ADAOR43<0U

o~

-

(1;:{’Single-Connection TCP Specification

E‘S‘l—(“L'HITV CLASSIFICATION OF THIS PAGE {(When Data Entared)

it (/&

REPORT DOCUMENTATION PAGE

READ INSTRUCT

BEFORE COMPLETING FORM

N

F

J4ILE lend Sublilie)- . -

(Preliminary Documentation) e

1 REPORT NUMBER 2 GQ)IT W—HZC/?I[NT'S CATALOG NUMBER
i te No. 75)TN -
Technical No 4 1 :7:4/ ;LE:'

9, YYPE OF REPORT & PERIOD COVERED

p <;;z?%echnical/ﬂbtg7//

.

MDA903

-~ R s ol
e L 5
6. PERFORMING ORG. REPORT NUMBER
- : ”"\ -
1. AN HOR(s) e
0 J [| S 9 conFRacT Or ORANT uMBERls;
/i — AN

-76C-0093, /

9 PERFORMING ORGANIZATION TWAK

Stanford Electronics Laboratexgies. :
Stanford University /

Janes E.[Mathis / {/‘/’D";T: l S/]\Z/ARPA Order_ #2494
= L - [¢ "“j
.ravevess— S .-

10. PROGRAM ELEMENT, PROJECT, TASK

AREA

6T10

& WORK UNIT NUMBERS

Y,
Stanford, CA 94305 (/=) " /7 /

i
71 CONTROLLING OFFICE NAME AND-RODHees ¥

12. REPORT DATE 13. NO. OF PAGES

January 25, 1P76 3]

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Ave., Arlington, VA 22209

14 MONITORING AGENCY NAME & ADDRESS (it diff. from Controliing Office)
Mr. Philip Surra, Resident Representative

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

Office of Naval Research
Durand 165, Stanford University

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this repert)

U. S. Government

Reproduction in whole or in part is permitted for any purpose of the
[DRTRBUTION STATEMENT K |

N 1
Q’ Approved for public relecsey
_Distribution Utémni.g

DDC

17 DISTRIBUTION STATEMENT (of the abstract rerecrirrBtocie2Orrtdrtterert¢

rereTYOT”

18 SUPPLEMENTARY NOTES

D

N\

AN
G

19 KEY WORDS {Continue on reverse side if necessary and identify by block number)

Y

ALY G
| B

Interconnection, communication protocols, packet radio network, ARPANET

b\o ABSTRACT tContinue on reverse side if necessary and identify by block number)

An implementation scheme is described for a single connection, user internetwork
Transmission Control Program using the Cerf-Kahn protocol.
a dedicated micro-processor and supports low delay, low through-put interactive
traffic. In this preliminary documentation a detailed implementation specifica-
tion is presented in an ALGOL-1ike notation, along with a brief discussion of its
functions, user interface, control variables and data structures.

It is designed for

i

DD ... 1473 UNCLASSIFIED

A !
‘.—r’
ad

~_EDITION OF 1 NOV 65 IS OBSOLETE / z:., V s isfuf'TY,CFAS,S'F'CﬁUON OF THIS PAGE (WA npgm’ Enterad)

e

MS;IOI for l/

LM White Section’ m/

00C Bulf Section O

UNAHROYACED 8

JUSTICICATION g ; ifi

,4b/ Single-Connection TCP Specification

NS KXY ... | (Preliminary Documentation)
DISTRISUTIS! AV ALATILITY COrES

_fgu. e an T’“Cut’ : J. E. Mathis

Digital Systems Laboratory

]
i
'A Stanford University
: Stanford, California 84305

January 25, 1876

Technical Note #75

d
DIGITAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Computer Science
Stanford University
Stanford, California

This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 2494, Contract No, MDAS83-76C-8833.

The vieus and conclusions contained in this document are those
of the author and should not be interpreted as necessarily representing
the official policies, either express or implied, of the Defense
Advanced Research Projects Agency or the United States Government.

TCPB implementation

Table of Contents

Section

Subsection
1. INTRODUCTION e
2. DESCRIPTION of TCP FUNCTIONS .
3. USER-TCP INTERFACE
4, TCP STRUCTURE .

4.1 OPERATING ENVIRONMENT .
4,2 NETWORK INTERFACE
4.3 PROCESS INTERACTION

4.4 CONNECTION CONTROL VARIABLES

4.5 INPUT PACKET HANDLER

5. USER INTERFACE LOGIC DOCUMENTATION .
6. TCP INPUT PROCESS LOGIC DOCUMENTATION

7o TCP OUTPUT PROCESS LOGIC DOCUMENTATION

8. ARPANET INTERFACE LOGIC DOCUMENTATION .

References

=g L

January 25, 1976

Page

o ¢ S W W

1 INTRODUCTION

This document describes 2 preliminary implementation scheme for
a sirgle-connection internetuork Transmission Control Program [TCP). 1t
is designed to operate on a dedicated small computer with minimal
operating system assistance and to support low delay, low through-put
interactive traffic. Although assumed to be attached to the ARPANET via
a local or remote host Interface (1], only minimal changes are
necessary for connection to the Packet Radio Network using the Channel
Access Protocol [2].

Detailed knowledge is assumed of the internetwork TCP protocol
and the reader is referred to the official specification [3) (4] for
justification and further discussion of the details of the protocol.

NOTE: There have been several changes to the protoco! that are
not listed in the December 1374 revision [3). ' Among these, addition of
the Beginning Of Segment (BOS) bit and Timestamping in effect [T) bit in
the control information word; addition of a 32 bit fisld for
timestamping information and sending an ACKnouledgement for FIN
requests. The final specification will be available by February, 1976.

2 DESCRIPTION of TCP FUNCTIONS

For maximum size reduction, only the single-connection user
subset of functions are implemented. Unsupported functions are:

1) Unspecified sockets - On doing an OPEN, the user
must fully specify the destination NET, TCP and PORT
socket addresses, eliminating connections analogous to
the NCP "listening" connection needed only by server and
logger processes. (To permit a host to provide service
serially through a single channel TCP, this function may
be implemented leter.)

2) Re-assembly of fragmented segments - Packets
must have both the Beginning Of Segment [BOS] and End Of
Segment [EOS) control bits zsserted. 1f not, on passing
through a gateway, the segment was broken into
fragments; it should be discarded without processing.
The re-construction of segments has yet to be resolved;
but it can be avoided by limiting segment length (by
receive window size control) to less than the gateuay
fragmentation threshold. Though in the future, it may
pecome necessary to implement it,

3) ECHO and TRASH special functions - Being solely
for experimentation purposes, ECHO and TRASH special

TCPB implementation January 25, 1976

functions are not implemented. Messages containing
these special functions are ignored. (If the cost
penalty, mainly storage capacity, is not too high, these
functions will be irmplemented later.)

4) Timestamping - The timestamping control bit is
ignored and the contents of the returning packet's
timestamp field will be undefined.

S) Parameter change/Status socket - Being strictly
single-connection, there is no Parameter change/Status
socket. {(Note - this socket is distinct fror the Well
Knoun Socket 8.)

. Except for these restictions, the TCP insures end-to-end
acknouledgement, error correction, duplicate detection, sequencing and
flow control; providing the user process a reliable, error-free logical
communications channel,

3 USER-TCP INTERFACE

Five primitives comprise the USER/TCP interface. It is intended
that these routines be called via a subroutine jump or supervisor call
and indicate command acceptance or rejection on exit. When complets,
the user wWill be notified of the final disposition of OPEN, SEND and
CLOSE requests. This allous user processing to proceed asynchronously
and in parallel with TCP processing.

1) OPEN CONNECTION - Used to establish a
connection, the OPEN primitive is passed the address of
the foreign and local socket ids. If a connection
already exists, the OPEN is rejected and an error
returned to the caller. After checking the request and
socket ids, the control variables are initialized and an
Initial Sequence Number [ISN) is choser. Since wuwe can
remember the last sequence number used on the previous
connection, i1t is not necessary to choose a clock-based
ISN, but rather just continue. (Cf. (3] section 4.3.1
for more on ISN seiection.) After notifying the Net
Output Process to send a SYN, control is returned to the
caller. When the connection is ready for use, the user
process is notified.

2) SEND LETTER - This call causes the data
contained in the user buffer to be sent on the
connection. The buffer address and length are stored in
a common data area, the output process notified of work
pending and control returned to the caller. After the

TCPB implementation January 25, 1976

data has been packetized and sent {but not
ACKnouledged), the u-er process is notified. Letter
boundaries are ignored, every data packe! has the End Of
Letter (EOL) bit set. If the connection is not
established, the data is queued for sending later. There
can be at most one outstanding send. The mechanics of
sending data is covered in section xxx,

3} RECEIVE LETTER - The user process is notified
when data arrives on the connection and it is moved into
user buffers by a RECEIVE. RECEIVE is called with a
buffer pointer and maximum byte count and returns the
actual byte count. Again, letter boundaries are
ignored. After delivery to the user, an ACKnowledgement
is sent to the sender. The exact details of moving data
into the user buffer is covered later in section xxx.

4) INTERRUPT - A cepecial control signal is sent to
the destination indicating an interrupt condition., Al
unsent or unacknowledged data wili be flushed. [t the
connection is not established, an error is returned.

5} CLOSE CONNECTION - This command causes the
connection to be closed. 1f it is not open, an error is
returned. Pending unsent or received data is flushed,
no more accepted and a FIN sent to the remote TCP.
Control is returned to the caller and the user is
notified when the close is finalized. The exact process
of closing a connection is covered later in section xxx.

4 TCP STRUCTURE

4.1 OPERATING ENVIRONMENT

The TCP is designed to operate under a very simple operating
system structure. Each process has a process control table containing
space for its run-time stach, status save area and an external event
scoreboard. To signa! a process of some event, the signalling process

sets a bit in the called process' scoreboard. Each process

responsible for periodically polling its scoreboard and acting
appropriately. After processing the signal, the process then clears the
flag bit. Each process runs to completion and context suitching happens
only wuhen a process explictly releases control. The orly operating

system primitive is one that causes the context to suitch to
active process. All processes run at the same priority level.

aE i Ty e s el A

the next

TCP@ implementation January 25, 1976

Using a scoreboard has three important restrictions. It is not
possible to maintain temporal ordering of signals, multiple signals of
the same type are condensed into one, and it is not possible to transfer
any data along with the signal, The first two restrictions are not
critical to the TCP implementation: indeed, a TCP implementation running
under a normal message queueing operating sustem must go to some effort
to remove extraneous signals resulting from process asynchrony. The
third restriction requires putting data associated with an event in a
"global" locaion knoun to both processes.

There must also be 1/0 devices and their associated device
driver routines. It is assumed that the devices are interrupt driven,
though programmed device polling is possible at reduced data rates. The
following devices are needed:

1) Net input device -
2) Net output device -

3) Hardware timer -

4.2 NETWORK INTERFACE

To allow the TCP to be used uwith computer netuorks of different
structure and interfacing requirements, all network dependent code is
concentrated in three routines. Khile designed for the ARPANET and
Packet Radio Network this partitioning should be adequate for most other
netuwork confiqurations, (The most obvious exreption is the Very Distant
Hosts in the ARPANET; which require an additional watchdog process to
provide control functions for the IMP-HOST line protocol used (C¢. [1]
appendix F).) The routines and their functions are:

INITIALIZENETWORK -~ Called on system inttialization, this routine
initializes the device driver routines and performs the
HOST-NETWORK start-up sequence. It returns when the network
is ready to deliver/accept messages to/from the host
computer.

NETINPUT -~ Passed the address of a packet buffer, this routine
initiates action to accept a message from the network. It
performs the network-dependent processing aof the NETWORK-
HOST message header, e.g. in the ARPANET, it would verify
that the message is of type B (regular packet) and not a
special [MP-HOST message. Control returns to the caller
when a valid message is received.

NETOUTPUT - Called with the address of a message to send, this
routine performs the netuork-dependent formatting of the
HOST-NETWORK message header. Transmission of ths message

TCPB implementation January 25, 1976

into the netuwork s started and control returned to the
caller when the output is completed.

4.3 PROCESS INTERACTION

The TCP is composed of tu1O processes, appropriate device drivers
and a set of user-callable routines sharing a common data base, the
Transmission Control Block. Each process in non-interruptable, running
to completion, and communicates via signal fiags. The TCP INPUT process
handles incoming messages and either rotifies the user process of neun
data received ur signals the TCP OUTPUT process to send error packet or
various control packets. The input process is the only process that
receives data frcm the net and |ikewise, the output process is the only
sender of data to the network. The TCF OUTPUT process, on command,
sends error packets or control packet on reguest uf{ the input process or
data on request of the wuser process. It also is responsible for
‘retransmitting unACKnouledged data periodically. The Network device
driver also communicates via signals, notifying the caller of "done."
The harduare timer interrupts the computer periodically and its device
driver signals the output process for packet retransmission.

4.4 CONNECTION CONTROL VARIABLES

All of the information local to a specific connection is kept in
a Transmission Control Block (1CB). The follouing are the fields of the
1CB and their length.

DHOST - (16 bits) The local PSN address of the destination host or
gateway. For simplicity, it is assumed that the local host
address is the same as the TCP address if in the local
network. Otherwise, the destination NET id is wused to
determine the local gateway address.

DNET - (8 bits) The destination network ld. {Cf., [3] section
4.2.1 for list of assigned network ids.)

pTCP - (16 bits) The destination TCP id.

DPORT - (24 bits) The destination PORT id. Along with DNET and
pDICP, they form the destination socket.

GNET - (8 bits) The netuork id of the local netuork.
STCP - (16 bits) The TCP id of the local TCP.

SPORT - (24 bits) The local PORT id. Along with SNET and STCP, they
form the local socket number.

TCPB implementation

January 25, 1976

CONNECTIONSTATE - (8 bits) The actions performed by the TCP depend
upon uwhat has happened previously. There are six
"connection states" in a user TCP. They are:

1) CLOSED - The connection, as such, does not

exist.,

2) SYNSENT - The user prccess has done an OPEN and
a SYN has been sent to the foreign TCP in an attempt to
establish a connection. MWe wait for the ACKnowledgement
of our SYN pbefore going to the ESTABLISHED state and
notifying the wuser process that the connection s
usable,

3) SIMULINIT - After sending a SYN to establish a
connection, we received a SYN without an ACKnouledgement
of our SYN from the foreign TCP. This represents an

_attempt by both ends to open the connection

simul taneously. We send an ACKnouledgement of the SYN
we received and initialize the connection dependent
variables. HWe wait for the ACKnowledgement of our SYN
before going to the ESTABLISHED state and notifying the
user process that the connection is usable.

4) ESTABLISHED - The three-way handshake to
synchronize the connection was successful and the
connection is usable for data transfers.

5} FINWAIT - The user process nas done a CLOSE and
we have sent out the FIN. We wait for the FIN to
tinreout or to receive a FIN and ACKnowledgement of our
FIN before going to the CLOSED state.

6) FINRECEIVED - We have received a FIN from the
foreign TCP. The user is notified of the remote close
and we send a FIN and ACKnowledge the receive FIN. MWe
now walt for an ACKnowledgement of our FIN or its
timeout before going to the CLOSED state.

RCVSEQ - .(32 bits) The next sequence number expectad

RCYWS - (16 bits) The receive window size.

INITSEQ - (32 bits) The initial receive sequence number used by the

foreign TCP. This is wused to detect old duplicates
SYN that estanlished the connection.

SNDSEQ - (32 bits) The next sequence number to send.

SNDWS - (16 bits) The send window size.

EESNTSEEEe t ==

of

the

=~

TCP8 implementation January 25, 1976

LASTWSEQ - (32 bits) The last sequence number used to undate send
windou.]

LSWEDGE - (32 bits) The left send windou edge sequence number,

INPUTHEAD - (16 bits) The pointer to the head of the raceive data
reassenbly ring buffer,

BUFFERPOINTER - (16 bits) The address of the stari of the user's
serd buffer.

BUFBYTECOUNT - (16 bits) The number of bytes in the user's send
ouffer. The byte count and buffer pointer are set . when the
user deces a send and are updated as the output process
~emoves and sends data.

RTXWAICUP - (16 bits) Count of the number of retransmissions sent
vithout receiving any new ACKs. It is cleared uhen a valid
ACK comes in. When the number of retransmissions exceeds a
preset value, the user is notified of "TCP not responding. "

RTXPOINTER - (16 bits) The pointer to the head of the
retranenission ring buffer,

RTXCOUNT - (16 bite) The number of bytes of data in the
retransmission asuffer.

RTXCONTROL - (15 bits' It contains the control field of the control
packet qusued up to be retransmitted. If zero, then no
control packet queued up. Only one control packet can bae
queued for rotransmission.

RTXCNTRLSEQ-- (32 bits) The send sequence number of the control
packet queued up to bc retransmitted,

RTXDATASEQ - (32 bits) The send cequence number of the data byte at
the head of the retransmission ring buffer.

In addition, there are several ssembly-time constants that set
the size of various buffers.

MAXPACKETSIZE - The maximum number of data bytes that can be put in
the text field of a internet packet. MAXPACKETSI ZE,
internetwork header length and length of local PSN control
fields determine the size of the send packet buffer,

MAXRCYWS - The maximum receive Window size is set by the size of
the reassembly ring buffer.

MAXRTXCOUNT - The maximum amount of data queved up to be
retransmitted. This determines the size of the
retransmission ring buffer.

TCP8 implementation January 25, *J78%

There are also several buffers associated with the connection.
They are:

RCVPKTBUFFER - The buffer that incoming packets are uritten into by
the network device driver,

REASSMBUFFER - The ring buffer where input data is reassembled and
stored pending deliver to the user process,

REASSMFLAGS - A boolean vector that indicates which elemente of the
reassembly buffer contain a data octet.

SENDOPKTBUFFER - The buffer that outgoing packets are constructed in
and sent out by the network device driver,

RTXBUFFER - The buffer where data waiting to be ACKnowledged is
enqueued, 0

4.5 INPUT PACKET HANDLER

After initializing the local netuwork interface, the TCP INPUT
process is awakened uhen a packet arrives from the network, The packet
is checked for an internetwork message; malformed packets are simply
discarded. The wvalidity check involves verifying that the message is
long enough to contain the TCP packet header and ‘he packet header
version number is correct. The BOS and EJS control bits must both be
asserted; the current implementation can not handle fragmented segments.
The checksum is finally calculated and detectably damaged packets are
discarded; they will be re-transmitted by the sender.

After validation, the message is checked for special function or
error information and processed appropriately. In this preliminary
specification, their handling is not detailed; but the TCP mus* be
sensitive to RESET ALL, RESET and QUERY special functions and all error

conditions.

Packets without control dispatch refer to specific connections:
the foreign and local sockets are checked against those of the single

connection we servize, If different, an error message (connection non-
existent) is constructed and queued to be sent by the Net Output
Process. :

1§ in the SYNSENT state and we receive a SYN with INT, DSN or
FIN then the SYN is malformed and an error is returned. 1f the packet
acknouledges the SYN we sent, the connection is synchronized. UWe
ACKnowledge the received SYN, initialize the Transmission Control Block
and notify the user of connection establishment. 1f instead of an ACK,
the packet contains only a SYN, then we have a simultaneous attempt by
both sides to open the connection. (Cf. [3] section 4.3.2 for details
of SYN collision.) The new connection state is SIMULINIT,

e e e e e e sy

RiE - o T =T aEe e Sl = St

R N T

TCPQ impiementation January 25, 1976

In the SIMULINIT state, if we receive a SYN it is first checked
to see if it is a duplicate of the SYN that caused the state change to
SIMULINIT. If so, then just ACKnouledge receipt. Otherwise we have tuwo
different SYNs and can not tell which is valid, so we send back an errcr
and reinitialize, If instead of a SYN, ue get an ACKnowledge of our
SYN, the connection has been established by a four-uay handshake.
Notify the user and process any data that may accompany the ACK.

Once the connection is established, errors are sent for all SYNs
received, except for duplicates of the original.

TCFQ implenentation January 25, 1976
5 USER INTERFACE LOGIC DOCUMENTATION

OPEN (OPENBLOCKPOINTER) :
i f CONNECTIONSTATE notequal CLOSED then
return (connection already open error)

(rove socket addresses into control block)

(convert DNET,DTCP address into local PSN nost/gateuay address)

RCYWS: =MAXRCVUWS

INITCONNECTION

comment- return to caller. notify user process when connection
becomes established or on error conditicn.

return (ok)

SEND t'IFFERADDRESS, BUFFERLENGTH) :
comment- put buffer pointer and length into TCB for ssnd process

i f BUFBYTECOUNT notequal @ then
returr; (too many SENOs error)

else
begin
PUFFERPOINTER: «BUFFERADORESS
BUFBYTECOUNT: =BUFFERLENGTH
(notify TCP OUTPUT PROCESS to send data)
end

return (ok)

INTERRUP™
i f CONNECTIONSTATE - tcqual ESTABLISHE™ then
return (connection not open error)

(notify TCP OUTPUT PROCESS to flush send data)
(notify TCP OUTPUT PROCESS to send INT)
return (ok)

RECEIVE (BUFFERADDRESS, BUFFERLENGTH, result BYTECOUNT) 4
' if CONNECTIONSTATE notequal ESTABLISHED then
return (connection not opened error)

PTR: «BUFFERADDRESS
BYTECOUNT: -8

while (BYTECOUNT < BUFFERLENGTH) and REASSMFLAGS (INPUTHEAD) do

begin
user buffer (PTR) :« REASSMBUFFER (INPUTHEAD)

10

T R T e —

TCF@ 'mpiementation January 25, 1375

REASSHFLAGS (INPUTHEAD) : = FALSE

PTR: =PTR+1

INPUTHEAD := (INPUTHEAD+1) MOD MAXRCVUWS
BYTECOUNT: =BYTECOUNT+1

end

RCVSEQ := RCVSEQ + BYTECOUNT
(notify TCP OUTPUT PROCESS to send ACK)

i f REASSHMFLAGS (INPUTHEAD) then
(notify user process of data remaining to be received)

return {ok)

CLOSE:
case CONNECTIONSTATE of
=SYNSENT:
CELETECONNECTION

=SIMULINIT:
=ESTABLISHED:
begin

CONNECTIONSTATE: «FINWAI T

(notify TCP OUTPUT PROCESS to flush send data)
(notify TCP QUTPUT PROCESS to send FIN)

end

=CLOSED:
=FINWAIT:
=F INRECE I VED:

return (ok)

11

TCP@ implementation January 25, 1976

b TCP INPUT PROCESS LOGIC DOCUMENTATION

TCP INPUT PROCESS:
(wait for network interface initialization)

LOOP: NETINPUT (RCVPKTBUFFER)

if (packet length greaterthan or equal minimum permitted) and
(packet header version number equal 8) then
begin
comment- packet verified as a TCP message.
if (packet BOS bit =1 and packet EOS bit =1) then
begin
comment- unfragmented message, process.
i f CHECKSUM (RCVPKTBUFFER) = B then
comment- checksum ok, packet not damaged.
if (packet Control Dispatch bits equal 8) then
HANDLEREGULARPACKET
else
HANDLESPECTALPACKET
end
else
comment- fragmented message. code to do fragment
reassembly goes in here. but for now just...
(log error)
end
else
comment- garbage packet
(log error)

goto LOOP

CHECKSUM (PACKETPOINTER):
comment- computes the 16 bit 1's com :ment sum of the header
and text fields of the packet. . the sum is @, then the
packet is not (hopefully!) damaged.

HANDLEREGULARPACKET:
i f ADDRESSCHECK then
begin
comment- packet is for this cornection. process according to
connection state.

case CONNECTIONSTATE of
=SYNSENT:
if (packet SYN bit =1) then
begin
if (packet FIN, INT or OSN bits =1) then

12

s S

TCP@ implementation January 25, 1976

comment- should not have these control bits set,
return unacceptable SYN error.
XMITERROR (EFP+USYN)

else

if (packet ACK bit =1) then

begin

it ACCEPTABLEACK then
begin
SETICB
(notify TCP OUTPUT PROCESYL to send ACK)
CONNECTIONSTATE: =ESTABLISHIZO
(notify user of conrection established)
HANDLEACK
end

else
XMITERROR (EFP+USYN)

end

eise

commeni- siindi taneous atlenpils (o open the
connection,

begin

CONNECTIONSTATE: =SIMULINIT

SETTCB

(notify TCP OUTPUT PROCESS to send ACK)

end '

end

=SIMULINIT:
~if (packet SYN bit =1) then
begin
if (packet seq number equal INITSEQ) then
comment- duplicate of first SYN, don't send an
error, but force an ACKnowledgement.
{notify TCP OUTPUT PRNCESS to send ACK)
else
begin
~omment- we have received two different SYNs and
can't tell which to believe. 8o send error
message and reinitializs connectlion and try
again,
XMITERROR (EFP+USYN)
INITCONNECTION
end
end
else
if (packet ACK bit =1) then
if ACCEPTABLEACK and INRCVWINDOW then
begin
comment- acknowledged our SYN, so connection
nod synchronized,
CONNECTIONSTATE: =ESTABLISHED
{notify user of connection established)

13

R e T TR T o e e o A e T R e R e e SR

= T o o b s Gt Sy et 1

TCPB implementaticon January 25, 1976

NORMALCASE
end

=ESTABLISHED:
if (packet SYN bit =1) then
begin
if (packet seq number equal INITSEQ) then
begin
comment- duplicate of the original SYN that
established connection, force an ACK and
process any data.
(notify TCP OUTPUT PROCESS to send ACK)
i¢ INRCVWINDOW then
NORMALCASE
end
else
comment- unacceptable SYN,
XMITERROR (EFP+USYN)
cind
else
vegin
if INRCVUWINCOW then
NORMALCASE
else

(notify TCP OUTPUT PROCESS to send ACK)
end

« INWAIT:
.f INRCVUWINDOW and (packet FIN bit =1) then
' begin
comment- ue have sent a FIN and now have received a

FIN. ACKnouledge FIN and see if can delete the
connection.

RCVSEQ: = (packet seq number) + (packet text length)
RCVSEQ: =RCVSEQ + CONTROLLENGTH (RCYPKTBUFFER)
CONNECTIONSTATE : =F INRECE 1 VED

{notify TCP OUTPUT PROCESS to send ACK)

if (packet ACK bit = 1) and ACCEPTABLEACK then
- HANDLEACK

end

=FINRECE1VED:
if INRCVWINDOW and (packet ACK bit =1) then
i$ ACCEPTABLEACK then
HANDLEACK

‘end
al

fe
XMITERROR (EFP+NONX)

return

14

R T e e B e e

TCPB implementation January 25, 1976

INRCYWINDOW:
comment- determines if any part of the packet that just came In

1ies inside the receive wWindou.

ACCEPTABLEACK:
comment- return TRUE if packet ACKs something we sent that has

rot yet been ACKed, i.e. LSWEDGE <= ACKfield <= SNOSEQ

NORMALCASE:
comment- this processes the normal case of putting new data into
he right place in the circular reassembly buffer. also
nrocesses other possible things in packet.

if (pack=t ACK bit =1) and ACCEPTABLEACK then
HANDLEACK

if (packet IN1 bit = 1} then
HANDLEINT

if (packet text length greater than 8) then
HANDLEDATA

it (packet DSN bit = 1) then
RANDLEDSN

if (packet FIN bit = 1) then
HANDLEF IN

return

HANDLEACK:
comment- correlates the ACK that came in (and window, etc.) with

what We have already put in the control block. it ies where
confirming ACKs will remove data from the Retransmiesion
ring buffer.

i ¢ PRECEDE (LASTWSEQ, (packet sequence number)) then
begin
comment- update the send window size | f this is the latest
packet we have seen.

SNDUS := (packet window size field)
LASTWSEQ := (packet sequence number)
end

comment- convert next sequence number expected to sequence
number of last octet ACKnou!edged.

TMPSF(: = (packet ACK field) - 1

15

TCP@ implementation January 25, 1976

SETTCB:

LSWEDGE := (packet ACK field)

i f RTXCONTROL notequal 8 then
comment—‘see if control ACKed.

i f PRECEDE (RTXCNTRLSEQ, THMPSEQ) then
begin
. comment- if our FIN was ACKed, delete the connection.
if RTXCONTROL = FIN packet then
. DELETECONNECTION
RTXCONTROL: =8
end

i f RTXCGUNT notequal 8 then
comment- see if any data is ACKed and if so, remove them

if PRECEDE (RTXUATASEQ, TMPSEQ) then
begin
COUNT: =TMPSEQ - RTXDATASEQ + 1
RTXCOUNT: «RTXCOUNT - COUNT
RTXPOINTER: = (RTXPOINTER + COUNT) MOD MAXRTXCOUNT
RTXDATASEQ: =RTXDATASEQ + COUNT
end

return

comment- fills received information into control block from
arriving SYN packet
RCYSEQ is the next sequence number expected,
SNOWS is the send window size,
INITSEQ is the initial receive sequence number used,
LASTWSEQ is the last sequence number used to update send

windou,

LSWEDGE is the left send window edge.

SNDWS: = (packet window size)
INITSEQ: = (packet seq number)
LASTUSEQ: = (packet seq number)
RCVSEQ: = (packet seq number) + 1

return

HANDLEDATA:

comment- this routine moves data from the input packet into the
circular reassembly buffer,

16

B T A)

TCPB implementation January 25, 1976

INPUTHEAD is a pointer to the head of the reassembly buffer,

RCVSEQ is the left receive window edge sequence number,

PINDEX is the index into the text field of the input packet

REASSMBUFFER is the actual reassembly buffer and

REASSHFLAGS is a vector of flags indicating which bytes in
the REASSMBUFFER contain valid user data.

MAXRCVUS is the length of the reassembliy buffer

PINDEX: =8
START:= (packet seq number)

it PRECEDE (START, RCVSEWD) then
begin
PINDEX: =RCVSEQ-START
START: «RCYZEQ
end

PTR:= [START - RCVSEQ + INPUTH:AD) 100 MAXRCVKS
AMOUNT:= MIN (RCVYUWS, (packet text length))

for I:~ PINDEX wuntil AMOUNT + PINDEX - 1 do
begin
REASSMFLAGS (PTR) : =TRUE
REASSMBUFFER (PTR):= (packet text field indexed by I)
PIR:= (PTR+1) MOD HMAXRCVWS
end

"it START = RCVSEQ then

(notify USER of new data received at left windou edge)

return

HANDLEINT:

RCVSEQ:= (packet seq number) + 1
(notify TCP OUTPUT PROCESS to send ACK)
(flush receive data)

(notify USER of INTERRUPT recquest)

return

HANDLEF IN:

T i S

comment- handle a valid FIN arrlving uhen connection ESTABLISHED

CONNECTIONSTATE : «F INRECE | VED
(notify TCP OUTPUT PROCESS to flush send data)

17

s e x £ e e e e e

TCP8 impiementation January 25, 1976

(notify USER of remote close)

RCYSEQ: = (packet seq number) + (packet text length)
RCYSEQ: =RCYSEQ + CONTROLLENGTH (RCYPKTBUFFER)
(rotify TCP OUTPUT PROCESS to send ACK)

fnotify TCP OUTPUT PROCESS to send FIN)

return

HANDLEDSN:
commznt- method for handling DSN is yet unresolved

return

ADDRESSCHECK
comment- returns TRUE if the packst is for the one valid
connecticn., the foreign NET, TCP & PORT address and the
local PORT addresses must agree with those of the open
connection, .

if CONNECTIONSTATE = CLOSED then
return FALSE

if (packet source NET field) notequal DNET then
return FALSE

if (packet source TCP field) notequal DTCP then
return FALSE

1f (packet source PORT field) notequal DPORT then
return FALSE

if (packet destination NET field) notequal SNET then
return FALSE

if (packet destination TCP field) notequal STCP then
return FALSE

1 f (packet destination PORT field) notequal SPORT then
return FALSE

else
return TRUE

HANDLESPECTALPACKET:
comment- handle special functions or error message packets

18

TCPB implementation January 25, 1976

case (packet control dispatch field) of

=SPECIALFUNCTION:
begin
case (packet control data octet) of
=RESETALL:
if (packet source TCP field) = DTCP then
RESETCONNECTION
=RESET:

i ADDRESSCHECK and ACCEPTABLEACK then
RESETCONNECTION

=QUERY:
i f ADDRESSCHECK then
(send status message)

end

=ERROR:
if ADDRESSCHECK then
begin
comment-~ process error directed at us.

case (paﬁket control data octet) of
=USYN:
i f CONNECTIONSTATE = SYNSENT then
(send a reset)
else
if CONNECTIONSTATE = SIMULINIT then
INTTCONNECTION

=NONX:

«INACC:

begin

case CONNECTIONSTATE of
=SIMULINIT:
IN]TCONNECTION

=ESTABLISHED:
if INRCVUINDOW then
(notify user process of errcr)

=FINWAIT:
i f INRCVUWINDOW then
DELETECONNECTION

end
end
return

19

TCPB implementation January 25, 1976

INJ TCONNECTION:
comment- initialize connectionr state

CONNECTIONSTATE: «SYNSENT

(notify TCP OUTPUT PROCESS to flush send data)

(flush receive data)

comment< pick initial sequence number by adding a constant to .
last sequence number used on previous connection,

SNDSEQ: =SNDSEQ + 1

(notify TCP OUTPUT PROCESS to send SYN)

return

CONTROLLENGTH (packet buffer):

comment- returns the number of octets used in the packet by
control functions.

COUNT: =8

if (packet SYN bit =1) then
COUNT: =1

if (packet INT bit =1) then

~ COUNT:=COUNT 41

if (packet FIN bit =1) then
COUNT: «COUNT +1

if (packet DSN bit =1) then
COUNT: =COUNT +1

return COUNT

PRECEDE (PARM1, PARMZ2):
comment- returns true if PARM2 - 2xx16 < PARM1. PARMl1 and PARM2
both being 32 bit numbers., this is just a special inuindou
test that returns true if PARM1 precedes or equals PARM2
in the circular sequence number space.

XMITERROR (ERROR CODE):
comment- send an =rror message to the remrte TCP. the error code
is passed as a parameter. see [3]) siction 2,4.,3 about
possible error codes.

{swap source & destination socket ids)

(put input packet sequence number in ACK field)
(set Control Dispatch to indicate error present)
(put ERROR CODE in control octst)

(notify TCP OUTPUT PROCESS to send error packet)
(wait for completion of error send)

(set error send complete flag to false)

return

28

TCP8 implementation

Jdanuary 25, 1976
DELETECONNECTION:

comment- set the connection state to CLOSED, notify the user of
close completion and flush all the queues and stuff.

CONNECTIONSTATE : «CLOSED

{notify user process of CLOSE completion)
(notify TCP OUTPUT PROCESS to flush send data)
return

TCPO implementation January 25, 1976

7 TEP OUTPUT PROCESS LOGIC DJCUMENTATION

TCP QUTPUT PROCESS:
comment- initialize Net interface.

INITIALTZENETWORK
{notify TCP INPUT PROCESS of initialization complete)

LOOP: (wait for work to process)

if (need to send error) then
begin
{move packet from RCVPKTBUFFER into SENDPKTBUFFER)
SENDPACKET
{notify TCP INPUT PROCESS that error has been sent)
{set need to send error flag to false)
end

if (need to flush send data) then
begin
comment- flush the send data and retransmission queues.
tirst remove any outstanding SENDs.

if (need to send data)l then
begin
(set need to send data flag to false)
{notify USER of eend completion, ready for new send)

end
BUFBYTECOUNT: =8

comment- then remove any data or control to be retransmitted
RTXCOUNT: =8

RTXCONTROL: =8

RTXWAKEUP: =8

{set need to retransmit data flag to false)

(set need to retransmit control flag to false)

{set need to flush send deta flag tc false)

end

if (need to send SYN, INT or FIN) then
begin
~omment- construct a packet and add the appropriate control
bits.

INITIALIZEPACKET
if (need to send SYN) then
) {set packet SYN bit =1)
if (need to send INT) then
{set packet INT bit =1)
if (need to send FIN) then
{set packet FIN bit =1)
{set need to send SYN, INT and FIN flags to false)

22

e St TR Py T R ey heg] e ey m——

== e e A T e e = oo S

TCP8 Implementation - January 25, 1976

SENDPACKET

RTXCNTRI.SEQ: =SNDSEQ

RTXCONTROL: = (packet control word fisld)
SNDSEQ: =SNDSEQ + CONTPOLLENGTH (SENDPKTBUFFER)

end :

if (need to send data) then
begin
. comment- SPACELEFT is amount of space left in send window

"RYXCOUNT is the number of bytes in the retransmission
queue,

MAXRTXCOUNT is the length of the retransmission queue
buffer,

RTXSPACE is amount of space left in retransmission queue

MAXPKTSIZE is maximum number of data bytes in packet

BUFBYTECOUNT is number of bytes in user send buffer

BUFFERPOINTER is address of start of user send buffer.

SPACELEFT: ="NDWS - SNDSEQ + LSWEDGE
RTXSPACE: =MA/,RTXCOUNT - RTXCOUNT
COUNT: = MIN (SPACELEFT, BUFBYTECGUNT, RTXSPACE, MAXPKTSIZE)
if COUNT notequal 8 then
begin
INITIALIZEPACKET
if RTXCOUNT = 8 then
RTXDATASEQ: =SNDSEQ
PKTPTR:= (index cf start of packet text area)
for l:=1 until COUNT o
begin
{copy byte from user buffer into packet)
- (copy buyte from buffer into retransmission queue)
BUFFERPOINTER: =BUFFERPOINTER+1
RTXPOINTER: = (RTXPOINTER + 1) MOD MAXRTXCOUNT
PKTPTR: «PKTPTR+1
BUFBYTECOUNT: =BUFBYTECOUNT -1
RTXCOUNT: =RTXCUUNT+1
end
(set packet text length equal COUNT)
SENDPACKET
SNDSEQ: =SNDSEN + COUNT
if BUFBYTECCUNT = 8 then
begin
(set need to send data flag to false)
(notify USER of send completion, ready for next send)
end
end

it (need to retransmit data) and CONNECTIONSTATE = ESTABLISHED
then
begin
comment- RTXWAKEUP counts the number of retransmissions
sent without receiving any ACKs back. it is cleared

23

o e o ok RN S it

TCP8 implementation

January 25, 1976

in HANDLEACK when a valid one comes in and incremented
by the clock interrupt routine before notifying the SEND

process to retiansmit data or control. if the data
remains on the retransmission queue too long, the user
is notified.

if RTXWAKEUP greaterthan iiaximum allowed then
comment- the foreign TCP has failed to ACK data that has
been waiting, it is assumed that the destination

is not responding

(notify USER that destination TCP not responding)
else :

begin
comment- nou retransmit the data queued up.

SPACELEFT: =SNDWS - RTXDATASEQ + LSWEDGE
COUNT:= HIN (SPACELEFT, RTXCOUNT, MAXPKTSIZE)
it COUNT notequal 8 then
begin
INITIAL1ZEPACKET
RTXPTR: =RTXPOINTER
PKTPTR:; =« {index of start of packet text area)
for li=l until COUNT do
begin
SENDPKTBUFFER(PKTPTR) : =-RTXBUFFER(RTXPTR)
PKTPTR: =PKTPTR+1
RTXPTR:= (RTXPTR+1) MOU MAXRTXCOUNT
end
{packet sequence number):= RTXDATASEQ
(packet text length):= COUNT

SENDPACKET
end
~end
{set need to retransmit data flag to false)
end
if (need to retransmit control) then
begin
if RTXCONTROL notequal B then
begin
if RIXWAKEUP greaterthan maximum allouwed then
begin
(notify USER that destination TCP not responding)
if RTXCONTROL equals FIN packet then
comment- a FIN packet has timed-out. so clouse
the connection anyway.
DELETECONNECTION
end
else
begin

SPACELEFT: «SNOWS - RTXCNTRLSEQ + LSWEDGE

24

TCPB implementation January 25, 1976

i f SPACELEFT greaterthan 8 then
begin
INITIALIZEPACKET
(packet sequence number):= RTXCNTRLSEQ
(packet control word):= RTXCONTROL
SENDPACKET
end
erd
end
(set need to retransmit control flag to talse)
end

it (need to send ACK) then
begin
INITIALIZEPACKET
SENDPACKET

end

goto LOOP

INITIALIZEPACKET:
comment- initialize the internet header

{move SNOSEQ into packet seq field)

{(move fore’yn socket id into packet)

(move local socket id into packet)

{move RCYUWS into packet)

(zei o .ut rest of packet header)

if (nzed to send ALK) then
begin
comment- piggyback ACK onto data or control packet
(set packet ACK bit =1)
(put receive left windou edge in ACK field)
{set need to send ACK flag to falsr)

end
return
SENDFACKET:
comment- calculate a checksum and put it in the header and then
sent it.

{(put zero in packet checksum iiald)

(packet checksum field):=CHECKSUM {(SENDPKTBUFFER)
NETOUTPUT (SENDPKTBUFFER)

retuvrn -

AR

TCPB implementation January 25, 1976

8 ARPANET INTERFACE LOGIC DOCUMENTATION

INITIALIZENETWORK::
comment- initialize the device drivers and send NOPs to IMP

(reset network device driver)
(construct IMP NOP message)
for l:=l until 4 do

begin

comment- send four NOPs to the IMP

(give NOP message to network driver to send)

(wait until message sent)
end

return

NETINPUT (PACKETBUFFER):
comment- start input from [MP

LOOP: (star't message input from IMP)
{uait until finished)

if (message not on experimental links, 155-158) then
goto LOOP

if (message type notequal regular or minimum effort) then
goto LOOP

comment- return message to TCP

return

NETOUTPUT (PACKETBUFFER):
(initialize IMP-HOST header)

(give to network device driver to send)
(wait until message sent)

return

26

TCP8

implementation January 25, 1978

References

Bolt Beranek and Neuman Inc., "Interface Message Processor," Report
‘No. 1822, December 1975.

R. C. Sunlin, "Packet Radioc Channel Access Protocol
Program," Packet Radio Note No. 144, 29 September 1975,

Y. Cerf, Y. Dalal, C. Sunshine, "Specification of
Internet Transmission Control Program," INWG Note No. - 72,
December 1874 (Revised). .

Y. Cerf, R. Kahn, "A Protocol for Packet Network
Interconnection,” IEEE Transactions on Communication, Vol. COM-
22, Number 5, May 1974,

27

ARPA

Director (2 copics)

ATTN: Program Management
Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

ARPA/IPT
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Robert Kahn
Mr. Steven Waiker

Bell Laboratories

Dr. Elliot N. Pinson, Head
Computer Systems Research Dept.
Bell Laboratories

600 Mountain Avenue

Murray 14311, New Jersey 07974

Dr. Samuel P, Morgan, Director
Computing Science Research
Bell Laboratories

610 Mountain Avenue

Murray Hill, New Jersey 07974

Dr. C. S. Roberts, Head

The Interactive Computer Systems
Research Department

Bell Laboratories

Holmdel, New Jersey 07733

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138
Mr. Jerry D. Burchfiel

Mr. R. Clements

Mr. A. McKenzie

Mr. J. McQuillan
Mr. R. Tomlinson
Mr. D. Walden

Burroughs Corporation

Dr. Wayne T. Wilner, Manager
Burroughs Corporation

3978 Sorrento Valley Boulevard
San Diego, CA 32121

DISTRIBUTION

Mr. David H. Dahm
Burroughs Corporation
Burroughs Place

P. 0. Box 418
Detroit, MI 48232

Mr. B. A. Creech, Manager
New Product Development
Burroughs Corporation

460 Sierra Madre Villa
Pasadena, CA 91109

Cahledata Associates

Mr. Paul Baran

Cabledata Associates, Inc.
701 Welch Road

Palo Alto, CA 94304

California, University - Irvire

Prof. David J. Farber
University of California
Irvine, CA 92664

California, University - Los Angeles

Professor Gerald Estrin

Computer Sciences Department

School of Engineering and Applied Science
Los Angeles, CA 90024

Professor Leonard Kleinrock
University of California
3732 Boelter Hall

Los Angeles, CA 90024

Mr. William E. Naylor
University of California
3804-D Boelter Hall

Los Angeles, CA 90024

Collins Radio Group
1200 N. Alma Road
Richardson, Texas 75080

Mr. Don Heaton
Mr. Frederic Weigl

Defense Communications fngineering

‘ Center

Dr. Harry Helm
DCcLC, R-520

1860 Wiehle Avenuc
Reston, VA 222090

General Electric

Dr. Richard L. Shuey
General Electric Research
and Development Center

p. 0. Box 8
Schenectady, New York 12301
Dr. A. Bell Isle

General Electric Company
Electronics Laboratory
Electronics Park
Syracuse, New York 13201
Mr. Ronald S. Taylor
General Electric Company
175 Curtner Avenuc

San Jose, CA 95125

General Motors Corporation
Computer Science Department

General Motors Research Laboratories

General Motors Technical Center

Warren, M

1 48099

Dr. George C. Dodd, Assistant Head

Mr. Fred Krull, Supervisory Research

Engineer

Mr. John Boyse, Associate Senior

Research Engineer

Hawaii, University of
The ALOHA System
2540 Dole Street, Holmes 486

Honolulu, Hawaii 96822

Professor Norman Abramson

g e e i S %

}mghpg_ﬁirg(gft’COmpany

Mr. Knut S. Kongelbeck, Staff Engr.
Hughes Aircraft Company

8430 Fallbrook Avenue

Canoga Park, CA 91304

Mr. Allan J. Stone

Hughes Aircraft Corporation
Bldg. 150 M.S. A 222

P. 0. Box 90515

Los Angcles, CA 90009

Hughes Aircraft Company

Attn: B. W. Campbell 6/E110
Company Technical Document Center
Centinela and Teale Streets
Culver City, CA 90230

1BM

Dr. Patrick Mantey, Manager

User Oriented Systems

International Business Machines Corp.
K54-282, Monterey and Cottle Roads
San Jose, CA 95193

Dr. Leonard Y. Liu, Manager

Computer Science

International Business Machines Corp.
K51-282, Monterey and Cottle Roads
San Jose, CA 95193

Mr. Harry Reinstein

International Business Machines Corp.
1501 California Avenue

Palo Alto, Ca 94303

I11inois, University of

Mr. John D. Day

University of 111inois

Center for Advanced Computation
114 Advanced Computation Bldg.
Urbana, 111inois 61801

Institut de Recherches d'Informatique et

d'Automatique (IRIA)
Reseau Cyclades
78150 Rocquencourt

France

Mr. Louis Pouzin
Mr. Hubert Zimmerman

»

Information Sciences Institute,
University of Southern California

4676 Admiralty Way

Marina Del Rey, CA 90291

Dr. Marty J. Cohen
Mr. Steven D. Crocker
Dr. Steve Kimbleton
Mr. Keith Uncapher

London, University College

Professor Peter Kirstein

UcL

Department of Statistics &
Computer Science

43 Gordon Square

London WCIH OPD, England

Massachusetts Inctitute of Technology

Dr. J. C. R. Licklider

MIT

Project MAC - PTD

545 Technology Square
Cambridge, Massachusetts 02139

MITRE Corporation

Mr. Michael A. Padlipsky
MITRE Corporation

1820 Dolly iadison Blvd.
Westgate Rescarch Park
McLean, VA 22101

Network Analysis Corporation
Beechwood, 01d Tappan Road
Glen Cove, New York 11542

Mr. Wushow Chou
Mr. Frank Howard

National Bureau of Standards

Mr. Robert P. Blanc

National Bureau of Standards

Institute for Computer Sciences
and Technology

Washington, D. €. 20234

Mr. Ira W. Cotton

National Burcau of Standards
Building 225, Room B216
Washington, . C. 20234

National Physical Laboratory
Computer Science Division
Teddington, Middlesex, England

Mr. Derek Barber
Dr. Donald Davies
Mr. Roger Scantlebury
Mr. P. Wilkinson

National Security Agency
9800 Savage Road
Ft. Meade, MD 20755

Mr. Dan Edwards
Mr. Ray McFarland

Norwegian Defense Research Establishment

P. 0. Box 25
2007 Kjeller, Norway

Mr. Yngvar G. Lundh
Mr. P. Spilling

Oslo, University of

Prof. Dag Belsnes

EDB-Sentret, University of Oslo
Postbox 1059

Blindern, Oslo 3, Norway

Rand Corporation
1700 Main Street
Santa Monica, CA 90406

Mr. S. Gaines
Mr. Carl Sunshine

Rennes, University of

M. Gerard Lelann

Reseau CYCLADES

U.E.R. d'Informatique

B. P. 25A
35031-Rennes-Cedex, France

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

Ms. E. J. Feinler
Augmentation Research Center

Dr. Jon Postel
Augmentation Research Center

Mr. D. Nielson Director
Telecommunication Sciences Center

Dr. David Retz
Telecommunication Sciences Center

System Development Corporation

Dr. G. D. Cole

System Development Corporation
2500 Colorado Avenue

Santa Monica, CA 90406

Telenet Communications, Inc.
1666 K Street, NW

Washington, D. C. 20006

Dr. Holger Opderbeck
Dr. Lawrence G. Roberts
Dr. Barry Wessler

Transaction Technology Inc.

Dr. Robert Metcelfe

Director of Technical Planning
Transaction Technology Inc.
10880 Wilshire Blvd.

Los Angeles, CA 90024

Defense Communication Agency

Dr. Franklin Kuo
4819 Reservoir Drive
Washing on, D. C. 20007

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Mr. David Boggs
Dr. William R. Sutherland

STANFORD UNIVERSITY

Digital Systems Laboratory

Mr. Ronald Crane

Mr. Yogen Dalal

Ms. Judith Estrin
Professor Michael Flynn
Mr. Richard Karp

Mr. James Mathis

Mr. Darryl Rubin

Mr. Wayne Warren

Digital Systems Laboratory Distribution

Computer Science Department - 1 copy

Computer Science Library - 2 copies
Digital Systems Laboratory Library - 6 copies
Engineering Library - 2 copies

IEEE Computer Society Repository - 1 copy

Electrical Engineering

Dr. John Linvill

