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1. TCP Implementation 

As this quarter came to a close, a series of meetings were held at Stanford 

with representatives from University College London (Mr. A. Hinchley) the 

Norwegian Defense Research Establishment (Mr. P. Spilling), Bolt Beranek 

and Newman (Mr. R. Tomlinson) and the SU-DSL staff. Also attending a portion 

of these meetings were Dr. J. Postel, Mr. R. Rom, and Mr. L. Garlick, all 

of Stanford Research Institute, Mr. T. Chandler (Collins Radio), and 

Mr. A. D. Owen (BBN). 

The purpose of the TCP-related meetings was to determine the appropriate 

changes and additions needed in the TCP specification [1] to reflect changes 

made during implementation and testing, and to incorporate complete specifica- 

tion of the new resynchronization and CLOSE processing design, as well as 

modifications to error and other control processing. 

This rewrite of the TCP specification is important, not only to reflect 

reality, but also to provide a more up-to-date basis for inclusion in the 

AUTODIN II specification. Dr. J. Postel (SRI) has been tasked with the 

integration of priority and security capability into the TCP and SU-DSL has 

agreed to provide an updated text on which to base the DCA work. 

1.1 Very Distant Host Measurements 

During the months of December (1975) and January (1976), we undertook 

extensive and detailed timing measurements of the ELF VDH behavior to 

ascertain the degree to which VDH performance affected total TCP 

bandwidth and delay. The three most fundamental discoveries were 
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a) ELF VDH and IMP VDH do not handle the two VDH logical channels 

compatibly. 

b) ELF VDH introduced unnecessary retransmissions into the system. 

c) ELF VDH did not pipeline packets to the outgoing modem (i.e. 

ELF VDH started I/O for packet 1 and waited for output completion 

before starting output for packet 2). 

The statistics gathered were voluminous (a typical case of "datarhea") and 

reflect changes made in the ELF VDH to deal with problem (b). We know 

how to solve problems (a) and (c), but have put the task on a backup queue, 

since Packet Radio software (see TCPO, TELNET in section 2) currently has 

priority for our programming resources. 

Problem (a) has to do with the way in which tne IMP VDH actually transmits 

packets. In the design specification [2], outgoing messages are split into 

a leader and zero or more (up to 8) data packets, each at most 63 x 16 

bit words long. Packets are assigned alternately to logical channels 0 and 1. 

Ihe IMP VDH code, however, randomly selects packets to be sent on each 

logical channel (i.e. the outgoing buffers are filled, in order, by the IMP 

code, but sent in random order). The ELF VDH code assumes packets will be 

sent (and therefore received) in order (channel 0, channel 1, channel 0...). 

If a packet arrives on channel 2 when the ELF VDH is expecting new data on 

channel 1, the ELF code assumes an error has caused the channel 1 packet to 

have been dropped and discards the channel 2 packet. Thus a certain fraction 

of valid packets are discarded by the ELF VDH. This problem can be overcome 

by rewriting the ELF VDH so that packets arriving with proper "ODD/EVEN" bits 

set to indicate a new transmission on the associated logical channel are 

queued and accepted in the correct order. 
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Problem (c) requires that the VDH not block, waiting for completion of an 

output on one channel if a second buffer can be sent on the alternate channel. 

If both channels are in use (really, if the next correct channel to send on), 

then the VDH should wait until the channel is available (by blocking and 

giving up the CPU until the next channel is free). 

Problem (b) was just a bug in the TCP ELF implementation which was easily 

repaired. Some packets were being retransmitted before they could have 

been acknowledged. 

In a throughput experiment conducted January 14, 1976, by J. Mathis, the 

TCP was run using a traffic generator which sent traffic to itself via the 

IMP. Three TCP letters were allowed to enter the pipeline before requiring 

an acknowledgment. Transmission continued for 1 minute. Table I summarizes 

the results. Taking just the 70 character letter results, we can form a 

model of the line utilization and some of the delays.  It is worth noting 

that 10 character and 70 character letters both fit in one RTP packet (including 

the TCP header), so the relative bandwidth of 6.6-6.7 TCP letters/second is 

probably less affected by actual letter length than by the number of RTP 

packets required to carry it. 

The statistics shown in Table I are slightly inconsistent owing to the 

asynchronous way in which they were gathered (Table values were updated when- 

ever an event occurred affecting the table), but are approximately consistent. 

Table 2 illustrates the approximate consistency checks. Each TCP letter sent 

causes two RTP packets to be sent to the IMP. These data packets are sent 

back, along with an RTP packet containing a RFNM. This accounts for 1215 

of the RTP data packets received (in the 70 character letter case) and 
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70 character letters 10 character letters 

Total letters sent 

RTP pacKets received w/o error 

Non-duplicate data packets received 

Duplicates received 

Null packets received 

Packet errors 

Messages received on non TCP links 

Messaoes received on TCP links 

Packets received out-of-sequence 

Original packet sends 

Retransmission (RTP) 

Null packets sent 

Special packets sent 

Wait for I0RB 

Wait for busy channel 

Calls to DESCHED in WAIT channel 

Storage allocation failures 

TCP letters/sec 

TCP bit rate/sec 

405 393 

2290 2094 

1269 1234 

0 0 

789 604 

0 0 

6 4 

841 820 

36 128 (! 

844 822 

0 0 

943 1004 

197 129 (! 

133 58 

7 14 

13 25 

0 0 

6.7 6.6 

3730 528 

TCP/VOH Bandwidth Experiment 1/14/76 

Table I 
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2290 total RIP packets received w/o error 

-1269 total nor-duplicate data packets received 

1021 

- 789 total null packets received 

232 

- 197 total special packets sent 

35 unaccounted for 

405 TCP letters sent 

actual (841)      810   TCP messages received (TCP letters + RFNM's) 

actual (1269)     1215    RTP packets (TCP HEADER + TEXT, ARPA LEADER, RFNM] 
received 

VDH Statistics Consistency Check 

Table II 

Special packets like "HELLO" get "I HEARD YOU" responses, so we can 
assume approximately equal numbers of sent and received special packets, 
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sio; 

.ipproximates the 1^69 non-duplicate data packets actually receivec1. By the 

same analysis, the 841 messages received are approximately 405 TCP letters 

and 405 RFNM's. Some of the variation might have been the result of TCP 

retransmissions. Furthermore, the 36 "out of sequence" packets would have 

caused the ELF VDH to force retransmission from the IMP owing to the ELF VDH 

assumption that packets will arrive in se -uence for alternate channels. Nor 

would the ELF VDH have detected the retransmissions, since it would not have 

acknowledged receipt of the out-of-sequence arrivals. The 789 null packets 

received correspond roughly to the number of RTP data packets sent (2 x 406 

it is possible that sometimes, both logical channels were acknowledged by a 

single null packet, or that a data packet carried the acknowledgment. The 

844 
disparity between 405 TCP internet packets sent and ^      = 422 TCP link 

•r-.s i'jes sent may indicate some TCP retransmission. The .0,41 TCP link 

messages received (as opposed to 844 sent) merely reflects delays in acknow- 

ledgment at. trie TCP level. 

Earlier TCP tests indicate that a self-loop test with three TCP packets in 

the pipeline will avoid any empty TCP acknowledgment packets, so we can 

estimate the actual channel bit rate in use based on the model given below. 

VDH Channel Bit Rates 

Just as a simple way to characterize the packets that flow on the VDH link, 

let us define several shorthand terms. 

(BLO) Basic Line Overhead = 88 bits (SYN,SYN,DLE,STX,RTP Control (16 bits), 

..., DLE,ETX,CRC (24 bits)) 

This is the fo  «t-of a standard VDH packet 

(NRP) NULL RTP Packet = 88 bits (see format above) 

(SP)  SPeclal Packets = 88 bits (HELLO, I-HEARD-YOU...) 
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(ALP)    ARPA LEADER Packet = BLO + 32 bits = 120 bits 

(TAP)    TCP Acknowledgment Packet s BLO + 288 bits (TCP header) = 376 bits 

(TDP/H)  TCP Data Packet with header = TAP + [data: 0-720 bits] = 

376 bits (0 data) - 1096 bits (720 data) 

This packet is the first one, which includes the TCP header. 

(TDP/NH) TCP Data Packet without header = BLO + [data: 0-1008 bits] = 

88 bits (0 data) - 1096 bits (1008 data) 

The RTP periodically sends "HELLO" packets and responds to any received 

with "I-HEARO-YOU" Packets. The normal ARPANET message is split into a leader 

part and data portions divided into 63 16 bit words each. The 

leader part is sent as an ALP (see above) and the receiving RTP sends a 

null packet containinn en  acknowledgment.  If there is a packet awaiting 

transmission on the ot'ie** side, that packet will carry the acknowledgment bits. 

The expected measured activity is characterized below. 

TCP TRANSMISSION SIDE IMP TRANSMISSION SIDE 

ALP - > (send leader) 

TDP/H-  (letter text] 

NRP-> (ack leader) 

NRP-> (ack text) 

NRP-> (ack RFNM) 

<- NRP (ack leader) 

<- NRP (ack text) 
<- ALP (send leader) 

<- TDP/H (letter text) 

<■• ALP (RFNM) 
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fhe actual activity differs somewhat, as table III shows, indicatinc, that 

fewer null RTP packets were sent or received than expected. This merely 

shows that the output queues at the ELF and IMP VDH were often non-empty, 

eliminating the necessity for null acknowledgment RTP packets. The actual 

line utilization is about 20: in each direction, assuming a nominal 50 

kbits/second available full-duplex capacity between ELF and the IMP. 

The VDH measurements described above do not illustrate the actual delays ;n 

the system. To observe these, we implemented two kinds of timestamping 

procedures, one associated with individual TCP internet packets, and one 

associated with events occurring inside the TCP/VDH code. The latter 

involves the maintenance of a resident timestamp table in the TCP code which 

is dumped on closing a TCP connection. The events which are timestamped are 

scattered throughout the VDH and TCP code (e.g. arrival of inbound packets, 

processing of outbound packets, etc.). 

The TCP packet-based timestamping system will be described in more detail in 

a forthcoming technical report, but. the preliminary results indicate that the 

TCP introduces about 20 ms of delay from the time a user program asks to 

SEND a letter to the time the letter (one packet letter) is handed to the VDH. 

On the input side, it takes about 42-43 ms from the time a packet is handed 

to the TCP to the time the user is signalled that a letter has been received. 

In the experiments performed so far, the "echoer" process takes about 8 ms 

to be awakened and to send the next packet out. Thus, we estimate that the 

TCP alone should be able to sustain a rate of 1000/70 - 14 packets/second 

[single packet letters]. The degradation to 6.6 packets/second must be 

accounted for by delays in the VDH processing. We would have to observe 

 ,- • ■ :  



60 second statistics 

Sent from ELF VDH 

422 (422) ALP [leader] 

422 (422) TDP/H [TCP packet] 

943 (1269) NRP [RTP acks] 

197 (96) NRP [RTP specials]*' 

Received by ELF VDH 

421 (421) ALP [leader] 

421 (421) TDP/H [TCP packet] 

789 (842) NRP [RTP acks] 

421 (421) ALP [RFNM] 

6 (0) ALP + 88 bits [NCP RFC's]* 

197 (96) NRP [RTP specials]*' 

ELF Transmit side analysis 

422 (ALP + TDP/H) + (943 + 197) NRP 

= 422 (120 + 376 + 560) + 1140 (120) 

= 422 (1056) + 1140 (120) = 582432 bits/60 sec = 9.7 kbits/sec 

ELF Receive side analysis 

421 (ALP + TPP/H + ALP) + 789 (NRP) + 6 (ALP + 88) + 197 (NRP) 

= 421 (120 + 376 + 560 + 120) + 789 (120) + 6 (120 + 88) + 197 (120) 

= A21 (1176) i (789 + 197) (120) + 6 (208) 

= 421 (1176) + 986 (120) + 6 (208) = 614664/60 = 10.2 kbits/sec 

Actual full-duplex delivered data bandwidth = 405 x 70 x 8/60 = 3.8 kbits/sec 

(i.e. 3.8 kbits/sec of data in each direction). 

These were RFC's from MIT-DMS and probes from other sites 
•• 

We haven't accounted for the nearly doubled number of Hello/I heard you's. 
They should be generated in pairs every 1.25 seconds. 

Analysis of ELF Send/Receive Line Bandwidth 

Table III 
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delays of 150 ms/packet to account for the bandwidths achieved thus far, 

and would therefore predict VDH processing delays (and IMP RTP delays, 

as well as traremission delays) on the order of 80 ms. 

In a single experiment performed by J. Mathis on 1/10/76, the SU-DSL TCP 

opened and established a TCP connection which looped through the SUMEX 

IMP and back to r,U-DSL. 10 characters of data were sent with each letter. 

le IV summarizes the results. In this particular experiment, the re^rans- 

jlon process awakened asynchronously every 4 seconds. TCP acknowledgments 

were sent by the retransmission routine, so this experiment was not an attempt 

at maximum throughput. It is evident from Table IV that on the outgoing side, 

Hbout 20 ms are needed to prepare a letter for VDH transmission, and anotner 

10 ms elapse while these packets are sent to the IMP. 54 ms more are needed 

to echo the data packets through the IMP and ELF VDH to the TCP. The TCP 

takes another 33 ms and notifies user of internet packet arrival. Since 

arriving internet p.ckets are printed on a CRT, increased delays in user 

processing show up in Table IV in the form of 50 ms deny before user does 

a new RECEIVE. TCP ack is sent only if the retransmission process spots an 

unacknowledged "new receive." In our case, this delays user send processing 

by about 1.1 seconds. Table V sumnarizes the important delays, accounting 

for timestamp overhead as well (see next section). 
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TCP Send/Start RTP 

RTP completes unacked transmission 

RTP receives looped TCP packet, signals TCP 

RTP RFNM processing delay/TCP wakes up 

TCP signals user, letter received 

TCP receives scheduler winds up 

User executes RECEIVE 

••* 
TCP RECEIVE processing 

IDLE/TCP Retrans. awakens 

TCP retrans routine sends ACK 

RTP packet processing/TCP awakens 

TCP signals user, letter sent and acked 

interve n cumulative 

18.5 ms 18.5 ms 

9.9 ms 28.4 ms 

38.9 ms 67.3 ms 

14.7 ms 82.0 ms 

28.5 ms 110.5 ms 

4.8 ms 115.3 ms 

49.9 ms 165.0 ms 

12.8 ms 177.8 ms 

866.4 ms 1044.2 ms 

6.5 ms 1050.7 ms 

201 ms 1251.6 ms 

7.4 ms 1259.0 ms 

*•*■ 

RTP, reliable transmission package (VDH software) 

includes delay to display letter on CRT 

RETRANS awakens asynchronously every 4 seconds 

TABLE IV 

TCP loop/delay measurement 
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Round-trip TCP SEND to TCP RECEIVE 

TCP    51.8 ms  - 5.7 ms  (Timestamp overhead)  =46.1  ms 

RTP    63.5 ms  - 1?.4 ms  (Timestamp overhead)  = 50.1  ms 

User 49.9 ms - 0,2 ms  (Timestamp overhead)  = 49.7 ms 

Rough allocation of delay: 

TCP = 46.1/145.9 = 31.6% 

RTP = 50.1/145.9 = 34.3% 

User = 49.7/145.9 = 34.1% 

Excluding the user: 

TCP = 46.1/96.2 = 47.9% 

RTP = 50.1/96.2 = 52.1% 

Delays  in TCP/RTP Corrected for Error 

Table V 
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Other Overhead Measurements 

To further understand the impact on CPU utilization of the VDH, we set up 

a remote loop at the IMP side of the VDH line and traced the activity of 

the ELF RIP in the absence of any TCP traffic. Since the ELF CPU was 

isolated from the ARPANET, only locally generated RTP activity would be 

observed. As we expected, at regular 1.25 sec. intervals, the RTP sent 

"HELLO" packets which it answered with "I HEARD YOU" packets. In the absence 

of any other traffic, we found that the RTP continued to transmit null 

packets every 200 ms. This has since been changed so that the retransmission 

routine times out every 100 ms, but is not scheduled at all if no output 

channels are in use. The November 17, 1975, measurements of overhead are 

therefore an upper bound, and amount to about 3%  (25 ms every 1250 ms for 

Hello and I Heard You processing: 2%; and 2 ms every 200 ms for null packet: 

1%). 

The overhead for actually gathering delay statistics is about 350 Msec per 

timestamp when called from the RTP and about 200 Msec when called from the 

TCP (the difference has to do with additional register saving in the RTP). 

This i icludes the time to store away the 32 bit time and identity of the 

caller in the monitor table. The clock times are accurate to 40 Msec. The 

graininess in clock times are expected to cancel each other after enough 

measurements are made. 
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Recent VDH changes/PDP-11 changes 

In mid-February, BBN installed an additional 8K of memory in the 

SUMEX IMP, in part for the purpose of running the IMP VDH in extended memory. 

We have observed an increase in delay (and decrease in throughput) of about 

5 as a result of this change. A more serious influence on throughput is a 

change in our PDP-11 clock cycle time from 245 ns to 280 ns. This slows 

everything down by about 15*. Consequently, measurements made after 7 March 

1976 will appear to show poorer performance than before. As of the time of 

this writing (10 March) we had achieved about 7 packets/second with the 

exerciser looped to itself, but going through the IMP. This may degrade to 

about 6 packets/second again, as a result of the basic clock rate change 

(which was made to improve the reliability of the PDP-11/20). 

1.2  Resynchronization 

In the original TCP specification, we did not describe the method by which 

connections would resynchronize themselves. In a recent DSL Technical 

Note [3], we described the problem of knowing when to resynchronize. 

R. Tomlinson [BBN], Y. Dalai [SU-DSL], Dr. Belsnes [OSLO], and more recently, 

J. Mathis [SU-DSL] nave contributed greatly to our understanding of this 

complex issue [4-6]. 

In meetings during the week of 16-20 February, attended variously by 

representatives from NDRE (Paal Spilling), UCL (Andrew Hinchley), SRI 

(Jon Postel, Larry Garlick, Raphi Rom), SU-DSL (Yogen Dalai, Richard Karp, 

Jim Mathis, Judy Estrin, Vint Cerf) and BBN (Ray Tomlinson), we discussed a 

variety of resynchronization methods ranging from forced resynchronization 
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of sequence numbers on both sides of  a full-duplex connection to strategies 

only requiring that one set of sequence numbers be resynchronized (remember, 

each transmitter selects his own sequence numbers). 

The surprising result was that resynchronization was generally more complex 

than initial synchronization. We started with the assumption that either or 

both sides could resynchronize their sequence numbers at any time (even just 

after establishing a connection). The earliest model was tu send a DSN 

packet (DSN is a control bit in the TCP packet header meaning "desynchronize" 

sequence numbers in this direction). The sender of the DSN would await an 

ACKnowledqment (the DSN takes up 1 byte of sequence space so it can be 

unambiguously placed in the transmission stream) and then send a SYNchronize 

packet. 

The fundamental problem with this simple-sounding strategy is that the receiver 

of a DSN, after acknowledging it, could not distinguish between the receipt of 

an old SYN packet from earlier resynchronizations on the initial connection 

establishment. In an attempt to rescue matters, it was proposed that a 

SYN,ACK packet be sent, rather than a naked SYN, so as to validate it, but if 

the receiver of the DSN is also in the process of desynchronizing, there can 

be a basic ambiguity in the value of the ACK field (old or new sequence 

numbers). J. Mathis uncovered this ambiguity, much to the astonishment of the 

rest of us who thought everything was fine. 

We finally compromised on a strategy which permits unilateral or simultaneous 

resynchronization, but which relies on the notion that no previous SYN packets 

are around any longer from the initial connection exchange or later 
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resynchronizations. In principle this is not unreasonable if the packet 

lifetime is much shorter than the cycle time of the sequence number space. 

In our case, the packet lifetime is probably on the order of a few tens of 

seconds while the cycle time is 4.5 hours. The resulting state diagram is 

not very compact. The original TCP specification has 8 states and the new one 

has 13. The size of the state diagram need not, however, imply a larger 

implementation, since suitable encoding of the state information will allow 

the state machine to be factored into several smaller ones (as in BBN's 

implementation of the TCP). Figure 1 illustrates just the resynchronization 

portion of the TCP connection state diagram. The "FIN received" and FIN 

wait" states are a normal part of the TCP state diagram, but are shown since 

FIN processing must also be managed during resynchronization. 

The basic cycle for unilateral resynchronization is for the sender to go from 

"LSTABLISHED" to "ÜSN sent" and back, while the receiver goes from "ESTABLISHED" 

to "DSN received" and back. Once a sender has transmitted DSN, he must continue 

to retransmit all unacknowledged packets preceding the DSN as well since the 

receiver of the DSN cannot acknowledge it until he has received all preceding 

packets as well. Once resynchronization is started, the sender of the DSN must 

not send any other packet (except those mentioned above), even if the user has 

said "CLOSE." Thus, the exchange of FIN's must await completion of the 

resynchronization. However, a DSN and a FIN can "cross in the mail" and this 

leads to the mixed DSN/FIN states shown in figure 1. Note that even if a 

DSN has been received, a FIN can be sent if the receiver of the DSN has not 

also begun resynchronization of his own sequence numbers. 
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1. 3 Window Control 

In the TCP specification, no mention is made of the specific way in which 

the receiver's window size might interact with his duplicate detection 

mechanism.  In the SU-DSL implementation, the initial decision was to use 

the receive window to filter acceptable packets out of all those arriving 

on a given connection. This idea leads to some difficulties if the receiver 

ever shrinks the window in such a way that permission to send a particular 

range of sequence numbers is revoked, after the sender has transmitted 

packets in that range. For example, the receiver might ^et a window size 

of 100 octets, specifying that the sender is free to transmit sequence 

numbers 200 to 299 (remember, it is the combination of the ACK field and 

window field in a TCP packet which uniquely grants permission to send a 

certain range of sequence numbers).  Suppose that the sender promptly 

emits a packet whose sequence number is 200 and whose length is 100, using 

all the sequence numbers it has been allowed. Suppose, further, that the 

receiver discovers that the user he is serving has inexplicably slowed down 

packet processing (or even stopped) so that too many packet buffers are 

now filled with packets awaiting service. The receiver might send an ACK 

back indicating that the new window size is now 50. 

There are several problems here.  If the sender stops all packetizing 

and all retransmission, the system may deadlock. One alternative is to 

continue to retransmit any packet at the head of the retransmission queue, 

even if it includes sequence numbers disallowed by the receiver. The receiver 

could just accept those it has offered to accept and discard the others. 

In this way, a packet might arrive piece-meal after several retransmission. 
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Alternatively, the packet might be repacketized into two separate packets 

so that the first part fits the current allowance. SU-DSL has implemented 

the former approach 

A second problem concerns the closing or interrupting of a connection which 

has had its window shrunk. If we absolutely forbid the transmission of 

packets outside the permitted range, or if the receiver ignores all packets 

outside of the permitted range, we may find it impossible to close or inter- 

rupt the connection, since the FIN and INT control bits are allocated 1 

octet each in the sequence number space (to reliably distinguish any duplicate 

control packets -vriving at the receiver). If we take the position that 

window sizes are suggestions only, as in [7], then it is important to 

decouple the duplicate detection mechanism from the flow control to some 

extent. A. McKenzie advocated this decoupling some time ago in technical 

protocol discussions and we now understand the merit of his position. We 

have chosen the maximum allowed window size (2  octets) as the duplicate 

detection filter, independent of the receiver's current window size. A 

slightly more accurate choice would be the window between the next sequence 

number expected and the largest sequence number for which permission has been 

granted (i.e., if a window is sent from receiver to sender which grants per- 

mission to send packet sequence numbers larger than those currently allowed, 

the duplication detection filter would be updated). If the window shrinks, 

no change would be made to the filter. Even this idea is not without a possible 

glitch. If the sender uses up the maximum he is allowed and then needs to 

send INT or FIN, he may need to violate the flow control to do it and the 

receiver must be able to process these packets. Either the sender must avoid 
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using up the last octet he is allowed or the receiver must berd a 

little to allow a few more octets through the sequence number filter. We 

have taken the latter approach: the receiver can accept oackets beyond 

the maximum range he has granted, just for this purpose. 

A different problem related to window control cropped up during the design 

of an SPP (Station to Packet Radio Protocol) proposal [8]. D. Retz adapted 

a simplified version of TCP for reliable packet transmission for packet radio 

use.  In the Packet Radio Net, it is considered important for the Station 

to oe able to unilateraly silence a repeater acting as a source for a host 

or a terminal, particularly if there appears to be congestion building up 

in the neighborhood of the repeater in question. Consequently a window size 

of zero was taken to mean "absolutely no more transmissions until otherwise 

notified." Notification was to come from the receiver through emission of 

an ACK packet with a new window when the station {as receiver) opened the 

window again. Under certain circumstances, however, it might be impossible 

to distinguish between the ACK which shut the window down and the one which 

opened it up ( .e. same sequence number and ACK field, but different window 

size). Since packets can arrive out of order, the repeater mijht think the 

window was zero when, in fact, it was not. Several schemes were proposed 

to fix this problem. What is relevant to the TCP design is that a similar 

position (i.e. no retransmissions or new transmissions if the send window 

is zero) could lead to similar problems. One possible solution is for the 

receiver, in the absence of other traffic, to send ACK packets repeatedly 

with the new window size. The question is: "when should the receiver stop 

transmitting ACKs?" One answer is "when the sender finally sends something," 

which might be a long time away. 
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One alternative is for the TCP which changes its receive window from zero 

to non-zero to send a NOP packet containing the new window. The NO? takes 

up a sequence number and can therefore be ACKED, allowing the receiver to 

reliably tell the sender when the window was open, and also allowing the 

receiver to unambiguously identify the latest window information. 

Let us analyze the idea of not sending anything {except an INT, FIN, DSN, 

or NOP) when the window size is zero. There are basically three cases to 

deal with in the case of simultaneously shut windows and two cases for the 

unilaterally shut case (the others are taken care of by symmetry). 

Currently shut windows 

Case A: Both sides have empty retransmission queues 

When either or both sides re-open their windows, a NOP with the 

new window size is sent to the other side. Eventually the NOP(s) 

will be acknowledged, showing that the other side now knows about 

the non-zero window, and data can flow again. 

Case B: One side has a non-empty retransmission queue and the other is empty. 

It is immaterial what window size Information is contained in the 

packets still in the retransmission queue. 

If the destination has been told through the acknowledgment of one of its 

packets that the window is now zero, the arrival of any packet already on 

the retransmission queue before the window went to zero will not cause the 

receiver to believe that the send window is non-zero. Only the latest window 

information (based on sequence number and ack field of the arriving packet) 

should ever be believed. If the TCP with an empty transmission queue re-opens 
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the window, it can send i NOP with the latest winao.' information. Data 

will then flow in the other direction. If the TCP with the non-empty trans- 

mission queue wants to re-open the window, there may be a problem. If 

packets on the retransmission queue have their window fields changed to 

reflect the latest window size, their checksums must be recomputed. Further- 

more, if the packet has arrived before, the new window data may not even be 

accepted by the receiver. 

If a NOP packet is sent out, but placed at the end of the retransmission 

queue, it may not arrive and won't be retransmitted. If it Is placed at the 

head of the queue and is retransmitted, data may eventually flow in the 

opposite direction, but the NOP can't be acknowledged until all the other 

packets on the queue have been sent (due to the cumulative acknowledgment 

strategy of the TCP). If onV/ the heaH of the retransmission queue is 

retransmitted, a deadlock will result. If all packets are retransmitted, 

then the situation will eventually resolve itself. One rule might be to 

transmit all packets (when they timeout) if the window ^0, otherwise only 

the head of the queue (the NOP). Such a strategy may lead to a lot of 

unnecessary retransmission and some messy work to match acknowledgments with 

retransmission queue entries. 

Case C: Both sides have non-empty retransmission queues 

The analysis for this case is the same as for B, leading to the 

same conclusions. 
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Unilatera1ly shut wi ndow 

Case E: Receive window is zero wi u,i empty retransmission queue 

The receiver can send a NOP which unambiguously reopens the 

window. 

Case F: Receive window is zero with non-empty retransmission queue 

The receiver must somehow reliably inform the sender that the 

window has re-opened. So long as the outgoing window is not 

zero, sending and queueing a NOP with the new window size as in 

E will eventually work. If the other side closes the window, 

problems akin to cases (B) and (C) may arise. 

Matters are simplified if the sender becomes responsible for finding out if 

the window is non-zero again.  In this case, the sender always retransmits 

the head of the retransmission queue (albeit at a lower rate, perhaps, 

when the window is zero).  If a sender wants to send a letter, but the 

window is zero and the retransmission queue is empty, a NOP packet can be 

sent and retransmitted until acknowledged. The acknowledgment will contain 

the current window size. By convention, NOP's should not be acknowledged 

if the window is still zero (since this would defeat their purpose). 

Although it is not strictly necessary, a receiver who reopens the window 

can also send and queue a NOP with the new window size if he wishes to 

advise the sender, regardless of the sender's interest in transmitting 

anything just now. 
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For the pre. .t, we tale the position that 

a) Senders shouU1 »Iways be retransmitting the head of the retransmission 

queue, aven if the window is zero, 

t) Senders should queue and send a NOP if they want to packetize new 

letters but the window is zero. Receivers should never ACK a NOP 

with a zero window. 

c) Receivers re-opening the window from zero to non-zero may send and 

queue a NOP with the new window size. 

Step (b) abo/e is important. Even if the retransmission queue is non-empty, 

a NOP should be queued if the window is zero when a letter is waiting to be 

sent.  If this is not done, it's possible for the retransmission queue to 

drain out leaving a non-empty letter queue and nothing to transmit to 

remind the receiver that the sender still wants to transmit. As described. 

the protocol may produce extra NOP's. Since the receiver will not ACK a NOP 

with a zero window, eventually the sender will bo rewarded for his perserverance 

with a non-zero window. 

1.4 Flush/Fin 

The current TCP specification implies that the receipt of a packet containing 

a FIN should cause all undelivered data to be flushed and a FIN returned. 

We have already described (in our previous quarterly report) how the FIN's 

must be acknowledged so that the sender of the FIN can tell whether the 

connection closed normally or not [9]  Further discussion among NDRE, UCL, 

BBN, and SU-DSL participants have resulted in a vers"on 2 specification in 

which FIN does not cause flushing. A new control bit, called FLUSH, has been 
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added which takes up one octet of sequence space. Octets whose sequence 

numbers precede the FLUSH bit are flushed if undelivered. The FLUSH is 

exactly like INT, but causes no signal to the user at the receiving end. 

In fact, we can separate the signalling function from the FLUSH function 

of INT. Each can be delivered reliably and separately. New user inter- 

faces can be defined to permit each to be sent individually. 

Such a redefinition will r.ot rule out the implementation of the existing 

user interfaces by having the INTERRUPT user call generate INT and^ FLUSH; 

similarly, CLOSE could generate INT and FIN, if desired. TCP's should 

be prepared to receive these independently, however, so that a "graceful" 

close could be implemented (i.e. all packets preceding the FIN are 

delivered and acknowledged before sending an ackrowleu^ment for the FIN). 

We plan to incorporate these changes in version 2 of the TCP specification. 

As an interim policy, we recommend that FIN/FLUSH and INT/FLUSH be sent 

together until all TCP implementations have been updated to version 2. 

'•5 Special and Error Packet Handling 

The original TCP specification wa.i not very explicit about the way in which 

erro. packets were to be generated. We have not found any use for the special 

REJECT packet and will delete this from the specification. Y. Dalai wrote 

the draft below describing error handling procedures which we believe to be 

correct but which will be tested during the next quarter. 
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We recapitulate in this section the salient features of the mechanisms 

that exist in the TCP for recovering from loss of synchronization between 

two cütiimunicating processes. Detailed descriptions can be found in the 

TCP [1] and in INWG Protocol Note #14 [10]. We do not deal explicitly with 

the processing of error in the context of desynchronization, but believe 

that nothing contained herein conflicts with the proposed desynchronization/ 

resynchroni-ration method of section 1.2. We also believe that the mechanisms 

will work with either the flush type FIN (Version 1 TCP) or graceful CIN 

(Version 2 TCP). 

Error handling and recovery consists in transmitting and receiving either 

ERROR or RESET packets. The ERROR packets that can be transmitted are 

(!)   EFP 6 - unacceptable SYN [SYN,ACK] 

(II) EFP 7 - connection non-existent 

(III) EFT 8 - foreign TCP inaccessible 

All these packets have a sequence number that corresponds to the left send 

window edge of the associated connection, if there is one; otherwise 0 or 

any random number. None of the error packets occupies a sequence number. 

In the ACK field of the packet the sequence number of the received packet 

that caused the error packet is present. In the case of the RESET packet, 

the sequence number of the error packet that caused its generation is in 

the ACK field. This is in order that these packets can be believed when 

they are received, and so duplicates can not foul up the connection. The 

ACX bit is always set in ERROR or RESET packets. 
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Errors 7 and 8 are very simple to understand and implement. First consider 

the arrival of either packet. If the state of the connection is in any of 

the synchronizing states then the state is changed to OPEN and the synchroni- 

zation efforts resumed from scratch (should the need be, i.e. we may be a 

listening port). If this repeatedly happens, the user timeout will go off, 

and the user will be advised of this and can do whatever it wants to. If 

the state of the connection is in any of the FIN processing states then 

the TCP will simulate (to the user) that the connection was closed with a 

Flush FIN from the foreign TCP.  If the connection is established then the 

user is given the error message. The message implies that something is 

amiss, and the user can carry on (if the message was EFT 8) or can CLOSE 

the connection. 

These errors are generated as follows. 

Error EFP 7 is generated at the foreign TCP when it is performing the 

address check on the packet received. 

Error EFT 8 is generated by the Operating System at the Host (say). 

Error EFP 6 and RESET are for ehe purpose of establishing connections 

reliably, and for being able to recover from crashes or loss in synchroniza- 

tion. Loss in synchronization may occur owing to long delays and lost packets 

In short this mechanism recovers from the existence of half open connections. 

A RESET is ONLY generated if the TCP is in SYNsent state, and gets Error 

EFP 6. The receipt of this error (when trying to open a connection) implies 

at the worst that the other end is in a half open, i.e. established, state. 

Hence it must be reset. 
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A RESET is only believable if it references an error packet that was just 

sent out. When a RESET that is believable is received and the connection 

is ESTO, it is once again in the OPEN state and the user is informed about 

it. All outstanding SEND and RECEIVE buffers are returned, and the input 

packet queue and retransmission queue flushed. The user may then issut a 

CLOSE if he wishes or do some more SENDs or whatever. This is the usual 

case. If the connection was in the synchronizing states then it is put into 

OPEN and the user is not told anything. If it was in the FIN states then 

the connection is closed and the user told that it was a Flush type close. 

If the state was in one of the desynchronization states, then the connection 

is put into the OPEN state and the user informed in a similar way as the 

case where the connection was in the ESTD state. 

The generator of the RESET is put into the OPEN state and synchronization 

efforts will continue. 

The following is a detailed analysis of how EFP 6 and RESET interact in the 

SU-DSL TCP. 

An error EFP 6 can be generated in the following situations: 

OPEN: A SYN with some other control bits like FIN,ACK4INT or DSN arrives. 

We haven't considered doing fancy things like SYN,INT in one packet yet. 

SYNsent: A SYN with some other control like FIN,INT or DSN arrives, or there 

is a bad ACK (if at all) with the SYN. 

SYNrcvd: A SYN that is different from the one which got us so far arrives. 

It may have random bits set too. Note that we do not go back to OPEN since 

that may be an old duplicate and all may be well now. 
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SIMULINIT: A SYN that is different from the one that got us so far 

arrives. Not only do we send an error EFP 6, but we ALSO set the state 

back to OPEN and try again. 

ESTD: If any SYN different from the one that synchronized the connection 

arrives, then an error is sent. Note the implications of this on doing 

desynchronizations at random times has not been evaluated. It should not 

be harmful at all since the receiver of it can discard it as in many of 

the cases above. 

FINwait: Error EFP 6 is never generated in this state since under all 

circumsta- ce^ the connection will close (even by timeout). 

FINrcvd: This state never generates an EFP 6 either for the same reasons 

as above. 

The arrival of EFP 6 will have the following actions, if it is BELIEVABLE. 

OPEN: No action, as it can't be believable! 

SYNsent: Send a RESET packet and set the state back to OPEN. 

SYNrcvd: Set the state back to OPEN. 

SIMULINIT: Set the state back to OPEN. 

ESTD: It can not be acceptable since we couldn't have sent a SYN! 

FINwait: It can not be acceptable. 

riNrcvd: It can not be acceptable. 
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The BELIEVABLE test: a few comments are necessary here. When testing 

to see if an ERROR packet is believable it may be sufficient to check if 

the ACK field refers to something we sent that has not been ACKed. To 

believe a RESET packet we also have to check that not only does the 

ACK refer to somathing we sent, but we also did in fact send an EFP 6. 

This additional precaution is necessary since the consequences of getting 

a RESET are grave. A malicious TCP may fabricate a RESET which ACKs 

something that the destination TCP has sent. If thai: TCP believes the 

RESET without making sure it really sent an EFP 6 then we may just have 

lost a connection. It is true that malicious TCP's could cause havoc, but 

it seems worth making redundant checks where appropriate. It does not seem 

that giving ERROR or RESET control a sequence number of their own will solve 

any of the problems we have. 

With the addition of Desynchronization it should not be very difficult to 

add the extra processing for error or reset packet generation and handling. 

In short the mechanism of dealing with half open connections is that they 

are reset (an attempt is made). Note that a RESET is never retransmitted 

(the sender of it goes back into OPEN too). If this RESET is lost then 

we still have an half open connection which will at some time get reset by 

another RESET type scenario or by an EFP 6 type message. We believe that 

all kinds of strange situations can be coped with, using this simple exchange, 

as at the most they will degenerate to half open connections. 
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1.6 Acknowledgment Generation 

In general, TCP acknowledgments are innocuous and their liberal generation 

does not cause any particular malfunction. Nevertheless, too liberal 

generation of acknowledgments can cause a general reduction in overall 

bandwidth. 

The cumulative, piggy-back nature of the TCP acknowledgments makes it 

feasible, and thus desirable to limit the transmission of useless acknowledg- 

ments. On the other hand, only delay in acknowledging a packet may lead 

to its unnecessary retransmission and this could be more costly in lost 

bandwidth than sending an empty acknowledgment packet. 

In our experiments we have tried several strategies. In one version, we 

only sent an acknowledgment when the retransmission process woke up and 

found a "NEWRECEIVE" flag set, indicating that one or more unacknowledged 

packets had arrived. 

The result of this strategy was that for connections having traffic flowing 

only in one direction, the bandwidth was directly proportional to the 

frequency of running the retransmission routine, and unnecessary retransmis- 

sions were high in number. 

A second strategy was to force an acknowledgment to be sent immediately upon 

receipt of a packet (assuming it was in sequence). This reduced retrans- 

missions, but had a high cost in wasted bandwidth for unnecessary acknow- 

ledgments. 
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A third scheme sent an acknowledgment packet only if the outgoing letter 

queue for traffic in the reverse direction was empty.  If there is a lot of 

back traffic in the reverse direction, we expected this strategy would 

minimize empty acknowledgment traffic since acknowledgments would be piggy- 

backed on the return traffic. 

This last case seemed optimal, but still seems to have some bugs, since 

running in this mode still appears to generate a substantial number of 

unnecessary acknowledgments. One likely explanation for this is that, if 

queues form in the experiments we have conducted, they form other than in 

the outgoing letter queue and consequently a large number of unnecessary 

acknowledgments are sent because the letter queue is usually empty. In the 

case of the "echoer" program, its letter queue is almost always empty. 

When an incoming packet passes through the reassembler, a check is made to 

see if an ACK should be sent. Since the letter queue is empty, an ACK is 

sent and shortly thereafter, a packet is sent on the reverse channel, 

carrying exactly the same acknowledgment information. We consider this 

sti11 an open problem. 

1.7 New TCP Header Format 

The TCP header format remains almost the same as specified originally, but 

with a few additions to the control word and an extra 32 bit timestamp field. 

The latest format is shown in figure 2 and explanations for the changes follow. 

The 32 bit timestamp has been added primarily for debugging and performance 

measurement.  It is currently used mostly by BBN, but some co-operative ex- 

periments are planned which could make use of this facility. The timestamp 

is not^ checksummed. 
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A "T" (Timestamp) control bit has been added to indicate the presence in 

the text of the packet of an index word [16 bits, points to last time- 

stamp] and a series of timestamps which have been accumulated as the packet 

winds its way through TCP's, Gateways, Echoers, and so on. A description 

of the timestamping convention' is to be published in a separate technical 

note and will also be incorporated in the rewrite of the TCP specification. 

A "BOS" [beginning of Segment] bit has been added to simplify the reassembly 

and checksumming of several fragmented packets concurrently. 

The "FL" [flush] bit has been added to allow for a graceful FIN and a non- 

interrupting flush. 

The "NOP" bit has been added to allow for reliable re-opening of windows set 

to zero. 

For fragmentation and general processing purposes, sequence numbers are 

associated with some of the bits as shown in Figure 3. Thus, the SYN, if 

present 

Sequence No's occupied by packet 

s N I F 
Y 0 N L text 
N P T 

D 
S 

F 
I 
N 

Logical Placement of Control Bits 
Figure 3 
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is associated with the packet's sequence number.  If not present, but NOP 

is present, then the NOP takes the sequence number. Similarly, if present 

DSN is associated with the last or next to last packet octet (FIN if present, 

is last). 

As before, the checksum word is only meaningful if the "EOS" (end of segment) 

flag is set. 

The source and destination networks are now just 8 bit fields (before they 

were pairs of 4 bit fields). 

1.8 Miscellaneous Updates 

When the TCP was first specified, it was thought useful to include a set 

of special functions that could be performed independent of any connection 

(e.g. RESET ALL connections, deliver packet to TRASHCAN, request ECHO, send 

ECHOREPLY, QUERY connection status, send STATUS, and RESET specific connection). 

The only ones which still appear useful are RESET specific and possibly the QUERY 

STATUS. 

Consequently, the notion of the "well-known TCP socket" can be eliminated, 

since no packets need ever refer to it. As it happens, another well-known 

socket has been proposed for remotely controlling the internal parameters 

of the TCP. This is the parameter-change socket. The parameter-change 

package will be described in more detail in a forthcoming DSL technical rote. 

It is rather like the FAKE HOSTs inside IMPs which allow the TCP state to 

be tweaked by a remote experimenter. 
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?.0 Packet Radio Network 

2.1 TCP0 Implementation [J. E. Mathis] 

During this quarter, the single channel TCP (TCP0) was designed and a 

preliminary design specification released [11]. While the TCP0 is 

designed to run as a user and/or server, and is compatible with standard 

full-size TCP's, some simplifications have been possible which greatly 

reduce its size and complexity. Some changes have been made in the design 

during implementation, partly to accommodate the updated TCP specifications 

described in section 1. 

ICP0 uses a single ring buffer implementation as suggested in [7] which 

substantially simplifies memory allocation and window control. We plan to 

test TCP0 on our PDP-11/20 during the month of March and then move it as soon 

as possible to SRI'« LSI-11 for test in the PRNET. We plan to interface 

TCP0 to a TELNET on one side and both CAP and SPP on the other so as to 

test the delay, throughput, and reliability properties of TCP running with 

and without SPP. We are hoping that SRI will provide an implementation of 

SPP [13] for our use on the LSI-11. 

As for size, the TCP0 by itself appears to require about 1.5K (16 bit) words. 

CAP and SPP may occupy another IK and TELNET another 1.5-2K, so we are still 

expecting to have the entire LSI-11 terminal software package resident in 

less than 4K. However, as was mentioned in our last quarterly report, we've 

ordered 8K of RAM just in case. 
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2.2 Mini-TELNET [D. Rubin] 

Implementation began on our TELNET to interface to TCP. We are hoping to 

test TCP0 and TELNET together on the PDP-n/20 and later the LSI-11 at 

SRI during the month of March. 

A preliminary implementation specification was issued by D. Rubin on 

2 February [1] and will be updated as needed. 

One major issue still to be faced is what the TELNET will connect to. 

So far as we know, BBN does not have a TELNET/TCP combination in operation 

(only a fake TELNET). We can do a certain amount of local testing, but a 

good demonstration of useful internetting will need a TENEX-based TELNET/TCP. 

We do not anticipate ^ny problem interfacing TELNET with either TCP0 or TCP. 

2.3 BBN 1822 Spec Interface for LSI-ll  [R. Crane] 

A double-height interface card was designed and implemented during this 

quarter. It has entered testing during this writing {early March) and is 

compatible with both the DR-11 on our PDP-11/20 and with the DRV-11 on the 

LSI-11/03 at SRI. 

Our own LSI-11 is still on order and we are still unsure of its delivery date. 

Once testing is complete, we will publish the design of this device for the 

benefit of other groups at SRI and Collins Radio Corporation, which may have 

an interest in such a device. 
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All the cabling required to connect the IMP-llA interface on our PDP-11/20 

to a PK unit to be installed on the Durand Building roof has been pulled, 

terminated anci tested. There should be no problem driving the PDP-11 to 

PRU cable at 50-1UO Kilobits/sec. 

As of this writing, no radio tests had been performed to ascertain whether 

the PRU could be successful!;' used from the Durand roof. We are expecting 

these tests momentarily, but this is up to SRI. 

3. Gateway Plans 

we nave made very little progress in our attempts to specify experiments using 

internet gateways. Neither du we have in hand a definitive document describing 

all the tasks of a gateway and itc functions. The stabilization of the 

various TCP implementations should introduce some new pressures for these 

specifications, as will the planned PRNET/Internet demonstrations next quarter. 

Aside from the obvious functions that permit a gateway L.0 both connect nets 

together and at the same time isolate the internal functions of the networks 

from each other, there are a morass of fuzzy ideas still to be worked out. 

We continue to believe that gateways should be simple and minimal, but must 

confess that some may, perforce, turn out to be complicated. 
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The model presented by J. Burchfiel [14] at the 14 February 1975 Gateway 

meeting at ARPA/IPTO is very appealing. He divides the Gateway into 3 

major parts: 

(a) Network Independent Functions 

(b) Local Network Dependent Functions 

(c) Fake Host functions (reached via raw internet, non-fragmented 

packets) 

Network Independent Functions 

1. Routing 

2. Access Control 

3. Accounting and Statistics Collection 

4. Fragmentation 

5. Congestion Control 

6. Retransmission (?) 

7. Checks and Balances 

Local Network Dependent Functions 

1. local header generation/removal 

2. Local  network reliability enhancement and flow control 

Fake Host Functions 

1. Debugging 

2. Packet echoing 

3. Traffic generation 

4  
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We have been of trie past opinion that the Gateway should remember nothing 

about the packets it sees. Except for local network retransmission, flow 

control, and duplicate filtering (e.g. for PRNET, since this isn't done 

in the subnet), the Gateway might never remember anything about a packet. 

On the jther hand, efficiency and lower delay might be achieved through 

retransmission and positive acknowledgment between Gateways. The tricky 

business here is that transmission between the Gateway and the destination 

TCP or between sourrp TCP and Gateway might require another (albeit thin) 

layer of protocol between the TCP and Gateway to make things look uniform 

to the Gateways. We're not sure it's worth it, but will be thinking about 

it. 

Another issue has to do with error message propagation between networks. 

This issue is also relevant for the TCP design, first because local network 

error messages must propagate in internet packets and second because the 

TCP must accept local network error messages and give them to the user in 

some standard vanilla form. A basic problem is whether a subnet error 

message will contain enough information so that, even if delivered to the 

correct source Gateway, can be propagated to the correct source TCP1 Without 

remembering something about the packet, the Gateway may be unable to associate 

an error message with a particular packet and TCP source. This, in itself, 

isn't a disaster, but from the standpoint of isolating failures, we may find 

it useful to retain internet packet status information until 

a) local net says it has delivered it 

or  b) the next Gateway has acked it 

or  c) the destination TCP (in the attached local net) has acked it. 

We have yet to identify a conmon set of local net errors which should be 

propagated across the Gateway. 
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4. TCP Testing 

4.1 Local Throughput Tests 

A number of different variables can have an effect on the throughput 

performance of the TCP. The priority of the TCP modules in relation to 

user code, ELF system software and the RTP turned out to have only a 

minor effect on throughput. In early self-loop tests, we discovered that 

the generation of TCP acknowledgment packets had a profound effect on 

throughput (not surprisingly) as did the coupling of the retransmission 

routine to ACK generation. So did the number of letters contained in the 

"pipeline." 

In an edrly (November 17, 1975) throughput experiment, we used our primitive 

exerciser, slightly modified, to self loop a TCP connection (i.e. its output 

went to its input). Table VI illustrates the main results. Note that these 

results do not reflect later improvements both in RTP programming and TCP 

parameter setting. There are five groups of results, the first group shows 

what happens if TCP acknowledgments are sent only when the retransmission 

process runs (analogous to a full duplex channel on which only one side is 

transmitting). The second group shows forced acknowledgments on receipt. 

In both cases, it's clear that multiple TCP packets are being acknowledged 

at one time. The biggest improvements, however, show up when tne retrans- 

mission timeout is 4 seconds, allowing the pipeline to carry acknowledgments 

in next packets. In the last 3 groups, acks were forced on receipt of a new 

packet, but retransmissions were reduced to zero since the retransmission 

routine never found any unacknowledged 4-second-old packets. Running the 

user at priorities 3 and 4 had little effect on throughput. The best bandwidth 

was roughly 3 letters/second. 
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17 November 1975 Throughput Tests 

All Measurements of 1 Minute Duration 

No. letters 
on Send 
Queue 

No 
Forced 
Acks 

Forced 

Acks 

Priority 

3 

Priority 

Priori ty 
4 

Letter 
Length 
In Chars. 

Retrans 
Timeout 
in Sec. 

Wakeup 
Timeout 
in Sec. 

No. Letters 
Sent 

No. Acks 
Sent by 
Retrans 

No. Retrans 
Sent by 
Retrans 

2 10 .5 .5 176 74 72 

2 10 .5 .25 171 78 72 

3 10 .5 .5 119 80 172 

3 10 .5 .25 139 81 148 

2 10 .5 .5 108 37 113 

2 10 .5 .25 107 34 114 

3 10 .5 .5 81 55 187 

3 10 .5 .25 76 52 182 

3 10 4 4 178 0 0 

3 70 4 4 170 0 0 

3 10 4 4 173 0 0 

3 70 4 4 164 0 0 

5 10 4 4 170 0 1 

5 70 4 4 27* 

Blew up after running out of message storage 

Early Bandwidth Tests 

TABLE VI 
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A similar experiment was run December 29, 1975, and found that forced 

acknowledgment with a 4 second retransmission timeout yielded 2.9 letter/sec 

for 10-50 character letters. The results are summarized in Table VII. 

It became evident that forcing an acknowledgment when not really necessary 

would use up valuable bandwidth. To test this hypothesis, we ran an experi- 

ment on December 30, 1975, to eliminate forced acknowledgments, but to 

send 3 packets into the pipeline. This way, each succeeding packet wou1d 

tend to acknowledge the previously received one (again self looping a TCP 

connection through the IMP). Table VIII shows the results. 

Earlier timestamp experiments indicated that the TCP was spending a sub- 

stantial amount of time in its "pick send connection" and "pick receive 

connection" procedures. R. Karp re-wrote these and ran a throughput experi- 

ment on December 31, 1975, the results of which are shown in Table IX. 
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letter length 
retrans.timeout 

! sends in pipe 

10 char 
0.5 sec 

1 

10 char 
4 sec 

1 

10 char 
4 sec 

3 

50 char 
0.5 sec 

1 

50 char 
4 sec 

1 

50 char 
4 sec 

3 

Duration 

30 sec. 77(2.6) 79(2.6) 93(3.1) 74(2.5) -- 87(2.9) 

60 sec. 151(2.5) 155(2.6) 188(3,1) 148(2.5) 152(2.5) 180(3.0) 

. 90 sec. 226(2.5) 234(2.6) 273(3.0) 227(2.5) 231(2.6) 265(2.9) 
!120 sec. 301(2.5) 314(2.6) 359(3.0) 297(2.5) 307(2.6) 349(2.9) 

1150 sec. 371(2.5) 397(2.6) 447(3.0) 372(2.5) 381(2.5) 431(2.9) i 

|180 sec. 449(2.5) 474(2.6) 533(3.0) 443(2.5) 460(2.5) 519(2.9) 

Numbers in () are letters/sec. 

12/29/75 Throughput Experiment 
(forced acks) 

TABLE VII 

Letter length Retrans. 
Timeout 

Duration Sends 
in 

Pipe 

Letters 
sent 

Letters/sec 1 

! 10 chars 

50 chars 

4 sec. 

4 sec. 

150 sec. 

150 sec. 

3 

3 

720 

640 

4.8 

4.7 

12/30/76 No Force Ack Throughput Experiment 

TABLE VIII 
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\ Letter Length 
\ Sends in Pipe 
\ Retrans. TIMEOUT 

10 chars 
3 
4 

\ 

duration 
\ 

30 sec 197 (6.6) 

60 sec 386 (6.4) 

90 sec 575 (6.4) 

120 sec 766 (6.4) 

150 sec 961 (6.4) 

180 sec 1150 (6.4) 

50 chars 
3 
4 

340 (5.7) 

513 (5.7) 

688 (5.7) 

859 (5.7) 

1038 (5.8) 

Note: numbers in () are letters/sec 

12/31/75 Throughput Tests 

TABLE IX 
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^.2 Local Test Recommendations 

We believe that substantial and uniform local testing should be performed 

at each TCP implementation and that the results be collected together in a 

single report for the benefit of all experimenters. We have produced a 

tentative list of these local tests below. Some implementations such as 

TCP0 may only be able to perform a subset. 

a) Bandwidth tests 

1. Internal cross-patch (to avoid network entirely) of a single 

TCP connection (to itself). Run 1 byte, 90 byte, and 972 

byte letters. 

2. Same as above, but loop the network interface. 

3. Same as above, but loop through the local packet switch 

(IMP,PRU,SIMP). 

4-6. Same as 1-3, but run two connections simultaneously (e.g. 

echoer to exerciser). (This can't be done by TCP0 ). 

These test reports should be well documented as to window size, 

retransmission timeouts, number of letters in the pipeline, 

buffer utilization, and so on. 

b) Reliability 

1. Transmit for 2 hours, through network, to a sink (or echo 

package). 

2. Cycl through resynchronization logic several times (might 

be done by setting resynchronization detection logic to 

relatively short time like 5 minutes). 

3. Verify OPEN/CLOSE will work repeatedly (e.g. a few hundred 

times). Might also collect average delay statistics for this 

function. 
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c) Sizes 

The sizes of various parts of the TCP should be reported; buffer 

pool size; other relevant program sizes (e.g. echoer, exerciser, 

parameter change program,,..). 

4.3 UCL/SU-DSL Experiments 

By mid-February, UCL's implementation was sufficiently complete to be^in 

some tests with SU-DSL. As of this writing, experiments were scheduled twice 

a week on Tuesday and Thursday and last about four hours each (0800 - 1200 

iU-DSL time and 1600-2000 UCL time). Many of the experiments have been 

frustrating, owing to a bug of some kind in UCL's buffer allocation scheme 

causing them to crash irrevocably when attempting to achieve high bandwidth. 

Initially, however, we can say that the simple terminal to terminal kind of 

communication is stable and reliable. It also appears that a connection 

running up to 1 letters/second can be sustained indefinitely by UCL. The 

round-trip delays are horrendous (2-8 seconds!) and we are planning some 

timestamp experiments to track them down. 

4.4 Timestamping and Parameter Change 

During the quarter, the design of timestamping and parameter change 

mechanisms were frozen and implemented at UCL and SU-DSL. These mechanisms 

should aid in the experiments we plan for future months, especially to allow 

remote control of TCP parameters via parameter change. We will produce, 

as technical notes, the specification of both mechanisms, during the next 

quarter. 
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b. Security Systems 

We are continuing our work in this area and plan a meeting 19-20 

February with R. Tomlinson and A. D. Owen of BBN and T. Chandler of 

CRC to specify In more detail the software functions of the red and 

black side crypto controllers. 

-46- 



REFERENCES 

1. V. Cerf, Y. Dalai, C. Sunshine, "Specification of Internet 

Transmission Control Program," INWG General Note #72, December 

1974 (revised). 

2. "Specification for the Interconnection of a Host and an IMP," 

B1N Report No, 1822, Appendix F (VDH). 

3. V. Cerf, "TCP Resynchronization," DSL Technical Note #79, 11 January 

1976. 

4. R. Tomlinson, "Selecting Sequence Numbers," INWG Protocol Note #2, 

September 1974. 

5. Y. Dalai, "More on Selecting Sequence Numbers," INWG Protocol Note #4, 

October 1974. 

6. D. Belsnes, "On Single Message Communication," INWG Protocol Note #3, 

September 1974. 

7. V. Cerf and R. Kahn, "A Protocol for Packet Network Intercommunication," 

IEEE Trans. Comm., Vol C-20, No. 5, May 1974, p. 637-648. 

8. D. Retz and V. Cerf, "Station-Packet Radio Protocol," PRTN #160, 

December 19, 1975. 

9. V. Cerf, "ARPA Internet Protocols - Project Status Report," Digital 

Systems Laboratory Technical Note #68, Stanford University, November 

15, 1975. 

10. Y. Dalai, "Establishing a Connection," INWG Protocol Note #14, 

March 1975. 

11. J. Mathis, "Single-Connection TCP Specification", Digital Systems 

Laboratory Technical Note #75, Stanford University, January 25, 1976. 

-47- 



1?. D. Rubin, "TELNET under Single-Connection TCP Specification," 

Digital Systems Laboratory Technical Ml 121*  Stanford University 

February 2, 1976. 

13. M. Beeler, "Will the Real SPP Please Stand UP?," PRTN #165, 

February, 1976. 

-48- 



DISTRIBUTION 

ARPA 

Director (2 copies) 
ATTN: Program Management 
Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington, VÄ 22209 

ARPA/I PI 
1400 Wilson Boulevard 
Arlington, VA 22209 

Dr. Robert Kahn 
Mr. Steven Walker 

BELL LABORATORIES 

Dr. Elliot N. Pinson, Head 
Computer Systems Research Dept. 
Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 

Dr. Mark Rochkind 
Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 

Mr. Kenneth L. Thompson 
1103 Hie, Court 
Berkeley, CA 94708 

BOLT BERANEK AND NEWMAN INC. 
50 Moulton Street 
Cambridge, MA 02138 

Mr. Jerry D. Durchfiel 
Mr. R. Clements 
Mr, A. McKenzie 
Mr. J. McQuillan 
Mr. R. Tomlinson 
Mr. D. Waiden 

B N R, Inc. 
3174 Porter Drive 
Palo Alto, CA 94304 

Mr. Alex Curran, President 
Mr. Alan Chapman 
Mr. Barry Gordon 

BURROUGHS CORPORATION 

Dr. Wayne T. Wilner 
Burroughs Corporation 
3978 Sorrento Valley Boulevard 
San Diego, CA 92121 

Mr. John Mazola 
Burroughs Corporation 
25725 Jeronimo Road 
Mission Viejo, CA 92675 

Mr. Louis de Bartelo 
Burroughs ..;rporation 
1671 Reynolds 
Irvine, CA 92714 

CABLEDATA ASSOCIATES 

Mr. Paul Baran, President 
Cabledata Associates. Inc. 
701 Welch Road 
Palo Alto, CA 94304 

CALIFORNIA, UNIVERSITY - IRVINE 

Professor David J. Firber 
University of California 
Irvine, CA 92664 

CALIFORNIA, UNIVERSITY - LOS ANGELES 

Professor Gerald Estrin 
Computer Science Department 
3732 Boelter Hall 
Los Angeles, CA 90024 

Professor Leonard Kleinrock 
Computer Science Department 
3732 Boelter Hall 
Los Angeles, CA 90024 

Mr. William E. Naylor 
3804-D Boelter Hall 
Los Angeles, CA 90024 



COLLINS RADIO GROUP 
1200 N. Alma Road 
Richardson, Texas 75080 

Mr. Don Heaton 
Mr. Frederic Weiql 

DEFENSE COMMUNICATIONS LNGINEERING 
CENTER        _   

Dr. Harry Helm 
JCLC, R-520 
I860 Wit rue Avenue 
Res ton, VA 22090 

GENERAL ELECTRIC COMPANY 

Dr. Richard L. Shuey 
G.E. Rr earch and Development Center 
P. 0. Box 8 
Schenectady, New York 12301 

Mr. J, T. Duane, Mgr. 
Special Purpose Computinq Center 
1285 Boston Avenue 
Bridgeport, Connecticut 06602 

Mr. Ronald S. Taylor 
175 Curtner Avenue 
San Jose, CA 9512Ü 

GENERAL MOTORS CORPORATION 
Computer Science Department 
General Motors Technical Center 
Warren, Michigan 48090  

Dr. George C. Dodd, Assistant Head 
Dr. Joseph T. Olsztyn 
Dr. James Thomas 

HAWAII, UNIVERSITY OF 

Professor Norman Abramson 
The ALOHA System 
2540 Dole Street, Holmes 486 
Honolulu, Hawaii 96822 

HUGHES AIRCRAFT COMPANY 

Mr. R. Eugene Allen 
Bldg. 604, M.S. D-222 
P. 0. Box 3310 
Fullerton, CA 92634 

Mr. Thomas J. Burns 
Bldg. 390, M.S. 2007 
P. 0. Box 92919 
Los Angeles, CA 90009 

Hughes Aircraft Company 
ATTN: B. W. Campbell 6/E110 
Company Technical Documents Center 
Centinela and Teale Streets 
Culver Citv, CA 90230 

HEWLETT-PACKARD 

Mr. Don Senzig 
H-P Laboratories 
Building 18 
1501 Page Mill Road 
Palo Alto, CA 94304 

Dr. J. R. Duley 
HPL/ERL 
3500 Deer Creek Road 
Palo Alto, CA 94304 

Mr. Stephen Walther 
HPL/ERL 
3500 Deer Creek Road 
Palo Alto, CA 94304 

IBM 

Dr. Leonard Y. I iu, Manager 
Computer Science 
K51-282, 5600 Cottle Road 
San Jose, CA 95193 

Mr. Harry Reinstein 
1501 California Avenue 
Palo Alto, CA 94303 

Dr. Donald Frazer 
IBM Watson Research Center 
P. 0. Box 218 
Yorktown Heigfits, New York    1ü598 



ILLINOIS, UNIvERSrr :" 

Mr. John D. Day 
Center for Advanced . imputation 
114 Advanced Compjcation Bldg. 
Urbana, Illinois 61801 

INSTITUT DE RECIIERCHES D'INFORMATIQUE 
ET DV.'JTOMATIQ'JE (IRIA) 

Reseau Cyclades 
78150 Rocquencourt 
France   

Mr. Louis Pouzin 
Mr. Hubert Zimmerman 

INFORMATION SCIENCES INSTITUTE, 
UNIVERSITY OF SOURTHERN CALIFORNIA 
4676 Admiralty Way 
Marina Del Rey, CA 90291  

Mr. Steven D. Crocker 
Mr. Keith Uncapher 

LONDON^ UNIVERSITY COLLEGE 

Professor Peter Kirstein 
Department of Statistics & 

Computer Science 
43 Gordon Square 
London WC1H OPD, England 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Dr. J. C. R. Licklider 
Project MAC - PTD 
S45 Technology Square 
Cambridge, Massachusetts 02139 

MICROTECHNOLOGY CORPORATION 
?^4 N. Wolf- Road 
Sunnyvale, CA 94086  

Mr. Fred Buelow 
Mr. Naoya Ukai 
Mr. John J. Zasio 

MITRE CORPORATION 

Mr. Michael A. Padlipsky 
1820 Dolly Madison Blvd. 
Westgate Research Park 
McLean, VA 22101 

NETWORK ANALYSIS CORPORATION 
Beechwood, Old Tappan Road 
Glen Cove, New York 11542 

Mr. Wushow Chou 
Mr. Howard Frank 

NATIONAL BUREAU OF STANDARDS 

Mr. Robert P. Blanc 
Institute for Computer Sciences 
and Technology 

Washington, D. C. 20234 

Mr. Ira W. Cotton 
Building 225, Room B216 
Washington, D. C. 20234 

National Physical Laboratory 
Computer Science Division 
Teddington, Middlesex, England 

Mr. r^rek Barber 
Dr. D^.iald Davies 
Mr. Roger Scantlebury 
Mr. P.  Wilkinson 

National Security Agency 
9800 Savage Road 
Ft. Meade, MD 20755 

Mr. Dan Edwards 
Mr. Ray McFarland 

Norwegian Defense Research Establishment 
P. 0. Box 25 
2007  Kjeller, Norway 

Mr.  Yngvar G.  Lunrlh 
Mr.  P.  Spilling 

Oslo, University of 

Prof.  Dag Belsnes 
EDB-Sentret,  University of Oslo 
Postbox 1059 
Blindern, Oslo 3, Norway 



RAND CORPORATION 
1700 Main Street 
Santa Monica, CA 90406 

Mr. S. Gaines 
Mr. C. Sunshine 

RFNNLS, UNIVERSITY OF 

M. Gerard LeLann 
Reseau CYCLADES 
U.E.R. d'Informatique 
B. P. 25Ä 
35031-Rennes-Cedex, France 

STANFORD RESEARCH INSTITUTE 
333 Ravenswood Avenue 
Menlo Park, CA 94025 

Ms. E. J. Feinler 
Augmentation Research Center 

Dr. Jon Postel (4 copies) 
Augmentation Research Center 

Mr. D. Nie!son, Director 
Telecommunication Sciences Center 

Dr. Ddvid Retz 
Telecommunication Sciences Center 

SV STEM DEVELOPMENT CORPORATION 

Dr. G. D. Cole 
System Development Corporation 
2500 Colorado Avenue 
Santa Monica, CA 90406 

TELENET COMMUNICATIONS, INC. 
1666 K Street, NW 
Washington, D. C. 20006  

Dr. Holger Opderbeck 
Dr. Lawrence G. Roberts 
Dr. Barry Wessler 

TRANSACTION TECHNOLOGY, INC. 

Dr. Robert Metcalfe 
Director of Technical Planning 
Transaction Technology Inc. 
10880 Wilshire Blvd. 
Los Angeles, CA 90024 

DEFENSE COMMUNICATION AGENCY 

Dr. Franklin Kuo 
4819 Reservoir Drive 
Washington, D. C. 20007 

XEROX PALO ALTO RESEARCH CENTER 

3333 Coyote Hill Road 
Palo Alto, CA 94304 

Mr. David Boggs 
Dr. William R. Sutherland 

3180 Porter Drive 
Palo Alto, CA 94303 

Dr. Jerome El kind. Manager 
Computer Science Laboratory 

Mr. Robert Taylor, Principal Scientist 
Computer Science Laboratory 

Dr. Butler Lampson 

STANFORD UNIVERSITY 

Digital Systems Laboratory 

Mr. Ronald Crane 
Mr. Yogen Dalai 
Ms. Judith Estrin 
Professor Michael Flynn 
Mr. Richard Karp 
Mr. James Mathis 
Mr. Darryl Rubin 
Mr. Wayne Warren 

Digital Systems Laboratory Pistributjon 

Computer Science Department - 1 copy 
Computer Science Library   - 2 copies 
Digital Systems Laboratory Library - 5 copies 
Engineering Library - 2 copies 
IEEE Computer Society Repository - 2 copies 

Electrical Engineerinq 

Dr. John Linvill 


