
SlCUrtiTV CLASSIFICATION Of fHis PAfi{ (When Data Entarad)

r| Single-Connection TCP Specification
\^\l (Preliminary Documentation)»

c^ <
00 '
-^

o

REPORT IKKUMI NTATION PAGE
i tu i onT NUMBER

Technical Note No. 75
2 GOVT te^irNT S CAIALOü NUMULH

lJ.X.Lk

/

jt^tYf'E Of^ REPORT «• PfcRIGO COVhRtD

^r/Technical/Note- J

VL/ 1—
TJatnes E./Mathis / /rS , ~ 1

RFOPMING um ii i ii i 11111 irrrniffl j nun i^pfifrirnn J^^

. /

Stanford Electronics Labora^jes. -..-
Stanford University /To/ ^ 7 ^ /
Stanford, CA 94305 UjZd- ^ f ' /

11 CONTROLLING OFf iCL NAME ANtf*«ÖT5RWftft-• _«.».'U^———*

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Ave., Arlington, VA 22209

14 MONITORING AGENCY NAME & ADORESS (if diff. from Controlling Office)

Mr. Philip Surra, Resident Representative
Office of Naval Research
Durand 165, Stanford University

HEAD INSTRUCTl
BEFORE COMPIETINC, FORM

6 PERFORMING ORG REPORT NUMBER

6QIHTHAOT OR ©«AW -m^*»* «4»)

MDA903-7^C-0Ö93
Ur ARPA Order 4||r 2494 /

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

6T10

12 REPORT DATE

January 25, 1976
13. NO. Of- PAGES

31
15. SECURITY CLASS, (of this report)

UNCLASSIFIED

15a. DE CLASS) PIC AT ION/DOWNGRADING
SCHEDULE

IG DISTRIBUTION STATEMENT (of thil report)

Reproduction in whole or in part is permitted for any purpose of the
U. S. Government

4 \
f' ÜBTTKäimÖN gfATEMEWrr

Approvad for public Mzaaa

1/ DISTRIBUTION STATEMENT (of the ebstract WtMeittf'in DK'.K gOi-if Oi<'«iBiit «iuni fetmyff
D D C

18 SUPPLEMENTARY NOTES

c ir
MAY ?,fi '9T6

ID KLY WORDS (Cnntrnue on reverse side if naceisary and identify by block number)

Interconnection, communication protocols, packet radio network, ARPANET

 B

p ABSTRACT (Continue on reverse side if necessary and identify by block number)

An implementation scheme is described for a single connection, user internetwork
Transmission Control Program using the Cerf-Kahn protocol. It is designed for
a dedicated micro-processor and supports low delay, low through-put interactive
traffic. In this preliminary documentation a detailed implementation specifica-
tion is presented in an ALGOL-like notation, along with a brief discussion of its
functions, user interface, control variables and data structures.,

DD/Jrnl473
fOmON OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
jfUHITY CLASSIFICATION OF THIS PAGE (Wftln pata tntmed)

t

AttraiM fir V
ITU Whlti Sectloi $

DOC. Bulf Secüan n

«H4««0'JNCE!) O

JüSmiCAllÖN JUSmiCAllONy»..^

iy
oisTHij:!^'; mwxiwm certs

! .

A

Single-Connection TCP Specification
(Preliminary Documentation)

J. E. flathis

Digital Systems Laboratory
Stanford University

Stanford, California 94385

January 25. 1978

Technical Note #75
/

DIGITAL SYSTEMS LABGRATGRY
DeDt. of Electrical Engineering Dept. of Computer Science

M Stanford University
Stanford, California

This researches supported by the Defense A^?S^d7^
8^f

Projects Agency under ARPA Order No. 2494, Contract No. nDA903-7GC.0093.

The views and conclusions contained in this document are those
of the author Ind should not be interpreted as necessarily representing
?h« official policies, either express or implied, of the Defense
A^vancld Research Projects Agency or the United States Government.

TCP0 implementation

Sec t i on

Subsect ion

Table of Contents

January 2S, 1976

Page

1.

2.

3.

4.

5.

G.

7.

8.

INTRODUCTION

DESCRIPTION of TCP FUNCTIONS 1

USER-TCP INTERFACE 2

TCP STRUCTURE 3

4.1 OPERATING ENVIRONMENT (3

A.2 NETWORK INTERFACE ^

4.3 PROCESS INTERACTION 5

4.4 CONNECTION CONTROL VARIABLES 5

4.5 INPUT PACKET HANDLER 1 8

USER INTERFACE LOGIC DOCUMENTATION le

TCP INPUT PROCESS LOGIC DOCUMENTATION ^

TCP OUTPUT PROCESS LOGIC DOCUMENTATION 22

ARPANET INTERFACE LOGIC DOCUMENTATION 26

References , , 07

1 INTRODUCTION

This document describes a prelifninary implementation scheme for
a sinrjle-connect ion internetMork Transmission Control Program [TCP]. It
is designed to operate on a dedicated small computer with minimal
operating system assistance and to support low delay, low through-put
interactive traffic. Although assumed to be attached to the ARPANET via
a local or remote host interface [11, only minimal changes are
necessary for connection to the Packet Radio Network using the Channel
Access Protocol [2].

Detailed knowledge is assumed of the internetwork TCP protocol
and the reader is referred to the official specification t3] (4) for
justification and further discussion of the details of the protocol.

NOTE: There have been several changes to the protocol that are
not listed in the December 1374 revision [3). Among these, addition of
the Beginning Of Segment [B0S3 bit and Timestamping in effect tT3 bit in
the control information word; addition of a 32 bit field for
timestamping information and sending an ACKnowledgement for FIN
requests. The final specification will be available by February, 197G.

2 DESCRIPTION of TCP FUNCTIONS

For maximum size reduction, only the single-connection user
subset of functions are implemented. Unsupported functions are:

1) Unspecified sockets - On doing an OPEN, the user
must fully specify the destination NET, TCP and PORT
socket addresses, eliminating connections analogous to
the NCP "listening" connection needed only by server and
logger processes. (To permit a host to provide service
serially through a single channel TCP, this function may
be implemented leter.)

2) Re-assembly of fragmented segments - Packets
must have both the Beginning Of Segment [BOS] and End Of
Segment [EOS] control bits asserted. If not, on passing
through a gateway, the segment was broken into
fragments; it should be discarded without processing.
The re-construction of segments has yet to be resolved;
but it can be avoided by limiting segment length (by
receive window size control) to less than the gateway
fragmentation threshold. Though in the future, it may
become necessary to implement it,

3) ECHO and TRASH special functions - Being solely
for experimentation purposes, ECHO and TRASH special

TCP0 implementation January 25, 197G

functions are not implemented. Messages containing
these special functions are ignored. (If the cost
penalty, mainly storage capacity, is not too high, these
functions will be implemented later.)

4) Timestamping - The timestamping control bit is
ignored and the contents of the returning packet's
times tamp field will be undefined.

5) Parameter change/Status socket - Being strict'y
single-connection, there is no Parameter change/Status
socket. (Note - this socket is distinct from the Uell
Known Socket 0.)

Except for these restictions, the TCP insures end-to-end
acknowledgement, error correction, duplicate detection, sequencing and
flow control; providing the user process a reliable, error-free logical
communications channel.

5 USER-TCP INTERFACE

Five primitives comprise the USER/TCP interface. It is intended
that these routines be called via a subroutine jump or supervisor call
and indicate command acceptance or rejection on exit. Uhen complete,
the user will be notified of the final disposition of OPEN, SEND and
CLOSE requests. This allows user processing to proceed asynchronously
and in parallel with TCP processing.

1) OPEN CONNECTION - Used to establish a
connection, the OPEN primitive is passed the address of
the foreign and local socket ids. If a connection
already exists, the OPEN is rejected and an error
returned to the caller. After checking the request and
socket ids, the control variables are initialized and an
Initial Sequence Number (ISN) is chosen. Since we can
remember the last sequence number used on the previous
connection, it is not necessary to choose a clock-based
ISN, but rather just continue. (Cf. [33 section 4.3.1
for more on ISN selection.) After notifying the Net
Output Process to send a SYN, control is returned to the
caller. Uhen the connection is ready for use, the user
process is noti fled.

2) SEND LETTER - This call causes the data
contained in the user buffer to be sent on the
connection. The buffer address and length are stored In
a common data area, the output process notified of work
pending and control returned to the caller. After the

TCP0 implementation January 25, 1976

data has been packetized and sent (but not
ACKnowlcdged), the user process is notified. Letter
boundaries are ignored, every data packet has the End Of
Letter (EOL] bit set. If the connection is not
established, the data is queued for sending later. There
can be at most one outstanding send. The mechanics of
sending data is covered In section xx*.

3) RECEIVE LETTER - The user process Is notified
when data arrives on the connection and It is moved Into
user buffers by a RECEIVE. RECEIVE is called with a
buffer pointer and maximum byte count and returns the
actual byte count. Again, letter boundaries are
ignored. After delivery to the user, an ACKnowledgement
Is sent to the sender. The exact details of moving data
into the user buffer is covered later in section xxx.

4) INTERRUPT - A special control signal is sent to
the destination indicating an interrupt condition. All
unsent or unacknowledged data will be flushed. If the
connection is not established, an error is returned.

5) CLOSE CONNECTION - This command causes the
connection to be closed. If it is not open, an error is
returned. Pending unsent or received data is flushed,
no more accepted and a FIN sent to the remote TCP.
Control is returned to the caller and the user Is
notified when the close is finalized. The exact process
of closing a connection is covered later in section xxx.

TCP STRUCTURE

4.1 OPERATING ENVIRONMENT

The TCP is designed to operate under a very simple operating
system structure. Each process has a process control table containing
space for its run-time stack, status save area and an external event
scoreboard. To signal a process of some event, the signalling process
sets a bit in the called process' scoreboard. Each process is
responsible for periodically polling its scoreboard and acting
appropriately. After processing the signal, the process then clears the
flag bit. Each process runs to completion and context switching happens
only when a process expllctly releases control. The or.ly operating
system primitive is one that causes the context to switch to the next
active process. All processes run at the same priority level.

^^-

TCP0 Implementation January 25, 197B

Using a scoreboard has three important restrictions. It Is not
possible to maintain temporal ordering of signals, multiple signals of
the same type are condensed into one, and it is not possible to transfer
any data along with the signal. The first two restrictions are not
critical to the TCP implementation; indeed, a TCP implementation running
under a normal message queueing operating system must go to some effort
to remove extraneous signals resulting from process asynchrony. The
third restriction requires putting data associated with an event in a
"global" I oca ion known to both processes.

There must also be I/O devices and their associated device
driver routines. It is assumed that the devices are interrupt driven,
though programmed device polling is possible at reduced data rates. The
following devices are needed:

1) Net input device - t

2) Net output device -

3) Hardware timer -

4.2 NETWORK INTERFACE

To allow the TCP to be used with computer networks of different
structure and interfacing requirements, all network dependent code is
concentrated in three routines. Uhile designed for the ARPANET and
Packet Radio Network this partitioning should be adequate for most other
network configurations. (The most obvious exreption is the Very Distant
Hosts in the ARPANET; which require an additional watchdog process to
provide control functions for the IMP-HOST line protocol used (Cf. [11
appendix F).) The routines and their functions are;

INITIALIZENETUÜRK - Called on system initialization, this routine
initializes the device driver routines and performs the
HOST-NETUORK start-up sequence. It returns when the network
is ready to deliver/accept messages to/from the host
computer.

NETINPUT - Passed the address of a packet buffer, this routine
initiates action to accept a message from the network. It
performs the network-dependent processing of the NETUORK-
HOST message header, e.g. in the ARPANET, it would verify
that the message is of type 9 (regular packet) and not a
special IflP-HOST message. Control returns to the caller
when a valid message is received.

NETOUTPUT -. Called with the address of a message to send, this
routine performs the network-dependent formatting of the
HOST-NETUORIC message header. Transmission of the meseage

January 25. 197B
TCP0 implementation

into the netuork is started and control returned to the
caller when the output is completed.

4.3 PROCESS INTERACTION

The TCP is composed o^t- Processes appropriate^evice^rivers

and a set of ""r-ca lable ^ ^f^^nterruptable running
Transmisston Control B'0«- ."^.f",",! flags. The TCP INPUT process
,o completion, and """""'"*" X^f ,8 the user proces. of neu handles incommg "••"8" and either^ ^ error packet or
data received or slgna • «^ 'CP.,°^7prP

r
Cess is the only process that

various control packets. The "P" Jf0^ ou, ut pr0CesS la the only
receives data from the "•♦,'^J IKe^e TCP OUTPUT process, on command,
sender of data to ^^ "« "° klack^

e
o^e^est ^ the input process or

sends error packets °r control packet on req responsible for
data on request of the user W»:^ Jal^ The NeWk device

^tv^^i^irrerulrutt-r/foTa^et^etransmission.

A.4 CONNECTION CONTROL VARIABLES

• x -.^i'.«« inral to a sDecific connection Is Kept in
'"■"n Cont^o 0B "KB he follouing are the fields of the ransmission Control bioc^ UUOJ.

1 and their length.

DHOST - (16 ^s. The local PSN address of the ^•^«on^o.^r

gateway. .^«'"'P'' = ';«• ^e TCP address if In the local
^eS. 'Vrerutre! ^'destination NET id is used to
determine the local gateway address.

DNET -(8 bits) The destination network Id (Cf. bisection
4.2.1 for list of assigned network ids.)

OTCP - (16 bits) The destination TCP id.

OPORT - (24 bits) The destination PORT id. Along with DNET and
OTCP. they form the deetinatlon socket.

SNET - (8 bits) The network id of the local network.

STCP - (IB bits) The TCP id of the local TCP.

SPORT - (24 bits) The local PORT id. Along with SNET and STCP. they
form the local socket number.

TCP0 implementation January 25, 197B

CONNECTlONSTATfc* - (8 bits) The actions performed by the TCP depend
upon what has happened previously. There are six
"connection states" in a user TCP. They are:

1) CLOSED - The connection, as such, does not
exi st.

2) SYNSENT - The user process has done an OPEN and
a SYN has been sent to the foreign TCP in an attempt to
establish a connection. We wait for the ACKnowledgement
of our SYN before going to the ESTABLISHED state and
notifying the user process that the connection is
usable.

3) SinULINIT - After sending a SYN to establish a
connection, we received a SYN without an ACKnowledgement
of our SYN from the foreign TCP. This represents an
attempt by both ends to open the connection
simultaneously. Ue send an ACKnowledgement of the SYN
we received and initialize the connection dependent
variables. We wait for the ACKnowledgement of our SYN
before going to the ESTABLISHED state and notifying the
user process that the connection is usable.

4) ESTABLISHED - The three-way handshake to
synchronize the connection was successful and the
connection is usable for data transfers.

5) FINUAIT - The user process nas done a CLOSE and
we have sent out the FIN. Ue wait for the FIN to
timeout or to receive a FIN and ACKnowledgement of our
FIN before going to the CLOSED state.

G) FINRECEIVED - Ue have received a FIN from the
foreign TCP. The user is notified of the remote close
and we send a FIN and ACKnowledge the receive FIN. Ue
now wait for an ACKnowledgement of our FIN or Its
timeout before going to the CLOSED state,

RCVSEQ - (32 bits) The next sequence number expected

RCVUS - (IB bits) The receive window size.

INITSEQ - (32 bits) The initial receive sequence number used by the
foreign TCP. Thi8 is used to detect old duplicates of the
SYN that established the connection,

SNDSEQ - (32 bits) The next sequence number to send.

SNOWS - QG bits) The send window size.

TCP8 implementation January 25, 197G

LASTUGEQ - (32 bits) The last sequence number used to update send
window,

LSUEDGE - (32 bits) The left send window edge sequence number.

INPUTHEAD - (16 bits) The pointer to the head of the receive data
reassembly ring buffer.

BUFFERPOIK,rtR - (16 bits) The address of the start of the user's
serd buffer.

BUFBYTEC'JUNT - (16 bits) The number of bytes in the user's send
buffer. The byte count and buffer pointer are set when the
ueer does a send and are updated as the output process
-emoves and sends data.

RTXUAKEUP - (16 bits) Count of the number of retransmissions sent
tithout receiving any new ACKs. It is cleared when a valid
/ACK comes in, Uhen the number of retransmissions exceeds a
preset value, the user is notified of "TCP not responding."

RTXPOINTER - (16 bits) The pointer to the head of the
retraneilsslon ring buffer.

RTXCOUNT - (16 bit») The number of bytes of data In the
retransmiss'on ouffer.

RTXCONTROL - do bits' It ror-tains the control field of the control
packet queued up to be retransmitted. If zero, then no
control packet queued up. Only one control packet can be
queued for retransmission.

RTXCNTRLSEQ- (32 bitsJ The send sequence number of the control
packet queued up to be retransmitted.

RTXDATASEQ - (32 bits) The send cequence number of the data byte at
the head of the retransmission ring buffer.

In addition, there are several -issembly-time constants that set
the size of various buffers.

NAXPACKEFSIZE - The maximum number of data bytes that can be put in
the text field of a internet packet. MAXPACKETSIZE.
internetwork header length and length of local PSN control
fields determine the size of the send packet buffer.

MAXRCYUS - The maximum receive window size is set by the eize of
the reassembly ring buffer.

MAXRTXCOUNT - The maximum amount of data queued up to be
retransmitted. This determines the size of the
retransmission ring buffer.

•

TCP0 implementation January 25, *37S

There are also several buffers associated uiith the connection.
They are:

RCVPKTBUFFER - The buffer that incoming packets are written into by
the network device driver.

REASSflBUFFER - The ring buffer where input data is reassembled ami
stored-pending deliver to the user process.

REASSMFLAGS - A boolean vector that indicates which elements of the
reassembly buffer contain a data octet.

SENDPKTBUFFER - The buffer that outgoing packets are constructed in
and sent out by the network device driver.

RTXBUFFER - The buffer where data waiting to be ACKnowledged Is
enqueued.

A.5 INPUT PACKET HANDLER

After initializing the local network interface, the TCP INPUT
process is awakened when a packet arrives from the network. The packet
is checked for an internetwork message; malformed packets are simply
discarded. The validity check involves verifying that the message Is
long enough to contain the TCP packet header and *he packet header
version number is correct. The BOS and EOS control biiö must both be
asserted; the current implementation can not handle fragmented segments.
The checksum is finally calculated and detectably damaged packets are
discarded; they will be re-transmitted by the sender.

After validation, the message is checked for special function or
error information and processed appropriately. In this preliminary
specification, their handling is not aetailed; but the TCP must be
sensitive to RESET ALL, RESET and QUERY special functions and all error
condi t ions.

Packets without control dispatch refer to specific connections;
the foreign and local sockets are checked against those of the single
connection we serv'ec. If different, an error message (connection noni-
existent) is constructed and queued to be sent by the Net Output
Process.

If in the SYNSENT state and we receive a SYN with INT, DSN or
FIN then the SYI^i is malformed and an error is returned. If the packet
acknowledges the SYN we sent, the connection is synchronized. He
ACKnowledge the received SYN, initialize the Transmission Control Block
and notify the user of connection establishment. If instead of an ACK,
the packet contains only a SYN, then we have a simultaneous attempt by
both sides to open the connection. (Cf. 133 section A.3.2 for details
of SYN collision.) The new connection state is SIMULINIT.

TCP0 implementation January 25. 197G

In the SII1UL1NIT state, if we receive a SYN it is first checked
to see if it is a duplicate of the SYN that caused the state chanqe to
SinULINIT. If so, then just ADCnouledcje receipt. Otherwise we have two
different SYNs and can not tell which is valid, so we send back an errcr
and reinitialize. If instead of a SYN, we get an ADCnow I edge of our
SYN, the connection has been established by a four-way handshake
Notify the user and process any data that may accompany the ACK.

Once the- connection is established, errors are sent for all SYNs
received, except for duplicates of the original.

TCF0 Implementation January 25, 137G

5 USER INTERFACE LOGIC DOCUMENTATION

OPEN (OPb'NBLOCKPOINTER)i
if CONNECT IONSTATE notequal CLOSED then

return (connection already open error)

(.Tove socket addresses into control block)
(convert DNET,DTCP address into local PSN host/gateway address)
RCVUS:«riAXRCVUS
INITCONNECTIGN
comment- return to caller, notify user process when connection

becomes established or on error condition,
return (ok)

SEND u'lFFEPADDRESS, BUFFERLENGTH):
comment- put buffer pointer and length into TCB for send process

if BUFBYTECOUNT notequal 8 then
return (too many SENDs error)

el se
beg i n
PUFFERPOiNTERj-.BUFrrRAOORESS
BUFB t TECOUNT:-BUFFERLENGTH
(notify TCP OUTPUT PROCESS to send data)
end

return (ok)

INTERRUPT
if CONNECT IONSTATE rotequal ESTABLISHED then

return (connection not open error)

(notify TCP OUTPUT PROCESS to flush send data;
(notify TCP OUTPUT PROCESS to send INT)
return (ok)

RECEIVE (BUFFERADDRESS, BUFFERLENGTH, result BYTECOUNT)j
If CONNECTIONSTATE notequal ESTABLISHED then

return (connection not opened error)

PTR:-BUFFERADDRESS
BYTECOUNTt-0

while (BYTECOUNT < BUFFERLENGTH) and REASSflFLAGSdNPUTHEAD) do
begin
user buffer (PTR) i- REASSHBUFFER (INPUTHEAD)

10

^^^^ __ ,. _;V;-_^ _...-.,,..^ ., ,. -.-.:^._r^^^^-V^- -^^ ..^„^.-^,.:^_ -^.^-s

TCre "mpiementation January 25, 1375

REASSMFLAGS (INPUTHEAO) :- FALSE
PTR:3PTR4l
INPUTHEAP :- (INPUTHEAD+l) HOD IIAXRCVUS
B'YTECOUNTJ-BYTECOUNT+I
end

RCVSEQ :- RCVSEQ + 5YTEC0UNT

(notify TCP OUTPUT PROCESS to send ACIO

if REASSMFLAGS (INPUTHEAO) then
(notify user process of data remaining to be received)

return (ok)

CLOSE:
case CONNECT IONSTATE of

-SYNSENT:
DELETECONNECTION

-SIMULINIT:
«ESTABLISHED:
begin
CONNECriONSTATE:.FINUAIT
(notify TCP OUTPUT PROCESS to flush send data)
(notify TCP OUTPUT PROCESS to send FIN)
end

-CLOSED:
-FINUAIT:
-FINRECEIVED:

return (ok)

11

TCP0 Implementation January 25, 1978

B TCP INPUT PROCESS LOGIC DOCUMENTATION

TCP INPUT PROCESS:
(wait for network interface initialization)

LOOP; NET1NPUT (RCVPKTBUFFER)

if (packet length greaterthan or equal minifrum permitted) and
(packet header version number equal 0) then

begin
comment- packet verified as a TCP message.
If (packet BOS bit -1 and packet EOS bit -1) then

begin
comment- unfragmented message, process.
if CHECKSUM (RCVPKTBUFFER) - 8 then

comment- checksum ok, packet not damaged,
if (packet Control Dispatch bits equal 8) then

HANDLEREGULARPACKET

HANDLESPECIALPACKET
end

else
comment- fragmented message, code to do fragment

reassembly goes in here, but for now just...
(log error)

end
el se

comment- garbage packet
(log error)

goto LOOP

CHECKSUM (PACKETPOINTER):
comment- computes the IB bit I's com, ^ment sum of the header

and text fields of the packet, i. the sum is 8, then the
packet is not (hopefully!) damaged.

HANDLEREGULARPACKET:
if ADDRESSCHECK then

beg i n
comment- packet is for this cornection, process according to

connection state.

case CONNECT IONSTATE of
-SYNSENT:
If (packet SYN bit -1) then

begin
If (packet FIN, INT or D5N bits -1) then

12

— - .. .-^■^■■^..^■-. ^—^ ■.J^J_ . ..—_. ■. ._^-_^-^=J

TCP8 implementation January 25, 1978

comment- should not have these control bits set,
return unacceptable SYN error,

XniTERROR (EFP+USYN)
el Be

if (packet ACK bit -1) then
begin
if ACCEPTABLEACK then

beg i n
SETTCB
(notify TCP OUTPUT PROCESS to send ACK)
CONNECTIONSTATE:=ESTABLISHEÖ
(notify user of conroction established)
HANDLEACK
end

XniTERROR (EFP+USYN)
end

el se
LUinuien l- £M iitu i icmcOuS äiiciitpiö lü Open ilia

connection,
begin
CONNECTiuNSTATEr-SinULINiT
SETTCB
(notify TCP OUTPUT PROCESS to send ACK)
end

end

-SlflULINIT:
if (packet SYN bit -1) then

begin
if (packet seq number equal 1N1TSEQ) then

comment- duplicate of first SYN, don't send an
error, but force an ACKnowlodgement,

(notify TCP OUTPUT PROCESS to send ACK)
else

beg i n
comment- we have received two different SYNs and

can't tell which to believe, so send error
message and reinitialize connection and trg
again.

Kfll TERROR (EFP+USYN)
1NITC0NNECTI0N
end

end
else

if (packet ACK bit -1) then
if ACCEPTABLEACK and INRCVUINDOW then

beg i n
comment- acknowledged our SYN, so connection

now synchronized.
CONNECT ION^TATE:=ESTABLI SHED
(notify user of connection established)

13

TCP0 implefnentation January 25, 197B

N0RMALCA5E
end

-ESTABLISHED!
if (packet SYN bit -1) then

begin
if (packet seq number equal INITSEQ) then

begin
comment- duplicate of the original SYN that

established connection, force an ACK and
process any data,

(notify TCP OUTPUT PROCESS to send ACK)
If INRCVUINDOU then

NORMALCASE
end

else
comment- unacceptable SYN,
XhlTERROR (EFP+USYN)

c:-d
else

oeg i n
if INRCVUINDOU then

NORriALCASE
else

(notify TCP OUTPUT PROCESS to send ACK)
end

. 1NUAIT:
;f INRCVUINDOU and (packet FIN bit =1) then

beg i n
comment- we have sent a FIN and now have received a

FIN. Acknowledge FIN and see if can delete the
connect ion.

RCVSEQ:* (packet seq number) + (packet text length)
RCVSEQ:=RCVSEQ + CONTROLLENGTH (RCVPKTBUFFER)
CONNECT 1ONSTATE:-FINRECEIVED
(notify TCP OUTPUT PROCESS to send ACK)
if (packet ACK bit - 1) and ACCEPTABLEACK then

HANDLEACK
end

-FINRECEIVED:
. if INRCVUINDOU and (packet ACK bit -1) then

if ACCEPTABLEACK then
HANDLEACK

end
else

XhlTERROR (EFP+NONK)

return

14

TCP8 implementation January 2B, 197B

INRCVUINDOU:
comment- determines if any part of the packet that just came In

lies inside the receive window.

ACCEPTABLEACK:
comment- return TRUE if packet ACKs something we sent that has

rot yet been ACKed, i.e. LSUEDGE <- ACKfield <- SNOSEQ

NORhALCASEj
comment- this processes the normal case of putting new data into

the right place in the circular reassembly buffer, also
processes other possible things in packet.

(packst ACK bit -1) and ACCEPTABLEACK then
HANOLEACK
(packet INI bit - 1) then
HANDLEINT
(packet text length greater than 0) then
HANÜLEDATA
(packet DSN bit » 1) then
KANDLEDSN
(packet FIN bit - 1) then
HÄNDLERIN

return

HANDLEACK:
comment- correlates the ACK that came in (and window, etc.) with

what we have already put in the control block, it Is where
confirming ACKs will remove data from the Retransmission
ring buffer.

if PRECEDE (LASTU5EQ, (packet sequence number)) then"
begin
comment- update the send window size if this Is the latest

packet we have seen.

SNDUS :« (packet window size field)
LASTUSEQ :- (packet sequence number)
end

comment- convert next sequence number expected to sequence
number of last octet ACKnow'edged.

ThPRFD:-(packet ACK field) - 1

15

TCP8 implementation January 25. 1976

LSUEDGE :- (packet ACK field)

if RTXCONTROL notequal 0 then
comment- see if control ACKed.

if PRECEDE (RTXCNTRLSEQ, TflPSEQ) then
beg i n

■ comment- if our FIN was ACKed, delete the connection,
if RTXCONTROL •= FIN packet then

DELETEC0NNECT10N
RTXCONTROL:-8
end

if RTXCOUNT notequal 8 then
comment- see if any data is ACKed and If so, remove them

if PRECEDE (RTXÜATASEQ, TMPSEQ) then
begin
COUNTs-TflPSEQ - RTXDATA5EQ + 1
RTXCOUNT:.RTXCOUNT - COUNT
RTXP01NTER:- (RTXPOINTER + COUNT) MOD MAXRTXCOUNT
RTXDATASEQ:«RTXDATASEQ + COUNT
end

return

SETTCB:
comment- fills received information into control block from

arr iving SYN packet
RCVSEQ is the next sequence number expected,
SNDUS is the send window size,
INITSEG is the initial receive sequence number used,
LASTUSEQ is the last sequence number used to update send

window,
LSUEDGE is the left send window edge.

SNDUS:« (packet window size)
1NITSEQ:» (packet seq number)
LASTUSEQ:- (packet seq number)
RCVSEQ:- (packet seq number) + 1

return

HANDLEDATA:
comment- this routine moves data from the input packet Into the

circular reassembly buffer.

IB

, „^,.„.^-

TCP8 implementalion January 25» 197G

INPUTHEAD is a pointer to the head of the reassembly buffer,
RCVSEQ is the left receive window edge sequence number,
PINDEX is the index into the text field of the Input packet
REAGSflBUFFER is the actual reassembly buffer and
REASShFLAGS is a vector of flags indicating which bytes in

the REASSriBUFFER contain valid user dat?.
flAXRCVUS is the length of the reassemble; buffer

PINDEX:-0
START:» (packet seq number)

if PRECEDE (START, RCVSEQ) then
begin
PINDEX:»RCVSEO-START
START:-RCV3EQ
end

PTR:- [START - RCVSEQ + INPUTHEAD] MOO MAXRCVWS

AMOUNT:- MIN (RCVUS, (packet text length))

for I:- PINDEX until AMOUNT + PINDEX - 1 do
begin
REASSHFLAGS (PTR):-TRUE
REASSflBUFFER (PTR):- (packet text field indexed by I)
PIR:- (PTR+l) MOD MAXRCVUS
end

' if START - RCVSEQ then
(notify USER of new data received at left window edge)

return

HANDLEINT:
RCVSEQ:- (packet seq number) + 1
(notify TCP OUTPUT PROCESS to send ACK)
(flush receive data)
(notify USER of INTERRUPT request)

return

HÄNDLERIN:
comment- handle a valid FIN arriving when connection ESTABLISHED

CONNECT IONSTATE:-FINRECEIVEO
(notify TCP OUTPUT PROCESS to flush send data)

17

___^^m

TCP8 implementation January 25, 1976

(notify USER of remote close)
RCVSEQ:- (packet seq number) + (packet text length)
RCYSEQ:-RCVSEQ ♦ CONTROLLENGTH (RCVPKTBUFFER)
(notify TCP OUTPUT PROCESS to send ADO
(notify TCP OUTPUT PROCESS to send FIN)

return

HANDLEDSNs
comment- method for handling DSN is yet unresolved

return

ADDRESSCHECK:
comment- returns TRUE if the packst is for the one valid

connection, the foreign NET, TCP & PORT address and the
local PORT adaresses must agree with those of the open
connection.

if CONNECT IONSTATE - CLOSED then
return FALSE

if (packet source NET field) notequal DNET then
return FALSE

if (packet source TCP field) notequal DTCP then
return FALSE

if (packet source PORT field) notequal DPORT then
return FALSE

If (packet destination NET field) notequal SNET then
return FALSE

if (packet destination TCP field) notequal STOP then
return FALSE

• If (packet destination PORT field) notequal SPORT then
return FALSE

else
return TRUE

HANDLESPECIALPACKETi
comment- handle special functions or error message packets

18

TCP0 implementation January 25, 197G

case (packet control dispatch field) of
-SPECIALFUNCT10N:
beg i n
case (packet control data octet) of

-RESETALL:
if (packet source TCP field) - DTCP then

RESETCONNECTION

-RESET:
If ADDRESSCHECK and ACCEPTABLEACK then

RESETCONNECTION

-QUERY:
if ADDRESSCHECK then

(send status message)

end

-ERROR:
if ADDRESSCHECK then

beg i n
comment- process error directed at uc.

case (packet control data octet) of
-USYN:
if CONNECT IONSTATE - SYNSENT then

(send a reset)

if CONNECT IONSTATE - SIHULINIT then
INITCONNECTION

-NONX:
-1NACC:
begin
case CONNECT IONSTATE of

-SIMULINIT:
INITCONNECTION

-ESTABLISHED:
if INRCVUINDOU then

(notify user process of error)

-FINUAIT:
if INRCVUINDOU then

DELETECONNECTION

end
end

return

19

TCP0 implementation January 25, 1976

INITCONNECTION:
comment- initialize connection state

CONNECT IONSTATEr-SYNSENT
(notify TCP OUTPUT PROCESS to flush send data)
(flush receive data)
comment- pick initial sequence number by adding a constant to .

last sequence number used on previous connection.
SNDSEQj-SNDSEQ + 1
(notify TCP OUTPUT PROCESS to send SYN)
return

CONTROLLENGTH (packet buffer):
comment- returns the nurrber of octets used In the packet by

control functions.

COUNT:-0
if (packet SYN bit -1) then

COUNT:-1
if (packet INT bit -li then

COUNT:-COUNT +1
If (packet FIN bit -1) then

COUNT:.C0UNT +1
if (packet OSN bit -1) then

COUNT:-COUNT +1
return COUNT

PRECEDE (PARfll, PARMZ);
comment- returns true if PARf12 - 2**16 < PARfll. PARMl and PARf12

both being 32 bit numbers, this is just a special InwlndoM
test that returns true if PARfll precedes or equals PARt12
in the circular sequence number space.

XniTERROR (ERROR CODE):
comment- send an error message to the remrte TCP. the error code

is passed as a parameter, see [3) section 2.4.3 about
possible error codes.

(swap source & destination socket ids)
(put input packet sequence number in ACK field)
(set Control Dispatch to indicate error present)
(put ERROR" CODE in control octet)
(notify TCP OUTPUT PROCESS to send error packet)
(wait for completion of error send)
(set error send complete flag to false)
return

28

r,-^--.„. . ■, „-_.._ ^-..t^;:^^^, - -

TCP9 implementation »snuary 25, 197B

DELETECONNECTION:
comment- set the connection state to CLOSED, notify the ueer of

close completion and flush all the queues and stuff,

CONNECTIONSTATE:-CLOSED
(notify user process of CLOSE completion)
(notify TCP OUTPUT PROCESS to flush send data)
return

21

-- .- -.

TCP0 implementation January 25, 197B

7 TCP OUTPUT PROCESS LOGIC DOCUrENTATION

TCP OUTPUT PROCESS:
comment- initial ize Net interface.

1NITIALIZENETU0RK
(notify TCP INPUT PROCESS of initialization complete)

LOOP: (uait for uork to process)

if (need to send error) then
begin
(move packet from RCVPKTBUFFER into SENDPKTBUFFER)
SENDPACKET
(notify TCP INPUT PROCESS that error has been sent)
(set need to send error flag to false)
end

if (need to flush send data) then
begin
comment- flush the send data and retransmission queues,

first remove any outstanding SENDs,

if (need to send data) then
begin
(set need to send data flag to false)
(notify USER of eend completion, ready for new send)
end

BUFBYTECOUNT:-0

comment- then remove any data or control to be retransmitted
RTXCOUNTs-e
RTXC0NTR0L:»8
RTXUAKEUP:-8
(set need to retransmit data flag to false)
(set need to retransmit control flag to false)
(set need to flush send data flag to false)
end

if (need to send SYN, INT or FIN) then
beg i n
womment- construct a packet and add the appropriate control

bits.

INITIALIZEPACKET
if (need to send SYN) then

(set packet SYN bit =1)
if (need to send INT) then

(set packet INT bit -1)
if (need to send FIN) then

(set packet FIN bit -1)
(set need to send SYN, INT and FIN flags to false)

72

-—',--

TCP8 Implementation Januarg 25, 1978

SENDPACKST
RTXCNTRLSEQi-SNOSEQ
RTXCONTROL:- (packet control word field)
SNDSEQJ-SNDSEQ ♦ CONTPOLLENGTH (SENDPKTBUFFER)
end

If (need to send data) then
begin
comment- SPACELEFT is emount of space left in send window

' f^tXCOUNT is the number of bytes in the retransmission
queue,

MAXRTKCOUNT is the length of the retranamisslon queue
buffer,

RTXSPACE is amount of space left in retransmission queue
MAXPKTSIZE is maximum number of data bytes In packet
BUFBYTECOUNT Is number of bytes in user send buffer

. BUFFERP01NTER is address of start of user send buffer.

SPACELEFT:.rN0US - SNDSEQ + LSUEDGE
RTXSPACE:-nA/^TXCGUNT - RTXCOUNT
COUNT:- MIN (^ACELEFT. BUFBYTECOUNT, RTXSPACE, MAXPKTSIZE)
If COUNT notequal 8 then

beg i n
INITIALIZEPACKET
If RTXCOUNT - 8 then

RTXDATASEG:-SNDSEQ
PKTPTR:- (Index of start of packet text area)
for h-l until COUNT do

beg i n
(copy byte from user buffer into packet)

• (copy byte from buffer into retransmission queue)
BUFFERPOINTER:-BUFFERPOINTER+1
RTXPOINTER:- (RTXPOINTER + 1) MOD MAXRTXCOUNT
PKTPTR:-PKTPTR+1
BUFBYTECOUNT:-BUFBYTECOUNT-1
RTXCOUNT:«RTXCÜUNT+1
end

(set packet text length equal COUNT)
SENDPACKET
SNDSEQ:-SNDSEH + COUNT

If BUFBYTECOUNT - 8 then
begin
(set need to send data flag to false)
(notify USER of send completion, ready for next send)
end

end

If (need to retransmit data) and CONNECT IONS TÄTE - ESTABLISHED
then

begin
comment- RTXUAKEUP counts the number of retransmissions

sent without receiving any ACKs back. It Is cleared

23

TCP0 implementation January 25, 197G

in HANOLEACK when a valid one comes in and incremented
by the clock interrupt routine before notifying the SEND
process to retransmit data or control, if the data
remains on the retransmission queue too long, the user
is noti fied.

if RTXUAKEUP greaterthan maximuin allowed then
comment- the foreign TCP has failed to ACK data that has

been waiting, it is assumed that the destination
is not responding

(notify USER that destination TCP not responding)
ei se

begin
comment- now retransmit the data queued up.

SPACELEFTJ.SNDUS - RTXDATASEQ + L5UEDGE
COUNT:» MIN (SPACELEFT. RTXCOUNT, MAXPKTSIZE)
if COUNT notequal 0 then

begin
1NIT1AUZEPACKET
RTXPTRt-RTXPOINTER
PKTPTR:-{index of start of packet text area)
for h«l until COUNT do

SENDPKTBUFFER(PKTPTR):-RTXBUFFER(RTKPTRJ
PKTPTR:=PKTPTR+1
RTXPTR:- (RTXPTR+1) MOO MAXRTXCOUNT
end

(packet sequence number)5■ RTXDATASEQ
(packet text length):- COUNT
SENDPACKET
end

end
(set need to retransmit data flag to false)
end

if (need to retransmit control) then
beg i n
if RTXCONTROL notequal 0 then

begin
if RiXUAKEUP greaterthan maximum allowed then

begin
(notify USER that destination TCP not responding)
if RTXCONTROL equals FIN racket then

comment- a FIN packet has timed-out. so close
the connection anyway.

DELETECONNECTION
end

else
begin
SPACELEFT:-SNDUG - RTXCNTRLSEQ + LSUEDGE

24

.

TCP8 implementation January 25, 197G

if SPACELEFT greaterthan 8 then
beg i n
1NITIALIZEPACKET
(packet sequence number);= RTXCNTRLSEQ
(packet control word):- RTXCONTROL
SENDPACKET
end

end
end

(set need to retransmit control flag to false)
end

if (need to send ACK) then
begin
INIT1ALIZEPACKET
SENDPACKET
end

goto LÜÜP

IN1TIALIZEPACKET:
comment- initialize the internet header

(move SNDSEQ into packet seq field)
(move foreign socket id into packet)
(move local socket id into packet)
(move RCVUS ;nto packet)
(zei o ^ut rest of packet header)
if (njed to send ACK) then

begin
comment- piggyback ACK onto data or control packet
(set packet ACK bit «D
(put receive left windou edge in AC< field)
(set need to send ACK flag to fals')
end

return

SENDrACKET:
comment- calculate a checksum and put it in the header and then

sent It.

(put zero in packet checksum field)
(packet checksum fieId)I-CHECKSUM {3ENDPKTBUFFER)
NETOUTPUT (SENDPKTBUFFER)
return

25

TCP0 implementation January 25, 1976

8 ARPANET INTERFACE LOGIC DOCUHENTATION

1NIT1ALIZENETUORK:
comment- initialize the device drivers and send NOPs to IMP

(reset network device driver)

(construct IMP NOP message)

for I:»1 untiI 4 do
begin
comment- send four NOPs to the ItIP

(give NOP message to network driver to send)

(wait until message sent)
end

return

NET INPUT (PACKETBUFFER):
comment- start input from ItIP

LOOP: (start message input from IHP)

(wai t untiI f inished)

if (message not on experimental links, 155-158) then
goto LOOP

if (message type notequal regular or minimum effort) then
goto LOOP

comment- return message to TCP

return

NETOUTPUT (PACKETBUFFER):
(initialize 1 HP-HOST header)

(give to network device driver to send)

(wait until message sent)

return

26

TCP0 implementation January 25, 197G

References

1. Bolt Beranek and Newman Inc., "Interface Message Processor," Report
No. 1822, December 1975.

2. R. C. Sunlin, "Packet Radio Channel Access Protocol
Program," Packet Radio Note No. 144, 29 September 1975.

3. V. Cerf, Y. Dalai, C, Sunshine, "Specification of
Internet Transmission Control Program," INUG Note No, '7?,
December 1374 (Revised).

4. V. Cerf, R. Kahn, "A Protocol for Packet NetMork
Interconnection," IEEE Transactions on Communication, Vol. COfl-
22, Number G, May 1974.

27

DISTRIBUTION

ARPA

Director (2 copies)
ATTN: Program Management
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

ARPA/IPT
1400 Wilson Boulevard
Arlington,_ VA__ 22209

Dr. Robert Kahn
Mr. Steven Walker

Bell Laboratories

Dr. Elliot N. Pinson, Head
Computer Systems Research Dept.
Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Dr. Samuel P. Morgan, Director
Computing Science Research
Bell Laboratories
610 Mountain Avenue
Murray Hill, New Jersey 07974

Dr. C. S. Roberts, Head
The Interactive Computer Systems
Research Department

Bell Laboratories
Holmdel, New Jersey 07733

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachuse11s achusetts 02138

Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

Jerry D. Durchfiel
R- Clements

McKenzie
McQuillan
Tomlinson
Waiden

A.
J.
R.
D.

Burroughs Corporation

Dr. Wayne T. Wilner, Manager
Burroughs Corporation
3978 Sorrento Valley Boulevard
San Diego, CA 92121

Mr. David H. Dahm
Burroughs Corporation
Burroughs Place
P. 0. Box 418
Detroit, Ml 48232

Mr. B. A. Creech, Manager
New Product Development
Burroughs Corporation
460 Sierra Madre Villa
Pasadena, CA 91109

Cahledata Associates

Mr. Paul Baran
Cabledata Associates, Inc.
701 Welch Road
Palo Alto, CA 94304

California, University - Irvine

Prof. David J. Färber
University of California
Irvine, CA 92664

California. University - Los Angeles

Professor Gerald Estrin
Computer Sciences Department
School of Engineering and Applied Science
Los Angeles, CA 90024

Professor Leonard Kleinrock
University of California
3732 Boelter Hall
Los Angeles, CA 90024

Mr. William E. Nay!or
University of California
3804-D Boelter Hall
Los Angeles, CA 90024

Collins Radio Group
1200 N. Alma Road
Richardson, JTexas 75080

Mr. Don Heaton
Mr. Frederic Weigl

Defense Communications Engineering

Center

Dr. Harry Helm
DCEC, R-520
1860 Wiehle Avenue
Res ton, VA 222090

General Electric

Dr. Richard L. Shuey
General Electric Research

and Development Center

P- 0- Box 8 v . i97m Schenectady, New York 12301

Dr< A. Bell Isle
General Electric Company
Electronics Laboratory
Electronics Park
Syracuse, New York 13ZÖI

Mr. Ronald S. Taylor
General Electric Company
175 Curtner Avenue
San Jose, CA 95125

General Motors Corporation
Computer Science Department
Serai Motors Research Laboratories
General Motors Technical Center
uf^rrpn. MI 48090

Dr G-orge C. Dodd, Assistant Head
Sr! FredKrull, Supervisory Research

Engineer
Mr. John Boyse, Associate Senior

Research Engineer

Hawaii, University of
The ALOHA System
2540 Dole Street, Holmes 486
Mnnnlulu. Hawaii Mgi

Professor Norman Abramson

ones Airodft Company

Mr. Knut S. Kongelbeck, Staff Engr.
Hughes Aircraft Company
8430 Fall brook Avenue
Canoga Park, CA 91304

Mr. Allan J. Stone
Hughes Aircraft Corporation
Bldg. 150 M.S. A 222
P. 0. Box 90515
Los Angeles, CA 90009

Hughes Aircraft Company
Attn: B. W. Campbell 6/El 10
Company Technical Document Center
Centinela and Teale Streets
Culver City, CA 90230

IBM

Dr. Patrick Mantey, Manager
User Oriented Systems
International Business Machines Corp.
K54-282, Monterey and Cottle Roads
San Jose, CA 95193

Dr. Leonard Y, Liu, Manager
Computer Science
International Business Machines Corp.
K51-282, Monterey and Cottle Roads
San Jose, CA 95193

Mr, Harry Reinstein
International Business Machines Corp,
1501 California Avenue
Palo Alto, Ca 94303

Illinois, University of

Mr. John D. Day
University of Illinois
Center for Advanced Computation
Ti4 Advanced Computation Bldg.
Urbana, Illinois 61801

Institut de Recherches d'Informatique et
d'Automatique (1RIA)

Reseau Cyclades
78150 Rocquencourt
France

Mr. Louis Pouzin
Mr. Hubert Zimmerman

_

Infonihition Sciences Institute,
university of Southern California

4676 Admiralty Way
Marina, Del Rey> CA 90291

Dr. Marty J. Cohen
Mr. Steven D. Crocker
Dr. Steve Kimbleton
Mr. Keith Uncapher

National Physical Laboratory
Computer Science Division
IQS^ington, Middlesex, England

Mr. Derek Barber
Dr. Donald Davies
Mr. Roger Scantlebury
Mr. P. Wilkinson

London, University College

Professor Peter Kirstein
UCL
Department of Statistics &
Computer Science

43 Gordon Square
London WC1H OPD, England

Massachusetts Inititute of Technology

Dr. J. C. R. Licklider
MIT
Project MAC - PTD
5^5 lechnology Square
Cambridge, Massachusetts 02139

MITRE Corporation

Mr. Michael A. Padlipsky
MITRE Corporation
1820 Dolly Madison Blvd.
Westgate Research Park
McLean, VA 22101

Network Analysis Corporation
Beechwood, Old Tappan Road
Glen Cove, New York 11542

Mr. Wushow Chou
Mr. Frank Howard

National Bureau of Standards

Mr. Robert P. Blanc
National Bureau of Standards
Institute for Computer Sciences
and Technology

Washington, D. C. 20234

Mr. Ira W. Cotton
National Bureau of Standards
Building 225, Room B216
Washington, D. C. 20234

National Security Agency
9800 Savage Road
Ft, Meade, MD 20755

Mr. Dan Edwards
Mr. Ray McFarland

Norwegian Defense Research Establishment
P. 0. Box 25
2007 Kjeller, Norway

Mr. Yngvar 6. Lundh
Mr. P. Spilling

Oslo, University of

Prof. Dag Belsnes
EDB-Sentret, University of Oslo
Postbox 1059
Blindern, Oslo 3, Norway

Rand Corporation
1700 Main Street
Santa Monica, CA 90406

Mr. S. Gaines
Mr. Carl Sunshine

Rennes, University of

M. Gerard LeLann
Reseau CYCLADES
U.E.R. d'Informatique
B. P. 25A
35031-Rennes-Cedex, France

fn^ 'trfrrir"'^

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, _CA 94025

Ms. E. J. Fein!er
Augmentation Research Center

Dr. Jon Postel
Augmentation Research Center

Mr. D. Nielsen Director
Telecommunication Sciences Center

Dr. David Retz
Telecommunication Sciences Center

System Development Corporation

Dr. G. D. Cole
System Development Corporation
2500 Colorado Avenue
Santa Monica, CA 90406

Telenet Communications, Inc.
1666 K Street, NW
Washington, D. C. 20006

Dr. Holger Opderbeck
Dr. Lawrence G. Roberts
Dr. Barry Wessler

Transaction Technology Inc.

Dr. Robert Metcrlfe
Director of Technical Planning
Transaction Technology Inc.
10880 Wüshire Blvd.
Los Angeles, CA 90024

Defense Communication Agency

Dr. Franklin Kuo
4819 Reservoir Drive
Washing on, D. C. 20007

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Mr. David Boggs
Dr. William R. Sutherland

STANFORD UNIVERSITY

Digital Systems Laboratory

Mr. Ronald Crane
Mr. Yogen Dalai
Ms. Judith Estrin
Professor Michael Flynn
Mr. Richard Karp
Mr. James Mathis
Mr. Darryl Rubin
Mr. Wayne Warren

Digital Systems Laboratory Distribution

Computer Science Department - 1 copy
Computer Science Library - 2 copies
Digital Systems Laboratory Library - 6 copies
Engineering Library - 2 copies
IEEE Computer Society Repository - 1 copy

Electrical Engineering

Dr. John Linvill

, —■— ^.^..„^...-„.ic^as '^■^.i^,^—.:. Bai

