^x/pir integrate w from zero to y, for y>z+(^c/plt Integrate w

from y-z-kx/^ to yi and in the 2nd step 9 since y<z+^x/e
1
implies

that 2>y"fox/^i» if ^JKPgX, integrate z from zero to y, if p13
r>^2x »

integrate z from y~?2
x
/Pl

to yj also y>z+(^/fl
1
=^z<y-P2x//)lf thus if

fLx<(Ly, integrate s from zero to y-f^/pl* ** ft/^fe*' f(z )
JO°J hence

for the expression of f^^.(^l+i+Pl^W* '

when z >y- pgx/jjj j p2
x > ^y > o .

f(scyMfe^
2
[<?j&i-frfe> (Pi+ft-fejj"

1
' «p("*^?2 )

'

{e^(-Ay(i/p2-(\/p|;|^(-Ay)^.(-^

»hen z>y.(32X/p l
. p

i
y >p2X>0

f(x.y)K^)2[(^^2)(^ 1̂ 2̂
)]-

1[exp(^/
p2
)^(;.Ax(l-P2/ei)/?1jJ

{exp[-Ay(l+l/g
1+P1/p2

-l/j3
2
)j-exp(-Ay/p

1 )j

when z < y-^/n j r ^y< pft

f(x,y)=

when z<y-P2x/^ 1
l ?1y>P2X> °

^.y^^l^-feXi-Pi)]"
1

-exp [-Axd-^p/pJexp^yd+l/^+^-l/ppJ J
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The rest can be derived in a similar way. We thus see that the joint

p.d.f. of X.,X. , will be continuous in both variables but will have
1 l+l

different analytical expressions over the regions R x>$-,y and

S x<3-,y ; there appears to be no compact analytical form for

f (x,y) . This is unfortunate because it makes it difficult to
1' l+l

derive maximum likelihood estimates of the parameters A and 3 in

the model.

Different bivariate exponentials also can be compared through their

conditional properties and so we will derive these for the present con-

tribution. Conditional p.d.f. 's are not succinct enough, and so we

concentrate on conditional moments. These may be obtained from (7.1).

For instance, to obtain E(X. X. ,=t) , differentiate with resoect to
l ' l+l

s , set s =0+ , multiply by -1, invert with respect to s and then

divide by the marginal (exponential) density of X. . Thus

Examining this regression function more closely we see that E(X.|X. =t)

is equal to X for $=0 and 3, equals either or 1; otherwise it

increases exponentially from (3,3~+3,)A " to the constant value

(1+3, 3~+3, ) A as t increases. But when 3 =1 and 3,=0 ,

E(X. |X. =t)=3/A which is the maximum value for large t.

The conditional moment E(X.|x. ^t) can be obtained similarly by

interchanging s and s .

40



VIII. SOME BASIC ASPECTS OF THE EMAk MODEL

By the constructions of EMA1 and EMA2 model, we can write the

general form of EMAk as:

-&ei+fWW w -*>- ('-(P^-i
(8-1)

Methods of mathematical induction will be used to prove some basic

properties of the EMAk model.

1. The general closed form of EMAk (k=l, 2 , 3 , . . . ) is

V^-L^jf,-'. (0.2)
1

J-0
K J 1 ° n-0

*

where $n
and I. ^ are defined to be identically 1 for all i;

I. is an i.i.d. sequence of Bernoulli random variables

with I. -1 w.p. (1-6 )/ otherwise for all m;
l m

i is the serial number of the ith element of the series;

k is the order of the process; j and n are indices.
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Proof: When k=l

"(^i w.p. ^

When k=2

XeAp t (3)+ A p i (3)i (2)+ a c
i (3)i (2)i (1)x

i Wi +
ri
t
i+i

I
i

I
i

+
Po
c
i+2

I
i

I
i

I
i »

Assume the result is also true when k=m then, when k=m+l

itt+1 j

This completes the proof.
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2. The distribution of tho intervals {X.} are also exponential.

-sX.

Proof i f? (s)»E(e l
), I.e.

-Vi« w -fcVWi*!£(sXo ,K1)a«(. JL(i4)+....

When k^lp

fY (s)
A?i X

2
(H>1> >

V A+pi8 US7I>?-pJb7 " x*$fl ft "X5srfPi-
A(i-ft)

A+3
•

When k=2

Y A+(32
fl."2 TmSTTF^sTJ A+ft£l(

;
2 A«s J Ate

When k=m-l, the last term of (8.3) is

x°H)(H.i)-'H)

Assume the result is also true when k=m-l, then, when k=m the last two

terms become

m+1,

(8.4)
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but all the terms before these two are still the same as k=m-l, thus

simplifying (8.4) gives

>"(i-ft,) (i-(U ) • . (*-fe>(ft
C*»)+Ad-fr )]

(X55") (X+pn
s)

U+ftj-i
8
) • • • ^fe3 } (>";fI

s ~

^(l-fjq-fl,.,)... (i-f-,)

*
which is exactly the last term of f (s) when k=m-l. Hence, we

x

.

1

proved that if the result is true when k=m-l, then the result is also

true when k=m. This completes the proof.

3. The jth order serial correlation of EMAk is

for k<j
»

where ^ «=i,and ^.j" °»

Proof: By definition

D(k) r_(k) -001
cov

(
x

i

(k)
'xwJ

E(x(--)xW]-E [xf)j E [xfr)]
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(k)
where X. " 's are intervals of EMAk process, and have been proved to be

marginally exponentially distributed with parameter X . Thus

varLi J I i+J J)

(k) (k)
Since X. and X. . are probabilistic linear combinations of i.i.d,

1 1+3

exponential (A) random variables c. and e. . , and

EtfiW=E(£
.t

)s(W=l/A2 '

(k)
the only non-zero term of p . will be the sum of

J

BX
2
[Ete

i+j
£
1+j

)-B(f
i+
^B(£

i+d
)|.BX

2
(2.i)A-

2
-B,

where B is a combination of (3- and (1-3.) , for i=l,2,3,...

Hence when k=l, j=l,

/ \ 1 i-1 i+1-1 a

When k=2, j=l,

"P2^(i-?2)+p1 a.(32 )

2
(i-

?1)4( 1
2̂).[^ (1.y2.
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When k=2, j = 2,

i i-1 i+1

When k=h, assume the result is also true, then, when k=h+l, j^h+1,

i-i i+j-i

+
PhWi-(h+l-j+l) TT^-Ph+i+i-JPwi+i-j-i Jt ^'^i+l+l-n5

This completes the proof.

4. All the correlations are non-negative and bounded above by 1/4.

Proof: From above

+P(i-^)(i-^_
1
)...(i-^

+1
)(i-?

k)(i-ftc.1
)...(i-^

1
).
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When k=l, j=l, p^
1)
=3

1
d-3

1
) ,

min. value=0 at 3-,=0 or 1,

max. value=l/4 at 3-, =1/2 .

When k=2, j = l, p
;[

2)
=3

1
(l-3

2
)-[6

1
(l-3

2
)]

2
,

min. value=0 at 3-,=0 or 3=1/

max. value=l/4 at 3-, (1~3
2

) =1/2.

When k=2, j-2, p^
2)

=3
2
(1-3^ (1~3

2
)

,

min. value=0 at 3
9
=0 or 3-,=l or 3~=1,

max. value=l/4 at 3,=1/2 and 3,=0.

min. value=0 at 3 =0/ m=j , j+1, . . . ,km

or 3 =1/ m=k,or k-l,...or k-j+1,
m

max. value=l/4 at 3 =1/2 and 3 =0 for m/n.
m n

When l<j<k,

5.

where m=k,k-l,k-2, . . . ,

j

Define the i+lst element of EMAk to be

x
(kWi+1 s

(?A+i
+
^-i^i+2 ,

w.p. ffe

».p.(*4)(HWi\-2

and define the i th tlement of the k-flst order process to be X

then we can write

(k+1)

.(k+l),
^i.

(k)

W.P. ft
k+1

1 lWi+xSa- *»-H
(0^8 ..^1} i-0,+i .«,.•.) (8.5)

^k+1

k+1
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Proof:

Then

When Jc-1, 4+l"?l
£
i+l '

W •P • ^

=¥i+l+£i+2 ' H,P
- H

Then 42)=
fe
f
i'

W • P, ^

"(^l^l+J

'

"-P
-

(l"^i

Whenk-2, 4+l°fe
f
i+l*

W *P* 2̂

-&V&M •
v 'p '

(1-?3)(52

When k=m-l, assume it is also true, then when k=m, do the same job,

will get exact the correct result, this completes the proof.

Note that this expression is not convenient for the purpose of

(k)
examining the properties of the EMAk process, since X. and E. are

dependent; however, it may be used to generate the {x.} sequences.
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IX. CONCLUSIONS

1. Both estimators of 3 are not very good, since the bias terms are

/\

very large when 3 approaches to zero or one. But 3 looks pretty

nice when 3 is in the interval (0.1, 0.8).

2. Estimation of 3 in the EMA2 process is rather difficult, because

it is impossible to get the unique value of the estimators.

3. In successive stages of queueing lines, all the waiting time "(waiting

time in the queue plus the service time) in each stage will not be

independent; this is the basic purpose of constructing this model,

the size of the order k depends on the number of stages.

4. The general expression of the EIlAk model is not convenient for the

purpose of examining the properties of the EMAk process, since

(k)
X. and e. are dependent; however, it may be used to generate

the {x.} sequences.
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APPENDIX A

METHODS OF GETTING JOINT EXPECTATIONS

1. The standard way to calculate the expectation of two or more jointly

distributed random variables is to integrate the function with res-

pect to the joint p.d.f . of the random variables; e.g.

E(XY)»j
x ] y

xy fx y
(x,y) dxdy.

This is not convenient for the expectations we require.

2. In the EMAl model, a better method of getting joint expectations is

to write out the expressions from the basic construction and compute

them directly. For example: X. ^E, W«P» \?*

Xi+l^i+l ".p. P«

*e>

2
4i*2(Wi+2

+42 w ' p-
(1~p}

thus

f%i£i+i+2^i£
i+i

£
i+2Tei+i

+^+i
£i+2^¥i-i2

+£
i+i

£^2

».p. (i-f)
2

By direct computation, we havei

«(l2p5+28^+28(33)A5 w.p. £
2
(l-(3),

«(12p5+56^-H?6p3+52{S
2
^)/A5 w.P. p(l-(3)

2
,

-(4p
5+28p^-f^(3?+52p

2
+l6^+'f)/

>\
5 w,p. (i~|3)

3
<
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Combine the above gives

E(X
1
X^

1
X^.

2
)-(Wp+20(i

2
-20(i

3+3
(
i
5
.12f/)/A

5
»

All the expressions listed in APPENDIX B were computed in this way.

3. Take the derivative of the Laplace transform of the joint p.d.f. with

respect to s., and then setting s. equal to zero will also give

the joint expectations, e.g. Lawrance and Lewis gave the general ex-

pression of Laplace transform of the joint p.d.f. of r adjacent

intervals. [Ref. 1, p. 17]

Converting it gives:

%
u ty w w
Y* « It R j \

*x y x x \
s 4»s2'sv3k'°Yi+iVri+3 1 * ->

Take the derivative of this with respect to s twice, s once,

s twice, and s once. Then set s.=0 (i=l,2,3,4) to get

2 2
E(X.X. , X. ^X. _,) . Note that when the order of the derivative is

l l+l i+2 i+3

odd, one should change the sign of the expression. This is a messy

job by hand but one done easily by computer.

4. An alternative way is to use "cumulants" or "semi-invariants"

[Refs. 8, p. 253 and 11, p. 55-93], Let L be the Laplace transform

of the joint p.d.f. and L*=log L. Let L* denote the derivative

of L* with respect to s twice, s once, s once, and s twice.

2 2
Since L* =L /L and L* =[L*L-(L ) ] /L and L(0)=1 , these imply that

L*
1
(0)=L

1
(0)= -E(X) and L*

2
(0) =L

2
(0) - [L (0)

]

2
= var(X).
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If we denote L*.
m (0)= K

jm
and E (xj X^) = E .^ we get from thii

relationship the following:

.3

where

Also

E
31
=K

3l"*l
(K
30
+3K

21
)+3K

ll
K
20
+3K?(Kll*20^l'

V K
io"

Kor -*A - %- -E
IOt

K20" "V1^'

K
21=(2p?-2^)/>3,
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APPENDIX B

LIST OF USEFUL JOINT EXPECTATIONS

E^X.^Wl + B-B
2 )/*

2
-

E(xJx
i + 1

) = (2 + AB-2^-23
3 )/X 3

.

E(X
i

X^
+1

)=(2+23-23
3 )/X 3

-

E();U 2
) = (4 + 8B + 33 2 -14B 3 -23'' )/X

i i +

1

E(X?X. ,) = (6+24e-18g
2 -63'*)/X\

E(X.X 3 )-(6 + l 23
2 -6 3

3 -6 3
tl

)/X'4

•

E

E

E

fy^y* ),(l2 + 3C^G0B 2 -483 3 -363 ,,

-12iS
5 )/X 5

.

v
i i+1

/ X 2
y

3 ^(i2 + 24B+24 3
2 + 12B

3 -483"-12p 5 )/A 5
.

v
i i +

1

6

/v3v3 >, (35+1 033+1 803 2 +2163 3 -3243" -1443 5 -363 c
)/* •

v
i i + 1

'

E(X1X. ) = (24+96B-243
2 -24B

3 -4S3 lt +243 5 -243 c )M 5
.

i i +1

E(X-X1 ) = (24 + 24B-24B
3 + 48g

,'-4 88 s )/X 5
.

E(xV
+

) = (120 + 600li-120B
2 -120& 5 -120S"-120B

5 -120S
t )/X 6

.

v
i i +

1

E(X.X^
+1

)=(120+120B-120B
6 )/X 6

.

"ECX^X
1

! J = (48 + 963 + 963 2 +483 3 + 403't -24 03
5 -483 6 )A 6

-

EfX^X 2 U (48 + 1 923+4 32B
2 -2403 3 -1923"-! 443 5 -483 6

)A 6
-

v
i HI

E (X"X" )=( 57 6+2304 3+51 843 2 +86403 3 +120963" -16704

3

5 -80643
l i +

1

-28803 7 - 576 S
8 )A 8

.

6
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E(X.X. xl X. )=(l+3-3 3 )/X 3
.

E(X^X
i + 1

X
i
,r2

) = (2 + 63-4B 2 -2B 3 )/A\

E(X
i
X^

1
X
i+2 )

= (2 + 6B-83 3
+ 23'

4 )/A".

E(X
i
X
i+1

X^
+2

)=(2+4B-23 2 -23 3 )/X 3
.

E(X 2
X
2 ,X. J = (4 + 163 + 36S

2 -96G
3 + 963

,, -883 5
+ 363 6 )/X

l 1+1 1+2

E(X^X
i + 1

X
2

+ 2 ) = (^ + 123-43 2 -143 3 + 'l23
l, -63 5 )/X 5

.

E(X.X 2
n X

2
9 )=(4+43+203

2 -203 3 +83 5 -123 6 )/X 5
.

l i + l i + <-

E(X 2
X

2
n X

2
, 9 ) = (8 + 323 + 4 83 2 -563 3 -4 03

,t

+ 83
5
+ 83 6 )/X 6

.

l i+l i + <-

E(X
i
X? +1 X

i+2
)-(6+63+423 2 -54 3

3 +103 5 -103 e )/X 5
.

E(X 2
X

3

+ 1

X
i+2

) -(1 2 + 963 -363 2
+ 603 3 - 1563" + 204

3

5
-l 683° )/X 6

.

E(X.X? X
2

9 )=(12+1683-2763
2 +3483 3 -3123"+723 5 )/X 6

.

l i+l l + t

E(X
i
X

2

+ 1

X
2

+ 2
X.

+ 3
) = (4 + 163 + G83 2 -1323 3

+ 1043'f -1603 5
+ 1243 G

+ 43

-243 8 )/X 6
.

E ( X -X.,,X 2
X. J = (4 + 203 + 123 2 -283 3 -24 3'4 -43 5

+ 563 6 -443 7

+123 C )/X G
.

E ^ X
i
X

-! J l
X

-a.?
x2

)
= (^ + 24 3-443 2

+ 803 3 -1083 l4

+ 603 5 -203 c
+ 123 7

i i+» i+^ i+3

-43 e )/X 6
.

^MLnX.^X 2 J = (4 + 163 + 43
2 -363 3

+ 523'*-643
5
+ 363

6
-"l<53

7

i i+l l

+

c 1

+

6

+33 8 )/X 6
.
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E(X,X? ,X
_LO X._LO ) = (2 + 83-43 2 +23 3 -143'+

+ 103 5 -23 6 )A 5
.

• i+i
i
+ *- l +.5

E(X.X._,,X* X.
, J = (2 + 83 + 23

2 -263 3
+ 263

t, -63 5 -123 7
+ 83 8 )/A

1 1+1 l + £ 1+3

E(X,X. -X.
.

X
2 J = (2 + 6S-23 2 --43 3 -23"-23 5 )/A 5

.

i i + i i +£ i+j

E{X.X? X. )=(24+1203+483 2 -963 3 -1683 5 +96 3
6 )/X 6

.
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