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1. TCP Implementation

As this quarter came to a close, a series of meetings were held at Stanford
with representatives from University College London (Mr. A. Hinchley) the
Norwegian Defense Research Establishment (Mr. P. Spilling), Bolt Beranek

and Newman (Mr. R. Tomlinson) and the SU-DSL staff. Also attending a portion
of these meetings were Dr. J. Postel, Mr. R. Rom, and Mr. L. Garlick, all

of Stanford Research Institute, Mr. T. Chandler (Collins Radio), and

Mr. A. D. Owen (BBN).

The purpose of the TCP-related meetings was to determine the appropriate
changes and additions needed in the TCP specification [1] to reflect changes
made during implementation and testing, and to incorporate complete specifica-
tion of the new resynchronization and CLOSE processing design, as well as

modifications to error and other control processing.

This rewrite of the TCP specification is important, not only to reflect
reality, but also to provide a more up-to-date basis for inclusion in the
AUTODIN 11 specification. Dr. J. Postel (SRI) has been tasked with the
integration of priority and security capability into the TCP and SU-DSL has

agreed to provide an updated text on which to base the DCA work.
1.1 Very Distant Host Measurements

During the months of December (1975) and January (1976), we undertook
extensive and detailed timing measurements of the ELF VDH behavior to
ascertain the degree to which VDH performance affected total TCP

bandwidth and delay. The three most fundamental discoveries were
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a) ELF VDH and IMP VDH do not handle the two VDH logical channels
compatibly.

b) ELF VDH introduced unnecessary retransmissions into the system.

c) ELF VDH did not pipeline packets to the outgoing modem (i.e.

ELF VDH started I/0 for packet 1 and waited for output completion

before starting nutput for packet 2).

The statistics gathered were voluminous (a typical case of "datarhea") and
reflect changes made in the ELF VDH to deal with problem (b). We know

how to sulve problems (a) and (c), but have put the task on a backup queue,
since Packet Radio software (see TCPO, TELNET in section 2) currently has

priority for our programming resources.

Problem (a) has to do with the way in which tne IMP VDH actually transmits
nackets. In the design specification [2], outgoing messages are split into

a leader and zero or more (up to 8) data packets, each at most 63 x 16

bit words long. Packets are assigned alternately to logical channels 0 and 1.
The IMP VDH code, however, randomly selects packets to be sent on each

logical channel (i.e. the outgoing buffers are filled, in order, by the IMP
code, but sent in random order). Tke ELF VDH code assumes packets will be

sent (and therefore received) in order (channel 0, channel 1, channel 0...).

If a packet arrives on channel 2 when the ELF VDH is expecting new data on
channel 1, the ELF code assumes an error has caused the channel 1 packet to
have been dropped and discards the channel 2 packet. Thus a certain fraction
of valid packets are discarded by the ELF VDH. This problem can be overcome
by rewriting the ELF VDH so that packets arriving with proper "ODD/EVEN" bits
set to indicate a new transmission on the associated logical channel are

queued and accepted in the correct order.

-2-
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Problem (c) requires that the VDH not block, waiting for completion of an
output on one channel if a second buffer can be sent on the alternate channel.
If both channeis are in use (really, if the next correct channel to send on),
then the VDH should wait until the channel is available (by blocking and

giving up the CPU until the next channel is free).

Problem (b) was just a bug in the TCP ELF implementation whick was easily
repaired. Some packets were being retransmitted before they could have

been acknowledged.

In a throughput experiment conducted January 14, 1976, by J. Mathis, the

TCP was run using a traffic generator which sent traffic to itself via the

IMP.  Three TCP letters were allowed to enter the pipeline before requiring

an acknowledgment. Transmission continued for 1 minute. Table I summarizes

the results. Taking just the 70 character letter results, we can form a

model of the line utilization and some of the delays. It is worth noting

that 10 character and 70 character letters both fit in one RTP packet (including
the TCP header), so the relative bandwidth of 6.6-6.7 TCP letters/second is
probably less affected by actual letter length than by the number of RTP

packets required to carry it.

The statistics shown in Table I are slightly inconsistent owing to the
asynchronous way in which they were gathered (Table values were updated when-
ever an event occurred affecting the table), but are approximately consistent.
Table 2 illustrates the approximate consistency checks. Each TCP letter sent
causes two RTP packets to be sent to the IMP. These data packets are sent
back, along with an RTP packet containing a RFNM. This accounts for 1215

of the RTP data packets received (in the 70 character letter case) and
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I

70 character letters 10 character letters

Total letters sent 405 393

RTP packets received w/o error 2290 2094
Non-duplicate data packets received 1269 1234
Duplicates received 0 0

Null packets received 789 604
Packet errors 0 )
Messages received on non TCP links 6 4
Messaaes received on TCP links 841 820
Packets received out-of-sequence 36 128 (!)
Original packet sends 844 822
Retransmission (RTP) 0 0

Null packets sent 943 1004
Special packets sent 197 129 (!)
Wait for IORB 133 58

Wait for busy channel 7 14
Calls to DESCHED in WAIT charnnel 13 25
Storage allocation failures 0 0

TCP letters/sec 6.7 6.6
TCP bit rate/sec 3730 528

TCP/VDH Bandwidth Experiment 1/14/76
Table 1
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2290 total RTP nackets received w/o error
-1269 total nor-duplicate data packets received
1021
- 789 total null packets received
232
- 197 total special packets sent
35 unaccounted for

405 TCP letters sent

actual (341) 810 TCP messages received (TCP letters + RFNM's)
actual (1269) 1215 RTP packets (TCP HEADER + TEXT, ARPA LEADER, RFNM)
received

VDH Statistics Consistency Check
Table II

* Special packets like "HELLO" get "I HEARD YOU" responses, SO we can
assume approximately equal numbers of sent and received special packets.
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approximates the 1269 non-duplicate data packets actually received. DBy the
cane analysis, the 841 messages received are approximately 405 TCF letters
Tnd 405 RFNM's. Some of the variation might have been the result of TCP
retransmissions. Furthermore, the 36 "out of sequence" packets would have
caused the ELF VDH to force retransmission from the IMP owing to the ELF VOH
assumption that packets will arrive in se-uence for alternate channels. Nor
would the ELF VDH have detected the retransmissions, since it would not have
acknowledged receipt of the out-of-sequence arrivals. The 785 null packets
yeceived correspond roughly to the number of RTP data packets sent (2 x 405 210)
it is possible that sometimes, both logical channels were acknowledged by a4
ingle null packet, or that a data packet carried the acknowledgment. The
disparity between 405 TCP internet packets sent and 824 = 422 TCP link
essiges sent mdy indicate some TCP retransmission. The 341 TCP link

ressages received (as opposed to 844 sent) merely reflects delays in acknow-

ledgment at the TCP level.

Farlier TCP tests indicate that a self-loop test with three TCP packets in
the pipeline will avoid any empty TCP acknowledgment packets, sSc we can

rctimate the actual channel bit rate in use based on the model given below.

VDOH Channel Bit Rates

Just as a simple wéy to characterize the packets that flow on the VDH link,
let us define several shorthand terms.
(BLO) Basic Line Overhead = 88 bits (SYN,SYN,DLE,STX,RTP Control (16 bits),
., DLE,ETX,CRC (24 bits))

This is the for .%.nf a standard VDH packet

(NRP) NULL RTP Packet = 88 bits (see format above)

H

88 bits (HELLO, I-HEARD-YOU...)

(SP)  SPecial Packets




(ALP)
(TAP)
(TOP/H)

TCP Data Packet with header = TAP + [data:

ARPA LEADER Packet = BLO + 32 bits = 120 bits
TCP Acknowledgment Packet = BLO + 288 bits (TCP header)

0-720 bits]

376 bits

376 bits (0 data) - 1096 bits (720 data)

This packet is the first one, which includes the TCP header.

(TDP/NH)

The RTP periodically sends "HELLO" packets and responds to any received

with "I-HEARD-YOU" Packets.

part and data portions divided into 63 16 bit words each.
leader part is sent as ar ALP (see above) and the receiving RTP sends a

null packet containinn ¢n acknowledgment.

TCP Data Packet without header = BLO + [data:

0-1008 bits] =

88 bits (0 data) - 1096 bits (1008 data)

The normal ARPANET message is split into a leader

The

If there is a packet awaiting

transmission on the otie~ side, that packet will carry the acknowledgment bits.

The expected measured activity is characterized below.

TCP TRANSMISSION SIDE

ALP - > (send leader)

TOP/H- » (letter text)

NRP- > (ack leader)
NRP- > (ack text)

NRP-- (ack RFNM)

e N T O WY

IMP_TRANSMISSION SIDE

<- NRP (ack leader)

<- NRP (ack text)
<- ALP (send leader)

<- TDP/H (letter text)
<- ALF (RFNM)




The actudl activity differs somewhat, as table III shows, indicating that
fewer null RTP packets were sent or received than expected. This merely
shows that the output queues at the ELF and IMP VDH were often non-empty,
oliminating the necessity for null acknowledgment RTP packets. The actual
line utilization is about 207 in each direction, assuming a nominal 50

kbits/second available full-duplex capacity between ELF and the IMP.

The VDH nmeasurements described above do not illustrate the actual delavs in
the system. To observe these, we implemented two kinds of timestamping
procedures, one associated with individual TCP internet packets, and one
associated with events occurring inside the TCP/VDH code. The latter
involves the maintenance of a resident timestamp table in the TCP code which
15 dumped on closing a TCP connection. The events which are timestamped are
cattered throughout the VDH and TCP code (e.g. arrival of inbound packets,

processing of outbound packets, etc.).

The TCP packet-based timestamping system will be described in more detail in
a forthcoming technical report, but the preliminary results indicate that the
TCP introduces about 20 ms of delay from the time a user program asks to

SEND a letter to the time the letter (one packet letter) is handed to the VDH.
On the input side, it takes about 42-43 ms from the time a packet is handed
to the TCP to the time the user is signalled that a letter has been received.
In the experiments performed so far, the "echoer" process takes about 8 ms

to be awakened and to scnd the next packet out. Thus, we estimate that the
TCP alone should be able to sustain a rate of 1000/70 - 14 packets/second
[single packet letters]. The degradation to 6.6 packets/second must be

accounted for by delays in the VDH processing. We would have to observe




60 second statistics

Sent from ELF VDH Received by ELF VDH

422 (422) ALP [leader] 421 (421) ALP [leader]

422 (422) TDP/H [TCP packet] 421 (421) TDP/H [TCP packet]
943 (1269) NRP [RTP acks] 789 (842) NRP [RTP acks]

197 (96) NRP [RTP specials] 421 (421) ALP [RFNM]

6 (0) ALP + 88 bits [NCP RFC's]”
197 (96) NRP [RTP specials]”

ELF Transmit side analysis

422 (ALP + TDP/) + (943 + 197) NRP

"

422 (120 + 376 + 560) + 1140 (120)

422 (1056) + 1140 (120) = 582432 bits/60 sec = 9.7 kbits/sec

ELF Receive side analysis

421 (ALP + TPP/H + ALP) + 789 (NRP) + 6 (ALP + 88) + 197 (NRP)

1

421 (120 + 376 + 560 + 120) + 789 (120) + 6 (120 + 88) + 197 (120)

1]

421 (1176) ~ (789 + 197) (120) + 6 (208)

"

421 (1176) + 986 (120) + 6 (208) = 614664/60 = 10.2 kbits/sec

Actual full-duplex delivered data bandwidth = 405 x 70 x 8/60 = 3.8 kbits/sec

(i.e. 3.8 khits/sec of data in each direction).

' These were RFC's from MIT-DMS and probes from other sites

% %
We haven't accounted for the nearly doubied number of Hello/I heard you's.

They should be generated in pairs every 1.25 seconds.

Analysis of ELF Send/Receive Line Bandwidth
Table III




detays of 150 ms/packet to account for the bandwidths achieved thus far,
and would therefore predict VDH processing delays (and IMP RTP delays,

a5 well as trarsmission delays) on the order of 80 ms.
&/

In a sirgle experiment performed by J. Matnis on 1/10/76, the SU-DSL TCP
opened and established a TCP connection which loop:d throucgh the SUMEX
IMP and back tc 5U-DSL. 10 characters of data were sent with each letter.
Te IV summarizes the results. In this particular experiment, the re*rans-
sion process awakened asynchronously every 4 seconds. TCP acknowledgments
were sent by the retransmission routine, so this experiment was not an attempt
at maximum throughput. It is evident from Table IV that on the outgoing side,
about 20 ms are needed to prepare a letter for VDH transmission, and anotner
10 ms elapse while these packets are sent to the IMP. 54 ms more are needed
to echo the data packets through the IMP and ELF VDH to the TCP. The TCP
takes another 33 ms and notifies user of internet packet arrival. Since
arriving internet p ckets are printed on a CRT, increased delays in user
processing show up in Table IV in the form of 50 ms dei:y before user does
a new RECEIVE. TCP ack is sent only if the retransmission praocess spots an
unacknowledged "new receive." In our case, this delays user send processing
by about 1.1 seconds. Table V sumnarizes the important delays, accounting

for timestamp overhead as well (see next section).

-10-




fim

interval cumulative

TCP Send/Start RTP* 18.5 ms 18.5 ms
RTP completes unacked transmission 9.9 ms 28.4 ms
RTP receives looped TCP packet, signals TCP 38.9 ms 67.3 ms
RTP RFNM processing delay/TCP wakes up 14.7 ms 82.0 ms
TCP signals user, letter received 28.5 ms 110.5 ms
TCP receives scheduler winds up 4.8 ms 115.3 ms
User executes RECEIVE " 49.9 ms  165.0 ms
TCP RECEIVE processing 2.8 ms 177.8 ms
IDLE/TCP Retrans. awakens 866.4 ms  1084.2 ms
TCP retrans routine sends ACK 6.5 ms 1050.7 ms
RTP packet processing/TCP awakens 201 ms 1251.6 ms
TCP signals user, letter sent and acked 7.4 ms 1259.0 ms
* RTP, reliable transmission package (VDH software)

¥ includes delay to display letter on CRT
Lt RETRANS awakens asynchronously every 4 seconds

TABLE IV

TCP loop/delay measurement

-1-




Round-trip TCP SEND to TCP RECEIVE

TCP 51.8 me - 5.7 ms (Timestamp overhead) = 46.1 ms
RTP 63.5 ms - 12.4 ms (Timestamp overhead) = 50.1 ms

User 49.9 ms - 0.2 ms (Timestamp overhead) = 439.7 ms

Rough allocation of delay:

TCP = 46.1/145.6 = 31.6%

RTP = 50.1/145.9 = 34.3%

User = 49.7/145.9 = 34.1%
Excluding the user:

TCP = 46.1/96.2 = 47.9%

RTP = 50.1/96.2 = 52.1%

Delays in TCP/RTP Corrected for Error

Table V

-12-




Other Overhead Measurements

To further understand the impact on CPU utilization of the VDH, we set up

a remote loop at the IMP side of the VDH Tine and traced the activity of

the ELF RTP in the absence of any TCP traffic. Since the ELF CPU was
isolated from the ARPANET, only locally generated RTP activity would be
observed. As we expected, at regular 1.25 sec. intervals, the RTP sent
"HELLO" packets which it answered with "I HEARD YOU" packets. In the absence
of any other traffic, we found that the RTP continued to transmit null
packets every 200 ms. This has since been changed so that the retransmission
routine times out every 100 ms, but is not scheduled at all if no output
channels are in use. The November 17, 1975, measurements of overhead are
therefore an upper bound, and amount to about 3% (25 ms every 1250 ms for
Hello and I Heard You processing: 2%; and 2 ms every 200 ms for null packet:

1%).

The overhead for actually gathering delay statistics is about 350 usec per
timestamp when called from the RTP and about 200 usec when called from the
TCP (the difference has to do with additioral register saving in the RTP).
This iucludes the time to store away the 32 bit time and identity of the
caller in the monitor table. The clock times are accurate to 40 usec. The
graininess in clock times are expected to cancel each other after enough

measurements are made.
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Recent VOH changes/PDP-11 changes

In mid-February, BBN installed an additional 8K of memory in the

SUMEX IMP, in part for the purpose of running the IMP VDH in extended memory.
We have observed an increase in delay (and decrease in throughput) of about

5 as a result of this change. A more serious influence on throughput is a
change in our PDP-11 clock cycle time from 245 ns to 280 ns. This slows
everything down by about 15%. Consequently, measurements made after 7 March
1976 will appear to show poorer performance than before. As of the time of
this writing (10 March) we had achieved about 7 packets/second with the
exerciser looped to itself, but going through the IMP. This may degrade to
about 6 packets/second again, as a result of the basic clock rate change

(which was made to improve the reliability of the FDP-11/20).

1.2 Resynchronization

In the original TCP specification, we did not describe the method by which
connections would resynchronize themselves. In a recent DSL Technical

Note [3], we described the preblem of knowing when to resynchronize.

R. Tomlinson [BBN], Y. Dalal [SU-DSL], Dr. Belsnes [0SLO], and more recently,
J. Mathis [SU-DSL] have contributed greatly to our understanding of this

complex issue [4-6].

In meetings during the week of 16-20 February, attended variously by
representatives from NDRE (Paal Spilling), UCL (Andrew Hinchley), SRI

(Jon Postel, Larry Garlick, Raphi Rom), SU-DSL (Yogen Dalal, Richard Karp,
Jim Mathis, Judy Estrin, Vint Cerf) and BBN (Ray Tomlinson), we discussed a

s variety of resynchronization methods ranging from forced resynchronization

-13-
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of sequence numbers on both sides of a full-duplex conrection to strategies
only requiring that one set of sequence numbers be resynchronized (remember,

each transmitter selects his own sequence numbers).

The surprising result was that resynchronization was generally more complex
than initial synchronization. We started with the assumption that either or
both sides could resynchronize their sequence numbers at any time (even just
after establishing a connection). The earliest model was tu send a DSN
packet (DSN is a control bit in the TCP packet header meaning "desynchronize"
sequence numbers in this direction). The sender of the DSN would await an
ACKnowledgment (the DSN takes up 1 byte of sequence space so it can be
unambiguously placed in the transmission stream) and then send a SYNchronize

packet.

The fundamental problem with this simple-sounding strategy is that the receiver
of a DSN, after acknowledging it, could not distinguish between the receipt of
an old SYN packet from earlier resynchronizations on the initial connection
establishment. In an attempt to rescue matters, it was proposed that a

SYN,ACK packet be sent, rather than a naked SYN, so as to validate it, but if
the receiver of the DSN is also in the process of desynchronizing, there can

be a basic ambiguity in the value of the ACK field (old or new sequence
numbers). J. Mathis uncovered this ambiguity, much to the astonishment of the

rest of us who thought everything was fine.

We finally compromised on a strategy which permits unilateral or simultaneous
resynchronization, but which relies on the notion that no previous SYN packets

are around any longer from the initial connection exchange or later

-14-
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resynchronizations. In principle this is not unreasonable if the picket
lifetime is much shorter than the cycle time of the sequence number space.
In our case, the packet lifetime is probably on the order of a few tens of
seconds while the cycle time is 4.5 hours. The resulting state diagram is
not very compact. The original TCP specification has 8 states and the new one
has 13. The size of the state diagram need not, however, imply a larger
implementation, since suitable encoding of the state information will allow
the state machine to be factored into several smaller ones (as in BBN's
implementation of the TCP). Figure 1 illustrates just the resynchronization
portion of the TCP connection state diagram. The "FIN received" and FIN
wait" states are a normal part of the TCP state diagram, but are shown since

FIN processing must also be maraged during resynchronization.

The basic cycle for unilateral resynchronization is for the sender to qo from
"ESTABLISHED" to "DSN sent" and back, while the receiver goes from "ESTABLISHED"
to "DSN received" and back. Once a sender has transmitted DSN, he must continue
to retransmit all unacknowl:dged packets preceding the DSN as well since the
receiver of the DSN cannot acknowledge it urtil he has received all preceding
packets as well. Once resynchronization is started, the sender of the DSN must
not send any other packet (except those mentioned above), even if the user has
said "CLOSE." Thus, the exchange of FIN's must await completion of the
resynchronization. However, a DSN and a FIN can "cross in the mail" and this
leads to the mixed DSN/FIN states shown in figure 1. Note that even if a

OSN has been received, a FIN can be sent if the receiver of the DSN has not

also begun resynchronization of his own sequence numbers.

-15-
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1.3 Window Control

In the TCP specification, no mertion is made of the specific way in which
the receiver's window size might interact with his duplicate detection
mechanism. In the SU-DSL implementation, the initial cecision was to use
the receive window to filter acceptable packets out of all those arriving
on a given connection. This idea leads to some difficulties if the receiver
ever shrinks the window in such a way that permission to send a particular
range of sequence numbers is revoked, after the sender has transmitted
packets in that range. For example, the receiver might‘iet i’window size
of 100 octets, specifying that the sender is free to transmit sequence
numbers 200 to 29S¢ (remember, it is the combination of the ACK field and
window field in a TCP packet which uniquely grants permission to send a
certain range of sequence numbers). Suppose that the sender promptly

emits a packet whose sequence number is 200 and whose length is 100, using
all the sequence numbers it has been allowed. Suppose, further, that the
receiver discovers that the user he is serving has inexplicably slowed down
packet processing (or even stopped) so that too many packet buffers are

now filled with packets awaiting service. The receiver might send an ACK

back indicating that the new window size is now 50.

There are several problems here. If the sender stops all packetizing

and all retransmission, the system may deadlock. One alternacive is to
continue to retransmit any packet at the head of the retransmission queue,
even if it includes sequence numbers disallowed by the receiver. The receiver
could just accept those it has offered to accept and discard the others.

In this way, a packet might arrive piece-meal after several retransmission.

Jig=




Alternatively, the packet might be repacketized into two separate packets
so that the first part fits the current allowance. SU-DSL has implemented

the former approach.

A second problem concerns the closing or interrupting of a connection which
has had its window shrunk. If we absolutely forbid the transmission of
packets outside the permitted range, or if the receiver ignores all packets
outside of the permitted range, we may find it impossible to close or inter-
rupt the connection, since the FIN and INT control bits are allocated !

octet each in the sequence number space (to reliably distinguish any duplicate
control packets srriving at the receiver). If we take the position that
window sizes are suggestions only, as in [7], then it is important to
decouple the duplicate detection mechanism from the flow control to some
extent. A. McKenzie advocated this decoupling some time ago in technical
protocol discussions and we now understand the merit of his position. We
have chosen the maximum allowed window size (2]6 octets) as the duplicate
detection filter, independent of the receiver's current window size. A
slightly more accurate choice would be the window between the next sequence
number expected and the largest sequence number for which permission has been
granted (i.e., if a window is sent from receiver to sender which grants per-
mission to send packet sequence numbers larger than those currently allowed,
the duplicaticn detection filter would be updated). If the window shrinks,
no change would be made to the filter. Even this idea is not without a possible
glitch. If the sender uses up the maximum he is allowed and then needs to
send INT or FIN, he may need to violate the flow control to do it and the

receiver must be able to process these packets. Either the sender must avoid
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using up the last octet he is allowed or the receiver must berd a
little to allow a few more octets through the sequence number filter. We
have taken the latter approach: the receiver can accapt packets beyond

the maximum range he has granted, just for this purpose.

A different problem related to window control cropped up during the design
of an SPP (Station to Packet Radio Protocol) proposal [8]. D. Retz adapted
a simplified version of TCP for reliable packet transmission for packet radio
use. In the Packet Radio Net, it is considered important for the Station

to be able to unilateraly silence a repeater acting as a source for a host
or a terminal, particularly if there appears to be congestion building up

in the neighborhood of the repeater in question. Consequently a window size
of zero was taken to mean "absolutely no more transmissions until otherwise
notified." Notification was to come from the receiver through emission of
an ACK packet with a new window when the station (as receiver) opened the
window again. Under certain circumstarces, however, it might be impossibie
to distinguish between the ACK which shut the window down and the one which
opened it up ( .e. same sequence number and ACK field, but different window
size). Since packets can arrive out of order, the repeater might think the
window was zero when, in fact, it was not. Several schemes were proposed

to fix this problem. What is relevant to the TCP design is that a similar
position (i.e. nn retransmissions or new transmissions if the send window

is zero) could lead to similar problems. One possible solution is for the
receiver, in the absence of other traffic, to send ACK packets repeatedly
with the new window size. The question is: "when shoulZ the receiver stop
transmitting ACKs?" One answer is "when the sender finally sends something,"

which might be a Tong time away.
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One alternative is for the TCP which changes its receive window from zero
to non-zero to send a NOP packet containing the new window. The NOP takes
up a sequence number and can therefore be ACKED, ailowing the receiver to
reliably tell the sender when the window was open, and also allowing the

receiver to unambigquously identify the latest window information.

Let us analyze the idea of not sending anything (except an INT, FIN, DSW,
or NOP) when the window size is zero. There are basically three cases to
deal with in the case of sinultaneously shut windows and two cases for the

unilaterally shut case (the others are taken care of by symmetry).

Currently shut windows

Case A: Both sides have empty retransmission queues

When either or both sides re-open their windows, a NOP with the
new window size is sent to the other side. Eventually the NOP(s)
will be acknowledged, showing that the other side now knows about

the non-zero window, and data can flow again.
Case B: One side has a non-empty retransmission queue and the other is empty.

It is immaterial what window size information is contained in the

packets still in the retransmission queue.

If the destination has been told through the acknowledgment of one of its
packets that the window is now zero, the arrival of any packet already on

the retransmission queue before the window went to zero will not cause the
receiver to believe that the send window is non-zero. Only the latest window
information (based on sequence number and ack field of the arriving packet)

should ever be believed. If the TCP with an empty transmission queue re-opens
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the window, it can send 1 NOP with the latest winacw information. Data

will then flow in the other direction. If the TCP with the non-empty trans-
mission queue wants to re-open the window, there may be a problem. If
packets on the retransmission queue have their window fields changed %o
reflect the latest window size, their checksums must be recomputed. Further-
more, if the packet has arrived before, the new window data may not even be

accepted by the receiver.

If a NOP packet is sent out, but placed at the end of the retransmission
queue, it may not arrive and won't be retransmitted. If it is placed at the
head of the queue and is retransmitted, data may eventually flow in the
opposite direction, but the NOP can't be acknowledged until all thke other
packets on the queue have been sent (due to the cumulative acknowledgment
strategy of the TCP). If only the head of the retransmission queue is
retransmitted, a deadlock will result. If all packets are retransmitted,
then the situation will eventually resolve itself. One rule might be to
transmit all packets (when they timeout) if the window #0, otherwise only
the head of the queue (the NOP). Such a strategy may lead to a lot of
unnecessary retransmission and some messy work to match acknowledgments with

retransmission queue entries.

Case C: Both sides have non-empty retransmission queues

The analysis for this case is the same as for B, leading to the

same conclusions.
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Case E: Receive window is zero wi‘h empty retransmission queue
The receiver can send a NOP which unambiguously reopens the
window.

Case F: Receive window is zero with non-empty retransmission queue

The receiver must somehow reliably inform the sender that the
window has re-opened. So long as the outgoing window is not
zero, sending and queueing a NOP with the new window size as in
E will eventually work. If the other side closes the window,

problems akin to cases (B) and (C) may arise.

Matters are simplified if the sender becomes responsible for finding out if
the window is non-zero again. In this case, the sender always retransmits
the head of the retransmission queue (albeit at a lower rate, perhaps,

when the window is zero). If a sender wants to send a letter, but the
window is zero and the retransmission queue is empty, a NOP packet can be
sent and retransmitted until acknowledged. The acknowledgment will contain
the current window size. By convention, NOP's should not be acknowledged

if the window is still zero (since this would defeat their purpose).

Although it is not strictly necessary, a receiver who reopens the window
can also send and queue a NOP with the new window size if he wishes to
advise the sender, regardless of the sender's interest in transmitting

anything just now.
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For the pre. .t, we tale the position that

a) Senders shou!? >Twavs be retransmitting the head of the retransmission
queue, aven if the window is zero.

t) Senders should queue and send a NOP if they want to packetize new
letters but the window is zero. Receivers should never ACK a NOP
with a zero window.

c) Keceivers re-opening the window from zero to non-zero may send and

queue a NOP with the new window size.

Step (b) above is important. Even if the retransmission queue is non-empty,

a NOP should be queued if the window is zero when a letter is waiting to be
sent. If this is not done, it's possible for the retransmission queue to

drain out leaving a non-empty letter queue and nothing to transmit to

remind the receiver that the sender still wants to transmit. As described.

the protocol may preduce extra NOP's. Since the receiver will not ACK a NOP
with a zero window, eventually the sender will be rewarded for his perserverance

with a non-zero window.
1.4 Fluch/Fin

The current TCP specification implies that the receipt of a packet containing
a FIN should cause all undelivered data to be flushed and a FIN returned.

We have already described (in our previous quarterly report) how the FIN's
must be acknowledged so that the sender of the FIN can tell whether the
connection closed normally or not [9]  Further discussion amung NDRE, UCL,
BBN, and SU-DSL participants have resulted in a vers‘on 2 specification in

which FIN does not cause flushing. A new control bit, called FLUSH, has been
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added which takes up one octet of sequence space. Qctets whose sequence
numbers precede the FLUSH bit are flushed if uncelivered. The FLUSH is
exactly Tike INT, but causes no signal to the user qt the receiving end,
In fact, we can Séparate the signalling function from the FLUSH function
of INT. Each can be delivered reliably and separately. New user inter-

faces can be defined to permit each to be sent individua]]y.

Such a redefinition wilj not rule out the implementation of the existing
user interfaces by having the INTERRUPT user call generate INT and FLUSH;
similarly, CLOSE could generate INT and FIN, if desired. TCP's should

be prepared to receive these independently, however, so that a "graceful"
Close could be implemented (i.e. al packets preceding the FIN are
delivered and acknowledged before sending an ackrowleugment for the FIN).
We plan to incorporate these changes in version 2 of the TCP specification.
As an interim policy, we recommend that FIN/FLUSH and INT/FLUSK be sent

together until al1 TCP implementations have been updated to version 2.

1.5 Special and Error Packet Handling

The original TCP specification was not very explicit about the way in which
erro. packets were to be generated. We have not found any use for the speciaj}
REJECT packet and wil] delete this from the specification. VY. Dalal wrote
the draft below describing error handling procedures which we believe to be

correct but which will be tested during the next quarter.
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We recapitulate in this section the salient features of the mechanisms

that exist in the TCP for recovering from loss of synchronization between

two communicating processes. Detailed descriptions can be found in the

1CP [1] and in INWG Protocol Note #14 [10]. We do not deal explicitly with
the processing of error in the context of desynchronization, but believe

that nothing contained herein conflicts with the proposed desynchronization/
resynchronization method of section 1.2. We alsc believe that the mechanisms
will work with either the flush type FIN (Version 1 TCP) or graceful FIN

(Version 2 TCP).

Error handlirg and recovery consists in transmitting and receiving either
LRROR or RESET packets. The ERROR packets that can be transmitted are

(1) EFP 6 - unacceptable SYN [SYN,ACK]

(IT) EFP 7 - connection non-existent

(ITT) EFT 8 - foreign TCP inaccessible
A1l these packets have a sequence number that corresponds to the left send
window edge of the associated connection, if there is one; otherwise 0 or

any random number. None of the error packets occupies a sequence number.

In the ACK field of the packet the sequence number of the received packet
that caused the error packet is present. In the case of the RESET packet,
the sequence number of the error packet that caused its generation is in
the ACK field. This is in order that these packets can be believed when
they are received, and so duplicates can not foul up the connection. The

ACX bit is always set in ERROR or RESET packets.
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Errors 7 and 8 are very simple to understand and implement. First consider
the arrival of either packet. If the state of the connection is in any of
the synchronizing states then the state is changed to OPEN and the synchroni-
zation efforts resumed from scratch (should the need be, i.e. we may be a
listening port). If this repeatedly happens, the user timeout will go off,
and the user will be advised of this and can do whatever it wants to. If
the state of the connection is in any of the FIN processing states then

the TCP will simulate (to the user) that the connection was closed with a
Flush FIN from the foreign TCP. If the connection is established then the
user is given the error message. The message implies that something is
amiss, and the user can carry on (if the message was EFT 8) or can CLOSE

the connection.

These errors are generated as follows.

Error EFP 7 is generated at the foreign TCP when it is performing the

address check on the packet received.

Error EFT 8 is generated by the Operating System at the Host (sa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>