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ABSTRACT 

Experiments were conducted with a model  of a small waterplane area 

twin hull  craft   in both the Hanuevering and Seakeeping Facility and 

Carriage 2 of the  David Taylor Model  Basin,  of the David W.  Taylor Naval 

Ship Research and  Development Center  (DTNSRDC)  to determine motions and 

loads at various  headings and speeds.     Data were obtained  in both  regular 

and random seaways. 

ADMINISTRATIVE   INFORMATION 

This oroject was funded by the Systems  Development Department Advanced 

Concepts  Office,   DTNSRDC,   underwork  unit   1170-026. 



INTRODUCTION 

An extensive experimental   program was conducted on a small waterplane area 

twin hull  craft  represented by a 20.'» scale model,  OTNSRDC Model   5287, designated 

as  SWATH  IV.    Experiments were conducted  in head,  beam,  stern quartering and 

following  regular and  random seaways at  speeds corresponding to full  scale 

speeds of 0,   10,   20 and  32 knots.     These experiments were  conducted with  the 

model   free  running, without   restraint,   in six degrees of  freedom   (6 DOF). 

Measurements were made of the  seaway,   the SWATH   IV pitch,   heave,   roll  and 

relative motion near the bow,   as well   as absolute vertical   motion near the 

forward and aft  strut ends,   both port and starboard.     In addition,   loads on 

the bridging structure due  to  relative hull  motions were measured by means of 

an   instrumented  flexure.     Pressures  due  to wave   impacting were also measured 

at  various   locations along  the bridging structure between   the two hulls.     In- 

vestigations were made of  the effect of draft on  the motions,   loads and  impact 

pressures  at  various headings  and  speeds;   the effect  of   transverse metacentric 

height   (GM )   in beam seas;  and  the effect of various  appendages   in head and 

following seas at   the heaviest  displacement.     Figure   1   presents   the matrix of 

SWATH   IV configurations   investigated. 

This   report  presents   results of all  experiments  conducted on  the SWATH   IV 

model   and   is an extension of  the work reported   in Reference   T . 

^y 

^References are   listed on  page   35. 



DESCRIPTION OF MODEL AND TEST EQUIPMENT 

The model used In this Investigation Is the same model used to evaluate 

the cambered-hull effect on resistance and propulsion of a SWATH type craft 

reported in Reference 2. Abberviated body lines and plans are presented in 

Figures 2 and 3. Since propeller diameter did not markedly affect craft 

performance in the study of Reference 2, and since propellers 3217 and 3218 

were readily available, they were used during the present series of experiments. 

Propulsion was provided by two five horsepower D.C. motors, one housed in each 

hull. The two hulls were connected by a combination of block gages and 

flexure beams equipped with strain gages to permit measurement of moments 

and forces on the bridging structure. 

These were attached to the hulls above the struts at approximately Stations 

6 and 1*4. A plywood bridging structure, split down the centerline, was also 

attached to the model at the location shown in Figure *♦.  Diaphram type 

pressure transducers were distributed along the length and on the bow section 

of this structure, in accordance with Figure 5, in order to measure impact 

pressures.  No attempt was made to scale the r?gidityof this structure.  Since 

the model was free running, controllable rudders were necessay to maintain 

course.  Figure k  shows the location and size of these rudders.  Each rudder 

was controlled by a steering servo located on its particular hull,  in an 

attempt to improve ship motions and maintain vertical plane stability (pitch) 

for some conditions, a variety of appendages was attached either to the lower 

hulls or struts during the experiments. 

For example, during calm water experiments at the 32 ft draft, bare hull 

condition it was found that vertical plane instability existed somewhere 

between 20 and 32 knots full scale. Therefore, a fixed horizontal fin was attached 
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inboard at the stern of each hull to provide stabilization for the 32 ft draft,     s^V 

32 knot condition.  Figures 6 and 7 Indicate the location, size and shape of 

the fins used. 

Once the bare hull configuration responses were characterized, certain 

other appendages were added in an attempt to improve the ship motions at the 

32 ft draft. Heave "blisters" were installed at the location shown In Figure 8. 

These consisted of molded fiberglass bolt-on sections attached both inboard and 

outboard on each strut above the waterline. These blisters were constructed such 

that they doubled the strut thickness over the nominal at a given long- 

itudinal position in an effort to introduce some heave damping.  Since the 

blisters were located at the 36 ft waterline and above, they were only effective 

in wave conditions where height of the wave profile exceeded 36 feet. 

In an effort to introduce additional heave damping, k  ft by 102 ft bilge 

keels were added both inboard and outboard at 9 feet above the base line on each 

hull at the longitudinal location shown in Figure 9- 

Table 1 presents SWATH IV ship particulars for the 28, 30 and 32 ft draft 

bare hull configurations while Table 2 presents SWATH IV ship particulars for 

all hull configurations investigated 

DESCRIPTION OF MEASUREMENTS AND INSTRUMENTATION 

As mentioned previously, the SWATH IV experiments were conducted with 

the model self propelled and free running, without restraint, in all six 

degrees of freedom.  Tethering lines, required for acceleration and deceler- 

ation of the model, and motor power cables and transducer signal cables were 

the only connections between the model and carriage.  These lines and cables 

were slack during data collection and did not affect model responses. 



Model speed was controlled manually and was regulated in accordance with 

preset carriage speed. Thus the model was kept fairly stationary with respect 

to the carriage and model speed was relatively constant. However, during 

some head sea conditions with severe impacting, and during some following 

sea conditions there was considerable surge motion. 

Course was maintained by means of yaw and sway signal inputs to rudder 

servo control devices on each hull. Since mechanical rudder coupling and 

different servo characteristics could affect the relative force neasurements 

between the two hull, the rudder servos were electronically coupled to ensure 

nearly identical rudder motions. Heave, sur'je and relative motion at the 

bow as well as wave height were measured by uif^or.ic displacement transducers. 

Heave was measured at Station 10 on the centerline, surge near Station 19 on 

the centerline and relative bow motion 1.5 ft (full scale) aft of Station 0 on 

the centerline. 

Pitch, roll and yaw were measured by vertical gyroscopes mounted near 

Station 10 on the bridging structure. Absolute vertical motions at the bow 

and stern were measured with vertical accelerometers at Station *♦ (port and 

starboard) and Station 16, (port and starboard), respectively. 

The only mechanical connection between the two hulls was a combination 

of modular force gages and flexured, strain gaged beans. Sufficient 

space was left between the two halves of the wood bridging structure to 

permit the hulls to move relative to each other without debasing the measure- 

ment of forces and moments between the hulls. This block gage-beam arrangement 

enabled the measurement of six loads used to calculate the five relative 

forces and moments due to relative motions between the hulls. These assemblies 

were centered about the centerline and 112 ft (full-scale) aft of the FP 
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(near  the LCG).    The neutral  axis of the bending noment  flexure was 60.6  ft . 

above  the base  line.    The  following are the five relative  forces and moments 

derived  from block gage-beam assemblies: 

Transverse Vertical   Bending Moment:     the moment  that  tends  to produce 

relative roll  between hulls 

Torsional   Moment:     the moment   that  tends  to produce  relative  pitch 

between hulls 

Yawing Moment:     the moment   that  tends   to produce  relative yaw between 

hulls 

Vertical   Shear Force:     the   force that   tends  to produce   relative heave 

between hulls 

Transverse  Force:     the force  that  tends  to produce  relative  sway  between 

hulls 

Although  the bridging structure did not necessarily  represent   that  of a 

prototype,   it  did provide a means  of determining the order of magnitude of 

impact  pressure which a prototype might experience  in  various seaways.     No 

attempt was made to scale  the bridging structure to simulate  the  vibratory 

characteristics of a prototype.      Impact  pressures on  this  structure were 

measured by  strain-gaged diaphragm type pressure transducers   located as  shown 

in  Figure 5.     These gages,  designed and manufactured at  DTNSRDC,  were   rated 

at  0  to  15 psi  with a  flat   response to  1500 hz and a natural   frequency of 

at   least 25,000 hz, and thus were more than adequate  to measure  the   impacting 

phenomena. 



EXPERIMENTAL PROCEDURE 

The basic goals of this experimental Investigation were to first 

characterize both calm water and seaway responses of the SWATH IV bare 

hull configuration at the 28. 30 and 32 ft drafts and then to add appendages 

as necessary to try to improve motion responses. A limited number of experiments 

was also conducted to determine the effect of transverse metacentric height on 

the transverse vertical bending moment.  For each of the three drafts listed 

in Table 1. a series of calm water runs was made to determine running trim, 

sinkage and natural periods of pitch, heave and roll at the various speeds. 

Trim moments were produced by moving ballast in order to maintain an approximate 

zero running trim in calm water at both the 20 rod 32 knot speeds.  The 

model maintained fairly even keel trim at 10 knots for nil three bare hull 

draft conditions so no shift in ballast was required from the zero speed. 

zero trim condi tion. 

Once the trim moments were established, calm water runs were conducted 

during which the model was force pulsed manually near its natural frequency 

in either pitch, heave or roll at the various speeds in order to determine 

motion decay curves and natural periods.  In many cases at 20 and 32 knot 

speeds, the motion was so highly damped that the determination of the natural 

heave and pitch periods was difficult or impossible by this means. 

Experiments were then conducted in regular and long crested irregular 

waves at the various headings and speeds for the 28. 30 and 32 ft draft 

bare hull conditions (See Figure 1).  Nominal wave steepness (2^/X) ranged 

from about 1/60 to 1/100 during these experiments. However, some motions 

became quite severe at the longer wave lengths due to the large natural 

periods of motions.  In these cases the steepnesses were decreased to 

around 1/130 to prevent swamping of the model.  In addition, some experiments 
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were conducted  in near synchronous wave conditions at several  steepnesses 

in order  to provide a  linearity check on  the motions. v ^ 

Irregular wave experiments were also conducted at  various headings 

and speeds   in order  to obtain statistical   data on motions,   loads and 

frequency of   impacting on the bridging structure.     For each condition 

about   150   samples of peak-to-peak motions were obtained since experience 

has  shown  that   realistic  inferences  about   the population may be made  from 

this  sample  size.     However,  not  all   sample sizes   in some following  sea 

conditions were  this   large.    The Sea States k,   5.  and 6  indicated   in  Figure 

1   correspond  to fully developed seas with  significant wave heights of  7.   10 

and   15   ft   respectively. 

A  l.mited number of experiments was  conducted   in both  regular and   random 

beam seas  at  the  28  ft  draft with  two different  GM/s and at   the  32   ft  draft, 

to determine  the effect of GM, and draft  on  roll   motion and transverse 

vertical   bending moment.     Investigations  of the effects of motion  damping 

devices were  carried out with  the  32  ft  draft  configuration.      Calm water 

experiments   for  the  32  ft draft bare hull   configuration   indicated  vertical 

plane   (pitch)   instability existed  somewhere  between  20 and  32  knots  because 

the model   would not accelerate  up  to 32  knots  and maintain a near  zero 

running  trim.     The horizontal   stabilizer  fin.   described earlier,  was   there- 

fore attached  inboard at  the stern on each hull.     Calm water bare hull   trim 

moments  due  to shifting ballast were maintained and calm water  running  trim 

was  adjusted to near zero by chaning the  fin angle of attack.     (In other 

words,  ballast weight  trim moment was held constant  throughout   these 

investigations).     Experiments   in onlv  reoular and  in random head and   followino s^as 

were  conducted with  these  fins.     One condition was   investigated with  a smaller 

fin   in head  regular and random seas only. 



Heave blisters were investigated in calm water and in head and following 

regular and random waves. The damping effects of bilge keels were obtained 

in calm water and in head regular and random waves only. As seen in Table 

2, the nominal calm water ballast trim moment for 20 knots had to be 

increased in order to acquire a zero running trim for the conditions with 

b iIge keeIs. 

DATA COLLECTION AND REDUCTION 

During the experiments, the transducer signals were amplified and 

recorded in analog form on paper strip chart (including an oscillograph 

for impacts) and analog magnetic tape.  The system for measuring impacts 

provided a flat response to 1500 hz, which is more than adequate for the 

phenomena studied.  The analog tape data were digitized and then analyzed 

by the CDC 6400 computer program. 

Calm water running trim, sinkage and natural period oscillation data 

were read from strip chart records. 

Reduction of regular wave data produced Fourier transform coefficients 

for the fundamental frequency of the wave height signal and corresponding 

coefficients of the other signals.  Mean offsets, amplitudes and phases 

for each of the signals were then determined. Phases were calculated 

relative to the wave as it passed the nominal LCG of the model (112 ft 

aft of the forward strut edge), with a positive phase defining the response 

leading the wave. Mean offsets of surge and sway signals were used to 

correct for model surge and sway away from its zero position relative 

to the fixed wave height probe. 



Data obtained  in   random waves were analyzed   in both  the time and 

frequency  domains.     This  analysis yields mean values,   power spectra, 

histograms and  Fourier  transforms as well   as  statistical   information 

about  the time histories.     Only  significant  double amplitudes,   the 

average of  the one-third highest  peak-to-peak   fluctuations,  are 

presented  in   this   report.     Impact pressure  data obtained  in  random 

waves was extracted manually  from strip chart   records.     Absolute motion 

ctra   for  bow   (port  and starboard)   and  stern   (port  and starboard) 

tions were obtained by   integrating  the acceleration spectra at   these 

spe 

mo 

respectivL   locations. 

PRESENTATION AND  DISCUSSION  OF RESULTS 

Due  to the   large  volume of data and  the numerous  variations   in model 

configurations,   the   data   in  this   report   is   presented   in  segments  as 

shown   below: 

Regular Waves - Bare Hull. 28 ft Draft 

Regular Waves - Bare Hull, 30 ft Draft 

Regular Waves - Bare Hull, 32 ft Draft 

Random Waves  - Bare Hull 

Regular Waves - GMt Effect in Beam Seas. 28 ft Draft 

Regular Waves - Large GMt, 28 ft Draft 

Regular Head Seas - Hull with Appendages. 32 ft Draft 

Regular Following Seas - Hull with Appendages. 32 ft Draft 

Random Waves - Hull with Appendages. 32 ft Draft 

The results of calm water experiments are presented in tabular form 

in Table 2.  This table indicates the amount of trim moment needed for 

zero running trim for each particular speed and model configuration. 



^J For the configurations with fins the fin angle indicated is the angle of 

attack on the fin necessary to give near zero running trim (positive fin 

angle means leading edge up).  Natural periods derived from calm water 

oscillation experiments are shown in the last three columns. 

The regular wave data in this report are presented as a function of 

wave length to ship length ratio, X/L, and the motions and loads are 

nondimensionalized in accordance with the scheme shown in Table 3, as 

requested by the sponsor. The observations made during the discussion of 

regular wave data refer to the maximum dimensionless response and not to 

the response to any particular wave length.  Phases are also presented out 

not discussed. 

REGULAR WAVES - BARE HULL, 28 ft DRAFT 

Figures 10 through 35 present results in dimensionless form of 

experiments in regular waves for the 28 ft draft, nominal GMf craft 

configuration at various speeds and headings.  It is necessary to indicate 

that since the model for this experiment possessed a bridging structure, 

impacting did occur during some experiments in near synchronous wave conditions 

This is important because the magnitude of the motions at these conditions 

may have been attenuated by the bridging structure impacting the wave. 

There is little speed effect at the 28 ft draft on maximum dimensionless 

heave amplitude in head seas (Figure 10).  In beam seas, heave is largest 

at 0 knots and decreases as speed increases to 10 knots, with little speed 

effect above 10 knots.  In stern and following seas, heave is largest at 0 

knots and decreases as speed increases to 10 knots. There is no stern or 

following sea data above 10 knots. 
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There is little heading effect on maximum dimensionless heave amplitude 

at 0 knots.  At 10 knots heave decreases as heading is changed from head to       V. 

beam seas, with little heading effect as heading changes from beam to stern 

and stern to following seas. At 20 and 32 knots, heave is largest in head 

seas and decreases as heading changes to beam seas. 

Dimensionless relative bow motion amplitude (Figure 12) varies only 

slightly with -.peed up to 32 knots in head seas, and in stern and following 

seas there is virtually no variation up to 10 knots, the maximum speed for 

which data was obtained at these headings.  In beam seas, relative bow motion 

is largest at 0 knots and decreases as speed increases to 10 knots, with 

little speed effect above 10 knots. At 0 knots, relative bow motion is about 

the same in head and beam seas and decreases as heading changes to stern 

and following seas. At 10 knots, heave is largest in head seas, minimum in 

beam seas and about the same in both stern and following seas.  At 20 and 

32 knots relative bow motion decreases as heading changes from head to beam 

seas. 

Figure U shows that in head seas pitching motion decreases as speed 

increases from zero to 10 knots, but increases again as speed increases 

from 10 to 32 knots where it is about the same order of magnitude as at 

zero speed.  There is little pitching motion at any speed in beam seas.  In 

both stern and following seas pitch motion decreases as speed increases from 

0 to 10 krots.  There is no data in quartering and following seas at 20 and 

32 knots.  At 0 and 10 knots, pitch motion decreases as heading changes 

from head to beam but increases as heading changes from beam to quartering 

and from quartering to following seas.  Note that at 0 and 10 knots pitch 

is about the same in following and head seas. At 20 and 32 knots, pitch 

motion decreases as heading changes from head to beam seas. 
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Figure 16 shows little roll motion in head and following seas at any 

of the speeds examined.  In beam seas roll motion decreases as speed 

increases from 0 to 10 knots, with little speed effect above 10 knots.  In stern 

quartering seas roll motion data Is Insufficient to draw conclusions. At 

0 knots, the largest roll motion occurs in beam seas while at 10 knots 

roll motion is largest in stern quartering seas. At 20 and 32 knots roll 

motion increases as heading changes from head to beam seas. There is no 

data at 20 and 32 knots in quartering and following seas. 

Dimensionless absolute motions near the bow (Figures i8 and 20) increases 

slightly in magnitude as speed increases up to 20 and 32 knots in head seas. 

In beam seas the largest absolute bow motion occurs at zero speed.  For the 

underway speeds they are approximately the same. There is no data for 20 

and 32 knots in quartering and following seas. At 0 knots there is little 

heading effect on the maximum magnitude of absolute bow motion. At 10 knots 

absolute bow motion is largest in head seas and decreases as the heading 

becomes beam seas.  At 10 knots, the maximum absolute bow motion is generally 

about the same In beam, quartering and following seas for a particular hull. 

At both 20 and 32 knots, absolute bow motion is largest in head seas and 

decreases as the heading becomes beam seas. 

Dimensionless absolute motion near the stern (Figures 22 and 2^) varies 

only slightly in magnitude with speed in head seas.  In beam, quartering and 

following seas, absolute stern motion decreases as speed increases from 0 

to 10 knots.  In beam seas the absolute stern motion varies little as 

speed increases from 10 to 32 knots.  There is no data at 20 and 32 knots 

in quartering and following seas.  At 0 knots, there is little heading 

effect on maximum absolute stern motion. At 10 knots the maximum absolute 

stern motion is generally about the same in beam, quartering and following 
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seas for a particular huH. At both 20 and 32 knots, absolute stern motion 

is largest in head seas and decreases as heading becomes beam seas. 

In general, absolute motions near the stern (Figures 22 and 24) are 

larger than those near the bow (Figures 18 and 20) for corresponding speeds 

and headings. Also note that motion of the starboard hull is larger than 

that of the port hull in beam seas at 10 and 20 knots and in quartering seas 

at 10 knots. This would suggest that the roll axis is not on the centerline 

but to the port of the centerline. Recent experiments on a 2900 ton develop- 

mental SWATH design, along with motion pictures of the experiments, bear 

this out. 

Figure 26 which presents dimensionless transverse force at various 

speeds and headings, shows there is little speed effect on maximum magnitude 

in head seas; at 10 thru 32 knots there Is only a slight increase in magnitude 

over the zero knot condition,  in beam seas the transverse force is largest at 

10 knots ard about the same magnitude at 0, 20 and 32 knots.  There is very 

Httle speed effect in quartering seas up to 10 knots.  In following seas 

side force is largest, through still small, at 10 knots. There is no data 

for 20 and 32 knots in quartering and following seas. At 0 and 10 knots the 

transverse force is largest in quartering seas and in beam seas still 

significantly larger than at the other headings. At 20 and 32 knots the 

magnitude of the side force is about the same in head and beam seas. 

Dimensionless vertical shear force, presented in Figure 28. in head 

.eas is very small at all speeds.  In beam seas the vertical shear force 

is largest at 0 knots and remains about the same for 10 through 32 knots. 

In nuartering seas, the vertical shear force increases from 0 to 10 knots. 

There is virtually no speed effect on vertical shear force in following 
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seas up to 10 knots. There Is no data In quartering and following seas 

at 20 and 32 knots. At 0 knots, vertical shear force Is largest In beam 

seas and very small at the other headings. At 10 knots vertical shear 

is very small In head and following seas and about the same in beam and 

quartering seas. At 20 and 32 knots, the vertical shear is largest In 

beam seas. 

Nondimensional   transverse bending moment,  presented  in Figure 30.   is 

very small   in head seas  up to 20 knots and  increases  slightly as  speed 

increases  to 32 knots.     In beam seas transverse vertical  bending moment 

decreases as  speed  increases from 0 to  10 knots and  increases again at 

20 and  32 knots.     In quartering seas,  bending moment decreases as speed 

increases  from 0 to  10 knots.     In  following seas,  bending moment   is  very 

small   at 0 and  10 knots.    There  is no data at 20 and  32 knots  for quartering 

and  following seas.     At 0 and 10 knots,   bending moment   is slightly   larger 

in quartering  seas   than   in beam seas and   is  very  small   in head and  following 

seas.     At 20 and  32  knots,  bending moment   is much   larger  in beam seas  than 

in head seas. 

Dimensionless torsional moment. Figure 32, is very small in head seas 

up through 20 knots and increases as speed increases from 20 to 32 knots. 

In beam seas, the torsional moment is very small throughout the speed 

range.  In quartering seas, torsional moment increases slightly as speed 

increases from 0 to 10 knots.  In following seas, torsional moment is very 

small at both 0 and 10 knots. There is no data in quartering and following 

seas at 20 and 32 knots. At 0 and 10 knots, torsional moment is very small 

at all headings except quartering seas where it is fairly large. At 20 knots 

torsional moment is small in both head and beam seas. At 32 knots, the 

torsional moment is considerably larger in head seas than in beam seas. 



Dimension I ess yaw moment, Figure 3*». Is negligible for all speeds in head 

and following seas. The yaw moment in beam and quartering seas is about the 

same for all speeds. There is no data In quartering and following seas at 

20 and 32 knots. At 0 and 10 knots, the yaw moment is about the same in 

beam and quartering seas and larger than in head and following seas. At 

20 and 32 knots, yaw moment is much larger in beam seas than in head seas. 

It should be noted here that the large side forces (Figure 26), vertical 

shear forces (Figure 28), transverse bending moment (Figure 30), and torsional 

moment (Figure 32) depicted by some of the data spots in head seas at 32 

knots may be due to wave impacting on the bridging structure. 

REGULAR WAVES - BARE HULL, 30 ft DRAFT 

Figures 36 and 37 present results of experiments in regular head seas 

at 20 knots for the 30 ft draft, nominal GMt craft configuration.  Figure 

36 shows dimensionless absolute motions near the bow and stern, both port 

and starboard. Absolute motions near the stern (Station 16) are larger than 

those near the bow (Station M as was the case at the 28 ft draft. 

Figure 37 presents yaw, torsional and transverse bending moments and 

transverse and vertical shear forces. 

REGULAR WAVES - BARE HULL, NOMINAL GMt, 32 ft DRAFT 

Figures 38 through 63 present motions and loads and their phases 

obtained during experiments in regular waves at speeds of 0, 10 and 20 

knots in head, beam and following seas for the 32 ft draft, bare hull, 

nominal GM craft configuration. 

In Figure 38, which presents dimensionless heave motions, the limited 

amount of data in head seas suggests that heave motion follows the trend 

at the 28 ft draft (Figure 10).  In beam seas there is insufficient data 

to form conclusions.  In following seas heave is largest at 0 knots and 
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decreases as speed  increases  to 20 knots.    For all  speeds the  trends observed 

K^ _y at  the 28 ft draft concerning heading effect on heave motion appear to be the 

same at the 32  ft draft.    There  is no beam sea data at 20 knots. 

Nondimensional   relative bow motion magnitude  for  the 32  ft  draft presented 

in  Figure '♦O,  generally  follows  the same trend observed at  the 28 ft draft 

(Figure  12)   in  terms of speed and heading effect.     In  following seas there   is 

a significant   increase  in maximum relative bow motion as speed  Increases  from 0 

to 20 knots.    At 20 knots  relative bow motion appears  to be larger in following 

than  in head seas. 

Dimensionless  pitch and  roll  motion at  the 32  ft  draft  presented  in 

Figures ^2 and M,  although sparse   in head and beam seas,   seems   to follow 

the trends observed at  the 28 ft  draft. 

Dimensionless absolute motions near the bow and stern  for   the 32 ft  draft 

presented in Figures  ^6  to 52,  appear to follow the trends observed at  the 28 

ft  draft   (Figures   18 -  2k).     Note  that  in  following  seas  the magnitude of the 

absolute stern motion  decreases  significantly as  speed   increases  from 0  to 20 

knots   (Figures  50 and 52). 

Dimensionless moments and forces at  the  32  ft  draft,  presented  in  Figures 

5k  - 62 appear to  follow the  trends observed at  the 28 ft  draft with one 

exception.    Figure  30  indicates  that  in beam seas at  the 28  ft  draft  the 

transverse vertical   bending moment decreases as  speed   increases  from 0 to 

10 knots and  Figure 58 shows  that  this may not be  the case at   the 32  ft draft. 

Figure 64 presents  results of  linearity experiments  in  regular waves  for 

both  the 28 and  32  ft  draft bare hull  configurations.     These experiments were 

conducted with  the   regular wave   length near heave synchronism  for the particular 

speed.     Figure 61.a  shows  dimensionless pitch,  heave and relative bow motion 

results from experiments   in head seas at various speeds.     Generally,  the 

motion responses   remain   linear with wave height   for pitch and   relative bow 



motion at all  speeds and for heave only at 0 knots. 

Figure e^b, which presents results of linearity experiments  for  the 

28 and 32  ft draft bare hull   configurations at zero speed  in  following 

seas,   indicatesthat nondimensional  motion responses are nonlinear except 

for pitch at the 28 ft draft. 

RANDOM WAVES  - BARE  HULL 

A discussion on the applicati1ity of using a finite number of random 

sea spectral   formulations which can be generated  in a  tank  to predict 

motion  responses  in  the  "real  ocean"  is appropriate at  this  time. 

Figure 65 presents wave height  spectra for Sea States  k,   5 and 6 

generated during experiments on SWATH   IV.    They may not exactly duplicate 

theorectical  Pierson-Moskowitz  idealized spectra;   they are,  however, 

realistic and do contain sufficient energy  in  the frequency   range  to excite 

the present model  and elicit motion  responses. 

Since  a craft may be   required to operate  in a wide   range of ocean 

environments, caution must  be exercised  in using  responses  determined  from 

experiments   in a  finite number of wave spectral   formulations   (as   is  the 

case  for  random seas generated  in a  tank).    To establish  design criteria, 

the responses should be examined  in various seas 'which  the craft will 

encounter  during  its   lifetime.     Since   it   is physically   impossible  to generate 

all   these spectra   in a  tank,   the  following approach   is   taken:     Establish the 
,2 

response amplitude operator   (defined as   (motion amplitude/wave amplitude)   ) 

either by analytical  means or by experiments   in  regular or   random waves and 

predict   the responses   in any desired  sea condition.     A basic assumption 

underlying this prediction  technique   is  that  the craft  behaves as  a   linear 

system.     Also,  if  it  is desired to predict statistics  such as significant 

values or most probable maxima,   the probability density   function governing 
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the phenomenon must be known or established. 

In general,   It   Is not sufficient to represent a seaway by designating 

its average wave height  alone.    There could be many  sea conditions with 

the same statistical  average wave height and yet have quite different 

spectral  density  (energy)  distribution with respect  to wave frequency.     If 

a craft has small   inherent damping such as SWATH ships have,   the motion 

amplitude would be   large when  the craft  is excited at or near   its   resonant 

frequency.     Assume  two sea conditions with   identical   significant wave heights 

but  considerably different  spectra  density distributions  such  that seaway A 

(as  shown below),  has   its peak energy near the craft natural   frequency while 

seaway  B has   its maximum energy  displaced from the craft  natural   frequency. 

RAO 

SHIP RESPONSE 

SEA CONDITION A 
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o o 

but EA  >>  E
8 

to w 

where E    -       fRAOU)       8^^(01)du and Eg -    j^RAOta)  SB(a))dü) 
A -5 0 

The significant motion amplitude,  MJ/^I  assuming a Rayleigh 

distribution  function,   is obtained by 

("1/3^    "    ^^   ^B    "^ 

which clearly demonstrates  that  the craft would experience larger significant 

motions   in sea  condition A than   in sea condition B. 

In  the present case,  the principle of   linear superposition was applied 

to experimentally-obtained  RAO's and utilized  in conjunction with 305 

available ocean  spectra measured at  Station   India   in  the North Atlantic 

Ocean.     The  assumptions were made  that  the SWATH craft behaved as a   linear 

system and that  the probability  density  function of the peak-to-peak excursions 

followed a Rayleigh probability distribution  law.    The calculated responses 

were  then compared to those obtained from experiments conducted   in  tank 

generated waves . 

Regular wave data obtained during experiments on  the  28 ft  draft  bare 

hull   and the 32  ft draft with   large  fins  craft configurations  were used 

to demonstrate motion  prediction   techniques   in random waves   (See  Figures  65A 

and 65B).     The results shown   in   the cross  symbols   in Figures 65A and 65B 

were obtained   in the following manner: 

Significant heave or relative bow motion   (RBM)  amplitude 

= 2.0    VJRU)   S(w)düü 
0 
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where 

R(u»)  - response amplitude operator 

~12 

[Heave  (or RBM Amplitude) 
■ I"     Wave AmplitudeJ 

2 
S(J  " wave spectrum from Station  India 

a) ■ wave frequency,   rad/sec 

The solid lines  in the figures are obtained by  using  the Pierson- 

Moskowitz spectra: 

A /      Ü\ 
S(u))  - \        e(- -^ 

where A - 0.0081(g)2   (g - gravitational  acceleration) 

B - 33.56/(h1/3)2 

h        » significant wave height  in  feet 

It   is seen   in  Figure 65A that  the experiment. 1ly obtained values of 

significant heave and  relative bow motion  lie at  the upper   limit of  the 

data calculated using  the  Station   India wave spectra.     This   is because 

the sea spectra chosen  for  the model   experiments   (Figure 65)   has maximum 

energy   in a frequency  range near  the heave natural   frequency. 

Data presented  in  Figure 65B show results of experiments and 

calculations  for  the  32  ft  draft configuration with   large  fins.     These 

data show that experimental   results obtained  in  the  random tank  generated 

waves  agree quite well  with  results  calculated using  the  Station   India 

spectra.    The reason  that  the motions  for the  large  fin  case are not as 

large as  the bare hull   case should be due to the difference  in  the frequency 

distribution of  the  RAO's  compared  to the bare hull   case.     The  difference 

in heave and pitch natural   frequencies of the craft as well  as  the peak 
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motion amplitudes and the shape of the RAO's all contributed to this effect. 

It is clear from these two figures that the motion data obtained from 

the random wave experiments should be used as a general qualitative measure 

of the motion magnitude experienced by a craft in a seaway of a given 

significant wave height, but not necessarily a representative average for 

any sea condition having the same significant wave height. The main objective 

of the random wave experiments should be rather to check the linearity 

assumption utilized to obtain the statistics of motion amplitudes the craft 

experiences in random seaways. 

Figures 66 through 76 present results of experiments in random waves 

for 28. 30 and 32 ft. draft bare hull craft configurations at various speeds 

and headings.  Data are presented in terms of significant double amplitudes 

(average of 1/3 highest peak to peak values) of motions and loads as a 

function of significant wave height. 

Figure 66 presents significant double amplitudes of heave and relative 

bow motions.  In general, heave and relative bow motion tend to be linear 

with significant wave height up to about 20 ft.  Where there is sufficient 

data, it also appears there is little or no draft effect on heave or relative 

bow motions.  For a given speed, heave and relative bow motion tend to be 

larger in head seas than at other headings. 

Significant double amplitudes of pitch and roll, presented in Figure 

67. appear fairly linear with wave height up to about 20 ft. There is very 

little speed effect on pitch in head seas while in following seas pitch is 

largest at 10 knots.  In head seas pitch motion is lowest for the 30 ft draft 

at 10 and 32 knots.  At 10 and 20 knots for the 32 ft draft pitch motion is 

significantly larger in following than in head seas. 
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Figure 6? also presents significant double amplitudes of  roll  motion. 

The  large  roll   indicated by data points   in head and following seas  is 

probably  rudder induced.     In beam seas  roll   is very  large at 0 knots and 

decreases as  speed increases  to  10 knots  for both the 28 ft  and 32  ft 

drafts.    There appears to be no draft effect on roll  motion  in beam seas. 

Figure 68 presents significant  doubk   amplitudes of absolute motion 

near  the bow.       At all  headings  there  is   little speed effect  on  the 

absolute bow motion.      There   is   very   little draft effect on absolute 

motion at any heading or speed.       for a given speed the absolute bow 

motions are generally about  the same  for all  headings. 

Figure 69 presents  significant  double amplitudes rf absolute motion 

near the stern.     In head sea*  the absolute  stern motion   increases with 

speed and   is   largest  at 20 and  32  knots,   although at  32  knots   the stern motion 

is  somewhat  smaller  for the  30  ft  draft   in a given  sea state.      In beam 

seas   the  stern motion   is   largest  at  zero speed.     In  following  seas  there 

is   little  speed effect on  stern  motion.     Throughout   the  speed   range 

investigated  the stern motion   is   largest   in head  seas. 

Figure  70, which presents  significant  double amplitude of side  force, 

shows  that   there  is  very   little  speed or draft effect on  side   force   in 

either  head or  following  seas.      In  beam  seas  the  transverse   force   is 

largest at   10 knots.     In beam seas   there   is no appreciable  draft effect 

on  transverse  force.     At  zero and 20 knots  the effect of heading on 

transverse   force  is  very  small   while  at   10  knots  the  transverse  force 

is  much   larger   in beam seas   than   in either head or following seas. 

Figure  71   presents significant  double amplitudes of  vertical   shear 

forces.     For  the various  speeds  and headings  there   is  very   little  draft 

effect on  vertical   shear  force.     At all   headings  there   is  no appreciable 
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speed effect on vertical shear force. For all drafts and speeds the 

vertical shear force is much larger in beam seas than in either head 

or following seas while the difference in head and following seas is 

smal1. 

Figure  72   presents  significant double amplitudes  of transverse 

vertical   bending moment.     In both head and  following  seas  there   is 

no draft or  speed effect on transverse bending moment.     In beam seas 

the  transverse  bending moment  for both  drafts  decreases as  speed 

increases.     Throughout   the speed  range   investigated,   the transverse 

bending moment   is about  the same magnitude   in both head and  following 

seas while   it   is  very much  larger  in beam seas  than   in either head or 

follow!ng  seas . 

Figure 73 presents significant double amplitudes of torsional 

moment. There appears to be little draft or speed effect while for a given 

speed torsional moment appears to be smaller in following seas than in 

head or beam seas. 

The large torsional moments in head seas are probably due to bow 

impact at the higher wave heights.  In following seas the 

large excursions in surge and the large torsional moments indicated by the 

data are due to the craft being restrained by restraining ropes. 

Figure 7*4 presents significant double amplitudes of yaw moment.  In 

both head and following seas there is no effect of draft or speed on yaw 

moment.  In beam seas the available data indicates the yaw moment may be 

slightly lower at 20 knots than at the other two speeds. For all speeds 

the yaw moment is significantly higher in beam seas than in either head 

or following seas. 

Figures 75 and 76 present impact pressure data obtained during experiments 
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at the 32 ft draft bare hull configuration In a following Sea State 6 at 

10 knots. These figures Indicate that the stern experienced the greatest 

frequency and severest Impact (see Figure 75 Gage #8). Note however 

(Figure 76), that for about 80% of the Impacts on gi»n« 8 the pressure 

magnitude was less than 5 psi while on gage 1 about k0%  of the impacts 

had pressure magnitudes between 5 and 10 psi. It is pointed out however, 

that the sample sizes are somewhat small and experience has shown that 

for cases when the sample size of impact pressures is less than about 

50, caution should be used in drawing conclusions from the data. 

REGULAR WAVES " GMt EFFECT IN BEAM SEAS, 28 ft DRAFT 

Figures 77 through 85 present dimensionless motion and force data 

obtained during experiments in regular beam seas for the 28 ft draft bare 

hull craft configuration with both nominal and large GMt. 

Figures 77 and 81 indicate that the craft with the larger GMt experiences 

smaller roll at both 0 and 10 knots. These figures also show that heave, 

relative bow motion and roll decrease significantly as the speed increases 

from 0 to 10 knots. 

Figures 79 and 81 , which present dimensionless absolute motions near 

the bow and stern, indicate that the craft with the larger GMt has about 

the same absolute motion as the craft with nominal GMt at 0 and 10 knots. 

Absolute bow and stern motions decrease as speed increases from 0 to 10 

knots for both GM craft configurations. 

Figures 83 and 85 present dimensionless forces and moments for the craft 

with nominal and large GMt respectively.  There is no GMt effect on transverse 

force at either 0 or 10 knots. 

The vertical shear force for both GMt craft configuration decreases with 

speed from zero to 10 knots.  There is no GMt effect on either yaw or torsional 
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moment at 0 or 10 knots. Transverse vertical bending moment for the craft with 

nominal GM decreases as speed increases from 0 to 10 knots while it remains I 

about the same at 0 and 10 knots for the craft with large GM . 

REGULAR WAVES - LARGE GMt, 28 ft DRAFT 

Figures 86 through 111 present results of experiments conducted in beam 

and quartering regular waves with the 28 ft draft, bare hull, large GM 

craft configuration. 

Figure 86, which presents nondlmensional heave, shows that heave decreases 

as speed increases from 0 to 10 knots in both beam and quartering seas.  There 

is little effect on heave for either 0 or 10 knots as bending is changed for 

quartering to beam seas.  Heave for the craft with large GM is about the same 

as for the craft with nominal GM at 0 and 10 knots in bean and quartering 

seas (See Figure 10). 

Figure 88 presents dimensionless relative bow motion and shows a decrease 

in motion a*, speed increases from 0 to 10 knots in both beam and quartering 

seas.  It also shows that relative bow motion is about the same for both 

heading at  both 0 and 10 knots. The craft with large GMt experiences less 

severe relative bow motion than the craft with nominal GM^ in beam seas at 

0 knots and in quartering seas at 0 and 10 knots (see Figure 12). 

Figure 90 presents nondlmensional pitch and shows no speed effect on 

pitch motion in beam seas while pitch decreases as speed increases from 0 

to 10 knots in quartering seas. Pitch is more severe in quartering than in 

beam seas at either 0 or 10 knots.  The craft with large GMt experiences 

larger pitch motion than the craTt with nominal GMt only at 0 knots in 

quartering seas (See Figure IM- 

Figure 92, which presents dimensionless roll, shows that roll motion 

decreases as speed increases from 0 to 10 knots In beam seas, but is 
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about the same for the two speeds in quartering seas. At zero knots roll 

is about the same in both beam and quartering seas while at 10 knots roll 

in beam seas is much less than in quartering seas. The craft with large 

GM experiences less severe roll in beam seas than does the craft with 

nominal GM at both 0 and 10 knots.  In quartering seas the craft with 

arge GM experiences larger motions at 0 knots than the craft with 

nominal GM  (see Figure 16). 

Figures Sk  through 101 present dimensionless absolute motions of both 

hulls near the bow and stern in regular beam and quartering seas.  These 

figures show that absolute motions decrease as speed increases from 0 to 

10 knots in beam seas while in quartering seas there is little speed effect. 

Also, there is very little heading effect on maximum absolute motion at 0 

or 10 knots in beam and quartering seas.  The craft with large GMt experiences 

less severe motions than does the craft with nominal GM  in beam and quartering 

seas at 0 knots (see Figures 18 through 25)- 

Figure 102 presents dimensionless transverse force. This figure shows 

that transverse force increases in beam seas as speed increases from 0 to 10 

knots.  At 0 and 10 knots the transverse force is significantly larger in 

quartering seas than in beam seas. The craft with large GMt experiences about 

the same magnitude of transverse force as does the craft with nominal GMt 

in beam and quartering seas at 0 and 10 knots (see Figure 26). 

Figure 10^ presents nondimensional vertical shear force e/perienced by 

the craft at 0 and 10 knots in beam and quartering seas.  Vertical shear 

force decreases as speed increases form 0 to 10 knots in beam seas while 
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there  is no speed effect   in quartering seas.     Vertical  shear forces are 

largest at 0 knots   in beam seas and largest at   10 knots   in quartering 

seas.    The craft with   large GMt experiences smaller vertical  shear forces 

than  the craft with nominal   GMt  in beam and quartering seas at 0 and  10 knots 

except  in quartering seas at 0 knots. (See Figure 28) 

Figure   106, which presents  dimensionless  transverse  vertical   bending 

moment,  shows  that   transverse bending moment decreases as  speed  increases 

from 0 to  10 knots   in  both beam and quartering  seas.     Also  transverse 

bending moment   is  significantly   less severe   in quartering  than   in beam 

seas at both 0 and   10 knots.     The craft with   large GMt experiences 

larger transverse  bending moments  than  the craft with nominal   GMt   in beam 

seas at 0 and   10 knots  but  the opposite   is  true  for  the craft operating 

in quartering seas   (see  Figure  30). 

Figure  108,  which presents nondimenslonal   torsional   moment,  shows 

neither speednor heading effect on  torsional  moment   in beam or quartering 

seas at 0 and  10 knots.     The craft with   larger GMt experiences  less  severe 

torsional  moment   than does   the craft with nominal   GMt   in quartering seas 

at 0 and  10 knots   (see  Figure  32). 

Figure  110 presents nondimenslonal   yaw moment   for  the craft operating 

in  beam and quartering  seas  at 0 and  10 knots.     Yaw moment  decreases as 

speed  increases   from 0  to  10 knots   in both beam and quartering seas.     There 

Is also very  little GMt effect on yaw moment   In  beam and quartering seas at 

0 and  10 knots   (see  Figure  31») • 

REGULAR HEAD SEAS  -  HULL WITH APPENDAGES,   32   ft   DRAFT 

Figures   112  through   135  present  results of experiments   in head  regular 

seas at various  speeds  for  the craft at   32  ft  draft with  various appendages. 

Figure  112. which presents nondimenslonal  heave,  shows  the bilge keels 
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are the most effective of the three appendage configurations at 0 and 20 knots 

Figure  111«  presents  dimensionless  relative bow motion and shows  that   the 

bilge keels are more effective than  the other appendages  at 0 and 20 knots. 

The blisters appear  to be   ineffective   in  reducing either heave or  relative 

bow motion  at  any  speed. 

Figure 116, which presents dimensionless pitch, shows that pitch motion 

at 20 knots for the large fin craft configuration is much less than for the 

other appendage  configuration. 

Figures   118  through   125 present  dimensionless absolute motion of both 

hulls near the bow and stern.    These  figures  show that   the bilge keels  are 

most effective   in   reducing absolute  bow and  stern motions  at  0 and  20  knots 

while  the   large   fins  produce  a slight  decrease   in motion  at  20 knots  but 

also produce  an   increase   in  motion  at  0 knots.     The addition of heave 

blisters  provides  no  reduction of bow or  stern  motion. 

Figures   126  through   135 present  dimensionless  transverse force,  vertical 

bending moment,   torsional   moment,  and yaw moment.     There   is  no appreciable 

speed or appendage effect  on  the above  forces  and moments   in head seas   for 

the  speed  range   investigated. 

Figure  136  presents   results of  linearity experiments  conducted   in head 

sea for  the 32   ft  draft  configuration both with  and without  appendages. 

REGULAR  FOLLOWING  SEAS  -  HULL WITH APPENDAGES.   32   ft   DRAFT 

Figures   137  through   160  present   results  of experiments   in  following 

regular waves  of  various  speeds  for   the craft  at   the  32   ft  draft  with  and 

without  appendages. 

Figure  137 presents  dimensionless heave and shows  a  reduction   in 

motion  as  craft  speed   increases  form 0 to 20 knots   for the bare hull   and 

blister configuration.     However, heave  increases as  speed  increases  from 
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20  to 32 knots  for the craft  configuration with  large   fins,  which   is opposite 

to the  trend seen   in head sea*   (see Figure   112). 

Figure  139, which presents  nondimensional   relative  bow motion,  shows  that 

relative bow motion   increases as  speed  increases   from 0  to 20 knots  for  the 

bare hull   configuration.     There   is  no speed effect on   relative bow motion 

from 20 to 32 knots   for   the craft with  large  fins.     Relative bow motion  for 

the  bare hull   craft  and   craft with   large  fins  at   20  knots   is   larger   in 

following seas   than   in  head  seas   (Figure  1lM.     Relative  bow motion  is   less 

with  the blisters  at  0  knots  and  slightly   less with  the   large   fins  at  20 

knots  compared  to  the  motion of  the bare hull   configuration. 

Figure  I'll   presents   dimensionless pitch and   indicates  that   pitch 

increases as  speed   increases  from 0 to 20 knots   for  the bare hull   craft. 

There appears   to be  no speed effect on  the  pitch   for  the craft with  large 

fins  of blisters.     There   is only  a slight   reduction   in  pitch  due to the 

addition of blisters  and   little effect on pitch  due  to the  large  fins at 

20  knots.     Note   that   there   is  substantial   increase   in  pitch  motion   in   following 

seas   compared  to head  seas,  with  and without  appendages   (see  Figure   116). 

Fi.jres   1^3  through   150  present  dimensionless  absolute motions   for  both 

hulls  near  the bow and  stern.     These  figures   indicate   little  speed effect  on 

absolute  bow motion   for   the bare  hull   craft  while  there   is  a  decrease   in 

absolute stern motion as  speed   increases  from 0  to 32  knots   for the bare hull 

configuration.     At  0 and  20 knots   the  largest  absolute  bow motion   is 

experienced by the bare  hull  craft.    At 0 and 20 knots   there   is   little 

appendage effect on absolute stern motion.     In general,  absolute bow and 

stern motions are significantly   larger  in head seas  than   in  following seas  for 

corresponding speed and appendage  configuration   (see  Figures   118 through 

125). 
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Figures   151   through   160 present ditnens ionless   transverse  force, 

vertical  shear  force,   transverse vertical  bending moment,   torsional 

moment and yaw moment.    There   is no appreciable speed or appendage 

effect on these  forces  and moments   in  following seas  for  thft speeds 

investigated. 

RANDOM WAVES  -  HULL WITH APPENDAGES,   32   ft  DRAFT 

Figures   16)   through   169  present   results  of experiments   In   random waves 

for  the craft  at   the   32   ft  draft with  various  appendages  at   various  speeds 

and headings.     Data are prtsented as significant  double amplitudes of 

motions  and   forces  as   a  function of significant  wave height. 

Figure   161   presents  significant  double amplitudes of heave and  relative 

bow motion.      In  head  seas   the  craft with   large   fins  experiences  the   least 

severe heave except  at  0 knots where  the craft with bilge  keels has  the 

least  severe  heave.     Heave   is  greatest   in  head  seas   for  the craft with blister 

at  0 and  32  knots.      In   following  seas  the  large   fins  are  not  effective   in 

reducing motion  at   20  knots  while  the  blisters   increase  heave motion  at  0 

and 20 knots  compared  to bare  hull  motion. 

At  0 knots  bare hull   craft  heave motion   is  about  the  same at  all   headings. 

Heave   for   the  craft  with  blisters   is  slightly   larger   in   following  than   in 

head seas. 

At 20 knots   the craft with   large  fins and  the  craft with blisters 

experience significantly   larger heave   in  following  seas  than   in head seas. 

At  32 knots  the  craft with   large  fins appears  to experience much   larger 

heave   in  following seas  than   in head seas. 

Figure   161   also presents  significant double amplitudes of  relative bow 

motion experienced by  the craft with and without  appendages at various 
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speeds and headings.    Relative bow motion  in head seas  for the craft with 

blisters   is unaffected by speed. 

In   following seas   relative bow motion  for  the bare hull   craft   increases 

appreciably as  speed   increases   from   10 to 20 knots.     Relative bow motion  in 

following seas at  20 knots   is   lower   for  the craft with   large  fins   than  for 

the bare hul1   craft. 

At  20 knots  relative bow motion   for all   craft  configurations   is   larger 

in   following than   in head seas. 

Figure  162 presents  significant  double amplitudes of pitch   for   the craft 

with and without appendages,  operating at  various headings  and speeds.     In 

head seas  pitch  for  the craft  with blisters and  the  craft with bilge keels 

is  unaffected by speed.     Pitch   for the craft with   large  fins operating   in 

head seas  decreases as  speed   increases.     The small   pitch at   32  knots   for  the 

craft  with  blister  and  small   fins   is   probably  due more  to  the small   fins 

than  blisters. 

In   following  seas  pitch   for  the  bare hull   craft   increases   significantly 

as  speed   increases   from 0  to   10 knots  and  is about   the same at   10 and 20 

knots. 

At   10 knots bare hull   craft  pitch  decreases   from head  to beam seas  but 

increases   very significantly   in  following seas.     At  20 knots  pitch motion 

for all   craft  configurations   is  much   larger   in  following  seas   than   in  head 

seas,   and at  32 knots  for the craft with  large  fins. 

Figure   162 also presents   significant  double amplitudes of  roll   for  the 

craft with  and without  appendages operating at  various  speeds  and  headings. 

In  head  seas  and  following  seas   the   large  roll  motion was   probably   rudder 

induced.     In beam seas   roll   for  the bare hull  craft  decreases  slightly as 

speed   increases  from 0  to  10 knots. 
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Figures   163 and  ]Sk present significant double amplitudes of absolute 

motion near  the bow and near  the stern respectively.    At 20 and 32 knots  the 

large fins are most effective   in  reducing absolute bow and stern motion  in 

head seas.    Absolute bow motion for the bare hull   craft   in head seas 

decreases slightly as  speed  increases while motion  for  the craft with  large 

fins decreases dramatically as speed  increases.    The  large decrease  in 

absolute bow and stern motion between 20 and  32 knots  for  the craft with 

b, isters and small   fins operating   in head seas   is  probably  due more  to the 

small   fins   then  the blisters. 

,n  following seas   the absolute bow and stern motions at  20 and 32 knots 

are   lowest   for the craft with   large  fins. 

At 0 knots  the absolute bow and stern motions   for  the bare hull   craft 

tend to be of  the same  magnitude   in both head and   following seas and  lower 

in beam seas  than   in either head or following  seas.     At  zero speed  the 

absolute bow motion of  the craft with blisters  decreases as heading changes 

from head to following seas while  the opposite   is   true of  the absolute 

stern mot ion. 

At 20 knots absolute bow motion for the craft with blisters and the 

craft with large fins is slightly larger in following than in head seas 

while absolute stern motion for the same two craft configuration follows 

an opposite trend.  At 32 knocs the craft with large fins has larger 

absolute bow motion and smaller absolute stern motion in following seas 

than in head seas. 

Figure 165 presents significant double amplitudes of transverse force 

experienced by the craft with and without appendages operating at various 

speeds and headings.  The large values of transverse force in head and 

following seas are probably rudder induced (see roll in Figure 162). 
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Significant double amplitudes of vertical shear force experienced by the 

craft with and without appendage» at various speeds and headings are presented      ^J 

In Figure 166. (ienerally. these forces are low In head and following 

seas.  In beam seas there is a slight decrease in vertical shear force 

as speed increases from 0 to 10 knots. 

Figure 16? presents significant double amplitudes of transverse 

.  , w j-  ^m-nt fnr the craft with and without appendages operating vertical bending moment tor tne crsii. wim «••■« 

at various speeds and headings. The large bending moment for the bare hull 

craft in head seas at 20 knots is probably rudder induced (see roll in 

Figure 162).  In beam seas the transverse bending moment is very larqe at 

0 knots and decreases as speed increases from 0 to 10 knots. 

Figure 168 presents significant double amplitudes of torsional moment 

experienced by the craft with and without appendages operating at various 

speeds and headings. The large values of torsional moment in head seas 

may be due to asymmetrical wave impact on the bow while the large torsional 

moment in following seas is probably caused by the model being restrained 

in surge during the experiments. In beam seas torsional moment increases 

slightly as speed increases from 0 to 10 knots. 

Figure 169 presents significant double amplitudes of yaw moment 

experienced by the craft with and without appendages at various speeds 

and headings.  In head and following seas there is no appendage or 

speed effect on yaw moment.  In beam seas for the bare hull craft there 

is very little speed effect on yaw moment. 
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SUATI!  IV 

Pressure Gage Locations 

i.O'i 

-r-   I        •       •       •       • 
|       8    7    6    5 

47.0' 

•   •   • 
3    2    1 

10. ?T 

51 .7 

BASE LINE 

ie No. 
Distance Aft of 
Fwd.   Strut Edqe 

(ft.) 

Distance Off 
Centerline 

(ft.) 

Distance Ahove 
Base Line 

(ft.) 

1 22.85 25.5 Port 47 

2 33.05 11.9 Stbd. 47 

3 43.25 11.9 Port 47 

4 53.45 25.5 Stbd. 47 

5 187.75 25.5  Port 47 

6 197.95 11.9 Stbd. 47 

7 208.15 11.9 Port 47 

8 218.35 25.5 Stbd 47 

9 112.95 5.1  Stbd. 47 

10 2.45 17.0 Port 51.7 

Figure 5 - Pressure Gage Locations on SWATH IV Bridging 
Structure 
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SWATH IV 

Horizontal Stabilizer Fin Offsets 
J 

ST*.19 

ST».18 

TAPLK OF FIN OFFSFTS 

STATION 
NO. 

" X " 
(FEFT) 

„ Y ,. 

(FEET) 

1 .06« .165 

2 .102 .199 

3 .170 .250 

i .3iO .3t3 

S .6R0 .476 

h 1.020 .576 

7 1.360 .658 

fl 2.0/.0 .787 

9 2.720 .882 

10 3.i00 .950 

11 /..OBO .QQi. 

12 (..760 1.018 

13 5.100 1.017 

It 6.120 .W) 

15 6.800 .926 

16 7./.BO .8^,2 

17 B.160 .763 

Ifl 8. RAO .665 

19 13.600 .000 

LEADING EDGE PADIU3 " .216 FFFT 

Figure 7 - Schematic and Offsets for SWATH IV Horizontal 
Stabilizer Fins 
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SWATM    IV 

H(AV(    MtlTION«,    IN   REGULAR   WAVES 

28   FT   DRAFT 
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Figure 10 Dimensionless Heave in Regular Waves, 28 ft Draft, 
Nominal üR^ 
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SWATH   IV 
MtAVE   PHASES    Ml   KEGULA«   WAVES 

28  n   DPAFT 
NOMINAL   CW, 
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Figure 11 - Heave Phas_e in Regular Waves, 28 ft Draft, 
Nominal GM^ 
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SWATH    IV 

RELATIVE    BOW   NOTIONS    IN   REGULAR    WAVE' 

28   FT   DRAFT 

NOMINAL    CM 
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Figure 12 - Dimensionless Re1ative_Bow Motion in Regular Waves, 
28 ft Draft, Nominal GMt 
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SWATH   IV 

RBM  PHASES   IN  REGULAR  V'AVES 
28  FT   DRAFT 
NOMINAL CWf 
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Figure 13 - Relative Bow Motion Phase in Regular Waves, 
28 ft Draft, Nominal SWt 
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SWATM    IV 

PITCH    HOTIONS     IN    mULAR    WAVfS 

28   TT   DRAfT 
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Figure 14 - Dimensionless Pitch in Regular Waves, 28 ft Draft, 
Nominal GKt 
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SWATH    IV 
PITCH  PH*SIS   IN  »ECULA»  WAVCS 

28  FT   OMFT 
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Figure 15 - Pitch Phase in Regular Waves, 28 ft Draft, 
Nominal Sff^ 
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DOLL MOTIONS IN RCCULA* WAVES
nominal Cnt

WAVELENGTH TO SHIP LtN'.TM PATir. A/L . HONO I " E MS I ON A I

Figure 16 - Dimensionless Roll in Regular Waves, 28 ft Draft, 
Nominal 5Mt



SWATH IV 

ROLL PHASES  IN REGULAR WAVES 
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Figure 17 - Roll Phase in Regular Waves, 28 ft O'aft, 
Nominal 5fft 
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SUATH IV 
ABSOLUTE MOTIONS IN REGULAR UAUES 
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Figure 18 - Dimensionless Absolute Motion in Regular Waves, 
Forward Port, 28 ft Draft, Nominal GMt 
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SWATH    IV 

ABSOLUTE    MOTION   PHASES    IN   REGULAR   WAVES 
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SWATH IV 

Sea Spectra 
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SWATN IV

SIGNIFICANT OOUILC ANHITUDCS OF TNANSVCRSC FONCCS IN ACCULAA WAVCS
•ANC NULL

o

Figure 70 - Significant Double Aaplitudes of Transverse Force 
in Random Waves. Bare Hull. Nominal
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SWATH IV
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SWATH IV 
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Figure 73 - Significant Double Amplitudes of Torsional Moment 
in Random Waves, Bare Hull, Nominal Sfft 
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SWATH IV 

Impjct Prtisure Cumulitloe Relitlv« Frequency Distribution 
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Impact Prciiure Dlitrlbutlon 
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SWATH IV 

HEAVE MOTIONS IN REGULAR WAVES 
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Figure 86 - Dimensionless Heave in Regular Beam and Quartering 
Seas, 28 ft Draft, Large Gfft 
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SWATH    IV 

HEAVE   PHASES    IN   REGULAR   WAVES 
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Figure 87 - Heave Phase in Regular Beam and Quartering Seas, 
28 ft Draft, Large SRt 
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RELATIVE BOW MOTIONS IN REGULAR WAVES 
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PITCH PHASES IN REGULAR WAVES 
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ROLL MOTIONS IN REGULAR WAVES 
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Figure 92 - Dimension]ess Roll in Regular Beam and Quartering 
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ROLL   PHASES    IN   REGULAR   WAVES 
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Figure 94 - Oimenslonless Absolute Bow Motion in Regular Beam and 
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Figure 165 - Significant Double /baplltudes of Transverse Force In 
Randc-* Haves. 32 ft Draft. APPENDAGE EFFECT



SWATH  IV 

SIGNIFICANT DOUBLE AMPLITUDES OF VERTICAL SHEAR FORCES  IN RANDOM WAVt'S 

APPENDAGE EFFECT 32 ft DRAFT 
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Figure 166 - Significant Double Amplitudes of Vertical Shear Force 
in Random Waves, 32 ft Draft, APPENDAGE EFFECT 
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o SUTH IV
SICNinCANT OOUlU MVlITUBtS Of T*MISV{*SE ItaOIW MNfNTS IN NMOan MWrtS 

ANfEHOME EFFECT, }2‘ Ml
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Figure 167 - Significant Double Amplitudes of Transverse Vertical 
Bending Moment in Random Waves. 32 ft Draft 
APPENDAGE EFFECT



SWATN   IV 
SIGMIFICANT  OOUILI  *»»IITU01S Of  TOUSIONAl  MOMINT   IN HMO» MAVIS 

AfftNOACI   irrtCT,   )2'   Ml 
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Figure 168 - Significant Double Amplitudes of Torslonal Moment In 
Random Waves, 32 ft Draft. APPENDAGE EFFECT 
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SWATH IV
SIGNIFICANT UOUBLC AHPUTUDCS Of VAW nONCNTS IN RANDOM WAVES 
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Figure 169 - Significant Double Amplitudes of Yaw Moment in Random 
Waves, 32 ft Draft, APPENDAGE EFFECT
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TABLE 3 

Definition of SWATH IV Dlmenslonless Data Presentation Scheme 

Notion or LOOd DlMMlOflltK ^TMOftUtlO« 

Mt«»» 

MUtlv» to« Notion (UN) 

teiolut« Notion {m) 

Pitch 

Roll 

Vtrtlctl Shoor Forct 

Trantvtrtc Fore» 

Trontvort» V»rt1ctl Bonding Notwt 

Tortlonol 

Tow Noaont 

H0«»t »»lltudo (ft) 

Mvt «»»11 tod» (ft) 

MlotU» Ig» Notion »»lltod» (ft) 

Movo tapHtud» (ft) 

Abtolut» Notion «■plltudo (ft) 

M«V»   «Mplltud«   (ft) 

Pitch »^>11tud» (rod) i Ship   Lggth (ft) 

?   I  MOV« «MplltMd»  (ft) 

«oil «wplltod» (rtdlont) 

Mov» Slop» 

- s.op».iM ^^^i^rr(ft) 

»«rtlc«) Sh—r fore» «wplltud» (lb) 

(P4) (V) i Mt«»«MpMtud» (ft) 

Tr»n«»»r«» fore« «wplltud» (lb) 

(P4) (Ap) i Mv» «nplltud» (ft) 

Trotwws» »»rtlcil »»ndlrn Nwofit «■plltud» Qb-ft) 

(P«) (*p) (d) ■ Ht«» «wHtod» (ft) 

Tortlonol WBMont «wplltud« (lb-ft) 

(P9)  (D  (S.) ■ **• «plltud» (ft) 

Tow Noatnt «wolltud« (lb-ft) 

(P9) («p) (U > Mi«« SwTTtod« (ft) 

p« • dtmlty of »«It «tor, 64 Ik/ft1 

A« • Mterplon» trot. MM ft1 

Ap ■ projected Utor«) «roo bolov tht Mtarllnt 

■ 6760 ft' for 28 ft droft 

7Z15 ftJ for JO ft droft 

7670 ft} for 12 ft droft 

d • dUUnco froa bonding WMtnt noutrol o»1» to «Id-droft 

• 49 ft (Photo I), 46.6 ft (Phoso II) for a ft droft 

46.6 ft (HMto II) for M ft droft 

47 ft (PIMM I). 44.6 ft (Photo ID for 3? ft droft 
L • Ship length, ovoroll. »7.6 ft 
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