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ABSTRACT
Experiments were conducted with a model of a smal) waterplane area
twin hull craft in both the Manuevering and Seakeeping Facility and
Carriage 2 of the David Taylor Mode! Basin, of the David W. Taylor Naval
Ship Research and Development Center (DTNSRDC) to determine motions and
loads at various headings and speeds. Data were obtained in both regular

and random seaways.

ADMINISTRATIVE INFORMATION

This oroject was funded by the Systems Development Department Advanced
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INTRODUCT I ON

An extensive experimental program was conducted on a small waterplane area
twin hull craft represented by a 20.4 scale model, DTNSRDC Model 5287, designated
as SWATH IV. Experiments were coniucted in head, beam, stern quartering and
following regular and random seaways at speeds corresponding to full scale
speeds of 0, 10, 20 and 32 knots. These experiments were conducted with the
mode]l free running, without restraint, in six degrees of freedom (6 DOF).
Measurements were made of the seaway, the SWATH IV pitch, heave, roll and
relative motion near the how, as well as absolute vertical motion near the
forward and aft strut ends, both port and starboard. In addition, loads on
the bridging structure due to relative hull motions were measured by means of
an instrumented flexure. Pressures due to wave impacting were also measured
at various locations along the bridging structure between the two hulls. In-
vestigations were made of the effect of draft on the motions, loads and impact
pressures at various headings and speeds; the effect of transverse metacentric
height (Eﬁt) in beam seas; and the effect of various appendages in head and
following seas at the heaviesi displacement. Figure | presents the matrix of
SWATH 1V configuratiors investigated.

This report presents results of all experiments conducted on the SWATH IV

L

model and is an extension of the work reported in Reference 1 .

*References are listed on page 35.
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DESCRIPTION OF MODEL AND TEST EQUIPMENT

The model used in this investigation is the same model used to evaluate
the cambered-hull effect on resistance and propulsion of a SWATH type craft
reported in Reference 2. Abberviated body lines and plans are presented in
Figures 2 and 3. Since propeller diameter did not markedly affect craft
performance in the study of Reference 2, and sirce propellers 3217 and 3218
were readily available, they were used during the present series of experiments.

Propulsion was provided by two five horsepower D.C. motors, one housed in each
hull. The two hulls were connected by a combination of block gages and
flexure beams equipped with strain gages to permit measurement of moments
and forces on the bridging structure.

These were attached to the hulls above the struts at approximately Stations
6 and 14. A plywood bridging structure, split down the centerline, was also
attached to the model at the location shown in Figure 4. Diaphram type
pressure transducers were distributed along the length and on the bow section
of this structure, in accordance with Figure 5, in order to measure impact
pressures. No attempt was made to scale the rigidity of this structure. Since
the model was free running, controllable rudders were necessay to maintain
course. Figure 4 shows the location and size of these rudders. Each rudder
was controlled by a steering servo located on its particular hull. in an
attempt to improve ship motions and maintain vertical plane stability (pitch)
for some conditions, a variety of appendages was attached either to the lower
hulls or struts during the experiments.

For example, during calm water experiments at the 32 ft draft, bare hull
condition it was found that vertical plane instability existed somewhere

between 20 and 32 knots full scale. Therefore, a fixed horizontal fin was attached



inboard at the stern of each hull to provide stabilization for the 32 ft dréft, ~_/
32 knot condition. Figures 6 and 7 indicate the location, size and shape of
the fins used.

Once the bare hull configuration responses were characterized, certain
other appendages were added in an attempt to improve the ship motions at the
32 ft draft. Heave 'blisters' were installed at the locatior shown in Figure 8.
These consisted of molded fiberglass bolt-on sections attached both inboard and
outboard on each strut above the waterline. These blisters were constructed such
that they doubled the strut thickness over the nominal at a given long-
itudinai position in an effort to introduce some heave damping. Since the
blisters were located at the 36 ft waterline and above, they were only effective
in wave conditions where height of the wave profile exceeded 36 feet.

In an effort to introduce additional heave damping, 4 ft by 102 ft bilge
keels were added both inboard and outboard at 9 feet above the base line on each
hull at the longitudinal location shown in Figure 9.

Table 1 presents SWATH IV ship particulars for the 28, 30 and 32 ft draft
bare hull configurations while Table 2 presents SWATH IV ship particulars for

all hull configurations investigated

DESCRIPTION OF MEASUREMLNTS AND INSTRUMENTATION
As mentioned previously, the SWATH IV experiments were conducted with
the model self propelled and free running, without restraint, in all six
degrees of freedom. Tethering lines, required for aéceleration and deceler-
ation of the model, and motor power cables and transducer signal cables were
the only connections between the model and carriage. These lines and cables

were slack during data collection and did not affect model responses.



Mode! speed was controlled manually and was regulated in accordance with
preset carriage speed. Thus the mode| was kept fairly stationary with respect
to the carriage and model speed was relatively constant. However, during
some head sea conditions with severe impacting, and during some following
sea conditions there was considerable surge motion.

Course was maintained by means of yaw and sway signal inputs to rudder
servo control devices on each hull. Since mechanical rudder coupling and
differeﬁt servo characteristics could affect the relative force measurements
between the two hull, the rudder servos were electronically coupled to ensure
nearly identical rudder motions. Heave, surye and relative motion at the
bow as well as wave height were measured by uitraccnic displacement transducers.
Heave was measured at Station 10 on the centerline, surge near Station 19 on
the centerline and relative bow motion 1.5 ft (full scale) aft of Station 0 on
the centerline.

Pitch, roll and yaw were measured by vertical gyroscopes mounted near
Stazion 10 on the bridging structure. Absolute vertical motions at the bow
and stern were measured with vertical accelerometers at Station 4 (port and
starboard) and Station 16, (port and starboard), respectively.

The only mechanical connection between the two hulls was a combination
of modular force gages and flexured, strain gaged beams. Sufficient
space was left between the two halves of the wood bridging structure to
permit the hulls to move relative to each other without debasing the measure-
ment of forces and moments between the hulls. This block gage-beam arrangement
enabled the measurement of six loads used to calculate the five relative
forces and moments due to relative motions between the hulls. These assemblies

were centered about the centerline and 112 ft (full-scale) aft of the FP



(near the LCG). The neutral axis of the bending moment flexure was 60.6 ft
above the base line. The following are the five relative forces and moments
derived from block gage-beam assemblies:

Transverse Vertical Bending Moment: the moment that tends to produce

relative roll between hulls
Torsional Moment: the moment that tends to produce relative pitch
between hulls
Yawing Moment: the moment that tends to produce relative yaw between
hulls
Vertical Shear Force: the force that tends to produce relative heave
between hulls
Transverse Force: the force that tends to produce relative sway between
hulls

Although the bridging structure did not necessarily represent that of a
prototype, it did provide a means of determining the order of magnitude of
impact pressure which a prototype might experience in various seaways. No
attempt was made to scale the bridging structure to simulate the vibratory
characteristics of a prototype. Impact pressures on this structure were
measured by strain-gaged diaphragm type pressure transducers located as shown
in Figure 5. These gages, designed and manufactured at DTNSRDC, were rated
at 0 to 15 psi with a flat response to 1500 hz and a natural frequency of
at least 25,000 hz, and thus were more than adequate to measure the impacting

phenomena.
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EXPERIMENTAL PROCEDURE

The basic goals of this experimental investigation were to first
characterize both calm water and seaway responses of the SWATH IV bare
hull configuration at the 28, 30 and 32 ft drafts and then to add appendages
as necessary to try to improve motion responses. A limited number of experiments
was also conducted to determine the effect of transverse metacentric height on
the transverse vertical bending moment. For sach of the three drafts listed
in Table 1, a series of calm water runs was made to determine running trim,
sinkage and natural periods of pitch, heave and roil at the various speeds.
Trim moments were produced by moving ballast in order to maintain an approximate
zero running trim in calm water at both the 20 and 32 knot speeds. The
model maintained fairly even keel trim at 10 knuts for all three bare hull
draft conditions so no shift in ballast was required from the zero speed,
zero trim condition.

Once the trim moments were established, calm water runs were conducted
during which the model was force pulsed manually near its natural frequency
in either pitch, heave or roll at the various speeds in order to determine
motion decay curves and natural periods. In many cases at 20 and 32 knot
speeds, the motion was SO highly damped that the determination of the natural
heave and pitch periods was difficult or impossible by this means.

Experiments were then conducted in regular and long crested irregular
waves at the various headings and speeds for the 28, 30 and 32 ft draft
bare hull conditions (See Figure 1). Nominal wave steepness (2;A/A) ranged
from about 1/60 to 1/100 during these experiments. However, some mot ions
became quite severe at the longer wave lengths due to the large natural
periods of motions. In these cases the steepnesses were decreased to

around 1/130 to prevent swamping of the model. In addition, some experiments



were conducted in near synchronous wave conditions at several steepnesses
in order to provide a linearity check on the motions.

Irregular wave experiments were also conducted at various headings
and speeds in order to obtain statistical data on motions, loads and
frequency of impacting on the bridging structure. For each condition
about 150 samples of peak-to-peak motions were obtained since experience
has shown that realistic inferences about the population may be made from
this sample size. However, not all sample sizes in some following sea
conditions were this large. The Sea States 4, 5, and 6 indicated in Figure
| correspond to fully developed seas with significant wave heights of 7, 10
and 15 ft respectively.

A 1imited number of experiments was conducted in both regular and random
beam seas at the 28 ft draft with two different Eﬁt's and at the 32 ft draft,
to determine the effect of Eit and draft on roll motion and transverse
vertical bending moment. Investigations of the effects of motion damping
devices were carried out with the 32 ft draft configuration. Calm water
experiments for the 32 ft draft bare hull configuration indicated vertical
plane (pitch) instability existed somewhere between 20 and 32 knots because
the model would not accelerate up to 32 knots and maintain a near zero
rurning trim. The horizontal stabilizer fin, described earlier, was there-
fore ottached inboard at the stern on each hull. Calm water bare hull trim
moments due to shifting ballast were maintained and calm water running trim
was adjusted to near zero by chaning the fin angle of attack. (in other
words, ballast weight trim roment was held constant throughout these
investigations). Experiments in only reaular and in random head and followino seas
were conducted with these fins. One condition was investigated with a smaller

fin in head regular and random seas only.



Heave blisters were investigated in calm water and in head and following
regular and random waves. The damping effects of bilge keels were obtalned
in calm water and in head regular and random waves only. As seen in Table
2, the nominal calm water ballast trim moment for 20 knots had to be
increased in order to acquire a zero running trim for the conditions with

bilge keels,

DATA COLLECTION AND REDUCTION

During the experiments, the transducer signals were amplified and
recorded in analog form on paper strip chart (including an oscillograph
for impacts) and analog magnetic tape. The system for measuring impacts
provided a flat response to 1500 hz, which is more than adequate for the
phenomena studied. The analog tape data were digitized and then analyzed
by the CDC 6400 computer program.

Calm water running trim, sinkage and natural period oscillation data
were read from strip chart records.

Reduction of regular wave data produced Fourier transform coefficients
for the fundamental frequency of the wave height signal and corresponding
coefficients of the other signals. Mean offsets, amplitudes and phases
for each of the signals were then determined. Phases were calculated
relative to the wave as it passed the nominal LCG of the model (112 ft
aft of the forward strut edge), with a positive phase defining the response
leading the wave. Mean offsets of surge and sway signals were used to
correct for model surge and sway away from its zero position relative

to the fixed wave height probe.



Data obtained in random waves were analyzed in both the time and
frequency domains. This analysis yields mean values, power spectra,
histograms and Fourier transforms as well as statistical information
about the time histories. Only significant double amplitudes, the
average of the one-third highest peak-to-peak fluctuations, are
presented in this report. Imopact pressure data obtained in random
waves was extracted manually from strip chart records. Absolute motion
spectra for bow (port and starboard) and stern (port and starboard)
motions were obtained by integrating the acceleration spectra at these

respective locations.

PRESENTATION AND DISCUSSION OF RESULTS
Due to the large volume of data and the numerous variations in model
configurations, the data in this report is presented in segments as
shown below:
Regular Waves - Bare Hull, 28 ft Draft
Regular Waves - Bare Hull, 30 ft Draft

Reqular Waves - Bare Hull, 32 ft Draft

Random Waves Bare Hull

i

Regular Waves Eﬁt Effect in Beam Seas, 28 ft Draft

Regular Waves - Large Eﬁt’ 28 ft Draft
Regular Head Seas - Hull with Appendages, 32 ft Draft
Regular Following Seas - Hull with Appendages, 32 ft Draft
Random Waves - Hull with Appendages, 32 ft Draft

The results of calm water experiments are presented in tabular form

in Table 2. This table indicates the amount of trim moment needed for

zero running trim for each particular speed and model configuration.
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For the configurations with fins the fin angle indicated is the angle of
attack on the fin necessary to give near zero running trim (positive fin
angle means leading edge up). Natural periods derived from calm water
oscillation experiments are shown in the last three columns.

The regular wave data in this report are presented as a function of
wave length to ship length ratio, A/l., and the motions and loads are
nondimensionalized in accordance with the scheme shown in Table 3, as
requested by the sponsor. The observations made during the discussion of
regular wave data refer to the maximum dimensionless response and not to
the response to any particular wave length. Phases are also presented out
not discussed.

REGULAR WAVES - BARE HULL, 28 ft DRAFT

Figures 10 through 35 present results in dimensionless form of
experiments in regular waves for the 28 ft draft, nominal Eﬁf craft
configuration at various speeds and headings. It is necessary to indicate
that since the model for this experiment possessed a bridging structure,
impacting did occur during some experiments in near synchronous wave conditions.
This is important because the magnitude of the motions at these conditions
may have been attenuated by the bridging structure impacting the wave.

There is little speed effect at the 28 ft draft on maximum dimensionless
heave amplitude in head seas (Figure 10). In beam seas, heave is largest
at 0 knots and decreases as speed increases to 10 knots, with little speed
effect above 10 knots. In stern and following seas, heave is largest at 0

knots and decreases as speed increases to 10 knots. There is no stern or

following sea data above 10 knots.



There is little heading effect on maximum dimensionless heave amplitude
at 0 knots. At 10 knots heave decreases as heading is changed from head to \\M,)
beam seas, with little heading effect as heading changes from beam to stern
and stern to following seas. At 20 and 32 knots, heave is largest in head
seas and decreases as heading changes to beam seas.

Dimensionless relative bow motion amplitude (Figure 12) varies only
slightly with speed up to 32 knots in head seas, and in stern and following
seas there is virtually no variation up to 10 knots, the maximum speed for
which data was obtained at these headings. In beam seas, relative bow motion
is largest at O knots and decreases as speed increases to 10 knots, with
little speed effect above 10 knots. At O knots, relative bow motion is about
the same in head and beam seas and decreases as heading changes to stern
and following seas. At 10 knots, heave is largest in head seas, minimum in
beam seas and about the same in both stern and following seas. At 20 and
32 knots relative bow motion decreases as heading changes from head to beam
seas.

Figure 14 shows that in head seas pitching motion decreases as speed
increases from zero to 10 knots, but increases again as speed increases
from 10 to 32 knots where it is about the same order of magnitude as at
zero speed. There is little pitching motion at any speed in beam seas. In
both stern and following seas pitch motion decreases as speed increases from
0 to 10 kiots. There is no data in quartering and following seas at 20 and
32 knots. At 0 and 10 knots, pitch motion decreases as heading changes
from head to beam but increases as heading changes from beam to quartering
and from quartering to following seas. Note that at 0 and 10 knots pitch
is about the same in following and head seas. At 20 and 32 knots, pitch

motion decreases as heading changes from head to beam seas.
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Figure 16 shows little rol) motion in head and following seas at any
of the speeds examined. In beam seas roll motion decreases as speed
increases from 0 to 10 knots, with little speed effect above 10 knots. Instern
quartering seas roll motlon data Is insufficlent to draw conclusions. At
0 knots, the largest roll motion occurs in beam seas while at 10 knots
roll motion is largest in stern quartering seas. At 20 and 32 knots roll
motion increases as heading changes from head to beam seas. There is no
data at 20 and 32 knots in quartering and following seas.

Dimensionless absolute motions near the bow (Figures 18 and 20) increases
slightly in magnitude as speed increases up to 20 and 32 knots in head seas.
In beam seas the largest absolute bow motion occurs at zero speed. For the
underway speeds they are approximately the same. There is no data for 20
and 32 knots in quartering and following seas. At 0 knots there is little
heading effect on the maximum magnitude of absolute bow motion. At 10 knots
absolute bow motion is largest in head seas and decreases as the heading
becomes beam seas. At 10 knots, the maximum absolute bow motion is generally
about the same in beam, quartering and following seas for a particular hull.
At both 20 and 32 knots, absolute bow motion is largest in head seas and
decreases as the heading becomes beam seas.

Dimensionless absolute motion near the stern (Figures 22 and 24) varies
only slightly in magnitude with speed in head seas. In beam, quartering and
following seas, absolute stern motion decreases as speed increases from 0
to 10 knots. In beam seas the absolute stern motion varies little as
speed increases from 10 to 32 knots. There is no data at 20 and 32 knots
in quartering and following seas. At 0 knots, there is little heading
effect on maximum absolute stern motion. At 10 knots the maximum absolute
stern motion is generally about the same in beam, quartering and following

13



seas for a particular hutl. At both 20 and 32 knots, absolute stern motion
is largest in head seas and decreases as heading becomes beam seas.

In general, absolute motions near the stern (Figures 22 and 24) are
larger than those near the bow (Figures 18 and 20) for corresponding speeds
and headings. Also note that motion of the starboard hull is larger than
that of the port hull in beam seas at 10 and 20 knots and in quartering seas
at 10 knots. This would suggest that the roll axis is not on the centerline
but to the port of the centerline. Recent experiments on a 2900 ton develop-
mental SWATH design, along with motion pictures of the experiments, bear
this out.

Figure 26 which presents dimensionless transverse force at various
speeds and headings, shows there is little speed effect on maximum magnitude
in head seas; at 10 thru 32 knots there Is only a slight increase in magnitude
over the zero knot condition. in beam seas the transverse force is largest at
10 knots ard about the same magnitude at 0, 20 and 32 knots. There is very
little speed effect in quartering seas up to 10 knots. In following seas
side force is largest, through still small, at 10 knots. There is no data
for 20 and 32 knots in quartering and following seas. At 0 and 10 knots the
transverse force is largest in guartering seas and in beam seas still
significantly larger than at the other headings. At 20 and 32 knots the
magnitude of the side force is about the same in head and beam seas.

Dimensionless vertical shear force, presented in Figure 28, in head
ceas is very small at all speeds. In beam seas the vertical shear force
is largest at 0 knots and remains about the same for 10 through 32 knots.

In quartering seas, the vertical shear force increases from 0 to 10 knots.

There is virtually no speed effect on vertical shear force in following

14



seas up to 10 knots. There is no data in quartering and following seas
at 20 and 32 knots. At O knots, vertical shear force is largest in beam
seas and very small at the other headings. At 10 5nots vertical shear
is very small in head and following seas and about the same in beam and
quartering seas. At 20 and 32 knots, the vertical shear is largest in
beam seas.

Nondimensional transverse bending moment, presented in Figure 30, is
very small in head seas up to 20 knots and increases slightly as speed
increases to 32 knots. In beam seas transverse vertical bending moment
decreases as speed increases from 0 to 10 knots and increases again at
20 and 32 knots. In quartering seas, bending moment decreases as speed
increases from 0 to 10 knots. In following seas, bending moment is very
small at 0 and 10 knots. There is no data at 20 and 32 knots for quartering
and following seas. At 0 and 10 knots, bending moment is slightly larger
in quartering seas than in beam seas and is very small in head and following
seas. At 20 and 32 knots, bending moment is much larger in beam seas than
in head seas.

Dimensionless torsional moment, Figure 32, is very small in head seas
up through 20 knots and increases as speed increases from 20 to 32 knots.

In beam seas, the torsional moment is very small throughout the speed

range. In quartering seas, torsional moment increases slightly as speed
increases from 0 to 10 knots. In following seas, torsional moment is very
small at both 0 and 10 knots. There is no data in quartering and following
seas at 20 and 32 knots. At 0 and 10 knots, torsional moment is very small
at all headings except quartering seas where it is fairly large. At 20 knots
torsional moment is small in both head and beam seas. At 32 knots, the

torsicnal moment is considerably larger in head seas than in beam seas.
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Dimensionless yaw moment, Figure 34, is negligible for all speeds in head
and following seas. The yaw moment in beam and quartering seas is about the k\k,)
same for all speeds. There is no data In quartering and following seas at
20 and 32 knots. At O and 10 knots, the yaw moment is about the same in
beam and quartering seas and larger than in head and following seas. At
20 and 32 knots, yaw moment is much larger in beam seas than in head seas.

It should be noted here that the large side forces (Figure 26), vertical
shear forces (Figure 28), transverse bending moment (Figure 30), and torsional
moment (Figure 32) depicted by some of the data spots in head seas at 32
knots may be due to wave impacting on the bridging structure.

REG/JLAR WAVES - BARE HULL, 30 ft DRAFT

Figures 36 and 37 present results of experiments in regular head seas
at 20 knots for the 30 ft draft, nominal Eﬁt craft configuration. Figure
36 shows dimensionless absolute motions near the bow and stern, both port
and starboard. Absolute motions near the stern {Station 16) are larger than
those near the bow (Station 4) as was the case at the 28 ft draft.

Figure 37 presents yaw, torsional and transverse bending moments and
transverce and vertical shear forces.

REGULAR WAVES - BARE HULL, NOMINAL Eﬁt' 32 ft DRAFT

Figures 38 through 63 present motions and loads and their phases
obtained during experiments in regular waves at speeds of 0, 10 and 20
knots in head, beam and following seas for the 32 ft draft, bare hull,
nominal Eﬁt craft configuration.

In Figure 38, which presents dimensionless heave motions, the limited
amount of data in head seas suggests that heave motion follows the trend
at the 28 ft draft (Figure 10). In beam seas there is insufficient data

to form conclusions. In following seas heave is largest at 0 knots andg
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decreases as speed increases to 20 knots. For all speeds the trends observed
at the 28 ft draft concerning heading effect on heave motion appear to be the
same at the 32 ft draft. There is no beam sea data at 20 knots.

Nondimensional relative bow motion magnitude for the 32 ft draft presented
in Figure 40, generally follows the same trend observed at the 28 ft draft
(Figure 12) in terms of speed and heading effect. In following seas there is
a significant increase in maximum relative bow motion as speed Increases from 0
to 20 knots. At 20 knots relative bow motion appears to be larger in following

than in head seas.

Dimensionless pitch and roll motion at the 32 ft draft presented in
Figures 42 and 44, although sparse in head and beam seas, seems to follow
the trends observed at the 28 ft draft.

Dimensionless absolute motions near the how and stern for the 32 ft draft
presented in Figures 46 to 52, appear to follow the trends observed at the 28
ft draft (Figures 18 - 24). Note that in following seas the magnitude of the
absolute stern motion decreases significantly as speed increases from 0 to 20
knots (Figures 50 and 52).

Dimensionless moments and forces at the 32 ft draft, presented in Figures
54 - 62 appear to follow the trends observed at the 28 ft draft with one
exception. Figure 30 indicates that in beam seas at the 28 ft draft the
transverse vertical bending moment decreases as speed increases from 0 to
10 knots and Figure 58 shows that this may not be the case at the 32 ft draft.

Figure 64 presents results of linearity experiments in regular waves for
both the 28 and 32 ft draft bare hull configurations. These experiments were
conducted with the regular wave length near heave synchronism for the particular
speed. Figure 6lia shows dimensionless pitch, heave and relative bow motion
results from experiments in head seas at various speeds. Generally, the

motion responses remain linear with wave height for pitch and relative bow
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motion at all speeds and for heave only at 0 knots.

Figure 64b, which presents results of linearity experiments for the &\’/)
28 and 32 ft draft bare hull configurations at zero speed in following
seas, indicatesthat nondimensional motion responses are nonlinear except
for pitch at the 28 ft draft.

RANDOM WAVES - BARE HULL

A discussion on the applicatility of using a finite number of random
sea spectral formulations which can be generated in a tank to predict
motion responses in the ''real ocean'' is appropriate at this time.

Figure 65 presents wave height spectra for Sea States L, S and 6
generated during experiments on SWATH IV. They may not exactly duplicate
theorectical Pierson-Moskowitz idealized spectra; they are, however,
realistic and do contain sufficient energy in the frequency range to excite
the present model and elicit motion responses.

Since a craft may be required to operate in a wide range of ocean
environments, caution must be exercised in using responses determined from
experiments in a finite number of wave spectral formulations (as is the
case for random seas generated in a tank). To establish design criteria,
the responses should be examined in various seas which the craft will
encounter during its lifetime. Since it is physically impossible to generate
all these spectra in a tank, the following approach is taken: Establish the
response amplitude operator (defined as (motion amplitude/wave amplitude)zl
either by analytical means or by experiments in regular or random waves and
predict the responses in any desired sea condition. A basic assumption
underlying this prediction technique is that the craft behaves as a linear
system. Also, if it is desired to predict statistics such as significant

values or most probable maxima, the probability density function governing
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the phenomenon must be known or established.

In general, It Is not sufficient to represent a seaway by designating
its average wave h;Ight alone. There could be many sea conditions with
the same statistical average wave height and yet have quite different
spectral density (energy) distribution with respect to wave frequency. If
a craft has small inherent damping such as SWATH ships have, the motion
amplitude would be large when the craft is excited at or near its resonant
frequency. Assume two sea conditions with identical significant wave heights
but considerably different spectra density distributions such that seaway A
(as shown below), has its peak energy near the craft natural frequency while

seaway B has its maximum energy displaced from the craft natural frequency.
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Here we have

oj sp(w) do = 0jsa(m) dw t\/;)
but E, >> E

where EA = 0frur\o(m) SA(m)dm and Eg = gkAO(m) Ss(m)dw

The significant motion amplitude, M|/3' assuming a Rayleigh

distribution function, is obtained by

). = 2/E,

2/E, >> (M) )y B

/30 1/3
which clearly demonstrates that the craft would experience larger significant
motions in sea condition A than in sea condition B.

In the present case, the principle of linear superposition was applied
to experimentally-obtained RAO's and utilized in conjunction with 305
available ocean spectra measured at Station India in the North Atlantic
Ocean. The assumptions were made that the SWATH craft behaved as a linear
system and that the probability density function of the peak-to-peak excursions
followed a Rayleigh probability distribution law. The calculated responses
were then compared to those obtained from experiments conducted in tank
generated waves.

Regular wave data obtained during experiments on the 28 ft draft bare
hull and the 32 ft draft with large fins craft configurations were used
to demonstrate motion prediction techniques in random waves (See Figures 65A
and 658). The results shown in the cross symbols in Figures 65A and 65B

were obtained in the following manner:

Significant heave or relative bow motion (RBM) amplitude

= 2.0 (fLR(w) S (w) dw
0
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where

R(w) = response amplitude operator
2
 |Heave (or RBM Amp| i tude)
Wave Amplitude
$(,) = wave spectrum from Station lndla2
w = wave frequency, rad/sec

The solid lines in the figures are obtained by using the Pierson-
Moskowitz spectra:

A 8
S(w) = — (- =)
w 5 e wh

where A = 0.0081(9)2 (g = gravitational acceleration)
B = 33.56/(h ,5)°

h‘/3 = significant wave height in feet

It is seen in Figure 65A that the experiment. 11y obtained values of
significant heave and relative bow motion lie at the upper limit of the
data calculated using the Station India wave spectra. This is because
the sea spectra chosen for the model experiments (Figure 65) has maximum
energy in a frequency range near the heave natural frequency.

Data presented in Figure 658 show results of experiments and
calculations for the 32 ft draft configuration with large fins. These
data show that experimental results obtained in the random tank generated
waves agree quite well with results calculated using the Station India
spectra. The reason that the motions for the large fin case are not as
large as the bare hull case should be due to the difference in the frequency
distribution of the RAO's compared to the bare hull case. The difference

in heave and pitch natural frequencies of the craft as well as the peak
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motion amplitudes and the shape of the RAO's all contributed to this effect.

It is clear from these two figures that the motion data obtained from
the random wave experiments should be used as a general qualitative measure
of the motion magnitude experienced by a craft in a seaway of a given
significant wave height, but not necessarily a representative average for
any sea condition having the same significant wave height. The main objective
of the random wave experiments should be rather to check the linearity
assumption utilized to obtain the statistics of motion amplitudes the craft
experiences in random seaways.

Figures 66 through 76 present results of experiments in random waves
for 28, 30 and 32 ft. draft bare hull craft configurations at various speeds
and headings. Data are presented in terms of significant double amplitudes
(average of 1/3 highest peak to peak values) of motions and loads as a
function of significant wave height.

Figure 66 presents significant double amplitudes of heave and relative
bow motions. In general, heave and relative bow motion tend to be linear
with significant wave height up to about 20 ft. Where there is sufficient
data, it also appears there is little or no draft effect on heave or relative
bow motions. For a given speed, heave and relative bow motion tend to be
larger in head seas than at other headings.

Significant double amplitudes of pitch and roll, presented in Figure
67, appear fairly linear with wave height up to about 20 ft. There is very
little speed effect on pitch in head seas while in following seas pitch is
largest at 10 knots. In head seas pitch motion is lowest for the 30 ft draft
at 10 and 32 knots. At 10 and 20 knots for the 32 ft draft pitch motion is

significantly larger in following than in head seas.
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Figure 67 also presents significant double amplitudes of roll motion.
The large roll indicated by data points in head and following seas is
probably rudder induced. In beam seas roll is very large at O knots and
decreases as speed increases to 10 knots for both the 28 ft and 32 ft
drafts. There appears to be no draft effect on roll motion in beam seas.

Figure 68 presents significant doubl. amplitudes of absolute motion
near the bow. At all headings there is little speed effect on the
absolute bow motion. There is very little draft effect on absolute
motion at any heading or speed. for a given speed the absolute bow
motions are generally about the same for all headings.

Figure 69 presents significant double amplitudes cf absolute motion
near the stern. In head sea, the absolute stern motion increases with
speed and is largest at 20 and 32 knots, although at 32 knots the stern motion
is somewhat smaller for the 30 ft draft in a given sea state. In beam
seas the stern motion is largest at zero speed. In following seas there
is little speed effect on stern motion. Throughout the speed range
investigated the stern motion is largest in head seas.

Figure 70, which presents significant double amplitude of side force,
shows that there is very little speed or draft effect on side force in
either head or following seas. In beam seas the transverse force is
largest at 10 knots. In beam seas there i3 no appreciable draft effect
on transverse force. At zero and 20 knots the effect of heading on
transverse force is very small while at 10 knots the transverse force
is much larger in beam seas than in either head or following seas.

Figure 71 presents significant double amplitudes of vertical shear
forces. For the various speeds and headings there is very little draft

effect on vertical shear force. At all headings there is no appreciable
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speed effect on vertical shear force. For all drafts and speeds the
vertical shear force is much larger in beam seas than in either head
or following seas while the difference in head and following seas is
small.

Figure 72 presents significant double amplitudes of transverse
vertical bending moment. In both head and following seas there is
no draft or speed effect on transverse bending moment. In beam seas
the transverse bending moment for both drafts decreases as speed
increases. Throughout the speed range investigated, the transverse
bending moment is about the same magnitude in both head and following
seas while it is very much larger in beam seas than in either head or
following seas.

Figure 73 presents significant double amplitudes of torsional
moment. There appears to be little draft or speed effect while for a given
speed torsional moment appears to be smaller in following seas than in
head or beam seas.

The large torsional moments in head seas are probably due to bow
impact at the higher wave heights. In following seas the
large excursions in surge and the large torsional moments indicated by the
data are due to the craft being restrained by restraining ropes.

Figure 74 presents significant double amplitudes of yaw moment. In
both head and following seas there is no effect of draft or speed on yaw
moment. In beam seas the available data indicates the yaw moment may be
slightly lower at 20 knots than at the other two speeds. For all speeds
the yaw moment is significantly higher in beam seas than in either head
or following seas.

Figures 75 and 76 present impact pressure data obtained during experiments
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at the 32 ft draft bare hull configuration in a following Sea State 6 at
10 knots. These figures indicate that the stern experienced the greatest
frequency and severest Impact (see Figure 75 Gage #8). Note however
(Figure 76), that for about 80% of the impacts on gage 8 the pressure
magnitude was less than 5 psi while on gage | about 40% of the impacts
had pressure magnitudes between 5 and 10 psi. It is pointed out however,
that the sample sizes are somewhat small and experience has shown that
for cases when the sample size of impact pressures is less than about

50, caution should be used in drawing conclusions from the data.

REGULAR WAVES = Eit EFFECT IN BEAM SEAS, 28 ft DRAFT

Figures 77 through 85 present dimensionless motion and force data
obtained during experiments in regular beam seas for the 28 ft draft bare
hull craft configuration with both nominal and large Eﬁt'

Figures 77 and 81 indicate that the craft with the larger Eﬁt experiences
smaller roll at both 0 and 10 knots. These figures also show that heave,
relative bow motion and roll decrease significantly as the speed increases
from 0 to 10 knots.

Figures 79 and 81, which present dimensionless absolute motions near
the bow and stern, indicate that the craft with the larger Eﬁt has about
the same absolute motion as the craft with nominal Eﬁt at 0 and 10 knots.
Absolute bow and stern motions decrease as speed increases from 0 to 10
knots for both Eit craft configurations.

Figures 83 and 85 present dimensionless forces and moments for the craft
with nominal and large Eﬁ£ respectively. There is no Eﬁt effect on transverse
force at either 0 or 10 knots.

The vertical shear force for both Eﬁt craft configuration decreases with

speed from zero to 10 knots. There is no Eﬁt effect on either yaw or torsional

25



moment at 0 or 10 knots. Transverse vertical bending moment for the craft with
nominal Eﬁt decreases as speed increases from O to 10 knots while it remains

about the same at 0 and 10 knots for the craft with large Eit.

REGULAR WAVES - LARGE GM _, 28 ft DRAFT

Figures 86 through 111 present results of experiments conducted in beam
and quartering regular waves with the 28 ft draft, bare hull, large Eﬁt
craft configuration.

Figure 86, which presents nondimensional heave, shows that heave decreases
as speed increases from O to 10 knots In both beam and quartering seas. There
is little effect on heave for elther 0 or 10 knots as bending is changed for
quartering to beam seas. Heave for the craft with large Eit Is about the same
as for the craft with nominal Eﬁt at 0 and 10 knots in bean and quartering
seas (See Figure 10).

Figure 88 presents dimensionless relative bow motion and shows a decrease
in motion as speed increases from 0 to 10 knots in both beam and quartering
seas. It also shows that relative bow motion is about the same for both
heading at both 0 and 10 knots. The craft with large Eﬁt experiences less
severe relative bow motion than the craft with nominal Eﬁt in beam seas at
0 knots and in quartering seas at 0 and 10 knots (see Figure 12).

Figure 90 presents nondimensional pitch and shows no speed effect on
pitch motion in beam seas while pitch decreases as speed increases from 0
to 10 knots in quartering seas. Pitch is more severe in quartering than in
beam seas at either 0 or 10 knots. The craft with large Eﬁt experiences
larger pitch motion than the craft with nominal Eﬁt only at 0 knots in
quartering seas (See Figure 14).

Figure 92, which presents dimensionless roll, shows that rol! motion

decreases as speed increases from 0 to 10 knots in beam seas, but is
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about the same for the two speeds in quartering seas. At zero knots roll
is about the same in both beam and quartering seas while at 10 knots roll
in beam seas is much less than in quartering seas. The craft with large
Eﬁt experiences less severe roll in beam seas than does the craft with
nominal Eﬁt at both 0 and 10 knots. In quartering seas the craft with
large Eﬁt experiences larger motions at 0 knots than the craft with
nominal Eﬁt (see Figure 16).

Figures 94 through 101 present dimensionless absolute motions of both
hulls near the bow and stern in reqular beam and quartering seas. These
figures show that absolute motions decrease as speed increases from 0 to
10 knots in beam seas while in quartering seas there is little speed effect.
Also, there is very little heading effect on maximum absolute motion at O
or 10 knots in beam and quartering seas. The craft with large Eﬁt experiences
less severe motions than does the craft with nominal Eﬁt in beam and quartering
seas at 0 knots (see Figures 18 through 25).

Figure 102 presents dimensionless transverse force. This figure shows
that transverse force increases in beam seas as speed increases from 0 to 10
knots. At 0 and 10 knots the transverse force is significantly larger in
quartering seas than in beam seas. The craft with large Eﬁt experiences about
the same magnitude of transverse force as does the craft with nominal Eﬁt
in beam and quartering seas at 0 and 10 knots (see Figure 26).

Figure 104 presents nondimensional vertical shear force erperienced by
the craft at 0 and 10 knots in beam and quartering seas. Vertical shear

force decreases as speed increases form 0 to 10 knots in beam seas while
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there is no speed effect in quartering seas. Vertical shear forces are
largest at 0 knots in beam seas and largest at 10 knots in quartering

seas. The craft with large Eit experiences smaller vertical shear forces
than the craft with nominal Eﬁt in beam and quartering seas at 0 and 10 knots
except in quartering seas at 0 knots. (See Figure 28)

Figure 106, which presents dimensionless transverse vertical bending
moment, shows that transverse bending moment decreases as speed increases
from O to 10 knots in both beam and quartering seas. Also transverse
bending moment is significantly less severe in quartering than in beam
seas at both 0 and 10 knots. The craft with large Eit experiences
Jarger transverse bending moments than the craft with nominal Eﬁt in beam
seas at 0 and 10 knots but the opposite is true for the craft operating
in quartering seas (see Figure 30).

Figure 108, which presents nondimensional torsional moment, shows
neither speednor heading effect on torsional moment in beam or quartering
seas at 0 and 10 knots. The craft with larger GMt experiences less severe
torsional moment than does the craft with nominal GMt in quartering seas
at 0 and 10 knots (see Figure 32).

Figure 110 presents nondimensional yaw moment for the craft operating
in beam and quartering seas at 0 and 10 knots. Yaw moment decreases as
speed increases from 0 to 10 knots in both beam and quartering seas. There
is also very little GMt effect on yaw moment in beam and quartering seas at

0 and 10 knots (see Figure 34).

REGULAR HEAD SEAS - HULL WITH APPENDAGES, 32 ft DRAFT
Figures 112 through 135 present results of experiments in head regular
seas at various speeds for the craft at 32 ft draft with various appendages.

Flgure 112, which presents nondimensional heave, shows the bilge keels
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are the most effective of the three appendage configurations at 0 and 20 knots.

k\~/) Figure 114 presents dimensionless relative bow motion and shows that the
bilge keels are more effective than the other appendages at 0 and 20 knots.
The blisters appear to be ineffective in reducing either heave or relative
bow motion at any speed.

Figure 116, which presents dimensionless pitch, shows that pitch motion
at 20 knots for the large fin craft configuration is much less than for the
other appendage configuration.

Figures 118 through 125 present dimensionless absolute motion of both
hulls near the bow and stern. These figures show that the bilge keels are
most effective in reducing absolute bow and stern motions at 0 and 20 knots
while the large fins produce a slight decrease in motion at 20 knots but
also produce an increase in motion at O knots. The addition of heave
blisters provides no reduction of bow or stern motion.

Figures 126 through 135 present dimensionless transverse force, vertical
bending moment, torsional moment, and yaw moment. There is no appreciable
speed or appendage effect on the above forces and moments in head seas for
the speed range investigated.

Figure 136 presents results of linearity experiments conducted in head

sea for the 32 ft draft configuration both with and without appendages.

REGULAR FOLLOWING SEAS - HULL WITH APPENDAGES, 32 ft DRAFT

Figures 137 through 160 present results of experiments in following
reqular waves of various speeds for the craft at the 32 ft draft with and
withcut appendages.

Figure 137 presents dimensionless heave and shows a reduction in
motion as craft speed increases form 0 to 20 knots for the bare hull and

blister configuration. However, heave increases as speed increases from
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20 to 32 knots for the craft configuration with large fins, which is opposite
to the trend seen in head seas (see Figure 112).

Figure 139, which presents nondimensional relative bow motion, shows that
relative bow motion increases as speed increases from O to 20 knots for the
bare hull configuration. There is no speed effect on relative bow motion
from 20 to 32 knots for the craft with large fins. Relative bow motion for
the bare hull craft and craft with large fins at 20 knots is larger in
following seas than in head seas (Figure 114). Relative bow motion is less
with the blisters at 0 knots and slightly less with the large fins at 20
knots compared to the motion of the bare hull configuration.

Figure 141 presents dimensionless pitch and indicates that pitch
increases as speed increases from 0 to 20 knots for the bare hull craft.
There appears to be no speed effect on the pitch for the craft with large
fins of blisters. There is only a slight reduction in pitch due to the
addition of blisters and little effect on pitch due to the large fins at
20 knots. Note that there.is substantial increase in pitch motion in following
seas compared to head seas, with and without appendages (see Figure 116) .

Fi,ares 143 through 150 present dimensionless absolute motions for both
hulls near the bow and stern. These figures indicate little speed effect on
absolute bow motion for the bare hull craft while there is a decrease in
absolute stern motion as speed increases from 0 to 32 knots for the bare hull
configuration. At O and 20 knots the largest absolute bow motion is
experienced by the bare hull craft. At 0 and 20 knots there is little
appendage effect on absolute stern motion. In general, absolute bow and
stern motions are significantly larger in head seas than in following seas for

corresponding speed and appendage configuration (see Figures 118 through

125).
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Figures 151 through 160 present dimensionless transverse force,
vertical shear force, transverse vertical bending moment, torsional
moment and yaw moment. There is no appreciable speed or appendage
effect on these forces and moments in following seas for the speeds

investigated.

RANDOM WAVES - HULL WITH APPENDAGES, 32 ft DRAFT

Figures 161 through 169 present results of experiments in random waves
for the craft at the 32 ft draft with various appendages at various speeds
and headings. Data are presented as significant double amplitudes of
motions and forces as a function of significant wave height.

Figure 161 presents significant double amplitudes of heave and relative
bow motion. In head seas the craft with large fins experiences the least
severe heave except at 0 knots where the craft with bilge keels has the
1east severe heave. Heave is greatest in head seas for the craft with blister
at 0 ond 32 knots. In following seas the large fins are not effective in
reducing motion at 20 knots while the blisters increase heave motion at O
and 20 knots compared to bare hull motion.

At 0 knots bare hul) craft heave motion is about the same at all headings.
Heave for the craft with blisters is slightly larger in following than in
head seas.

At 20 knots the craft with large fins and the craft with blisters
experience significantly larger heave in following seas than in head seas.

At 32 knots the craft with large fins appears to experience much larger
heave in following seas than in head seas.

Figure 161 also presents significant double ampliitudes of relative bow

motion experienced by the craft with and without appendages at various
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speeds and headings. Relative bow motion in head seas for the craft with
blisters is unaffected by speed.

In following seas relative bow motion for the bare hull craft increases
appreciably as speed increases from 10 to 20 knots. Relative bow motion in
following seas at 20 knots is lower for the craft with large fins than for
the bare hull craft.

At 20 knots relative bow motion for all craft configurations is larger
in following than in head seas.

Figure 162 presents significant double amplitudes of pitch for the craft
with and without appendages, operating at various headings and speeds. |In
head seas pitch for the craft with blisters and the craft with bilge keels
is unaffected by speed. Pitch for the craft with large fins operating in
head seas decreases as speed increases. The small pitch at 32 knots for the
craft with blister and small fins is probably due more to the small fins
than blisters.

In following seas pitch for the bare hull craft increases significantly
as speed increases from 0 to 10 knots and i5 about the same at 10 and 20
knots.

At 10 knots bare hull craft pitch decreases from head to beam seas but
increases very significantly in following seas. At 20 knots pitch motion
for all craft configurations is much larger in following seas than in head
seas, and at 32 knots for the craft with large fins.

Figure 162 also presents significant double amplitudes of roll for the
craft with and without appendages operating at various speeds and headings.
in head seas and following seas the large roll motion was probably rudder
induced. In beam seas roll for the bare hull craft decreases slightly as

speed increases from 0 to 10 knots.
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Figures 163 and 164 present significant double amplitudes of atsolute
mot ion near the bow and near the stern respectively. At 20 and 32 knots the
large fins are most effective in reducing absolute bow and stern motion in
head seas. Absolute bow motion for the bare hull craft in head seas
decreases slightly as speed increases while motion for the craft with large
fins decreases dramatically as speed increases. The large decrease in
absolute bow and stern motion between 20 and 32 knots for the craft with
blisters and small fins operating in head seas is probably due more to the
small fins then the blisters.

in following seas the absolute bow and stern mations at 20 and 32 knots
are lowest for the craft with large fins.

At 0 knots the absolute bow and stern motions for the bare hull craft
tend to be of the same magnitude in both head and following seas and lower
in beam seas than in either head or following seas. At zero speed the
absolute bow motion of the craft with blisters decreases as heading changes
from head to following seas while the opposite is true of the absolute
stern motion.

At 20 knots absolute bow motion for the craft with blisters and the
craft with large fins is slightly larger in following than in head seas
while absolute stern motion for the same two craft configuration follows
an opposite trend. At 32 knocs the craft with large fins has larger
absolute bow motion and smaller absolute stern motion in following seas
than in head seas.

Figure 165 presents significant double amplitudes of transverse force
experienced by the craft with and without appendages operating at various
speeds and headings. The large values of transverse force in head and

following seas are probably rudder induced (see roll in Figure 162).
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Significant double amplitudes of vertical shear force experienced by the

craft with and without appendages at various speeds and headings are presented

in Figure 166. Generally, these forces are low In head and following
seas. In beam seas there is a slight decrease in vertical shear force
as speed increases from 0 to 10 knots.

Figure 167 presents significant double amplitudes of transverse
vertical bending moment for the craft with and without appendages operating
at various speeds and headings. The large bending moment for the bare hull
craft in head seas at 20 knots is probably rudder induced (see roll in
Figure 162). In beam seas the transverse bending moment is very large at
0 knots and decreases as speed increases from 0 to 10 knots.

Figure 168 presents significant double amplitudes of torsional moment
experienced by the craft with and without appendages operating at various
speeds and headings. The large values of torsional moment in head seas
may be due to asymmetrical wave impact on the bow while the large torsional
moment in following seas is probably caused by the model being restrained
in surge during the experiments. In beam seas torsional moment increases
slightly as speed increases from 0 to 10 knots.

Figure 169 presents significant double amplitudes of yaw moment
experienced by the craft with and without appendages at various speeds
and headings. In head and following seas there is no appendage or
speed effect on yaw moment. In beam seas for the bare hull craft there

is very little speed effect on yaw moment.
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SHUATH TV

Pressure Gage Locations

a5 PORT N

L L E

L0

ab L

| o8 e

47.0' 51.7°
BASE LINE l
saqe No. Distance Aft of Dilstance.Off Distance Ahove
Fwd. Strut Edge Centerline Base Line
(ft.) (ft.) (tt.)
1 22.85 25.5 Port 47
2 33.05 11.9 Stbd. 47
3 43.25 11.9 Port a7
4 53.45 25.5 Stbd. 47
5 187.75 25.5 Port 47
6 167.95 11.9 Stbd. a7
7 208.15 11.9 Port a7
8 218.35 25.5 Stbd 47
9 112.95 5.1 Stbd. 47
10 2.45 17.0 Port 51.7

Figure 5 - Pressure Gage Locations on SWATH IV Bridging
Structure
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SWATH 1V

Horizontal Stabilizer Fin Offsets

TARLE OF FIN OFFSFTS
1 STA.19
STATIW ” x " " Y "
NO. (FFFT) (FFFT)
i
1 .06R .165
b
e 2 .102 .199
s 3 .170 .250
i E =
s L .3L0 .33
5 .6R0 476
STA.18
6 1.020 .576
; 7 1.360 .658
1 8 2.04L0 787
| 9 2.720 .8R2
10 3.400 .950
11 4.080 .99,
) 12 4.760 1.01R
- 13 5.100 1.017
14 6.120 .983
15 6.800 .926
16 7.LRO 852
17 8.160 763
18 8.840 .665
19 13.600 .000
LFADING EDGE PADIUS = ,216 FFFT

Figure 7 - Schematic and Offsets for SWATH IV Horizontal
Stabilizer Fins
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SWATH 1V
HEAVE MOTIONS IN REGULAR WAVES
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Figure 10 - Dimensionless Heave in Regular Waves, 28 ft Draft,
Nominal GMy
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HEAVE PHASE DEGREES

SWATH 1V
HEAVE PHASES N REGULAR WAVES
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RBM PHASE, DEGREES

SWATH IV
RBM PHASES IN REGULAR VAVES
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Figure 57 - Vertical Shear Force Phase in Regular Waves,
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Figure 60 - Dimensionless Torsional Moment in Regular Waves,
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Figure 62 - Dimensionless Yaw Moment in Regular Waves,
32 ft Draft, Nominal GM
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SWATH 1V
SIGNIFICANT DOUBLE AMPLITUDES OF TRANSVERSE FORCES IN REGULAR WAVES
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Figure 70 - Significant Double Amplitudes of Transverse Force
in Random Waves, Bare Hull, Nominal GM,
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SWATH IV
SIGNIFICANT DOUBLE AMPLITUDES OF VERTICAL SHEAR FORCES IN RANDOM WAVES
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Figure 71 - Significant Double Amplitudes of Vertical Shear
Force in Random Waves, Bare Hull, Nominal GMy
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SWATH IV
SIGNIFICANT DOUBLE AMPLITUDES OF TRANSVEASE BENDING MOMENTS IN RANDOM wAV(S

BARE MULL
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Figure 72 - Significant Double Amplitudes of Transverse Vertical
Bending Moment in Random Waves, Bare Hull, Nominal M,
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SWATH |V
SIGNIF I CANT DOUBLE AMPLITUDES OF TORSIONAL MOMENT IN RANDOM WAVES
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Figure 73 - Significant Double Amplitudes of Torsional Moment
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SWATH IV
SIGNIFICANT DOUBLE ANPLITUDES OF YAW WOMENTS N RANDON WAVES
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Figure 74 - Significant Double Amplitudes of Yaw Moment in
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Average Impact Pressure, Pg, PSI

SWATH 1V
Impact Pressure Cumulative Relative Frequency Distribution
Bare Hull - 32 ft Draft
Following Ses State 6 10 knots
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SWATH 1V
Impact Pressure Distribution
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SWATH IV

HEAVE MOTIONS IN REGULAR WAVES
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WAVE LENGTH TO SHIP LENGTH RATIO,
A/L, NONDIMENSIONAL

Figure 86 - Dimensionless Heave in Re&a]ar Beam and Quartering
Seas, 28 ft Draft, Large t
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SWATH |V

HEAVE PHASES IN REGULAR WAVES
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WAVELENGTH TO SHIP LENGTH RATIO, A/L,
NONUEMENS IONAL

Figure 87 - Heave Phase in Regular Beam and Quartering Seas,
28 ft Draft, Large GM

125



RBM AMPLITUDE/WAVE AMPLITUDE

Figure 88 - Dimensionless Relative Bow Motion in Regular Beam and
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Quartering Seas, 28 ft Draft, Large GM
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SWATH IV

RBM PHASES IN REGULAR WAVES

28 FT DRAFT LARGE GHy
0 KNOTS 10 KNOTS
S |
© o ° o 9¢c°
°
o ° Te° ° +
2 °
°
-200- o °® 000+ 2 4
o © © K
} +—
) ()
oooo o°° 4
0"— () o —-— -
°
o, &
o ) °
° ° o o°
-200,—_ % B (-] ° -
° % %o
1 1
c i c T

WAVE LENGTH TO SHIP LENGTH RATIO,

A/L, NONDIMENSIONAL

Figure 89 - Relative Bow Motion Phase in Regular Beam and
Quartering Seas, 28 ft Draft, Large GM,
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SWATH IV

PITCH MOTIONS IN REGULAR WAVES
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Figure 90 - Dimensionless Pitch in Reaalar Beam and Quartering
Seas, 28 ft Draft, Large GMg
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SWATH 1V

PITCH PHASES
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WAVELENGTH TO SHIP LENGTH RATIO,
NONDIMENSIONAL

X/L'

Figure 91 - Pitch Phase in Regular Beam and Quartering Seas,

28 ft Draft, Large GM,
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SWATH IV

ROLL MOTIONS IN REGULAR WAVES
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WAVELENGTH TO SHIP LENGTH RATIO,
A/L NONDIMENS IONAL

Figure 92 - Dimensionless Rol1l in Regular Beam and Quartering
Seas, 28 ft Draft, Large GM¢
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SWATH IV

ROLL PHASES IN REGULAR WAVES
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Figure 93 - Roll Phase in Regular Beam and Quartering Seas,
28 ft Draft, Large GM¢
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SWATH IV
ABSOLUTE MOTIONS IN REGULAR: WAVES

ABSOLUTE MOTION AMPLITUDE/WAVE AMPLITUDE
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Figure 94 - Dimensionless Absolute Bow Motion in Regular Beam and
Quartering Seas, Port Hull, 28 ft Draft, Large GM,
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ABSOLUTE MOTION PHASES

IN REGULARE WAVES

28 FT DRAFT LARGE My
0 KNOTS 10 KNOTS
| |
0 Lo ° 4° 90° _
°
° o o 0% 09 © °
_200 | 0o ° 1l e %08
—
= °
- lr %
o
= 0 (4] 0
a
.0} HF + use
& o
z ()
- o ®
<
& 200 * °
00 T o
0 o ®o
°
1 1
0 L 0 4
WAVELENGTH TO SHIP LENGTH RATIO,
A/L. NONDIMENSIONAL
Figure 95 - Absolute Bow Motion Phase in Regular Beam and

Quartering Seas, Port Hull, ’8 rt Draft, Large GM,
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ABSOLUTE MOT!ONS

v

IN REGULAR WAVES
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Figure 96 - Dimensionless Absolute Bow Motion In Regular Beam and_
Quartering Seas, Starboard Hull, 28 ft Draft, Large GM¢
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SWATH 1V
ABSOLUTE MOTION PHASES IN REGULARE WAVES

DEGREES

ABSOLUTE MOTION PHASE,
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Figure 97 - Absolute Bow Motion Phase in Regular Beam and Quartering
Seas, Starboard Hull, 28 ft Draft, Large GM;
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SWATH IV
ABSOLUTE MOTIONS I REGULAR WAVES
2P FY  DRAFT, LARGE M'
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Figure 98 - Dinensionless Absolute Stern Motion in Regular Beam And
’ Quartering Seas, Port Hull, 28 ft Draft, Large oM,
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SWATH 1V
ABSOLUTE MOTION PHASES IN REGULARP WAVES
28 FT DRAFT, LARGE GMy
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Figure 99 - Absolute Stern Motion Phase in Regular Beam and
Quartering Seas, Port Hull, 28 ft Draft, Large My
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ABSOLUTE mOTIONS 1N RECULAR WAVES
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Figure 100 - Dimensionless Absolute Stern Motion in Regular Beam and
Quartering Seas, Starboard Hull, 28 ft Draft, Large My

138



DEGREES

STARBOARD HULL

ABSOLUTE MOTION PHASE,

Figure 101 - Absolute Stern Mo
Quartering Seas, Starboard Hull,
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SWATH 1V
TRANSVERSE FORCES (N REGULAR WAVES
28 FT. DRAFY LARGE Gn‘
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Figure 102 - Dimensionless Transverse Force in Regular Beam and
Quartering Seas, 28 ft Draft, Large GM¢
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SWATH IV
TRANSVERSE FORCE PWASES M REGULAR WAVES
28 FT  DRAFT, LARGE cn‘
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Figure 103 - Transverse Force Phase in Regular Beam and Quartering
Seas, 28 ft Oraft, Large GM;
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VERTICAL SHEAR FORCE, Fvs/pgg

SWATH IV

VERTICAL SHEAR FORCES IN REGULAR WAVES
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Figure 104 - Dimensionless Vertical Shear Force in Regular Beam
and Quartering Seas, 28 ft Draft, Large GM¢
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1N REGULAR WAVES
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Figure 105 - Vertical Shear Force Phase in Regular Beam and
Quartering Seas, 28 ft Draft, Large GMy
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SWATH 1V
TRANSVERSE BENDING MOMENTS
IN REGULAR WAVES
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Figure 106 - Dimensionless Transverse Vertical Bending Moment in
Regular Beam and Quartering Seas, 28 ft Draft,
Large GM,



SWATH 1V
TRANSVERSE BENDING MOMENT PHASES
IN REGULAR wAVES
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Figure 107 - Transverse Vertical Bending Moment Phase in Raular
t
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Figure 108 - Dimensionless Torsional Moment in Rea*lar Beam and
Quartering Seas, 28 ft Draft, Large GM¢

146



SwATH IV
TORS | ONAL MOMENT PHASES
i AEGULAR whvES
JAFY  DRARY LARGE Q-'

L 1A VooennTY
< T
© ¢ LN .
2
.—‘ -+ 4
- .

a ¢ « ¢ <
= P v - 4 4 +
r . 3 < < ¢ .

- [ ¢ & 6 «
—
- v [§
: . g | .
A S b
i e
] . . 1
3 (
; < ‘C ) Iy
- w ‘
N
. S - .« 0 R 3
¢ .
P ¢
by Nt =N Tkl
[

Figure 109 - Torsioral Moment Phase in Regular Beam and Quartering
Seas, 23 ft Draft, Large GM,
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Figure 110 - Dimensionless Yaw Moment in Regular Beam ind
Quartering Seas, 28 ft Draft, Large GM
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