NUSC Technical Report 4860

A Study of the Drag Characteristics and Polymer Diffusion in the Boundary Layer of an Axisymmetric Body

調算

184 22

虚影

97 No

189.7.81

-for

1

.B.

933 (A

8 16 B

833 53

John E. Sirmalis

Wersons Department

12 March 1976

NAVAL UNDERWATER SYSTEMS CENTER

Newport Laboratory

Approved for public release; distribution unlimited.

1976 D

Best Available Copy

PREFACE

In S

This research was conducted under NUSC Project No. A-385-10, "Noise Research," Principal Investigator — J. E. Sirmalis (SB32), and Primary Subproject No. ZR-000-0101.

The Technical Reviewer for this report was R. H. Nadolink (SB323).

REVIEWED AND APPROVED: 12 March 1976

00 mm

C. A. Spero, Jr. Director, Systems Development

The author of this report is located at the Newport Laboratory, Naval Underwater Systems Center, Newport, Rhode Island 02840.

1	REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
	TR-4860	ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
	A STUDY OF THE DRAG CHARACTERISTICS AN POLYMER DIFFUSION IN THE BOUNDARY LAYF OF AN AXISYMMETRIC BODY -	1	S) TYPE OF REPORT & PERIOD COVERED
			CONTRACT OR GRANT NUMBER(+)
· · · · ·	John E. Sirmalis	(F)	Z + 2
	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
	Naval Underwater Systems Center Newport Laboratory Newport, Rhode Island - 02840	. (1.)	Project No. A-385,10 Subproject No. 2R-000-01
	"ONTROLLING OFFICE NAME AND ADDRESS	11)	12 REPORT DATE
	MONITORING AGENCY NAME & ADDRESS/II dilferent from Cor		276 15 SECURITY CLASS. (of this report)
	NORTORING AGENCY NAME & ADDRESS (1 different from Cor		UNCLASSIFIED
			15. DECLASSIFICATION/DOWNGRADING SCHEDULE
2	DISTRIBUTION STATEMENT (of the obstruct entered in Block 2		ted.
2	Approved for public release; distribut		ted.
17 17 18 1 A f	Approved for public release; distribut	f Rhode Is e degree o	n Report)
18 ¹ 17 18 ¹ 4 19 F b a	Approved for public release; distribut DISTRIBUTION STATEMENT (of the observed entered in Block 2 SUPPLEMENTARY NOTES A thesis submitted to the University O Fulfillment of the requirements for the	f Rhode Is e degree o 1975).	n Report)
17 17 18 4 19 F b a d d 20 r t u 1 e	Approved for public release; distribut DISTRIBUTION STATEMENT (of the obstract entered in Block 2 SUPPLEMENTARY NOTES A thesis submitted to the University O fulfillment of the requirements for the philosophy in mechanical engineering (KEY WORDS (Continue on reverse alds if necessary and identify polymer ejection poundary layer axisymmetric body	f Rhode Is e degree o 1975). by block number) h molecular demonstrate gains achi ocess is hy pipe flow g boundary	ted. Report land in partial f doctor of c weight polymers on free- ed repeatedly. The quanti- ieved marginal from a volume upothesized to be the contro and flat plate flow layers indicate a drastic

deletaner all the faire

UNCLASSIFIED (CONTINUED) SECURITY CLASSIFICATION OF THIS PAGE (When Dete Briered)

Extension to axisymmetric flow could result in significant achievable gains in volume utilization.

This study examines these polymer ejection processes through measurement of wall and boundary layer concentration profiles and through a photographic study of the boundary layer. Tests performed with fresh water ejection and solutions of the drag reducing polymer, Polyox WSR-301, lead to the hypothesis that optimal ejection for minimum polymer usage requires ejection into a laminar boundary layer prior to turbulent flow transition.

Analytical routines are developed which predict boundary layer parameter and polymer wall concentrations for this postulated optimal ejection process or the suboptimal case. Limited verification of the model is made.

<i>k</i>	1 - 2 Mersan
ß	17 07003 - Sribiat
F	

D D C MAY 24 1976

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SUMMARY

Drag reduction by ejection of high molecular weight polymers on free-running bodies of revolution has been demonstrated repeatedly. The quantities of polymer required have made the gains achieved marginal from a volume utilization tradeoff. The ejection process is hypothesized to be the controlling factor. Limited data obtained in pipe flow and flat plate flow experiments on ejection into developing boundary layers indicate a drastic reduction in polymer requirements for equivalent percent drag reductions. Extension to axisymmetric flow could result in significant achievable gains in volume utilization.

The object of the research described merein was to examine the processes described above through measurement of wall and boundary layer concentration profiles and through a photographic study of the boundary layer. Tests were performed with fresh water ejection and solutions of the drag reducing polymer, Polyox WSR-301. Predictive analytical routines were developed and experimentally verified.

The experimental apparatus used in this experiment was a drop tank with several velocity measurement stations and photographic equipment. Several specially designed axisymmetric bodies were constructed. Three of these ejected dye by aspiration at the minimum pressure point near the nose. The fourth had a capability to eject through a nose-screen type orifice at a constant rate

i

and withdraw wall or boundary layer samples at four stations along the body. All bodies had a maximum diameter of three inches and applied a half-body forebody. The three dye ejecting bodies incorporated different tail configurations: 6° cone tail, L/D = 8.33; 12° cone tail, L/D = 6.7; and spherical tail, L/D = 5.54. The polymer ejection body was similar in configuration to the 6° tail body.

Tests were performed in a Reynolds number range of one to five million. The first series of tests were performed in fresh water and in a polymer "ocean" of various concentrations; 1.25, 2.5, 5, 10, 20, 50, and 60 WPPM. Skin friction reduction obtained on all bodies approached 70 percent at polymer concentrations of 20 WPFM, agreeing well with data from other experimenters. Total drag reductions of 33 percent for the 6^o body, 16 percent for the 12^o body, and 10 percent for the spherical tail body were obtained, the effect of higher percentage form drag being evident.

Photographic studies of dyed boundary layers in these tests and in ejection tests with 50 WPPM, 500 WPPM, and 1000 WPPM displayed several interesting characteristics. Addition of small quantities of polymer, 2.5 WPPM, eliminated the fine-scale turbulent structure leaving only coarse turbulence. Higher concentrations resulted in suppression of the coarse turbulence and extreme thinning of the boundary layer. In the ejection tests, concentrations of 500 WPPM and 1000 WPPM displayed no turbulent structure or

ίi

and the set of the set

mixing. A dye streaking phenomenon with spacing equivalent to that characteristic of laminar sublayer streaks was displayed. The number of streaks was also approximately equal to the number of ejection holes, approximately 700, supporting the fact that mixing had essentially ceased.

Concentration profiles were measured in the ejection tests using a fluorometric method. Tracer-contaminated water, 5 WPPM, 10 WPPM, 20 WPPM, 50 WPPM, 500 WPPM, and 1000 WPPM solutions, were ejected. Four measurement stations, the last at an x/Lof .48, were sampled. The water data displayed expected concentration profiles, agreeing well with those of other investigators. At all polymer concentrations tested, unexpected results were achieved. Wall concentrations remained at levels predicted by molecular diffusion. As evidenced from the photographs, no diffusion was occurring. An initial mixing zone neglected by most investigators was the controlling zone in these tests. Only for the 5 WPPM case did a higher diffusion rate begin part way along the body. The data for this axisymmetric case were compared with data from the single flat plate experiment evidencing the same phenomenon. A dimensionless distance developed in the flat plate experiment used to predict the extent of this initial zone was modified and compared favorably with this experiment. It is hypothesized from these tests that optimal ejection for minimum polymer usage requires ejection into a laminar boundary layer prior to transition to turbulent flow.

iii

Analytical routines are developed which predict boundary layer parameters and polymer wall concentrations for this postulated optimal ejection process or the suboptimal case. Limited verification of the model is made.

TABLE OF CONTENTS

		Page
	SUMMARY	i
	LIST OF ILLUSTRATIONS	viii
	LIST OF TABLES	xvii
	LIST OF SYMBOLS	xix
	ACKNOWLEDGEMENTS	xiii
1.	INTRODUCTION	1
	A. General Considerations	1
	B. Selection of Experimental Apparatus	4
	C. Results	5
II.	LITERATURE REVIEW	7
	Bluff Body Experiments With Polymer Solution	8
	Turbulent Boundary Layer Theory	9
	Homogeneous Polymer Flow	21
	Polymer Ejection Studies	25
III.	EXPERIMENTAL APPARATUS	37
	Drop Tank	37
	Launcher Assembly	40
	Velocity Measurement Instrumentation	45
	Boundary Layer Thickness Measurements	46
	Test Models	48
	Dye Ejecting Bodies	50
	Half Body Section	50
	Constant Diameter Section	50

ţ

ale at the little

60	Tapered Tail	50
Hem	ispherical Tail for 6 ⁰ Cone	54
120	Tapered Tail	54
Hem	ispherical Tail for 12 ⁰ Cone	54
Hem	ispherical Model	54
	Constant Diameter Section	54
	Hemispherical Tail	54
Poly	ymer Ejecting Body	58
Bour	ndary Layer Concentration Measurements	74
Mode	el Calibration	78
	Concentration Measurement Calibration	78
	Stroking Time Verification	81
ANAI	LYTICAL CONSIDERATIONS	92
	Boundary Layer Model	92
	Velocity Profile Relation	94
	Skin Friction Relations	94
EXPI	ERIMENTAL PROCEDURES	126
Α.	Polymer Ocean Tests	126
	General	126
	Polymer Addition	126
	Model Preparation	128
	Launch Procedures	129
	Velocity and Photographic Measurements	129
	Polymer Ocean Test Series	130
В.	Polymer Ejection Tests	131
	General	131
	Polymer Preparation	132

IV.

v.

Page

			rage
		Model Preparation and Data Retrieval	133
		Launch Procedure	135
		Velocity and Photographic Records	135
		Polymer Ejection Test Series	136
VI.	EXPERIM	ENTAL RESULTS AND DISCUSSION	137
	Α.	General	137
	В.	Boundary Layer Characterization and	
		Separation Tests	137
	с.	Drag Reduction Tests	161
	D.	Polymer Concentration Profile Tests	171
		Water Ejection Test Results	182
		Polymer Ejection Test Results	190
VII.	CON	ICLUSIONS AND RECOMMENDATIONS	210
	Α.	Conclusion	210
		General	210
		Analytical Prediction Methods	210
		Boundary Layer Characterization and	
		Separation Tests	213
		Drag Reduction Tests	215
		Polymer Diffusion Tests	215
		Conclusion Summary	216
	В.	Recommendations	217
	REF	PERENCES	219
	APP	PENDIX A	A-1
	APP	ENDIX B	B-1

LIST OF HILUSTRATIONS

Figure		Page
1	The Law of the Wall in an Axisymmetric	
	Turbulent Boundary Laver	14
2	Coordinates for Axisymmetric Boundary	
	Layer Flow	17
3	Some Examples of the Axisymmetric Law of the	
	Wall, Computed from Equation (32)	18
4	Growth of the Diffusion Boundary Layer Within	
	the Momentum Boundary Layer	29
5	Concentration Profiles in the Intermediate	
	and Final Zone	31
6	Experimental Apparatus	38
7	Experimental Apparatus Photograph	39
8	Launcher Assembly Photograph	41
9	Launcher Internal Schematic	43
10	Half Body Coordinates	49
11	6 ⁰ Dye Ejecting Model	51
12	12º Dye Ejecting Model	52
13	Hemispherical Tail Dye Ejecting Model	53
14	Dye Ejecting Axisymmetric Body	
	Description	56
15	Dye Ejecting Axisymmetric Body	
	Schematic	57

viii

Figure		Page
16	Polymer Ejecting Axisymmetric Body	
	Description	59
17	Polymer Ejecting Axisymmetric Body	
	Schematic	60
18	Polymer Ejecting Axisymmetric Body	
	Photograph	61
19	Polymer Ejecting Axisymmetric Body	
	Disassembled	62
20	Special Boundary Layer Probes	70
21	Calibration Curves for Model 111 Fluorometer -	
	Openings 1 and 10	76
22	Calibration Curves for Model 111 Fluorometer -	
	Openings 3 and 30	77
23	Assembly and Calibration Tank	80
24	Chamber 1 Concentration vs Ocean Concen-	
	tration - High Range	82
25	Chamber 1 Concentration vs Ocean Concen-	
	tration - Low Range	83
26	Chamber 2 Concentration vs Ocean Concen-	
	tration - High Range	84
27	Chamber 2 Concentration vs Ocean Concen-	
	tration - Low Range	85
28	Chamber 3 Concentration vs Ocean Concen-	
	tration - High Range	86

ix

Figure		Page
29	Chamber 3 Concentration vs Ocean Concen-	
	tration - Low Range	87
30	Chamber 4 Concentration vs Ocean Concen-	
	tration - High Range	88
31	Chamber 4 Concentration vs Ocean Concen-	
	tration - Low Range	89
32	Stroke Calibration Facility	90
33	Schematic Representation of Diffusion Model	98
34	Value of K2 for Exponent K3 \ldots	104
35	Pressure Distribution Over Axisymmetric Body -	
	6 ⁰ Cone Tail Configuration	112
36	Pressure Distribution Over Axisymmetric Body -	
	12 ⁰ Cone Tail Configuration	113
37	Pressure Distribution Over Axisymmetric Body -	
	Spherical Tail Configuration	114
38	Comparison of Predictions of Wall Concentration	
	Ratio of Two-Zone Downstream Diffusion Model	
	With Molecular Diffusion Model	119
39	Comparison of Fredictions of Wall Concentration	
	Ratio of Two-Zone Downstream Diffusion Model	
	and Experimental Data Adjusted Model	119
40	Comparison of Predictions of Wall Concentration	
	Ratio of Two-Zone Downstream Diffusion Model	
	and Variable K3 Model	120

х

Figure		Page
41	Comparison of Predictions of Wall Concentration	
	Ratio of Two-Zone Downstream Diffusion Model	
	and Combined Model	120
42	Effect of Polymer Ejection Rate on Wall	
	Concentration Ratio - Combined Model -	
	50 WPPM Polymer Concentration	122
43	Dimensionless Concentration vs Reduced	
	Dimensionless Distance (from Fruman and	
	Tulin (1974))	123
44	Pictorial Sketch of Boundary Layer Flow	139
45	Photograph of Dye Ejection into the Boundary	
	Layer – 6 ⁰ Tail – No Polymer	141
46	Boundary Layer Thickness vs Normalized Axial	
	Position - 6 ⁰ Tail Configuration - Water Case .	142
47	Normalized Boundary Layer Thickness vs	
	Normalized Axial Position - 6 ⁰ Tail	
	Configuration - Water Case	142
48	Photograph of Dye Ejection into the Boundary	
	Layer - 12º Tail Configuration - 2.5 WPPM	
	Polymer	143
49	Boundary Layer Thickness vs Normalized Axial	
	Position - 12 ⁰ Tail - 2.5 WPPM Polymer	145

хi

1 delas

Figure

ſ :

lgure		Page
50	Normalized Boundary Layer Thickness vs	
	Normalized Axial Position - 120 Tail	
	Configuration, 2.5 WPPM	145
51	Photograph of Polymer Ejecting Body -	
	Forebody View - Water Ejection	146
52	Photograph of Polymer Ejecting Body -	
	Midbody View - Water Ejection	147
53	Photograph of Polymer Ejecting Body -	
	Tail View - Water Ejection	148
54	Photograph of Polymer Ejecting Body -	
	Midbody View - 50 WPPM Polymer Ejection	150
55	Photograph of Polymer Ejecting Body -	
	Tail View - 50 WPPM Polymer Ejection	151
56	Photograph of Polymer Ejecting Body -	
	Forebody View - 500 WPPM Polymer Ejection	152
57	Photograph of Polymer Ejecting Body -	
	Tail View - 500 WPPM Polymer Ejection	153
58	Photograph of Polymer Ejecting Body -	
	Forebody View - 1000 WPPM Polymer Ejection	155
59	Photograph of Polymer Ejecting Body -	
	Tail View - 1000 WPPM Polymer Ejection	156
60	Boundary Layer Thickness vs Normalized Axial	
	Length - Polymer Ejecting Body	158

xii

Figure		Page
61	Normalized Boundary Layer Thickness vs	
	Normalized Axial Length - Polymer	
	Ejecting Body	158
62	Photograph of Dye Ejecting Body - Spherical	
	Tail - Tail View - Water Case	159
63	Photograph of Dye Ejecting Body - 20 WPPM	
	Polymer Ocean	160
64	Drag Coefficient for Maximum Drag Reduction	
	of Flat Plates	168
65	Percent Total Drag Coefficient Reduction	
	vs Concentration	169
66	Percent Skin Friction Coefficient	
	Reduction vs Concentration	170
67	Photograph of .025 Inch Probe Within	
	the Boundary Layer	174
68	Boundary Layer to Injected Concentration	
	Ratio vs Normalized Axial Length - Test	
	Series 1	183
69	Boundary Layer to Injected Concentration	
	Ratio vs Normalized Axial Length - Test	
	Series 2	183
70	Boundary Layer to Injected Concentration	
	Ratio vs Normalized Axial Length - Test	
	Series 3	184

1

xiii

Figure		Page
71	Calculated Normalized Tracer Concentration	
	vs Normalized Axial Distance	186
72	Calculated Diffusion Boundary Layer and	
	Boundary Layer Growth vs Normalized Axial	
	Length	187
73	Distance from Wall vs Normalized Concentration	
	Ratio - Water Case	188
74	Concentration Profiles Determined for	
	Water and Polymer Ejection	192
75	Boundary Layer to Injected Concentration	
	Ratio vs Normalized Axial Length. Test	
	Series 4	193
76	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 5	194
77	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 6	194
78	Distance from Wall vs Normalized Concentration	
	Ratio - 50 WPPM Case	196
79	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 7	198
80	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 8	198
81	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 9	200

xiv

State State State State State State

|--|

82	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 10	200
83	Distance from Wall vs Normalized Concentra-	
	tion Ratio - 500 WPPM Case	201
84	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 11	203
85	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 12	203
86	Boundary Layer to Injected Concentration Ratio	
	vs Normalized Axial Length. Test Series 13	204
87	Ratio of Concentration to Injected Concentra-	
	tion c/c _i , vs Dimensionless Distance, x/s,	
	for Water Injection (from Fruman and Tulin	
	(1974))	206
88	Ratio of Concentration to Injected Concentra-	
	tion c/c _i , vs Dimensionless Distance, x/s,	
	for 1000 WSR 301 Injection (from Fruman and	
	Tulin (1974))	206
89	Ratio of Concentration to Injected Concentra-	
	tion, c/c _i , vs Dimensionless Distance, x/s,	
	for 500 ppm Polyox WSR 301 (from Fruman	
	and Tulin (1974))	207
90	Dimensionless Concentration vs Reduced	
	Dimensionless Distance (from Fruman and	
	Tulin (1974))	207

Page

Figure		Page
91	Dimensionless Concentration vs Reduced	
	Dimensionless Distance - Test Results	209

xvi

All of Free for the second of the

LIST OF TABLES

Table		Page
1	Concentrations (WPPM) of Material Required	
	to Achieve 67-Percent Drag Reduction in	
	Pipe Flow at $R_e = 14 \times 10^3$ (from Hoyt	
	(1972))	21
2	Dye Ejecting Axisymmetric Body	
	Information	58
3	Characteristics of 6 ⁰ Ejecting Model	73
4	Calculated Drag Reductions	125
5	Summary of Tests Performed - Polymer Ocean	
	Series - Number of Tests	131
6	Summary of Tests Performed - Polymer Ejec-	
	tion Series Number of Tests	136
7	Polymer Ejecting Body - Boundary Layer Visuali-	
	zation and Measurement Tests - Test	
	Parameters	144
8	Data Summary – 6 ⁰ Tail Tests	164
9	Data Summary – 12 ⁰ Tail Tests	165
10	Data Summary - Spherical Tail Tests	166
11	Water Ejection Test Results	175
12	50 WPPM Ejection Test Results	176
13	500 WPPM Ejection Test Results	177
14	1000 WPPM Ejection Test Results	178

xvii

Enderly

in in a wit

1 Stailing

and a second second

<u>fable</u>		Page
15	20 WPPM Ejection Test Results	179
16	10 WPPM Ejection Test Results	180
17	5 WPPM Ejection Test Results	181
18	Concentration Profile Determination	
12 0	(Using Smoothed Profile)	189
19	Normalized Concentration Profile for	
17	Several Concentration Ratios	191

LIST OF SYMBOLS

A = body area	ft ²
A_e = ejection area	ft ²
A _f = body frontal area	ft ²
A _s = body surface area	ft ²
a = acceleration	ft/sec
b = Batchelor's Constant	dimensionless
B = Buoyant force on body	lbs
c = concentration	WPPM
c _i = ejected concentration	WPPM
cf = local skin friction coefficient	dimensionless
C _F = skin friction coefficient	dimensionless
c _w = wall concentration	WPPM
C _D = total drag coefficient	dimensionless
C _p = pressure coefficient	dimensionless
D = body diameter	ft
D _c = Eddy diffusivity	$\frac{1b \text{ sec}^2}{\text{ft}^2}$
$D_{POLY} = total drag with polymer$	lbs
D_{W} = total drag in water	lbs
F = force	lbs
g = gravitational acceleration	ft/sec ²
k = gas constant	dimensionless
K = mixing length constant	dimensionless
K_2 = defined by equation (114)	dimensionless

xix

K_3 = defined by equation (119)	dimensionless
$K_5 =$ defined by equation (117)	dimensionless
l = length dimension	ft
L = body length	ft
M = mass	$\frac{1b_{f} \sec^{2}}{1b_{w} ft^{2}}$
p = pressure	lb/ft ²
p _c = pressure at edge of boundary layer	lb/ft ²
q _z = flux of diffused matter	lb sec ft ³
Q = volume flow rate	ft ³ /sec
Q _i = ejection rate	ft ³ /sec
r = radial distance from body centerline	ft
r _h = distance from origin for body coordinate	
generation	ft
r _o = radius of body	ft
$r^+ = \frac{r v^*}{v}$	dimensionless
$r^{+} = \frac{r v^{*}}{v}$ $r^{+}_{o} = \frac{r_{o} v^{*}}{v}$	dimensionless
R _e = Reynold's number	dimensionless
$R_L = \frac{U_O L}{V}$	dimensionless
SD _{POLY} = shear drag with polymer	lbs
SD _w = shear drag with water	lbs
SFR = total skin friction reduction	o/ /o
t = time	second
T = temperature	٥ _R

xx

T_{i} = temperature of injected fluid	° _R
TDR = total drag reduction	9/ / 3
u(z) = local boundary layer velocity	ft/sec
$u^+ = u/v^*$	dimensionless
$u(\overline{Y}) = velocity at \overline{Y}$	ft/sec
U = U ₀ freestream or body velocity	ft/sec
U _e = velocity at edge of boundary layer	ft/sec
v = velocity	ft/sec
v_i = ejection velocity	ft/sec
v* = characteristic or friction velocity	ft/sec
v_0^* = critical shear velocity = t_w/ρ	ft/sec
$V = U_e/U_o$	dimensionless
V _S = storage volume	ft ³
W = body weight in air	lbs
x = linear dimension	ft
x _s = surface length	ft
$x \star = x/L$	dimension le ss
y = distance normal to body	ft
$y^+ = \frac{y \cdot v^*}{v}$	dimensionless
\overline{y} = mean vertical position of particles	ft
\overline{Y} = mean vertical position of single particle	ſť
Y = RAO variable defined by equation (15)	ft
$Y^+ = \frac{Y v^*}{v}$	dimensionless
α = defined by equation (29)	dimensionless
β = defined by equation (10)	dimensionless

xxi

γ = defined by equation (43)	dimensionless
i ⇒ Eddy viscosity	$\frac{1b \text{ sec}}{ft^2}$
ΔB = defined by equation (42)	dimensionless
δ = boundary layer thickness	ft
δ」 = diffusion boundary layer thickness	ft
ϕ = angle for definition of half body	degrees
θ = angle from normal to bad	degrees
II = defined by equation (11)	dimensionless
ψ = stream function	seconds
$\lambda = \left(\frac{2}{c_f}\right)^{\frac{1}{2}}$	dimensionless
w = gas flow rate	lb/sec
ρ = density	slugs/ft ²
μ = viscosity	lb sec/ft ²
τ _w = wall shear stress	lb/sec ²
v = kinematic viscosity	ft ² /sec

xxii

and the second second second second

ACKNOWLEDGMENTS

The author acknowledges the generous assistance of his colleagues at the Naval Underwater Systems Center (Dr. J. F. Brady, R. H. Nadolink, J. W. Hooker, and A. R. Lagasse), and the helpful guidance of Dr. Rodger Dowdell (University of Rhode Island).

1. INTRODUCTION

A. General Considerations

High speed flow of both gases and liquids past a fixed boundary generates a turbulent boundary layer which exerts both a fluctuating normal stress (flow noise) and fluctuating shear stress (whose average is drag) on the body. The reduction of resistance to the turbulent shear flows of liquids through the addition of small quantities of high molecular weight polymers into the boundary layer of the flow has been demonstrated repeatedly. This phenomenon of drag reduction has far-reaching importance in the reduction of power required for pumping of fluids or transport of bodies through liquids.

Until recently, the phenomenon of drag reduction was confined essentially to characterizing the manner in which the boundary layer velocity profiles were affected, thus allowing predictions of boundary layer thickness and shear drag. Additionally, the early work primarily dealt with well-developed pipe flows where the observation of drag reduction was first made. An added complication results from the fact that data obtained with commonly used instrumentation have been found to be affected by the polymers resulting in erroneous readings. As a result, the mechanism of shear stress reduction remains undefined although emperical techniques predicting the benefits of application of the phenomenon have been developed.

Interest in the problem has expanded with recent investigators examining the effect of polymers on external flows, as over flat plates. Similar results as in the pipe flows have been achieved. The magnitude of the turbulent fluctuations have been found to decrease with a thickening of the laminar sublayer and a lowering of the shear stress.

Shear stress reduction for external flows over bodies can be achieved by proper ejection of polymer solutions. A limit to the amount of drag reduction achievable with polymer use has been demonstrated and increases in shear stress has been obtained when excess polymer is used.

It is evident that a better understanding of the mechanisms of drag reduction in developing flows with polymer ejection is required if an advantage is to be taken of the phenomenon. For most cases, of interest in external flows, a carried polymer supply would be used for ejection into the boundary layer. Limits on diffusion result in ε far too high concentration initially – with, possibly, shear drag increases – and then, further downstream on the body, too little polymer resulting in insignificant gains in drag reduction. One might envision, to circumvent the problem, multiple ejection ports to optimize the polymer wall concentration and maximize the drag reduction.

Many investigators have addressed portions of the problem outlined above as discussed in the following chapter. The

effect of long chain polymers on suppressing boundary layer turbulence has been investigated for pipe flows and external flows; methods of characterizing the boundary layer velocity profiles with polymers present have been developed and methods for prediction of flow separation have been postulated.

The object of the research described herein was to develop predictive methods for design of polymer ejection system for bodies of revolution and to perform experiments to verify the predictive methods. Additionally, a study of the effects of polymers on boundary layer separation was made. Several "half body" configurations were used in the testing, differing in their conical to hemispherical tail configurations. The bodies were dropped in a twenty-foot long cylindrical tank and allowed to achieve a steady state velocity. On three of the bodies, dye was ejected in the boundary layer and photographic records of the growth and separation of the boundary layer at several velocities were made. For these tests, the ambient fluid was water and a water polymer mix (polymer ocean) of several concentrations. Another series of tests were made with a body having a significantly different internal configuration. This body has the capability to store and eject concentrated polymer solution from its nose and withdraw boundary layer samples at four stations along its length. The boundary layer samples in turn were either wall samples or samples at three heights within the boundary layer. The stored

polymer was contaminated with a fluorescent dye which was later used in analyzing the concentrations from these boundary layer samples. Thus, it was possible to measure the change in wall concentration and concentration profile in the boundary layer, measure steady state body velocity and compare simultaneously with computed results. This research, therefore, concentrates on the prediction and verification of the drag reduction mechanism on bodies of interest for underwater application to gain insight which will help in the design of vehicle ejection systems.

B. Selection of Experimental Apparatus

The intended research could be carried out in water tunnels, towing tanks, ring channels, in buoyant vehicle experiments, or in drop tank tests.

For the desired research, the drop tank has a number of attractive features. Conceptually, it is a relatively simple experimental tool. The ambient turbulence level is very low, flow visualization is easily achieved and velocity measurements readily made. Tests over a reasonable range of Reynolds numbers are achieved by weighting the body being dropped.

One of the chief drawbacks of the drop tank facility as compared to a water tunnel, ring channel or towing tank is the inability to easily measure velocity profiles since the body being measured is moving. Since flow visualization gives an approximate boundary layer thickness, this limitation was not considered to be an important drawback.

Fortunately, the author's employer, Naval Underwater Systems Center, had available a drop tank with suitable dimensions for this research. The potential for meaningful research and the availability of the capital equipment led to the decision to proceed with axisymmetric boundary layer research described herein.

C. Results

Tests were performed in a Reynolds number range of one to five million. The first series of tests were performed in fresh water and in a polymer "ocean" of various concentrations; 1.25, 2.5, 5, 10, 20, 50, and 60 WPPM. Skin friction reduction obtained on all bodies approached 70 percent at polymer concentrations of 20 WPPM agreeing well with data from other experimenters. Total drag reductions of 33 percent for the 6^o body, 16 percent for the 12^o body, and 10 percent for the spherical tail body were obtained, with the effect of higher percentage form drag being evident.

Photographic studies of dyed boundary layers in these tests and in ejection tests with 50 WPPM, 500 WPPM, and 1000 WPPM displayed several interesting characteristics. Addition of small quantities of polymer, 2.5 WPPM, eliminated the fine-scale turbulent structure leaving only coarse turbulence. Higher concentrations resulted in suppression of the coarse turbulence and extreme thinning of the boundary layer. In the ejection tests, concentrations of 500 WPPM and 1000 WPPM displayed no turbulent structure or mixing. A dye streaking phenomenon with spacing equivalent to that characteristic of laminar sublayer streaks was displayed. The number of streaks

-5

was also approximately equal to the number of ejection holes, approximately 700, supporting the fact that mixing had essentially ceased.

Concentration profiles were measured in the ejection tests using a fluorometric method. Tracer-contaminated water, 5 WPPM, 10 WPPM, 20 WPPM, 50 WPPM, 500 WPPM, and 1000 WPPM solutions, were ejected. Four measurement stations, the last at an x/L of .48, were sampled. The water data displayed expected concentration profiles, agreeing well with those of other investigators. At all polymer concentrations tested, unexpected results were achieved. Wall concentrations remained at levels predicted by molecular diffusion. As evidenced from the photographs, no diffusion was occurring. An initial mixing zone neglected by most investigators was the controlling zone in these tests. The data for this axisymmetric case were compared with data from the single flat plate experiment evidencing the same phenomenon. A dimensionless distance developed in the flat plate experiment used to predict the extent of this initial zone was modified and compared favorably with this experiment. It is hypothesized from these tests that optimal ejection for minimum polymer usage requires ejection into a laminar boundary layer prior to transition to turbulent flow.

Analytical routines are developed which predict boundary layer parameters and polymer wall concentrations for this postulated optimal ejection process or the suboptimal case. Limited verification of the model is made.

6

11. LITERATURE REVIEW

The reduction of resistance to the turbulent shear flows of liquids through addition of small quantities of polymer into the boundary layer flowing over a body has received considerable attention. The first reportings occurring independently by Mysel (1949), Toms (1949), and Oldroyd (1949). Although extensive theoretical and experimental work has been carried out with steady pipe flows where the resistance is due to turbulent skin friction alone, relatively few studies have been conducted on the effect of additives on the flow about axisymmetric bodies where the development of the boundary layer, the position of the separation point, and the unsteady wake significantly contributes to the total resistance. Polymer injection in developing boundary layers has only recently come under study. Polymer ejection type data for external flows with pressure gradients are virtually non-existent. Hoyt (1972) presents an encellent summary of the research efforts and results available in the field of drag reduction.

Literature pertaining to the current study will be reviewed under four separate headings:

- 1. Bluff body experiments with polymer solutions,
- 2. Turbulent boundary layer theory,
- 3. Homogeneous polymer flow, and
- 4. Polymer ejection studies.

and the second second

Bluff Body Experiments With Polymer Solution

The earliest known experiment with bluff bodies in drag reducing polymers was carried out by Crawford and Pruitt (1963). Additional experiments with different sizes and shapes of bodies (mostly spheres cones and cylinders) in various types and concentration of polymers were conducted by others. Work performed by Lang and Patrick (1966) is representative of much of the effort. They found, as did many of the other investigators, that the drag on a sphere was considerably reduced probably due to the rearward movement of the point of boundary layer separation. These experiments were performed in a drop tank where the fluid ahead of the ball was stationary. A drag reduction of 69% was attained for a 2-inch diameter steel sphere dropped in a 1000 WPPM solution of Polyox at a water Reynolds number of 1.4 x 10^{2} . It was also shown that the polymer produced little or no drag reduction on stable bluff-based bodies whose point of boundary layer separation is fixed. The additives produced an apparent decrease in turbulent mixing in the mean wake and had a tendency to display a stringiness in the wake at high polymer concentration.

Contradictory results were achieved by Stow and Elliot, 1970, who demonstrated no significant drag reduction on a tethered ball suspended in a fully developed turbulent pipe flow. This is not surprising, if the flow about the sphere exhibits a turbulent type rearward movement of the separation point.

The performance of additives in reducing drag on an immersed body is complicated by a number of factors. Certainly, with well streamlined bodies, drag reduction is effected through reduced skin friction

just as with internal flow. With blunter bodies, however, the drag consists primarily of form drag and is dominated by the wake size and point of flow separation, skin friction frequently being negligible in comparison. On typical free-running underwater bodies of revolution, the form drag can represent 25% of the total drag. The two investiga-tions previously reported demonstrate the importance of the "free stream" condition on the movement of the separation point with polymers. The effect of polymers on boundary layer separation for bodies of revolution warrants further study to define if reduction in the form drag as well as the skin friction drag can be affected by application of polymers.

Turbulent Boundary Layer Theory

Since the concept of transition from laminar to turbulent flow was demonstrated by Osborne Reynolds, in his classic original transition experiment in pipe flow, many attempts have been made to predict the conditions at which laminar to turbulent flow transition will take place. Many attempts have also been made to predict velocity profiles and wall shear. So many, in fact, that in 1968 the Stanford conference was called in which a total of 29 methods for performing turbulent boundary layer analysis were graded. These proceedings have been edited by Kline (1968). Such general analysis can be divided into two types: (1) integral methods averaged across the boundary layer, and (2) finite difference, or differential methods which attempt to solve the full partial differential equations of the boundary layer. A text by F. M. White (1974) neatly summarizes and discusses many of the competing analysis methods.

By considering the relative importance of viscous and turbulent shear, the velocity distribution in a turbulent boundary layer follows a three-layer concept. The layers are:

Inner Layer: Viscous shear dominates

Outer Layer: Turbulent shear dominates

Overlap Layer: Both types of shear important

The mean velocity distribution in a two-dimensional turbulent boundary layer, u(y), depends upon four local parameters -- π_w , the local wall shear stress; μ , the fluid density; μ , the fluid viscosity; and δ , the boundary layer thickness. Prandtl (1933) deduced for the inner law that the mean velocity did not depend on δ resulting in a functional expression for the inner law of

$$u = f(\tau_{y}, \mu, \mu), \quad (1)$$

Karman (1930) deduced that the wall acts as a source of retardation reducing the local velocity, u, below the freestream velocity U_e , in a manner independent of viscosity, μ . The outer or velocity defect relationship is then

$$U_{e} - u = f(\tau_{w}, \rho, y, \delta).$$
 (2)

Coles (1954) performed a dimensional analysis on these relationships resulting in

Inner Law
$$\frac{u}{v^*} = f(\frac{yv^*}{v})$$
 (3)

Outer Law
$$\frac{U_e - u}{v^*} = g(y/\delta)$$
 (4)

where v* is a characteristic velocity called the wall shear velocity defined as

$$\mathbf{v}^{\star} = \left(\frac{\tau}{\rho}\right)^{\frac{\tau}{2}}.$$
 (5)

and the second second second second second second

By equating equations (3) and (4) in the overlap region, one may obtain the commonly known relation for the "law of the wall" based on inner variables

$$\frac{u}{v^{\star}} = \frac{1}{K} \ln \frac{yv^{\star}}{v} + B$$
(6)

where K and B are constants determined by the data of Nikuradse (1930), to be .4 and 5.5, respectively. Coles (1954) displays the correlation of the dimensionless velocity profile, u/v^* with the dimensionless distance for the wall $\frac{uv^*}{v}$ up to a wake of about 300. With the exception of separating flows, all the data nicely collapse into regions defined by the inner and logarithmic laws having dimensions

nner Law
$$\frac{u}{v^*} = \frac{yv^*}{v} \quad 0 < \frac{yv^*}{v} < 10$$
 (7)

Logarithmic Law
$$\frac{u}{v^*} = 2.5 \ln \frac{yv^*}{v} + 5.5 \quad 35 < \frac{yv^*}{v} < 300.$$
 (8)

For regions beyond $\frac{yv^*}{v}$ = 300, the outer region or wake region, Coles (1956) postulates a function defined as

$$\frac{11}{K} W(\frac{y}{\delta})$$

1

be added to the equation (6) resulting in

$$u^{+} = \frac{1}{K} \ln y^{+} + B + \frac{\Pi}{K} W(\frac{y}{\delta})$$
(9)

where II is related to Clauser's (1954, 1955) equilibrium parameter

$$\beta = \frac{\delta^{\star}}{\tau_{w}} \frac{dp_{e}}{dx}.$$
 (10)

A reasonable fit to data is given by the relationship

$$II \stackrel{<}{\sim} 0.8 (\beta + 0.5)^{0.75}$$
(11)

Coles (1956) proposed the following curve fit to the wake function W:

$$W(\frac{y}{\delta}) = 2 \sin^2 \left(\frac{\pi}{2} \frac{y}{\delta}\right)$$
(12)

Thus, for two-dimensional flow, empirical relations for the velocity profile in the boundary layer are available. These relations will

Rao (1967) observed that in the viscous sublayer of a thick axisymmetric turbulent boundary layer the momentum equation reduces to

$$\frac{\partial}{\partial \mathbf{r}}$$
 (r) $z = 0 = \frac{\partial}{\partial \mathbf{r}} (\mu \mathbf{r} \frac{\partial \mathbf{u}}{\partial \mathbf{r}}).$ (13)

Integrating with u = 0 at $r = r_0$, an inner law for the sublayer results

$$u^{\dagger} = r_{0}^{\dagger} \ln \frac{r}{r_{0}}$$
(14)

where $r = r_0 + y$.

When $\frac{y}{r_0} <<1$, the familiar $u^+ = y^+$ relationship returns since the ln(1 + $\frac{y}{r_0}$) approaches y/r_0 .

Rao also postulated that by defining

$$Y^{+} = r_{o}^{+} \ln \frac{r}{r_{o}}$$
(15)

and inserting Y^+ into the familiar law of the wall (6) in place of y, a correlation with the two-dimensional case would result. The final relations are

$$u^+ = \chi^+$$
 $\chi^+ < 5.0$ (16)

$$u^{+} = \frac{1}{K} \ln Y^{+} + B \qquad Y^{+} > 30.$$
 (17)

ar

1.2

Figure 1, reproduced from Rao's paper, displays this correlation with data obtained by Richmond (1957) and Yu (1958). As the body curvature effects become greater, the agreement improves since the wake tends to disappear. For axisymmetric cases where y/r_0 may not be considerably less than 1, equation (15) must be corrected to account for the outer wake region. White, et al (1972), accounts for the wake region using an inner variable approach. The basic idea of the method is that in inner variables, the velocity profile is approximately a logarithmic function of Y^+ plus a wake which depends on Y^+ and a single dimension-less parameter $\xi(x)$. For example,

$$u^{+} - \frac{1}{K} \ln y^{+} + B + f[y^{+}, f(x)]$$
 (18)

for the two-dimensional case. The derivation of the functional relation for the axisymmetric case is carried through here, since the resulting velocity relationship is not in a form readily recognizable. Recalling Prandtl's mixing length theory:

$$\tau = \varepsilon \frac{\partial u}{\partial y}.$$
 (19)

Consistent with equation (17) for the axisymmetric case, ε , the eddy viscosity, equals

$$\epsilon = \rho \ \ell^2 \ \left| \frac{\partial u}{\partial Y} \right| \tag{20}$$

where 1 is the mixing length.

Now
$$\frac{\partial u}{\partial Y} = \frac{r}{r_0} \frac{\partial u}{\partial y}$$
 (21)

substituting in (20)

$$\varepsilon = \rho \, \varrho^2 \, \frac{\mathbf{r}}{\mathbf{r}_o} \, \left| \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right| \,. \tag{22}$$

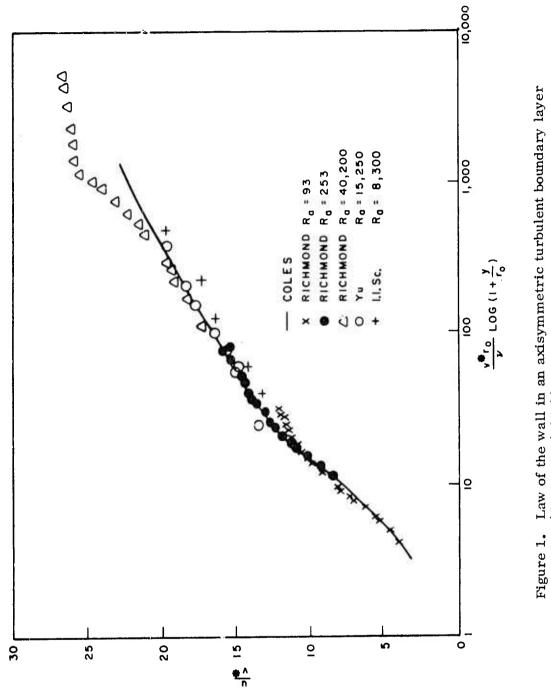


Figure 1. Law of the wall in an axisymmetric turbulent boundary layer (from Rao (1971))

14

ľ

Fairly near the wall in the overlap layer

 $\ell = KY$ (23)

resulting in an eddy viscosity which is

$$\epsilon = \rho K^2 Y^2 \frac{\mathbf{r}}{\mathbf{r}_0} \left| \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right|$$
 (24)

Finally, upon substitution in (19):

$$\tau = \rho K^2 Y^2 \frac{r}{r_o} \left(\frac{\partial u}{\partial y}\right)^2.$$
 (25)

Equation (25) may be used to derive an axisymmetric law of the wall, using a Couette flow approximation for the near wall momentum:

$$\left(\frac{\partial}{\partial r}\right)(r\tau) - r \left(\frac{dp_e}{dx}\right) = 0.$$
⁽²⁶⁾

Integrating with

$$r = r_{0}, \quad r\tau = r_{0}\tau_{w},$$

$$r = r, \quad r\tau = r\tau,$$

$$r\tau = r_{0}\tau_{w} + \frac{1}{2} \left(\frac{dp_{e}}{dx}\right)(r^{2} - r_{0}^{2}).$$
(27)

Substituting (25) into (27) gives

$$\mathbf{r}_{o} \mathbf{\tau}_{W} + \frac{1}{2} \left(\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{x}} \right) \left(\mathbf{r}^{2} - \mathbf{r}_{o}^{2} \right) = \rho \mathbf{K}^{2} \mathbf{Y}^{2} \left(\frac{\mathbf{r}}{\mathrm{r}_{o}} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} \right)^{2} \right)$$
(28)

The pressure gradient parameter α is defined as

$$\alpha = \left(\frac{v_{W}}{\tau_{W}}v^{*}\right) \frac{dp_{e}}{dx}$$
 (29)

Solving (29) for $\frac{dp_e}{dx}$ and substituting in equation (28) and rearranging results in

$$\tau_{\mathbf{w}} \left[1 + \frac{1}{2} r_0 \frac{\mathbf{v}^{\star}}{\mathbf{v}_{\mathbf{w}}} \alpha \left(\frac{\mathbf{r}^2}{\mathbf{r}_0^2} - 1\right)\right] = \rho K^2 Y^2 \frac{\mathbf{r}^2}{\mathbf{r}_0^2} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)^2.$$
(30)

Equation (30) may be placed in law of the wall variables by applying equations (5), (15), and (16) and equalities from Figure 2. Equation (30) becomes

$$\frac{du^{+}}{dy^{+}} = \frac{1}{Ky^{+}} \begin{bmatrix} 1 + \frac{\alpha}{2} r_{o}^{+} (e^{-1}) \end{bmatrix}^{\frac{1}{2}} \cdot$$
(31)

This equation reduces in the limit of large radius to the law of the wall

$$u^+$$
 (Y⁺, 0, 0) = $\frac{1}{K}$ 1n (Y⁺) + B

where $u^+ = 0$ at $Y_0^+ = e^{-KB}$

= 0.1108 for K = 0.4

Integrating across the boundary layer from $Y_0^+ = 0.1108$ to Y_0^+ (the edge of the boundary layer) yields

$$u^{+} = \frac{1}{K} \int_{0.1108}^{Y^{+}} \frac{1}{Y^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{2Y^{+}/r_{o}^{+}})\right] dY^{+}.$$
 (32)

Equation (32) represents the law of the wall relation for the velocity profile accounting for pressure gradient. This relation holds throughout the boundary layer with the exception of the viscous sublayer region. Figure 3 reproduced from White's paper shows some velocity profiles obtained by integrating equation (32). The effect of positive (adverse pressure gradient) raising the curve above the incompressible log law and the effect of changes in r_0^+ with finite α are evident.

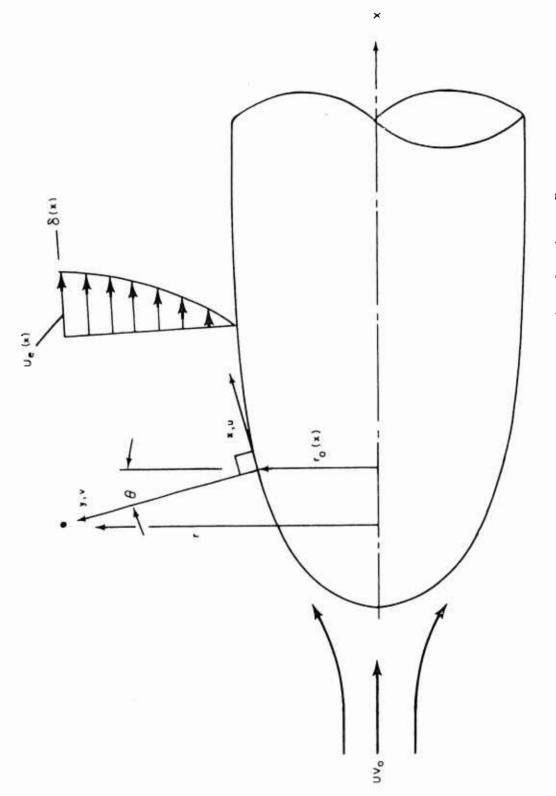


Figure 2. Coordinates for axisymmetric boundary layer flow

17

ſ

18

1

「日本のない」となったので、大小

A STATE OF A

As mentioned previously, many methods have been postulated to predict skin friction. White, F. M. et al (1972, 1973) extended an earlier integral technique developed for flat plate flows (White, F. M., 1968) to the case of thick axisymmetric boundary layer. The method concentrates on the boundary layer equations using inner law variables and is interesting in that boundary layer separation is automatically predicted. The integral technique provides for relatively simple computer solution minimizing required computer time and has been demonstrated by White, to quite accurately predict skin friction. A drawback of the method, as with most integral methods, is that thickness calculations are not very accurate. This is not a serious drawback for the intended calculations since nondimensionalized boundary layer thickness can be applied. A priori specification of the velocity profile is required with this integral technique, as with others. The boundary layer continuity and momentum equations for turbulent axisymmetric flow are given by

$$\frac{\partial}{\partial \mathbf{x}} (\rho \mathbf{u} \mathbf{r}) + \frac{\partial}{\partial \mathbf{y}} (\rho \mathbf{v} \mathbf{r}) = 0$$
(33)

and

$$\rho ur \left(\frac{\partial u}{\partial x}\right) + \rho vr \left(\frac{\partial u}{\partial y}\right) = -r \left(\frac{dp_e}{dx}\right) + \frac{\partial}{\partial y} (r\tau).$$
(34)

where x and y are normal to the body surface as shown in Figure 2. For the portions of the body to which the equations are applied, the angle 0 between the normal to the surface and the normal to the body axis is small and is, therefore, neglected. Assuming the law of the wall (32) is valid across the entire boundary layer, equations (32) through (34) form a closed system that can be solved for the skin friction. The only additional relations required for the present study are those necessary to provide a definition of the polymer wall concentration,

°w.

Appendix A presents a complete development of the equations related to this method along with the additional terms required for solution of the polymer ejection and dilution.

The resulting boundary layer equation, after considerable algebraic manipulation, is

$$\frac{d\lambda}{dx^{\star}} (3_{\alpha} H - G_{1}) + \frac{V}{V} \lambda G_{1} - \frac{\lambda^{2} r_{0}}{2} (e^{2Y_{e}^{\dagger}/r_{0}} - 1)$$

$$+ \frac{\lambda^{\prime \prime}}{R_{1}} (\frac{1}{V})^{\prime \prime} H = -R_{L} V - \lambda \frac{dr_{0}^{\dagger}}{dx^{\star}} I$$
(35)

where

$$\lambda = \frac{U_{e}}{v^{*}} = \left(\frac{2}{c_{f}}\right)^{\frac{1}{2}},$$
(36)

$$X^{\star} = \frac{X}{L}, \qquad (37)$$

$$V = \frac{U}{U_o},$$
(38)

$$R_{\rm L} = \frac{U_{\rm o}L}{v}, \qquad (39)$$

$$\alpha = \left(\frac{v_{w}}{\tau_{w}v^{\star}}\right) \frac{dp_{e}}{dx}, \qquad (40)$$

and the definition of G_1 , H, and I may be found in Appendix A.

Other integral and finite difference techniques for solution of the boundary layer problem although applicable will not be reviewed since they are not of central interest to the work being presented.

Homogeneous Polymer Flow

Since the early experiments of Toms and Olroyd (1949), a large number of high molecular weight polymers have been shown to be effective drag reducers. Polysaccharides (Guar), polyethylene oxide, polyacrylamides, and sodium carboxymethyl cellulose have received most attention. The data of Hoyt and Fabula (1964) and Virk (1971) show that there is a maximum drag reduction asymptote. This asymptote, for a smooth pipe, corresponds to 80% of the friction reduction that would be attained if completely laminar flow were sustained at a given Reynolds number.

The efficiency of several of these high molecular weight polymers is evidenced in Table 1 from Hoyt (1972).

TABLE 1

Concentrations (WPPM) of Material Required to Achieve 67-Percent Drag Reduction in Pipe Flow at $R_e = 14 \times 10^3$ (from Hoyt (1972))

Guar	400
Gum Karaya	850
Polyox WSR 301	10
Polvacrvlamide.	Polyhal1-250 20

Meyer (1966) and Elata, et al (1966) have shown that drag reduction in pipes is due to a thickening of the laminar sublayer. It was shown that the constant B in the law of the wall (6) to remain constant and equal to the Newtonian value until a critical threshold value of the shear velocity was reached (v_0^*) after which B increased logarithmically with v*

$$B = 5.5 + \gamma \ln \left(\frac{\mathbf{v}^{\star}}{\mathbf{k}}\right) \tag{41}$$

where
$$\Delta B = \gamma \ln \frac{v^*}{v_o^*}$$
. (42)

White, F. M. (1968) has plotted data from several investigators and found that

$$\gamma = 2.3 C_w^{1/2}$$
 (43)

Further, the data indicate a maximum value of γ of approximately 11 and a critical shear velocity, v_0^* , for the onset of Jrag reduction of .08 ft/sec. Many authors have described drag reduction as a "negative roughness effect" since the polymers appear to thicken the sublayer while maintaining the same slope of the u/v*vs ln $\frac{yv*}{v}$ curve in the overlap region.

In the outer region, where the wake law holds, polymer additives appear to have no effect on the flow.

Nadolink (1968) demonstrated the existence of the thickened sublayer directly, using a high speed motion picture camera and a microscope.

Virk (1966) presents evidence indicating that the onset shear stress is inversely proportional to polymer molecular radius of gyration. Based on experimental data, the critical wall shear stress, τ_{yr}^{c} , which must be exceeded for drag reduction to occur is given by

$$\tau_{w}^{c} = \rho \left(0.625 \text{ x } 10^{6} \text{ } \mu/\text{R}_{\text{G}}\right)^{2} = \frac{\text{constant}}{\text{R}_{\text{G}}^{2}}$$
(44)

where R_{C} is the rms radius of gyration of the molecule as deduced from light scattering data.

Fabula et al (1969) have pointed out that the small value of the ratio of the polymer molecule scale to the scale of the turbulent eddier at onset indicates that individual molecules are too small by several orders of magnitude to interfere with the turbulence structure. To circumvent this problem of length scales, Fabula postulated an interaction between the time scales of the periodic molecular deformation in the viscous sublayer, given by $\dot{\gamma}/2\pi$, where $\dot{\gamma}$ is the shear rate, and a molecular characteristic relaxation time τ_1 . τ_1 is determined by the Zimm or Rouse theories which relate a characteristic relaxation time of the solution, τ_1 , to the solvent viscosity, μ_s , the solution viscosity, μ , the polymer molecular weight, M, temperature, T, and the concentration, C

$$\tau_1 = a \frac{(\mu - \mu_s)M}{CRT}$$
(45)

where a is a constant having a value between .4 and .6.

The result is a criteria for the critical wall stress for onset given by

$$2\pi(\dot{\gamma}/2\pi) = 1$$
 (46)

υr

$$\frac{c}{w} = \frac{\mu}{\tau_1} = \frac{\mu RT}{a\mu_s \mu M} .$$
(47)

Equation (47) may be rewritten applying a relation between intrinsic viscosity, molecular weight and molecular dimensions resulting in

$$u_{w}^{c} = \frac{constant}{R_{c}^{3}}$$
 (48)

Equation (48) of Fabula provides a better estimate of magnitude of onset shear stress whereas Virk's equation (44) gives a better representation when the constant is determined by a best fit of the data.

As an explanation of the effectiveness of very dilute solutions, Fabula postulated that entanglements or "blobs" of macromolecules, rather than individual molecules, are responsible for drag reduction. This explanation has also been proposed by Kowalski and Brundrett (1974). In their work, a formula has been developed connecting the size of the entangled molecules with the size of a dissipative eddy. The macromolecules entanglement hypothesis was tested to predict the so-called onset of drag reduction in pipe flows of homogeneous polymer solutions.

Darby (1972) presents a comprehensive review of drag reduction theories in which comparison of molecular hypotheses, such as Virk's time scale hypotheses, of which Fabula's and Kowalski's are examples; continuum approaches and conventional length scale boundary layer

modifications are made. The continuum mechanics approach results in the conclusion that the presence of elastic properties in dilute solutions being a sufficient criteria for drag reduction. This is accounted for by the inclusion of a dimensionless time parameter (the Deborah number), which is qualitatively the ratio of a characteristic time of the fluid to a characteristic time of the flow system. A presentation of a dozen different forms of the Deborah number is made illustrating the problems encountered with the present "state-ofthe-art" of this approach.

Transition delay from Jaminar to turbulent flow has been reported by White and McEligot (1970) and is found to depend on where the onset shear stress is reached. If the onset shear stress occurs in the laminar flow region, a delay in transition to turbulent flow can occur.

Extension of the pipe flow data to provide insight into flow over flat plates has been successfully performed by many investigators. Granville (1971) has computed the maximum possible drag reduction on a flat plate of 80% at Reynolds numbers of 10⁹. Data on flow over cylindrical bodies are somewhat sparse but evidence of 35% drag reduction by Nadolink et al (1968) for a cylindrical body dropped in a homogeneous polymer solution is representative of the results to be expected.

Polymer Ejection Studies

Practical applications of polymer solutions imply the necessity for injection whether it be for internal or external flows. Since the polymers have been shown to effect the sublayer resulting in drag reduction, the mechanism of injection, the diffusion process and the quantities of polymers required as compared to the homogeneous flow cases treated previously are of extreme practical importance.

Two approximate methods have been used to treat diffusion patterns in turbulent shear flows. The most widely known method employs the eddy diffusivity model which assumes that the flux of the diffused matter by the turbulent fluctuations is proportional to an eddy diffusivity term, D_p, multiplied by the local concentration gradient

$$q_y = -D_e \frac{\partial c}{\partial y} .$$
 (49)

Poreh and Hsu (1971) point out that the assumption in this model is that D_e is a function of the flow field. The fact that its value at a point can be specified regardless of the position of the source only holds true for distances from the source that are large compared to the lagrangian integral scale. Measurements made by Poreh and Cermak (1964) indicate that this characteristic holds for turbulent shear flows and the Lagrangian integral scale is of the order of 10 boundary layer thicknesses.

The second method is based on Batchelor's (1957) lagrangian similarity hypothesis. The hypothesis is used to predict the turbulent motion of particles in steady, self preserving shear flows. Cermak (1962) applied the Lagrangian similarity hypothesis to predict diffusion from a continuous point and line source. He concluded that results from application of the Lagrangian similarity hypothesis were significant for the modeling of diffusion.

26

a series and the series of the s

Hsu (1971) and Poreh and Hsu (1971) applied the technique to predict the diffusion boundary layer growth in the intermediate, transition and final zones for polymer flows. Applying the Lagrangian similarity hypothesis, the following equations resulted describing the change of the mean vertical position \overline{y} , and the mean longitudinal position \overline{x} , for an ensemble of single particle releases

$$\frac{d\bar{y}}{d\tau} = bv \star$$
(50)

where b is Batchelor's constant, and

$$\frac{\mathrm{d}\bar{x}}{\mathrm{d}\tau} = u(\bar{y}). \tag{51}$$

Combining yields

$$\frac{\mathrm{d}\overline{y}}{\mathrm{d}\overline{x}} = \frac{\mathrm{b}v^{\star}}{\mathrm{u}(\overline{Y})} , \qquad (52)$$

Ellison (1959) estimated Batchelor's constant to be given by b = K. His analysis further suggests that \overline{y} , the mean position of particles at a given cross section x, is equal to \overline{Y} , the mean position of single particle releases when $\overline{x} = x$. The mean position of particle at any cross section x may be defined as

$$\overline{y} = \frac{\int cy \, dy}{\int c \, dy}.$$
(53)

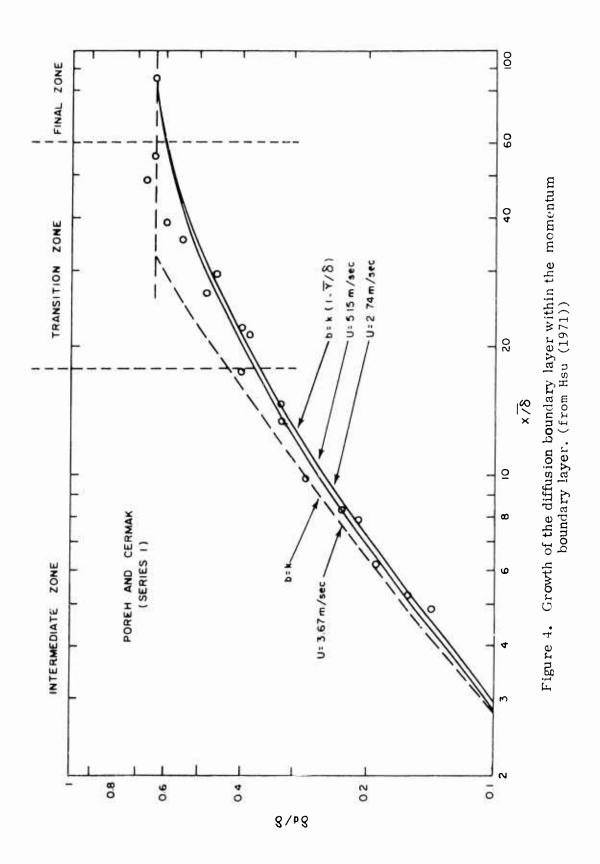
By replacing y with y/ δ_d where δ_d equals the value of y when C/C $_{\rm max}$ is .5 and c by

$$\frac{C}{C_{\max}} = f(\frac{y}{\delta_d}).$$

Equation (53) may be integrated to yield

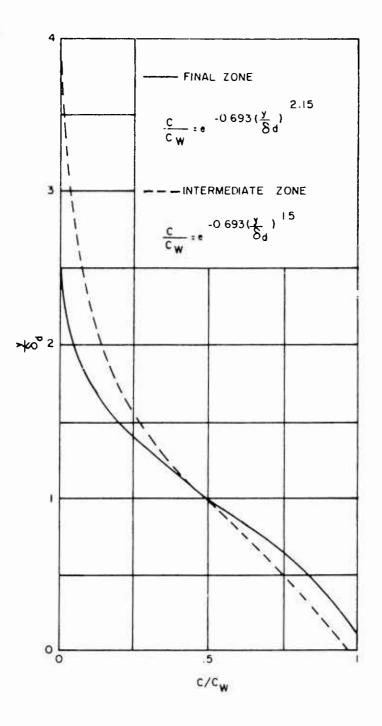
$$\overline{\mathbf{y}} = a_1 \cdot \delta_d \,. \tag{54}$$

Substituting (54) into (52) results in an expression for the development of the diffusion boundary layer with distance x

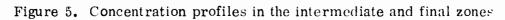

$$a_{1} \cdot \frac{d \delta_{d}}{dx} = \frac{bv \star}{u(\overline{Y})} , \qquad (55)$$

Hsu (1971) has found that better agreement with data occurs if the constant b in (47) is replaced with

$$b = K(1 - \frac{\overline{y}}{\delta})$$
 (56)


Figure 4 displays a plot showing the growth of the diffusion boundary layer within the momentum boundary layer and depicting the several zones of diffusion.

The above method was applied assuming similarity in concentration profiles with those observed by Poreh and Cermak (1964) for two-dimensional turbulent mixing of ammonia gas from a wall line source. Porch and Cermak envisioned a four-zone process which is worthy of description since the concentration profiles have come under much study as being representative for polymer diffusion. The four zones as defined by Poreh and Cermak are: (1) the initial zone - very little reliable data were obtained in this region due to very large velocity and concentration gradients. The extent of the zone (x/δ) was not determined. (2) The intermediate zone - the diffusing plume is submerged in the boundary layer, but its thickness is large compared to that of the laminar sublayer. Diffusion in this zone depends only


29

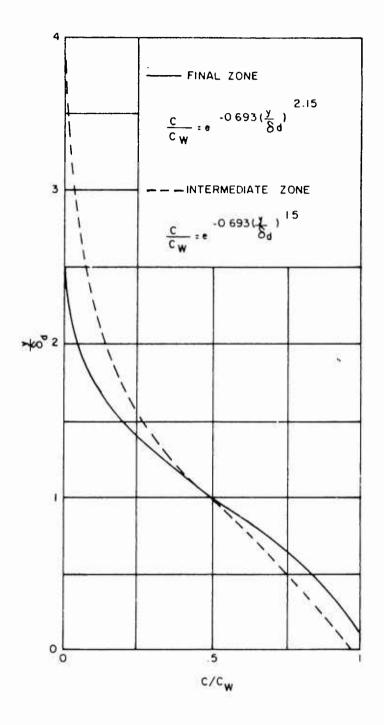
ľ

DEAL ASSAULT

ľ.

slightly on the rate of the boundary layer growth. The upper limit of the zone is about $x/\delta = 18$. (3) The transition zone - this zone provides for a decrease in the rate of growth of the diffusing plane and to gradually change the shape of the concentration profile. Within this zone $18 < \frac{x}{\delta} < 60$. Downstream of this zone, $\frac{x}{\delta} > 60$, the diffusion plane grows at the same rate as the boundary layer. (4) The final zone - diffusion is again controlled by molecular action.

Morkovin (1963) described the data taken by Poreh and Cermak as shown below:


$$\frac{c}{c_{w}} = e^{-0.693(y/\delta_{d})^{1.5}}$$
 intermediate zone (57)

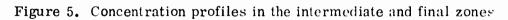

$$\frac{c}{c_{w}} = e^{-0.693(y/\delta_{d})^{2.15}}$$
 (58)

Figure 5 displays a plot of the concentration profiles in the intermediate and final zones.

Wells (1968) suggested uniform injection through a porous wall since it raises the additive concentration to the drag reducing level in the wall region only. Using a Reynolds - Prandtl analogy to analyze the diffusion process, he calculated that distributed ejection would require 40 to 140 times less additive than slot ejection for equivalent drag reductions.

Walters and Wells (1971) conducted tests using uniform ejection of polymer solution through sintered stainless steel smooth cylinders. Fully developed turbulent flow was achieved in the test section. Concentration and velocity profiles measurements were made at

!

several different downstream distances. Pressure drops were also measured in the facility to give information on the friction reduction. The concentration measurements were made by using a fluorometric method. Uranine B was used as the fluorescent dye rather than several other dyes, since the laboratory apparatus could be easily decontaminated. The dye was mixed with the ejection fluid and then the tracer sample concentration measured with a fluorometer. Accuracies of the measurement instrumentation of two parts per billion are reported. The conclusions from the study are very interesting. The study showed that the porous wall approach to injection required lower quantities of additives for equivalent drag reduction than by slot ejection. For certain conditions of high polymer mass flux, a wall friction increase possibly due to the higher viscosity in this region was noted. As compared to water injection, a one or two order of magnitude reduction in total diffusivity in the ejection region was evidenced. Downstream of the ejection, an order of magnitude reduction of total diffusivity was noted along with a significant reduction in wall friction.

Latto and Shen (1970) performed an experiment of slot ejection over a flat plate positioned in a flume. Using hot film anemometry, it was found that the momentum diffusivity was less than for pure water. The velocity of injection was also found to be important. It was found to be desirable to keep the injection velocity as low as possible, and tangential to the surface.

Wetzel and Ripkin (1970) experimentally studied polymer injection into a developing boundary layer in a 9-ft-wide open channel. Polymer solutions were injected parallel to the flow near the bottom wall. Pitot tubes were located at positions 16, 28, and 40 feet downstream of the injection slot. Measurements indicated similar velocity profiles at each station. Several methods of polymer concentration determination were investigated. The fluorometric method was found to give satisfactory results. The resulting concentration profiles for water, 1000 WPPM, 2000 WPPM, and 3000 WPPM were found by the author to be in good agreement with the curves developed by Morkovin (1963) described previously.

A maximum drag reduction of 35% was achieved over 40-ft boundary length. Further, at a distance of 16 ft from the slot, greater drag reduction was attained for the low quantities ejected than for the higher. At further downstream distances, the reverse was true. The behavior was attributed to more complete mixing. Large wavering parallel streakes were evidence shortly after injection when the polymer was color dyed. The streaking was reported to be a secondary three-dimensional vortex motion superimposed on the two-dimensional flow.

Fabula and Burns (1970) invoked the negative roughness analogy to flat plat flow with polymers so that the outer layer mean velocity similarity is unaffected by friction reduction. The similarity law of mixing with polymeric friction is predicted to be the same as without polymeric friction reduction. Proceeding with this assumption, a relation for calculating the local additive concentration at downstream stations along the wall was developed. The study includes the effects

of turbulent intermittency and the similarity profile for the local additive concentration as formulated by Poreh and Cermak.

Lessmann (1970) extended this work to the case of a body of revolution with the final result:

$$Q_{i}C_{i} = 2\pi r_{0} = \int_{0}^{\infty} \frac{\overline{u} \overline{c}}{c} \left(\frac{1 + y \cos \theta}{r_{0}}\right) dy$$
(59)

where the terms are in accordance with Figure 2.

Wu and Tulin (1970) presented experimental data obtained by injection of various polymer concentrations along a smooth and rough flat plate. The general conclusions were that the slot ejection angle should be small with respect to the flow direction and the slot width should be comparable with the thickness of the viscous sublayer. It was also shown that a large drag reduction was obtained by ejecting the additive solution at a rate comparable to the normal viscous discharge. The choice of additive concentration of the ejected solution is governed by the length of the boundary and its roughness. These findings suggest that smaller amounts of additives are needed for injection than are usually estimated.

Tullis and Ramu (1973) studied the characteristics of mean turbulent flow in the entrance region of a rough pipe for water flow and for polymer injection into a boundary layer. A 12-inch diameter, 200-ft-long steel pipe was used for the study. Polymer was injected through a perforated wall pipe section. Drag reduction of up to 80% in the fully developed region and 90% in the inlet region were measured. Comparison between water and dilute polymeric solution injection showed that polymer concentration profiles developed slower

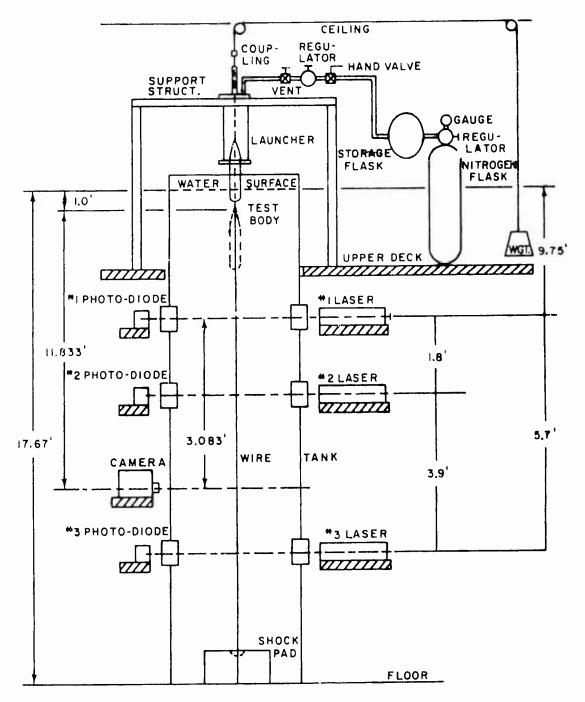
than that of dye in water, indicating lower diffusivity. The inlet length needed for flow to fully develop was found to be greater for polymer injected flows than for the case of no injection.

Fruman and Tulin (1974) performed a study of diffusion of a thin tangential jet of polymer solution injected into the turbulent boundary layer of a flat plate suspended in a high speed channel. Free-stream Reynolds number in the order of 3.6 x 10^7 were achieved. Drag measurements by reluctance force guages and wall concentrations measured by a light intensity dyed additive method were taken. The concentration distribution along the wall was found to be represented by two regions. Within the first region the wall concentration is practically constant and equal to the injected polymer concentration. In the second region, the concentration varied inversely with the distance from the injection slit. The length of this first zone was some 15 to 20 times that of water injection. The length of this first zone appears to be directly related to the thickening of the viscous sublayer, the reduction of shear stress and the decrease of molecular diffusivity. The data taken correlates well when formulated using a heat transfer analogy to the temperature distribution over a flat plate. The distribution of the wall temperature, T, as given by Seban (1960)

$$\frac{T}{T_{i}} = 25.0 \left(\frac{\rho_{i} v_{i}}{\rho u}\right)^{1.2} \left(\frac{x}{s}\right)^{-0.8}$$
(60)

Tulin's data for $\rho = \rho_1$ yields

$$\frac{c}{c_{i}} = 17.01 \left(\frac{v_{i}}{U}\right)^{1.06} \left(\frac{x}{s}\right)^{-0.711}$$
(61)

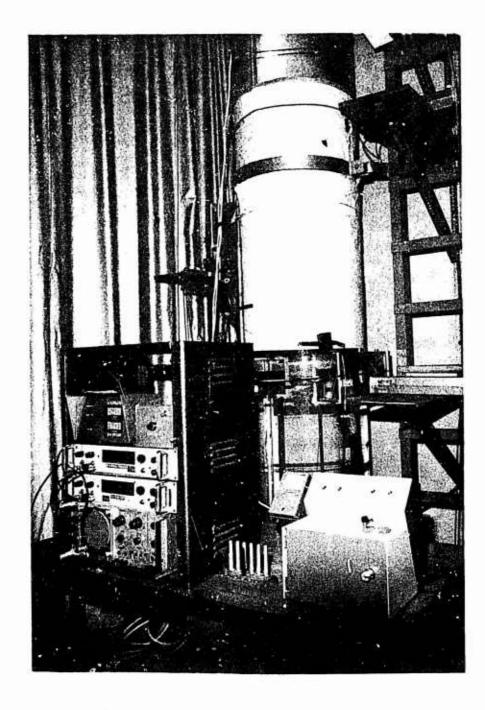

These results reported by many investigators represent clear evidence of the need for additional information regarding i: jection of polymers in external flows and their effect on the diffusion process. There appears to be some discrepancy in the measured concentration profiles between investigations and to the definition of the zones where the diffusion process for polymer flows varies from that of water. This will be the central thought guiding this study.

111. EXPERIMENTAL APPARATUS

The experimental apparatus used in this research consists of a clear plastic drop tank, a launcher, several test models and appropriate instrumentation and photographic equipment to measure model velocity, to deduce boundary layer thickness and to measure boundary layer concentration profiles. Figures 6 and 7 show the major elements of the experimental apparatus. The characteristic of each of the above elements is discussed below.

Drop Tank

The drop tank facility consists of a 20-ft long clear plastic cylinder 2 ft in diameter. Several viewing collars are available as noted in Figure 7 which may be positioned where desired. These viewing collars, when filled with water, minimize optical distortion due to the tank wall curvature. The liquid in the tank is continuously filtered, excepting during testing periods, to maintain high clarity. Located to either side of the tank are instrumentation platforms which may be set in any vertical position desired. A shock pad consisting of several layers of dense rubber topped with rubberized horsehair pads totalling approximately 1-ft thick is installed at the bottom to absorb the energy of models being dropped. An .062-inch diameter stainless steel wire is suspended down the center of the tank with the other end weighted to approximately 75 lbs. All models were guided down the tank by this wire. The drag of the wire on the bodies has been determined



day the second

!

And the other and the and the stand of the s

Figure 6. Experimental apparatus

Jan Start

Figure 7. Experimental apparatus photograph

by a free fall sphere experiment with similar guide bearings installed in the sphere. The bearing drag force determined is approximately .1 lbs.

Launcher Assembly

A launcher was deemed necessary in order to obtain steady state velocities in the short drop tank and avoid the problem of predicting boundary layers under a transient condition. Figure 6 schematically shows the launcher components and Figure 8 displays the actual launcher used in many of the tests. As can be seen in Figure 8, the launcher is required to accelerate the test bodies very quickly in a very short distance resulting in high accelerations and, to the dismay of occupants of the building, the launcher ram must stop in a shorter distance with even higher deaccelerations.

The launching problem consists of accelerating a body of approximately 10 lbs weight, plus accelerating launcher components weighing approximately 20 lbs to a desired velocity of 30 ft/sec, the maximum velocity considered for the tests to be performed, in a distance of 24 inches. Applying the impulse momentum relation

$$\int \mathbf{F} \, \mathrm{d}\mathbf{t} = \int \mathbf{M} \, \mathrm{d}\mathbf{v} \tag{62}$$

where F = the force required (neglecting drag on the body)

- t = time for acceleration
- v = velocity

and the all of the second stands and the second stands of the second second second second second second second

M = mass of launcher components and body under acceleration.

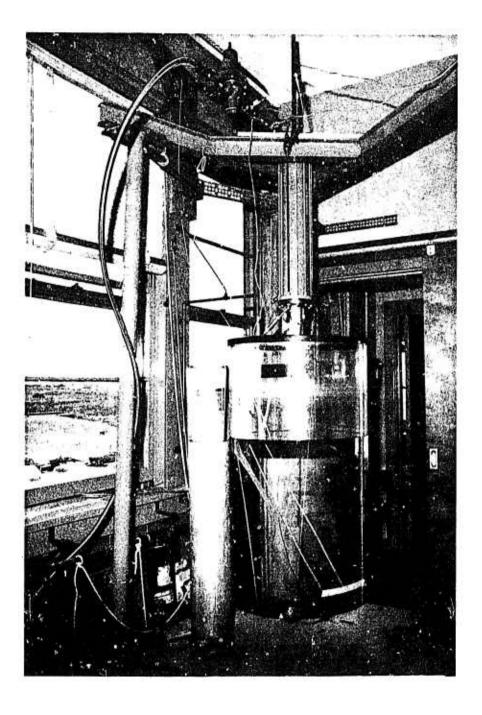


Figure 8. Launcher assembly photograph

: ; The time for an acceleration, a, to 30 ft/sec velocity in 2 feet is given by

$$t = \frac{v}{a} , \tag{63}$$

Determining the acceleration

$$x = \frac{1}{2} at^{2} = \frac{1}{2} \frac{v^{2}}{a}, \qquad (64)$$

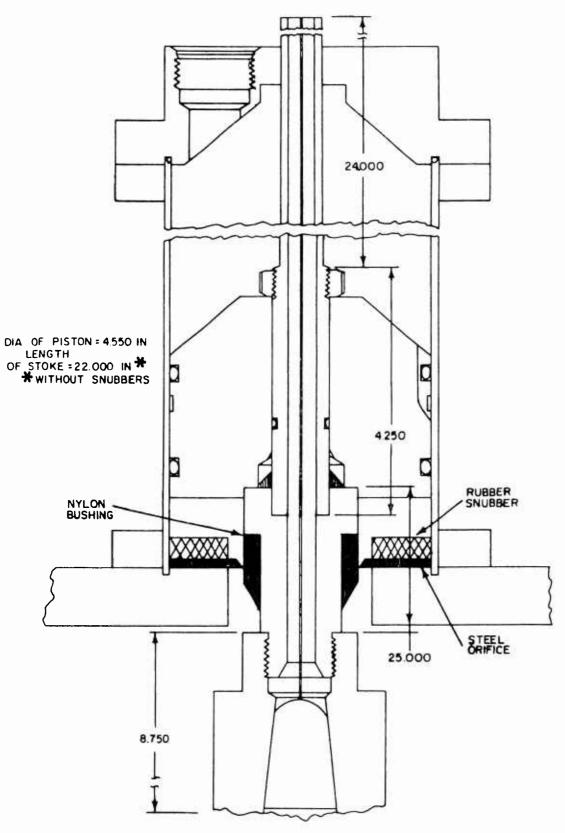
Rearranging and solving

$$a = \frac{1}{2} \frac{v^2}{x} = 225 \text{ ft/sec}^2.$$
 (65)

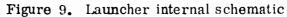
Substituting in (63) yields

$$t = .1333 \text{ sec}$$
 (66)

Integrating (62) with the established limits gives


$$t = 0$$
 $v = 0$
 $t = .1333$ sec $v = 30$ ft/sec

$$.1333 F = \frac{30}{32.2} (30)$$


$$F = 210$$
 lbs.

A steady force, therefore, of 210 lbs would do the job. Figure 9 is an assembly drawing of the launcher constructed. The chief components of the launcher come from a high pressure hydraulic damper cylinder normally operated at 3000 psi. For safety reasons, this was satisfying since the pressures that the cylinder would be subjected to in this work were low but the shock loads high. The overall cylinder length was about 2 feet with a working piston diameter of 4.550 in. Fitted to the end of the piston was a conical

and the second secon

Capita .

A SHOTES

adapter which would mate with the 6^o tailcone of the prime test model. The total piston assembly including upper guide, piston and lower extension pieces was approximately 62 inches. All pieces were designed to minimize weight. A pressure over the piston of 14 psi should then provide the necessary acceleration force. The problem was to get the working fluid safely to the piston quickly enough.

The remainder of the launcher system, Figure 6, consisted of a high pressure nitrogen supply (2200 psi) regulated down to 150 psi, stored in a 4-cubic ft storage flask whose contents in turn were allowed to pass through a hand operated "fire" valve through a high flow low pressure regulator to the launcher itself. All pressure lines were maintained as large as possible (#12 AN) where equipments permited. The launcher chamber pressure was recorded on a Sanborn recorder so that launch velocities could be varied by varying the low pressure regulator output pressure in a predetermined fashion.

Through tests, it was found that a much higher final pressure was required to achieve 30 ft/sec ejection velocity. A final pressure of about 60 psi was required to account for the inertia of the low pressure regulator and the losses in the delivery line. The launcher has successfully been used in several hundred launches.

Velocity Measurement Instrumentation

The velocity measurement instrumentation consists of three laser photo-diode stations with known separation as shown in Figures 6 and 7. The lasers are 5 milliwatt helium neon lasers manufactured by Spectra Physics (Model 120). Lasers were used rather than a conventional light source to insure that a sharp cutoff of light by the body would occur. This was especially critical where measurements across the body length dimensions were made. The silicon photo-diodes used to detect the light cutoff were United Detector Technology, Model PIN-020A. Their response time is in the order of 5 nanoseconds, well exceeding the requirements of this investigation.

The outputs of these diodes when amplified was used to trigger two Hewlett Packard counters and a special purpose dual counter. These may be seen in Figure 6 in the instrumentation rack. The bottom instrument was only used for troubleshooting work with the equipment. The instrumentation was so arranged to allow measurement of the velocities, referring again to Figure 6, between stations 1 and 2, 2 and 3, 1 and 3, and across the body (nose to tail) at station 3. Four velocities in all were measured across a total span of 5.7 feet to less than 2 feet. For all except the last measurement, only the breaking of the light beam by the nose of the model was used to start the counters. This is rather important since although the model travelled down the center of the

tank guided by a wire, small lateral movements, especially with the 6° tapered tail model, would result in rather large unknown discrepancies in effective length of the model (where the laser intercepts the model on entrance and exit) and as a result, in the velocity measurements. Lateral motions did not seriously effect measurements taken from the nose of the model at subsequent stations since the curvature of the nose is gradual, introducing less error, and since all lasers were positioned on one side of the wire, at about .25 inches offset, resulting in approximately the same lateral offset at each station if such occurred.

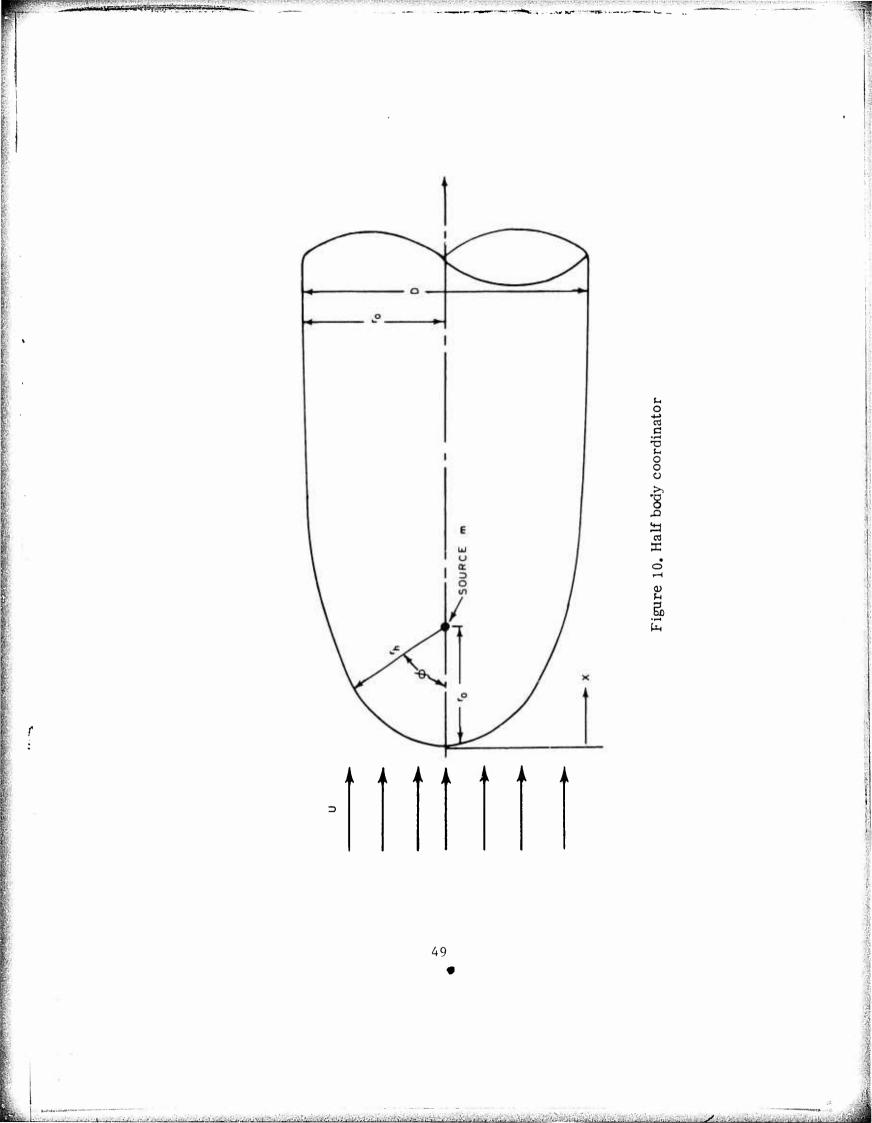
Boundary Layer Thickness Measurements

The title of this section is a misnomer of sorts since actual boundary layer measurements in a drop tank experiment of this type could only be performed with extreme difficulty. Especially in the size of free falling model being tested (3-inch diameter x 25 inches long). In fact, what has been done is eject from the test bodies a visible opaque dye and photograph the body and its "boundary layer" at a given position. The assumption is that for a dilute polymer solution, the molecular diffusivity and viscosity are very close to those of the solvent. As concluded by Fabula and Burns (1970) for a far downstream case, the similarity law of mixing with polymeric friction reduction is predicted to be the same as it is without polymeric friction reduction. Two types of dyes

were used; the first, a food coloring, gave excellent results and photographic records but reduced the number of tests to 3 to 4 per day due to the resulting opaqueness of the tank. The second, phenolphthalein solution, was used as an alternative. The solution PH was kept sufficiently low, below 10, so as to not effect the polymers used (this was verified by drag reduction measurements no velocity changes noted with or without the dye). The dye gave excellent photographic results and disappeared within seconds due to the mixing with the water and the resultant lowering of the dye PH. It is assumed for the dye as with polymers that the diffusivity would be equal to that of the solvent.

Figures 6 and 7 show the camera station. A graphic camera and Polaroid, 4" x 5" colored film was used for the photographic records. The shutter of the camera was fixed open just prior to launch and a signal from the first laser station adjustably delayed from the instrumentation console would trigger three flash units exposing the film. The adjustable delay allowed for correction for velocity changes on different tests or to photograph different segments of the body on subsequent but similar tests. Velocity of the vehicle on a run-to-run basis for the same conditions was found to be in the order of 2% allowing for accurate presetting of the delay by a calibrated vernier.

Test Models


Four axisymmetric models were constructed for use in the test program. Three of these are called the dye ejecting bodies and the fourth, the polymer ejecting body. Their purposes are different in that the dye ejecting bodies are used for drag measurements and for boundary layer photographs and the polymer ejecting body is used for polymer ejection, boundary layer concentration measurement studies. This latter body could also be used, when loaded with visible dye, for boundary layer photographic studies. The models all had a maximum diameter of three inches and an identical forebody design. In fact, the dye ejecting models all used the same forebody with replaceable tail pieces. The forebody chosen for application is a classical "half body" with a length-todiameter ratio of 3.88. The classical half body shape is defined by placing a source, of strength m, in a uniform stream. The resulting shape is defined by the equation

$$r_{\rm h} = R_{\rm o} \sec \frac{\phi}{2} \tag{67}$$

where $R_0 = \frac{D}{4}$

and the coordinates are defined from the source as shown in Figure 10. The body normally extends to infinity but was terminated at 11.65 inches for the models constructed. The half body was chosen for use since it presented a very streamlined, tractable shape for the prediction of pressure coefficients. The equation for the bodies, in x and r_0 coordinates will be given in subsequent sections.

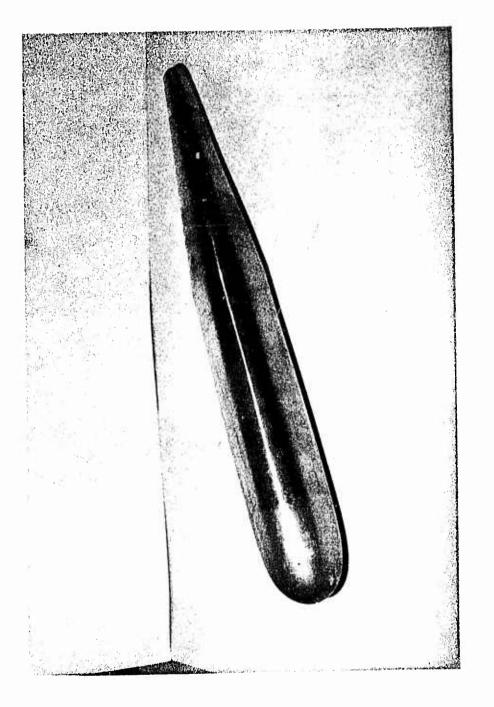
「小酒と言

Dve Ejecting Bodies

Three different configurations of dye ejecting bodies were constructed. Each uses the same half body forebody discussed previously followed by a three-inch long spacer section of constant three-inch diameter. The various tail pieces were assembled to this assembly. The tail pieces constructed were a 6° tapered tail (12° included angle) terminating in a .5-inch diameter sphere, a 12° tapered tail (24° included angle) terminating in a .5-inch diameter sphere and a 3-inch diameter hemispherical tail piece. Figures 11, 12 and 13 are photographs of the three test models. The equations for the external shape of the bodies measured from the nose as shown in Figure 10 are given by:

Half Body Section

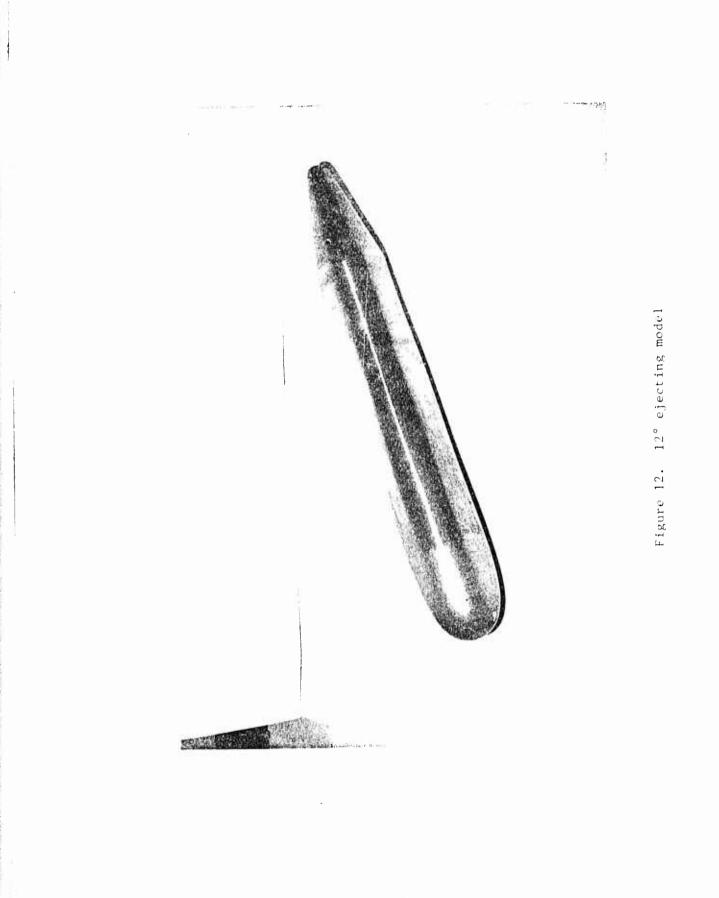
$$r_0 = .079 + 4.346x - .1022x^2 + .122x^3 - 5.29x^4$$
 (68)
for $0 \le x \le .981$ inches


and

$$f_0 = .924 + .3296x - .0669x^2 + .000555x^3 - .000161x^4$$
 (69)
for .981 < x \leq 11.65 inches.

Constant Diameter Section

$$r_0 = 3$$
 inches for 11.65 < x < 14.65 inches (70)


60 Tapered Tail

WIR.

Figure 11. 6° ejecting model

51

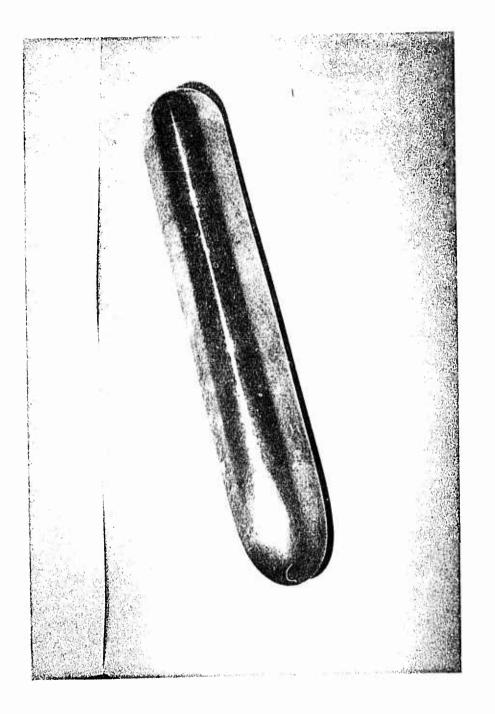


Figure 13. Hemispherical tail dye ejecting model

Natural Contain

Hemispherical Tail for 60 Cone

$$\mathbf{r}_{0} = \left[25 - (\mathbf{x} - 24.58)^{3} \right]^{\frac{1}{2}}$$
 (72)
for 24.58 < $\mathbf{x} \le 25.04$.

Equations (68) through (72) described the boundary for the 6⁰ model. The conical tail assembly was blended to the cylindrical section to remove the abrupt change in contour at that point. Continuing with the body equations:

12⁰ Taper Tail

$$\mathbf{r}_{0} = -.20842 \ \mathbf{x} + 4.6145 \tag{73}$$

for 14.65 $\leq x \leq$ 19.65 inches.

Hemispherical Tail for 120 Cone

$$r_0 = \left[.25 - (x - 24.58)^2\right]^{\frac{1}{2}}$$
 (74)
for 19.65 < x < 20.15 inches.

Equations (68), (69), (70), (73) and (74) describe the external boundary for the 12° model.

Hemispherical Model

Constant Diameter Section

 $r_0 = 3$ inches for 11.65 < x < 15.132 inches. (75)

Hemispherical Tail

$$r_{o} = \left[2.25 - (x - 15.132)^{2}\right]^{\frac{1}{2}}$$
 (76)

for $15.132 \le x \le 16.632$ inches,

Equations (68), (69), (75) and (76) form the equation for the hemispherical tail model.

All bodies were constructed of aluminum and allowed for the addition of weights for matching of velocities when testing the

models under increased drag conditions. Figures 14 and 15 describe the body components and features. Referring to the figures, an explanation of the operation of the model will b ... describe the function of the various pieces. The model is made ready for a launch by inserting the tank guide wire through the body guide tube, (9), the wire bears on a nylon bearing at either end of the model to minimize friction. The tail, (10), of the model is removed (separated sufficiently) and the internal cavity filled with dye. The dye ejection ports (6) being previously taped over to insure no loss of dye. The model is reassembled and the vent screw (unmarked) in the tail is removed and the model placed under the water level in the tank to back fill the cavity totally with water. The model may now be fired upon removal of the tape over the ejection holes. When fired, stagnation pressure enters the 4 stagnation ports, (1), is transmitted through the body guide tube and pressurizes the bladder, (4), forcing the dye out the four dye ejection ports located at the minimum pressure point of the forebody as determined by a potential flow program. After several tests, the bladder was found to be not necessary simplifying the operation. The stagnation ports consisted of 8, .050 inch diameter holes located on a .625 inch circle at the nose of the body. The four ejection ports were also .050 inch diameter placed on a 1.125-inch diameter circle, normal to the surface of the body. Table 2 summarizes the pertinent information about the bodies.

STAGNATION PRESSURE INLET PORTS $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10
\end{array}$

BODY WEIGHTS

DYE STORAGE VOLUME

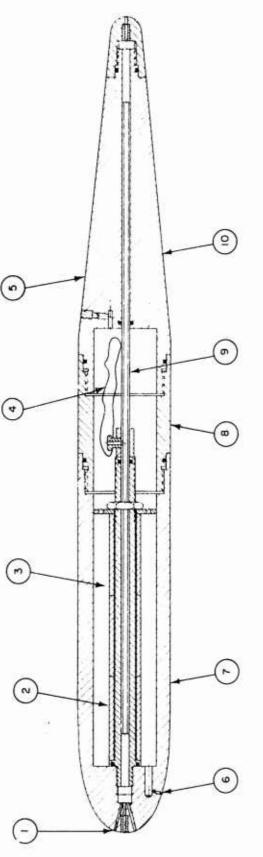
BLADDER FOR DYE EXPULSION

REPLACEABLE TAIL CONFIGURATIONS

DYE EJECTION PORTS

HALF BODY CONTOUR

SPACER SECTIONS


BOD.' GUIDE TUBE

Artabar and a Minine artal

ANTIFE MARY LINEA

REPLACEABLE TAIL CONFIGURATIONS

Figure 14. Dye ejecting axisymmetric body description

ſ

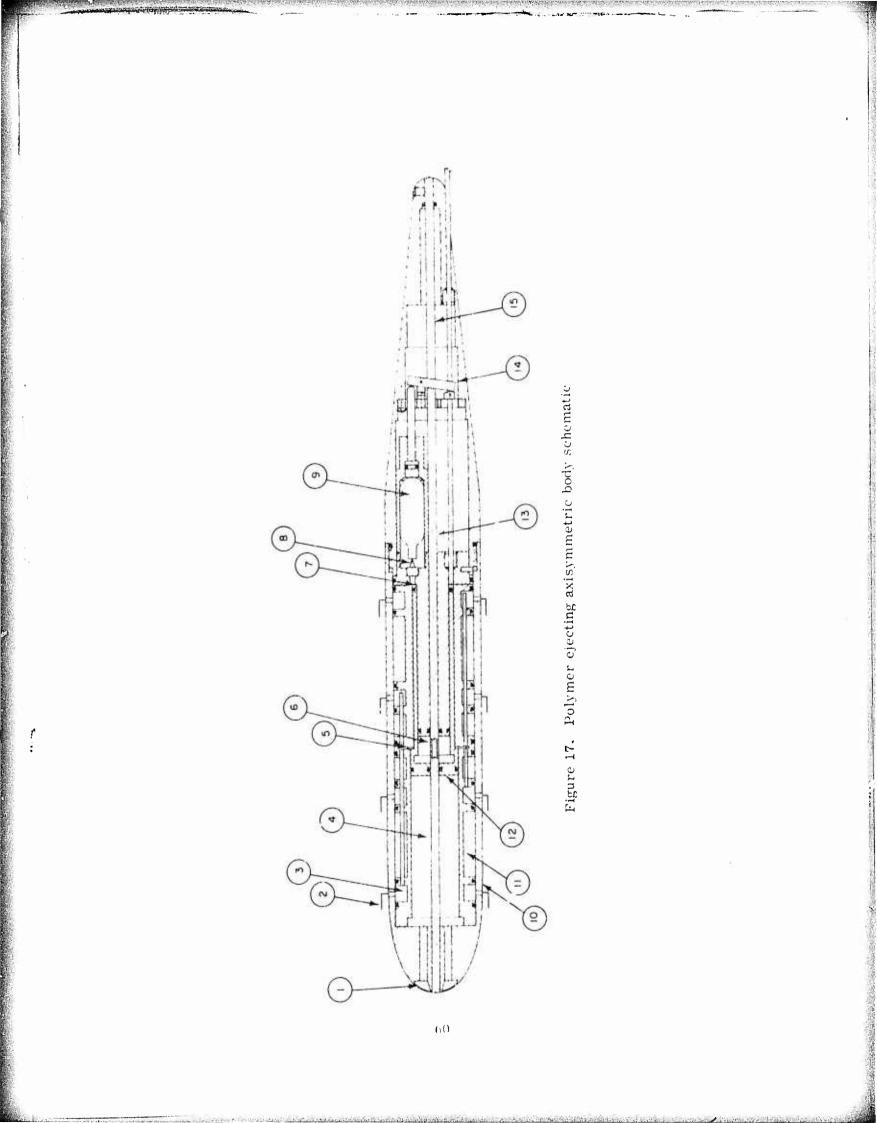
TABLE 2

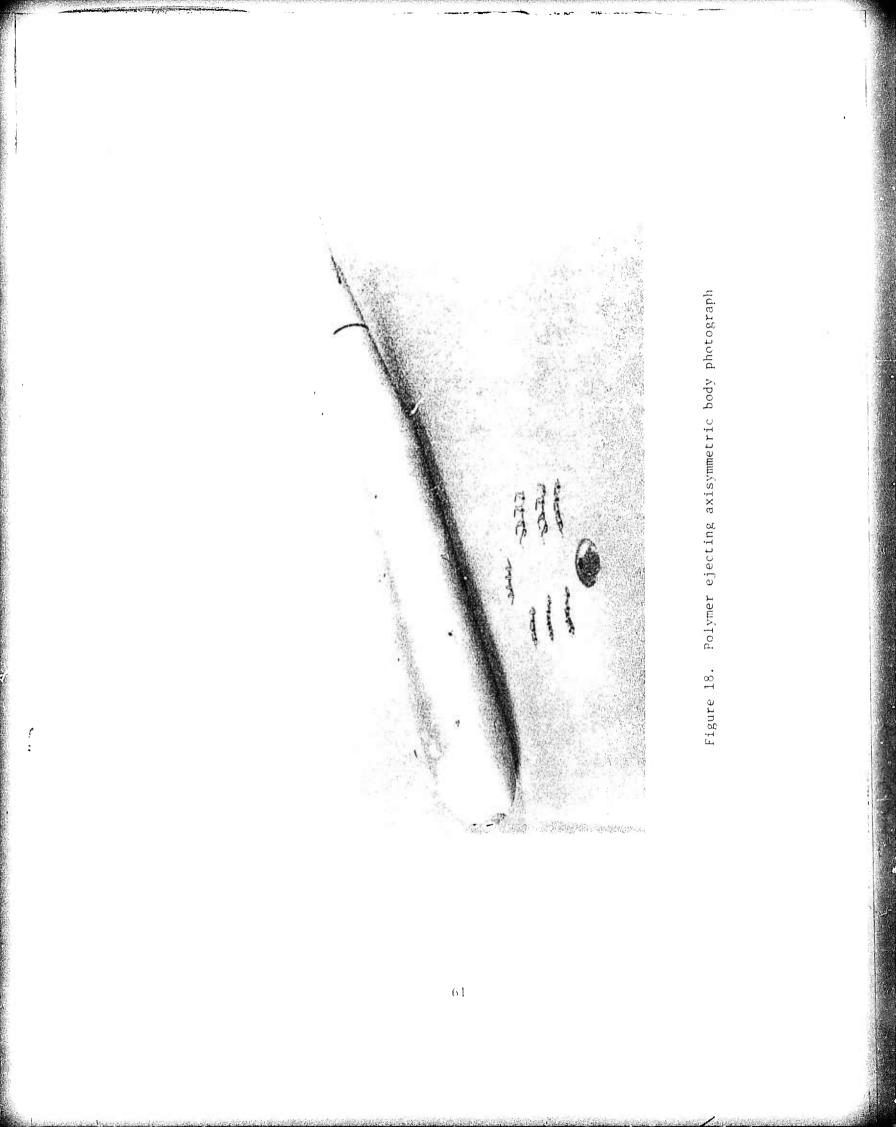
LENGTH (FT)	60 TAIL 2.0833	<u>12⁰ TA1L</u> 1.679	HEMISPHERICAL TAIL 1.386
DIAMETER (FT)	. 25	.25	.25
L/D	8.33	6.7	5.54
FRONTAL AREA (FT ²)	.0491	.0491	.0491
WEIGHT IN WATER (LBS) WEIGHTED	4.43	7.109	3.95
UNWEIGHTED	3.47	-	2.94

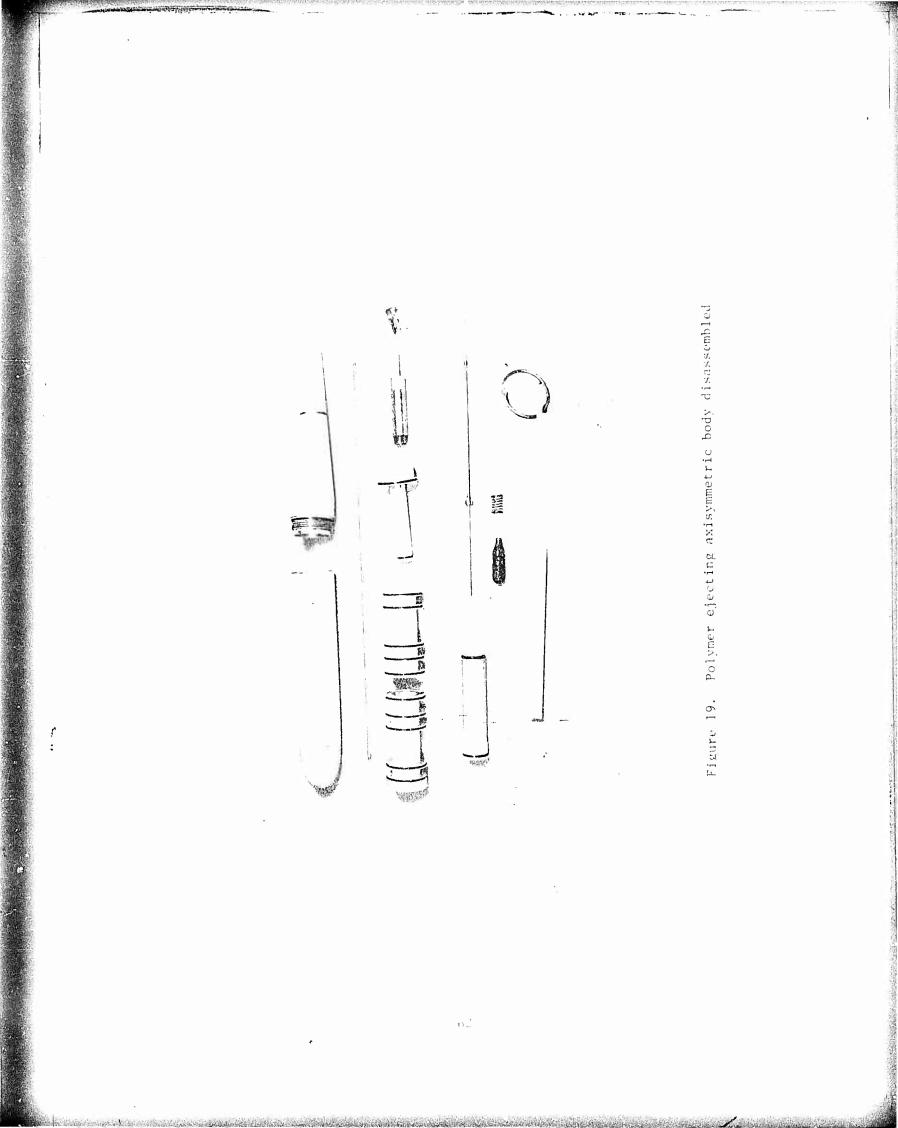
Dye Ejecting Axisymmetric Body Information

Polymer Ejecting Body

The polymer ejecting body is similar in external configuration to the 6° dye ejecting body. The equations for the external shape hold for this body. The body has been designed to perform two functions while traversing the length of the drop tank. These functions are:


- 1. Eject polymer or other fluids at a constant rate
- 2. Withdraw samples from the boundary layer at


four axial stations


Figures 16 and 17 describe the various elements of the ejecting body. These elements may be viewed in assembled and disassembled form in Figures 18 and 19, respectively. The overall dimensions of the model are 25 inches in length by 3 inches in diameter. Prior to discussing the design values of the various elements, a

POLYMER EJECTION SCREEN BOUNDARY LAYER SAMPLE TUBES BOUNDARY LAYER SAMPLE COLLECTION CHAMBER POLYMER SOLUTION STORAGE VOLUME SUCTION PISTON FOR BOUNDARY LAYER SAMPLING POLYMER EJECTOR PISTON AMBIENT PRESSURE BACKFILL VOLUME POLYMER EJECTOR PISTON PRESSURIZATION AREA CO₂ ORIFICE AND PUNCTURE NEEDLE CO₂ SUPPLY HALF BODY CONTOUR VOLUME AVAILABLE FOR WEIGHT POLYMER EJECTOR PISTON STROKE MEASUREMENT ROD CO₂ SUPPLY ACTIVATION DEVICE BODY GUIDE TUBE

Figure 16. Polymer ejecting axisymmetric body description

description of the operation of the model will serve to identify all the major components. Referring to Figures 16 and 17, the model is assembled for a launch with polymer or other fluid in the storage volume, (4) and a fresh energy source, (9), a CO₂ cartridge installed. The model is placed on the guide wire in the drop tank, (15), and inserted in the launcher. A nylon shear screw is attached through the launcher to the polymer ejector piston stroke measurement rod, (13). This rod serves to hold the model in the launcher and, upon impulsing the launcher, triggers the CO₂ supply activation device, (14), puncturing the CO₂ cartridge and releasing the constant pressure (800 psi) gas supply. The model leaves the launcher shearing the nylon screw allowing the spring loaded stroke measurement rod, (13), to bear against and follow the polymer ejector piston, (12), in its travel. The gas from the CO_2 supply passes through an orifice, (8), and pressurizes the annular piston area, (7), of the polymer ejector piston driving it forward. This action results in ejecting the polymer from the storage volume, (4), through the ejection screen, [1], and providing a suction in the annular area, (5). This area is connected to four equal sampling chambers, (3), through tubes located within 30° of the arbitrarily chosen top of the model. The suction then draws either a wall sample or a sample, As the piston, (12), is moving, ambient pressure, from a probe, (2) which varies from atmospheric at the surface of the tank to near 9 psi above atmospheric at the bottom of the tank, enters the guide

tube, (16), and is transmitted to the ambient pressure backfill volume, (6). Finally, at the end of the piston, (12), travel, the CO₂ gas is vented to the backfill volume chamber, (6), and out the guide tube, (15). The model at the end of a test is thoroughly vented of gas and readily handled.

The model was designed with several thoughts in mind. First, it would be desirable to eject at as low a velocity as practical so as not to disrupt the flow. Secondly, ejection in the nose stagnation region forward of the minimum pressure point would be desired to minimize the possibility of early tripping of the boundary layer to turbulent flow. The volume ejection rate should result in an annular flow of about the same dimensions as the laminar boundary layer thickness to minimize the disturbance on the flow field. The stroke and suction process should be at a constant The suction process should be at a low enough rate to minirate. mize the disturbance on the boundary layer and, for the wall suction case, to insure a sample is withdrawn near the wall and not penetrating the boundary layer too far. Finally, all processes should be completed prior to the model impacting the bottom so as not to be either ejecting or sampling under a zero velocity condition. Conversely, it is desirable to delay sampling until the boundary layer has been established at launch. This requirement was difficult to achieve and attempts discarded early in the design process. The errors introduced are less than 8% for the worse case.

The first design parameter fixed was that of deciding on the required polymer ejector volume. After deciding to keep the model as light as possible, constructing with aluminum, a guessed weight in water, based on some calculations for a hemispherical nose, a cylindrical section and a tail, of 4.43 lbs resulted for a 24-inch long body of 3-inch diameter. Assuming drag coefficients of .22 and .11, the velocity of the body was determined by the equation:

$$U = \left(\frac{W-B}{1/2 C_{\rm D} \rho A}\right)^{1/2}.$$
 (77)

The calculated velocities for 70° water were

U = 20.6 ft/sec for $C_D = .22$ U = 29.0 ft/sec for $C_D = .11$.

The Reynolds numbers for these velocities were

 $R_e = 3.9 \times 10^6$ @ U = 20.6 ft/sec $R_e = 5.5 \times 10^6$ @ U = 29.0 ft/sec.

The Laminar boundary layer thickness may be calculated using flat plate approximations and assuming a position 2 inches back along the body surface. From Schlichting (1968)

$$\frac{\delta}{x_{\rm s}} = \frac{5.2}{(R_{\rm e})^{1/2}}.$$
(78)

Now $R_{e_x} = 3.25 \times 10^5$ U = 20.0 ft/sec $R_{e_x} = 4.6 \times 10^5$ U = 29.0 ft/sec.

Therefore,

 $\delta = 1.52 \times 10^{-3} \text{ ft}$ U = 20.0 ft/sec.

$$\delta = 1.27 \times 10^{-3} \text{ ft}$$
 U = 29.0 ft/sec.

Now, the volume flow through the annulus around the body is given by

$$Q_{\delta} = .6 U_{\parallel} \Pi D \delta$$
(79)

where .6U is used as an approximation to an average velocity in the region. For the two conditions being calculated

> Q = .0148 ft³/sec = 25.5 in³/sec for U = 20.6 ft/sec Q = .0174 ft³/sec = 29.9 in³/sec for U = 29.0 ft/sec.

The usable tank length for model tests is about 13 ft; therefore, the time of ejection will be about

$$t_1 = \frac{18}{20.6} = .63$$
 seconds
 $t_2 = \frac{18}{29} = \frac{1}{.448}$ seconds,

Required volumes for storage are

 $U_s = 16.0 \text{ in}^3$ U = 20.6 ft/sec $U_s = 13.4 \text{ in}^3$ U = 29.0 ft/sec

Comparing these volume flux rates with expected velocities from the nose, assuming a one-inch diameter ejection port with a 30% open area screen installed

$$\frac{Q_{\delta}}{(A_{e})(.30)} = 9 \text{ ft/sec} \text{ for } U = 20.6 \text{ ft/sec}$$
$$\frac{Q_{\delta}}{(A_{e})(.30)} = 10.6 \text{ ft/sec}$$

for U = 29.0 ft/sec.

These velocities are high. Velocities in the order of 5 ft/sec would be much more desirable. Reduction of velocities by 1/2 would result in a storage volume goal of about 8 cubic inches. This reduction would also result in smaller thicknesses of flow in the boundary layer as compared to the laminar layer thickness.

The effective polymer storage volume designed into the model is 8.25 in³ with a stroke of 4.67 in. and a stroking time of .4 secs.

The ejector screen used in the model, Figure 18, was formed to the contour of the forebody nose. The screen contained 517 .024 inch diameter holes per square inch with a 24% open area. The outside diameter of the screen is 1.37 inches and the inside diameter .3 inches. The projected area is 1.4 in^2 with an open orifice area of .337 in². This ejection area resulted in a 5-ft per second ejection velocity.

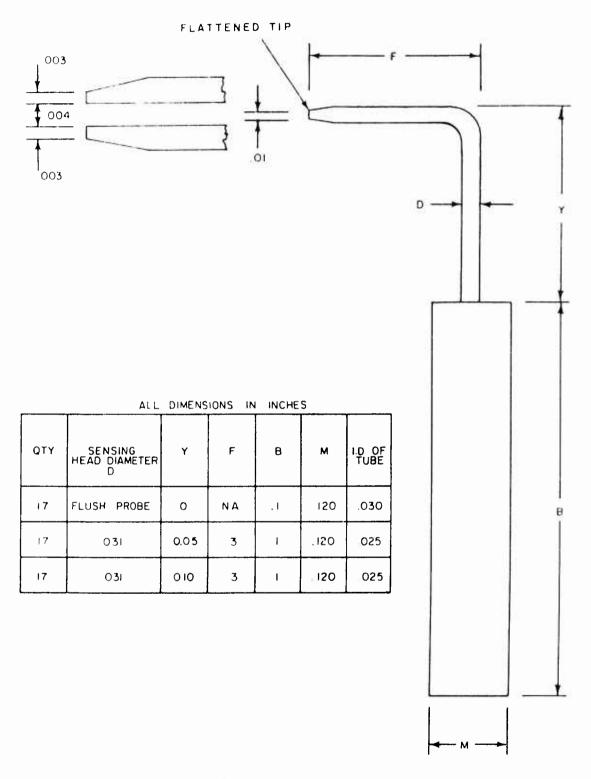
The screen used is a No. O straight screen from Harrington and King Perforating Company.

The suction time was next to be determined. Since the single piston approach was decided upon, the stroke available and the stroking time for use was equivalent to that for the ejector piston, 4.67 inch and a time of .4 seconds. The suction rate for the design of the suction piston is 11.675 in³/sec. Applying a method defined by Dowdell (1973) for correction of the measured "wall concentrations" due to the sampling process

drawing further out in the boundary layer, an estimation of a reasonable sample rate and sample probe orifice size were made. It was first decided that samples would be made at stations 3, 6, 9, and 12 inches back from the nose of the body. This selection was somewhat governed by the need in the tail for other machinery space. From a measurement standpoint, it was desirable to maximize sample size but from a correction standpoint, minimal flow velocity is desirable. As a result, four suction ports 90° apart, were located at each measurement plane. Additionally, at each subsequent plane the port locations were rotated 22° 30' so as not to be affected by the flow entering the ports in the previous place, Figure 18. The next step was to define the approximate boundary layer thickness at the most forward probe station for the highest Reynolds number case as used before. This would give the thinnest boundary layer which is the worst case. Using a flat plate turbulent boundary layer thickness expression from Schlichting (1968)

$$\frac{\delta}{x} = \frac{0.37}{(R_{\rm o})^{1/5}} \,. \tag{80}$$

From (80), $\delta = .05$ inches.


A matrix of probe sizes (inside diameter) and suction volumes were examined for the piston rates calculated, body velocities and the boundary layer thickness calculated above. This was also performed for a boundary layer thickness of .025 inches, postulated to be the thickness that might occur when polymers

were added. The result was that a .760 cubic inch suction volume and sampling tube inside diameter of .030 inches would give acceptable results. A worst case correction factor of

$\frac{C}{C}$ measured = .54 $\frac{C}{W}$ actual

was calculated for a .025-inch thick boundary layer. This correction reduced to about .8 at a boundary layer thickness of .05 inches. Although a lower correction factor would be desirable, an ample sample volume of fluid is necessary for concentration determination. This suction rate and flush wall sample tube size had an inflow rate per tube of approximately 14 ft/sec.

The pitot probes to be used in sampling the boundary layer away from the wall were designed to minimize the effects on the flow. Two heights were chosen for measurement, .025 inches from the wall and .055 inches. These selections came about, in part, due to physical limitations. With the physical dimensions of the probes, it is difficult to get closer to the wall and with the projected boundary layer thickness for the first station, it is not desirable to get any further from the wall. These heights would allow for a reasonable three-point plot of boundary layer concentrations. Figure 20 displays the salient features of the probes. As is noted, a thin wall tubing is used which allows for flattening of the tip to .01-inch thickness. The resulting inner dimension for sampling is .004 inches high. Sampling

¢

.

Figure 20. Special boundary layer probes

velocities in the tube are approximately 20 ft/sec. Sixteen probes were used in each test replacing the sixteen flush wall probes.

The model design, as can be seen from the schematic, Figure 17, contained void volumes in the suction lines which were prefilled with liquid. The void volume is 1.4316 cubic inches resulting in a sample dilution factor of .1327.

The stroking piston pressurization system consists of the carbon dioxide (CO2) cartridge, a puncture device and an orifice. Since the goal is a constant rate ejection process, the use of a CO₂ cartridge as the gas source was chosen since the substance is stored in liquid form with a vapor pressure of 800 psi at about 65^oF. Little change in the vapor pressure would occur during the use cycle as the gas is drawn off. The system was designed to minimize the free volumes in the high pressure area to insure a sufficient gas supply for the stroking process, Figure 17. The CO₂ cartridge in the final version of the model is inverted from that shown in Figure 16, with the puncturing needle placed on the opposite end also. This was done to achieve reproducibility in the stroking of the piston. Apparently, either freezing of the orifice or slight contaminants would plug the metering orifice resulting in extreme variability of stroking times. The reversal corrected the situations. The pressurization area and orifice area size for metering the CO₂ gas were

selected to provide the stroking rate previously determined. The area was somewhat governed by the desire to maximize the drop tank depth pressure balance area, 6, Figure 17. The volume in this area, besides providing for balancing of the depth pressure also minimizes the weight change during a launch by water backfilling the volume. The CO₂ piston pressurization area designed was .785 in² with a resultant total volume of 3.68 in³. The orifice size was determined to achieve the .4 second stroking time. Considering that the orifice is small enough such that choked flow conditions exist, the pressure ratio across the nozzle is given by, Shapiro (1953),

$$\frac{p_2}{p_1} = \left(\frac{2}{k+1}\right)^{\frac{k}{k+1}}$$
(81)

Which for k = 1.29 for CO_2 gas @ $68^{O}F$ yields

$$\frac{p_2}{p_1} = 0.55.$$
(82)

Therefore, flow will be a maximum for downstream pressures less than or equal to 440 psi with an upstream pressure of 800 psi. The flow rate is given by, Shapiro (1953)

$$\left(\frac{w}{A_{1}}\right)_{\text{max.}} = \sqrt{\frac{2gk}{k-1}} \left(p_{1}\rho_{g}\right) \left[\left(\frac{2}{k+1}\right)^{\frac{2}{k-1}} - \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\right]$$
(83)

where $p_g = .114 \text{ lbs/ft}^3 @ 68^\circ \text{F}.$ Substituting in (83):

$$\frac{w}{A_1} = 4.28 \times 10^2 \text{ lbs/ft}^2 \text{ sec.}$$
 (84)

Converting to match the volume flow requirements

$$\frac{Q}{\Lambda_1} = \frac{w}{\rho_g \Lambda_1} = 37.54 \text{ x } 10^2 \text{ ft/sec.}$$
(85)

To achieve the 9.2 in³/sec volume stroking rate for the pressurizing gas volume, Q must equal 9.2 in³/sec and A_1 is determined. Substituting in (85)

$$A_{1} = 1.418 \times 10^{-6} \text{ ft}^{2}$$

$$= 2.04 \times 10^{-4} \text{ in}^{2}$$
(86)

Therefore, the orifice diameter must be .016 inches. This diameter orifice has been used in the model.

The important characteristics of the 6^o ejecting model as finally designed and constructed are displayed in Table 3.

TABLE 3

Characteristics of 6⁰ Ejecting Model

Length	2.0833 ft
D	.25 ft
L/D	8.33
Weight in Water	4.46 lbs
Polymer Solution Storage Volume	8.25 in ³
Stroke	4.67 in
Stroke Time	.400 sec
Suction Volume	.760 in ³
Suction Volume Per Sampling Chamber (4 Chambers)	.19 in ³
Sample Dilution Factor	.1327
Ejection Velocity	5 ft/sec

Boundary Layer Concentration Measurements

Several methods exist for the measurement of the concentration of polymer in a sample solution. These include polarographic, turbidity, simple opaqueness and fluorometric methods. A comparison of all but the opaqueness is given in Wetzel and Ripkin (1970). The opaqueness method, which relies upon a measurement of light cransmission through a portion of the boundary layer, cannot be applied to the moving body case since short time measurements and accurate body position with time would have to be known. The remaining methods are all applicable to the conditions of this study since they deal with a sample of solution. The method chosen for use is the fluorometric method. This method has been used successfully by Walters and Wells (1971), Wetzel and Ripkin (1970) and Tullis and Ramu (1973). The method consists of injecting a tracer dye into the fluid being analyzed and capturing a sample of the fluid for analysis. This assumes, of course, that the diffusion of the tracer dye is identical to that of the boundary layer mixture. A reasonable assumption as data comparing various measurement methods by Wetzel and Ripkin (1970) display. The tracer dye, which may be colorless, fluoresces when radiated with an ultraviolet source. This reradiation is measured with a photomultiplier tube and is proportional to the concentration of dye in the sample. The fluorometer used in these tests is a G. K. Turner Associates Model 111 Fluorometer.

Several tracer dyes may be used. Two prime candidates are Rhodamine-B and Uranine-B. Both are compatible with polymer solutions in that the mixture was stable and the drag characteristics were unaffected when measured in a Turbulent Flow Rheometer similar to that described in Hoyt (1966). The Rhodamine-B gives excellent results with solution concentration of 1 part in 10 inches on a weight basis but is very difficult to cleanse from the apparatus. The Uranine-B dye was readily adaptable to laboratory use and gave reproducible readings to about 1 part in 10^9 on a weight basis. This was sufficient for the experiment to be performed since the dye concentration in the solution to be ejected could be adjusted to produce samples along the body sufficiently above the background levels to give reproducible results. Calibration curves were experimentally developed for the instrument using known concentration of Uranine-B dye in the tap water to be used in the experiment. The Model 111 Fluorometer has four sensitivity settings allowing calibration curves to be drawn over a range of about 1 part per 10^6 to 1 part per 10^9 , on a weight basis. For concentrations greater than the lower value, dilution prior to measurement was performed. The calibration charts for this experiment are shown in Figures 21. and 22. Approximately a 3.5 to 4.5 ml sample is required for measurement. This sample is placed in a cuvette (a small test tube) and placed in the instrument and the measurement taken.

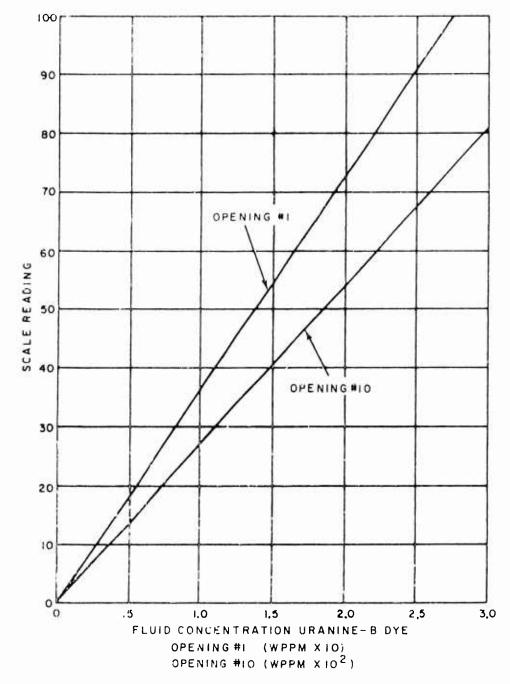


Figure 21. Calibration curves for model 111 fluorometer - openings 1 and 10

1.02

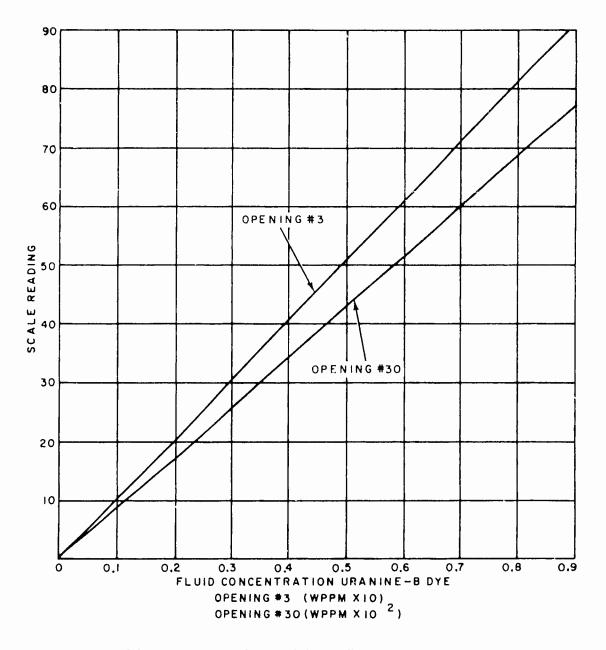


Figure 22. Calibration curves for model 111 fluorometer – openings 3 and 30 $\,$

1

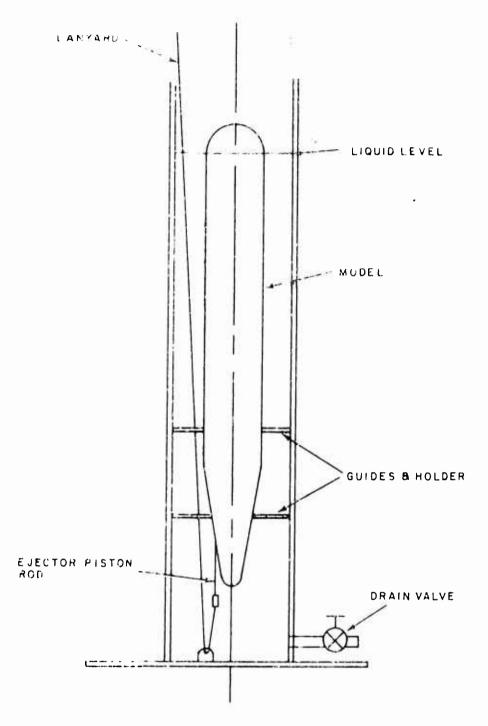
Can wave to tak a constraint outside of the empiric clean prior to measurement since these prints do effect the readings. Wiping with a paper cowel was found to be sufficient. All samples were allowed to achieve room temperature prior to reading.

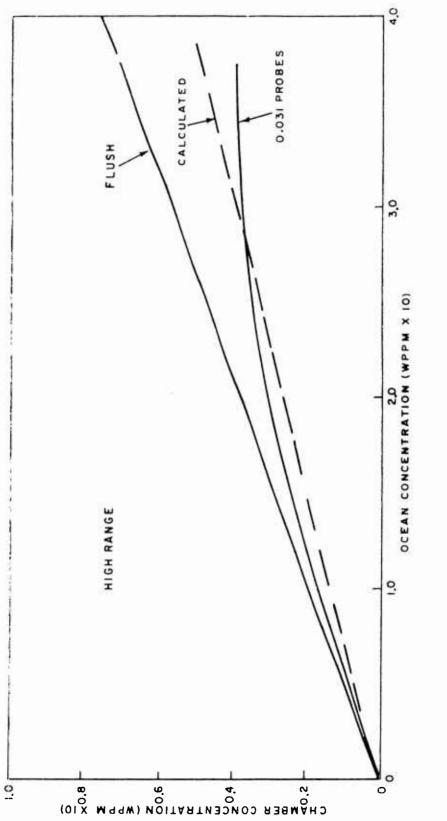
Model Calibration

Concentration Measurement Calibration

The ejecting model, as designed contained four sample collection charbers drawing simples through four flush will or four pitet probes per sample chamber. These diffection chambers are all connected by 3/32 inch inside diameter tubing to the suction piston. The transfer tubes are of unequal lengths resulting in an interesting transient analysis problem of defining the suction rate differences per sample chamber. The problem was circumvented by calibrating the model through a series of experiments. Additionally, a calibration was desirable since it was difficult to determine the exact word volume per sample chamber previously stated at 1.4318 (which inches which resulted in a dilution factor of .1327. This resulted in a sample concentration lower than the boundary layer sample concentration. It was first thought to leave these void spaces air filled eliminating the dilution factor. Early tests showed that with the body in the tank in the vertical position, the water pressure head difference would result in a venting of the air in these chambers, since they were interconnected, out the uppermost chamber and a filling with tank water through the lower chambers. Prefilling with water, as will be

discussed later, eliminated the problem. To calibrate the model, an assembly and calibration tank was constructed. The tank is displayed in Figure 8 in the foreground having dimensions of 8-inch diameter by 3 feet height. The model is installed in the tank tail first as shown in Figure 23 and fired by pulling on a preattached lanyard. The following procedure was followed in calibrating the model. The model was assembled excepting for the half body nose and placed in the tank after connecting the lanyard to the firing rod. Tap water was placed in the tank just below the level of the polymer ejection volume completely filling all sample chamber volumes. The nose is then installed and a sample background reading of the water taken. The water was then contaminated with the Uranine-B tracer to one of three concentration levels called the Ocean Concentration. These were approximately $.3 \times 10^{-7}$, .8 x 10^{-7} and 2 x 10^{-7} WPPM, which were determined to result in an appropriate spread of chamber concentration levels. The model was ther fired. The samples were withdrawn and measured in the Fluorometer. The samples were withdrawn by removing the model from the calibration tank, wiping the outside dry while holding in a horizontal position with the top, as defined by the position of the internal suction transfer tubes, being in the uppermost position and placing the model over individual collection trays. The samples would drain into these four separate trays for analysis. It is necessary to keep the suction transfer tubes in the uppermost position to insure no transfer of liquid between the chambers. The

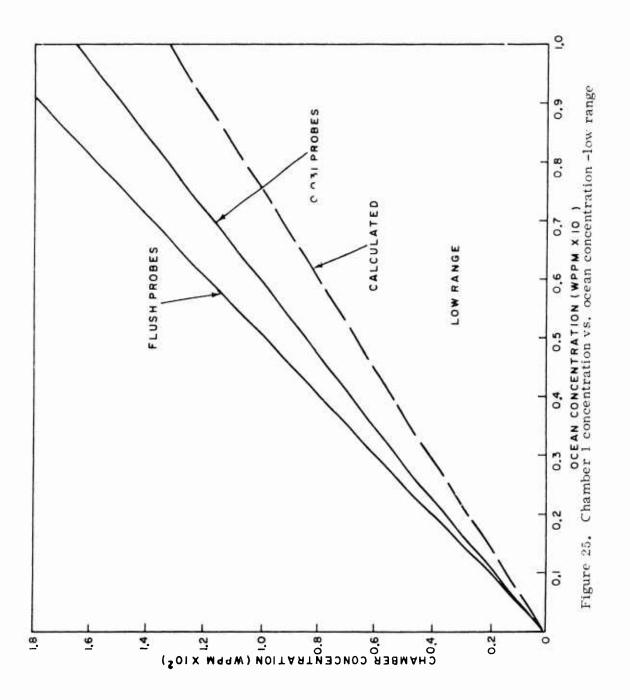


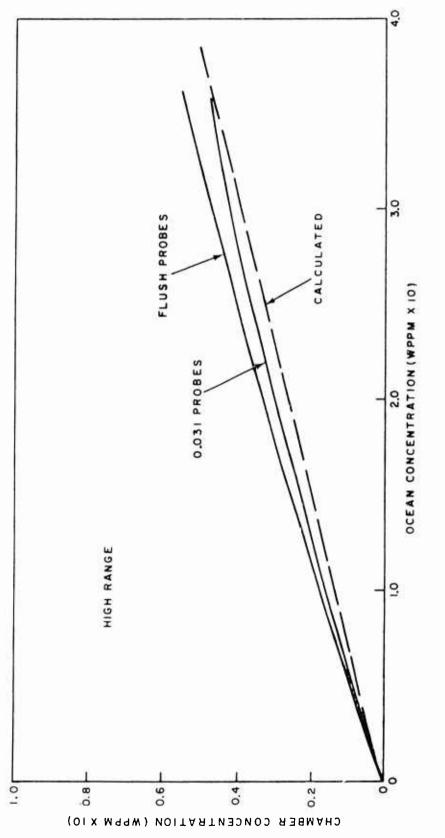

Figure 23. Assembly and calibration tank

12,1 . 191 . 3

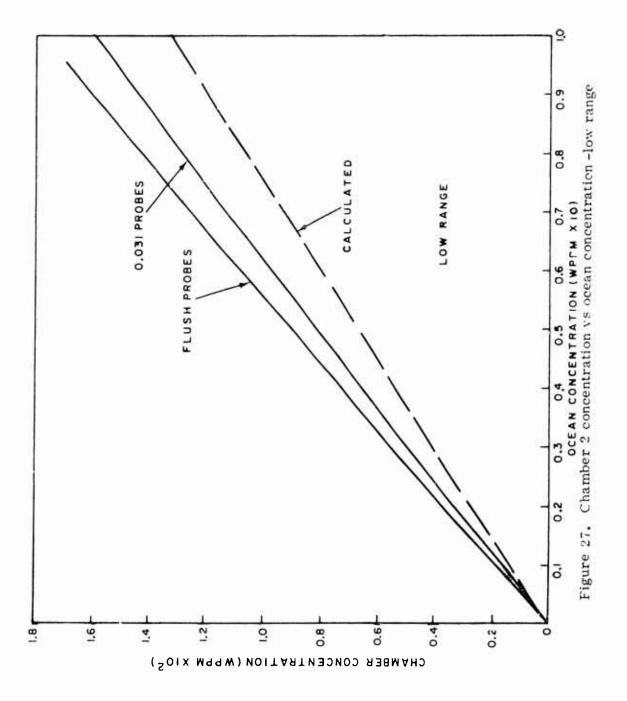
procedure was similar for the probe case excepting that an uppermost row of probes was removed and then a bottom row to facilitate the liquid withdrawal. A minimum of four calibration tests were run at each concentration with the flush probes and also with the pitot probes. A least squares fit was performed on the data which are plotted for each sample chamber in Figures 24 through 31 for high and low chamber concentrations. Deviations of $\pm 5\%$ were noted in the data. Several tests were performed with a 50 WPPM polymer solution in the tank with no significant change in the data.

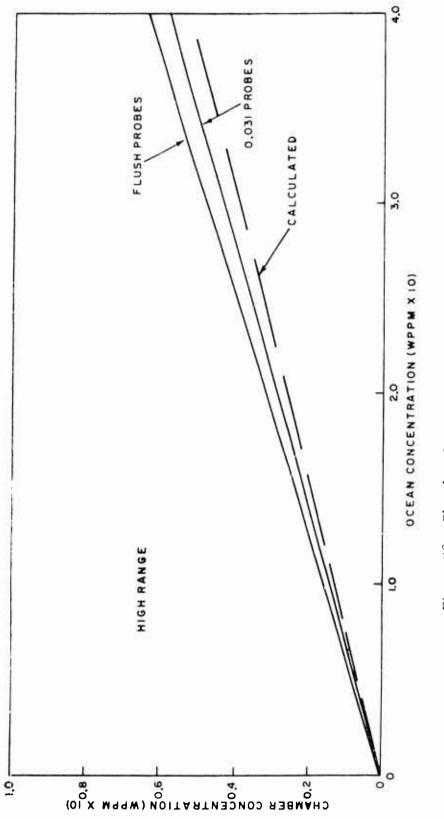
Stroking Time Verification


Verification of the stroking time was necessary to insure that the appropriate volume flow rates were being achieved. The facility shown schematically in Figure 32 was used for this purpose. To calibrate, the model was loaded with liquid and clamped to the bench. A calibration spacer was placed on the ejector follower and the rod clamped with a nylon shear screw to the facility firing arm. When fired by moving the firing arm in a counterclockwise direction and shearing the shear screw, the follower rod would move into the model following the ejector piston. The calibration spacer would interrupt the laser beam for the length of the spacer, starting the counters, discussed previously, giving a time over the known distance and the velocity of the rod. It was found, by test, that the velocity of the rod was approximately 5 times faster than the stroking time, therefore not influencing the results. A .5-inch long

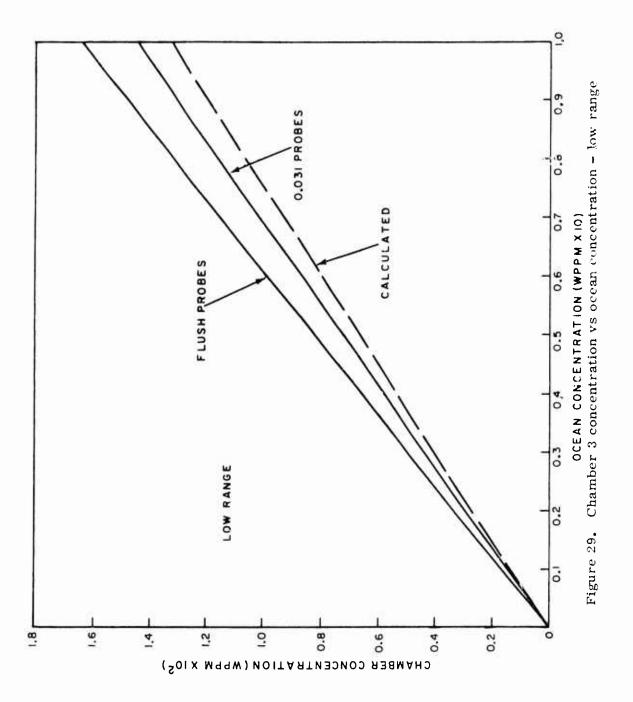


.

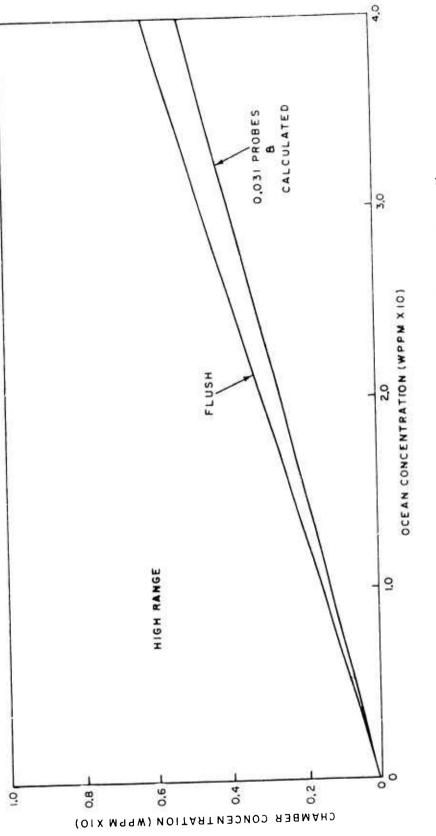

82



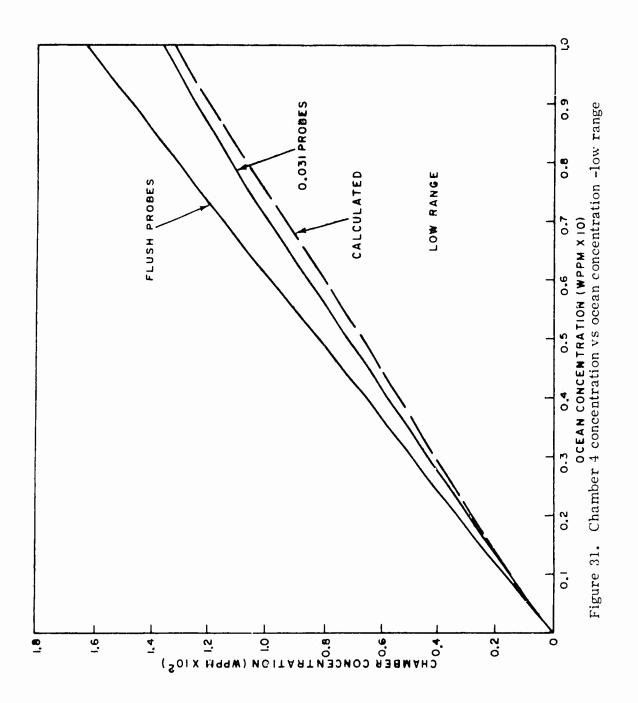
•---



• *€,*



ę. -



87

10.11

ер: -

のないのた

,

calibration spacer was used in the test and placed at several positions on the follower rod to detect any acceleration of the rod. None was evident. Nineteen calibration runs were made. The stroke rate resulting was 12.1 in/sec $\pm 6\%$ as compared to the calculated value of 11.7 in/sec.

IV. ANALYTICAL CONSIDERATIONS

Boundary Layer Model

ſ

This section presents the analytical approach for the analysis of developing turbulent flow over an axisymmetric body for the cases of no polymer, polymer ocean and polymer injection. A model is developed for predicting growth of the boundary layer, diffusion of tracers within the boundary layer and prediction of skin friction coefficients and total drag.

From the literature review, the features of previous studies for turbulent flows can be summarized as follows:

- A modified law of the wall type velocity profile with pressure gradient terms was developed for the thick axisymmetric boundary layer case.
- Inner variable integral equations were developed for the thick axisymmetric boundary layer and verified for certain parameters.
- 3. Porous wall pipe flow studies with injection of polymers have suggested significantly reduced diffusion characteristics. This representing the ideal case of introducing polymers into the viscous sublayer.
- External flow studies demonstrate the importance of the ejection process on polymer efficiency.

- Far downstream dilution laws for polymer follow those for water diffusion.
- Similarity concentration profile relations have been established for the downstream case.
- 7. The extent of the initial mixing zone is considerably extended by nearly a factor of 20 with polymer flows. Most investigators have obtained data in far downstream conditions only.
- Data on concentration profiles on axisymmetric bodies are desirable to extend and/or verify dilution laws presently available.

In the analysis that follows, the velocity profile, continuity equation, momentum equation, a Lagrangian similarity hypothesis for the turbulent diffusion boundary layer growth, and a conservation of polymer equations for the intermediate and final zones of diffusion are combined to yield expressions for the growth of the turbulent boundary layer with poly er ejection. Additionally, terms are added to predict the initial zone region where molecular diffusion predominates for an optional ejection process. An alternate analytical model is postulated which would eliminate the need for the concept of an initial, intermediate and final zone concept.

Ţ

Velocity Profile Relation

Equation (32) provided a relation for the law of the wall accounting for pressure gradients. Rewriting equation (32) accounting for the Meyer (1966) correction for polymers, ΔB , yields:

$$u^{+} = \frac{1}{K} \int_{0.1108}^{Y^{+}} \frac{1}{Y^{+}} \left[1 - \frac{\alpha}{2} r_{0}^{+} \left(1 - e^{2Y^{+}/r_{0}^{+}} \right)^{1/2} dY^{+} + \Delta B \right]$$
(87)

An alternate method for accounting of the polymer effect would be by adjustment of the mixing length constant, K. As noted by Virk (1971), a change in K by a factor of 5 is possible and in full agreement with data. This would only apply for the case of maximum drag reduction along the ultimate asymptote line, however. <u>Skin Friction Relations</u>

The boundary layer continuity and momentum equations, equations (33) and (34), for turbulent axisymmetric flow

$$\frac{\partial}{\partial \mathbf{x}} (\rho \mathbf{u} \mathbf{r}) + \frac{\partial}{\partial \gamma} (\rho \mathbf{v} \mathbf{r}) = 0$$
(33)

and

ſ

$$\rho \, u \, r \, \left(\frac{\partial u}{\partial x}\right) \, + \, \rho \, v \, r \, \left(\frac{\partial u}{\partial y}\right) \, = \, - \, r \, \left(\frac{d p_e}{d x}\right) \, + \, \frac{\partial}{\partial_y}(r\tau) \tag{34}$$

are applied to the polymer flow case studied here. The x derivatives must be handled by the chain rule, since each of the parameters $(Y^+, \alpha, r_0^+, C_w)$ in the law of the wall is a function of x. Thus, we substitute

$$\frac{\partial}{\partial x} = \frac{\partial Y^{+}}{\partial x} \frac{\partial}{\partial Y^{+}} + \frac{\partial \alpha}{\partial x} \frac{\partial}{\partial \alpha} + \frac{\partial r_{0}^{+}}{\partial x} \frac{\partial}{\partial r_{+}^{+}} + \frac{\partial C_{w}}{\partial x} \frac{\partial C_{w}}{\partial C_{w}}$$
(88)

As may be noted in (88), concentration derivatives are added. It is assumed throughout that $\rho_{\rm W}$ and $\mu_{\rm W}$ are constant in this analysis.

The resulting boundary layer equation, after considerable algebraic manipulation is:

$$\frac{d\lambda}{dx^{\star}} (3 \alpha H - G_{1}) + \frac{v'}{v} \lambda G_{1} - \frac{\lambda^{2}r_{o}^{+}}{2} (e^{2Y_{e}^{+}/r_{o}^{+}} 1)$$

$$+ \frac{\lambda^{4}}{R_{L}} (\frac{1}{v})'' H = - R_{L}v - \lambda \frac{dr_{o}^{+}}{dx^{\star}} I - \lambda \frac{dc_{w}}{dx^{\star}} J$$
(89)

where G, H, I, J are given in the appendix.

The prime difference between equations (89) and (35), for the polymer case, is the last term accounting for the change of concentration with x.

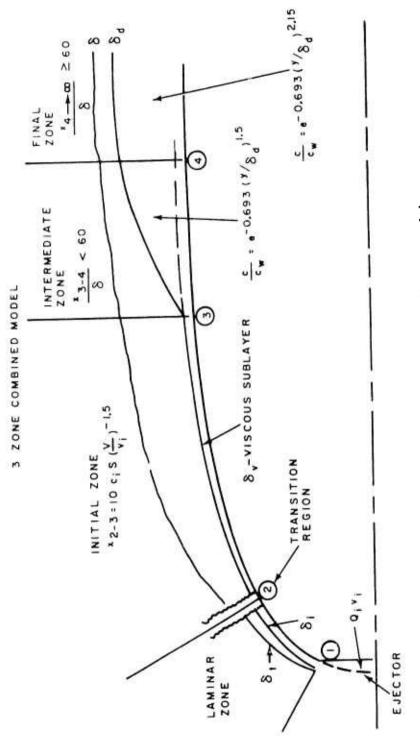
Appendix A presents a complete development of the equation related to this method.

Prior to solution of equations (87) and (89), it is necessary to determine a means of calculating C_w . Test (1974) applied techniques developed by Lessmann (1970), and Fabula and Burns (1970) to provide a solution for C_w . This technique satisfied the case of final zone of mixing but did not account for the development of a diffusion boundary layer in a similar tashion to the development of a hydrodynamic boundary layer. Nevertheless, the results of the work are significant. With the application of the hypothesis suggested by Batchelor (1957), describing the development of the diffusion boundary layer and data by Poreh and Cermak (1964) and Poreh and Hsu (1971), empirical relations are developed which provide the values C_w necessary to determine the friction coefficients for the intermediate and final zone.

For the case of no polymer present, equations (87) and (89) may be solved setting all terms containing C_w equal to zero. It is only necessary, as pointed out in White (1972), to assume an initial λ_0 and prescribe the flow condition (U_e , r_0) as a function of x. Additionally, for the case of operation in a polymer ocean, that is C_w is everywhere constant, all derivatives of C_w and with respect to C_w are set equal to zero and again a solution can be obtained as for the case of C_w equal to zero but instead inserting a constant value of C_w into equation (87).

Many of the previous investigators have neglected the contribution of the initial zone in the process of diffusion and resulted in good agreement with data. The suggestion being that the diffusing process with polymers is similar to that with water. This is true in the intermediate and final region of the diffusion process where molecular diffusion is not the controlling factor. Experimental methods and apparatus used significantly control the results. For the external flow case studied here, ejection in a laminar

1 :


flow region prior to transition to turbulent flow may significantly influence the process. Data by Walters and Wells (1971) and Fruman and Tulin (1974) suggest the initial zone becomes very large. It is hypothesized, here, that by injection prior to transition, the turbulence intensity levels are extremely subdued resulting in elimination of the high level mixing process associated with the turbulent eddies penetrating the viscous sublayer. When injecting into established flows, as performed by many investigators, the dampening of the turbulent intensity does occur, but not before the polymer is dispersed at a rather normal diffusion rate consistent with other fluids (water). This results in low wall concentration, rather quickly, and therefore low drag reduction efficiency. The sections that follow describe an analytical model which includes an initial zone. Figure 33 schematically describes the model.


Considering first the initial zone where molecular diffusion is presumed to predominate, an approximation to the concentration entering the turbulent transition zone is made. Writing a simplified polymer conservation relation:

$$Q_1 C_1 = (Q_t + Q_2) C_t$$
 (90)

where Q_t and C_t are the flow rate and concentration at the transition point, respectively, and Q_2 is an initial condition correction factor. The volume flow rate Q_t is given by the mean local laminar flow velocity, .6U_e, at the transition position radius r_{ot} and a

ż

ſ

laminar layer thickness, δ_t , determined from equation (78)

$$Q_{t} = .6U_{e} 2\pi r_{o} \delta_{t}. \tag{91}$$

The initial condition to the laminar flow boundary layer must be applied if the ejected volume of fluid exceeds the fluid in the laminar boundary layer at the periphery of the ejector. In equation form

$$Q_1 - Q_e = Q_2$$

where Q_e is the volume flux through the laminar thickness calculated at the ejector periphery in a similar fashion to equation (91), and Q_2 is the volume flux difference which provides an "initial condition" and must be added to the boundary thickness at each station. The assumption is made that the polymer solution is uniformly mixed within this laminar layer. The local concentration at the transition point is then determined from (90). The volume flow rate into the viscous sublayer is determined by simple ratio of the thickness of the viscous sublayer height to the laminar layer height at transition.

$$Q_v = (Q_t + Q_2) \frac{\delta_v}{\delta_t} .$$
(92)

ſ,

Approximating in this manner would tend to overpredict the flow into the viscous sublayer while underpredicting the flow in the region above the sublayer. The flow rate into the viscous region, Q_v , and the concentration, Q_t , are the parameters applied to the drag reduction and boundary layer calculations. This approxima-

mation allows for an excess quantity of fluid being introduced above the viscous sublayer. The portion of flow injected into the intermediate layer of the turbulent flow is given by

$$(Q_{t} + Q_{2}) - Q_{v} = Q_{3}.$$
(93)

This fluid will undergo a rapid diffusion characteristic of intermediate and far downstream diffusion as discussed earlier. The concentration of polymer at the transition point is as given previously, $C_t = \frac{Q_i C_i}{Q_t + Q_2}$.

Considering equation (59), the relation for this diffusion process is given by

$$Q_{3}C_{t} = 2\pi (r_{0} + y_{v}) C_{t} \int_{y_{11}}^{\infty} u \frac{C}{C_{t}} (1 + \frac{y}{r_{0} + y_{v}}) dy$$
 (94)

where, for the assumption of uniform concentration in the sublayer, $C_t = C_w$ on the right side of (94). For $y_v << r_o$ equation (94) becomes

$$Q_{3}C_{t} = 2\pi r_{0} C_{w} \int_{0}^{\infty} u \frac{C}{C_{w}} (1 + \frac{y}{r_{0}}) dy.$$
 (95)

Equation (95) may be integrated across the boundary layer at each x station resulting in a measure of the concentration profile above the viscous sublayer. It is suggested that this relation, (95), be solved as described in subsequent sections, as an independent solution to the two-zone diffusion process with flow and concentration inputs of Q_3 and C_t , respectively, but other boundary layer

and polymer wall concentration parameters governed by the basic initial zone calculations. This will avoid additional computer programming complexity. This calculation is only required if a measure of boundary layer concentration at particular heights in the boundary layer is desired. The extent of the initial zone has yet to be determined. Fruman and Tulin (1974) postulate a model for prediction of the extent of the initial zone for flat plates, based on an analogy to heat transfer. They show, for a near optimal ejection process, that the initial zone terminates for values of dimensionless distance greater than 8. The dimensionless distance used to correlate these data is:

$$\left[\left(\frac{U_{o}}{v_{i}}\right)^{1.5} \frac{x}{s} \frac{1}{C_{i}}\right]$$
(96)

where s is the slot width. For the axisymmetric case with nose ejection, an effective slot width may be defined as the ejection orifice area divided by the ejection circumference. For the model being applied in this study, the effective slot width is .07837 inches and C_i is replaced with C_t . No correction will be made to this relation for application to the axisymmetric case pending results of the test program. It should be reiterated that the initial zone length will normally be very small for dilute solutions of polymer as would occur if ejection were initiated in a highly turbulent region. For this type of ejection process, an intermediate and final zone model would be quite adequate. Upon leaving the initial zone, relations for the prediction of wall concentration are required. Application of the Lagragian similarity hypothesis and the concentration similarity profiles discussed earlier coupled with the axisymmetric boundary layer relations and velocity profile provide the necessary relations.

A relation for solution of C_w in the highly turbulent flow field may be extracted by application of equations (57), (58) and (59)

$$Q_{i}C_{i} = 2\pi r_{o} C_{w} \int_{0}^{\infty} u \frac{\overline{C}}{C_{w}} (1 + \frac{y}{r_{o}}) dy \qquad (97)$$

where, for the case of polymer flows with an initial zone, $Q_i C_i$ would be replaced with $Q_v C_t$. Changing to law of wall variables and dropping the overbars since we are dealing with average values throughout the turbulent flow field analysis

$$Q_{i}C_{i} = 2\pi r_{o} \vee C_{w} \int_{0}^{Y_{e}^{+}} u^{+} \frac{C}{C_{w}} e^{2Y^{+}/r_{o}^{+}} dY^{+}.$$
(98)

Solving for C_w

$$C_{w} = \frac{Q_{1}C_{1}}{\begin{array}{c} Y^{+} & 2Y^{+}/r_{o}^{+} \\ 2\pi r_{o} & v & \int_{0}^{e} u^{+} \frac{C}{C_{w}} & dY^{+} \end{array}}$$
(99)

Equation (99) for polymer concentration is analogous to equation (34) for momentum. It is necessary to define a relation for C to solve equation (99) as it was necessary to develop an expression for u to solve equation (34). The similarity relations given by equations (57) and (58) provide the needed concentration expressions

$$C/C_{w} = e^{-0.693} (y/\delta_d)^{1.5}$$
 Intermediate Zone (57)

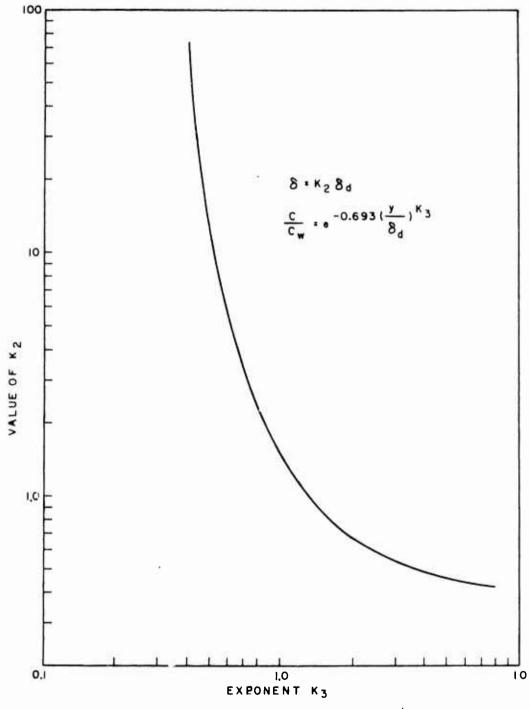
and

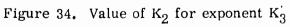
$$C/C_{w} = e^{-0.693} (y/\delta_{d})^{2.15}$$
 Final Zone. (58)

Within the final zone, for zero pressure gradient flows, δ_d/Y_e remains constant at 0.64. If there is a pressure gradient, data by Mellor (1966) indicate that the value of δ_d/Y_e changes to .53 in this zone.

The expression for the growth of the diffusion boundary layer, δ_d , equation (55), completes the analysis

$$a_1 \frac{d\delta_d}{dx} = \frac{b v^*}{u(\overline{Y})}.$$
 (55)


It is only necessary to determine the constant, a_1 , in equation (55). Applying equation (48), changing variables and inserting a similarity concentration profile with variable exponent


$$\overline{Y} = \frac{\int_{0}^{\infty} \int_{0}^{-0.693(y/\delta_{d})K3} y/\delta_{d} d(y/\delta_{d})}{\int_{0}^{\infty} C_{w} e^{-0.693(y/\delta_{d})K3} d(y/\delta_{d})}$$
(100)

which results in

$$Y = K_2 \delta_d = a_1 \delta_d. \tag{101}$$

Numerically integrating (100) for various values of K_3 between .5 and 5 yields values of K_2 which may be applied to (101) Figure 34 displays the results. Substituting (101) into (55)

• •

*-

8.1

yields a relation for $\boldsymbol{\delta}_d$

$$K_2 \frac{d\delta_d}{dx_g} = K \frac{v*}{u_1}$$
(102)

where u_1 is the value of u at $K_2\delta$ and x_s , and K is the Karman constant. Virk (1971) has shown that the constant, K, used in the law of the wall varies with polymer addition resulting in an ultimate asymptote for the velocity profile in drag reduction cases. An effective value of Karman's constant may be determined. This new "constant," which is a function of ΔB , will be called K₅. The manner in which the modification of K to K₅ is determined relates to the basic equations for the velocity profiles with and without polymers, equation (87) and (32), respectively. Equating these equations

$$\frac{1}{K} \int_{0}^{Y_{e}^{+}} \frac{1}{Y_{e}^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{2Y_{e}^{+}/r_{o}^{+}}) \right]^{1/2} + \Delta B =$$

$$\frac{1}{K_{5}} \int_{0}^{Y_{e}^{+}} \frac{1}{Y_{e}^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{2Y_{e}^{+}/r_{o}^{+}}) \right]^{1/2} dY^{+}.$$
(103)

Solving for K₅ yields

1

$$K_{5} = \frac{Y_{e}^{+} \frac{1}{Y^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{2Y^{+}/r_{o}^{+}})\right]^{1/2} dY^{+}}{\frac{1}{K} \int_{0}^{Y^{+}} \frac{1}{Y^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{-} (1 - e^{2Y^{+}/r_{o}^{+}})\right]^{1/2} dY^{+} + \Delta B}$$
(104)

The effect is apparent. K_5 is reduced dependent on the value of $\triangle B$. In effect, reduction of the eddy viscosity through the mixing length is occurring. Depending on the value of u⁺ and $\triangle B$ chosen, K_5 values approaching those of Virk's (1971) ultimate asymptote can be achieved. The effect of this change in K to some smaller value $K_5 = f(\triangle B)$ is to lengthen the intermediate mixing zone.

Equations (102), and (57) or (58) provide relation for the solution of C/C_w which, in turn, may be substituted into (99) yielding an expression for C_w . Equations (87) and (89), the boundary layer velocity profile and momentum equations, respectively, may then be solved. These relations apply for the intermediate and final zones of the diffusion process. Within the initial zone, equations (90) and (92) define the polymer wall concentration and flow, respectively. The equations for the intermediate and final zone are summarized below:

$$K_2 \frac{d\delta_d}{dx_s} = K_5 \frac{v^*}{u_1}$$
(102)

$$\frac{C}{C_{w}} = e^{-0.693(Y/\delta_{d})^{2.15}}$$
 For $x_{s}/Y_{e} > 60$ (58)

ſ

$$\frac{C}{C_{w}} = e^{-0.693(Y/\delta_{d})^{1.5}}$$
 For $x_{s}/Y_{e} < 60$ (57)

$$C_{w} = \frac{Q_{1}C_{1}}{2\pi r_{o} \vee \int_{0}^{Y^{+}} u^{+} \frac{C}{C_{w}} e^{2Y^{+}/r_{o}^{+}} dY^{+}}$$
(99)
$$u^{+} = \frac{1}{K} \int_{0.1108}^{Y^{+}} \frac{1}{Y^{+}} \left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{2Y^{+}/r_{o}^{+}})\right]^{1/2} dY^{+} + \Delta B (87)$$
$$\frac{d\lambda}{dx^{*}} (3 \alpha H - G_{1}) + \frac{V}{V} \lambda G_{1} - \frac{\lambda^{2}r_{o}^{+}}{2} (e^{2Y^{+}_{e}/r_{o}^{+}} - 1)$$
(89)

$$+ \frac{\lambda^4}{R_{\rm L}} \left(\frac{1}{4}\right)^{\prime\prime} H = - R_{\rm L} V - \lambda \frac{dr_{\rm O}^+}{dx^*} I - \lambda \frac{dC_{\rm W}}{dx^*} J$$

where the terms are as defined previously.

An alternate approach may be applied to attack the problem for developing flow. It is assumed the similarity expression for the concentration profile holds throughout the boundary layer. Lacking data for the effect of turbulence intensity changes in developing flow with polymer ejection, it is hypothesized that the similarity relation is functionally related to the boundary layer thickness, δ , the diffusion boundary layer thickness, δ_d , the Karman constant, K, and a distance from the inception of turbulence to the ejection slot, x_e , (set equal to 1 for cases of the ejection being at the transition to turbulent flow point or before). The exponent in the similarity expression is the controlling parameter since it indicates the diffusion rate. The expression for the similarity profile may be written as

$$\frac{C}{C_{w}} = e^{-0.693} (Y/\delta_{d})^{K3}$$
(105)

where $K_3 = f(\delta, \delta_d, K, x_e)$.

Porch and Cermak (1964), as discussed, have empirically assigned specific zones relating downstream distance and the boundary layer thickness to establish the exponent value. It seems apparent, that in the intermediate zone, the value $r\bar{t}$ the exponent should not be constant. Concentration profiles as a function of downstream distance by Walters and Wells (1971) bear this out. Rewritting (105) in terms of K₅

$$K_3 = f(\delta, \delta_d, K_5, x_e).$$
 (106)

Assuming a nondimensional relationship which allows the exponent to grow as the diffusion boundary layer grows results in

$$K_3 = C K_5 \frac{\delta_d}{\delta} \frac{\mathbf{x}_e}{L} .$$
 (107)

For final zone of diffusion where the characteristic diffusion rates of polymer and water have been shown to be the same,

> $K_5 = K = .4$ $\frac{\delta_d}{\delta} = .64$ for zero pressure gradient flows $\frac{x_e}{L} = 1$ since ejection preceeds the turbulent transition point and $K_3 = 2.15$.

Solving for C in (107) yields

$$C = 8.4$$
 (108)

From which (107) is defined as

$$K_3 = 8.4 K_5 \frac{\delta_d}{\delta}$$
 (109)

For developing polymer flows with the ejector at or preceeding the point of transition to turbulent flow (using the test model described earlier),

$$K_5 = .2$$

 $\delta_d = .0008$ ft (for the model flow rates)
 $\delta = .003$ ft (equation (80))

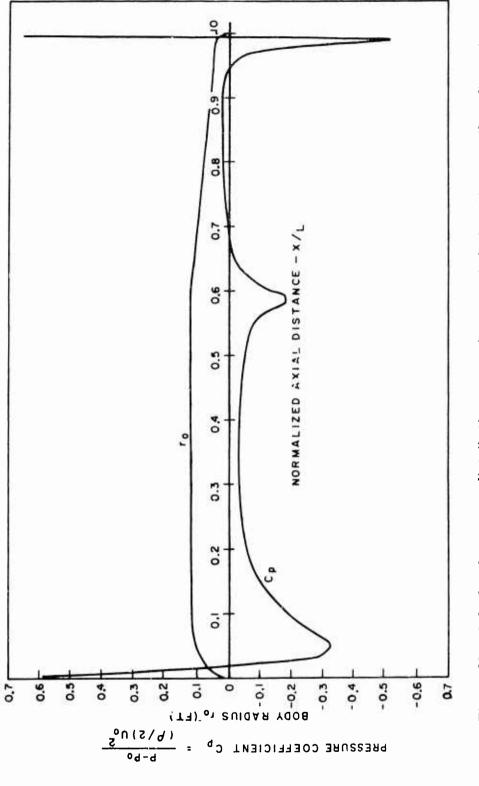
the value of K_3 becomes

and

 $K_3 = .45$

and the value of the moment, K_2 , may be determined from Figure 34. The constant $K_3 = .45$ implies an extremely suppressed diffusion process, which in fact, on computation, occurs. Application of (105) with the Lagrangian similarity hypothesis for predicting the diffusion boundary layer growth would eliminate the need for a multi-zone. The exponent, K_3 , would be self-adjusting throughout the boundary layer. The simple form chosen for K_3 may be incorrect. Sufficient data would be required in all diffusing zones to properly define whether the similarity profile extends to the boundary layer and to define the proper functional form. Application of this method would require integration of equation (100) rather than use of Figure 34. This is required since equation (100), although

integrated between 0 and ∞ in reality reaches final values for values nearer 4 or 5. For cases where δ_d may be small, as for much reduced diffusion, the value may become quite large and should be bounded by the viscous sublayer thickness, for $\delta_{d_{\min}}$, and the boundary layer, thickness for δ_{\max} . This will prevent the moment, K₂, from becoming very large for low values of K₃ as implied by Figure 34. Extensive effort in pursuing this approach was not expended since the molecular diffusion coupled with the two zone model is believed to represent a sounder approach.

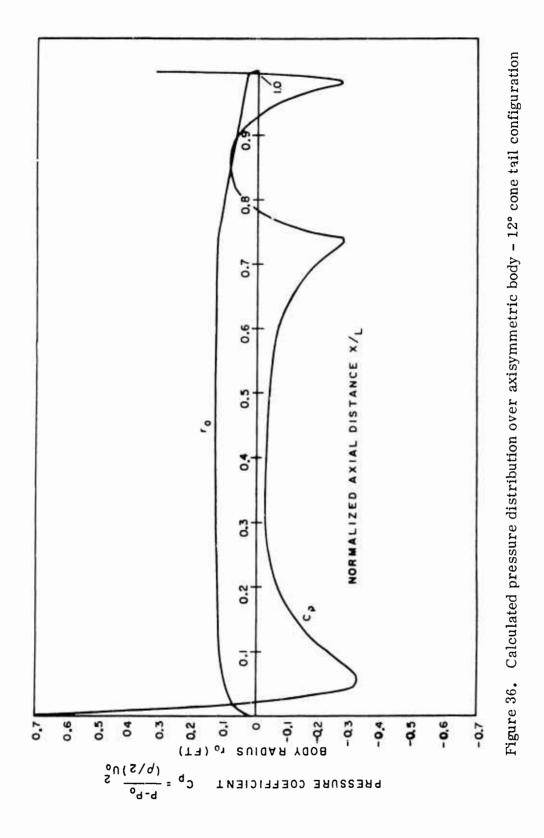

The equations may be solved for the skin friction distribution $C_f(x)$, the boundary layer thickness, δ , and the diffusion boundary layer thickness, δ_d . Additionally, the concentration at the wall, C_w , and at any position in the boundary layer, C, for a given polymer or tracer flow and ejection concentration and ejection rate can be determined. The initial conditions required are an estimation of λ_0 , and the known flow condition U_e and r_o as functions of x. Inputs of velocity, temperature and related parameters, ejection rate and polymer concentration are required. It has been assumed that the flow becomes turbulent at the minimum pressure point and all initial conditions are determined at this point. From these input conditions, δ_{do} may be determined from a mass balance at $r_o(x)$ and δ_o may be calculated from (80). ΔB_o may be calculated from (42). An estimate for the skin friction term λ_0 comes from the flat plate relation.

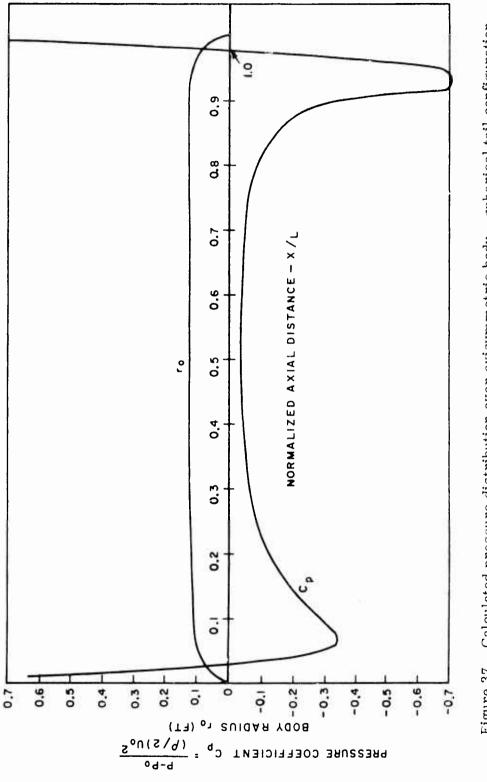
1 .

$$C_{f} = 0.0592 R_{e_{x}}^{-1/5} = \frac{2}{\lambda^{2}}$$
 (110)

Figures 35, 36 and 37 present the pressure coefficients vs normalized axial distance for the three bodies discussed earlier. The pressure coefficients and other flow conditions, $U_{\rm p}/U_{\rm o}$, have been determined using the Douglas-Neumann Potential Flow Program (1958) and are required for solving the previous system of equations. The total drag on the body has been determined by integrating the calculated skin friction and by integrating the pressure distribution over the body to the point of separation. As pointed out by White (1972), equation (89) provides a distinct test for separation when the coefficient (3 α H-G₁) vanishes which causes λ to approach ∞ and Cf approaches 0. At this point, the pressure is determined and multiplied by the projected area at the radius, $r_o(x)$ of separation. Thus, both friction and form drag are accounted for. The form drag calculated in this manner may exhibit large errors due to the steepness of the calculated pressure coefficient in the tail region as seen in Figures 36 through 37. Data on pressure coefficients for similar bodies, Nadolink (1968), do not exhibit this steepness. The calculation is simple, however, and does provide an indication of the total drag.

The equations have been programmed on a Control Data Corporation Computer, CDC 3300. All numerical integrations use the standard RUNGE-KUTTA subroutine. Appendix B contains a sample of the computer program and solution for the combined model. A difficulty does occur in the formulation when a favorable pressure is encountered





1.3

112

ii.

(negative ∞). Equation (89) diverges resulting in no solution. The problem is resolved by not allowing α to become negative. This does introduce a discontinuity into the solution but recovery from the discontinuity is rapid. Two methods of solution are possible for the determination of λ in equation (89). The full equation may be used, which for small polymer wall concentration gradients $\frac{dC_w}{dx}$, provides for stable solution. For higher concentration gradients, an alternate approach is recommended. A solution for λ may be obtained neglecting the last term in equation (89). The value of λ is then corrected at each calculation interval as noted below:

$$\lambda = \lambda_{calculated} - (\Delta B_{o} - \Delta B)$$
(111)

where ΔB_0 is the previous calculated value of ΔB . In this manner, the new calculated value of λ is corrected for an updated ΔB resulting in the appropriate λ . The full equation (89) does provide a solution at the higher concentration gradients but the solution tends to become oscillatory requiring a large number of calculation points to minimize the oscillations.

The analytical model has been exercised in several different ways to test the results that may be obtained. For purposes of ease in discussing these models, they will be given specific names. First, the <u>molecular diffusion model</u> only contains the molecular diffusion portion of the analytical program and never switches to a higher diffusion two-zone model. The second model is called

the <u>two zone model</u>, the initial zone is very small and not included. This model is applicable to water diffusion or to polymer diffusion if the ejector were placed in an established turbulent flow. The third model will be called the <u>combined model</u> and represents the near optimal external flow process for polymer ejection, ejecting into the laminar region prior to turbulent flow transition. The postulated model, with variable K₃ is tested, in a single case, for comparison. The total model is shown schematically in Figure 33.

The calculations were all made using the 6° tail model, a velocity of 27 ft/sec, an ejection rate of 20.6 in³/sec, unless otherwise noted, and a medium temperature of 60° F. The length Reynolds number is 4.5 x 10^{6} . The primary emphasis in these calculations has been on the concentration profiles and, more specifically, wall concentration profile. It should be remembered, however, that the computer routine and analytical model allow determination of concentration throughout the boundary layer, the growth of the diffusion boundary layer within the hydrodynamic boundary layer and other boundary layer parameters. Skin friction and total drag is also determined and a comparison of the drag reduction resulting from the different diffusion processes as the three models (really one applied differently excepting the variable K₃ model) predict are compared in Table 4.

Figure 38 displays polymer wall concentration ratios vs axial distance calculated using the molecular diffusion model and the two-zone model. For comparison purposes in the drag reduction calculations, the water case for the two zone model is considered to be the baseline. This model, for water, is accurate as will be shown in subsequent sections. The molecular diffusion model presents the optimal case for drag reduction on external flows. The viscous sublayer growth is rather small over the body length, a growth of less than .001 inches over the x/L distance displayed, resulting in the flat concentration profile. The prime reason for the reduced concentration to that ejected is due to the diameter ratio from the ejection diameter to the near maximum body diameter. Since, for molecular diffusion, the concentration at the wall does not change appreciably, the single line shown applies to all polymer concentration so long as γ equals 11.5. For values of polymer concentration less than 50 WPPM, ΔB in the model would change resulting in a wall concentration variation. For this case, only v* affects the calculations. The two zone model for 50 and 500 WPPM shows rapid dispersion of the polymer resulting in less than 1/10 the ejected concentration at about 1/2 the body length. This type of diffusion process would predict high polymer concentration or ejection rates required for reasonable drag reduction. The model would be reasonably accurate for long bodies where the initial zone is small compared to the body length.

The effect of concentration is evident with a maximum wall concentration, over the portion of the body shown exceeding that required for maximum drag reduction for ejected concentration above approximately 200 WPPM. The model, as implemented, does not include changes in viscosity for high polymer concentrations. The effects must be accounted for if large concentrations are applied.

Figure 39 displays the two-zone model compared to a data adjusted model based on data generated in the test program. Essentially, the two-zone model is reduced to a single zone model with the exponent value in the similarity expression (58) being that determined from the experimental data, .75. The effect of suppressed diffusion is apparent with concentration levels being much higher. Care must be taken in interpreting this figure, as will be discussed in the experimental section where the data is qualified. For the moment, the effect of a change in the exponent is the important factor shown here.

Figure 40 displays the variable K3 model predicting very low diffusion and therefore high wall concentrations as compared to the two-zone model. The results are interesting warranting further development of the functional form of the K3 function (106).

Figure 41 displays the results from the combined model compared to the two-zone model. The transition from the molecular model to the two-zone model is clearly evident as controlled by the effect of concentration on the initial zone length in equation

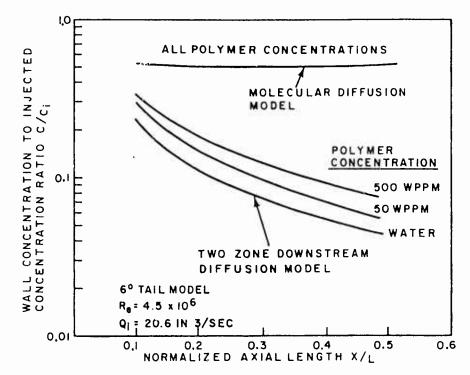
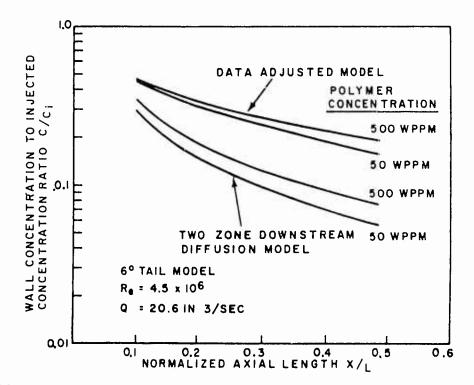



Figure 38. Comparison of predictions of wall concentration ratio of two-zone downstream diffusion model with molecular diffusion model

ſ

÷

Figure 39. Comparison of predictions of wall concentration ratio of two-zone downstream diffusion model and experimental data adjusted model

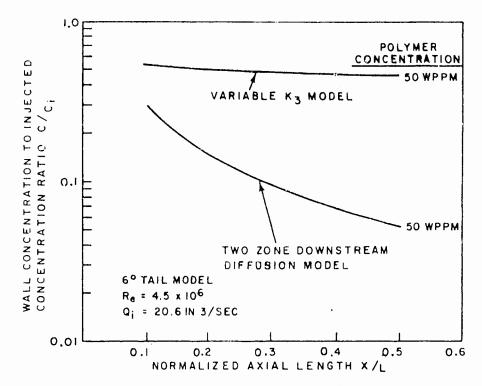
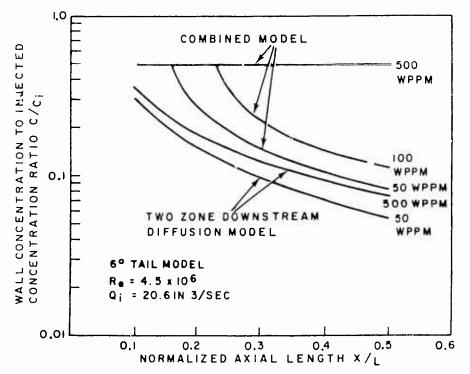
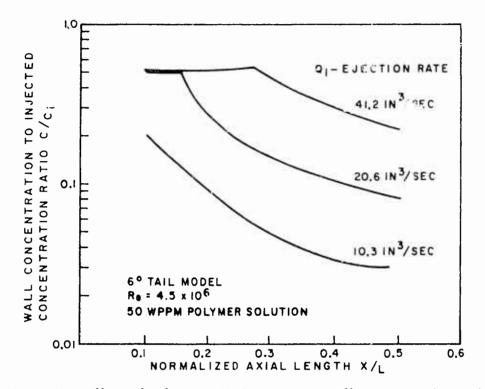



Figure 40. Comparison of predictions of wall concentration ratio of two-zone downstream diffusion model and variable K3 model

ſ

Figure 41. Comparison of predictions of wall concentration ratio of two-vone downstream diffusion model and combined model


(96) and data from Fruman and Tulin (1974). This model should adequately predict the polymer diffusion process for the initial, intermediate, and final zone of diffusion subject only to verification of the abrupt transition from the initial to intermediate zone similarity profile. Quite possibly a more gradual transition, as suggested by the variable K3 model, would be appropriate. Figure 42 displays the effect of the ejection rate, for a fixed 50 WPPM polymer concentration, on the wall concentration ratio. The shift in the transition from the initial zone to the intermediate zone is apparent and governed by the changed ejection velocity in equation (96). Figure 43 taken from Fruman and Tulin (1974) displays wall concentration data calculated from the combined model plotted against the reduced dimensionless distance, equation (96). As may be seen, the combined model, applying the Lagrangian similarity hypothesis, results in good agreement with data obtained by Tulin.

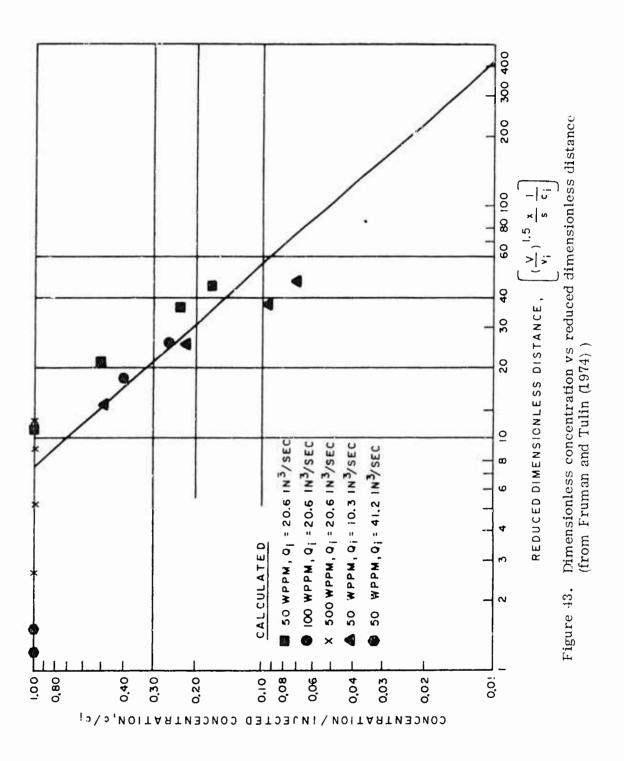
The percent total drag reduction and percent skin friction reduction have been calculated for the cases discussed using the relations

% TDR = 100
$$(1 - \frac{D_{POLY}}{D_w})$$
 (112)

and

% SFR = 100 (1 -
$$\frac{SD_{POLY}}{SD_{w}}$$
) (113)

.


....

÷.

1

Figure 42. Effect of polymer ejection rate on wall concentration ratio - combined model - 50 WPPM polymer concentration

, b

where

 D_{POLY} = total calculated drag with polymer ejection D_w = total calculated drag with water ejection SD_{POLY} = shear drag calculated with polymer ejection SD_W = shear drag calculated with water ejection.

Table 4 lists these results. A discussion of the table will not be given since the results are as would be expected for the wall concentration shown in the previous figures.

The system of equations presented herein is believed to have several unique qualities. First, presuming that a reasonable ejection process occurs, the equations account for a change in the mixing length constant resulting in a significantly reduced diffution process. This should represent a near-optimum case for developing flow. Secondly, by maintaining the mixing length constant equal to that of water, the model represents the ejection of polymers in a fully developed turbulent flow where the similarity concentration profiles are equivalent to those of water. Thirdly, the model accounts for the initial zone of diffusion as well as the subsequent zones, which should provide an accurate prediction of the wall concentration. These beliefs will be tested in subsequent sections.

TABLE 4

٠

Calculated Drag Reductions

Model Applied 2 zone	Conditions Polymer CONC/Q ₄ (in ³ /sec) Water/20.6	<u>% TDR</u> 0	χ sfr 0
Molecular Diffusion	50,500/20.6	32.6	65
Variable K3	50/20.6	31.2	62.3
Data Adjusted	50/20.6	27	55
	500/20.6	32	65
2 zone	50/20.6	22.6	44.6
	500/20.6	32.6	65
Combined	50/41.2	30.3	60.6
	50/20.6	24.6	50.3
	50/10.3	17.8	37.8
	100/20.6	30.1	60.4
	500/20.6	32.3	64.2

V. EXPERIMENTAL PROCEDURES

Two types of tests were performed in this research. These were: (1) polymer ocean, drag reduction and flow visualization tests and (2) polymer ejection boundary layer sampling tests. Both series made use of the full experimental apparatus but in slightly different ways. The experimental procedure for the polymer ocean tests will be discussed first.

A. Polymer Ocean Tests

General

The polymer ocean tests made use of the three dye ejecting bodies described previously and displayed in Figures 11, 12 and 13. The test series is called polymer ocean since for these tests the entire drop tank is filled with either fresh water or filled with a polymer solution. The model, therefore, is operating under conditions of uniform polymer concentration. A visible dye was ejected, by aspiration in many of the tests.

Polymer Addition

The polymer used in these tests was polyethylene oxide (Polyox-WSR-301, Union Carbide Corp.). Polyox is a long, 3 million molecular weight, water soluble polyether. Due to its considerable size and the sensitive ether linkage, the mixing of highly concentrated solutions must be undertaken with great care. A 25% by weight

polymer slurry was made up for mixture with the water in the tank. The test program called for polymer ocean concentrations of 60 WPPM to 1.25 WPPM. Since the water tank weight of water equaled 3452.5 lbs, 3452.5 x 10^{-6} lbs of polymer addition were required for each WPPM of polymer concentration desired (or 13810 x 10^{-6} lbs of 25% polymer slurry by weight). The tank was first brought to 60 WPPM concentration level, tests performed, and then drained to a predetermined level and refilled with fresh water to obtain 50 WPPM. After testing at this level, the procedure was repeated to obtain 20 WPPM and 5 WPPM. The tests requiring concentrations down to 1.25 WPPM and 2.5 WPPM were begun with a 20 WPPM concentration.

The mixing procedure consisted of premixing the preweighed 25% polymer slurry in a 25-gallon drum by slowly pouring the slurry against a wall of the drum, and spraying a high intensity fan shape spray of water on the polymer. Gentle stirring followed for approximately 1/2 hour and the mixture left to stand for 2 to 4 hours. The clear solution was then poured into the partially empty drop tank and the tank refilled. The tank was gently mixed by raising and lowering the retrieval net to insure a homogeneous mixture. Samples were taken at each concentration and measured in a Hydrat apparatus similar to that described in Hoyt (1966).

ŗ

Model Preparation

The models for testing were configured in the 6° tail, 12° tail or spherical tail configuration as discussed previously. The model preparation for test was as described previously. It is repeated here for completeness. Referring to Figures 14 and 15, the model is made ready for a launch by inserting the tank guide wire through the body guide tube, (9), the wire bears on a nylon bearing at either end of the model to minimize friction. The (10), of the model is removed (separated sufficiently) and tail, the internal cavity filled with dye. The dye ejection ports, (6 being previously taped over to insure no loss of dye. The model is reassembled and the vent screw (unmarked) in the tail is removed and the model placed under the water level in the tank to back fill the cavity totally with water. The model may now be fired upon removal of the tape over the ejection holes. When fired, stagnation pressure enters the 4 stagnation ports, is transmitted through the body guide tube and pressurizes the bladder, (4), forcing the dye cut the four dye ejection ports located at the minimum pressure point of the forebody as determined by a potential flow program. After several tests, the bladder was found to be not necessary simplifying the operation. The tail of the model was then inserted into the launcher in preparation for launching. The launcher receptacle, as designed, mates with the 6° tail only. The other models are butted to the

launcher. The models are held in place by fishline that is tied to one side of the launcher, wrapped around the wire in front of the nose of the model and tied to the other side of the launcher. At launch, the string is severed by the forward motion. When in the ready to fire condition, all except the tail is underwater. After firing, the model is maintained on the wire in the tank, the ejection holes retaped underwater, the tail removed and the internal chamber drained and refilled with dye. The model is reassembled as before and made ready for a launch.

Launch Procedures

The launcher operation was quite simple. The low pressure regulator on the launcher was preset to some known pressure level. The hand firing valve was opened, firing the launcher. The launcher chamber pressure was recorded during this operation. The model velocity was measured at the several stations and noted for acceleration or deacceleration. The launcher pressure was then adjusted to obtain steady state velocities during the model travel down the tank. After fire, the firing valve is closed, the launcher piston chamber vented, and the firing piston retracted in preparation for the next test.

Velocity and Photographic Measurements

Little needs to be said regarding procedures here. It was only necessary to reset the counter and set the camera flash guns delay circuitry to the appropriate value. At launch, the camera shutter was held open. The appropriately delayed flash would

expose the film. Transit times through the various stations were automatically recorded.

Polymer Ocean Test Series

Two types of tests were performed. Launch tests in which the launcher was used and free drop tests, in which the model was held just underwater and allowed to gravity drop down the tank. The launch tests were all performed with the 6° tail model. The free drop tests were performed with the 12° tail and spherical tail model. This type of test was initiated since gross instabilities in trajectory of the models (12° and spherical tail) occurred when launchings were attempted. Undoubtedly due to the launche: receptacle having a 6° taper design to fit that model.

The test series are summarized in Table 5. For the launch tests, only those tests at which terminal velocity was achieved are noted. A total of 491 tests were run of which 135 tests are reported.

TABLE 5

POLYMER CONCENTRATION LAUNCH TESTS FREE DROP TESTS 120 TAIL SPHERICAL PPMW 60 TAIL TAIL 8 7 7 FRESH WATER 1.25 8 _ 2.5 4 5 10 6 7 10 9 20 7 6 11 2 50 6 ----12 19 60 6

Summary of Tests Performed Polymer Ocean Series-Number of Tests

B. Polymer Ejection Tests

General

The polymer ejection tests made use of the polymer ejecting body described previously and displayed in Figure 18. In these tests, varied polymer concentrations as well as pure water all dyed with a fluorescent dye, Uranine-B, were employed. Simultaneously, either wall samples or samples at two different distances from the wall in the boundary layer were taken at four axial positions. Visible dye was also mixed with the polymer on specific tests for boundary layer photographs.

. 6.5

Polymer Preparation

The polymer used in this series of tests was also polyethylene oxide (Polyox-WSR-301).

The test matrix called for solutions in the 50 to 1000 PPMW range. A master solution was prepared at 2000 ppmw and diluted to the required concentration.

The master solution was prepared by sifting the premeasured polyox powder onto the surface of the carefully weighed water which was being slowly stirred by a magnetic mixing bar. After a clear solution resulted (approximately 1 hr.), the solutions were left to stand for approximately 40 hrs. to minimize the high viscoelastic effects of freshly mixed solutions, and to assure homogeneity. The master solution was kept in a dark, cool place after initial mixing to reduce the auto-oxidation problem with polyethers. When required, the proper amount was pipetted out of the master solution and diluted to the required concentration. These dilute solutions were used within 24 hrs. of the make-up time.

The uranine master solution was prepared in the same manner. Thus, when a test solution was required, the proper amount of each constituent was added to enough water to make one liter of solution. This was poured back and forth into the container ten times to assure complete mixing, and then let stand for one hour to achieve homegeneity.

A series of calibration tests with the fluorometer indicate that this procedure is adequate to obtain accurate results.

The phenolphthalein solution was also mixed with the polymer solution in the same manner as the uranine to provide a visible dye for photographic record purposes. Fluorometric readings were not taken during these tests since the slight opaqueness of the phenolphthalein resulted in erroneous fluoressence readings were attempted.

The test series conducted required polymer solutions of 5 PPMW, 10 PPMW, 20 PPMW, 50 PPMW, 500 PPMW and 1000 PPMW.

Model Preparation and Data Retrieval

ť

1

The ejecting 6° tail model has been previously described. The assembly for a test and the subsequent withdrawal of samples is discussed below. The model is assembled, as described previously, excepting for the half-body nose and placed in the assembly tank, Figure 23. The appropriate flush-mounted probes or boundary layers pitot tubes are installed. The installation procedure for the flush probes consists of partially inserting the flush probes, placing a small amount of wax around their periphery, heating lightly with a propane torch and pressing the probes flush with the surface. The pitot-like probes were installed in a similar fashion excepting that a feeler gauge set at either .020 inches or .050 inches, depending on probe set, was placed under the flattened tip of the probe, Figure 20. The probe area at the surface of the body

was filled with wax and flaired in with a razor blade. The height could be reasonably set within .003 inches by this method. The axial orientation was set by eye, but with the extent of the probes, .03 inches, an officiet of several degrees was easily noticed and corrected.

The assembly tank was now filled with water to just below the polymer storage volume level. A background sample of the assembly tank water and drop tank water was taken at this time to correct sample fluorence readings. The solution to be ejected was then poured carefully into the polymer storage volume, Figure 17, and the halfbody nose carefully installed. The model now resides in the assembly tank, nose up, and must be transferred to the drop tank, nose down. The ejector screen was then taped with electrical tape to insure no leakage occurred on transfer to the The guide wire was threaded through the model and the drop tank. model transferred to the drop tank. The model is now inserted into the launcher receptacle and a nylon shear screw affixed through the launcher to the firing rod on the model. This holds the model in place and fires the CO₂ cartridge ejecting the polymer and withdrawing boundary samples at launch. After firing and the launcher retracted, the model is kept underwater while preparations are made to quickly wipe it dry on removal from the tank prior to placing on four separate collection trays. The model is removed from the wire, wiped dry and placed on a stand, horizontally, over

four collection trays, (keeping the top uppermost for reasons explained under the calibration section). After the samples have drained into the collection trays, the model was totally disassembled and washed prior to the next test. The chamber samples were then tested applying the fluorometric techniques described previously. The fluorometer readings were transferred to fluorescent dye concentration measurements in PPMW using the appropriate calibration curve, Figure 21 or 22, and then converted to undiluted values applying the external to internal calibration curves, Figures 24 through 31. These values, when nondimensionalized with the ejected dye concentration, represent the normalized concentration of any ejected tracer, or the polymer, at that particular station or boundary layer height under the assumption of similar diffusion qualities.

Launch Procedure

The launch procedure is the same as for the previous tests. No attempt was made to achieve terminal velocity since a significant number of tests are required to do this. The ejector type tests took approximately one hour per complete test cycle as compared to 15 minutes for the polymer ocean tests (when photographic records were desired).

Velocity and Photographic Records

The procedures for these tests were as described for the polymer ocean tests.

Polymer Ejection Test Series

ŗ

The polymer ejection tests were performed with fresh water and six polymer concentrations. As previously mentioned, no attempt was made to control velocity. The test series is summarized in Table 6. The ejection rate for all tests was held constant at 20.625 in^3/sec .

TABL^v 6

Summary of Tests Performed Polymer Ejection Series-Number of Tests

POLYMER CONCENTRATION PPMW	FLUSH	PROBE HEIGHTS .020 IN.	.050 IN.	PICTURE TESTS
FRESH WATER	4	3	7	5
50	4	4	4	l
500	6	4	3	1
1000	3	-	-	2
20	1	-	-	_
10	2	-	-	-
5	2	-	-	

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. General

The test series were directed towards providing information in several areas. These were, for the axisymmetric turbulent flow case (1) does the polymer affect the point of separation thereby affecting the form drag, (2) qualitatively, is there any change in the boundary layer characterization and lastly, (3) what is the wall concentration necessary to achieve a maximum skin friction reduction and what is the diffusion process for an ejector ejecting into the laminar nose region. A discussion of the effects of polymers on the separation region and the effects of polymer on the boundary layer characteristics will be performed simultaneously since they relate to the flow visualization portion of the study.

B. Boundary Layer Characterization

and Separation Tests

Both the simple dye ejecting body and the polymer ejecting body were used in this series of tests. The mechanism of maintaining a high wall concentration was different in these tests The dye ejecting body was operated in the drop tank with a uniform polymer concentration throughout the tank. The polymer ejecting body depended on a diffusion process for wall concentration control. Direct comparison can be made which clearly displays the effect of the polymers on the character of the boundary layer.

1 ...

Brady (1973) summarized the work of Kline et al (1963) quite nicely. He states:

"Kline et al found the 'laminar sublayer' to be made up of a regular structure of low and high velocity longitudinal streaks which meander transverse and normal to the wall. A dimensionless streak spacing $\lambda^+ = \frac{\lambda v^*}{2} = 76.5$ was found for zero pressure gradient. These streaks either break up or randomly burst from the sublayer into the fully turbulent region.

The fully turbulent region is one of intense mixing and high dissipation of energy. Protruding from this region are intermittent large eddies -- visualized as peninsulas of turbulence.

The peninsulas of turbulence which extend into the third boundary layer zone -- the outer turbulent region -- gives it a characteristic not unlike the wake behind a cylinder. It has rather large lumps of turbulence at intermittent spacings.

It is clear that the driving force for the entire turbulent boundary layer is the generation of velocity streaks in the sublayer and their subsequent bursting outwards. Kline presents the results of many other investigators, as well as his own, in support of this hypothesis."

Figure 44 is a pictorial sketch of the boundary layer flow taken from Kline (1963) displaying the process quite nicely. The subsequent test results bear this process out quite well and display the effects of polymers on the process.

ŗ

The first series of tests were made with the dye ejecting bodies. In this series, one or more of the four dye ejecting

FLOW STRUCTURE, VELOCITY PROFILE) t, 80 370 30 0 8/7 86:0 003 0.01 0.4 PRIMARILY DECAY OF LARGE RANDOM INTER-Action of Eddies UNIFORM FREE STREAM FLOW WALL FLOW BREAK-UPS TURBULENT EDDIES IRREGULAR EDGE OF WAKE REGION 11111 EDGE OF BOUNDARY LAYER PHYSICAL PICTURE OF FLOW -WALL PATH OF EJECTED EDDIESA ZITTITITITITI INTERMITTENT WAKE REGION FULLY TURBULENT REGION FREE STREAM AYER FLOW REGIONS OF BOUNDARY

.

Figure 44. Pictorial sketch of boundary layer flow (from Kline, (1963))

,

holes was plugged to attempt to minimize tank contamination. The tests were of the launcher or free drop type depending on the tail configuration.

Figure 45 displays the boundary layer character for the 6° tail configuration operating in water at a Reynold's number of 4.94 x 10^6 . The highly turbulent character with the ejected eddies is clearly evident. Measurements of the boundary layer taken from this picture and others not displayed, at a mean position of the ejected eddies, is shown in Figure 46. The analytical program previously discussed was exercised to predict the boundary layer thickness. This is shown in Figure 46 also. Good agreement occurs, within 10% for this case, if one considers that the measured position was the mean of the eddies and not the tips as theorized by Kline (1963). Figure 47 presents a normalized version of this same information. Both the calculated and measured values were normalized by their respective values at x/L = .5. As is shown in the figure, an excellent prediction of the boundary layer shape as a function of distance down the body results for this body by the analytical routine.

A second test was performed with the 12° tail configuration at a length Reynold's number of 3 x 10^{6} and a polymer concentration of 2.5 WPPM. The forebody portion, shown in Figure 48 displays the same character as the no-polymer case seen previously. The ejected eddy height seems somewhat larger in this case probably

ţ

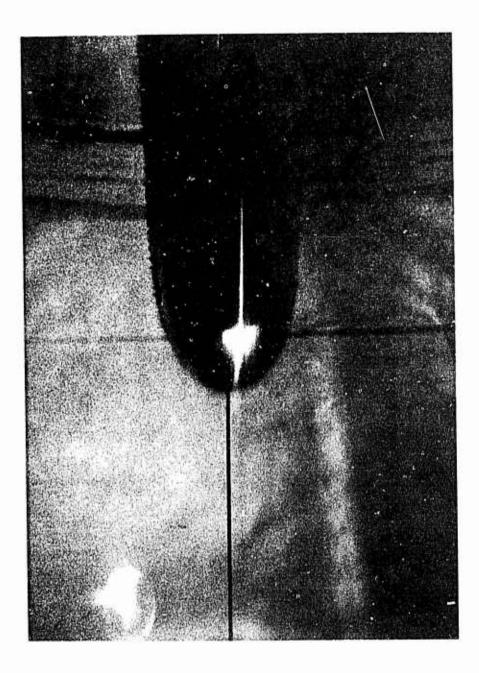


Figure 45. Photograph of dye ejection into the boundary layer - 6° tail - no polymer $R_e = 4.94 \times 10^{6}$

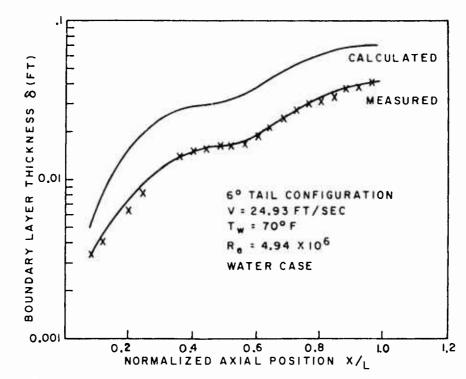


Figure 46. Boundary layer thickness vs normalized axial position - 6° tail configuration water case

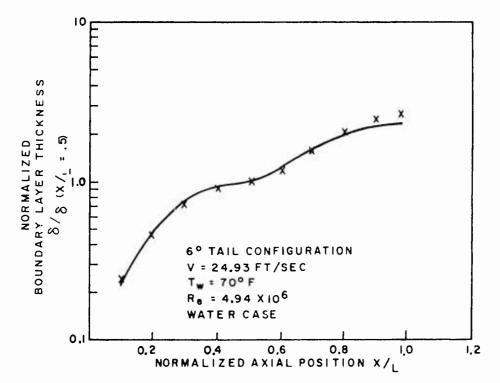


Figure 47. Normalized boundary layer thickness vs normalized axial position - 6° tail configuration water case

19/1

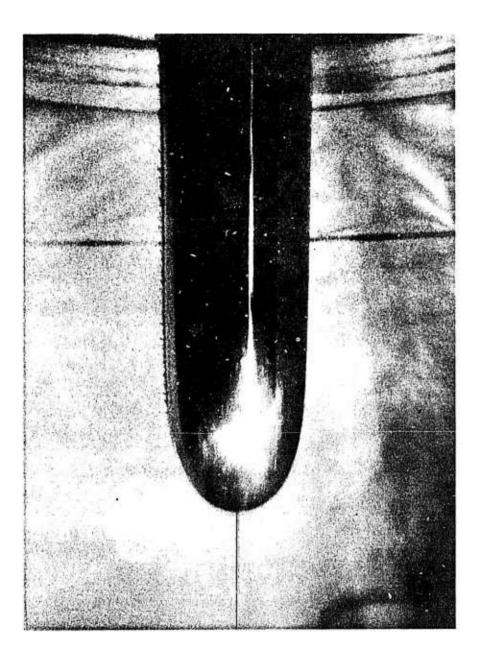


Figure 48. Photograph of dye ejection into the boundary layer - 12° tail configuration - 2.5 WPPM polymer $R_e = 3 \times 10^6$

due to the suppression of the smaller scale turbulence as displayed by White, A. Figure 49 displays the measured and calculated boundary layer thickness again using the mean eddy height for measurement purposes. The thickness measured in this test is believed to be in error (the body rotated) since the first visible position of the dye is too far for the nose. The shape of the profile should be correct, however. The normalized values are displayed in Figure 50 again showing reasonable shape agreement.

The effect of polymer suppression of the small scale turbulence was much more apparent in the tests with the polymer ejecting body. The polymer solutions used in these tests were all made up within a 24-hour period. Table 7 lists the pertinent data for this test series.

Figures 51, 52 and 53 display photographs of the polymer ejecting body ejecting visible dye and water.

Table 7

Polymer Ejecting Body - Boundary Layer Visualization and Measurement Tests - Test Parameters

POLYMER CONCENTRATION (WPPM)	VELOCITY (FT/SEC)	LENGTH REYNOLDS NUMBER
Water	26.9	5.33 x 10 ⁶
50	28.33	4.67 x 10 ⁶
500	29.1	5.31 x 10 ⁶
1000	29.2	4.9 x 10^{6}

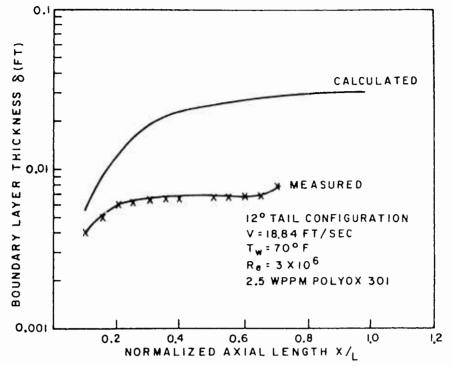


Figure 49. Boundary layer thickness vs normalized axial position - 12° tail, 2.5 WPPM polymer

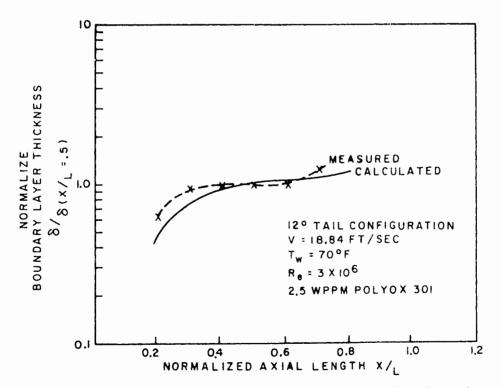


Figure 50. Normalized boundary layer thickness vs normalized axial position - 12° tail configuration, 2.5 WPPM

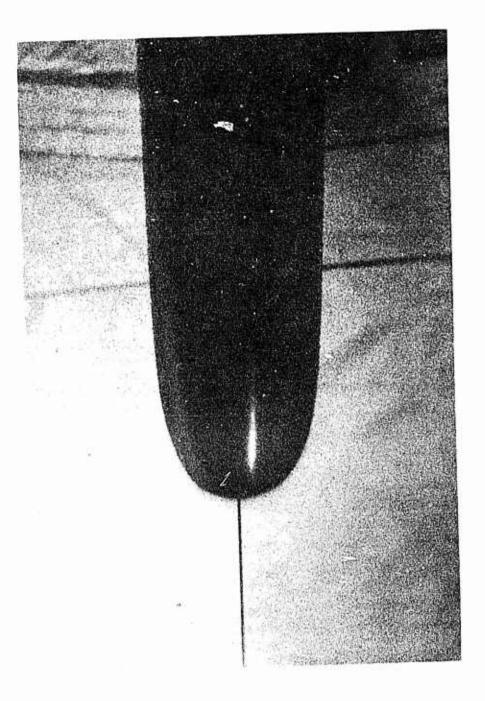


Figure 51. Photograph of polymer ejecting body - forebody view - water ejection $R_e = 5.33 \times 10^6$

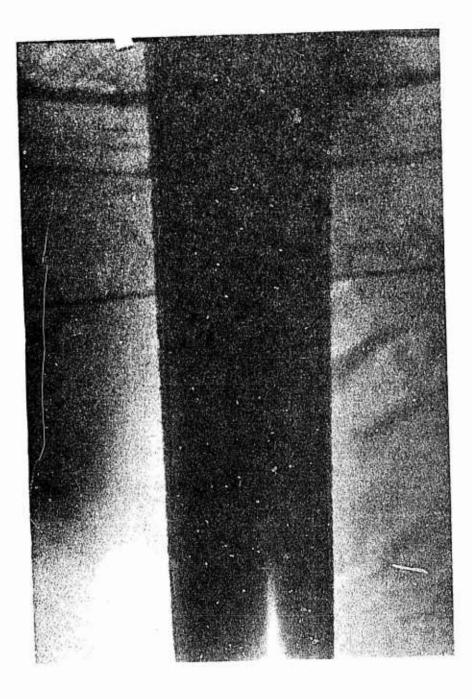


Figure 52. Photograph of polymer ejecting body - midbody view - water ejection Re = 5.33 x 106

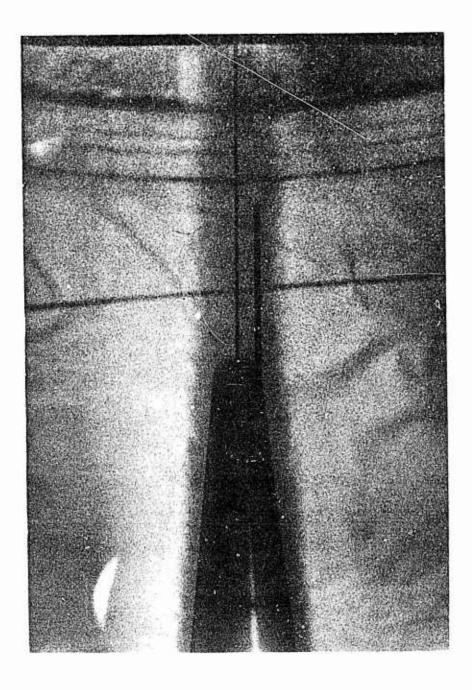


Figure 53. Photograph of polymer ejecting body - tail view - water ejection $R_e = 5.33 \times 10^6$

These views clearly show the coarse and fine scale turbulent type flow. Measurements of the boundary layer are plotted in Figure 60. Also to be noted in Figure 51 is the uniform ejection process which apparently is not seriously effecting the flow. From these views, the flow is apparently fully turbulent near the nose of the body.

The tests were repeated, this time ejecting a 50 WPPM polymer solution. Figures 54 and 55 display the results. The fine scale eddy structure is apparently missing leaving only the coarse structure. More interestingly, the boundary layer thickness has decreased a disproportionate amount in the midbody region as compared to the tail suggesting, as it should be, higher effective wall concentrations forward on the body which result in thinner boundary layers in this region and a rapid growth in the tail region. Since the boundary layer is beginning to get rather thin in the forebody region, the measurement method used should be described. Slides have been made of the figures presented in this study, these were projected on a screen such that the body diameter (3 inches) projected to about 2 feet in diameter. The resultant boundary layer thicknesses near the nose were a projected .2 inch. An overlay slide with one inch axial marks was used as an overlay (with 2 projectors to insure proper scale). This was required since the body does not reach 3 inch diameter for some distance form the nose.

The last two groups of tests in this series were with 500 WPPM and 1000 WPPM. Figures 56 and 57 show the forebody view

ŗ

Figure 54. Photograph of polymer ejecting body - midbody view - 50 WPPM polymer ejection $R_e = 4.67 \times 10^6$

ť

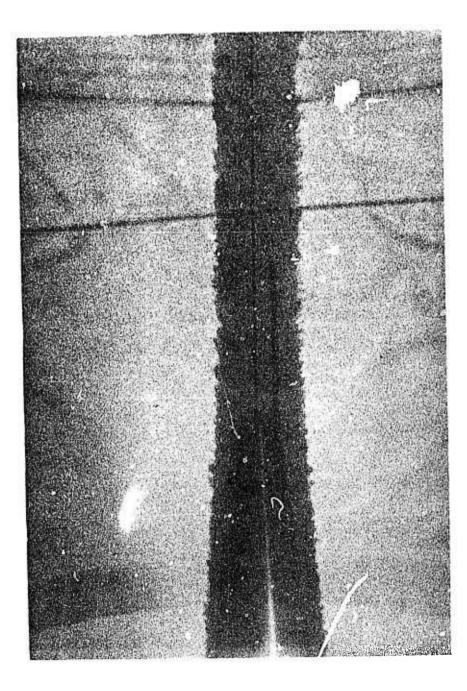


Figure 55. Photograph of polymer ejecting body - tail view - 50 WPPM polymer ejection $R_e = 4.65 \times 106$

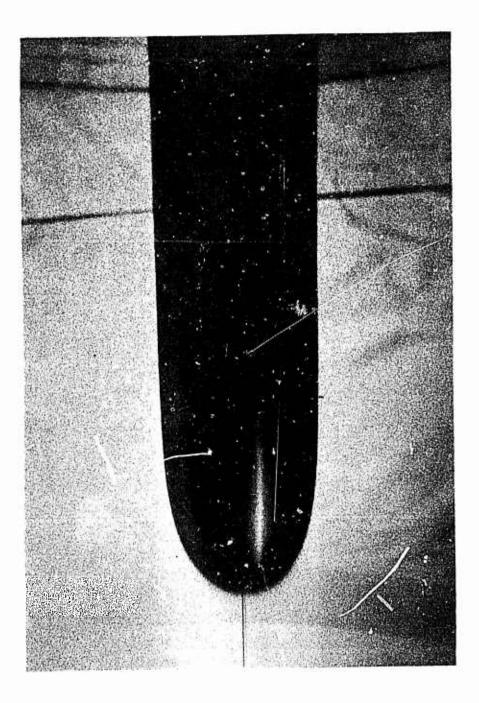


Figure 56. Photograph of polymer ejecting body - forebody view - 500 WPPM polymer ejection $R_e = 5.31 \times 10^6$

:



Figure 57. Photograph of polymer ejecting body - tail view - 500 WPPM polymer ejection $R_e = 5.3i \times 106$

and tail view for the 500 WPPM case and Figures 58 and 59 show similar views for the 1000 WPPM case. Apparently, a limit of drag reduction is being reached, presuming this may be inferred from the fact that there is little difference in the boundary layer reduction between these cases as seen in Figure 60. Moreover, an additional phenomenon is occurring. It is first noticeable in Figure 57 and readily apparent at the 1000 WPPM level of Figures 58 and 59. A significant number of streaks are evident in the flow. The approximate streak spacing is about .015 inches. The number of ejector holes is approximately 700. For the body diameter of 3 inches, the number of streaks would be about 620. Additionally, applying the dimensionless streak spacing found by Kline et al (1963) in the laminar sublayer, for a v^* of approximately .6 ft/sec and viscosity of about that of water, results in a "laminar sublayer" streak spacing of the order of .015 inches. Apparently, at these concentration levels, the turbulence intensity is so damped that the streaks become well ordered and have difficulty in bursting out into the other layers of the boundary layer. It is not until the tail region that a very filamentary bursting is occuring suggestive of the long stringiness associated with elastic polymers. Even the angle of the streaks, essentially in the axial direction, are suggestive of very low energy levels bursting the streaks outward as compared to the water case. The implication of these photographs is that turbulent diffusion has ceased and a molecular

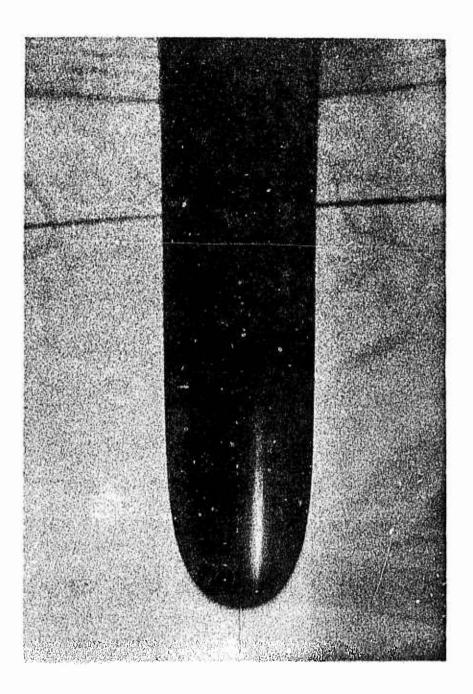


Figure 58. Photograph of polymer ejecting body - forebody view - 1000 WPPM polymer ejection $R_e = 4.9 \times 106$

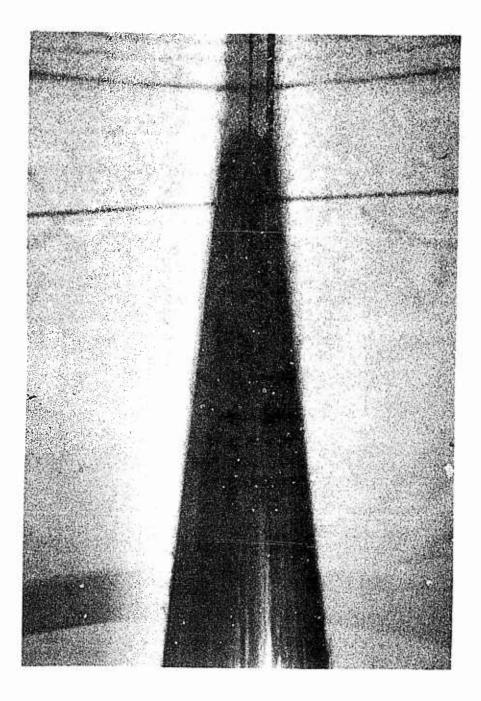


Figure 59. Photograph of polymer ejecting body - tail view - 1000 WPPM polymer ejection $R_e = 4.9 \times 10^6$

:

diffusion only in the sublayer is occurring. This would suggest extremely long mixing lengths. Tests by Nadolink (1968) displayed the same characteristic but for polymer ocean type tests. Figure 61 displays a normalized plot of the boundary layer growth for these tests. The polymer cases clearly show a delayed growth trend indicative of suppressed diffusion.

The last series of visual observations centered around the question of whether application of polymers effected the separation point at the tail. Several tests were run with the dye ejecting body with the hemispherical tail in fresh water and in a 20 WPPM polymer ocean. The length Reynolds number for both cases was 1.877×10^6 .

Figure 62, the test with plain water, displays a thick boundary layer near the tail and a separation angle measured from the vertical of approximately 62° to 65° . Figure 63 displays the results of a similar test with 20 WPPM polymer concentration in the tank. The boundary layer is characteristically thin but the separation point resulting in an angular measurement of 80.6° for either polymer case or water case. On a nondimensional basis, the computer program predicted separation at x/L = .925 while the data indicate x/L = .948 for separation. Nonetheless, the polymer, for the case tested, did not apparently change the separation point. Similar tests with the 12° tail configuration also showed no effect on the separation point. Since sphere tests conducted by Lang and Patrick (1967) indicated that sphere

1

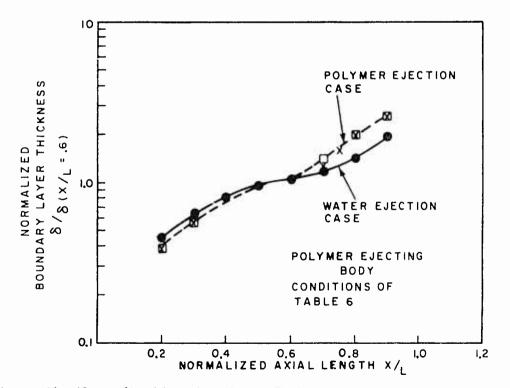



Figure 60. Boundary layer thickness vs normalized axial length - polymer ejecting body

1 :

Figure 61. Normalized boundary layer thickness vs normalized axial length - polymer ejecting body

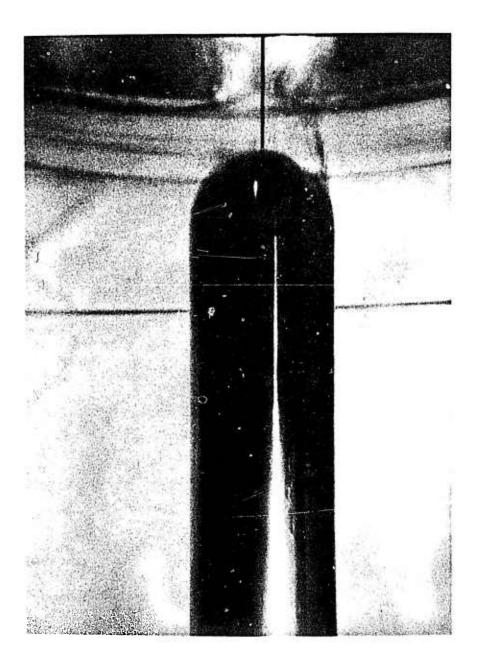


Figure 62. Photograph of dye ejecting body - 20 WPPM polymer ocean $R_e = 1.877 \times 10^6$

!

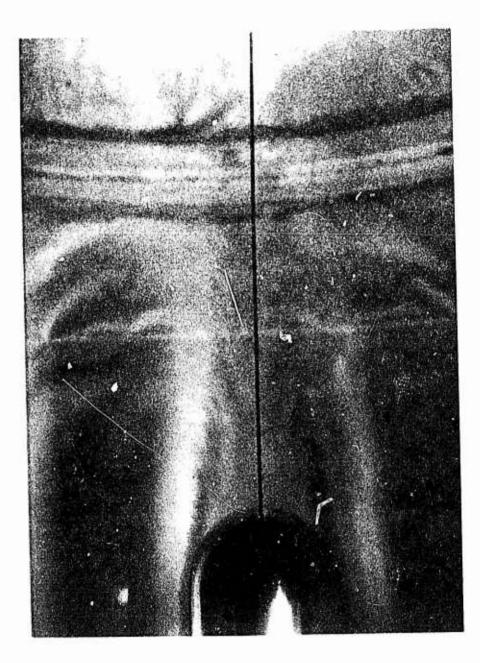


Figure 63. Photograph of dye ejecting body - spherical tail - tail view - water case $R_e = 1.877 \times 10^6$

drag was reduced by a movement of the separation point from the laminar separation point to a further back turbulent separation point. These results are not surprising for the case of a turbulent separation point initially. These results are consistent with those of Stone and Elliott (1970). Unfortunately, this small change in predicted separation point places the separation at the extreme of the negative pressure coefficient, Figure 37, resulting in a very high calculated form drag.

C. Drag Reduction Tests

The next series of tests were directed towards determining drag reduction efficiency for various polymer concentrations and tail configurations and to test the analytical model for the 6^o tail case. The form drag calculation for this case are simpler due to the geometry and pressure coefficient profile. The test matrix run was as outlined in Table 5. A total drag coefficient was calculated for each series of tests using the relation

$$C_{\rm D} = \frac{W - B}{1/2 \rho A_{\rm f} U_{\rm o}^2}$$
(114)

where the frontal area, $A_f = 0.0491 \text{ ft}^2$. From the drag coefficient, C_D , the percentage total drag reduction was then calculated for each polymer concentration tested. The percentage total drag reduction is given by

f

% TDR = 100 (1 -
$$\frac{C_{D_{POLY}}}{C_{D_{uf}}}$$
) (115)

where

$$C_{D_{POLY}}$$
 = Drag coefficient for polymer tests
 C_{D_W} = Drag coefficient for water tests.

A calculation of percent skin friction reduction was also made for each test. The relation for percent skin friction reduction are.

% SFR = 100
$$(1 - \frac{C_{fPOLY}}{C_{f_{W}}})$$
 (116)

where.

$$C_f = C_D \frac{D_f}{D_t}$$

and

 C_D = measured drag coefficient

 D_f = total shear drag analytically calculated D_t = W-B = body weight in water.

It is noted here that D_t , the actual drag, is used in the % SFR calculation and not the total calculated drag. This is done since the skin friction as calculated by this method has been shown by White (1972) to be accurate. The addition of the term for calculating form drag is only considered to be an indicator and may be considerably in error due to the pressure coefficient inaccuracies. The 6° tail tests were the only tests where the launcher could be used. These tests, therefore, were the only ones in this seties where terminal velocities were achieved.

Extreme instabilities were noted when launch tests were attempted with the 12⁰ tail and spherical tail models. This is attributed to the launcher receptacle being designed to accept the 6⁰ tail. As

a result, the 12° tail and spherical tail were not properly guided during the launch phase. Even with the weighted guide wire, photographs of the test models travelling at angles of near 10° relative to the wire were obtained. Drag data obtained in this manner were not of any use. Additionally, velocity measurements were never achieved when this occurred since the guide wire would generally trip the lasers during the launch transient.

The free drop 12° and spherical tail tests were projected to terminal velocity using a procedure outlined in Nadolink (1968). The procedure solves the equation of motion for an accelerating body having as knowns the weight in air, the weight in water, the velocity at a particular distance and an entrained mass coefficient emperically determined and plotted in the report as a function of L/D. The procedure, because of the form of the final relation is iteratively solved for terminal drag coefficient, which will predict the velocity at the station which is being measured. From this, equation (114) is used to calculate the terminal velocity.

Tables 8, 9 and 10 present the data obtained in this series of tests as well as the percent total drag reduction and skin friction reduction calculated. Other pertinent information noted is the total drag calculated from the analytical routine for the identical test conditions. As may be noted from Table 8, the total drag predicted by the analytical routine is within 10% for the 6° tail case. Additionally, the total skin friction determined from equation (89) results in a friction drag coefficient based

ŗ

DATA SUMMARY 6° TAIL TESTS

	CALC. D _t	(001)	4.70		3.75		3.49	3.46		
	CALC. Df	(egr)	2.598	1.508	1.422	.9206	.998	.958		
	و د تیا و	NIC 4	ł	39.8	49.25	67.1	68.8	68.8		
	ه ۲۰۰۲	YULL &	ł	18.73	27.70	33.00	30.29	33.06		
	$c_{D_{A}}$		0.1479	0.1202	0.1068	0.0991	0.1031	0660.0		
	ReL	OTY	5.37	4.56	4.68	4.85	5.27	5.12		
	TANK TEMP.	(UF)	76	68	62	64	70	71		
POLYMER	CONCEN- TRATION		0	2.5	5.0	20.0	50.0	60.0		
	AVERAGE VELOCITY (PT/SPC)	111000	25.1 <u>+</u> 3%	24.64 +2%	26.17 +2%	$27.14 \pm 2\%$	26.61 <u>+</u> 2%	27.2 <u>+</u> 2%	TESTS	-
	NUMBER OF TESTS		8	4	10	7	2	12	LAUNCHER TESTS	7000 C - 1

L = 2.0833 FT.

 $A_{f} = 0.0491 \text{ FT}^2$ (Frontal area)

.

 $A_{S} = 1.3685 \text{ FT}^{2}$ (surface area)

D = 0.25 FT.

W-B = 4.43 LBS. WATER TESTS (WEIGHT IN WATER) W-B = 3.47 LBS. POLYMER TESTS (WEIGHT IN WATER)

TABLE 9 DATA SUMMARY 12⁰ Tail Tests

					1		1					
NUMBER OF TES'IS	AVERAGE (F)	AVERAGE VELOCITIES (FT/SEC) V12 V22 V1	IES V; 2	PROJECTED TERMINAL VELOCITY (FT/SRC)	POLYMER CONCEN- TRATION (WPPM)	TANK TEMP.	ReL *10 ⁻⁶	c _{DA}	PROJECTED %TDR %5E	CTED %SER	CALC. Df	CALC. D _t
		67.	CT.		(11111)	101/	014		NULL &	WHUN	(007)	
7	17.1	19.36	18.6	25.58	0	70	4.08	.2292	I	1	2.39	4.22
80	17.1	19.36	18.6	26.07	1.25	69	4.1	.2208	3.7	32.9	1.66	3.57
9	17.284	19.756	18.895	27.15	Ŋ	68	4.22	.2066	10.2	50.0	1.33	3.39
6	17.284	19.756	18.895	27.51	10	69	4.33	.1986	13.4	59.6	1.113	3.23
9	17.279	19.727	18.875	27.41	20	69	4.32	.1979	12.8	68	.888	2.99
9	17.359	19.813	18.986	27.92	50	69	4.39	.1928	15.9	69.2	.875	3.06
9	17.302	19.755	18.907	27.57	60	70	4.39	.1978	13.8	69.0	.863	2.99
FREE DR	FREE DROP TESTS											
L = 1.679 FT.	.79 FT.											
$A_{f} = 0.$	A_{f} = 0.0491 FT ² (Frontal	(FRONTA	L AREA)									
A _S = 1.	1.1741 FT ² (SURFACE	(SURFAC	E AREA)									
D = 0.2	0.25 FT.											
W = 9.4	9.418 LBS.	(WEIGHT IN AIR)	IN AIR)									

,

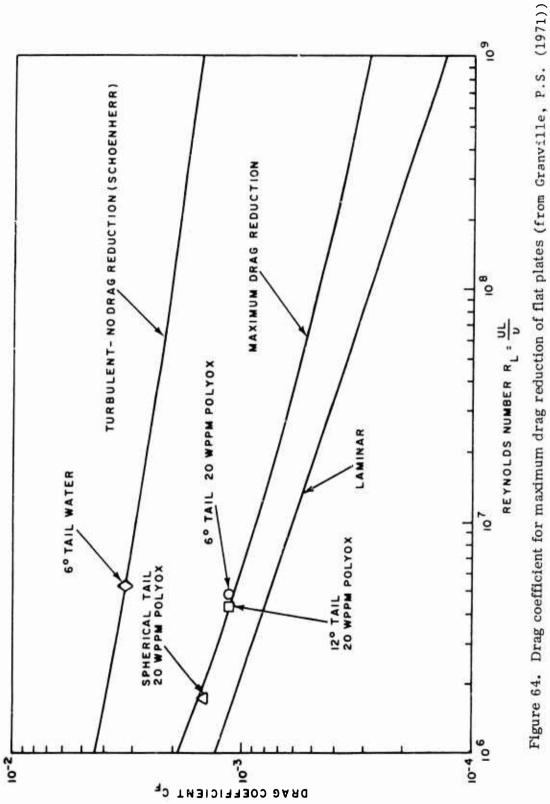
W-B = 7.109 LBS. (WEIGHT IN WATER)

1 1

10	
ណ្	
BL	
A E	

	CALC. Dt (LBS)	7.09	6.8	7.09	7.43					
	CALC. Df (LBS)	.665	.376	. 28	.283					
	%SFR	ł	7*77	60.4	61.8					
sts	%TDR	i	1.5	9	10.3					
Tail Tea	c _{DA}	.34	.335	.32	.305					
Spherical Tail Tests	R _{eL} x10 ⁻⁶	1.66	1.6	1.64	1.68					
Spł	TANK TEMP. (OF)	65	62	62	62					
Data Summary	POLYMER CONCEN- TRATION (WPPM)	0	5	20	60					
Data S	PROJECTED TERMINAL VELOCITY (FT/SEC)	13.5	13.5	13.9	14.24			L AREA)	E AREA)	
	AVERAGE VELOCITY V12 (FT/SEC)	12.23	12.24	12.44	12.67	? TESTS	5 FT.	$A_{f} = 0.0491 \text{ FT}^{2}$ (Frontal Area)	$A_{s} = 1.1044 \text{ FT}^2$ (SURFACE AREA)	гт.
	NUMBER OF TESTS	7	7	11	19	FREE DROP TESTS	L = 1.386 FT.	$A_{f} = 0.0^{1}$	$A_{S} = 1.10$	D = 0.25 FT.

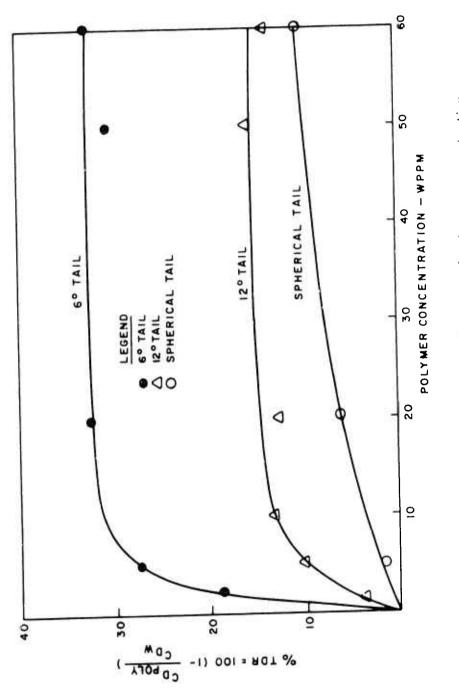
W = 4.9 LBS. (WEIGHT IN AIR)


W-B = 2.94 LBS. (WEIGHT IN WATER)

,

4

on surface area of $C_f = .00311$ which compares very favorably with that determined from the accepted formulas for flat plates of .00336 at the same length Reynolds number. The calculated skin friction coefficient is plotted in Figure 64 taken from Granville (1971). For the δ/r_0 being worked with in this study and for a mild pressure gradient, a comparison is considered reasonable.


Figure 65 presents a plot of the percent total drag reduction for the various tail configurations. As noted in the figure, peak drag reductions are occurring for the 6° and 12° tail case at polymer concentrations of between 15 and 20 WPPM. The effect of increased form drag with the 12° and spherical tail models results in a decreased total drag reduction since the polymer only reduces the skin friction. Figure 66 is a plot of percent skin friction reduction. This plot clearly displays the achievement of equal skin friction reduction on all the bodies tested as would be expected. Calculation of the skin friction coefficient based on surface area for the 20 WPPM case with the 6° tail results in a C_f of .0011 at a length Reynolds number of 4.85×10^6 . This point is plotted on Figure 64 and is in good agreement with the maximum drag reduction value given by Granville. Plotted on Figure 64 also are the skin friction coefficients calculated for the 12° and spherical tail. These also are in reasonable agreement with the maximum drag reduction line as proposed by Granville.

168

to be a start of the the start at some first at star

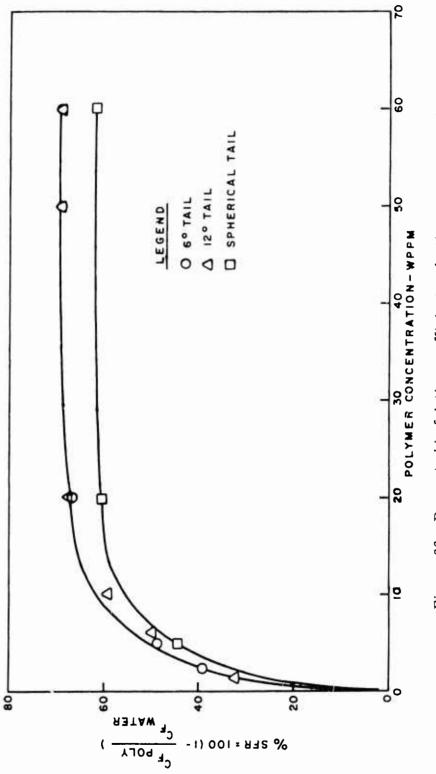


Figure 66. Percent skin friction coefficient reduction vs concentration

Contenant Conten

「おうちとうこう」とうないないです。

D. Polymer Concentration Profile Tests

The polymer ejecting body was used throughout this entire series of tests. The primary emphasis in these tests was to obtain polymer concentration measurements at the wall and at two heights in the boundary layer. These heights were selected to be .025 inches from the body to the centerline of the probes and .055 inches from the body to the probe centerline of the probes for reasons previously discussed. The probes are as described previously and shown in Figure 20. Only one stroke rate was used in these tests although other stroke rates are possible with the model through an orifice change. The stroke rate selected resulted in a volume rate of flow of 20.6 in 3 /sec. Polymer concentrations of 50 and 500 WPPM of Polyox-WSR-30 were ejected and samples taken at the wall and the two probe heights. Testing with 5 WPPM, 10 WPPM, 20 WPPM and 1000 WPPM was also performed but only with the flush probes installed. Tests were also performed with fresh water dyed with the fluorescent dye to determine what differences in diffusion exist between the polymer contaminated solution being ejected and the water. All tests were run using the launcher and no attempt was made to attain terminal velocity. The tests were all made at a high enough initial velocity that near terminal velocities existed and transient characteristics were deemed to be unimportant. The tests could not be used, however, to determine drag reduction or drag coefficients. The tests went very smoothly

with only one or two failures in the entire test series when a launch was made. Velocity variations for similar tests were within one percent. Unfortunately, concentration measurements were more diverse with 10 to 15% variations not uncommon although the bulk of the data fell in a narrowband. The test operation was very procedure oriented with deviations generally resulting in an aborted attempt at a launch. The long hours spent in calibrating the model was key to the smooth test series since carefully followed procedures resulted. The test matrix run is that shown in Table 6. In general, each test series, a series being either no polymer or a specific polymer concentration, began with the flush probes installed. The .025 inch probes were next installed and finally the .055 inch probes. No intermixing of probe heights occurred, even on a per station basis. The test model functioned perfectly, as designed, with over several hundred firings being accounted for considering stroke rate calibration tests, polymer concentration tests, photographs firings and actual data gathering firings. The only malfunction occurring was in the firing rod. One of the functions of this rod was to follow the polymer ejection piston during the ejection process. A photograph of the tail region of the model could then be analyzed to reveal the position of the firing rod still external to the body. This information combined with body velocity and distance to the camera station would allow a continual check on

the stroking rate to be made. Unfortunately, the launch process proceeded to distort the rod slightly on each launch resulting in it becoming stuck and not properly following the ejection piston.

By inserting a spacer in the ejector piston volume to limit its stroke, an independent check on stroke rate was made. With the appropriate spacer size for the body velocity, camera station and stroke rate installed, a test was made with visible dye and a photograph taken. The photograph displayed several inches of the forebody free from dye while the remainder of the body uniformly covered with dye. This verified that the proper ejection rate was occurring under test conditions.

The effects of the probes on the boundary layer flow was also of concern. The rotation of subsequent sampling stations on the body was a result of this concern. Figure 67 displays a photograph of a .025 inch probe within a dyed boundary layer for a water test case. No significant distortion of the boundary layer is apparent. The velocity in this case was 20.5 ft/sec.

The results of the test series are tabulated in Tables 11, 12, 13, 14, 15, 16 and 17. Although polymer concentrations were not directly measured, the assumption that the Uranine-B in solution reacts and diffuses in the same manner, as previously discussed, allows direct translation to polymer concentration to be made. Only for the water case is the tracer concentration discussed.

Figure 67. Photograph of .025-inch probe within the boundary layer

Mar Stalles

Water Ejection Test Results

R _{eL} x10 ⁻⁶	4.78 4.78 4.78 4.78 4.78	4.67 4.67 4.67 4.67	· · · · · · · · · · · · · · · · · · ·
TEMPERA- TURE T (^O F)	62.5 62.5 62.5 62.5	65 65 65	70 70 70
BODY VELOC_TY FT/SEC	$\begin{array}{c} 26.5 \\ \pm 1\% \\ 26.5 \\ \pm 1\% \end{array}$	$\begin{array}{c} 25.23 \pm 1\%\\ 25.23 \pm 1\%\\ 25.23 \pm 1\%\\ 25.23 \pm 1\%\\ 25.23 \pm 1\%\end{array}$	$\begin{array}{c} 27.81 \\ 27.81 \\ 27.81 \\ 11\% \\ 27.81 \\ 11\% \\ 27.81 \\ 11\% \\ 27.81 \\ 11\% \end{array}$
EJECTED CONCEN- TRATION C ₁ (WPPM)	.588 .588 .588 .588	1.105 1.104 1.104 1.104	.560 .560 .560 .560
RMS CONCEN- TRATION RATIO C/C ₁	.077 .048 .051 .035	.069 .045 .049 .046	.0188 .0272 .0273 .0312
MEASURE- MENT STATION ×/L	.120 .240 .360	.108 .228 .348	.108 .228 .348 .468
NO. OF TFSTS		m	2
PROBE HEIGHT	Flush	.025	.055
	SERIES 1	2	m

NOTE: Ejection Rate 20.6 in³/sec L = 2.0833 ft W-B = 4.46 lbs (Weight in Water) Af = 0.0491 ft² (Frontal Area) As = 1.3685 ft² (Surface Area)

175

50 WPPM Ejection Test Results

,

ReL x10-6	4.54 4.54 4.54 4.54 4.54	4.79 4.79 4.79 4.79	4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4
TEMPERA- TURE T(^O F)	5 5 8 8 8 8 8	62 62 62 62	60 60 60
BODY (FT/SEC)	$\begin{array}{c} 27.33 +1\%\\ 27.33 +1\%\\ 27.33 +1\%\\ 27.33 +1\%\\ 27.33 +1\%\end{array}$	27.0 +1.5% 27.0 +1.5% 27.0 +1.5% 27.0 +1.5% 27.0 +1.5%	$\begin{array}{c} 27.0 \\ 27.0 \\ 11\% \\ 27.0 \\ 11\% \\ 27.0 \\ 11\% \\ 27.0 \\ 11\% \end{array}$
EJECTED CONCEN- TRATION (WPPM)	50 50 50	50 50 50	5 5 5 5
RMS CONCEN- TRATION RATIO C/C ₁	.507 .42 .406 .490	.05 .075 .086 .098	.0104 .0126 .0126 .0366
MEASURE- MENT STATION ×/L	.120 .240 .360 .480	.108 .228 .348 .468	.108 .228 .348 .468
NO. OF TESTS	4	4	4
PROBE HEIGHT (IN.)	Flush	.025	.055
SERIES	4	<u>س</u>	Q

SEE NOTE TABLE 10

n new state

A MARTIN CONTRACTOR OF THE

500 WPPM Ejection Test Results

		1990 - 10 - 11	
ReL x10 ⁻⁵	5.27 5.27 5.27 5.27	4.73 4.73 4.73 4.73	5.32 5.32 5.32 5.32
TEMPERA- TURE T (^{O.F.})	444 6666	60 60 60	70 70 70
BODY VELOCITY (FT/SEC)	$\begin{array}{c} 28.9 \\ +1\% \\ 28.9 \\ +1\% \\ 28.9 \\ +1\% \\ 28.9 \\ +1\% \\ 28.9 \\ +1\% \end{array}$	27.4 + 1% $27.4 + 1%$ $27.4 + 1%$ $27.4 + 1%$ $27.4 + 1%$	26.85 26.85 26.85 26.85
EJECTED CONCEN- TRATION (WPPM)	200 200 200 200	200 200 200 200 200	200 200 200 200
RMS CONCEN- TRATION RATIO C/C ₁	.45 .45 .555	.0222 .031 .046 .056	.021 .0097 .02 .024
MEASURE- MENT STATION x/L	.120 .240 .360 .480	.108 .228 .348 .468	.108 .228 .348 .468
NO. OF TESTS	4	4	£
PROBE HEIGHT (IN.)	Flush	.025	.055
SERIES	2	ω	6

SEE NOTE TABLE 10

,

1000 WPPM Ejection Test Results

			MEASURE-	RMS	EJECTED			
	PROBE	.ov	MENT	CONCEN-	CONCEN-	BODY	TEMPERA-	еč.
	HEICHT	OF	STATION	TRATION	TRATION	VELOCITY	TURE	1
SERIES	(IN.)	TESTS	x/L	RATIO C/C ₁	(MPPM)	(FT/SEC)	T(^O F)	6-01x
	Flush		.120	. 45	1000	6 3	58	4.841
			.240	.35	1000	63	58	4.844
10			.360	. 437	1000	28.93 +2%	58	4.844
		e	. 480	.352	1000	28.93 + 2%	58	4.844
						I		

SEE NOTE TABLE 10

,

.

. 4

20 WPPM Ejection Test Results

T	
ReL ×10 ⁻⁶	6.04 6.04 6.04
TEMPERA- TURE T(^O F)	79 79 79
BODY VELOCITY (FT/SEC)	27.2 27.2 27.2
EJECTED CONCEN- TRATION (WPPM)	20 20 20
RMS CONCEN- TRATION RATIO C/C ₁	.39 .431 .463
MEASURE- MENT STATION x/L	.120 .240 .360
NO. OF TESTS	F
PROBE HEIGHT (TN_)	Flush
250 250 250 250 250 250 250 250 250 250	11

SEE NOTE TABLE 10

71	0T
	j.

Section in the section of the sectio

· · 1. ·

West of at the markes think light with.

10 WPPM Ejection Test Results

ReL x10-6	6.02 6.02 6.02
TEMPERA- TURE T(^o F)	79 79 79
BODY VELOCITY (FT/SEC)	$\begin{array}{c} 27.1 \\ 27.1 \\ 112 \\ 27.1 \\ 112 \\ 27.1 \\ 113 \\ 1$
EJECTED CONCEN- TRATION (WPPM)	100
RMS CONCEN- TRATION RATIO C/C ₁	.390 .390 .355
MEASURE- MENT STATION ×/L	.120 .240 .360
NO. OF TESTS	7
PROBE HEIGHT (IN.)	Flush
SERIES	12

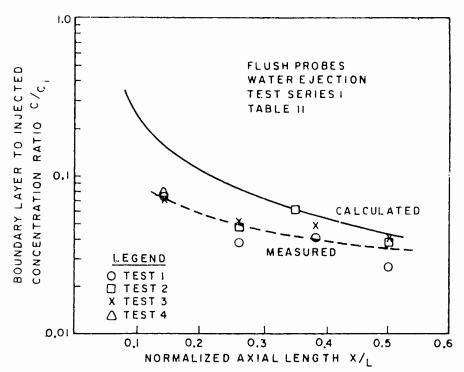
SEE NOTE TABLE 10

123.

4

5 WPPM Ejection Test Results

ReL x10-6	6.011 6.011 6.011
TEMPERA- TURE T(OF)	79 79
BODY VELOCITY (FT/SEC)	27.05 27.05 27.05
EJECIED CONCEN- TRATION (WPPM)	יט וט ע
RMS CONCEN- TRATION RATIO C/CI	.378 .378 .260
MEASURE- MENT STATION ×/L	.120 .240 .360
NO. OF TFSTS	5
PROBE HEIGHT	Flush
	13 13


SEE NOTE TABLE 10

Water Ejection Test Results

Figures 68, 69 and 70 display the data obtained in test series 1, 2 and 3 of Table 10. Referring first to Figure 10, it can be reticed that for this water diffusion case, the wall dye concentration has decreased to .1 of the ejected concentration in a distance of slightly less than one body diameter. The diffusion over the next nine inches of body length near halves again the concentration level. The diffusion process is quite rapid, characteristic of turbulent mass transport. The predicted curve on this figure applies the two zone diffusion boundary layer growth model combined with the axisymmetric boundary layer model as discussed earlier. The concentration similarity profiles for water were applied for the two-zone process quite successfully.

Figure 69 displays the data from the series 2 experiment with the .025 inch probes sampling the boundary layer. Again, comparison with the model for the water case seems quite good. Although not apparent in the data, the computer solutions shows the concentration growth prior to the sampling station and then a normal decay as the dye diffuses outward in the boundary layer.

Figure 70 displaying series 3 tests with water ejection and the .055 inch probes, the rise in the concentration levels between the first and second probe stations is evident in the data and predicted by the theory.

のないないないないである

rit.

Figure 68. Boundary layer to injected concentration ratio vs normalized axial length Test Series 1

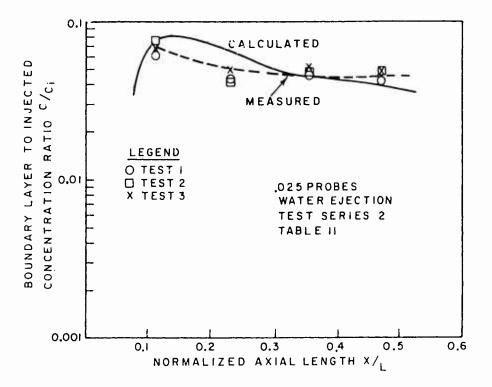
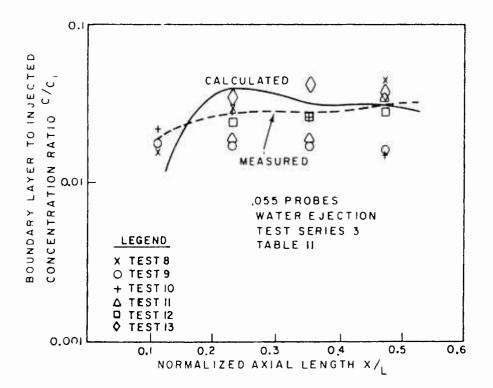
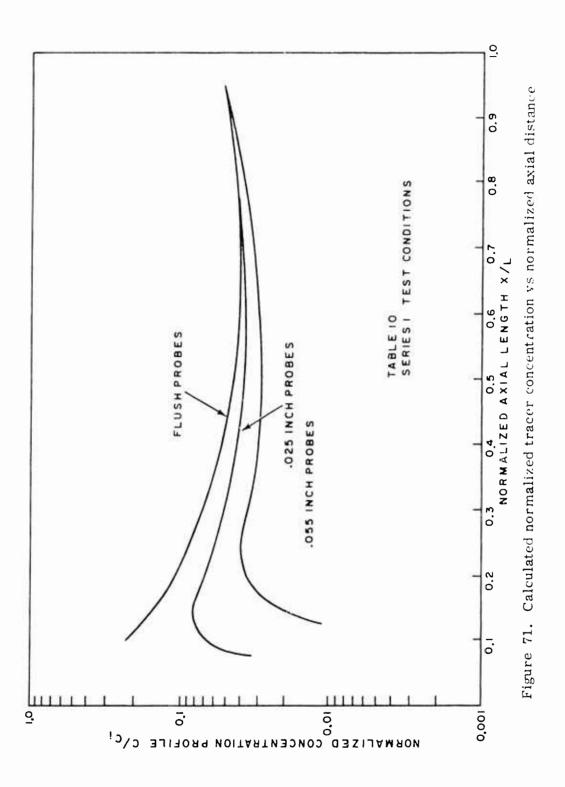
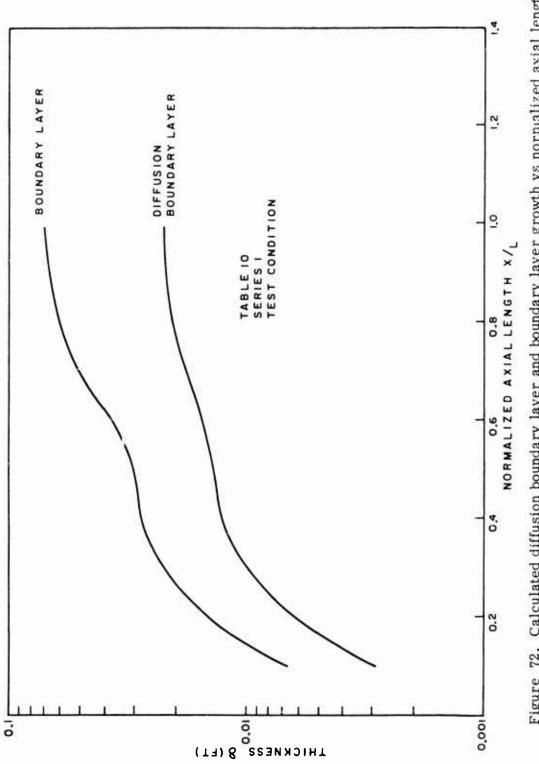



Figure 69. Boundary layer to injected concentration ratio vs normalized axial length Test Series 2


「御きいにいずれのけいにてあれた」」」


Figure 70. Boundary layer to injected concentration ratio vs normalized axial length Test Series 3

Sugar Barrow

Figure 71, a composite plot of the calculated flush, .025-inch and .055-inch probes displays an interesting result. First, the increase in concentration initially for the probes away from the wall is evident. The decay in concentration as the fluorescent dye diffuses outward is as expected in the approximately constant diameter section. At x/L of approximately .6, however, the concentration ratio begins to increase. The boundary layer in this region is growing very rapidly as both the photograph for this case, Figure 53 and the calculated and measured boundary layers indicate, Figure 60. The cause of this rise is the decreasing diameter resulting in a smaller boundary layer flux area within which the tracer resides. This is a rather interesting result since in external flows one would expect a uniform decrease in concentration with length due to boundary layer growth, Figure 72 displays the growth of the diffusion boundary layer, defined as height at which the concentration is .5 of the wall concentration, within the normal boundary layer. The growth of the diffusion boundary layer is reduced as compared to the normal boundary layer in the tail region, x/L > .6.

Figure 73 displays a plot of the concentration profile for the first two probe stations normalized to the wall concentration. The remaining two stations were not plotted since only the .055 probe height gave a value of C/C_w different from one. A single point curve would have resulted. Table 18 provides a tabulation of the experimental data used in generating this figure. As noted in the

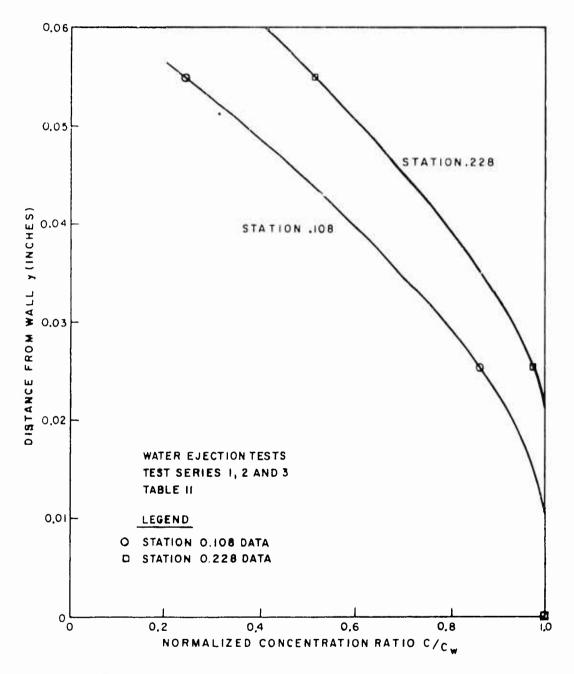


Figure 73. Distance from wall vs normalized concentration ratio water case

TABLE 18

					БТАТ	JON			
		.108		.228		.348		.468	
y (IN)	c/c _i	c∕c _w	c/c _i	C/Cw	c/c _i	C/Cw	C/Ci	c/c _w
Water	0	.082	1	.051	1	.041	1	.035	1
	.025	.07	.854	.051	1.48	.045	1	.045	1
	.055	.019	.23	.027	.53	.028	.68	.031	.88
50 WPPM	0	. 49	1	.42	1	.406	1	.48	1
	.025	.05	.102	.075	.178	.088	.216	.095	.2
	.055	.01	.02	.012	.028	.013	.032	.034	.07
500 WPPM	0	.45	1	. 45	1	.48	1	.57	1
	.025	.023	.05	.034	.076	.047	.1	.057	.1
	.055	.001	.002	.01	.02	.02	.042	.022	.04

Concentration Profile Determination (Using Smoothed Profile)

189

ŗ

figure, the diffusion process is quite rapid with wall concentration being approached quite far out into the boundary layer a short distance back on the body. By defining the diffusion boundary layer thickness as that value of y at which C/C_w equals .5, a normalization height is determined for plotting this data on a similarity concentration profile plot. Table 19 presents these data, along with data from subsequent tests with polymers. A comparison of these data (water case) with that from other experimentators is done on the similarity profile plot of Figure 74. The dotted line on this figure taken from Hsu (1971) has been generated from data by Poreh and Cermak (1964) and verified by Wetzel and Ripkin (1970). The equation for this line is as shown on the figure. The limited data obtained in this experiment verify, for the axisymmetric case, the applicability of this similarity profile for the downstream region. The water ejection line, although falling slightly higher resulting in a higher value of the exponent in the C/C_w relation, is in good agreement with the previous investigation. The applicability of the model in predicting the wall concentration and concentration profiles in the boundary layer seems apparent.

Polymer Ejection Test Results

Figures 75, 76 and 77 display the data obtained in test series 4, 5 and 6 of Table 12. In this series, 50 WPPM polymer concentration was ejected. The results were not as expected. At all probe stations the polymer concentration remained high indicating no diffusion occurring. As may be seen in Figure 75, the combined model

190

			1	
	y/8d		2.79 1.38 .723 .298	2.6 1.37 .68 .28
.468	Y		.0263 .013 .0068 .0028	.0153 .0081 .0004 .0016
	δđ		.0094 .0094 .0094 .0094 .0094	.0059 .0059 .0059 .0059 .0059
	y/ôd		2.79 1.38 .723 .298	2.6 1.37 .68 .28
.348	У		.0263 .013 .0068 .0028	.0153 .0081 .0004 .0016
N 0 I	Pγ		4000. 4000. 4000. 4000.	.0059 .0059 .0059 .0059
STAT	y/ôd	1.09 .89 .68	.275 1.375 .712 .275	2.7 1.38 .69 .27
. 228	У	.0625 .0510 .039	.022 .011 .0057 .0022	.014 .0072 .0036 .0014
	Ρŷ	.057 .057 .057 .057 .057	.008 .008 .008 .008 .008	.0052 .0052 .0052 .0352 .0352
	y/ôd	1.09 .89	18 2.76 1.42 .67 .25	2.7 1.45 .65
108	y	.048 .039 .029	.1 .0152 .0078 .0037 .0014	.012 .0064 .0029 .001
	þđ	044 044 044 044 044	.0055 .0055 .J055 .J055 .0055	.0044 .0044 .0044 .0044 .0044
c/c	*	.1 .2 .4 .6 .8	.1 .2 50 .4 WPPM .6	.1 .2 500 .4 WPPM .6

,

TABLE 19 Normalized Concentration Profile for Several Concentration Ratios

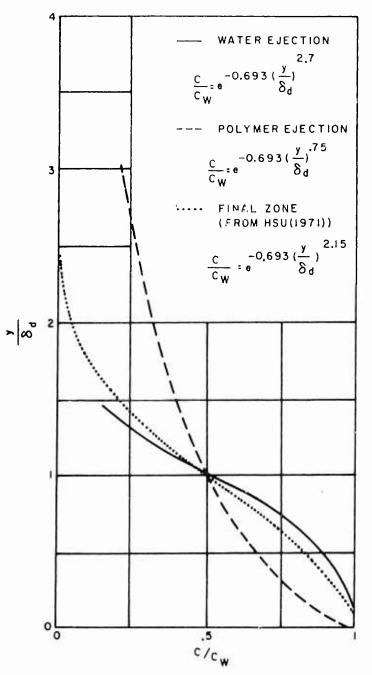


Figure 74. Concentration profiles determined for water and polymer ejection

ť

.

in de

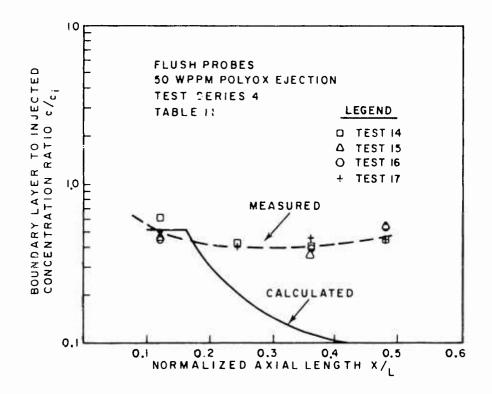


Figure 75. Boundary layer to injected concentration ratio vs normalized axial length Test Series 4

193

ľ

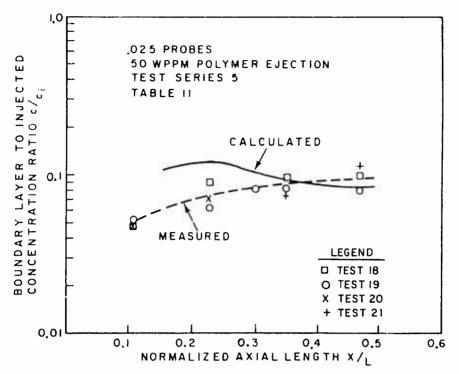
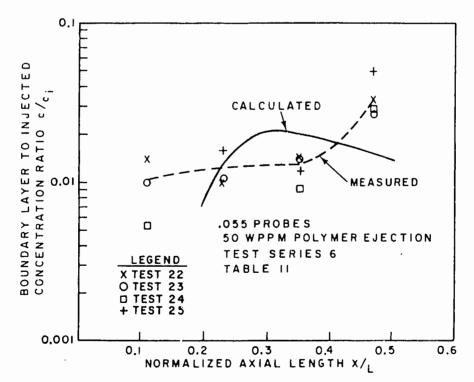
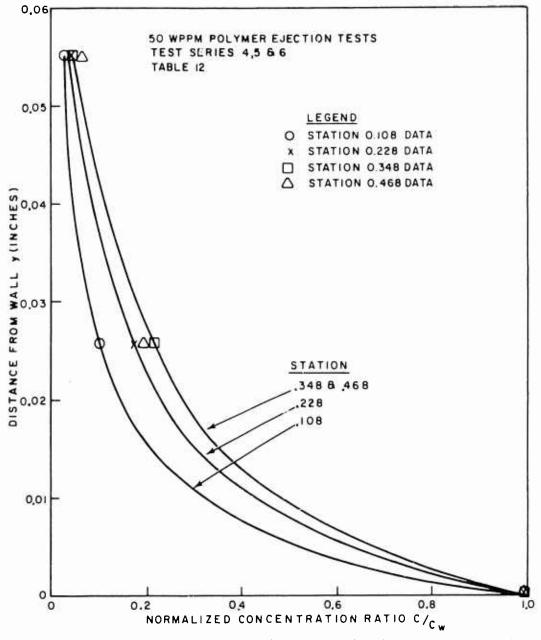



Figure 76. Boundary layer to injected concentration ratio vs normalized axial length Test Series 5

ŗ

÷


Figure 77. Boundary layer to injected concentration ratio vs normalized axial length Test Series 6

predicts a short initial zone. Figures 76 and 77 show the concentration measured with the .025-inch probes and the .055-inch probes. The experimental data display a slow build up of the concentration. The .055-inch probes which should be well outside the sublayer, display much scatter expecially at the first station. Apparently there is diffusion from the surface of the viscous layer otherwise the measured value would be much lower. The calculations do not account for diffusion from the viscous layer. There may still be some bursting occurring at this concentration level as some of the polymer in the ejection process is being hurled to regions further from the wall. The calculated values displayed in this figure show the characteristic rise and fall off of the rapid diffusion process as is predicted by the intermediate and final zone models. Figure 77 shows a sudden rise in the data at the last measurement station. Quite possibly, the end of the initial zone is being reached and the more rapid diffusion is beginning to occur.

Table 18 summarizes the concentration profile data taken for the 50 WPPM case from which Figure 78 is plotted. This figure displays the totally changed character of the concentration profile from the water case, Figure 73. Comparing, δ_d , the value of y at C/C_w equal to .5, for the water case δ_d is .044 inches at the first measurement station, while for the 50 WPPM case it is .0055 inches. (nearly a factor of 10 difference). Table 19 presents the data taken from Figure 78 from which a redefinition of the distance from the

195

1. 1. 1

1

A anticipation and the starts and

Figure 78. Distance from wall vs normalized concentration ratio 50 WPPM case

Charles and the state of the state of the

wall, y, to a nondimensional distance, y/δ_d , is made. This nondimensional height is plotted in Figure 74 and a curve fit made. The result, is a similarity profile with an exponent of .75 for all measurement stations. This exponent implies significantly reduced diffusion but not to the level which the data display. The discrepancy lies in the fitting of the curve in Figure 78. Three points are available. These are at y = .025 inches, y = .055inches and y = 0 inches. Clearly, the curve could be drawn a number of ways which would significantly reduce the exponent value by reducing δ_d . The information demonstrating low diffusion rate is contained in the wall concentration measurement, however, so no attempt was made to match the curves to the data through the computer routine. In fact, the variable K3 model which resulted in a steady wall concentration profile calculated an exponent value of about .15. Let it suffice that Figure 78 displays markedly reduced diffusion to that of water and recommend for future work that a probe be tested at .01-inch height. Another interesting facet of these tests were that the exponent did not change with measurement station. This implies that the diffusion rate does not change, in these tests, with downstream distance. Again this may be a function of the curve fit only since, unless only molecular diffusion is occurring, it would be expected that the diffusion rate would increase.

Figures 79, 80 and 81 present similar test results for the test series 7, 8 and 9 of Table 13. As can be seen in Figure 79, for the

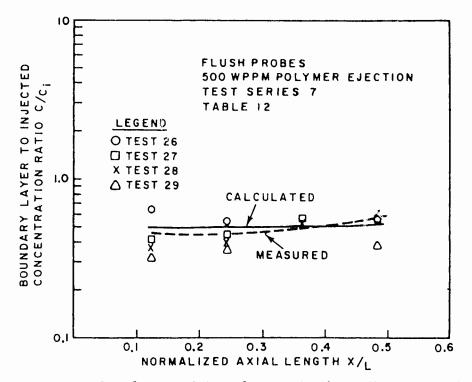


Figure 79. Boundary layer to injected concentration ratio vs normalized axial length Test Series 7

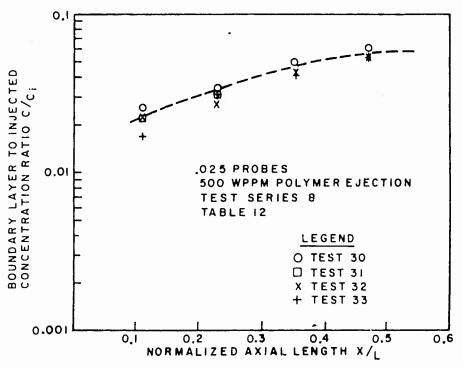


Figure 80. Boundary layer to injected concentration ratio vs normalized axial length Test Series 8

500 WPPM case, both the calculated and experimental data clearly indicate little diffusion is occurring. The .025-inch probes display the same gentle rise in concentration, Figure 80, as compared to the decay in concentration noted for the water case, Figure 69, resulting from the higher diffusion in that case. The .055-inch probes again display a slow rise with low levels indicative of low diffusion. It is interesting to note the scatter at the first station implying some anomaly in the ejection process. No calculations are evident for the concentration ratio in these probe figures since the molecular diffusion portion of the model does not incorporate a similarity concentration profile. The variable K3 model would account for this. Before turning to a concentration profile discussion, a test, test series 10, Table 14, was performed with 1000 WPPM ejected. Figure 82 displays the results. Again a nearly constant concentration with body distance results indicating little or no diffusion. This is not surprising considering the photographs taken showing the boundary layer structure, Figures 58 and 59.

The data for the 500 WPPM series have also been normalized for plotting as concentration ratio vs height, Table 18. Figure 83 displays this plot. Again an extremely low diffusion rate is evident compared to the water case, Figure 73. The 500 WPPM case is much steeper in profile than that of the 50 WPPM case, Figure 78, implying an even greater decrease in diffusion rate. Interestingly, wher. the height, y, is nondimensionalized with δ_d , Table 19, the

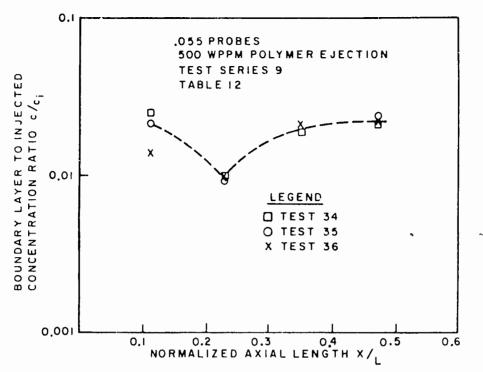


Figure 81. Boundary layer to injected concentration ratio vs normalized axial length Test Series 9

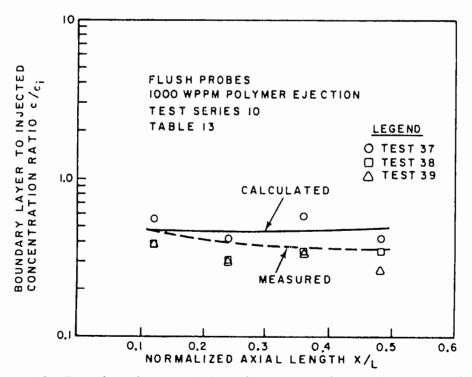


Figure 82. Boundary layer to injected concentration ratio vs normalized axial length Test Series 10

hall have been and a structure and

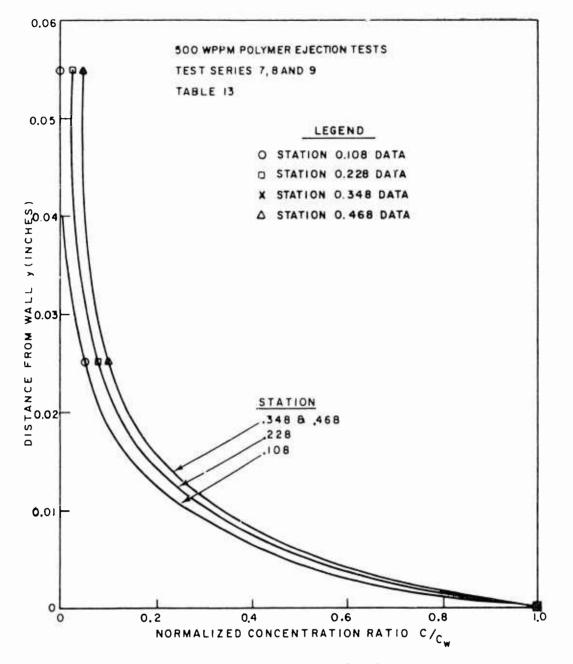


Figure 83. Distance from wall vs normalized concentration ratio 500 WPPM case

the similarity profile is the same as for the 50 WPPM case. The results are plotted in Figure 74 where the polymer ejection case applies to both the 50 WPPM and 500 WPPM test series. Again, the frailties of this plot are similar to those of Figure 78.

Additional tests were performed with reduced polymer concentrations in an attempt to define the position at which the initial diffusion zone terminated. These test results are displayed in Figure 84, for 20 WPPM polymer solution, Figure 85, 10 WPPM polymer solution and Figure 86, 5 WPPM polymer solution ejected. For both the 20 WPPM and 10 WPPM case, no drastic change to a higher diffusion rate is evident. The wall concentration to injected concentration ratio remaining about constant throughout the sampling region of the body. The 5 WPPM ejected concentration did display the result being sought. As shown in Figure 86, a definite reproducible shift to a lower concentration has occurred between the second and third sampling stations. From the flat plate data of Fruman and Tulin (1974) a projected transition to a higher diffusion process would have been projected to occur at concentration below 36 WPPM. These limited results indicate, for the axisymmetric case, a delay in transition to higher diffusion occurs at a significantly reduced concentration level.

The test series performed in this study may be compared directly with those of Fruman and Tulin (1974) if corrected for the axisymmetric influence by multiplying the concentration ratio by D_0/D_1 . The

202

ŗ

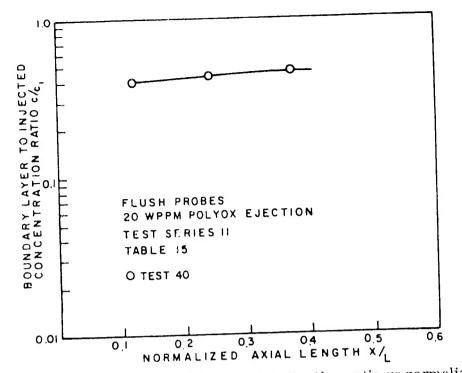
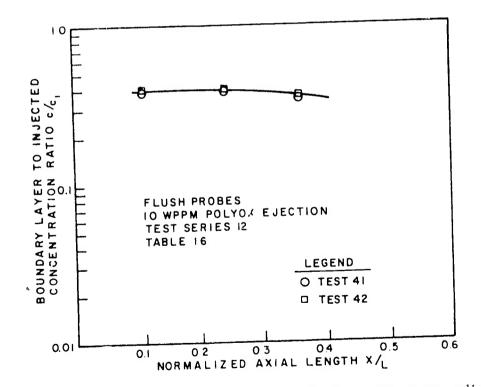
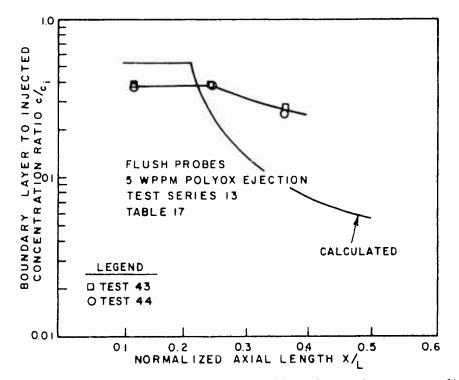
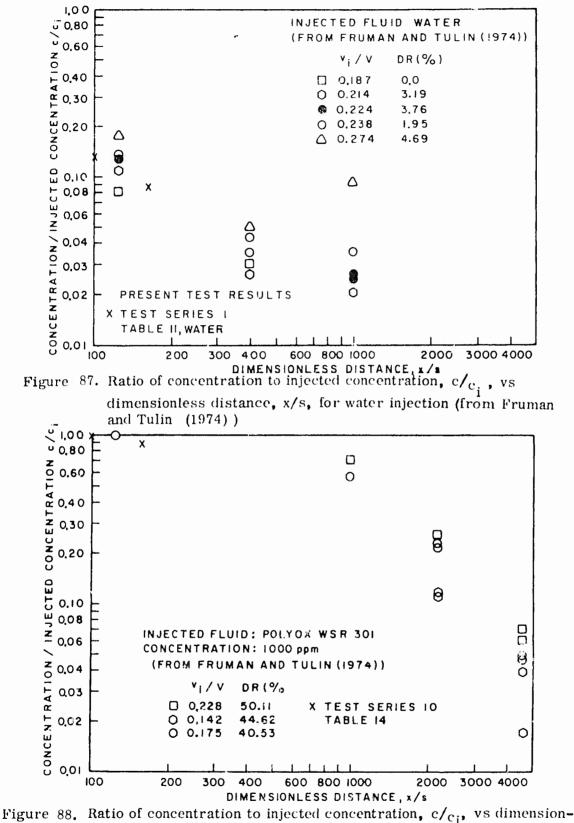
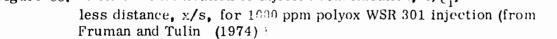
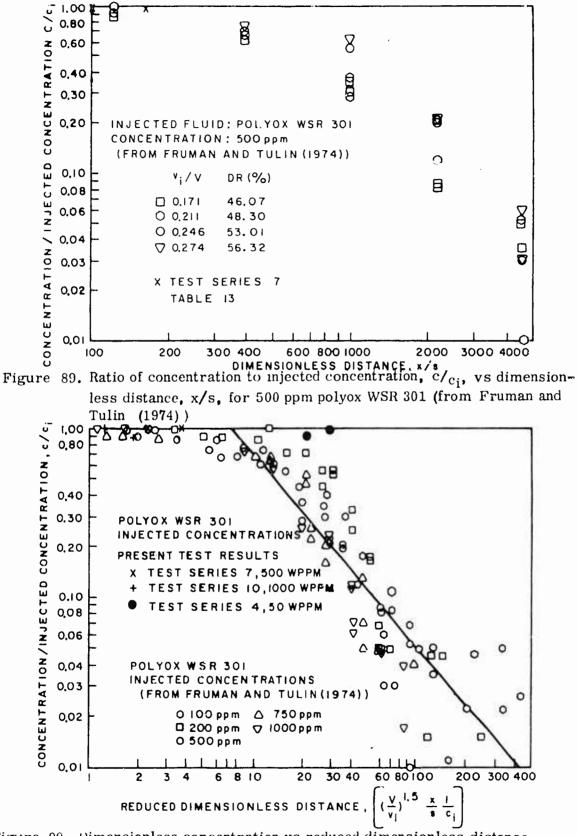



Figure 84. Boundary layer to injected concentration ratio vs normalized axial length Test Series 11

ſ

Figure 85. Boundary layer to injected concentration ratio vs normalized axial length Test Series 12


Figure 86. Boundary layer to injected concentration ratio vs normalized axial length Test Series 13

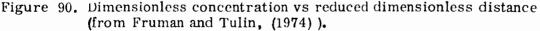
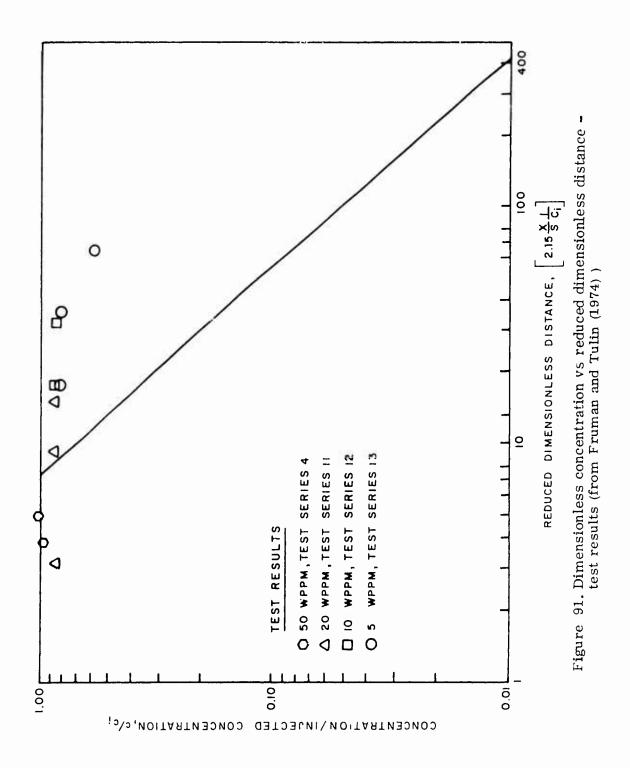

Reynolds pumber range for this test series was about 5 million whereas the Proposal and Tulin experiments were approximately 10 million. The ratio of ejection velocity to free stream velocity (body velocity in this case) is .185 in this study and ranges from .187 to .274 in the Fruman and Tulin experiments. Figure 87 displays a plot of the concentration to injected concentration ratio vs a dimensionless distance for a water ejected case taken from Fruman and Tulin (1974). The data from this experiment compare well. Similar plots for 1000 WPPM Figure 88, and 500 WPPM, Figure 89 show similar agreement. The data from this experiment are believed to be well qualified and displaying similar trends.

Figure 90, from Fruman and Tulin (1974), displays the departure from the initial zone of diffusion as was predicted from equation (96) from that reference. Data from this experiment are plotted on this figure. As is noted, all data for concentration fall in the initial zone region of molecular diffusion and have a corrected concentration ratio of about 1. The test series 4 data, 50 WPPM⁻ case, falls to the right of the departure from the initial zone region. The reason is suspected to be that equation (96), which applies to slot ejection, should be modified to the case of ejection into the free stream and becoming a part of the laminar boundary layer. The ejection velocity becomes meaningless for this case and should be replaced with some other velocity which may be the mean laminar flow velocity or approximately .6 of the local

A The stand and the second states in the states


free stream velocity. For this case, equation (96) reduces to

2.15
$$\frac{x}{s} = \frac{1}{C_1}$$
 (117)

For the 50 WPPM case, the reduced dimensionless distance for the 50 WPPM point would now be placed at 5.87 rather than near 30 where it presently is. In fact, all the points for the present test would shift to the left indicating a large initial length as the data indicate.

Figure 91 presents the corrected experimental data plotted against the modified dimensionless distance give by equation (117). The extended initial zone compared to the flat plate experiment is apparent in this figure. The analytical model was exercised for the condition of the test shown in Figure 86 with a transfer from the initial to intermediate zone occurring at 30. The dimensionless distance given by equation (117) was used to determine the change to the intermediate diffusion zone. The calculated values are displayed in Figure 86. As may be seen, the calculated intermediate zone diffusion process is much greater than the experimental data indicate warranting further study of this zone.

The extended initial zone for the ejection method applied is significant in that no special care is needed in the ejection process. Additionally, this ejection process most likely represents the optimal case since higher ejection velocities would quickly be reduced to the mean viscous sublayer velocity through viscous drag and, for a slot ejection case, could result in flow disruption.

209

and the second of the second second

in a state

A. CONCLUSION

1. General

The object of this research was threefold: 1) to develop methods for wall concentration and drag reduction prediction for bodies of revolution with a polymer ejection process, 2) to qualitatively define the effects of polymer on boundary layers in external flows, and 3) to verify the predictive techniques by experiment. Drop tank testing was performed with several especially designed bodies of revolution. One of these bodies was capable of simultaneous ejection and boundary layer sampling at several heights in the boundary and at several axial stations. The ejection process for this model was considered optimal in that ejection occurred directly forward of the body in a laminar flow region thus affecting the developing flow region of turbulent flow. The experimental apparatus is capable of testing a wide variety of ejectors at different locations and over a range of Reynold's number to about 5 x 10^6 . Variable ejection rates and polymer concentrations may be applied as well as boundary layer sampling at selected heights and at the wall. The drop tank facility provided a very low turbulence level apparatus in which the external flow experiment could be carried out.

2. Analytical Prediction Methods

Much of the past work in the diffusion of polymer boundary layers

and the second second

has centered in the far downstream zone where the polymer attained the same diffusion characteristics as the medium. Postulates of an intermediate zone have been made but not reasonably tested for polymer cases. The case of developing flow with polymer ejection has received little attention for external flows and especially so for bodies of revolution. Predictive methods are, therefore, not well developed.

Several analytical models were developed for comparison with experimental data. The models were based upon a proven integral boundary layer analysis for thick axisymmetric boundary layers combined with a velocity profile relation accounting for pressure gradients. The models made use of a Lagrangian similarity hypothesis which predicts a diffusion boundary layer growth within the boundary layer. Two versions of the model are proposed but only one extensively used in the comparison. The first version, combined model, presently recommended as capable of accurate prediction of skin friction, polymer wall concentration and indicating total drag if provided with an experimental pressure profile, incorporates an initial diffusion zone where molecular diffusion is predomanate. Based upon a nondimensional distance, given by

$$\left(\frac{U}{v_{i}}\right)^{1.5} = \frac{X}{S} \frac{1}{C_{i}} = 8$$
 (96)

a change to an intermediate zone diffusion process is made. Within this region, determined by experimental data for ammonia diffusion in air to extend to X/δ < 60, a similarity concentration profile exists having the form

We we want the second of the s

$$\frac{C}{C_{W}} = e^{-0.693 (y/\delta_d) K_3}$$

where the exponent is adjusted to a given value dependent on the region of diffusion. Proceeding to $X/\delta > 60$ places the diffusion process in the final zone where the second value of K₃ is applied. The Lagrangian analysis provides for the determination of, δ_d , the diffusion boundary layer. The equation for the diffusion boundary layer development incorporates the Karman constant, K, which is adjusted for the polymer flow case resulting in suppressed diffusion.

The analytical model has been compared to experimental data and found to predict proper levels of wall and concentration profiles but predicts an early increase in the diffusion process. It is hypothesized that the ejection velocity for the forward ejector, ejecting into the laminar region, is not the valid velocity for application into the nondimensional distance relation (v_i) . A mean laminar velocity is believed to be the correct velocity for this ejection process. When applied, the predictive techniques properly reproduces the experimental data. Unfortunately, only limited data are available displaying the initiation of the intermediate diffusion zone.

The second postulated model, the variable K_3 model, eliminates the need for the molecular diffusion portion of the previous model and adjusts, K_3 , as a function of δ , δ_d , x/L, and c_w to account for this region. Unfortunately, insufficient data were available to perfect this model. A simplified functional relationship of K_3 was found to predict the limited experimental data

$$K_3 = C K_5 \frac{\delta d}{\delta} \frac{x}{L} \cdot$$

The combined model is considered valid for use in prediction of various flow parameters for axisymmetric bodies of revolution. The model should be exercised in several ways depending on the ejection process. If ejection occurs prior to or at the point of transition to turbulent flows, the full model should be applied. If the ejector is placed in a region of a developed turbulent boundary layer, the initial zone should be eliminated and the Karman constant reduction removed.

3. Boundary Layer Characterization and Separation Tests

Several test bodies were applied in this series of experiments covering a Reynolds number range of one to five million. One series of tests were conducted in a polymer ocean, where the drop tank was uniformly mixed to a polymer concentration level of 1.23, 2.5, 5, 10, 20, 50, and 60 WPPM using Polyox-WSR-301 polymer. In this series, models having 6° tail cone, 12° tail cone, and a spherical tail were tested. The photographic study displayed several interesting results. The turbulent nature of the boundary layer was apparent from the dye aspirated from these bodies at the minimum pressure point. At very low concentration levels, 2.5 WPPM, the fine structure turbulence was absent and only the large scale turbulence remained. At higher concentration, extreme boundary layer thinning occurred. Measurements of the boundary layer thickness were made from photographs and compared to computer predictions. The computer routines predicted the proper boundary layer growth shape for these tests but tended to overpredict the thickness. This was probably due to the mean height of the eddies being used for measurement purposes.

No shift in the boundary layer separation region was noted by application of the polymer. This was undoubtedly due to the large adverse pressure gradient conditions for these tail configurations. Computer predictions also indicated no shift in separation point for the test conditions.

The testing in fresh water with the polymer ejection body showed similar results but provided much better visual representations at the higher polymer concentrations. The characteristic coarse and fine scale turbulence was noted on dyed water ejection. Ejection of 50 WPPM dyed polymer solution eliminated most of the fine structure turbulence leaving only the coarse structure and somewhat the rapid boundary layer growth in the tail region. Application of 500 WPPM and 1000 WPPM of ejected polymer resulted in extremely thin boundary layers, even in the tail region with little evidence of turbulent action. In the tail region, bursting of the eddy structure is evident but with very low energy levels as evidenced by their vectors being in a near axial direction.

At the higher concentration levels, dye streaking is apparent. The streaking spacing is consistent with laminar sub layer streaks but also, for this case, agrees well with the number of ejection holes in the screen ejector in the nose of the body. In any event, turbulent mixing is not apparent at the 500 WPPM and 1000 WPPM concentrations. Boundary layer measurements were made for each case tested. A normalization of the thickness measurements shows an increased rate of growth for all concentrations tested, in the tail region. This suggests higher diffusion rates lowering the wall concentrations and reducing the subdued growth in this region.

214

Contraction of the

4. Drag Reduction Tests

Drag reduction tests were performed with the 6° , 12° , and spherical tail bodies in a polymer ocean. The concentration levels were as discussed previously. A total drag reduction of 33% was achieved with the 6° tail body at polymer concentrations of 20 WPPM and greater. This compared favorably, within 10% of calculated values. Percent skin friction reduction of near 70% were achieved, comparing well with optimal total shear drag reduction for flat plates as determined by other investigators. The maximum total drag reduction achieved with the 12° tail and spherical tail bodies was less due to the reduced surface area and, therefore, increased percentage of form drag. Maximum total drag reductions of 16% and 10% were achieved respectively for the 12° tail and spherical tail configuration. The skin friction reduction remained near 70% as it should. Computer predictions for total drag with the 12° and spherical tail models was considerably in error due to the very large pressure coefficients predicted near the separation region for these cases from potential flow.

5. Polymer Diffusion Tests

The polymer ejecting body was applied for all tests with a fixed ejection rate of 20.6 in³/sec and nominal velocity of 27 ft/sec. Wall samples and boundary layer samples at .025 inches and .055 inches were taken and analyzed applying a fluorometric technique. Testing with water ejection and 5 WPPM, 10 WPPM, 20 WPPM, 50 WPPM, 500 WPPM, and 1000 WPPM were performed. The water tests compared well with available predictive methods displaying appropriate concentration profiles as

215

and the second second

achieved by other investigators. The tests with all polymer concentrations displayed an unexpected drastically reduced diffusion resulting in a considerably extended initial mixing zone. Application of a molecular diffusion model in this region agrees well with data. Boundary layer concentration profile data when plotted nondimensionally as y/δ_d vs c/c result in similarity profile exponent coefficients, K_3 , of .75. It is believed, however, the value is below this since data were not obtained in the critical region of approximately .01 inches from the wall in these tests. These results are significant in that they imply significantly reduced polymer quantities may be required with proper ejection techniques. Apparently ejection into the laminar, and in this case stagnation region, of developing flow substantially reduces the turbulence levels associated with turbulent flow and reduces, therefore, diffusion. It is believed that ejection in a developed flow would result in an extremely short initial zone and rapid mixing.

6. Conclusion Summary

An experimental apparatus has been developed which allows laboratory measurement of polymer drag reduction wall concentration profiles and ejector geometries at various ejection rates on axisymmetric bodies. Experiments have displayed reduced fine scale turbulence structure with polymer and a significantly reduced diffusion process if ejection is performed upstream of the turbulent transition point. Maximum skin friction reductions were achieved. Predictive methods were developed, building on available theories, for prediction of the wall concentration on an axisymmetric body. Comparison with experiment has been performed.

B. RECOMMENDATIONS

1. The variable K₃ analytical model should be developed to more adequately describe the diffusion process. As presently configured, the model abruptly changes from molecular diffusion to a diffusion process which is believed to be too high a rate for polymer. Application of the Lagrangian approach with modified Karman constant should provide an input to the functional relationship.

2. Additional data should be obtained at boundary layer heights below the .025-inch level with this experimental model. These data are required to adequately define the concentration curves and provide the data necessary for developing the K_3 model. The variation in the similarity profile exponent, K_3 , with axial length should also be defined by these data and would provide information on the intermediate and final zone similarity profile exponents.

3. Additional testing should be performed at lower concentration levels, below 50 WPPM, with the ejecting experimental model. This would clearly establish the extent of the initial mixing zone and verify the relation used for the extent of the initial zone and the hypothesis for the ejection velocity equaling a mean laminar velocity for the type of ejection process used here.

4. The experimental model should be modified for ejection into the established turbulent boundary layer region to clearly demonstrate the elimination (or drastic reduction) of the initial zone length with the

resulting high diffusion process. Significantly higher concentrations of polymers are believed to be required (higher flow rates and/or higher concentrations) for this case. Model modifications are extremely simple.

5. Drag reduction measurements should be made with this model during the ejection process. Correlations with wall concentration measurements and polymer ocean data would lend further credence to the results.

W. Sterner and Market

REFERENCES

- Batchelor, G. K., "Diffusion in Free Turbulent Shear Flows," Cavendish Laboratory, Cambridge, 1957.
- Brady, John F., "An Experimental Study of the Vibration, Noise, and Drag of a Cylinder Rotating in Water and Certain Polymer Solutions," A Dissertation for the Degree of Doctor of Philosophy, University of Rhode Island, 1973.
- Cermak, J. E., "Lagrangian Similarity Hypothesis Applied to Diffusion in Turbulent Shear Flow," College of Engineering, Colorado State University, 1962.

Clauser, F. H., J. Aeronaut., vol. 21, pp. 91-180, 1954.

, Adv. Appl. Mech., vol. 4, pp. 1-51, 1956.

- Coles, D., "The Problem of the Turbulent Boundary Layer," <u>Journal</u> of Applied Mathematics and Physics, <u>Zamp</u>, vol. V, 1954.
- Coles, D., "The Law of the Wake in the Turbulent Boundary Layer," Journal of Fluid Mechanics, vol. 1 part 2, July, 1956. p. 191.
- Crawford, H. R., and G. T. Pruitt, "Rheology and Drag Reduction of Some Dilute Polymer Solutions," Final Report, Contract No. N60530-6899 (NOTS), Westco Research, Dallas, Texas, July 1962.
- Darby, Ronald, "A Review and Evaluation of Drag Reduction Theories," Naval Research Laboratory, Washington, D. C., June 1972.
- Dowdell, Rodger, "Estimation of Downstream Ingestion Concentration Resulting from the Ejection of a Polymer Solution at the Nose of a Large Submerged Body," Naval Underwater Systems Center TM No. SB323-4364-73, 28 June 197[°]
- Elata, C., "Reduction of Friction on Submerged Bodies by Polymer Additives," Proceedings of the 11th International Towing Tank Conference, Tokyo, 1966, p. 81.
- Ellison, Y. H., "Turbulent Diffusion," Meteorology, Department of the Mechanics of Fluids, University of Manchester, 1959.
- Fabula, A. G., and T. J. Burns, "Dilution in a Turbulent Boundary Layer with Polymeric Friction Reduction," Ocean Technology Department, Naval Undersea Research and Development Center, NUC TP 171, April 1970.

20 . 121 '821

- Fabula, A. G., J. L. Lumley and W. D. Taylor, "Some Interpretations of the Toms Effect," <u>Annual Review of Fluid Mechanics</u>, W. R. Sears (ed.), <u>1</u>, 145 (1969)
- Fruman, D. H., and M. P. Tulin, "Diffusion of a Tangential Drag-Reducing Polymer Injection on a Flat Plate at High Reynolds Numbers," Ordnance Hydroballistic Advisory Committee Meeting, October 1974.
- Hoyt, J. W., "Friction Reduction as an Estimator of Molecular Weight," Polymer Letters, vol. 4, 1966, p. 713.
- Hoyt, J. W., "The Effects of Additives on Fluid Friction," Naval Undersea Research and Development Center, Pasadena Laboratory, Pasadena, Calif., Freeman Scholar Lecture, 1972.
- Hoyt, J. W., and A. G. Fabula, "The Effect of Additives on Fluid Friction," U.S. Naval Ordnance Test Station, Pasadena, California, 1964.
- Hsu, Kuang Shen, "Diffusion of Polymers in a Developing Boundary Layer," Thesis for the Degree of Master of Science, Department of Mechanics and Hydraulics, Graduate College of the University of Iowa, January 1971.
- Karman, T. Von, Nachr. Ges. Wiss. Goett. Math.-Phys. Kl., pp. 58-76, 1930.
- Kline, S. J. et al, "Proceedings of 1968 Stanford Turbulent Boundary Layer Conference," 2 volumes, 1968.
- Kline, S. J., P. W. Runstadler, and W. C. Reynolds, "An Experimenttal Investigation of the Flow Structure of the Turbulent Boundary Layer," Stanford University Department of ME Report No. MD-8, Stanford, California, 1963.
- Kowalski, T., and E. Brundrett, Paper Cl, "International Conference on Drag Reduction, 4-6 September 1974.
- Lang, T. G., and H. V. L. Patrick, "Drag of Blunt Bodies in Polymer Solutions," Hydrodynamics Group, Research Department, U.S. Naval Ordnance Test Station, Pasadena, California, 1966.
- Latto, B., and Chi Hung Shen, "Effect of Dilute Polymer Solution Injection on External Boundary Layer Phenomena," Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, <u>Canadian Journal of Chemical Engineering</u>, vol. 48, February 1970.

- Lessman, R. C., "Dilution of a Polymer Additive in a Turbulent Boundary Layer on a Body of Revolution," Naval Underwater Systems Center, Report CR 52, 15 July 1970.
- Levinson, Ernie D., "A Guide to Use and Operation of G. K. Turner Model 111 Fluorometer," Naval Underwater Systems Center Technical Memorandum SB323-4406-72, 22 September 1972.
- Mellor, George, L., "The Effects of Pressure Gradients on Turbulent Flow Near a Smooth Wall," <u>Journal of Fluid Mechanics</u>, vol 24, part 2, 1966, pp. 255-274.
- Meyer, Warren A., "A Correlation of the Frictional Characteristics for Turbulent Flow of Dilute Viscoelastic Non-Newtonian Fluids in Pipes," A.I.Ch.E. Journal, May 1966
- Morkovin, M. V., "On Eddy Diffusivity, Quasi-Similarity and Diffusion Experiment in Turbulent Boundary Layers," M. J. Heat Mass Transfer, vol. 8, 1963.
- Mysel, K. J. "Flow of Thickened Fluids," U.S. Patent 2, 492, 173, 27 December 1949.
- Nadolink, R. H., "Determination of Turbulent Velocity Distributions with Non-Newtonian Additives Using High-Speed Photomicrosoopy," Master Thesis, University of Massachusetts, 1968.
- Nadolink, R. H., W. A. McNally and H. F. Dannemann, "Drag Reduction Characteristics of Streamlined Models with Polyox-WSR-301," ITN No. 3-68, Naval Underwater Weapons Research and Engineering Station, 16 January 1968.

Nikuradse, J., Ing.-Arch., vol 1, 1930 pp 306-332.

- Oldroyd, J. G., <u>Proceedings of the First International Congress on</u> <u>Rheology</u>, North Holland Publishing Co., Amsterdam, 1949, p. 130.
- Pasquill, F., "Lagrangian Similarity and Vertical Diffusion from a Source at Ground Level," <u>Quarterly Journal of the Royal</u> Meteorological Society, vol. 92, no. 392, April 1966.
- Poreh, M., and J. E. Cermak, "Study of Diffusion for a Line Source Turbulent Boundary Layer," Int. J. Heat Mass Transfer, vol. 7, 1964.

All for all the second of the states

- Poreh, Michael, and K. S. Hsu, "Diffusion of Drag Reducing Polymers in a Turbulent Boundary Layer," HHR Report No. 125, lowa Institute of Hydraulic Research, University of Iowa, lowa City, Iowa, April 1971.
- Prandtl, L., Z. Ver. Dtsch. Ing., vol. 77, pp. 105-114 (translated as NACA Technical Memorandum 720), 1933.
- Reo, G. N. V., "The Law of the Wall in a Thick Axisymmetric Turbulent Boundary Layer," Journal of Applied Mechanics, March 1967.
- Richmond, R. L., Ph.D. Thesis, California Institute of Technology, Pasadena, 1957.
- Schlichting, H., <u>Boundary Layer Theory</u>, McGraw-Hill Book Co., New York, sixth edition, 1968.
- Shapiro, A. H., Compressible Fluid Flow, The Ronald Press Co., 1953.
- Stow, F. S. Jr., and J. H. Elliot, "Drag on a Tethered Ball in Solutions of Drag Reducing Polymers," Hercules Research Center, Polymer Letters, vol. 8, 1970. pp. 611-615.
- Test, Frederick L., "Analytical Prediction of the Influence of Polymer Additives on the Shear Drag of Bodies of Revolution," <u>Journal</u> of Hydronautics, vol. 8, 1974, p. 45.
- Toms, B. A., "Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers," <u>Proceed-</u> <u>ings 1st International Congress on Rheology, 1948</u>, vol. 11, North Holland Publishing Co., Amsterdam, 1949, p. 135.
- Tullis, J. P., and K. L. V. Ramu, "Viscous Drag Reduction in Developing Pipe Flow," Colorado State University, November 1973.
- Virk, P. S., E. W. Merrill, H. S. Mickley, and K. A. Smith, "The Critical Wall Shear Stress for Reduction of Turbulent Drag in Pipe Flows by Poly (Ethylene Oxide) in Dilute Solution," <u>Modern Developments in the Mechanics of Continua</u>, Academic Press Inc., N. Y., 1966.
- Virk, F.S., H.S. Mickley and K.A. Smith, "The Ultimate Asymptote and Mean Flow Structure in Toms' Phenomenon," ASME Publication, 1971.
- Walters, R.R. and C.S. Wells, Jr., Effects of Distributed Injection of Polymer Solutions on Turbulent Diffusion," Report No. B-94000/1 CR-7, Advanced Technology Center, March 1971.

Not Mash Spin

- Wells, C.S., "<u>An Analysis of Uniform Injection of a Drag-Reducing</u> <u>Fluid into a Turbulent Boundary Layer</u>, LTV Research Center, Report No. 0-71100/8R-14, November 1968.
- Wetzel, Joseph M. and John P. Ripken, <u>Shear and Diffusion in a</u> <u>Large Boundary Layer Injected with Polymer Solution</u>, University of Minnesota St. Anthony Falls Hydraulic Laboratory, Project Report No. 114, February 1970.
- White, A., "Some Observations on the Flow Characteristics of Certain Dilute Macromolecular Solutions," Hendon College of Technology, London.
- White, W. D., and D. M. McEligot, "Transition of Mixtures of Polymers in a Dilute Aqueous Solution," Journal of Basic Engineering Trans., ASME, series D, vol. 92, no. 3, September 1970, p. 441.
- Vogel, W. M. and A. M. Patterson, "An Experimental Investigation of the Effect of Additives Injected into the Boundary Layer of an Underwater Body," Pacific Naval Laboratory, Victoria, British Columbia, Canada.
- White, Frank M., "An Analysis of Flat-Plate Drag with Polymer Additives," J. Hydronautics, vol. 2, no. 4, October 1968.
- White, Frank M., "Limitations on the Drag Reduction of External Bodies by Polymer Additives," AIAA Paper No. 68-127, AIAA 6th Aerospace Sciences Meeting, 1968.
- White, F. M. and G. H. Christoph, "A Simple Theory for the Two-Dimensional Compressible Turbulent Boundary Layer," Transactions of the ASME, September 1972.
- White, F. M., R. C. Lessmand and G. H. Christoph, "Analysis of Turbulent Skin Friction in Thick Axisymmetric Boundary Layers," University of Rhode Island, Kingston, R. I., 1972.
- White, F. M., Viscous Fluid Flow, McGraw-Hill Book Co., 1974.
- Wu, Jin, and Marshall P. Tulin, <u>Drag Reduction by Ejecting Additive</u> <u>Solutions Into a Pure-Water Boundary Layer</u>," Hydronautics Incorporated, Technical Report 353-7, June 1970.

Yu, Y. S., J. Ship Res., vol. 3, pp. 33-40, 1958.

and the second second

. .

APPENDIX A

SKIN FRICTION RELATIONS

The conservation of mass and the momentum equation for axisymmetric flow are given by

$$\frac{\partial}{\partial \mathbf{x}} (\rho \mathbf{u} \mathbf{r}) + \frac{\partial}{\partial y} (\rho \mathbf{v} \mathbf{r}) = 0$$
 (A1)

and

ſ

pur
$$\left(\frac{\partial u}{\partial x}\right) + \rho vr \left(\frac{\partial u}{\partial y}\right) = -r \left(\frac{dp}{dx}\right) + \frac{\partial}{\partial y}(r\tau)$$
. (A2)

White's derivation is reproduced here to show the incorporation of the polymer concentration terms.

Defining a stream function which satisfies equation (Al) to eliminate \boldsymbol{v}

$$\frac{\partial \Psi}{\partial y} = \rho u r \qquad \qquad \frac{\partial \Psi}{\partial x} = -\rho v r . \tag{A3}$$

Solving (A3) for Ψ yields

$$\Psi = \int_{y_0}^{y} \rho ur \, dy \,. \tag{A4}$$

Rewriting in law of the wall variables

$$\Psi = \int_{y_0^+}^{y_0^+} \rho r v u^+ dy^+ \qquad (A5)$$

or, in terms of Y^+

A-1

$$\frac{\Psi}{\mu r_{0}} = \int_{0.1108}^{Y_{e}^{+}} \frac{(r_{0})^{2}}{(r_{0})^{2}} u^{+} dY^{+}$$
 (A6)

Writing equation (A2) in wall variables and substituting in equation (A3) to eliminate v

$$\rho \mathbf{r} \mathbf{v}^{\star} \mathbf{u}^{\dagger} \frac{\partial}{\partial \mathbf{x}} (\mathbf{v}^{\star} \mathbf{u}^{\dagger}) - \frac{\partial \Psi}{\partial \mathbf{x}} \frac{\mathbf{v}^{\star}}{\mathbf{v}} \frac{\partial}{\partial \mathbf{y}^{\dagger}} (\mathbf{v}^{\star} \mathbf{u}^{\dagger}) = -\mathbf{r} \frac{d\mathbf{p}}{d\mathbf{x}} + \frac{\mathbf{v}^{\star}}{\mathbf{v}} \frac{\partial}{\partial \mathbf{y}^{\dagger}} (\mathbf{r} \tau). \quad (A7)$$

The x derivatives must be handled by the chain rule, since each of the parameters $(Y^+, \alpha, r_o^+, c_w)$ in the law of the wall is a function of x. Thus, we substitute

$$\frac{\partial}{\partial x} = \frac{\partial V}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial x} + \frac{$$

It is assumed throughout that ρ_W and ν_W are constant in this analysis. Differentiating u

$$u = v^{*}(x) u^{+}(Y^{+}, \alpha, r_{o}^{+}, c_{w})$$
 (A9)

$$\frac{d(v \star u^{+})}{dx} = (u^{+} \frac{dv \star}{dx} + v \star \frac{\alpha Y^{+}}{dx} \frac{\partial u^{+}}{\partial Y^{+}} + v \star \frac{d\alpha}{dx} \frac{\partial u^{+}}{\partial \alpha} + v \star \frac{dr_{o}}{dx} \frac{\partial u^{+}}{\partial r_{o}} + v \star \frac{dC_{w}}{dx} \frac{\partial u^{+}}{\partial C_{w}})$$
(A10)

$$\frac{\partial(\Psi)}{\partial \mathbf{x}} = \frac{dY^{+}}{dx} \frac{\partial\Psi}{\partial Y^{+}} + \frac{d\alpha}{dx} \frac{\partial\Psi}{\partial \alpha} + \frac{dr_{o}^{+}}{dx} \frac{\partial\Psi}{\partial r_{o}^{+}} + \frac{dC_{w}}{dx} \frac{\partial\Psi}{\partial C_{W}}.$$
 (A11)

1-2

and the second second

Substituting in (A7)

$$\rho \mathbf{r} \mathbf{v}^{\star} \mathbf{u}^{\dagger} \left(\mathbf{u}^{\dagger} \frac{d\mathbf{v}^{\star}}{d\mathbf{x}} + \mathbf{v}^{\star} \frac{d\mathbf{Y}^{\dagger}}{d\mathbf{x}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{Y}^{\dagger}} + \mathbf{v}^{\star} \frac{d\mathbf{u}}{d\mathbf{x}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{a}} + \mathbf{v}^{\star} \frac{d\mathbf{r}^{\dagger}}{d\mathbf{x}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{r}^{\dagger}} \right)$$

$$+ \mathbf{v}^{\star} \frac{d\mathbf{C}_{\mathbf{w}}}{d\mathbf{x}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{C}_{\mathbf{w}}} - \frac{\mathbf{r}_{\mathbf{o}}}{\mathbf{r}} \frac{\mathbf{v}^{\star 2}}{\mathbf{v}_{\mathbf{w}}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{Y}^{\dagger}} \left(\frac{d\mathbf{Y}^{\dagger}}{d\mathbf{x}} - \frac{\partial \Psi}{\partial \mathbf{Y}^{\dagger}} + \frac{d\mathbf{u}}{d\mathbf{x}} \frac{\partial \Psi}{\partial \mathbf{u}} \right)$$

$$+ \frac{d\mathbf{r}_{\mathbf{o}}^{\dagger}}{d\mathbf{x}} \frac{\partial \Psi}{\partial \mathbf{C}_{\mathbf{w}}} - \frac{\mathbf{r}_{\mathbf{o}}}{\mathbf{v}} \frac{\mathbf{v}^{\star 2}}{\mathbf{v}_{\mathbf{w}}} \frac{\partial \mathbf{u}^{\dagger}}{\partial \mathbf{Y}^{\dagger}} \left(\frac{d\mathbf{Y}^{\dagger}}{d\mathbf{x}} - \frac{\partial \Psi}{\partial \mathbf{Y}^{\dagger}} + \frac{d\mathbf{u}}{d\mathbf{x}} \frac{\partial \Psi}{\partial \mathbf{u}} \right)$$

$$+ \frac{d\mathbf{r}_{\mathbf{o}}^{\dagger}}{d\mathbf{x}} \frac{\partial \Psi}{\partial \mathbf{r}_{\mathbf{o}}^{\dagger}} + \frac{d\mathbf{C}_{\mathbf{w}}}{d\mathbf{x}} \frac{\partial \Psi}{\partial \mathbf{C}_{\mathbf{w}}} = -\mathbf{r} \frac{d\mathbf{p}_{\mathbf{e}}}{d\mathbf{x}} + \frac{\mathbf{r}_{\mathbf{o}}}{\mathbf{r}} \frac{\mathbf{v}^{\star}}{\mathbf{v}_{\mathbf{w}}} \frac{\partial(\mathbf{r}\tau)}{\partial \mathbf{Y}^{\dagger}} .$$

$$(A12)$$

Terms (a) and (b) cancel using equation (A6). Multiplying out, cross multiplying by r/r_o^2 and integrating with respect to Y^+ gives

$$\rho \mathbf{v} \star \frac{d\mathbf{v} \star}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\mathbf{r}_{2}^{2}}{\mathbf{r}_{0}^{2}} u^{+2} d\mathbf{Y}^{+} + \rho \mathbf{v} \star^{2} \frac{d\alpha}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\mathbf{r}_{2}^{2}}{\mathbf{r}_{0}^{2}} u^{+} \frac{\partial u^{+}}{\partial \alpha} d\mathbf{Y}^{+}$$

$$+ \rho \mathbf{v} \star^{2} \frac{d\mathbf{r}_{0}^{+}}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\mathbf{r}_{2}^{2}}{\mathbf{r}_{0}^{2}} u^{+} \frac{\partial u^{+}}{\partial \mathbf{r}_{0}^{+}} d\mathbf{Y}^{+} + \rho \mathbf{v} \star^{2} \frac{d\mathbf{c}_{w}}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\mathbf{r}_{2}^{2}}{\mathbf{r}_{0}^{2}} u^{+} \frac{\partial u^{+}}{\partial \mathbf{c}_{w}} d\mathbf{Y}^{+}$$

$$- \frac{\mathbf{v} \star^{2}}{\mathbf{r}_{0}^{-} \mathbf{v}_{w}} \frac{d\alpha}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\partial u}{\partial \alpha} \frac{\partial u}{\partial \mathbf{v}^{+}} d\mathbf{Y}^{+} - \frac{\mathbf{v} \star^{2}}{\mathbf{r}_{0}^{-} \mathbf{v}_{w}} \frac{d\mathbf{r}_{0}^{+}}{\mathbf{r}_{0}^{-}} \frac{\partial \Psi}{\partial \mathbf{r}_{w}^{+}} \frac{\partial u^{+}}{\partial \mathbf{r}_{v}^{+}} d\mathbf{Y}^{+}$$

$$- \frac{\mathbf{v} \star^{2}}{\mathbf{r}_{0}^{-} \mathbf{v}_{w}} \frac{d\alpha}{d\mathbf{x}} \int_{0}^{\mathbf{r}_{e}^{+}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial \mathbf{r}_{v}^{+}} d\mathbf{Y}^{+} = - \frac{d\mathbf{p}}{\mathbf{r}_{0}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{0}^{-}} \frac{\partial \Psi}{\mathbf{r}_{v}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-}} \frac{d\mathbf{r}_{v}^{+}}{\mathbf{r}_{v}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{v}^{-}} \frac{d\mathbf{r}_{v}^{+}}{\mathbf{r}_{v}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-}} \frac{\mathbf{v}}}{\mathbf{r}_{w}^{-}} \frac{\mathbf{v}}{\mathbf{r}_{w}^{-$$

Where the integral of the last term is $-\frac{v^*}{v}r_{ow}\tau$ and the term

$$\frac{dp_{e}}{dx} \int_{0}^{Y^{+}} (\frac{r}{r_{o}})^{2} dY^{+} = -\rho_{w} U_{e} \frac{dU_{e}}{dx} \int_{0}^{Y^{+}} (\frac{r}{r_{o}})^{2} dY^{+}$$
(A14)

A-3

may be simplified by substituting in e^{2Y^+/r_0^+} for $(\frac{r}{r_0})^2$ and integrated resulting in

$$-\rho_{w} U_{e} \frac{dU_{e}}{dx} \frac{r_{o}^{+}}{2} (e^{-1}).$$
 (A15)

Rearranging (A13) yields

$$\rho v \star \frac{dv \star}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+^{2}} dY^{+} + \rho v \star \frac{d\alpha}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial \alpha}$$

$$- \frac{1}{\rho v r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+} + \rho v \star^{2} \frac{dr_{o}^{+}}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial r_{o}^{+}}$$

$$- \frac{1}{\rho v r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+} + \rho v \star^{2} \frac{dc_{w}}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial r_{o}^{+}}$$

$$- \frac{1}{\rho v r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+} + \rho v \star^{2} \frac{dc_{w}}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial c_{w}^{+}}$$

$$- \frac{1}{\rho v r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+} + \rho v \star^{2} \frac{dc_{w}}{dx} \int_{0}^{v_{e}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial c_{w}^{+}}$$

$$- \frac{1}{\rho v r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+} = \rho U_{e} \frac{dU_{e}}{dx} \frac{r_{o}^{+}}{2} (e^{2Y^{+}/r_{o}^{+}} -1) - \frac{v \star}{v} \tau_{w}. \quad (A16)$$

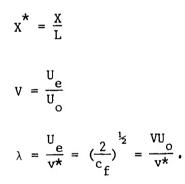
Dividing by ρ and remembering that $\rho\nu$ = μ yields

$$\mathbf{v} \star \frac{d\mathbf{v} \star}{d\mathbf{x}} \mathbf{G}_{1} + \mathbf{v} \star^{2} \frac{d\alpha}{d\mathbf{x}} \mathbf{H} + \mathbf{v} \star^{2} \frac{d\mathbf{r}_{0}^{+}}{d\mathbf{x}} \mathbf{I} + \mathbf{v} \star^{2} \frac{d\mathbf{c}_{w}}{d\mathbf{x}} \mathbf{J}$$

= $U_{e} \frac{dU_{e}}{d\mathbf{x}} \frac{\mathbf{r}_{0}^{+}}{2} (e^{2\mathbf{Y}_{e}^{+}/\mathbf{r}_{0}^{+}} -1) - \frac{\mathbf{v} \star}{\mathbf{v}} \tau_{w}$. (A17)

A-4

$$\frac{\text{Where}}{G_1} = \int_{0}^{Y_e} \frac{2Y'}{r_o} + \frac{1}{u^2} \frac{1}{dY'}$$
(A18)


$$H = \int_{0}^{Y^{+}} \{e^{2Y^{+}/r_{0}^{+}} u^{+} \frac{\partial u^{+}}{\partial \alpha} - \frac{1}{\mu r_{0}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} \} dY^{+}$$
(A19)

$$I = \int_{0}^{Y_{e}^{+}} \{e^{2Y_{o}^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial r_{o}^{+}} - \frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial r_{o}^{+}} \frac{\partial u^{+}}{\partial Y^{+}} \} dY^{+}$$
(A20)

$$J = \int_{0}^{Y^{+}} \left\{ e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial c_{w}} - \frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial c_{w}} \frac{\partial u^{+}}{\partial Y^{+}} \right\} dY^{+}.$$
 (A21)

Defining dimensionless parameters

.

Rewriting terms of equation (Al7) with these nondimensional parameters

$$\mathbf{v^*} = \frac{\mathbf{VU}}{\lambda} = \frac{\mathbf{U}}{\lambda}$$

$$\frac{1}{L}\frac{d\mathbf{v}^{\star}}{d\mathbf{x}^{\star}} = \frac{d(\underline{U}_{e}/\lambda)}{d\mathbf{x}^{\star}} = \frac{1}{L}\left(\frac{U}{\lambda}\frac{dV}{d\mathbf{x}^{\star}} - \frac{U}{\lambda^{2}}\frac{dV}{d\mathbf{x}^{\star}}\right)$$

$$\alpha = \left(\frac{v}{v}\frac{w}{v}\right) \frac{dP_e}{dx} = -\frac{v}{v}\frac{w}{v^*} \quad U_e \frac{dU_e}{dx}$$

$$\alpha = -\frac{v}{v}\frac{w}{v^*} \quad \lambda \frac{dU_e}{dx} = -\frac{v}{u}\frac{w}{v} \quad \lambda^3 \frac{dU_e}{dx} = -\frac{v}{u}\frac{w}{v} \quad \lambda^3 \frac{dV}{dx} = -\frac{v}{u}\frac{\lambda^3}{v} \frac{dV}{dx}$$
now $R_0 = \frac{U_o L}{v}$.

Therefore,

$$\alpha = - \frac{\lambda^3}{R_L V^2} \frac{dV}{dx^*}$$

but
$$-\frac{1}{V^2}\frac{dV}{dx^*} = (\frac{1}{V})$$

where ' denotes first derivative with respect to x^* , resulting in

$$\alpha = \frac{\lambda^3}{R_L} \left(\frac{1}{V}\right)'.$$

Finally

.

$$\frac{1}{L}\frac{d\alpha}{dx^{\star}} = \frac{1}{L} \begin{bmatrix} \frac{3\lambda^2}{R_L} & (\frac{1}{V})' & \frac{d\lambda}{dx^{\star}} + \frac{\lambda^3}{R_L} & (\frac{1}{V})'' \end{bmatrix}.$$

Substituting in (A-17)

$$\frac{U_{o}V}{L\lambda} \left(\frac{U_{o}}{\lambda}V' - \frac{U_{o}V}{\lambda^{2}}\frac{d}{dx^{*}}\right) G_{1} + \frac{V^{2}U^{2}}{L\lambda^{2}}\frac{3\lambda^{2}}{R_{r}} \left(\frac{1}{V}\right)' \frac{d\lambda}{dx^{*}}.$$

Multiply through by λ and rearranging setting $\alpha = \frac{\lambda^3}{R_L} \left(\frac{1}{V}\right)'$

$$\frac{d\lambda}{dx^{\star}} (3\alpha H - G_1) + \frac{V}{V} \lambda G_1 - \frac{\lambda^2 r_0^{\star}}{2} (e^{-1})$$
(A22)

$$+ \frac{\lambda^{\prime 4}}{R_{L}} \left(\frac{1}{V}\right)^{\prime \prime} H = 1 R_{L} V - \lambda \frac{dr^{+}}{dx^{\star}} I - \lambda \frac{dc}{dx^{\star}} J \qquad (A22)$$

where G, H, I, J are given by

$$G_{1} = \int_{0}^{Y_{e}^{+}} e^{2Y_{o}^{+}/r_{o}^{+}} u^{+} dY^{+}$$
(A23)

$$H = \int_{0}^{Y_{e}^{+}} \left\{ e^{2Y_{o}^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial \alpha} - \frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial \alpha} \frac{\partial u^{+}}{\partial Y^{+}} \right\} dY^{+}$$
(A24)

.

$$\frac{\partial u^{+}}{\partial \alpha} = \int_{0}^{Y^{+}} \frac{r_{o}^{+}}{4KY^{+} \left[1 + \frac{\alpha}{2} r_{o}^{+} \left(e^{-1}\right)\right]^{\frac{1}{2}}} dY^{+}$$
(A25)

$$\frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial \alpha} = \int_{0}^{Y^{+}} e^{2Y^{+}/r_{o}^{+}} \frac{\partial u^{+}}{\partial \alpha} dY^{+}$$
(A26)

and

•

!

$$\frac{\partial u^{+}}{\partial Y^{+}} = \frac{1}{KY^{+}} 1 + \frac{\alpha}{2} r_{0}^{+} (e^{2Y^{+}/r_{0}^{+}} -1)^{\frac{1}{2}}$$
(A27)

$$I = \int_{0}^{Y_{e}^{+}} e^{2Y'/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial r_{o}^{+}} - \frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial r_{o}} \frac{\partial u^{+}}{\partial Y^{+}} dY^{+}$$
(A28)

•

where $\frac{\partial u^{+}}{\partial r_{o}^{+}} = \int_{0}^{Y_{e}^{+}} -\frac{1}{2KY^{+}} \frac{\left[-\frac{\alpha}{2} + \frac{\alpha}{2} e^{2Y^{+}/r_{o}^{+}} - \frac{\alpha Y^{+}}{r_{o}^{+}} e^{2Y^{+}/r_{o}^{+}}\right]}{\left[1 - \frac{\alpha}{2} r_{o}^{+} (1 - e^{-2Y^{+}/r_{o}^{+}})\right]} dY^{+}$

$$= \int_{0}^{Y_{e}^{+}} \frac{\alpha}{4\kappa Y^{+}} \frac{\left[(1 - e^{2Y^{+}/r_{o}^{+}}) + \frac{Y^{+}}{2r_{o}^{+}} + e^{2Y^{+}/r_{o}^{+}}\right]}{\left[1 + \frac{\alpha}{2}r_{o}^{+} + (e^{2Y^{+}/r_{o}^{+}} - \frac{1}{2})\right]} dY^{+}$$
(A29)

and

$$\frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial r_{o}^{+}} = \frac{\partial}{\partial r_{o}^{+}} \int_{0}^{Y^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} dY^{+}$$
$$= \int_{0}^{Y^{+}} \left\{ -\frac{2Y^{+}}{r_{o}^{+}} e^{2Y^{+}/r_{o}^{+}} u^{+} + e^{2Y^{+}/r_{o}^{+}} \frac{\partial u^{+}}{\partial r_{o}^{+}} dY^{+} \right\}$$
(A30)

$$J = \int_{0}^{Y^{+}} \left\{ e^{2Y^{+}/r_{o}^{+}} u^{+} \frac{\partial u^{+}}{\partial c_{w}} - \frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial c_{w}} \frac{\partial u^{+}}{\partial Y^{+}} \right\} dY^{+}$$
(A31)

where

1

$$\frac{\partial u^{+}}{\partial c_{w}} = \frac{2.3}{2(c_{w})^{\frac{1}{2}}} \ln \frac{v^{*}}{v_{o}^{+}} = \frac{1.15}{c_{w}} \ln \frac{v^{*}}{v_{o}^{+}}$$
(A32)

and

$$\frac{1}{\mu r_{o}} \frac{\partial \Psi}{\partial c_{w}} = \int_{0}^{Y^{+}} e^{2Y^{+}/r_{o}^{+}} \frac{\partial u^{+}}{\partial c_{w}} dY^{+}.$$
 (A33)

A-8

APPENDIX B

COMPUTER PROGRAM SAMPLES

радатанана полодо адараранаан полодо адараранаан полодо адараданана поло адараданана адараданана адарадана адарадана адарадана породо адарадана породо адарадана породо адарадана породо адарадана породо породо адарадана породо породо адарадана адарадана породо породо адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана адарадана породо по по по по по по по по по по по по по	222		A LALA PAL	ALAIA.						000000			
	2222											***	
	000	1944	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								• • •		
		000	NNNNNNN	NNN		1			aaa	200		Ē	
	~	nnn	ANN NNNN NNN	ANA					0000000000000000	200000	*** ***	***	
ава ава поп оп ваа ава пор 000 вавававаае пор 000 вавававаеа поро аваававаеа пор лоо латеациилар Acct.645114 латеас/21/75 Entitevate латеас/21/75 Entitevate		nnn		NNNNNN			******	A A	000000000000	00004	*****	E	
000 аавааваясаар аавааваасаар 00300 ааваавааа 00300 00300 00300 000 00000	_	000		NNNNN				44		000	****	5	
раваравана 000 000 00 ассличтик тчервиаттси иаче=алимлау ассттеб45114 0 атетосулут5 елттемана			Z		0000 0000						****	•	
JOB ACCAUNTING TYFOPMATICN Namesaguunaan acctegasii4' natesaguunaan acctegasii4' natesgs/21/75 eniitonsam	INDUIN	າກກາດທາກກາ	NN	MNN	00000000000000000000000000000000000000		1		000	8434		-	
	đ									Œ	1		
		TIME-04=10/11/05		T1ME-OFF=10/46/]9	£[/97/								
TIME USED Frwp=00/04/31.647 CM4N=00/00/17.344							*				1	1	
FACILITIFS NOT USEN CADE=002 CSC= ±002 LINE527 C±01=0									4				
Poly	Poly MER	Co	CONCEN LRATION	, TR,	VOIT		μ	5 WPPM	Md				ŧ0
(<u>.</u>)	r. x n	ا≀ ~∣ن*	30										
018 FU	DIFFUSION	15		2	MOREL								
COMB	COMBINED	TJ GOW	TZ										

S. C. Sand

B-2

	(N 0001		People Calimate	
			- 1000 1000 1000 1000 1000 1000 1000 10	
		1		
351 351 <td></td> <td>5</td> <td></td> <td></td>		5		
0000		ŝ	UPLUS. YPLUSC. STEP. + VUSTAV- VSTAVIN-UI - IJELTAD JUELTA, * COFECA + CDCV-CV	
0000 00119 00119 00119 00119 00119 00119 00119 00119 </td <td></td> <td></td> <td>1.C1.U1PLUS.OFLR.OCWDIS.C200).YE+ JPOLY.GAMMA.D1SPLNC.THOWFNT.C201</td> <td></td>			1.C1.U1PLUS.OFLR.OCWDIS.C200).YE+ JPOLY.GAMMA.D1SPLNC.THOWFNT.C201	
Operation Operation <t< td=""><td></td><td>÷</td><td>AL (2001, YOWAX, W]. OFLY. CWO. AK2. AK3. AVG. KYJ. TTHFFK, YOT DEV. TAAD. TOPA.</td><td></td></t<>		÷	AL (2001, YOWAX, W]. OFLY. CWO. AK2. AK3. AVG. KYJ. TTHFFK, YOT DEV. TAAD. TOPA.	
Olientics Olientics <tholientics< th=""> <tholientics< th=""> <tho< td=""><td></td><td>04</td><td>2551192.</td><td></td></tho<></tholientics<></tholientics<>		04	2551192.	
1111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		-	The stand	
001 7457(1) 05 (1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		1		
0011 10.00000000000000000000000000000000000			101100401011014040101212141011214401012144010110101010	
0017 Transmitter Mutter Total and the source of the sour		20		
0011 Trittent, milarte wourten 0011 Trittent, milarte 0011 Trittent, milarte <t< td=""><td></td><td>2</td><td></td><td></td></t<>		2		
0011 14. FORME 11. 5. 11. 10. 11. 0011 10. 10. 10. 10. 10. 10. 0011 10. 10. 10. 10. 10. 10. 0011 10. 10. 10. 10. 10. 10. 0011 10. 10. 10. 10. 10. 10. 0012 10. 10. 10. 10. 10. 10. 0013 10. 10. 10. 10. 10. 10. 0013 10. 10. 10. 10. 10. 10. 0013 10. 10. 10. 10. 10. 10. 0014 10. 10. 10. 10. 10. 10. 0015 10. 10. 10. 10. 10. 10. 0015 10. 10. 10. 10. 10. 10. 0015 10. 10. 10. 10. 10. 10. 0015 10. 10. 10. 10. 10. 10. 0015 10. 10. 10. 10. 10. 10.		ੇ	TERNAL WILAYER.WOUTPUT	
0015 14 Constitute Con			1.1.1	
0011 1.0 0.0 0.0 0.0 0011 0.0 0.0 0.0 0.0 0011 0.0 0.0 0.0 0.0 0011 0.0 0.0 0.0 0.0 0011 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0012 0.0 0.0 0.0 0.0 0013 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014 0.0 0.0 0.0 0.0 0014			1110	
0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 7 0011 <th< td=""><td></td><td></td><td></td><td></td></th<>				
0017 7 4.444 4.94 0022 10 000000000000000000000000000000000000			LANDA CP SUMAG DELY RO.	
0001 000000000000000000000000000000000000		~	Ind	
0019 000000000000000000000000000000000000			QMATT/.2512.4.512.4.2512.4.2512.1.512.4.2512.1.512.4.2511.A.15.3141	
0021 110 0001UF W1U5 ULLID ULSU 0022 111 0001UF W1U5 ULLID ULLID 0022 111 CONTICUT SDAL ULLID ULLID 0022 111 CONTICUT SDAL ULLID ULLID 0022 111 CONTICUT SDAL ULLID ULLID 0022 NU11/231 CONTICUT SDAL ULLID 0023 CONTICUT SDAL ULLID ULLID 0021 CONTICUT CONTICUT ULLID ULLID 0021 CONTICUT CONTICUT ULLID ULLID 0023 CONTICUT CONTICUT ULLID ULLID 0024 CONTICUT ULLID ULLID ULLID 0025 UCLID ULLID ULLID ULLID 0025 UCLID ULLID ULLID ULLID 004 CONTICUT ULLID ULLID ULLID 004 ULLID ULLID ULLI			04411113 3.1613 8.354 3.1613 4.1611 4.	
0000 0000 0000 0000 0000 0000 0000 00				
00221 111 00100 01100 01100 01100 01100 0022 111 111 111 111 111 111 111 0022 111 111 111 111 111 111 111 0022 111 111 111 111 111 111 111 111 0022 111 111 111 111 111 111 111 111 0023 101 120 101 112 111 111 111 0023 102 101 120 101 111 111 111 0033 105 101 111 111 111 111 111 0033 105 101 111 111 111 111 0033 105 101 111 111 111 111 0033 105 101 111 111 111 111 0033 105 105 111 111 111 111 0033 105 105 101 111 111 111 0033 105 105 111 111 111		1		
0027 715 1 <td< td=""><td></td><td></td><td>DOULDSE YPLUS DELTED DISPLAC THURKY</td><td></td></td<>			DOULDSE YPLUS DELTED DISPLAC THURKY	
0023 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 <t< td=""><td></td><td>10</td><td># 10.1.0 ECUTOR CT #10</td><td></td></t<>		10	# 10.1.0 ECUTOR CT #10	
000000000000000000000000000000000000		1		
200000 2000000			AND CADE SOMAL PORAL DELIVIT	
000 000 000 000 000 000 000 000		ž		
000000 000000		•	QHAT(4F9.5 .5F8.7.2F10.4.2F12.1.F11.5.741	
2000 200 2000 2		-	Qualifie G.101.610 G.1011	
2000 2000 2000 2000 2000 2000 2000 200				
2000 2000 2000 1400			V865140	
000000 0 0 0 0 0 0 0 0 0 0 0		•		
000 000 000 000 000 000 000 000		×	U=1.253E-5	
		>	STAPED.OR	
2000 200 2000 2		· ·		
2000 2000 2000 2000 2000 2000 2000 200				
0003 0013 0013 0013 0014 0014 0014 0014 0015			0-62/1/61-02=	
2000 2014 2014 2014 2014 2014 2014 2014		•	Sareas0.0	
00055 00055 00139 00140 0000 00140 0000 00140 0000 00140 0000 00140 00000 00000 00000 00000 00000 00000 00000 00000 00000 0		U		
2000 2001 2001 2001 2005		• •		
2000 200 2000 2				
000 004 004 004 004 004 004 004 004 004		>	== (, , , , , , , , , , , , , , , , , ,	
00033 0004 0004 0004 0004 0005 0005 0005		U	NST=+3.14159/2.0*RHO=U0*E2	
00030 00417 00447 00447 00447 00447 00447 00447 00447 00050 000000		Ċ	NGTS=PM003 14150	
00040 00041 00041 00051 00				
000 00443 00443 00445 00551 0055		2		
000 1400 1		7	ATA=100	
2400 2440 2440 2440 20055		-		
000447 000444 000444 000444 000515 00055 0005				
00043 00044 00044 00044 00051 00051 00051 00051 00051 00051 00051 00051 00500000000		-		
00044 00447 00447 00448 0051 00552 00552 00552 00552 00552		a	AD (2 · 20) (AXL (I) · I =] · NDATA)	
0044 0044 0044 0044 0051 0051 0055 2 0055 2 2 0055 2 2 2 2 2 2 2 2 2		4	ar (2, 30) (00 (1) (1) (1) (1)	
00044 00044 00044 00551 00552 00552 00552 20055		r -		
00440 0044 0055 0055 0055 0055 0055 2 0055 2 2 2 2		a	aD (2.20) (VIWV (T) · [=] · WDaTA)	
0054 00551 00551 00552 00552 00552 20055 2005 20055 20		a	AD(2.20)(CP(f),T+1.NDATA)	
00052 00052 00052 00052 00052 00052 20055		a		
2500 2500 2500 2500 2500 2500 2500 2500		,		
12 12 12 12 12 12 12 12 12 12		•		
0050 1500 12 2500 2500 2500 2500 2500 25		-	L([]=AxL(])/12.0	
12 12 12 12 12 12 12 12 12 12		0		
2000 2005 2005 2005 2005 2005 2005 2005				
0052 0053 2055 21 2055 21		-		
0055 0055 2055 21		4	0=07	
0054 0055 71		a	0=0.0	
12 500			0=0	
0056				
-		-	111 + 220 + 120 + (100) + 200 + 200 + (110) + 200 +	
	0000 N	•	0=xf(1)	

B-3

The All Street in

В-

? :

White we will be a

- 64.00

LN 0171 LN 0172 LN 0173	102	DELTAD=(YPLUSV) + XNU/VSTARE CONTINUE	
		AKS={!!!!\csopedase=4k/uPLuS 1F (xcHFCk_L]_60_0i AK3=1.5	
	1	F (CHECK.6T.60.0) AK3=2.15	
LN 0175 C	4.	INTERGRAFE FOURTION TO DETERMINE DELTAD	
LN 0178		TITXXX.LI.30.01 60 10 101	
	1	PRMT(1)=x(.(1)	
LN 0151		D→H1(1)=1)=1((1))-2.0	
		ND MEL	
LN 0185		Y (1) = DELT 4D	
N 0195		111 (1)=1.0 111 (1)=1.0	
	101		
0189			
0190	L)'	SOLVE EQUATION FOR LAMDA WITH PREVIOUS ASSUMED LAMDA	
LN 0192		PPWT (1) = XL ST AP (1)	
5610 N			
		PP41 (5)±0,0	
LN 01948		14 (1.4.4.15) ATT) XLANDA(1)=45.0	
		CALL RKGS(PDWT,Y,DFRY,WDIM,IHLF+BDLAYER,MOUTPUT,AUX]	
LN 0202		If (1.EG.ISTAR1) DfLB0=DfLB	
0203		XLAMDAC=XLAMDAC- (DFLB0-DFLB)	
2020		MILH FAMA JUSI COMPUTEDIREM POINT) RECOMPUTE ALPHANANA 40.	
2000			
LN 0208			
	i	VINUOD (1.1)=0.0	
		UEx(1+1)=UEx(1)	
LN 0211			
2120	5		
120	7	CONTINUE AL DTART (AMDAPPEDAVINUP (1+1) / PL	
	1	CHEXSEP=3.0 at PHAeH-G1	
LN 0216		F (CHEXSEP.65.0.0) 60 TO 90	
N 0217		V214FE=UEX(1+1)/XLAMDAC	
4170	,		
	. د	INTEGNTE EVOLUTION FOR OF SUPERIOR WERN VALUED (OMPUTED) Thes determines revenues i aved therefore for competency i and	
1220	,		
N 0222		C. # 2	
		STEP=0.5	
		7 (1) =0 ° C	

SALEA AN

	000000000000000000000000000000000000		
main filter main filter main filter <th>000000000000000000000000000000000000</th> <th></th> <th></th>	000000000000000000000000000000000000		
State State State State State State <td< th=""><th>1.1 1.1<th></th><th></th></th></td<>	1.1 1.1 <th></th> <th></th>		
0. Description 0.0011	0. Service 0.11 Service		
3.4 mention intervention 3.4 mentintervention	3.4 Section Sector 3.4 Sector 3.5 Sector 3.6 Sector 3.7 </td <td>1220</td> <td></td>	1220	
Non-sector sector Sector sector Sector sector Sector Sector sector Sector Sector sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector		6220	
Rest	American American American A		
Anticipation Anticipation Anticipation	Anticipation Anticipation Anticipation		
Month Month Month <td>Maintoin Maintoin Maintoin Maintoin<</td> <td></td> <td>2-30°5=(*)1##d</td>	Maintoin Maintoin Maintoin Maintoin<		2-30°5=(*)1##d
Control Control Control <	REVENSION REVENSION REVENSION		
Americanity Americanity Americanity <td>And State State And State State</td> <td></td> <td></td>	And State State		
Intervision Intervision Intervision <td>Image: State State</td> <td></td> <td>NEWTISE 10</td>	Image: State		NEWTISE 10
C TUDULUS.I.Y. (A. SOMELANDER) C TUDULUS.I. (A. CONDER) C	Micro List List Constrained Micro List List Constrained Micro List List Constrained Micro List List List List List List List List		
Characteric Contract Contract Contract Contract <t< td=""><td>Characteristic Contract Characteristic Contract Contracteristic Contract Contracteristic Contract Contracteristic Contracteristic Contracteristic Contracteristic<!--</td--><td></td><td></td></td></t<>	Characteristic Contract Contracteristic Contract Contracteristic Contract Contracteristic Contracteristic Contracteristic Contracteristic </td <td></td> <td></td>		
7 Title Uncertent work and stream uncorrect of the Sector of the Secto	Pride-Unit Fride-Unit Fride-Unit Fride-Unit Pride-Prid	N 0237	+10° (3) =0° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1
r rueuritierensistering rueuritierensisterin	7 1 <td>N 0238</td> <td>CALL PRGS(PRHT.*.DERT.NDIM.INLF.BOLAYEP.HOUTPUT.AUX)</td>	N 0238	CALL PRGS(PRHT.*.DERT.NDIM.INLF.BOLAYEP.HOUTPUT.AUX)
0.00000000000000000000000000000000000	0.00000000000000000000000000000000000	0100 4	TERIOLISE IT. CR. DORYL MULTINE CD. TO S2
All and all and all all all all all all all all all al	All and all all all all all all all all all al		
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.0000000 0.0000000000000000000000000	Image: State of the state o		
CT11:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	Contraction Contraction Contrection <td></td> <td></td>		
0.0.1 SCH STATE STAT	0.0.1 Cf(1):1:0:0:11:0:0:11:0:0:11:0:0:11:0:0:11:0:0:11:0:0:11:0:0:11:0		#0PLUS (1+1) #00PLUSF
Intrinsion Intrinsion Intrinsion <td>Animalization Animalization Animalization A</td> <td></td> <td>CF(1+1)×2.5/(%L MB4C+2)</td>	Animalization Animalization Animalization A		CF(1+1)×2.5/(%L MB4C+2)
1 1 <td>1 1<td>1400 N</td><td>日本日本の「シートントの人間を見たった」では、コートレッシュ、ロートは、シート・シートの「シート」」の「シート」の「シート」の「シート」」の「シート」」の「シート」」の「シート」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」」の「シート」」」」」」」の「シート」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</td></td>	1 1 <td>1400 N</td> <td>日本日本の「シートントの人間を見たった」では、コートレッシュ、ロートは、シート・シートの「シート」」の「シート」の「シート」の「シート」」の「シート」」の「シート」」の「シート」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」」の「シート」」」」」」」の「シート」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」</td>	1400 N	日本日本の「シートントの人間を見たった」では、コートレッシュ、ロートは、シート・シートの「シート」」の「シート」の「シート」の「シート」」の「シート」」の「シート」」の「シート」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」の「シート」」の「シート」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」の「シート」」」」の「シート」」」」」」」の「シート」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
0.000 0.000 0.000 0.000 0.000 0.000 <td>And State And State And State</td> <td></td> <td></td>	And State And State And State		
05.5 Distriction 05.5 Filter 05.5	05.5 0.5		
0.2.1 0.1.1 0.1.1 0.1.1 0.1.1 0.2.2 0.1.1 0.1.1 0.1.1 0.2.3 0.1.1 0.1.1 0.1.1 0.2.4 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 0.1.1 0.1.1 0.1.1 0.2.5 <td>0.4.1 0.4.1 0.4.1 0.4.1 0.4.2 0.4.1 0.4.1 0.4.3 0.4.1 0.4.1 0.4.4 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.6 0.4.1 0.4.1 0.4.7 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1</td> <td></td> <td></td>	0.4.1 0.4.1 0.4.1 0.4.1 0.4.2 0.4.1 0.4.1 0.4.3 0.4.1 0.4.1 0.4.4 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.5 0.4.1 0.4.1 0.4.6 0.4.1 0.4.1 0.4.7 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1 0.4.1		
055 055 055 055 055 055 055 055 055 055 055 055 055 055 056 055 056 050 055 056 050 055 056 050 055 056 050 055 056 050 055 056 050 055 056 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 056 050 050 057 050 050 058 050 050 059 050 050 050 050 050 050 050	000000000000000000000000000000000000		τ.
05:0 1111 05:1 1111 05:1 1111 05:2 1111 05:3 1110 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:5 1100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 100 05:0 </td <td>0000 0000 0000 0000 <t< td=""><td></td><td></td></t<></td>	0000 0000 0000 0000 <t< td=""><td></td><td></td></t<>		
0550 FULLE-FULK 0551 FULLE-FULK 0553 FULLE-FULK 0554 FULLE-FULK 0555 FULLE-FULK 0555 FULLE-FULK 0556 FULK 0557 FULK 0558 FULK 0559 FULK 0550 FULK 0551 FULK 0553 FULK 0554 FULK 0555 FULK 0556 FULK 0557 FULK 0558 FULK 0559 FULK 0551 FULK 0553 FULK 0554 FULK 0555 FULK 0556 FULK 0557 FULK 0558 FULK 0559 FULK 0511 FULK 055 FULK 0550 FULK 0511 FULK 0558 FULK 0559 FULK 0550 FULK 0551 FULK 0551 FULK 0551 FULK 0551 FULK 0551 FULK 0551<	0551 FTUGETERIA 0551 FTUGETERIA 0551 FTUGETERIA 0551 FTUGETERIA 0551 FTUGETERIA 0551 FTUGETERIA 0552 FTUGETERIA 0553 FTUGETERIA 0554 FTUGETERIA 0555 FTUGETERIA 0555 FTUGETERIA 0555 FTUGETERIA 0555 FTUGETERIA 0555 FTUGETERIA 0556 FTUGETERIA 0557 FTUGETERIA 0558 FTUGETERIA 0559 FTUGETERIA 0550 FTUGETERIA 0551 FTUGETERIA		
0550 FRUESCIVERIES FUNCTIONE 1000-06-110/11-1.000 1000-06-1100	0550 FTUESCIVENTER 0551 FTUESCIVENTER 0553 FTUESCIVENTER 0554 FTUESCIVENTER 0555 FTUESCIVENTER <t< td=""><td></td><td>1. In the second s</td></t<>		1. In the second s
0551 Treasence 0553 Treasence 0554 Treasence 0555 Treasence 0556 Del tao 0557 Del tao 0561 Doi 70 206 0561 Doi	0551 FFERENCE 0553 FFERENCE 0554 FFERENCE 0555 FFERENCE 0556 FFERENCE 0557 FFERENCE 0561 B070 0571 B070 0551 FFERENCE 0552 FFERENCE 0553 FFERENCE 0561 B070 0571 B070 0551 FFERENCE 0552 FFERENCE 0553 FFERENCE 0561 FFERENCE 0573 FFERENCE 0573 FFERENCE 0573 FFERENCE 0574 FFERENCE 0575 FFERENCE 0576 FFERENCE 0577		YPLUSC#YPLUS
7551 If the UNIT AT A TANK A	2551 FFEGRATIATION 2553 FFEGRATIATION 2554 FFEGRATIATION 2555 FELORETA 255 FELORETA 256 FELORETA <t< td=""><td></td><td></td></t<>		
0555 TETULERTITIE 0554 TETULERTITIE 0555 TETULERTITIE 0556 TETULERTITIE 0557 TETERSTE 0558 TETERSTE 0559 TETERSTE 0559 TETERSTE 0559 TETERSTE 0559 TETERSTE 0559 TETERSTE 0551 TETERSTE 0553 TETERSTE 0541 TETERSTE 0551 DELTERS 0552 TETERSTE 0553 TETERSTE 0564 TETERSTE 0555 TETERSTE 0565 TETERSTE	0555 TETELUSTIONE 0555 ATELENTIAL 0555 ATELENTIAL 0555 ATELENTIAL 0555 DELEGONELIOVE 0555 DELETAO 0555 DELET		
0533 XCHECKARITTIAL MARTIN 0555 XCHECKARITTIAL MARTIN 0557 XCHECKARITTIAL MARTIN 0557 MICEONER 0558 MICEONER 0559 MICEONER 0559 MICEONER 0550 MICEONER 0551 MICEONER 0553 MICEONER 0554 MICEONER 0555 MICEONER 0551 MICEONER 0553 MICEONER 0554 MICEONER 0555 MICEONER 0551 MICEONER 0553 MICEONER 0554 MICEONER 0555 MICEONER 0555 MICEONER 0556 MICEONER 0557 MICEONER 0571 MIC	0535 TCHERCHICKTONE 0555 TCHERCHICK 0556 TCHERCHICK 0557 TCHERCHICK 0558 TCHERCHICK 0559 TCHERCHICK 0550 TCHERCHICK 0551 TCHERCHICK 0552 TCHERCHICK 0553 TCHERCHICK 0554 TCHERCHICK 0555 TCHERCHICK	2020 N	
0554 XCHECKTRUTH ATOL-ANLINATION 0255 XCHECKTRUTK 0010-06L10/K 0255 ATOL-ANLINATION 0010-06L10/K 0256 TriXX:IT.300.01 3070 200 0010 200 0261 VITCARFE COUNTON 0010 200 0263 VITLAR 0010 201 0264 VITLAR 0010 201 0265 VITLAR 0010 201 0266 VITLAR 0010 201 0266 VITLAR 0010 201 0267 VITLAR 0010 201 0271 DEPRIVIALSCAR 010 202 0272 DEPRIVIALSCAR 010 202 0273 DEPRIVIAL 010 201 0274 DEPRIVIAL 010 202 0274 DEPRIVIAL 010 201 0274 DEPRIVIAL 010 202 0274	655 XCHC+AKI (1) ALL ACDC+AKI (1) ALL 675 XCHC+AKI (1) ALL ACDC+AKI (1) ALL 675 Dit (1000) (100 - 100) (100		34 # # # # # # # # # # # # # # # # # # #
0555 AX10-mELIAVYE 0557 CFL0AMELIAVYE 0559 FXXX:TX.001 B0 TO 200 0550 TXXX:EFA.001 B0 TO 200 0550 DELTA-0 0551 TXXX:TX.01 B0 TO 200 0553 TXXX:TX.01 B0 TO 200 0550 DELTA-0 0551 DELTA-0 0552 DELTA-0 0553 DELTA-0 0554 DELTA-0 0555 DETTA-0 0556 DETTA-0 0557 DETTA-0 0558 DETTA-0 0579 DETTA-0 0571 DETTA-0 0571 DETTA-0 0571 DETTA-0 0571 DETTA-0 0571 DETTA-0 0571 DETTA-	2555 Artionactinover 2550 CLANALINALINATION 2551 CLANALINATION 2553 FLANALINATION 2554 TIXXIIIION 2555 TIXXIIIION 2550 TIXXIIIION 2551 DELTAD 2550 DELTAD 2551 DELTAD 2552 TIXXIIIION 2553 STEPOS 2551 DELTAD 2553 STEPOS 2554 STEPOS 2555 STEPOS 2551 STEPOS 2552 STEPOS 2553 STEPOS 2554 STEPOS 2555 STEPOS 2555 STEPOS 2555 STEPOS 2551		XCHECK# (XL (]+1)14570)/YE
0250 Dailorditiont 0251 Chonchine 0253 Principate 0254 Prixt.LT.30.00 60 TO 200 0255 Principate 0255 Principate 0255 Principate 0256 Prixt.LT.30.00 60 TO 200 0251 Prixt.LT.30.00 60 TO 200 0252 Prixt.LT.30.00 60 TO 200 0253 Prixt.LT.30.00 60 TO 200 0254 Prixt.LT.30.00 60 TO 200 0255 Prixt.LT.400 0255 Prixt.LT.400 0255 Prixt.LT.400 0256 Prixt.LT.400 0257 Prixt.LT.400 0258 Prixt.LT.400 0251 Prixt.LT.400 0252 Prixt.LT.400 0253 Prixt.LT.400 0251 Prixt.LT.400 0252 Prixt.LT.400 0253 Prixt.LT.400 0254 Prixt.LT.400 0257 Prixt.LT.400 0258 Prixt.LT.400 0259 Prixt.LT.400 0250 Prixt.LT.400 0251	0750 BATTOPECTALINYE 0757 C 1 INTEGRATE GUARTON 5 TO DETERMINE CU 0759 U 0751 UT (XX.IT'.30.0) 30 TO 200 0753 UT (XX.IT'.30.0) 30 TO 200 0753 UT (XI.0) 1100 0753 UT (XI.0) 1100 0753 UT (XI.0) 1100 0753 UT (XI.0) 201 0753 UT (XI.0) 1100 0753 UT (XI.0) 1100 0753 UT (XI.0) 1100 0753 UT (XI.0) 1100 0754 UT (XI.0) 1100 0755 UT (XI.0) 1100 0750 UT (XI.0) 1100 0751 UT (XI.0) 1100 0751 <td< td=""><td></td><td></td></td<>		
0557 DELADORELADITE 0558 TEXX.LT.30.0) 60 TQ 200 0559 TEXX.LT.30.0) 60 TQ 200 0551 TEXX.LT.30.0) 60 TQ 200 0553 TEXX.LT.30.0) 60 TQ 200 0554 DELLAD 0555 TEXX.LT.30.0) 60 TQ 200 0556 TEXX.LT.30.0) 60 TQ 200 0551 DELLAD 0552 DELLAD 0553 DELLAD 0554 DELLAD 0555 DELLAD 056 DELLAD 0571 DELLADOL 0573 DELLADOL 0574 DELLADOL 0575 DEVILLAD 0576 DELLADOL 0577 DELLADOL 0578 DELLADOL 0579 DELLADOL 0570 DELLADOL 0571 DELLADOL 0573 DELLADOL 0574 DELLADOL 0575 DELLADOL 0576 DELLADOL 0577 DELLADOL 0578 DELLADOL 0579 DELLADOL 0570 DELLADOL 0570 DELLADOL 0570 DELLADOL 0570 DELLADOL 0570 DELLA	0259 CELLBONCEL 0259 FF 17:30:01 00'10 266 0250 FF 17:30:01 00'10 266 0251 VITEGATE FOULTION 5 TO DETERMINE CN 0253 VITEGATE FOULTION 5 TO DETERMINE CN 0254 VITEGATE FOULTION 5 TO DETERMINE CN 0255 VITEGATE FOULTION 5 TO DETERMINE CN 0251 VITEGATE FOULTION 5 TO DETERMINE CN 0252 VITEGATE FOULTION 5 TO DETERMINE CN 0253 VITEGATE FOULTION 5 TO DETERMINE CN 0254 VITEGATE FOULTION 5 TO DETERMINE CN 0255 VITEGATE FOULTION 5 TO DETERMINE CN 0257 VITEGATE FOULTION 5 TO DETERMINE CN 0251 VITEGATE FOULTION 5 TO DETERMINE CN 0251 VITEGATE FOULTION 5 TO DETERMINE CN 0251 VITEGATE FOULTION 5 TO TO ZOT 0252 VITEGATE FOULTION 5 TO TO ZOT 0253 VITEGATE FOULTION 5 TO TO ZOT 0254 <t< td=""><td></td><td></td></t<>		
0557 0559 0550 0551 0551 0551 0551 0551 0551	0255 C Differet Traxt.[r.30.0] 60 TO 200 Offerentive Color 0.553 C Traxt.[r.30.0] 60 TO 200 00 for teamive cv 0.554 C VIEGATE SITA-0 00 00 0.555 C VIEGATE SITA-0 00 00 0.555 C VIECATA-0 200 00 0.555 C VIECATA-0 00 00 0.557 C VIECATA-0 00 00 0.557 C VIECATA-0 00 00 0.575 C VIECATA-0 00 00 <tr< td=""><td></td><td></td></tr<>		
C INTEGARTE GUUTTON 5 TO DETERMINE CM TFIXX.TT.30.01 TO 706 TFIXX.TT.30.01 TO 706 TFIXX.TT.30.01 TO 706 TFIXX.TT.30.01 TO 706 TFIXX.TT.30.01 TO 706 TO 200 TO 2	C INFGGATE EQUATION 5 TO OFTERMINE CM C ITTXX.LT.30.00 60 TO 206 C ITTXX.LT.30.01 60 TO 206 C C C C C C C C C C C C C C C C C C C	1520	DEL POEDELB
0250 FFIXX.IT.30.01 60 T0 206 0261 U2 0262 Na 0263 STP=0.5 0264 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0264 V11.0-0.10 0265 V11.0-0.10 0265 V11.0-0.10 0266 V11.0-0.10 0267 DBHT(1.0-0.10 0273 DBHT(21.V0C 0274 DBHT(21.V0C 0275 DBHT(21.V0C 0276 DBHT(21.V0C 0277 DBHT(21.V0C 0278 DD14.5 0278 DD14.5 0278 DD14.5 0278 DD14.5 0278 DD14.5 0279 DD14.5 0271 DFL(V=0.00.7 0278 DD14.5 0279 DD14.7 0271 DC10.05 0271 DC10.05 <td>0250 HTXX.LT.30.01 30 T0 266 0251 UELT4-0 0252 VT71-0.5 0253 VT71-0.5 0254 VT71-0.5 0255 VT0 0251 PAHT(1)=5.104 0253 PAHT(1)=5.104 0254 PAHT(1)=5.105 0271 PAHT(1)=5.105 0272 PAHT(1)=5.105 0273 PAHT(1)=5.105 0274 PAHT(1)=5.105 0275 PAHT(1)=5.105 0274 PAHT(1)=5.105 0275 PAHT(1)=5.105 0276 PAHT(1)=5.105 0277 PAHT(1)=5.105 0278 PAHT(1)=5.105 0279 PAHT(1)=5.105 0271 PAHT(1)=5.100 0272 PAHT(1)=5.100 0273 PAHT(1)=5.100 0274 PAHT(1)=5.100 0275 PAHT(1</td> <td>0254</td> <td>INTEGPATE EQUATION 5 TO DETERMINE CM</td>	0250 HTXX.LT.30.01 30 T0 266 0251 UELT4-0 0252 VT71-0.5 0253 VT71-0.5 0254 VT71-0.5 0255 VT0 0251 PAHT(1)=5.104 0253 PAHT(1)=5.104 0254 PAHT(1)=5.105 0271 PAHT(1)=5.105 0272 PAHT(1)=5.105 0273 PAHT(1)=5.105 0274 PAHT(1)=5.105 0275 PAHT(1)=5.105 0274 PAHT(1)=5.105 0275 PAHT(1)=5.105 0276 PAHT(1)=5.105 0277 PAHT(1)=5.105 0278 PAHT(1)=5.105 0279 PAHT(1)=5.105 0271 PAHT(1)=5.100 0272 PAHT(1)=5.100 0273 PAHT(1)=5.100 0274 PAHT(1)=5.100 0275 PAHT(1	0254	INTEGPATE EQUATION 5 TO DETERMINE CM
0250 42 0251 JELT4-0 0253 YIJP0.0 0265 YIJP0.0 0265 PWT(1)-0.1108 0265 PWT(1)-0.1108 0265 PWT(1)-0.1108 0265 PWT(1)-0.1108 0270 PWT(1)-0.1108 0271 PWT(4)-5.06-2 0271 PWT(4)-5.06-2 0271 PWT(4)-5.06-2 0271 PWT(4)-5.06-2 0272 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 001-10.00 0271 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 0273 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 072 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 001-10.00 061 PWT(4)-5.06-2 072 PWT(4)-5.06-	0250 42 0251 JELT4-0 0253 Signature 0255 Signature 0256 Partition 0258 Partition 0258 Partition 0258 Partition 0258 Partition 0251 Pa		TF XXX, LY, 30.0) 60 TO 260
0251 JDELTA-0 0252 No 0255 No 0255 STPP-5 0255 STPP-5 0255 STPP-6 0255 STPP-6 0255 STPP-10 0255 STPP-10 0255 STPP-10 0255 STPP-105 0255 STPP-105 0255 STPP-105 0251 STPP-05 0275 STPP-105 0275 STPP-105 075 STPP-	0551 JDELTA-0 0252 STFP-0.5 0253 STFP-0.5 0254 V111-0.0 0255 V111-0.0 0256 PWT(1)-0.10 0256 PWT(1)-0.0 0256 PWT(1)-0.10 0256 PWT(1)-40.0 0271 PWT(1)-51.0 0272 PWT(1)-51.6 0273 PWT(1)-51.6 0274 PWT(1)-51.6 0275 PWT(1)-51.6 0276 PWT(1)-51.6 0277 PWT(1)-51.6 0278 PWT(1)-51.6 0279 PWT(1)-51.6 0271 PWT(1)-51.6 0273 PWT(1)-51.6 0274 PWT(1)-51.6 0275 PWT(1)-51.6 0275 PWT(1)-51.6 0275 PWT/10.7 0275 PWT/10.7 0275 PWT/10.7 0275 PWT/10.7 0275 PWT/10.7 0276 PWT/10.7 0277 PWT/10.7 0278 PWT/10.7 0279		C=7
0262 0265 0265 0265 0265 0265 0265 0265	0262 0265 0265 0265 0265 0265 0265 0265		
0200 0200 0200 0200 0200 0200 0200 020	0200 0200 0200 0200 0200 0200 0200 020		
0250 517-0.5 0255 717-0.0 0265 717-0.0 0265 702 0265 702 0265 702 0270 100-1104 0265 702 0271 100-1104 0272 100-1104 0273 100-1104 0271 100-1104 0272 100-1104 0273 100-1104 0273 100-1104 0273 100-1104 0273 100-1104 0273 100-1104 0273 100-1104 0273 100-1104 0273 101-1104 0273 101-1104 0274 110-100 0275 110-100 0278 110-100 0279 1110-100 0279 1110-100 0271 100-100 0273 1110-100 0274 1110-100 0275 111-100 0276 100-100 0277 100-100<	0253 517-0.5 0255 717-0.6 0255 717-0.6 0256 707 0258 702 0269 702 0270 201 0271 201 0271 201 0271 201 0271 201 0271 201 0271 201 0273 201 0274 201 0275 201 0276 201 0277 201 0278 200 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0279 201 0271 201 0271 201 0271 201 201 202		
0264 Y(1)=0.0 0265 Y(1)=0.106 0265 Part(1)=0.1106 0265 Part(1)=0.1106 0265 Part(1)=21 0265 Part(1)=21 0265 Part(1)=21 0265 Part(1)=21 0269 Part(1)=51 0271 Part(1)=516-2 0272 Part(1)=516-2 0273 Part(1)=516-2 0274 Part(1)=516-2 0275 Part(1)=0.5 0271 Part(1)=0.5 0272 Part(1)=0.5 0273 DEPT(1)=0.5 0274 DEPT(1)=0.5 0275 DETL PASS(1) 60 TO 202 0278 CONTINUE 0279 DEL(V=6VC/T) 0271 DEL(V=90LuSC)) 60 TO 202 0273 DEL(V=90LuSC)) 60 TO 202 0274 DEL(V=90C/C) 0274 DEL(V=90C/C) 0274 DEL(V=90C/C) 0274 DEL(V=90C/C)	0264 Y(1)=0.0 0265 Y(1)=0.100 0265 Part(1)=0.1106 0265 Part(1)=0.1106 0265 Part(1)=0.1106 0269 Part(1)=0.1106 0270 Part(1)=YFUG 0271 Part(2)=YFUG 0272 Part(2)=YFUG 0273 Part(2)=YEF 0274 Part(2)=YEF 0275 Part(2)=YEF 0271 Diput(2)=Q 0273 Diput(2)=Q 0274 Diput(2)=Q 0275 Diput(2)=Q 0276 CALL RKGS(FEMT-NDIM-INLANX) 0277 Diput(2)=Q 0278 COUTUNUE 0279 Diput(2)=Q 0278 COUTUNE 0279 Diput(1)=0.5 0271 Diput(1)=0.5 0278 COUTUNUE 0279 Diput(1)=0.5 0278 COUTUNUE 0279 COUTUNUE 0271 Dict(Y=SUCC) 0273 Dict(Y=SUCC) 0274 Dict(Y=SUCC) 0275 Dict		STEP=0.5
0265 PYT7T60 0 0268 PYT7T9 0 0269 201 20110 0269 201 20110 0269 201 20110 0270 2011155FF 0271 2011(1):5FF 0271 2011(1):5FF 0271 2011(1):5FF 0273 200 2011(1):5FF, MDIM.; MLF, BOLAFE.HOUTPUT.AUX) 1617FLUS5.17.16 0278 200 2011-0.5 0278 200 2011-10.5 0278 200 2011-10.5 0279 200 2011-10.5 0279 200 2011-10.5 0279 200 2011-10.5 0279 200 2011-10.5 0279 200 2011-10.5 0279 200 2011-10.5 0270 2011-10.5 0271 200 2011-10.5 0271 200 2011-10.5 0271 200 2011-10.5 0271 200 2011-10.5 0272 2011-10.5 0273 200 2011-10.5 0273 200 2011-10.5 0273 2011-10.5 0273 2011-10.5 0274 2011-10.5 0275 2011-2012 2012 2012 2012 2012 2012 2012	0265 717760 0 010 010 010 0269 702 0010 0269 702 0010 0269 702 0010 0269 701 0010 0270 0010 001 0271 0010 001 0273 0010 001 0274 0010 001 0275 0010 001 0275 0010 001 0275 0010 001 0275 0010 001 0279 00010 001 0279 00010 001 0279 00010 001 0279 00010 001 0279 0010000 001 0279 0010000 001 0279 0010000 001 0279 0010000 001 0279 00010000 001 0270 00010000 001 0270 00010000 001 0271 001000 <		Y(1)=0.0
0260 0201 0201 0261 001 001 0265 001 001 0266 201 001 0265 201 001 0265 201 001 0265 201 001 0271 0011 001 0272 0011 001 0273 0011 001 0274 0011 001 0275 0011 001 0275 0011 001 0275 0011 001 0275 0011 001 0276 0011 001 0277 0011 001 0278 001 001 0278 00 001 0279 001 01 0270 001 01 0271 01 01 0271 01 01 0271 01 01 0271 01 01 0271 01 01 0271	0265 001 001 0263 001 001 0264 001 001 0265 201 0011 0270 001105 001 0271 001105 001105 0272 001145 001145 0273 001145 001145 0274 001145 001145 0275 001145 001145 0275 001145 001145 0275 001145 001145 0275 001145 001145 0276 001145 001145 0277 001145 001145 0278 001145 001201 0279 001145 001201 0279 001145 001205 0279 001145 001205 0270 001145 001205 0271 001145 001205 0271 001145 001205 0271 001145 001205 0271 001145 001205 0271 0010125 001010		Υ(7)1=0.6
0269 702 2010 201 0268 702 2011 101 0269 701 2011 101 0270 2011 101 101 0271 2011 101 101 0273 2011 201 201 0274 2011 201 201 0275 2011 201 201 0275 0211 201 201 0275 0211 201 207 0275 0211 201 207 0278 0211 201 207 0279 161 105 107 0278 000 105 107 0279 001 107 107 0279 001 107 107 0279 001 107 107 0279 001 107 107 0279 001 105 107 0279 001 105 107 0270 001 105 107 101 <td>0269 701 201 0268 702 501 0269 701 501 0261 501 501 0270 5041(2)*FULG 50 0271 5041(2)*FULG 50 0273 5041(2)*GE 50 0274 501(2)*GE 50 0275 500(1)*GE 50 0278 500 501(2)*GE 0279 500(1)*GE 50 0279 50(1)*GE 50 <td></td><td></td></td>	0269 701 201 0268 702 501 0269 701 501 0261 501 501 0270 5041(2)*FULG 50 0271 5041(2)*FULG 50 0273 5041(2)*GE 50 0274 501(2)*GE 50 0275 500(1)*GE 50 0278 500 501(2)*GE 0279 500(1)*GE 50 0279 50(1)*GE 50 <td></td> <td></td>		
0260 702 504 113 FPLUS 0260 701 504 113 FPLUS 0260 701 504 113 FPLUS 0271 504 113 FPLUS 504 113 FPLUS 0272 504 113 FPLUS 504 113 FPLUS 0273 504 115 FPLUS 504 113 FPLUS 0274 504 113 FPLUS 504 113 FPLUS 0275 504 113 FPLUS 504 113 FPLUS 0275 504 113 FPLUS 505 104 FPLUS 0275 504 113 FPLUS 507 103 FPLUS 0275 504 113 FPLUS 507 103 FPLUS 0276 504 113 FPLUS 500 100 202 0277 500 100 110 FPLUS 500 100 202 0278 500 100 110 FPLUS 500 100 202 0279 501 110 (FEXP (TPLUSV/ROPLUSE) 11.0) 500 100 202 0280 501 110 (FEXP (TPLUSV/ROPLUSE) 11.0) 501 100 202	0260 202 001 000 0270 0011117400 001 0271 0011155170 001155170 0271 001145100 001145100 0271 001145100 001145100 0271 001145100 001145100 0271 001145100 001145100 0271 0011451000 0011451000 0271 0011451000 0011451000 0271 0011451000 00114500 0273 0011451000 00114500 0274 00114500 0011400 0275 00114500 0011400 0278 0011400 0010000000000000000000000000000000000		
0268 702 BANT(2)*PUUS 0270 PANT(2)*PUUS 0270 PANT(2)*PUUS 0271 PANT(2)*FUUS 0271 PANT(2)*FUS 0273 PANT(1)*56F2 0273 PANT(1)*56F2 0274 CALL PSOS (PANT V.0FPY.MD1%.1MLF.90LAYER.HOUTPUT.AUX) 16TYPLUS.TT.10.499*PFLUSC)7 60 T0 202 0278 CALL PSOS (PANT V.0FPY.MD1%.1MLF.90LAYER.HOUTPUT.AUX) 16TYPLUS.TT.10.499*PFLUSC)7 60 T0 202 0278 CONTINUE 0278 CONTINUE 0	0268 702 DBWT(2)*PUUS 0270 DBWT(2)*PUUS 0271 DBWT(2)*FUSC 0271 DBWT(1)=516 2 0273 DBWT(1)=516 2 0273 DBWT(1)=5.06 2 0275 DEP(1)=0.5 0275 DEP(1)=0.5 0279 CONTINUE 0279 CONTINUE	1920	CO 10 201
2000 POHT(12:14*PLUSC 2010 POHT(12:14*PLUSC 2011 POHT(15:10:0 2012 POHT(15:10:0 2013 POHT(15:10:0 2014	0269 201 PAHT(1):STFUSC 0271 PAHT(1):STFUSC 0272 PAHT(1):STFUSC 0273 PAHT(1):STFUSC 0274 PAHT(1):STFUSC 0275 PAHT(1):STFUSC 0275 PAHT(1):STFUSC 0275 PAHT(1):STFUSC 0275 PAHT(1):STFUSC 0276 CALL RAGS (FPHT, V.DFRY, ND14, IMLF, BOLAVER, MOUTPUT, AUX) 0277 PAHT (STSTO, STSUSC) 0278 COLL RAGS (FPHT, V.DFRY, ND14, IMLF, BOLAVER, MOUTPUT, AUX) 0279 CALL RAGS (FPHT, V.DFRY, ND14, IMLF, BOLAVER, MOUTPUT, AUX) 0279 COLL RAGS (FPHT, V.DFRY, ND14, IMLF, BOLAVER, MOUTPUT, AUX) 0279 COLL RAGS (FPHT, V.DFRY, ND14, IMLF, BOLAVER, MOUTPUT, AUX) 0271 DFLY/STO, TO, GATAPELUSC) TO, TO, Z02 0271 COLL RAGE (FPLUSCVR POLUSC) TO, TO, Z02 0271 DFLY/STO, TO, GATAPELUSC) TO, TO, Z02 0272 DFLY/STO, TO, GATAPELUSC) TO, TO, Z02 0273 DFLY/STO, TO, GATAPELUSC) TO, TO, Z02	0269	DRM (1) * YPLUS
0270 PPW1(1):STFP 0271 PPW1(1):S.0F-2 0273 PW1(5):0.0 0273 PW1(5):0.0 0275 PW1(5):0.5 0275 PW1(5):0.6 0275 PW1(5):0.6 0275 PW1(1):0.5 0275 PW1(1):0.6 0278 PW1(1):0.6	0270 PPW1(1)=5FP 0271 PW1(1)=-106-2 0273 PW1(5)=0.0 0273 PW1(5)=0.0 0275 PW1-F2 0275 PW1-F2 0275 PW1-F2 0275 PW1-F2 0276 PW1-F2 0279 PW1(10,0 0279 PW1(10,0 0279 PW1(10,0 0279 PW1(10,0 0279 PW1(10,0 0279 PW1(10,0 0279 PW1(1)=0(EXP(1USV/B0PLUSE)-1,0) 0279 PW1(1)=0(EXP(1USV/B0PLUSE)-1,0) 0279 PW1(1)=0(EXP(1USV/B0PLUSE)-1,0) 0270 PW1(1)=0(EXP(1USV/B0PLUSE)-1,0) 0271 PW1(1)=0(EXP(1USV/B0PLUSE)-1	0269	DAWT (2) # VDI IISC
0272 DFWT (4)=2.06 0272 DPWT (4)=2.06 0273 DFWT (5)=0.0 0274 DEWT (5)=0.6 0275 DEWT (2)=0.5 0276 CALL RKGS (PPWT, VDERY-NDIM-1HLF. BOLAYER-MOUTPUT.AUX) 0278 200 0279 CONTINUE 0279 CONTINUE 0279 CONTINUE 0279 CONTINUE 0279 CONTINUE 0279 DELTV=ROLL-LUSV/ROPLUSE) 1.0.0 0279 DELTV=ROLL-LUSV/ROPLUSE)-1.0)	0272 DFWT (4)=2.06 0273 DFWT (5)=0.0 0274 DFWT (5)=0.6 0275 DFWT (5)=0.6 0275 DFWT (5)=0.6 0275 DFWT (2)=0.5 0275 DFWT (2)=0.5 0275 DFWT (2)=0.5 0276 DEWT (1)=0.5 0277 DFWT (2)=0.5 0278 DFWT (2)=0.5 0279 COLL RAGS (FPWT - VDFWT - MUX) 0279 DFWT (2)=0.5 0279 COLL HAGE 0279 CONTINUE 0270 CONTINUE 0271 DFL YV=ROT(1=1)= (EXP (YPLUSC)) GO TO 202 0278 DFL YV=ROT(1=1)= (EXP (YPLUSV/ROPLUSE)=1.0) 0278 DFL YV=ROT(1=1)= (EXP (YPLUSV/ROPLUSE)=1.0)	0200	
0271 PENT 153-9.0F-Z 0273 PENT 153-9.0 0273 PENT 153-9.0 0275 PENT 153-9.0 0275 PENT 123-9.0 0275 CALL PASS PENT 17.0FRY.MD14.1HLF.80LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.80LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.80LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.80LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.80LAYEP.HOUTPUT.AUX) 0279 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0278 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0279 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0270 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0270 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0270 CALL PASS PENT 17.0FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.90LAYEP.HOUTPUT.AUX) 0770 FRY.MD14.1HLF.	0271 PPW115)=0.0-2 0273 PW115)=0.0 0274 DM1#2 0275 DF910.5 0275 DF912]=0.5 0276 C412]=0.5 0278 C412]=0.5 0278 C412[-0.4 0278 C412[-0.4] 0278 C		
0272 PPW151=0.0 0273 DEW1251=0.5 0274 DESV(1)=0.5 0275 DEV(1)=0.5 0275 DEV(1)=0.5 0275 DEV(1)=0.5 0276 Call RKG5(947+ND14.1HLF.80LAYER.HOUTPUT.AUX) 0279 COLL RKG5(9474FUUSC)) 60 TO 202 0278 COLLIAUC 0278 COLLIAUC 0279 COLLIAUC 0279 COLLIAUC 0270 COLLIAUC 0271 COLLIAUC 0270 COLLIAUC 0271 COLLIAUC 0270 COLLIAUC 0271 COLLIAUC 071 C	0272 PPHTES:=0.0 0273 DEPTIS:=0.0 0274 DEPTIS:=0.5 0275 DEPTIS:=0.5 0275 DEPTIS:=0.5 0278 CALL RKGS (PPHT: +.0014-11.4.0.X) 0279 CONTINUE 0279 CONTINUE 0279 CONTINUE 0279 CONTINUE 0270 CONTINUE 0271 CONTINUE 071 CONTIN		PP41(4)145-06-2
0274 ND14-2 0274 DETV11-0.5 0275 DETV21-0.5 0276 CALL RKGS(EPM1-Y-DERY-ND14.1MLF.BOLAYER.HOUTPUT.AUX) 0279 CALL RKGS(EPM1-Y-DERY-ND14.1MLF.BOLAYER.HOUTPUT.AUX) 0279 CALL RKGS(EPM1-Y-DETUSCI) GO TO ZOZ 0279 CODCI=CU/CI 0279 DELYV=D0(1:1)*(EXP(YPLUSV/R0PLUSE)-1.0) 0214 DELYV=D0(1:1)*(EXP(YPLUSV/R0PLUSE)-1.0)	0271 ND1#27 0274 DE7(1)=0.5 0275 DE7(1)=0.5 0275 CALL PSC1 POL 0278 CALL V.C. (0,9947PLUSC) 1 60 T0 202 0278 200 CONTAUE 0278 200 CONTAUE 0278 200 CONTAUE 0279 CUCLI-CVCC1 0279 CUCLI-CVCC1 0279 CUCLI-CVCC1 0270 DELTV=D0(1:1)=(EXP(YPLUSV/B0PLUSE)-1.0)		PPW1 (5)=0.0
0275 0EPY(1)=0.5 0275 0EPY(1)=0.5 0275 0EAL RKGS(PAHI-Y-0ERY-NDIN-1HLF.80LAYEP-HOUTPUT.AUX) 0279 0278 0EAL RKGS(PPHI-V-0ERY-NDIN-1HLF.80LAYEP-HOUTPUT.AUX) 0278 0278 0EOHI-1-1-05 0278 0EOHI-1-05 000000000EOHI-1-05 000000000000000	0275 06711=0.5 0275 06711=0.5 0275 074L RKGS (PPHI-Y-06FY-MD1M-1HLF-80LAYEP-MOUTPUT-AUX) 0278 0216 0278 200 CONTINUE 0278 200 CONTINUE 0278 0278 0011=1)=(EXP(YPLUSC)) GO TO 202 0278 0278 0011=1)=(EXP(YPLUSC)) GO TO 202 0278 0278 0279 0511=1)=(EXP(YPLUSC)) GO TO 202 0278 0278 0278 0511=1)=(EXP(YPLUSC)) GO TO 202 0278 0278 0278 0511=1)=(EXP(YPLUSC)) GO TO 202 0278 0278 0278 0511=1)=(EXP(YPLUSC)) GO TO 202 0278 0511=1000000000000000000000000000000000		
0276 DEPY(21-0.5 0276 DEPY(21-0.5 0276 CALL RKGS(EPW1-Y.0ERY.MD14.1MLF.BOLAYER.HOUTPUT.AUX) 0279 CALL RKGS(EPW1-Y.0ERY.MD14.1MLF.BOLAYER.HOUTPUT.AUX) 0279 CALL RKGS(EPW1-Y.0ERY.MD14.1MLF.BOLAYER.HOUTPUT.AUX) 0279 CALL VCB (011-11-0(EXP(USV.R0PLUSE)-1.0) 0279 DELYV=D0(11-11-0(EXP(VPLUSV.R0PLUSE)-1.0)	0275 DEPT(11+0.5 0275 DEPT(11+0.5 0276 TALLUS(11+0.5 0278 TALLUS(1) 60 TO 202 0278 200 CONTINUE 0278 200 CONTINUE 0279 CODET-CV/C1 0279 00 CONTINUE 0270 DELVY=D0(11)+(EXP(YPLUSV/B0PLUSE)-1.0)		
0275 DEPT (2:1-0.5 0275 Call Ress (PPM1 - 1.0 F - 80LAYEP. HOUTPUT. AUX) 0279 Call Ress (PPM1 - 1.0 - 993 YPLUSC)) 60 T0 202 0278 200 Continue 0279 Continue 0279 051 - 10 - (EXP (YPLUSV/R0PLUSE) - 1.0) 0280 05LYV=R0(1+1)+ (EXP (YPLUSV/R0PLUSE) - 1.0)	0275 DEPT (21-0.5 0276 CaLL Recs (PPM1, V.0EPT, V.0EPT, V.0EPT, AUX) 0279 CALL Recs (PPM1, V.0EPT, V.0EPT, AUX) 0278 200 CONTINUE 0278 CONTINUE 0278 0279 CONTINUE 0280 DELTV=R0(1-1)*(EXP(VPDLUSE)-1.0) 0280 DELTV=R0(1-1)*(EXP(VPDLUSE)-1.0)		0EPY(1)=0.5
0276 CAL REGS (PPMT.Y.OFRY.MDIM.IMLF.BOLAFER.HOUTPUT.AUX) 0277 IFYPLUS.CT.T.0.9994PLUSCHT 60 TO 202 0279 CONTINUE 0279 CUDCI-CV/CT 0280 DELYV=B0(1-1)*(EXP(YPLUSV/R0PLUSE)-1.0) 0280 DELYV=P0(1-1)*(EXP(YPLUSV/R0PLUSE)-1.0)	0276 CALL REGS (PPMT.Y.0FRY.NDIM.IMLF.BOLAFER.HOUTPUT.AUX) 1614PLUS.CT.T.0.4947PLUSCHT 60 TO 202 0279 200 CONTINUE 0279 CUDCI-CV/CT 0280 DELTV=B0(1-1)+(EXP[YPLUSV/B0PLUSE)-1.0) 0280 DELTV=B0(1-1)+(EXP[YPLUSV/B0PLUSE)-1.0)		0697 (2)=0.5
0279 1617PLUS.CT0.999*PPLUSCJJ 60 T0 202 0278 200 CONTINUE 0279 CONTINUE 0280 0ELTV=#0(1+1)*(EXP(YPLUSV/R0PLUSE)-1.0) 0280 0ELTV=#0(1+1)*(EXP(YPLUSV/R0PLUSE)-1.0)	0279 1617PLUS-LT.10.04947PLUSC1) G0 T0 202 0278 200 CONTINUE 0279 CONTINUE 0280 0ELTV-R0(1-1)•(EXP(YPLUSV/R0PLUSE)-1.0) 0280 0ELTV-R0(1-1)•(EXP(YPLUSV/R0PLUSE)-1.0)		C 41 1 DKGC (DDW1 - Y - DEDY - ND14 - 141 F - 901 AYED - 40117041 - 4414 -
0280 0011WUE CONTINUE 0279 CUDIT=C#/CT 0279 0ELTV=B0(1:1)•(EXP(YPLUSV/R0PLUSE)=1.0)	0219 200 CONTINUE 0279 CUDCI=C#/CT 0219 DELYV=00(1-1)•(EXP(YPLUSV/R0PLUSE)-1.0) 0280 DELYV=00(1-1)•(EXP(YPLUSV/R0PLUSE)-1.0)		
0278 200 CONTINUE 0279 CONTINUE 0280 DELTV=R0(1+1)*(EXPTVPDLUSE)-1.0) 0280 DELTV=R0(1+1)*(EXPTVPDLUSE)-1.0)	0278 200 CONTINUE 0279 CONTINUE 0280 DELTY=R0(1:1)•(EXP[VS/R0PLUSE)-1.0) 0281 DELTY=R0(1:1)•(EXP[VPLUSY/R0PLUSE)-1.0)	1120	
0279 CuDCT=C#/CT 0280 DELTV=R0(1-1)+(EXP(YPLUSV/R0PLUSE)-1.0)	0279 CuDCT=C#/CT 0280 DELTV=R0(1+1)+0(EXP(YPDPLUSE)-1.0)	8750	
0580	0280		"这一一一一一是一是一是一年,是不是一个个人是一是一个一个个人,不是不不不是一个人,也不是
			ULL TV#K0 ([+]] * (E XP (TPLUSV × 0PLUSE) = 1 • 0)
		the second second second second second	
			All Ardika a summaryon 1 m anang angan

ALC: NOT

**6E 006						
r 05/21/75					× J	
ASTER INTEGER WORD SIZE . 2 . • OPTION IS OFF . 0 CPTION IS OFF PRINT TAXLOLALAWDACAN PHA.C29AR.V5TAPE.XXX . VPLUS.DELTAD. DISPLATION THE SIGRAMIT PDINT 9.CHECK.CF(1-1).AXL(1-1).40V . AX5.CWDCT.509A611+1).	DDBAG(1+1)-DFLY-DFLB+G**** CV0+140E 60 10 80 PR141 91 SEPARATION MAS OCCUPRED - CALCULATE FORM DHAG*1 PR141 91 SEPARATION MAS OCCUPRED - CALCULATE FORM DHAG*1 PODAG(1)*PDRAG(1)-COMST*CP(1)*RO(1)**?	GO TO 54 Deint al End of BOOY OR DATA POINTS PROVIDED") Dade-Spacifi-spacifi Dade-Spacifi-spacifi Data 101al DPAN ".f12.4) Fermatiijm total DPAN ".f12.4)	RESULTS FOR CALBOL			
PRINT TATLOL TO PRINT PRIN	1 1 1		USASI FORTRAN DIAGNOSTIC RESULTS FOR CALBOL	NO ERROPS		
ANSI FORTRAN(2.2)MASTER 1410 1410 1410 1410 1410 1410 1410 141	LUN 0285 LN 0285 LN 0285 LN 0285 LN 0285 10 0285 LN 0285 91 0285 91 0285 91 0285 91	10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000	USASI			

ſ

B-8

C C C C C C C C C C C C C C C C C C C		SURROUTINE RNLAVER(X,Y,OERY)	
C C C C C C C C C C C C C C C C C C C		COMMON BOPLISZOO1. #0(200). #I.MANDA ZOO1. #005. #001. #01. ZOO1. #7 (2001.	
C C C C C C C C C C C C C C C C C C C		1 / / 1 / / / / / / / / / / / / / / / /	
		4.401.51.61.91.185.051.81.42.42.42.42.42.51.42.42.42.51.42.42.42.52.42.52.44.42.52.42.54.50.42.52.42.54.54.54.54.54.54.54.54.54.54.54.54.54.	
		5+AL (200) * PP444,41 • PC40, AR2, AR4,4 FUHFFE, PP115V, FUHFFE, PP1	
01=KYS1 SUBJOUTING IS USED 10 WEITE COUNTING IS USED 10 11=11		604.7PLU535	
0011 Files Summary K is used to weift countions to HE 0011 Files F0.4.5 0.0 0.0 0012 Files F0.4.5 0.0 0.0 0012 Files F0.4.5 0.0 0.0 0012 Files F0.4.5 0.0 0.0 0.0 0012 Files F0.4.5 0.0 0.0 0.0 0.0 0022 Files F0.4.5 0.0 0.0 0.0 0.0 0.0 0022		01WEWSION V(1)1.06AV(10)	
00011 FT(*:E0.4) 60 10 3 FTV:E:E0.4) 60 10 7 FTV:E:E0.5) 60 10 7 FTV:E:E0.2) 60 10 7 FTV:E0.2) 60 10 7 FTV:E0.2) <td< td=""><td>0010</td><td>THIS SURROUTINE IS USED TO WRITE EQUATIONS TO BE</td><td></td></td<>	0010	THIS SURROUTINE IS USED TO WRITE EQUATIONS TO BE	
0000 000 000 000 000 000 000 00		IF(#.£0,4) 60 TO IO	
11100000 11100000 1100000 1100000 1100000 11100000 1100000 1100000 1100000 1100000 11100000 1100000 1100000 1100000 1100000 11100000 1100000 1100000 1100000 1100000 11100000 1100000 1100000 1100000 1100000 111000000 1100000 1100000 1100000 1100000 1110000000 11000000 11000000 11000000 11000000 1110000000000000000000000000000000000		IF(W.EQ.3) GO TO 3	
		EXV=EXP(2,0=K/R0PLUSF)	
		IF (M. EQ. 6) G7 TO 78	
		CHEXSOT 1.0 - AL PHA POPLUSE /2.0 • EXVI	
1 1			· · · · · · · · · · · · · · · · · · ·
	8100	-	
	6100		
22222222222222222222222222222222222222			
			NAME AND A DOCUMENT OF A DOCUMENTA
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		3	
	0000	Ja:	
CON CON CON CON CON CON CON CON	0031		
000000000000000000000000000000000000	0032		
		OELBERT OG (VSTARE) VOSTARE GANKA	
00035 00035 00035 00035 00052 00050 00050 00050 00050 00050 00050 00050 00050 0005000000		IF (DELM.GT.24.0) DFL8+2M.0	
00000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000		n180C8+1.15+4L/50C8	
		If (JPOLT. EQ.1) DIRUCT.0.0	
CONCOLOR CONCOL		60 10 73	
	8200		
	60034		
C C C C C C C C C C C C C C C C C C C	0400		
2400 2000 2400 200 2000 2			
C C C C C C C C C C C C C C C C C C C			
C C C C C C C C C C C C C C C C C C C			
00055 000000			
00059 00059 00051 00050 00051 0005000000		SUTRUE AV A	
00050 CC 0055	8400		
00050 00051 00053 00053 00056 00056 00056 00056		587(1)+TT042	
		Nan	
0056 T 0056 T		TENTEN OF COUNTIONS TO SOLVE FOR GIVE AND XI	
0055 C	4500		
0056 r	0055		
	0056		

:

-1

		0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	LN 0001 LN 0002		5U6P0UT14F +ОUTPUT1%+++06E8++1HLF,ND14,>PWT) Соммом Барцис(200)-я01200)-яцамиак(2001-0800515(200)-+X1200)-
0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000		0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000			1470] (200)+47449 (200)+474499 (200)+745748 (200) 442044,44.040,544.44.040.44. 24496 441 44046 41.61.44.31459.1.66 (200) 451486 4004 455.4654 4500)+794.4
					A 2 A 2017 2
00009 00009 0100 0000 01000 0100 0100 0100 0100 0100 0100 0100 0100 0100 010		0000 0000 0100 0100 0100 0100 0100 0100 0100 0100 0100 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000			а каката каката или по чистки или каката каката или или каката каката каката каката каката каката каката какат 2. алг. (2001) - урчал или вегу - усмолику - илу 2. алг. И Рексии или Рециуси или середа -
00000 00115 111 00115 00115 111 00116 00115 111 00117 00115 111 00118 00115 111 00119 00116 111 00111 00117 111 00111 00118 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 00119 111 00111 111 111 00111 111 111 00111 111 111 00111 111 111 001111 111 111 001111 111 111 001111 111 111		00000 00115 111 00113 00113 111 00114 111 111 00115 111 111 00116 111 111 00117 111 111 00118 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 00119 111 111 001			404.Yatus
0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 12 11 0011 12 11 0011 12 11 0011 12 11 0011 12 12 0011 12 12 0012 12 12 <t< td=""><td></td><td>0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0012 11 11 0013 10 11 0013 10 11 0014 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11</td><td></td><td>L</td><td>ATTRESTON FLOTION CONTRACTON FORMATION PARAMETER VALUES FORM OFF</td></t<>		0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0011 11 11 0012 11 11 0013 10 11 0013 10 11 0014 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11 0015 11 11		L	ATTRESTON FLOTION CONTRACTON FORMATION PARAMETER VALUES FORM OFF
0012 FF14-E0.51 00 10 4 0014 FF14-E0.51 00 10 4 0015 FF14-E0.51 00 10 4 0019 FF14-E0.51 00 10 4 0011 FF14-E0.51 00 10 3 0012 FF14-E0.51 00 10 3 0013 VFU45-F11 00 10 3 0022 FF14-E0.51 VFU45-F14 0022 FF14-E0.31 VFU35-FPLUS 0022 FF14-E0.31 00 10 3 0022 FF14-E0.31 00 10 2 0022 FF14-E0.31 00 10 2 0023 FF14-E0.31 00 10 2 0027 FF14-E0.31 00 10 2 0028 FF14-E0.31 00 10 2 0027 FF14-E0.31 00 10 2 0028 FF14-E0.31 00 10 2 0033 FF14-E0.31 00 10 2 0033 FF14-E0.43 00 10 2 0034 FF14-E0.41 00 10 2 0035 FF14-E0.41 00 10 2 0034 FF14-E0.41 00 10 2 0035 FF14-E0.41 00 10 2 <	TFIFFECCES CO TO TFIFFECCES CO TO TFIFFECCES CO TO TFIFFECCES CO TO UPLUSST(1) DELA TFIFFECCES CO TO TFIFFECCES CO TO TFIFFECCES CO TO TFIFFECCES CO TO TFICHECK-FOLLS CO TO TETHECK-FOLLS CO	0012 FFLEFC.1 0010 0113 FFLEFC.2 0010 0114 FFLEFC.2 0010 0115 FFLEFC.2 0010 0119 FFLEFC.2 0010 0111 FFCHLUS.LT.LULUSI 60 TO 31 0112 FFCHLUS.LT.LULUSI 60 TO 31 0112 FFCHLUS.LT.C.0010 0112 FFCHLUS.LT.C.0010 0112 FFCHLUS.LT.C.0010 0113 FFCHLUS.LT.C.0010 0114 FFCHLUS.LT.C.0010 0115 FFCHLUS.LT.C.0000 0115 FFCHLUS.LT.C.00000 0115 FFCHLUS.LT.C.00000 0115 FFCHLUS.LT.C.00000 0115 FFCHLUS.LT.C.00000			
0011 FFF-EG-51 60 T0 + 17(2-50.51 50 FULS5-FFLUS) 0022 FF(2-51) F(1-50.51) F(1-50.51) 0022 FF(2-51) F(1-50.51) F(1-50.51) 0022 FF(2-51) F(1-50.51) F(1-50.51) 17(1-50.51) F(1-50.51) F(1-50.51) 0022 FF(2-50.51) F(1-50.51) F(1-50.51) 17(1-50.51) F(1-50.51) F(1-50.51) F(1-50.51) F(1-50.51) 17(1-50.51) F(1-50.51)	If [F(H=EG.5] G0 10 1 If [H=EG.5] G0 10 1 IF [H=EG.2] G0 10 2 IF [H=EG.2] H=I IF [H=EG.2] H=I IF [H=EG.2]	0011 FFF-EG-51 60 10 4 17(2-50.6) 60 10 4 17(2-50.6) 60 10 4 17(2+57.6) 60 10 4 0019 YPLUS-T7.0PLUS1 60 10 3 17(7+FLUS.L7.0PLUS1 60 10 3 71-7(3) 7PLUSS-TPLUS1 60 10 3 17(7+ELUS.L7.0PLUS35+PLUS1 60 10 3 0022 17(7+E0.31) 60 10 3 17(7+E0.31) 60 10 13 17(7+E0.31) 60 10 13 17(7+E0.31) 10 11 17(7+E0.31) 60 10 13 17(7+E0.31) 60 10 13 17(7+E0.31) 60 10 13 17(7+E0.31) 60 10 13 17(7+E0.31) 10 13 17(7+E0.31) 10 13 17(7+E0.31) 60 10 2 17(7+E0.31) 60 10 2 17(7+E0.3			
0015 TF(F-EQ.S) 00 TO A. 0019 TF(F-EQ.S) 00 TO A. 0021 TF(T-EVLS) 00 TO A. 0022 TF(LEC.S) 00 TO 13 0022 TF(L.EO.S) 00 TO 13 0023 TF(L.EO.S) 00 TO 13 0023 TF(L.EO.S) 00 TO 13 0023 TF(L.EO.S) 00 TO 2 0033 TF(L.EO.S) 00 TO 2 0033 TF(L.EO.S) 00 TO 2 0033 TF(R-LUS.LF.20.0)	FF(W-EC, 5) G0 T0 ** FF(W-EC, 5) G0 T0 ** UPUUS=Y(1) 00 T0 ** FF(W-EC, 5) G0 T0 ** FF(US=X) FUUS=X FF(US=X) FUUS=X FF(CFC=1) FO T0 ** FF(US=X) FUUS=X FF(US=X) FUUS=X FF(US=X) FUUS=X FF(N=E0.1) G0 T0 1 FF(N=E0.2) G0 T0 2 FF(N=US_LE_E00.0) G0 T0 2 FF(N=E0.2) G0 T0 2 <	0015 TF(F*-EQ.5) 00 TO 4. 0019 TF(F*-EQ.5) 00 TO 4. 0019 H=Y(5) 00 TO 4. 0021 YPLUSY=T 0.0 0022 TF(FECKSL1_LUPLUS) 60 TO 1 10022 TF(1.E0.15) YPLUSY=PLUSY 0022 TF(1.E0.15) 60 TO 1 0022 TF(1.E0.15) 60 TO 1 0022 TF(1.E0.15) 60 TO 1 0023 TF(1.E0.21) 60 TO 1 0023 TF(1.E0.21) 60 TO 1 0033 TF(1.E0.21) 60 TO 1 0033 TF(1.E0.21) 60 TO 2 0033 TF(1.E0.21) 60 TO 2 0033 TF(1.E0.21) 60 TO 2 0033 TF(1.E0.2.20.0) 60 TO 2			3
0013 UPLUSSY(11) DELA 0014 UPLUSSY(11) DELA 0013 YFUUSSY(11) DELA 0014 YFUUSSY(11) DELA 0022 TF(TCHECK-FQ.1) GO TO 31 0022 TF(TCHECK-FQ.1) GO TO 31 0022 TF(TCHECK-FQ.1) GO TO 31 0022 TF(TCHECK-FQ.1) GO TO 12 0022 TF(11.EQ.35) VPLUSSSEVPLUSS 0023 TF(11.EQ.35) VPLUSSSEVPLUSS 0033 TF(11.EQ.35) VPLUSSSEVPLUSS 0033 TF(11.EQ.35) VPLUSSSEVPLUSS 0033 TF(11.EQ.35) VPLUSSSEVELSS 0033 TF(11.EQ.35) TO 0033 TF(11.EQ.35) TO 0033 TF(11.EQ.35) TO 0033 TF(11.EQ.35) TO 0033 TF(11.EQ.35) TO <t< td=""><td>UPULS=Y(1) - DELA UPULS=Y(1) - DELA UPULS=Y(1) - DELA TETETES TETETES TETETES TETETES TETETES TETETES TETETES TETETS</td><td>0013 UPLUSST(11) 001 00119 UPLUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00222 FILUSST(11) 001 00223 FILUSST(11) 001 00224 FILUSST(11) 001 00225 FILUSST(11) 001 00226 FILUSST(11) 001 00227 FILUSST(11) 001 00231 FILUSST(11) 001 00232 FILUSST(11) 001 0033 FILUSST(11) 001 0033 FILUSST(12) 001 0033 FILUSST(12) 001 0033 FILUSST(12) 001 0033 FILUSST(12) 001 0033 FILUSST(12)</td><td></td><td></td><td>3</td></t<>	UPULS=Y(1) - DELA UPULS=Y(1) - DELA UPULS=Y(1) - DELA TETETES TETETES TETETES TETETES TETETES TETETES TETETES TETETS	0013 UPLUSST(11) 001 00119 UPLUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00121 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00221 FILUSST(11) 001 00222 FILUSST(11) 001 00223 FILUSST(11) 001 00224 FILUSST(11) 001 00225 FILUSST(11) 001 00226 FILUSST(11) 001 00227 FILUSST(11) 001 00231 FILUSST(11) 001 00232 FILUSST(11) 001 0033 FILUSST(11) 001 0033 FILUSST(12)			3
00119 ULUS-11	1 1	00119 ULUS-11(1)			3
0018 H=YY51 0022 F(TUEKCK-1, LPLUS) 60 T0 3 0022 F(TUEKCK-1, LPLUS) 60 T0 3 0022 F(TUEKV-10 0022 F(TUEKV-10 0022 F(TUEK-10 0022 F(TUEK-10 0022 F(TUEK-10 0022 F(TUEK-10 0022 F(TUEK-10 0023 F(TUEK-20.1) 60 T0 13 0029 FF(TUEK-20.1) 60 T0 13 011 F(TUEK-20.1) 60 T0 13 0023 FF(TUEK-20.1) 60 T0 2 0033 FF(TUES-15.00 0) 13 0033 FF(TUES-15.00 0) 60 T0 2 0034 FF(TUES-15.00 0) 60 T0 2 0035 FF(TUES-15.00 0) 60 T0 2 0043 FF(TUES-15.00 0) 60 T0 2 0043 FF(TUES-15.00 0	Trivici xiav(s) xiav(s) xiav(s) reves reves </td <td>0018 H=Y(5) 0022 TF(TUES.LT.UPLUS) G0 T0 3 0022 TF(TUES.LT.UPLUS) G0 T0 3 0022 TF(TELUS.LT.UPLUS) G0 T0 3 0022 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0033 TF(12.E0.30) YPLUSSYPELUS 0034 TF(12.E0.30)</td> <td></td> <td></td> <td>9</td>	0018 H=Y(5) 0022 TF(TUES.LT.UPLUS) G0 T0 3 0022 TF(TUES.LT.UPLUS) G0 T0 3 0022 TF(TELUS.LT.UPLUS) G0 T0 3 0022 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0023 TF(11.E0.35) YPLUSSYPELUS 0033 TF(12.E0.30) YPLUSSYPELUS 0034 TF(12.E0.30)			9
0019 YIIA(8) 0021 YELUS-LT : JELUS) 60 T0 3 0022 YELUS-LT : JELUS) 60 T0 3 0022 YELUS-TELT : JELUS) 60 T0 3 0022 YELUS-TELT : JELUS) 60 T0 3 0027 31 T616.50 30 YELUSS-FPLUS 0027 1611.60.36) YELUS35-YELUSY 0027 1611.60.36) YELUS35-YELUSY 0027 1611.60.36) YELUS35-YELUSY 0027 1611.60.36) YELUS35-YELUSY 0023 1611.60.36) YELUS35-YELUSY 0023 1611.60.36) YELUS35-YELUSY 0033 1611.60.36) YELUS35-YELUSY 0033 1611.60.36 17 0033 1611.61.0 60 T0 13 0033 10 1614.61.0 60 T0 2 0033 10 1614.61.0 60 T0 2 0033 10 1610.10 60 T0 2 0033 10 16.41.0 60 T0 2 0033 10 16.41.0 60 T0 2 0033 10 16.41.0 60 T0 2 0034 10 16.41.0 60 T0 2 0044 10 16.10 60 T0 2	X13Y (8) X13Y (8) Y10254 F(1CHECK.F0.1) 60 T0 31 F(1CHECK.F0.1) 60 T0 31 F(1ECHECK.F0.1) 60 T0 31 F(1ECHECK.F0.3) 60 T0 12 F(1.E0.3) 60 T0 2 F(1.E0.3) 60	0019 Y114(18) VPLUSS-LT TUPLUS F(1CHECK-F0.1) 60 70 31 0022 F(1CHECK-F0.1) 60 70 31 0022 F(1ECHECK-1) 0022 F(1ECHECK-1) 0022 F(1ECHECK-1) 0022 F(1EC-35) 0022 F(1E-0.36) 0022 F(1E-0.36) 0023 F(1E-0.36) 013 F(1E-0.36) 013 F(1E-0.36) 013 F(1E-0.36) 013 F(1E-0.36) 013 F(1E-0.36) 013 F(1E-0.36) 014 F(1E-0.36) 015 F(1E-0.36) 013 F(1E-0.36) 014 F(1E-0.36) 015 F(1E-0.36) 015 F(1E-0.36) 015 F(1E-0.36) 016 F(1E-0.36) 017 F(1E-0.36) 018 F(1E-1.20.0) 019 F(1E-1.20.0) 010 F(1E-1.20.0) 011 F(1E-1.20.0) 012 F(1E-1.20.0) 013 F(1E-1.20.0) <td></td> <td></td> <td>H#Y (5)</td>			H#Y (5)
00220 FFLUS.LT.UPLUS1 60 T0 31 00221 FF(TELEK.FQ.1) 60 T0 31 00223 FF(TELEG.J5) FEUUS160 T0 30 00223 FF(TE.FQ.1) 60 T0 12 00223 FF(TE.FQ.1) 60 T0 12 00223 FF(TE.FQ.2) 60 T0 12 00223 FF(TE.FQ.2) 60 T0 12 00230 FF(A.FG.2) 60 T0 12 00311 FF(A.FG.2) 60 T0 12 0133 FF(A.FG.2) 60 T0 12 0134 FF(A.FG.2) 60 T0 2 0135 FF(A.FG.2) 60 T0 2 014 A 015 FF(A.FG.2) 60 T0 2 016 FF(A.FG.2) 60 T0 2 017 FF(A.FG.2) 60 T0 2	FULSELT: UPLUS: 160 T0 31 F(TCHEKK, F02,1) 60 T0 31 F(TCHEKK, F02,1) 60 T0 31 F(TERES) F(TERES) <	00220 FFLUS-LT_UPLUS1 60 T0 31 00221 FF(TELES.TS) FEUS-LT_UPLUS1 60 T0 31 00223 FF(TELES.35) FEUSS4 FEUSS4 00223 FF(TELES.35) FEUSS4 FEUSS4 00223 FF(TELES.35) FEUSS4 FEUSS4 00224 FF(TELES.35) FEUSS4 FEUSS4 00224 FF(TELES.35) FEUSS4 FEUSS4 00224 FF(TELES.35) FEUSS4 FEUSS4 00231 FF(TELES.35) FEUSS4 FEUSS4 00331 FF(TELES.35) 60 T0 12 FEUSS4 00333 FF(TELES.1E.200.0) 60 T0 2 2 00334 VALUS.1E.200.0) 60 T0 2 2 00335 FF(TELUS.1E.200.0) 60 T0 2 2 00334 VALUS.1E.2000.0) 60 T0 2 2 00335 FF(TELUS.1E.2000.0) 60 T0 2 2 00335 FF(TELUS.1E.2000.0) 60 T0 2 2 00335 FF(TELUS.1E.2000.0) 60 T0 2 2 0044 FF(TELUS.1E.2000.0) 60 T0 2 2			X1#7(8)
00221 F(TCHEUS_LT_JUPLUS) 60 T0 1 00223 F(TEREUS_LT_JUPLUS) 60 T0 1 00273 F(TEREUS_LT_JUPLUS) 60 T0 1 00273 F(TEREOS_1) 60 T0 1 00273 F(TERES_LT_JUPLUS) 60 T0 1 00231 F(TERES_LT_JUPLUS) 60 T0 1 00333 F(TERES_LT_200) 60 T0 2 00334 FF(TERES_LE_20.0) 60 T0 2 00335 FF(TERES_S_0 0 00335 FF(TERES_S_0 0 00335 FF(TERES_S_0 0 00335 FF(TERES_S_0 0 0033 FF(TERES_S_0 0 0033 FF(TERES_S_0 0	11 F(1(EC.15) 0 0 0 12 F(1(EC.15) 0 10 0 0 13 F(1(EC.15) 0 10 11 0 0 0 14 F(1(EC.15) 0 10 11 0 0 10 14 F(1(EC.15) 0 10 11 11 0 0 10 17 F(1(EC.15) 0 10 11 <td< td=""><td>00221 F(TCHEUS.LT.UPLUS) 60 10 00223 F(TELUS.LT.UPLUS) 60 10 00224 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0031 F(TEC.25) YPLUSSSPPLUSY 0033 F(TPLUS.LF.20.0) G0 T0 00335 FF(TPLUS.LF.20.0) G0 T0 0044 PART(5)=1.0 0045 FF(TPLUS.LF.2000.0) G0 T0 0045 FF(TPLUS.LF.2000.0) G0 T0</td><td>LN 0020</td><td></td><td></td></td<>	00221 F(TCHEUS.LT.UPLUS) 60 10 00223 F(TELUS.LT.UPLUS) 60 10 00224 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.35) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0027 F(TEC.25) YPLUSSSPPLUSY 0031 F(TEC.25) YPLUSSSPPLUSY 0033 F(TPLUS.LF.20.0) G0 T0 00335 FF(TPLUS.LF.20.0) G0 T0 0044 PART(5)=1.0 0045 FF(TPLUS.LF.2000.0) G0 T0	LN 0020		
0025 TCHECKEL COUNCE 0025 TCHECKEL CUUS35=YPLUSY 0027 TF(1.E0.15) YPLUS3=YPLUSY 0027 TF(1.E0.15) FUUSY 0027 TF(1.E0.15) FO T 0027 TF(1.E0.15) FO T 0027 TF(1.E0.15) FO T 0021 TF(1.E0.15) GO T 0023 TF(1.E0.21) GO T 0033 T	TCHECKT TCHECKT TCHECKT TCHECKT TCHECKT TCHECKT TFULSSS+PLUS TFULSSS+PLUS TFULSSS+PLUS TFULSSS+PLUS TFULSSS+PLUS TFULSS TT <	0025 TCHECKEL COUNCE 0025 TCHECKEL COUNCE 0025 TFILUSYMPPLUS 0026 TFILUSYMPPLUS 0027 TFILUSYMPPLUS 0027 TFILUSYMPPLUS 0027 TFILUSYMPPLUS 0029 TFILUSYMPPLUS 0029 TFILUSYMPPLUS 0029 TFILUSYMPPLUS 0029 TFILUSS 0011 TFILUSS 0012 TFILUSS 0013 TFILUSS 0010 TTIL <t< td=""><td>LN 0021</td><td></td><td></td></t<>	LN 0021		
0022 YPLUSSWERUS 0022 1511.80.151 0022 1511.80.151 0022 1511.80.151 0023 1511.80.151 0031 1514.80.151 0032 1514.80.151 0031 1514.80.151 0032 1514.80.151 0033 1514.80.151 0033 1514.80.151 0033 1514.80.151 0033 1614.80.151 0033 1614.80.151 0033 1614.80.151 0033 10 117.14.105.15.20.01 60 TO 2 0033 10 117.14.105.15.10 0 0033 11 117.14.105.11.0 0033 11 117.14.105.11.0 0044 12 0045 11 117.14.105.11.0 0044 12 0045 11 117.14.100.0.01 60 TO 2 0044 12 0045 11 117.14.100.0.01 60 TO 2 0045 11 117.14.100.0.01 60 TO 2 0045 12 0045 12 0045 12 0045 <td< td=""><td>Tritice Tritice Tritice</td><td>0022 7PLUSY-FULUS 0022 1F(1.E0.35) YPLUS35-YPLUSY 0022 1F(1.E0.35) YPLUS35-YPLUSY 0022 1F(1.E0.35) GO TO 12 0023 1F(1.E0.25) GO TO 12 0023 1F(1.E0.25) GO TO 12 0023 1F(1.E0.25) GO TO 12 0033 1F(1.E0.25) GO TO 2 0033 1F(1.E0.2.1.0 0044 17 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 12 0045 12 <t< td=""><td></td><td></td><td></td></t<></td></td<>	Tritice	0022 7PLUSY-FULUS 0022 1F(1.E0.35) YPLUS35-YPLUSY 0022 1F(1.E0.35) YPLUS35-YPLUSY 0022 1F(1.E0.35) GO TO 12 0023 1F(1.E0.25) GO TO 12 0023 1F(1.E0.25) GO TO 12 0023 1F(1.E0.25) GO TO 12 0033 1F(1.E0.25) GO TO 2 0033 1F(1.E0.2.1.0 0044 17 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 11 0045 12 0045 12 <t< td=""><td></td><td></td><td></td></t<>			
0025 If(1.E.055) YELU535=YELUSY 0027 31 F(1.E.015) YELU535=YELUSY 0029 1F(1.E.015) F(1.E.015) F(1.E.015) F(1.E.015) 0030 1F(1.E.015) F(1.E.015) F(1.E.015) F(1.E.015) 0031 1F(1.E.E.015) F(1.E.015) F(1.E.015) F(1.E.015) 0031 1F(1.E.E.015) F(1.E.015) F(1.E.015) F(1.E.015) 0031 1F(1.E.E.015) F(1.0.12) F(1.E.015) F(1.20.0.0) F(1.20.0.0) 0033 10 1F(1.E.015) F(1.E.015) F(1.E.0.0.0) F(1.20.0.0) F(1.20.0.0) 0033 10 17 17 F(1.E.20.0.0) F(0.10 F(1.20.0.0) 0033 10 17 17 F(1.E.1.0.0) F(1.20.0.0) F(1.20.0.0) 0043 11 17 11 F(1.20.0.0.0) F(0.10 F(0.10) 0044 9045 9040 9040 9040 F(1.20.0.0) F(0.10 0044 9044 9040 9040 9040 9040 F(1.20.0.0) F(0.10 0045 11 11 11 11 F(1.20.0.0) F(0.10 F(0.10) 004	If (1: E0.35) % PLU355-% PLUS If (1: E0.35) % PLU355-% PLUS If (1: E0.36) % PLU355-% PLUS If (1: E0.36) % 0 10 If (1: E0.31) % 0 10 StEP=5.0 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 0 10 2 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 <td>0025 If(1.E.055) YELUS35=YELUSY 0027 31 F(1.E.015) YELUS35=YELUSY 0029 IF(1.E.E.015) GO TO 12 0020 IF(1.E.E.015) GO TO 12 0020 IF(1.E.E.015) GO TO 12 0021 IF(1.E.E.015) GO TO 12 0023 IF(1.E.E.015) GO TO 12 0023 IF(1.E.E.015) GO TO 2 0023 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.016) GO TO 2 0033 IF(1.E.E.20.0.0) GO TO 2 0045 IF(1.</td> <td>LN 0024</td> <td></td> <td>YPLUSV=YPLUS</td>	0025 If(1.E.055) YELUS35=YELUSY 0027 31 F(1.E.015) YELUS35=YELUSY 0029 IF(1.E.E.015) GO TO 12 0020 IF(1.E.E.015) GO TO 12 0020 IF(1.E.E.015) GO TO 12 0021 IF(1.E.E.015) GO TO 12 0023 IF(1.E.E.015) GO TO 12 0023 IF(1.E.E.015) GO TO 2 0023 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.015) GO TO 2 0033 IF(1.E.E.016) GO TO 2 0033 IF(1.E.E.20.0.0) GO TO 2 0045 IF(1.	LN 0024		YPLUSV=YPLUS
0027 31 F(1.E.0.16) YPLUSSS=YPLUSV 0027 31 F(1.E0.1) 60 71 0030 F(N.E0.1) 60 71 0031 F(N.E0.1) 60 71 0031 F(N.E0.2) 60 71 0031 F(N.E0.2) 60 71 0032 F(N.E0.2) 60 72 0033 F(N.E0.2) 60 70 0034 YPLUS.LF.20.0) 60 70 0035 F(YPLUS.LF.20.0) 60 70 0033 10 F(YPLUS.LF.20.0) 60 70 0033 10 F(YPLUS.LF.200.0) 60 70 0045 STEP5.0 90 70 70 0043 11 F(YPLUS.LF.200.0) 60 70 0044 12 F(YPLUS.LF.200.0) 60 70 0045 11 F(YPLUS.LF.200.0) 60 70 0045 11 F(YPLUS.LF.200.0) 60 70 0045 11 F(YPLUS.LF.200.0) 60 70	1 $f(1, \epsilon, 5)$ $Pelusservelusvelusvelusvelusvelusvelusvelusvelus$	0027 31 Ff(1, F0, 1) F(1, F0, 1)	LN 0025		If(I.EQ.35) YPLUS35=YPLUSV
0027 31 CCNTINE 00 0029 17(N+E0.2) 60 10 0031 17(N+E0.2) 60 11 0032 17(N+E0.2) 60 11 0033 17(N+E0.2) 60 12 0033 17(N+E0.2) 60 12 0033 17(N+E0.2) 60 12 0033 17(N+E0.2) 60 12 0034 N=1 12 10 0035 17(N+LUS.LF.200.0) 60 10 0031 17(Y-LUS.LF.200.0) 60 10 0031 17(Y-LUS.LF.200.0) 60 10 0031 17(Y-LUS.LF.200.0) 60 10 0041 17(Y-LUS.LF.200.0) 60 10 0042 11 17(Y-LUS.LF.200.0) 60 10 0041 17(Y-LUS.LF.200.0) 60 10 2 0042 11 17(Y-LUS.LF.200.0) 60 10 0043 11 17(Y-LUS.LF.200.0) 60 10 0044 12 14 10 10 0044 12 14 10 10 0044 12 10 10 10 0045	3) CONTURE CONTUNE CONTURE CONTURE CONTURE CONTURE CONTURE CONTURE CONTURE CONTUNE CONTUNE CONTURE CONTUNE CON	0027 31 CCNTINE 60 70 10 0029 1 1 1 1 1 0029 1 1 1 1 1 0029 1 1 1 1 1 0021 1 1 1 1 1 0011 1 1 1 1 1 0013 1 1 1 1 1 0013 1 1 1 1 1 0013 1 1 1 1 1 0014 1 1 1 1 1 0013 1 1 1 1 1 0014 1 1 1 1 1 0015 0 1 1 1 1 0015 0 1 1 1 1 0015 0 1 1 1 1 0015 0 1 1 1 1 0010 1 1 1 1 1 0010 1 1 1 1 1 0010 0 0 0 0 <	LN 0026		If (1.EG.36) VPLUS35=YPLUSV
0029 1F(Ax:EG.1) 60 70 10 0011 F(Ax:EG.1) 60 70 12 0011 F(Ax:EG.1) 60 70 2 0013 F(Ax:EG.1) 60 70 2 0014 F(Ax:EG.1) 60 70 2 0015 F(F(A:LUS.LE.200.0) 60 70 2 0014 F(F(PLUS.LE.2000.0) 60 70 2 0015 F(F(PLUS.LE.2000.0) 60 70 2 0015 F(F(PLUS.LE.2000.0) 60 70 2 0045 F(F(PLUS.LE.2000.0) 60 70 2 0045 F(F(FUS.LE.2000.0) 60 70 2 0045 F(F(FUS.LE.2000.0) 60 70	IF(N=E0.2) 60 70 10 IF(N=E0.2) 60 70 12 Nait Nait 10 12 Nait Nait 10 10 Nait 10 10 10 Nait 10 10 10 Nait 11 11 11 Nait 10 10 10 Nait 11 11 10 Nait 11 11 10 Nait 11 10 10 Nait 10 2 10 Nait 10 2 10 Nait 10 2 10 Nait 10 2<	0029 1F(Ax:EQ.1) 60 70 10 0011 F(Ax:EQ.1) 60 70 12 0011 F(Ax:EQ.1) 60 70 2 0013 F(Ax:EQ.1) 60 70 2 0014 F(Ax:EQ.1) 60 70 2 0015 F(Ax:EQ.1) 60 70 2 0015 F(Ax:EQ.1) 60 70 2 0013 F(Ax:EQ.1) 60 70 2 0013 F(Ax:EQ.1) 60 70 2 0014 F(Ax:EQ.1) 60 70 2 0015 F(Ax:EQ.1) 60 70 2 0016 F(Ax:EQ.1) 60 70 2 0017 F(Ax:EQ.1) 60 70 2 0018 F(Ax:EQ.1) 60 70 2 0019 F(Ax:EQ.1) 60 70 2 0019 F(Ax:EQ.1) 60 70 2 0010 F(Ax:EQ.1) 60 70 2 0011 F(Ax:EQ.1) 60 70 2 0012 F(Ax:EQ.1) 60 70 2 0013 F(Ax:EQ.1) 60 70 2 0014 F(Ax:EQ.1) 60 70 2 0015 F(Ax:EQ.1) 60 70 2 0018	LN 0027	5	
0031 FF(NEUS.1F 60 70 12 0033 FF(NEQ.4) 60 70 12 0034 FF(NEQ.4) 60 70 12 0035 FF(NEQ.4) 60 70 12 0031 FF(NEQ.4) 60 70 12 0033 FF(NEQ.4) 60 70 12 0033 FF(NEQ.4) 60 70 2 0033 FF(NEUS.LE.20.0) 60 70 2 0033 FF(NEUS.LE.200.0) 60 70 2 0033 FF(NEUS.LE.200.0) 60 70 2 0043 FF(NEUS.LE.200.0) 60 70 2 0044 FF(NEUS.LE.200.0) 60 70 2 0045 FF(NEUS.LE.2000.0) 60 70 2 0055 FF(NEUS.LE.2000.0) 60 70 2	IF(N:EC.3) 60 70 12 IF(N:EC.4) 60 70 13 IF(N:EC.4) 60 70 13 IF(N:EC.4) 60 70 13 IF(N:EC.4) 60 70 2 STEP=5.0 60 70 2 10 IF(PLUS.LE.200.0) 60 70 2 STEP=10.0 STEP=10.0 11 IF(PLUS.LE.200.0) 60 70 2 STEP=2.0 12 60 70 3 PM47(5)=1.0 STEP=2.0 13 17(5)=1.0 STEP=2.0 13 17(5)=1.0 STEP=2.0 13 17(5)=1.0 STEP=2.0 13 17(5)=1.0 STEP=2.0 13 17(5)=1.0 STEP=2	0033 FF(NEUS.15, 60 T0 12) 0133 FF(NEC.15, 60 T0 12) 0134 FF(NEC.15, 60 T0 13) 0135 FF(NEC.15, 60 T0 13) 0136 FF(NEC.15, 60 T0 13) 0137 FF(NEC.15, 60 T0 13) 0136 FF(NEC.15, 60 T0 13) 0137 FF(NEC.15, 60 T0 13) 0136 FF(NEC.15, 60, 10) 0139 10 0139 10 0139 10 014 PRHT(5)=1.0 0041 N=2 0043 11 014 PRHT(5)=1.0 0043 11 0044 N=2 0044 N=2 0045 FF(NEUS.LE.500.0) 0045 FF(NEUS.LE.500.0) 0045 FF(NEUS.LE.2000.0) 0055 FREP.20.0 0055 FREP.20.0 0055 FREP.20.0 0055 FF(NEUS.LE.200.0) </td <td></td> <td></td> <td></td>			
0011 IF(N.E0.4) 00 01 0132 IF(N.E0.5) 60 70 2 0134 N=1 N=1 00 2 0 2 0035 F(N.E0.5) 60 70 2 0 2 0 2 0035 F(PLUS.LE.200.0) 60 70 2 0 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 <	If (N.E0.4) G0 T0 2 IF (N.E0.4) G0 T0 2 IF (N.E0.5) G0 T0 2 NH1 STEP=5.0 G0 T0 2 STEP=5.0 G0 T0 2 STEP=1.0 STEP=5.0 STEP=1.0 STEP=5.0 PANT (5)=1.0 STEP=1.0 STEP=2.0 PANT (5)=1.0 STEP=2.0 PANT PANT PA	0011 Ff(x,E0.4) 60 T0 13 15 Ff(x,E0.4) 60 T0 2 0033 PHAT Ff(x,E0.4) 60 T0 2 0034 PHAT Ff(x,E0.4) 60 T0 2 0035 STEP=5.0 60 T0 2 7 0039 10 Ff(xPLU5.LE.200.0) 60 T0 2 0040 STEP=16.0 7 7 0041 Ff(xPLU5.LE.200.0) 60 T0 2 0041 Ff(xPLU5.LE.200.0) 60 T0 2 0041 Ff(xPLU5.LE.200.0) 60 T0 2 0041 Ff(xPLU5.LE.2000.0) 60 T0 2 0042 Ff(xPLU5.LE.2000.0) 60 T0 2 0043 Ff(xPLU5.LE.2000.0) 60 T0 2 0044 Ff(xPLU5.LE.2000.0) 60 T0 2 0045 Ff(xPLU5.LE.2000.0) 60 T0 2 0055 FMAT(5)=1.0 60 T0 2 0055 FMAT(5)=1.0 60 T0 2 0055 FF FF 0055 FMAT(5)=1.0 60 T0 2 0055 FMAT(5)=1.0 60 T0 2 0055 FF FF			0000
0012 FF(N=0.5) G0 TO Z 0013 FF(N=0.5) G0 TO Z 0013 FF(N=US.LF.20.0) G0 TO Z 0013 FF(N=US.LF.20.0) G0 TO Z 0013 FF(N=US.LF.200.0) G0 TO Z 0014 FF(N=US.LF.200.0) G0 TO Z 0014 FF(N=US.LF.200.0) G0 TO Z 0014 M= FF FF G0 TO 0015 FF FF FF G0 TO Z 0015 FF FF FF FF FF FF FF 0015 FF FF FF	Ff. A.: E05) G0 C0 Z FF. YPLUS.LF.20.0) G0 C0 Z STEP=S.0 STEP=S.0 G0 Z STEP=S.0 G0 C0 Z PAHTSJ=1.0 STEP=10.0 G0 Z STEP=10.0 G0 C0 Z STEP=10.0 STEP=20.0 G0 G0 STEP=20.0 STEP=20.0 G0 G0 STEP=20.0 STEP=20.0 G0 G0 STEP=200.0 STEP=200.0 G0 G0	0012 FF(N=0.5) G0 T0 2 0013 FF(N=0.5) G0 T0 2 0013 N=1 0013 FF(N=LUS.LF.20.0) G0 T0 2 0013 STFPT(5)=1.0 0013 FF(N=LUS.LF.200.0) G0 T0 2 0014 FF(N=LUS.LF.200.0) G0 T0 2 0042 STFPT(5)=1.0 0042 STFPT(5)=1.0 0043 H1 F(N=LUS.LF.2000.0) G0 T0 2 0044 H2 F(N=LUS.LF.2000.0) G0 T0 2 0045 STFP=25.0 0045 STFP=25.0 0045 STFP=20.0 0055 STFP=100.0 0055 STFP=100.0 0055 STFP=100.0 0055 STFP=100.0			If (N.EQ.4) GO TO 13
00133 FF (YPLUS.LF.20.0) G0 T0 2 00134 Nat 00135 FF (YPLUS.LF.20.0) G0 T0 2 00139 10 FF (YPLUS.LE.200.0) G0 T0 2 00139 Nat 0013 11 F(YPLUS.LF.200.0) G0 T0 2 0013 11 F(YPLUS.LF.200.0) G0 T0 2 0014 Nat 0015 11 F(YPLUS.LF.1000.0) G0 T0 2 0015 11 F(YPLUS.LF.2000.0) G0 T0 2 0015 12 FF (YPLUS.LF.2000.0) G0 T0 2 0015 13 FF (YPLUS.LF.2000.0) G0 T0 2 0015 14 FF (YPLUS.LF.2000.0) FF (Y		00133 FF (YFULS.LF.20.0) G0 T0 2 00134 N=1 00135 STEP=1.0 00139 10 TE (YFULS.LE.200.0) G0 T0 2 00139 10 TE (YFULS.LE.200.0) G0 T0 2 0014 15 10 0 0014 15 10 0 0014 12 TE (YFULS.LF.200.0) G0 T0 2 0014 12 TE (YFULS.LF.200.0) G0 T0 2 0014 12 TE (YFULS.LF.200.0) G0 T0 2 0015 13 TE (YFULS.LF.2000.0) G0 T0 2 0015 14 TS 10 0 0015 14 TS 10 0 0015 15 TE (YFULS.LF.2000.0) G0 T0 2 0015 14 TS 10 0 0015 1			- -
0035 FRHT(5)=1.0 0035 STEP=5.0 010 STEP=16.3 0040 STEP=16.3 0041 STEP=16.3 0041 STEP=16.3 0041 STEP=16.3 0041 STEP=16.3 0041 STEP=16.3 0045 STEP=16.3 0045 STEP=16.3 0045 STEP=25.0 0045 STEP=25.0 0045 STEP=26.0 0045 STEP=26.0 0045 STEP=26.0 0045 STEP=26.0 0055 STEP=26.0 0055 STEP=20.0 0055 STEP=20.0 0055 STEP=20.0 0055 STEP=20.0 0055 STEP=20.0 0055 STEP=20.0	FPHYT(5)=1.0 STEP=5.0 STEP=5.0 G0 T0 2 Hard Part (5)=1.0 STEP=10.3 STEP=10.4 G0 T0 2 STEP=25.0 PART (5)=1.0 STEP=20.0 PART (5)=1.0 STEP=20.0 PART (5)=1.0 STEP=200.0 STEP=20.0	0035 PRHT(5)=1.0 0036 STEP=5.0 0039 10 2 0139 10 2 0139 10 2 0139 10 2 0139 10 2 0139 11 15.1 0140 210 2 0141 210 16.0 0141 210 2 0141 11 15.1 0141 11 15.1 0141 11 15.1 0141 210 2 0141 210 2 0141 11 15.1 0141 12 10.0 0141 12 11.0 0141 12 11.0 0141 12 11.0 0141 12 10.0 0141 12 10.0 0141 12 10.0 0141 12 11.0 0142 13 11 15.1 0145 14 15.1 0145 13 11.5 0145 14 15.1 0155 13 11.5 0155 13 11.5 0155 14 15.1 0155 13 11.5 0155 14 15.1 0155 14 15.1 0155 13 11.5 0155 14 15.1 0155 10 0.0 1	LN 0033		YPLUS.LF.20.0) 60 TO
0035 STEPF5.0 00 2 0036 STEPF5.0 0 70 2 0039 10 F(TPLUS.LE.200.0) G0 T0 2 2 0040 STEP16.0 0 7 2 0041 F(TPLUS.LE.200.0) G0 T0 2 0 7 2 0042 STEP16.0 0 7 7 7 0043 TF(TPLUS.LE.200.0) G0 T0 2 0 7 <t< td=""><td>10 5751110 56702 60702 942715110 942715110 942715110 5771516.0 11 177122.5 60702 12 177225.0 12 177225.0 12 177225.0 12 177225.0 12 177225.0 12 177225.0 13 177725.0 13 177725.0 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10</td><td>0035 STEPIS.0 0037 50 10 2 0039 IF (YPLUS.LE.200.0) 60 10 2 0040 F(YPLUS.LE.200.0) 60 10 2 0041 F(YPLUS.LE.200.0) 60 10 2 0042 IF (YPLUS.LE.200.0) 60 10 2 0043 IF (YPLUS.LE.200.0) 60 10 2 0044 N=2 0045 IF (YPLUS.LE.200.0) 60 10 2 0055 IF (YPLUS.LE.200.0) 60 10 2</td><td></td><td></td><td></td></t<>	10 5751110 56702 60702 942715110 942715110 942715110 5771516.0 11 177122.5 60702 12 177225.0 12 177225.0 12 177225.0 12 177225.0 12 177225.0 12 177225.0 13 177725.0 13 177725.0 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10	0035 STEPIS.0 0037 50 10 2 0039 IF (YPLUS.LE.200.0) 60 10 2 0040 F(YPLUS.LE.200.0) 60 10 2 0041 F(YPLUS.LE.200.0) 60 10 2 0042 IF (YPLUS.LE.200.0) 60 10 2 0043 IF (YPLUS.LE.200.0) 60 10 2 0044 N=2 0045 IF (YPLUS.LE.200.0) 60 10 2 0055 IF (YPLUS.LE.200.0) 60 10 2			
0037 00102 00102 00102 0039 17 (F (YELUS.LE.200.0)) GO TO 2 0040 257 (F 16.0) 00 TO 2 0041 257 (F 16.0) 00 TO 2 0042 260 TO 2 00 TO 2 0044 260 TO 2 00 TO 2 0045 11 F (YELUS.LE.500.0) GO TO 2 0045 260 TO 2 00 TO 2 0045 271 F 16.0 00 TO 2 0045 12 F (YELUS.LE.1000.0) GO TO 2 00 TO 2 0045 12 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0045 12 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0045 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13 F (YELUS.LE.2000.0) GO TO 20 00 TO 2 0055 13	10 17 220 10 17 72 20 11 17 77 12 10 2 11 17 77 12 10 2 11 17 77 12 10 2 12 17 70 2 12 17 70 2 12 17 70 2 13 17 70 2 14 17 1000.01 60 70 13 17 70 2 10 00.01 60 70 10 10 0 10	0037 00 10 2 0039 10 TE (YELUS-LE-200.0) 60 TO 2 0039 HE (YELUS-LE-200.0) 60 TO 2 0047 5TEP-16.7 0045 11 TE (YELUS-LE-500.0) 60 TO 2 0045 00 0 2 0045 00 0 2 0045 00 0 0 0045 12 TE (YELUS-LE-1000.0) 60 TO 2 0045 00 0 2 0045 12 TE (YELUS-LE-2000.0) 60 TO 2 0045 00 0 2 0045 00 0 2 0045 00 0 2 0045 00 0 0 0055 00 0 2 0055 00 0 0 0055 00 0 0050 0 0055 00 0 0050 0 0055 00 0 0050 0 0000 0 0000 0 0050 0 0000 0			
0038 10 If (YPLUS.LE.200.0) G0 T0 2 0040 204 0041 204 0043 11 014 21 0044 21 0045 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 0045 17 0045 12 0045 12 12 16 0045 12 12 16 0045 12 010 01 010 01 025 13 15 16 025 13 16 10 025 13 16 10 025 13 16 10 025 13 16 10 025 13 16 10 025 13 16 10 17 10 <	10 TF(YPLUS.LE.200.0) GO TO 2 N=2 PRH1(5)=1.0 CO TO 2 CO TO 2 CO TO 2 PRH2(5)=1.0 PRH2(5)=1.0 STEP=25.0 PRH2(5)=1.0 STEP=25.0 PRH2(5)=1.0 STEP=20.0 CO TO 2 PRH2(5)=1.0 STEP=100.0 STEP=100.0	0038 10 IF(YPLUS.LE.200.0) G0 T0 2 0040 82 0044 82 0044 9841(5)=1.0 0045 974716.0 0045 974716.0 0045 974715)=1.0 0045 97475)=1.0 0045 97475)=1.0 0045 97475)=1.0 0045 97475)=1.0 0055 984775)=1.0 0055 98475)=1.0 0055 98475)=1.0			
0000 0000 <th< td=""><td>Har (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)</td><td>0041 N=2 N=2 N=2 0041 STEP=16.0 004 0041 STEP=16.0 00 0044 STEP=16.0 00 0044 N=3 004 0045 STEP=16.0 00 0045 STEP=16.0 00 0045 STEP=25.0 0 0045 STEP=25.0 0 0045 STEP=50.0 0 0045 STEP=10.0 00 0045 STEP=10.0 0 0045 STEP=10.0 0 0045 STEP=10.0 0</td><td></td><td>5</td><td>5.15.200.01 GO TO</td></th<>	Har (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	0041 N=2 N=2 N=2 0041 STEP=16.0 004 0041 STEP=16.0 00 0044 STEP=16.0 00 0044 N=3 004 0045 STEP=16.0 00 0045 STEP=16.0 00 0045 STEP=25.0 0 0045 STEP=25.0 0 0045 STEP=50.0 0 0045 STEP=10.0 00 0045 STEP=10.0 0 0045 STEP=10.0 0 0045 STEP=10.0 0		5	5.15.200.01 GO TO
0000 Desir(5)=1.0 0001 STEP=15.0 0002 STEP=15.0 0004 I 0004 I 0004 I 0004 I 0004 I 0004 I 004 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 10 I 11 I 12 I 13 I 14 <td>PANT (5)=1.0 STEPE 10.0 STEPE 10.0 60 T0 2 PANT (5)=1.0 STEPE 25.0 00 T0 2 12 If (YPLUS.LF.1000.0) 60 T0 PANT (5)=1.0 STEPE 25.0 12 If (YPLUS.LF.2060.0) 60 T0 13 If (YPLUS.LF.2060.0) 60 T0 13 If (YPLUS.LF.2060.0) 60 T0 PANT (5)=1.0 STEP=100.0</td> <td>0000 Dent(5)=1.0 0001 STEP=16.0 0002 00102 0004 12 0004 12 0004 12 0004 12 0004 12 0004 12 004 12 004 12 004 12 004 04 004 04 004 04 004 04 004 12 004 12 004 12 004 04 004 04 004 12 12 14 12 14 004 07 005 00 005 00 005 00 005 13 005 14 005 13 005 14 005 14 005</td> <td></td> <td></td> <td></td>	PANT (5)=1.0 STEPE 10.0 STEPE 10.0 60 T0 2 PANT (5)=1.0 STEPE 25.0 00 T0 2 12 If (YPLUS.LF.1000.0) 60 T0 PANT (5)=1.0 STEPE 25.0 12 If (YPLUS.LF.2060.0) 60 T0 13 If (YPLUS.LF.2060.0) 60 T0 13 If (YPLUS.LF.2060.0) 60 T0 PANT (5)=1.0 STEP=100.0	0000 Dent(5)=1.0 0001 STEP=16.0 0002 00102 0004 12 0004 12 0004 12 0004 12 0004 12 0004 12 004 12 004 12 004 12 004 04 004 04 004 04 004 04 004 12 004 12 004 12 004 04 004 04 004 12 12 14 12 14 004 07 005 00 005 00 005 00 005 13 005 14 005 13 005 14 005 14 005			
0041 516.0 5178-16.0 0045 11 15(7PLUS.LE.500.0) 60 70 2 0045 001 2 0045 001 12 0045 001 2 0045 00 2 0045 12 15(7PLUS.LF.1000.0) 60 70 0051 12 15(7PLUS.LF.2000.0) 60 70 0051 00 2 0051 13 15(7PLUS.LF.2000.0) 60 70 0055 00 2 0055 00 2 00 2 0 0 0 0 0 0 0 0 0 0 0 0 0	STFF=10.0 GO TO 2 GO TO 2 PAHT(5)=1.0 PAHT(5)=1.0 STFP=55.0 STFP=55.0 STFP=55.0 STFP=55.0 PAHT(5)=1.0 STFP=100.0 STFP=100.0 STFP=100.0	0041 516.0 5167-16.0 0045 11 15(17PLUS.LE.500.0) 60 70 2 0045 0045 0041 0 0045 0045 0040 0 0045 017 0 0045 15 15(17PLUS.LF.1000.0) 60 70 0050 0050 0041 0 0050 0050 007 2 0050 0050 007 0 0050 0050 0050 0 0050 0050 0 0050 0050			PRW1 (5) = 1.0
0042 11 16 (7PLUS.LE.500.0) 60 T0 2 0043 11 16 (7PLUS.LE.500.0) 60 T0 2 0045 PHT (5)=1.0 0045 5 12 16 (70 3 0046 12 17 (7PLUS.LF.1000.0) 60 T0 0046 12 17 (7PLUS.LF.1000.0) 60 T0 0051 12 17 (7PLUS.LF.2000.0) 60 T0 0051 13 17 (7LUS.LF.2000.0) 60 T0	11 60 T0 2. 11 1 Fryeus.LE.500.0) 60 T0 2 part(5)=1.0 50 T0 3 12 15 reveus.LF.1000.0) 60 T0 NA. 12 15 reveus.LF.1000.0) 60 T0 50 T0 2 50 T0 50 T0 2 50 T0 2	0042 11 16(7PLUS.LE.500.0) 60 T0 2 0043 11 16(7PLUS.LE.500.0) 60 T0 2 0045 PHTT51=1.0 0045 5 TEP755.0 0045 12 17(7PLUS.LF.1000.0) 60 T0 0046 12 17(7PLUS.LF.1000.0) 60 T0 0045 12 17(7PLUS.LF.2060.0) 60 T0 0051 13 17(7PLUS.LF.2060.0) 60 T0 0051 13 17(7PLUS.LF.2060.0) 60 T0 0055 13 17(75)=1.0 0055 5 7E7=100.0			.21Eb=16.0
0044 NET (VELUS-LE-S00.0) GO TO 2 0044 NET (VELUS-LE-S00.0) GO TO 2 0045 NET (VELUS-LE-1000.0) GO TO 2 0046 12 TET (VELUS-LE-1000.0) GO TO 0 0040 NET (VELUS-LE-2000.0) GO TO 0 0051 13 TET (VELUS-LE-2000.0) GO TO 0 0055 13 TET (S)=1.0 0055 STEP=100.0	11 I FYPLUS.LE.500.0) 60 T0 2 Has part(5)=1.0 5 TEP=23.0 5 TEP=23.0 6 T 0 2 12 If(YPLUS.LF.1000.0) 60 T0 Has (5)=1.0 5 TP = 20.0 5 TP = 20.0 5 TP = 100.0 5 TEP=100.0	0044 NET (VIS.LF.500.0) 60 T0 2 0044 NET (VIS.LF.500.0) 60 T0 2 0045 PENT(5)=1.0 0045 12 TEP=25.0 0046 12 TEP=25.0 0046 12 TEP=25.0 0046 12 TEP=25.0 0051 13 TEP=20.0 0052 13 TEP=20.0 0055 13 TEP=100.0 0055 5TEP=100.0			
0044 M=3 0045 PHT(5)=1.0 0045 STEP=25.0 0049 12 GT(70.2 0050 0050 PHT(5)=1.0 0055 PHT(5)=1.0 0055 13 HE(79LU5.LF.2000.0) GO TO 0055 13 HE(79LU5.LF.2000.0) GO TO 0055 PHT(5)=1.0 0055 PHT(5)=1.0 0055 STEP=100.0	PH43 PH43 STEP=25.0 STEP=25.0 FQ T05 FT PLUS.LF.1000.01 G0 T0 PH44 PH47 (5)=1.0 G0 T0 5 FT PFUS.LF.2060.01 G0 T0 FM (5)=1.0 STEP=100.0 STEP=100.0	0044 M=3 0045 PHT(5)=1.0 0045 STEP=25.0 0049 12 TF(70-25.0 0049 12 TF(70-25.0 0050 PHT(5)=1.0 0051 13 TF(70-10.0 0052 00 10 2 0055 PHT(5)=1.0 0055 PHT(5)=1.0 0055 PHT(5)=1.0 0055 PHT(5)=1.0		=	YPLUS.LE.500.0) 60 TO
0045 5 12 10 0045 5 12 10 0048 12 15 (19 US.LF.1000.0) 60 10 0048 12 15 (19 US.LF.1000.0) 60 10 0051 5 13 15 10 0 0051 13 15 (19 US.LF.2000.0) 60 10 0055 13 15 (19 US.LF.2000.0) 60 10 0054 984 75 910.0	12 15 10 50 70 12 15 15 15 10 14 15 15 10 10 15 15 10 10 10 13 15 15 10 60 10 13 15 15 10 10 13 15 15 10 60 10 13 15 15 10 60 10 15 15 10 0 10 15 15 10 0 10	0045 PENT (3) = 1.0 0046 STEP 75) = 1.0 0046 12 F(YPLUS.LF.1000.0) 60 T0 0048 PENT (5) = 1.0 0051 STEP 50.0 0051 13 F(YPLUS.LF.2000.0) 60 T0 0055 13 F(YPLUS.LF.2000.0) 60 T0 0055 PENT (5) = 1.0 0056 STEP = 100.0			
0047 00 12 14 1000.01 60 10 0046 12 14 10.5.4 1000.01 60 10 0050 New TS: 1.0 0051 STEP=50.0 0055 13 17 (7.5.6.0.01) 60 10 0055 New TS: 1.0 0055 STEP=100.0	12 17 100.00 60 70 12 17 17 100.00 60 70 12 17 12 10 14 10 13 17 17 13 17 17 13 17 17 14 10 12 10 10 10	0047 00 12 14 1000.01 60 10 0046 12 14 14 105.15.1000.01 60 10 14 14 145.15.1000.01 60 10 0050 New 15.11.0 0055 13 17 17 10.0 0055 13 16 15.10 0055 PPM (5)=1.0 0056 51EP=100.0			
0040 12 F(YPLUS.LF.1000.0) 60 T0 0040 Nat 0051 00 PRHT(5)=1.0 0052 00 2 0052 00 2 0054 Nat 0055 13 F(YPLUS.LF.2000.0) 60 T0 0055 PRHT(5)=1.0 0056 PRHT(5)=1.0	12 F(YPLUS.LF.1000.0) 60 T0 Nat PRAT(5)=1.0 STFP=50.0 60 T0 60 T0 13 F(YPLUS.LF.2060.0) 60 T0 13 F(YPLUS.LF.2060.0) 60 T0 PRAT(5)=1.0 STFP=100.0	0056 12 Tr(YPLUS.LF.1000.01 60 T0 0050 Nat 0051 00 0052 0 PRHT(5)=1.0 0052 00 0052 13 TF(YPLUS.LF.2000.01 60 T0 0055 PHHT(5)=1.0 0055 PHHT(5)=1.0 0055 PHHT(5)=1.0	N 0047		
0040 Na4 0050 Part(5)=1.0 0052 Part(5)=1.0 0052 00 TO 2 0053 13 TF(70LUS.LF.2000.0) 60 TO 0054 Nas 0056 STEP=100.0 0056 STEP=100.0	Н44 Рант (5)=1.0 STEP=50.0 60 10 2 60 10 2 13 If YPLUS.LF.2000.0) 60 10 ч=5 Рамт (5)=1.0 STEP=100.0	0040 Na4 0050 Part(5)=1.0 0051 STEP=50.0 0052 00 TO 2 0055 13 TF (7PLUS.LF.2000.0) 60 TO 0056 Na5 0056 STEP=100.0 0056 STEP=100.0		12	60 10
0055 0055 0055 0055 0055 0055 13	F	00550			
0051 0053 0055 0055 0055 0055 0055	2	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			PRHT(5)=1.0
0055 0055 0055 0055 0055	n	6 0023 9 0025 9 0025 9 000 0 0025 9 000	LN 0051		50 TO
4 19 00 20 00 00 00 00 00 00		415.0	N 0051	1	
0022		9500 0000		2	
0056		0056			PRMT (51=1.0

÷

00000 00000 00000 00000 00000 00000 0000	
000055 4 0000055 4 0000055 4 0000055 4 0000055 4 0000055 4 0000055 4 0000055 4 00000000	-1.0//11
00064 4 404 400 400 400 400 400 400 400	CW-CRAR
00055 * 000666 * 000666 * 000666 * 0006667 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 D1 D1
00069 0069 00069 0070 0071 0071 0071 0071 0071 0071 007	TMUE
00053 00059 0070 0071 0071 0071 0071 0071 0071	
00000 00000 0070 0071	
0071 0071	REMOVE THE ENCLOSED CARDS FOR NO FOLTMER CASES
1200	
1.00	D0ELTCH011) * (EXPTTPUS/B0PLUSE)-1.6)
1	
0074	0 100
0015 110	TF(DELVC.GF.0.336/12.0) 60 TO 112
0076	60 T0 100
0077 112	C030DCT*C/CT
0078	
0079	PHYNT 103.C0300CT
0040 103	COPAT(94 C0300C1=.F7.4)
0081	
111 2000	P UDELYC-6F .0.100/12.01 60 10 113
0085	
0096 102	FORMAT(94 F10005C1++F7_4)
0087	
0018 100	CONTINUE
0080	64H#4=2.3=50PT (CV)
0600	Def et an (0, 1) (5) (54 MH + 1) (5)
1400	
9004	
2000	TETECHER I I ARGENELIAN) 60 TO 30
9004	
0001	Ū]=ŪPEŪŠ=V <tape< td=""></tape<>
30 00	CONTINUE
0099 0	RÉMOVE THE ENCLOSED CARDS FOR NO POLYMER CASES
0100 A0 UPL	S=r(1) • OELa
0101	IF(M.EQ.2) 60 TO 6]
LN 0102 DISP	015PL & C=Y (2)
0103	HOHENTSY (1)
0104	If (UPLUS.GF. (0.99°*LAMDAC)) PRMT (5) = 1.0
0105 61	
0106	
0107	
112	
5710	

10011 Service:10 10011 Service:10 <td< th=""><th>111 20 Filestill 111 20 Filestill 111 20 Filestill 111 20 Filestill 111 21 Filestill 121 22 Filestil</th><th>111 Tentission 111 1 1111 1 <t< th=""><th>0113 0115 0115 0116 0119 0119 0120 0121 212 0122 212</th><th></th></t<></th></td<>	111 20 Filestill 111 20 Filestill 111 20 Filestill 111 20 Filestill 111 21 Filestill 121 22 Filestil	111 Tentission 111 1 1111 1 <t< th=""><th>0113 0115 0115 0116 0119 0119 0120 0121 212 0122 212</th><th></th></t<>	0113 0115 0115 0116 0119 0119 0120 0121 212 0122 212	
1 0	1 0	2 0	0115 0115 0119 0119 0120 0121 0122 0122 0122	0.1±(S)
1115 20 HT PULLE. 200.01 60 T 2 111 201151.1.0 2010 2 2010 2 111 21101.1.1 2010 2 2010 2 112 21101.1.1 2010 2 2010 2 113 21101.1.1 2010 2 2010 2 113 21101.1.1 2010 2 2010 2 113 21101.1.1 2010 2 2010 2 113 21101.1.1 2010 2 2010 2 113 21101.1.1 2010 2 2010 2 113 21101.1.1 2110 2 2010 2 113 21101.1.1 2110 2 2010 2 113 21101.1 2110 2 2010 2 113 21101.1 2110 2 2010 2 113 21101.1 2110 2 2010 2 113 21101.1 2110 2 2010 2 113 21101.1 2110 2 2110 2 113 21101.1 2100 3 2100 3 113 21101.1 2110 3 2110 3 113 21101.1 2100 3 2100 3	111 20 Trreuts.tr.200.01 60 fr 2 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 11 13 11 11 14 11 11 15 11 11 16 11 11 17 11 11 18 11 11 19 10 11 10 11 11 11 11 11 12 13 14 14 15 14 15 10 10 16 10 10 17 11 11 18 11 11 19 10 10 10 11 11 11 11 11 12 13 14 14 15 14 15 10 10 16 10 10 17 10 10 18 14 11 <t< td=""><td>111 20 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 2 12 Trreutus.tr.son.on 60 fr 2 13 Trreutus.tr.son.on 60 fr 2 14 Trreutus.tr.son.on 60 fr 2 15 Trreutus.tr.son.on 60 fr 2 16 Trreutus.tr.son.on 60 fr 2 17 Trreutus.tr.son.on 60 fr 2 18 Trreutus.tr.son.on 60 fr 2 19 Trreutus.tr.son.on 60 fr 2 10 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 2 12 Trreutus.tr.son.on 60 fr 2 13 Trreutus.tr.son.on 60 fr 2 14 Trreutus.tr.son.on 60 fr 2 15 Trreutus.tr.son.on 60 fr 2 16 Trreutus.tr.son.on 60 fr 2 10 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 3 12 Trreutus.tr.son.on 60 fr 3 13 Trreutus.tr.son.on 60 fr 3 14 Trreutus.tr.son.on 60 fr 3 15 Trreutus.tr.son.on 60 fr 3 16 Trreutus.tr.son.on 60 fr 3 17 Trreutus</td><td>0116 20 0117 0118 0119 0121 0121 21 0122</td><td></td></t<>	111 20 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 2 12 Trreutus.tr.son.on 60 fr 2 13 Trreutus.tr.son.on 60 fr 2 14 Trreutus.tr.son.on 60 fr 2 15 Trreutus.tr.son.on 60 fr 2 16 Trreutus.tr.son.on 60 fr 2 17 Trreutus.tr.son.on 60 fr 2 18 Trreutus.tr.son.on 60 fr 2 19 Trreutus.tr.son.on 60 fr 2 10 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 2 12 Trreutus.tr.son.on 60 fr 2 13 Trreutus.tr.son.on 60 fr 2 14 Trreutus.tr.son.on 60 fr 2 15 Trreutus.tr.son.on 60 fr 2 16 Trreutus.tr.son.on 60 fr 2 10 Trreutus.tr.son.on 60 fr 2 11 Trreutus.tr.son.on 60 fr 3 12 Trreutus.tr.son.on 60 fr 3 13 Trreutus.tr.son.on 60 fr 3 14 Trreutus.tr.son.on 60 fr 3 15 Trreutus.tr.son.on 60 fr 3 16 Trreutus.tr.son.on 60 fr 3 17 Trreutus	0116 20 0117 0118 0119 0121 0121 21 0122	
1 Tripeston 1<	1 1	31 Tripical 32 Tripical 33 Tripical 34 Tripical 35 Tripical 35 Tripical 36 Tripical 37 Tripical 38 Tripical 39 Tripical 31 Tripical 32 Tripical 33 Tripical 34 Tripical 35 Tripical 35 Tripical 36 Tripical 37 Tripical 36 Tripical 37 Tripical 37 Tripical 36 Tripical 37 Tripical 37 Tripical 38 Tripical 39 Tripical 31 Tripical 32 Tripical 33 Tripical 34 Tripical 35 Tripical 36 Tripical 37 Tripical 38 Tripical 39 Tripical 31 Tripical 32 Tripical 33 Tripical 34 <td< td=""><td>0115 0119 0120 0121 21</td><td>٤,</td></td<>	0115 0119 0120 0121 21	٤,
21 71 72 71 72 22 27 71 71 71 23 27 71 71 71 24 27 71 71 71 25 71 71 71 71 26 71 70 71 71 27 71 71 71 71 28 71 70 71 71 29 71 70 71 71 21 71 70 71 71 21 70 71 71 71 71 21 70 70 71 71 71 21 70 70 71 71 71 21 70 70 70 71 71 21 70 71 71 71 71 71 21 70 70 70 70 71 71 21 70 70 70 71 71 71	31 Titelate.coo.01 60 T0 2 32 Titelate.coo.01 60 T0 2 33 Titelate.coo.01 60 T0 2 34 Titelate.coo.01 60 T0 2 35 Titelate.coo.01 60 T0 2 36 Titelate.coo.01 60 T0 2 37 Titelate.coo.01 60 T0 2 38 Titelate.coo.01 60 T0 2 39 Titelate.coo.01 60 T0 2 31 Titelate.coo.01 60 T0 2 33 Titelate.coo.01 60 T0 2 34 Titelate.coo.01 60 T0 2 35 Titelate.coo.01 60 T0 2 36 Titelate.coo.01 60 T0 2 37 Titelate.coo.01 60 T0 2 38 Titelate.coo.01 60 T0 2 39 Titelate.coo.01 60 T0 3 31 Titelate.coo.01 60 T0 3 33 Titelate.coo.01 60 T0 3 34 Titelate.coo.01 60 T0 3 35 Titelate.coo.01 50 T0 3 36 Titelate.coo.01 50 T0 3 37 Titelate.coo.01 50 T0 3 38 Titelate.coo.01 50 T0 3 39 Titelate.coo.01 50 T0 3 39 Titelate.coo.01 50 T0 3 39 Titelate.coo.01 50 T0	31 1000-50 600-50 32 1000-50 600-50 33 1000-50 600-50 34 100-50 600-50 35 100-50 600-50 36 100-50 600-50 37 100-50 600-50 30 100-50 600-50 31 100-50 600-50 32 100-50 600-50 33 100-50 600-50 34 100-50 600-50 35 100-50 600-50 36 100-50 600-50 36 100-50 600-50 37 100-50 600-50 36 100-50 600-50 37 100-50 600-50 38 100-50 700-50 39 100-50 700-50 30 100-50 700-50 30 100-50 700-50 30 100-50 700-50 30 100-50 700-50 30 100-50 700-50 <t< td=""><td>0119 0120 0121 21 0122</td><td>(2)= •0</td></t<>	0119 0120 0121 21 0122	(2)= •0
21 71 71 71 22 71 71 71 23 71 72 72 24 70 7 7 25 72 70 7 26 70 7 7 27 70 7 7 28 75 70 7 29 75 75 7 20 7 7 7 21 7 7 7 22 75 7 7 23 75 7 7 24 7 7 7 25 7 7 7 26 7 7 7 27 7 7 7 27 7 7 7 28 7 7 7 29 7 7 7 20 7 7 7 20 7 7 7 20 7 7 7 20 7 7 7 20 7 7 7 20 7 7 7 20 7 7<	2) "FireUs.LF.500.01 60 10 2 2) "FireUs.FF.100.01 60 10 2 2) "FireUs.FF.200.01 60 10 2 2) "FireUs.FF.10.01 10 10 10 10 10 10 10 10 10 10 10 10 1	2) Trivuls.LF.500.01 60 T0 2 2) Trivuls.LF.500.01 60 T0 2 2) Trivuls.LF.1000.01 60 T0 2 2) Trivuls.LF.2000.01 60 T0 2 2) Trivuls.LF.111 00 T0 T0 3) Trivuls.LF.111 00 T0 T0 4) Trivuls.LF.111 00 T0 T0 4) Trivuls.LF.111 00 T0 T0 1) Trivuls.LF.111 00 T0 T0 1) Trivuls.LF.111 00 T0 T0	0122 21	
0123 WHITS:-1.0 0124 60 10 2 0103 60 10 2 0103 60 10 2 0103 60 10 2 0103 60 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0103 61 10 2 0104 10 00 10 0105 61 10 2 0104 10 00 10 0105 11 000 10 0104 11 000 10 0105 11 000 10 0104 11 000 10 014 11 000 10 014 11 10 00 10 015 11 10 00 10 016 11 10 00 10 016 11 10 00 10 016 11 10 00 10 016 11 10 00 10 016 11 10 00 10 016 11 10 00 10 016 11 10 10	0122 PHATTST-L0 0123 PHATTST-L0 0123 FX 0124 PX 0131 FX 0132 FX 0133 PX 0133 FX 0134 FX 0134 FX 0134 FX 0134 FX 0134 FX 0135 FX 0134 FX 0135 FX 0135	0122 PHIT[5]:1.0 0123 PHIT[5]:1.0 0123 TP100.01 GO TO 2 0123 TP100.01 GO TO 2 0131 TP100.01 GO TO 2 0102 TP100.01 GO TO 2 0103 TP100.01 GO TO 3 0103 TP100.01 TO 10 0104 TP100.01 TO 10 0105 TP100.01 TO 10 0104 TP100.01 TO 10 0105 TP100.01 TO 10 0104 TP100.01 TO 10 0105 TP100.01 TO 10 0104 TP100.01 TO 10	0122	PLÚS-LF-500.0) GO TO 2
375 377 377 377 103 377 177 100.00 100 10 103 377 1710 100.00 100 10 10 103 377 1710 101.00 10<	22 III (PULS.LE.1000.01) 60 10 2 103 23 103 23 103 23 103 23 103 21 103 23 103 24 103 24 103 24 103 24 103 24 103 24 103 24 104 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 105 24 106 24 107 24 108 24 108 24 108 24	22 If (PULS, LE, 1000, 0) 60 2 103 STEPTSS, 10 0 10 103 STEPTSS, 10 11 10 10 104 STEPTSS, 10 10 10 10 105 STEPTSS, 10 11 10 10 105 STEPTSS, 10 10 10 10 105 STEPTSS, 10 11 10 10 105 STEPTSS, 10 11 10 10 105 STEPTSS, 10 10 10 10 106 STEPTSS, 10 11 10 10 107 STEPTSSS, 10 10 <td></td> <td>12:21 N</td>		12:21 N
27 FULLE.100.01 60 T0 2 28 FITULE.100.01 60 T0 2 29 FITULE.200.01 60 T0 2 29 FITULE.200.01 60 T0 2 20 FITULE.200.01 60 T0 2 20 FITULE.200.01 60 T0 2 20 FITULE.200.01 60 T0 2 20 FITULE.111 60 T0 20 20 FITULE.111 60 FITU	22 FUSLES.F. 1000.01 60 TO 2 23 FUSLES.100.01 60 TO 2 24 FUSLES.000.01 60 TO 2 25 FUSLES.200.01 60 TO 2 26 FUSLES.200.01 60 TO 2 27 FUSLES.200.01 60 TO 2 28 FUSLES.200.01 60 TO 2 29 FUSLES.200.01 60 TO 2 20 FUSLES.200.01 F	22 60 10 2 23 10 2 24 10 2 25 10 2 26 10 2 27 10 2 28 10 10 28 10 2 28 10 10 28 10 10 28 10 10 28 10 10 29 10 10 20 10 20 10 10 20	0124	0.52
23 Mr. FULS.LE.2000.01 60 T0 2 133 1577LUS.LE.2000.01 60 T0 7 133 1571LUS.LI.11 60 T0 70 133 1571LUS.LI.11 60 T0 70 134 7004170 135 1704170 135 1704170 135 1704170 135 1704170 135 1704170 135 1704170 135 104070 135 1704170 135 1704170 135 1704170 135 104070	2.4 Mr. Full Mr. Full </td <td>13 24 Marrowstr.1000.01 60 10 2 13 27155.1.0 13 27155.1.0 13 17751.0.0 13 17751.0.0 14 1751.0.0 15 17751.0.0 15 17751.0.0 16 171.1.1.0 17 171.1.1.1.0 18 171.1.1.1.0 19 7001.1.1.1.1.1.1.0 101 17 101 17 101 17 101 17 11 100 10.0 11 100 10.0 12 111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</td> <td>0125</td> <td></td>	13 24 Marrowstr.1000.01 60 10 2 13 27155.1.0 13 27155.1.0 13 17751.0.0 13 17751.0.0 14 1751.0.0 15 17751.0.0 15 17751.0.0 16 171.1.1.0 17 171.1.1.1.0 18 171.1.1.1.0 19 7001.1.1.1.1.1.1.0 101 17 101 17 101 17 101 17 11 100 10.0 11 100 10.0 12 111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0125	
Diff Dest (5)=1.0 010 010.2 010.2 0113 15.11 0.10.2 113 15.11 0.10.2 113 15.11 0.10.2 113 15.11 0.10.2 113 15.11 0.10.2 113 0.10.2 0.10.2 113 0.10.7 0.10.7 113 0.10.7 0.10.7 113 0.10.7 0.10.7 114 15.11.1 0.10.7 115 0.10.7 0.10.7 114 15.6 0.10.7 117 14.1 15.6 114 15.6 0.10.7 114 15.6 0.10.7 114 15.6 0.10.7 115 0.10.7 0.10.7 114 15.6 0.10.7 115 0.10.7 0.10.7 115 0.10.7 0.10.7 115 0.10.7 0.10.7 115 0.10.7	01228 Dentification 0131 23 17 10.2 10.2 10.2 10.3	1128 Perif (5)=1.0 1129 (0) 10 2 113 17 PLUS.LE.2000.0) 60 10 2 113 17 PLUS.LE.10 113 17 PLUS.LE.10 114 15 GBEATEP THAN 10 *) 115 10 FBEATEP THAN 10 *) 115 10 FBEATEP THAN 115 10 FBEATEP THAN 115 10 FBEATE	0127 22	(4) The data is a maximum of the state of the same shares being the state of the same is a sub-
0120 0120 0131 0131 0132 0132 0132 0135 0135 010 0135 010 0135 010 0135 010 014 014 014 014 014 014 014	0120 0120 0131 0132 0132 0133 0134 0135 0135 0135 0137 0137 0137 0137 0147 0137 0147	0100 00100 001000 001000 0111 0110000 0010000 0010000 01110 01000000 0100000 0100000 0111000000000000000000000000000000000	0128	(5)=1.0
0131 23 If (rPLUS.LE.2000.01 60 T0 2 0133 40 577P-100.0 0134 570 7 5 0135 40 70 0135 40 71 0136 70 7 5 0137 5 70 7 0138 71 20 100.0 139 71 1100.0 60 70 139 71 1100.0 70 139 71 1100.0 60 70 141 71 70 131 70 70 141 71 70 141 70 70 141 71 70 141 70 70 170 70 70 141 70 70 141 70 70 141 70 70 141 70 70 141 70 70 141 70 70 141 70 70 142 70 70 141	0131 23 If (rPLUS.LE.2000.01 60 T0 2 0133 40 577 P100.0 0134 577 P100.0 0135 40 0135 50 T0 2 0136 577 P100.0 0137 50 T0 2 0138 517 P100.0 0139 71 F100.0 0139 71 F1110.0 014 71 11 70 CONTINUE 014 71 11 70 CONTINUE 014 71 11 70 CONTINUE 014 70 CONTINUE 014 70 CONTINUE 015 70 CONTINUE 014 70 CONTINUE 014 70 CONTINUE 015 70 CONTINUE 014 70 CONTINUE 015 70 CONTINUE 015 70 CONTINUE 015 70 CONTINUE 014 70 CONTINUE 015 70 CONTINUE 015 70 CONTINUE 015 70 CONTINUE 016 70 CONTINUE	113) 23 If (rPLUS.LE.2000.01 60 T0 2 113 40 517 FLUS.LE.2000.01 60 T0 2 113 40 517 FLUS.LE.2000.01 60 T0 2 113 40 71 FLUS.LE.2000.01 60 T0 70 113 50 FLID.00.01 51.4X2*DELV1 DELTAD-AK2*DELV 113 71 FLUS.LE.111 60 T0 70 70 114 71 5 GREATER FLAN 10 *1 70 113 70 CONTAULE 70 114 71 5 GREATER FLAN 10 *1 70 114 71 5 GREATER FLAN 10 *1 70 115 70 70 70 114 71 5 GREATER FLAN 10 *1 70 114 71 5 GREATER FLAN 10 *1 70 115 70 70 70 115 70 70 70 115 70 70 70 115 70 70 70 115	0130	5000 50 1 50 1
0132 PWF(5)-1.0 517 00.0 134 00 70 135 40 FLIAD-6T.(1X720ELY1) DELTAD-AK70ELY 135 2017440 141 71 141 71	0133 PWF(5)-1.0 5170 01 01 00.0 1134 40 101 01 01 01 01 01 01 01 01 01 01 01 0	0133 PWF(5)=1.0 5170 010 5170 010 5170 010 5170 010 5170 010 5170 010 5170 010 5170 010 5170 01 5170	0131 23	PLUS.LE.2000.0) 60 TO 2
0135 0135 0135 0140 0140 0142 0142 0145 0145 0145 0145 0145 0145 0145 0145	0135 40 0135 40 0139 2 0140 71 144 70 144 700 144 700 144 700 140 700000000000000000000000000000000000	0135 40 0135 40 0139 2 0140 71 144 70 0145 70 0145 70 144 70 0145 70 144 70 140 700 700 700 700 700 700 700 700 700 7	0132	
0135 40 0137 2 0139 2 0142 70 0142 70 0144 71 0144 70 0144 70 0141 70 01000000000000000000000000000000000	0135 40 0139 2 0139 2 0141 7 0142 7 0142 7 0144 7 014 7 014 7 014 7 7 014 7 7 7 014 7 7 7 014 7 7 7 014 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0135 40 0139 2 0139 2 0141 7 0142 70 0142 70 0142 70 0142 70 0142 70 0144 70 0141 70 01000000000000000000000000000000000	0134	= 100.0
ND 1137 2 1138 2 1140 7 1142 70 1142 70 1142 70 1142 70 1142 70 1142 70 1142 70 1142 70	01117 0119 0140 0141 0142 1042 1044 1044 1044 1044	01117 2 0119 0140 0141 0142 70 0142 70 0144 40 40 40 40 40 40 40 40 40 40 40 40 4	0135 40	0 0 A0011
01139 0140 0142 0145 0145 0145 0145 0145 0145 0145 0145	USAST FORT	USAST FORT	0137	ELLAD.GT.(AKZ=DELY1) DELTAD=AKZ=DELY
0140 01 01 01 11 0141 71 04116 1417 15 GREATER THAN 10 0143 70 CONTINUE 0144 EKU 0144 EKU 0144 EKU 0144 01460511C RESULTS FOR HOUTPUT VID ERROAS	0141 71 71 0141 71 71 74 15 CREATER THAN TO 0143 70 CONTINUE 0143 FEND 1445	0141 71 71 0141 71 74 7414 71 0142 70 CONTINUE 1415 GREATER THAN TO 0143 EFUON USASI FORTRAW DIAGNOSTIC RESULTS FOR HOUTPUT WD EARORS	6139	The second se
NIS TO CONTINUE THE IS OFFICE THAN TO RETURN USASI FORFAN DIAGNOSTIC RESULTS FOR HOUTPUT NO EAROAS	NIN EARDAST FORTANCE THE IS OFFICE THAN TO BETURN USAST FORTAAN DIAGNOSTIC RESULTS FOR HOUTPUT	NIN EARDAST FORTANTE THE IS OFFICIENTIAN TO USAST FORTAN DIAGNOSTIC RESULTS FOR HOUTPUT	0140	
			0142 70	IHLP IS GHEATEM THAN TO
			5410	
			1	
				IAGNOSTIC RESULTS FOR HOUTPUT
			2339•LthU	
				and and any other provide and and and a second of the second second second second second second second second s
			- Any Pr	

-	۳ '	N I	n 4	ſ	÷	r 1	10 (P	10	F	12	¢.	17		2		2	0,7	1	۲	12	ĸ	26	5	2		56	32	F	4 F	.	1	ΥĒ	£ ;	Ţ	Ş	•	4 1	ł	ç	84	0 0			F	54	5	8 1	5.8	ę ,	9;	5	55
AL PHA	-1-01733	-0-32690	-0-21956	-0.19763	-0.18542	-0.16489	20231-0-	-0.13430	20521 0-	-0.13462	28501 0-		15250.6-	P0180 D+	-0.07586	-16010-0-	-0.00445		12740-0-	-9.04210	-0.03746	-0.07255	-0.02760	-0.02350		211000-	-0.00717	-0.00419	-0.60110		0.00071	2000000	02100.0	0.70171	001	0.00125	02100"0	0.60117	01130.0	0.00097	24000.0		0.00045	5E030.0	0.00022	0.00013		-0.00019	-0-00063	-0.00256	0.0000.0	0.00020
061.	1.7		0.00	3.51	35.5	1 ° 85	2.24	4	9.64	47.3	0.94		53.0	1.12	55.7	56.9			51.5	62.5	63.5	54°.	65°E	-1-2			0.00	70.7	71.6 2.072		577.0	1.992	611.5	1.1.4	451.4	1.000	1.140	115.4	751.3	9.277	804°2		E 96	1040.9	1142.3	6°1821	1 755	1875.1	1986.9	2129.0	1.1555	1 E222
R0.			64143	5.1.20	1060.5	r leel	1749.6	1967.5	2.169.2	2411.4	2670.9	0.000 0.0707	1.2956	P-0521	1.4676	3440.0			100.5	4868.	5026.3	5175.3	5312.1	4°1645		5744	5820.4	5645	1-128521	12505.7	12662.1	: 2775	12803.0	L DEAL	12635.0	1.25521	12787 4	12749.1	12685.7	12605.4	00221	5 * 66CJI	12135.4	TTGRU.F	11808.0	11612.8	2 19611	11145.9	3.84111	6-24611	11624.4	11615.5
DELY	0.0164	1010.0	0100	0.0105	0.0105	0.0105	0100	0.0107	1010.0	0.0108	0.0108	1110.0	0.0112	- EIID-0	0.0114	2112	/ 110.0	0110-0	1210.0	6-0123	5210-0	0.0127	0.0129	1610.0		0.0134	2410.0	0.0145	0.01.6	2420.0	0.0606	0.0634	0.052	1290.0	9.0712	2.0735		0.0812	J-DESK	0.0905	0.0454 0.1031		0.1215	0.1341	0.1507	5.138 5.138	0.00M	0.2741	2262.0	0.3090	0.3144	0.3151
SDRAGS	0000°e		2000.0	0.0605	0.000	0.0012	0.0022	0.0028	0.0035	0.0043	0.0052	5400.0	0.0088	2010.0	0.0116	0.0136	2510.0		0.0771	0.0246	0.0773	2969,0	2660.0	2460 0		0.0473	0.0513	5.0555	0.0599	6150.0	0.1340	0.1637	0.1770	1122.6	70	0.2653	22020 7115 D	0]+19	TTHE D	1264-0			0127.0	ENER.0	0.9880	2651.1		2.0645	E1.22.2	2,3850		2.4578
9	1.000		0.915	0.882	0.837	0 179	0.685	0.633	0.578	£25°0		255-0	6.296	162.0	0.174	0.119	400 0		-0.052	-0.124	-0.163	-0.199	-0-230	195.0-	100.01	-0.315	-0.325	166.0-	201-0-	10.0-	-0.310	-0.302	162.0-	-0.26H	+0-2-0+	272.0-	-0.015	1020-	081-0-	-0.156	-0-137		-0.076	-0.062	-0-047	-0.036		-0.036	-0.051	-0-105	-0-1-0-	-0-178
LANDA	4.306	11.17	18.032	19.652	21.363	211.65	25.408	26.476	107.12	194.92	165.95	11.136	31.955	201.55	33.564	34 . 304	970.01	101 11	37.841	012.16	36.279	38.874		40.00F	1.035	+1.610	-2.118	42.520	11.64	21.141	PE.15	21.452	21.514	21.640	21.705	144.15		21.984	22.040	22.215	25.355	77.4 66	22.871	101.65	23.377	517 °E2	201.42	248.42	210-52	25.215	1.6.55	25.343
PDRAG	100.0	104	0.720	1.006	1.378		2.509	2.863	1.21		CT -		4.670	*L8.*	5.035 1		176 3		5.202	5.109	4.977		÷ 511	197.14	1.867	3.584	0°2°0	2 907	101-1	2.125	1.663	1.340	1.228	120.0	524.0	0.715	1 2 2 2	16.0	0.324	0.235	191.0	A 154	0.023	100.0-	-0.017	120.0-	220-0-	-0.037	-0-037	-0.037	-0.012	400.0-
XX XX	010.0		162.0	6.36.9	101 0	0.414	0.562	0.636	0.649			0.505	0.839	113.0	606.0	6 E E O		810 1	1.020	1.060	1.078	1.095	109	1.121		1-147	1.151	1.1.74	21. 251.	1.154	1.144	1.141	46 T • 1	174	1.121	1.115	1107	1.096	T. 546	1.076	1.065	270	1.018	5	1.023					1.052		
0 a a	100.0	210.0	0.018	0.022	0.026	0.000	0.036	0.039	270 0	040.0		0.055	0.057	0.060	0 0 3	0.050	0.071	0.074	0.077	0.079	280.0	0 0 B4	0.087		10000	0.096	800°0	0.100	0.102	0.105	0.108	0.110	111.0	6.113	0.11.	0.115	1110	0.117	9.118	0.119	0.120	221.0	9.123	0.123	0.124	121.0		0.125	0.125	0.125	0.124	0.124
XLSTAR COOLO	225.00.0	0.00618	0.00047	0.01014	0.01207	0.01572	16710.0	0.01892	0.02054	01220-0	000000	0.07721	0.02899	14010.0	0.03258			12070 0	0.04223	0.04432	0.04546	0.04457	0.05096	01220 0	0.05474	0.04101		0.04673	0.07305	0.07651	416 BO.0	0.08797	0.04040	0.94746	10101.0	0.10490		CP711.0	0.12510	0.11395	0.14412		0.14966	0.21319	٠	17642.0	10237.0	41604.0	5-145.0	0.57011	10.54.0	0.5A468 0.5A735
S-AREA	0.000.0	0.00056	50100.0	0.00150	0.00213	0.00159	4E400 0	0.00517	0.00607	0,000,0	51000°0	0.01051	0.01184	0.01327	0.01478		10010 0	10100	0.02401	22420-0	15820.0	1010.0	ELEED.O	130E0 0	0.04278	0.04521	10.049AF	0.05381	12240.0	0.00747	0.0770.0	0.08424	1250.0	0.04459	0.10417	10011.0		0.13061	1:531.0	0.15464	745/1.0		0.24450	0.29783	14074	12414.0	1164.0	0.74120	0.42649	0.89]78 0 91759	52416-0	0.92100
SUPF-X	0.00761	91119	26910.0	0.02195	0.02614		0.03749	0.04047	0.04448			0.05900	0.05279	0.06663	0.07055			0.04707	0.09146	1,09597	2 1001 0	14501.0	0.11036	100110	0.12635	0.13212	71961.0		12851.0	0.14570	0.14004	0.19052	20102-0		0.21974	25422.0	1.24518	0.25534	10010.0	1002.0			0.41074	0.46158			04440-0	1.04744	1.15129	1.27453	1.25995	1.27197
AX TAL-X	10,000.0	0100-0	10200.0	0.00287	0.00405	0.00680	0.00920	0.00974	14110-0	0.01517	01776	0.01947	0.07194	27720.0	0.02711			0.03949	20640.0	0-0-673	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.450.0	01650.0	0.05460	73570.0	FPAT0.0	0.08461		0.10360	0.11105	0.12505	0.13539	4541-0	0.15572	0.1-335	161/1.0	14041 0	6.199AA	0.21534	0.23457		1515 0	0.35504	0,40403	0.47427		22120.0	1.01230	1.09563	1.21194	1.21340	1.21485

1 . L.

				200		12		: }		2 F		75			ŝĘ		5	0		F		5		3	6	:		8	8		1					23			
0.00020	02000*0	0-00050		0.000.0	02000.0	0.00018	0.000.5	0.00330	100000		0.00040	15000.0	0.00025	0.00021	0.00016	0.00019	1000010	12000-0-	10,00,01	05520-0-	17610.0-	95500-0	0.010.0	15140.0	0.05510	H0250"0	0.22827	14715"0	3.80983										
2220.1	8222	1.0525		2235.1	2736.5	2238.4	1-0+22	2232.6	2.8755		6.1665	2372.0	2413.6	2455.7	2448.0	2657.4	2742.8	2830-6	1152.4	34.35.4	3505.6	3515.4	3483.5		B.971E	2957.4	2278.4	1697.6	1.677									ł	
11597.1	8-98511	6*67211		11553.2	11544.3	11535.4	11526.9	9-26211	9.85501	9576	9143.0	8728.5	8326.2	7932.5	1545-4 4 H H I - 4	6139.9	5410.9	4699.3	3779.4	1032.4	4062.9	3472.6	3791-9	5-191E	5140.3	2310.2	0.6211	504.4	58.7							ľ		1	
0, 3154 2225	0.315/	1915.0		1716.0	0.3175	0.3178	1416.0	0.3228	1445 0	1277	0.3656	7195.0	1.941	0.4070	0.4205	E # 7 # 0	0.5166	0.5636	0.6668	0.6633	0.4648	0.6738	0.5899	0.7512	0.8075	0.9004	1-5621	4.3416	027.9939				1						
2.4639		2.4699		0413 0	7.4814	2.4849	2.4779	2.5175	2.55A0	1924 6	2767.2	2.8557	1-10-5	2.9694	1/01.1	6761.6	5.2713	3.3383	2464.6	75.22.6	3.4463	3.4490	3.4515	3.4545	3. 4587	J.4695	3.4631	3.4637	3.46382602										
-0.178				-0-177	-0.177	-0-177	-0-176	0 - 1 3 d	-0.040	-0.076	-0.015	-0.006	0.000	500.0	0.010	0.021	0.075	0.025	-0.135	267-0-	-0.510	-0.517	10.474	-0.269	-0.112	0.070	0.559	0.808	0.979			1							
25.347				25.358	75.360	25.363	25,365	22.155	20.186	21-2-2C	26.4.52	25.533	25.584	25.635	111.22	25.856	25.059	26.051	26.357	26.617	26.676	26.685	26.658	26.508	ETE. 35	26.179	25.415	24.549	512.22							I		1	
0.011	110.0	20°0		0.047	0.054	0.062	0.063	6/1.0		102.0	0.633	0.653	0.659	0.654	0.605	0.550	0.489	0.40	0.475	0.569	0.629	0.719	0.832	1.060	1.133	1.140	0.818	5	0.170					-					
1.045				1.085	1.085	1.085	1.045	140.1			1.007	1.003	1.000	100.07	266.0	0.949	0.988	845 0	1-066	1.197	1.229	1.231	1.214	1.126	1.054	0.960	0.564	0.439	0.14.		-								
0.124		1010	124	0.124	721.0	0.124	7210	0.122	1110	0110	0.106	0.102	990.0	660-0	280.0	0.074	0.045	0.057	140.0	0.041	0.040	0.039	0.038	0.035	0.032	0.029	0.020	E10-0	100.0		-			-			4		
0.58802			0.59071	9-192.0	0.59705	615923	0.59340	51000°D	0.414.0	0.65613	0.67547	18496.0	0.71414	0.73348	0.78646	9.42533	0-96400	0.90255	64749.0	0.974.94	0.97641	10879.0	0.97956	0.9631	0.94511	0.98721 n 98950	0.99746	0.99547	1.00000					l					
0.92214		0.92554	0.97668	0.92781	76826-0	0.93007	0.93120	H5295 0		80160-1	1.05954	1.08689	41611.I	1.13829	1.20175	1.24269	1.27920	TELLE I	1.35509	1.35944	1.36031	1.36118	1.36205	1.36380	1.36467	1.36554	1.36728	1.36804	1.36852										
67672°I		27770	1.27425	1.24070	1.24216	1.28342	1.28507		11005	FP044	1.46240	1.50464	1.54656	1.5444J	1.70359	1.78735	1.47110	1.95425	10000.2	211112	2.11453	2.11800	2.12157	2.12919	2.13336	20161.5	2.14930	2.15666	2 1 1 5 2 6 1					1					
21776	13412	100022	72555	52503	.22649	. 22793	66622	20190	12242	16459	40625	\$4192	*895s	-53125	.64583	71957.	.91250	ERSPH.	26760	65139	.05464	05798	2,06131	0479A	16170.	40%L0	ICIRO.	E54R0.	04560					-					

ſ

B-15

1.26

-	ŝ	37	e n	96	6 0	[1	۲ S	e,	77	4 Q	₩2. •	5	80 4	0 4	30	21	25	23	35	55
1HLF 1ED M	-1 0 5 11.50000	-1 0 5 3.757116	-1 0 5 3.757116	0 0 5 3.757115	-1 0 5 3.757116	0 0 5 3.757116	-1 0 5 3.757116	-1 0 5 3.757116	0 0 5 3.757116	-1 0 5 3.757116	-1 0 5 3.757115	-1 0 5 3.757116	, 0 5 7.757116	-1 0 5 3.757116	7116	0 0 5 3.757115	0 0 5 3.757116	-1 0 5 3.757116	-1 0 5 3.757116	0 0 2 7.81984
THOMEN' DELP	0.000816 24.968212	0.000949	0.000979 9.709989	0.000945 9.484663	0.000984 9.478769	0.001021	0.101058 9.422734	0.001067 9.397919	0.001167 9.369180	0.001147 9.340944	0.001219 0.31254P	0.001300 9.282995	0.0014°6 9.239306	0.001536	0.001693	0.001+73 9.107894	0.002178 9.065078	9.002452 9.025452	0, 002885 8.985597	742558.8 9°4600.0
015PLAC DELY (FT)	184200.0	0.001586 0.004094	0.001726	0.001661 0.003966	0-001725	0.001784 9.004290	0.001843 0.004451	0.001361 0.004486	0.001927	0.001994	0.005141	0.002236	0.002423	0.302615 0.006476	0.002865	146800.0	0.003614 0.009191	0-00-080 0-010-0	0.004701	0.005495 0.014300
DELTAD PUPAG	0.000716 2.125157	0.000452	0.000247	0.000315	0.000316	0.000318 0.452701	05000.0 175958.0	0.715408	0.000325 0.000325	0-000327	0.000330	0.328505	0.235899	0.000340	0.000344	0.000348	0.000352 0.022585	0.000356	0.000360	0.001433 -0.027027
	190.1 0.085268	340.15 1.0401.0	320.1 0.114896	1.016 177651.0	320.1	1.0EE 1.0E541.0	340.1	340.1	350.1 0.174455	360.1 0.187106	1.086 0.200220	400.1 0.219955	1.05445.0	460-1	1.002	575.1 0.341986	625.1 0.388648	700.1 0.447570	800.1 0.525205	5*9219 1*526
LDGHD 3Sn1408	-0-0 0.533683	0,9 0,533683	1.6 0.533683	2.1 0.533683	2.5	0~533663 0.533663	3.5 0.533683	0.533683	4.6 0.533683	5°5 5°5	5.9 0.533683	6.9 0.533683	8.2 0.533683	0.533683	11.4	13.5 0.533683	16.1 0.533683	19.5 0 <u>533683</u>	24.43 0.5336A3	30.4
VSTARF AKJ AK5	0.02 0.18	1.060455 0.07 0.28	0.998725 0.02 0.27	0.07150 0.02 0.28	0.02 0.28	0.02 0.28	0.02 0.26	0.968495 0.02 0.23	0.02 0.24	0.054006	0.02 0.28 0.02 0.28	0.02 0.28	0.924602	0.02 0.29	0.903430 0.02 0.24	0.05103 7.0 20.0	0.02 0.29	0.074496 0.02 0.29	0.865415 0.02 0.29	0.855458 0.02 0.29
AK2 VX	2.669415	2.668415 1.14443997	2.668415	2.668415 1.13637260	2*668415	2.668415 1.12595151	2.668415	7.668415 1.11459087	2.669415	2.668415 1.10218037	2.668415 1.09571175	2.658415 1.08524016	2.569415 1.07621522	2.668415 1.06626371	2.668415	2.668415 1.04716371	2-6684134	2.664415 1.03040331	2.668415 1.02337254	2.668415
ацриа Ахс	0.05098835	0.001873319	0.002845797	0.003634808 0.14177750	0.003741714 0.14954000	0.003683294 0.15572000	0.003716161 0.16335000	0.103901948 0.17150750	0.03675922	0.003583555 0.18966250	0.003485544	0.003267495 0.71533500	0.002856733	0.002472128 0.25692250	31.9610~ 0.002066930 00195789 ^.28338500	32.041215 0.001652269 .00194810 0.31537750	0.001252639	0.000892453 0.40602750	0.00580099	0+000323272 0+57122500
LAMDA CF	45.328239	29.494467 0.00229905	31.226543 0.00205108	31.145520 0.00206176	31.26A379	31.323606 0.00203439	31,383330	31.452498 0.00202169	31.517379 0.003675922 0.00201340 0.19025000	31.574858 0.00200608	31.437428 0.00199815	31.7307A5 (0.00198641	31.811469 (0.00197634	31.881936 0.5196762	31.9610.	32.041215 0.00194810	795011.95 67959100.0	32.202456	2.318328	2.472457 00199670
AXLDL	0.049762	0.053239	0.059966	0.064909 8.03	0.067970	0.071212 10.77	0.074654	0.078312 13.92	0.08223	086414 14.80	0.090926 17.82	0.095804 19.63	\$6.15 \$5.15	0.112453 23.2P	0.123171	0.135858 25.45	0.151145	0.170230	0.194654 3 31.44 0 7030071- 0.1075 7150001- 0.0000	C 75737.0 34.09 0. C030DCI+ 0.1967

- 11

warant way any Massala almah

56	51	25	5.6	50	6	62	63	ţ,	65	19	67	8
0 0 2 1.885596	0 0 2 1.375682	0 0 2 1.240868	0 0 2 1.158100	0 0 7 1.092451	0 0 1.042173	0 0 2 1.052383	0 0 2	0 0 2 1.048898	0 0 5 1.047334	и 0 7 1.046999	0 0 2 1.046673	0 0 2 1.046343
0.003955 4.569655	019E00.0	136731.5	\$66600°0	0.004040 2.760479	0.003492	9201670.0	0.003302 Z.805752	0.003338 2.718691	192600.0	0.003299 2.716525	0.003301	0.003302 2.714480
0.005895 0.017823	0.05485	0.021879	0.005183	0.005342 0.024693	0.004572 0.021448	0-004210 0-019461	841020°0	0.020256	961020°0	002020*0 946400*0	0.004349 0.020205	0-02020*0
550560.0-	0.005762 -0.036990	0.006830 -0,037359	0.00780 108750 108750	0,037359	0.009118 -0.018933	0.007133 -0.011540	0.009154 -0.004159	0.003208 0.003208	0.009183 0.010562	0,009197 0,017902	0.009212	E+52E0°0
1200.1 0.809565	1450.1	1600.1 1.205491	1,0011	1800.1 1.457904	1.511501	1550.T	1600. <u>1</u>	112012-1	1.0001 1.00252-1	1600.1 1.524558	1600.1 1.527082	1608.1 1.529603
40°3	53.6 0.071550	54.5 0.058214	65.0 0.050707	70.4	690170-0	72.7 0.041872	72.8	565170°0	0°€1	73.1 1.67	73.2 5.041419	E6E1+0-0
0.902782 0.02 0.31	0.02 0.33	0.02 0.35	5E.2 20.0	1.001140 0.02 0.35	1.076511 0.02 0.36	1.074201 0.02 0.36	0.02 0.36	1.068463 0.02 0.36	1.071447 0.02 6.36	1.071280 0.02 0.36	1.071096 0.02 0.36	1.070428 0.02 0.36
2.668415 1.01375769	2.668415 1.01375769	2.664415 1.01375769	2.668415 1.01375769	2.668415 1.01375769	2.668415 1.08578310	2.668415 1.08568250	2.668415 1.08558190	0E189560*1 5198980*1	2.668415 1.08538070	2.668415 1.08528010	2.668415 1.08517950	2.668415 1.08507890
0.000072295	0.00000000 0.92322500	00000210°1		1.17896667	\$4546112-1	0.000261632 1.739738	0.000263778 1.21495102	1.21530465	0.000263581 1.21775828		0.000263791	1.22211918
0.273851 30.689579 0 36.70 0.00212348 C030DC1= 0.1.46 C100DC1= 0.0368	0.345799 28.813009 0 43.04 0.00240909 C030DCT= 0.0611 C100DCT= 0.0275	0.442604 27.856804 0.00000000 44.75 0.00257731 1.01230000 C030051* 0.0557 C100051* 0.0257	0.445307 27.726455 0.0000000 46.23 0.00260153 1.09563333 C030NC1= 0.0455 C100DC1= 0.0264	0.525258 27.674446 0.00000000 47.45 0.00261139 1.1789667 C0300C1 0.0243 C1900C1 0.0243	0 \$565209 27,565392 0 55,68 0.00263210 <u>C030nC1= 0,0770</u> <u>C100DC1= 0,0222</u>	0.551019 27.622109 0 61.02 0.00262130 C0299C1= 0.0400 C1.0DC1= 0.0233	0.581716 27.695724 0 59.03 0.00260738 C030nC1= 0.0397 C100NC1= 0.0236	n.582413 27.765316 0.0.0254831 0.0250514 0.0259433 1.2,530465 0.030514 0.0225	0.583109 27.685417 0 59.20 0.00260932 0.0300C1= 0.0374 C1000C1= 0.0275	0.563406 27.687172 0.000263696 5.27 0.00260899 1.21921192 C030051= 0.023 C100051= 0.0225	n.584503 27.689345 0 59.33 0.00260858 C0300C1= 0.0373 C1000C1= 0.0275	0.585200 27.691139 0.000263892 59.40 0.00260824 1.22211918 C0300C1= 0.0375 C100NC1= 0.0225

C100DC1= 0.0165

ſ

B-17

69	F	2	۲	73	72	75	22	1	F	4	6	81
0 0 2 1.046016	1.045691	0 0 2 1.045369	0 0 2 1.041160	0 0 2 1.063872	0 0 2 1.178456	0 0 2 1.3772ES	0 0 2 1.281078	0 0 2 1.244542	0 0 5 1.223575	1.206215	0 0 2 1.191484	0 0 2
0.003304 2.713466	2.712459	0*003307 2*711 *58	0.0033997 2.700750	0.002899	0.001964 2.952975	0.004068 3.286484	0.005709 3.078585	0.006009	0.006366 2.980709	0.006997 2.941275	190700.0 2.907804	0.007777 2.880085
\$12020°0	0.020218 0.020218	0.004357 0.020222	0.020902 0.020902	0.003865 0.017581	0.011015 0.011015	0.005600 0.021987	0.030343	0.008070 0.033089	0.008478 0.034877	0-009201 0-038720	0.040836 0.040830	0.010081 0.043074
0.039843 0.039843	0.004254	0.009268	0.061665 0.061665	0.009297 0.068746	0.178814	0.007049 0.393451	0.518314	050065°0	0.008582 0.632617	0.009108 0.653401	0.009436 0.659357	0.010164 0.654412
1600.1 E51253	1.6661 1.53464.1	1,600.1	1650.1 1.539667	1400.1	825.1 1.565295	1400.) 1.612262	1.0853.1	2100.1 2.1221.1	1.749994	2400.1	2500.1	2600.1 1.878410
73.4 736130.0	14E140.0	9"EL70"0	7.ET 289040.0	8.67 197540.0	74.7	717.2	80°0.062048	82.7 0.05#587	85.5 0.056603	88.2 0.055008	0.19	145250°0 8°E6
1.070759 0.02 0.36	1.070590 0.02 0.36	0-10-10-10 0-02 0-36	1.070584 0.02_0.36	1.067282 0.02 0.36	0.02 0.36	0.02 0.36	0.02 0.36 0.02 0.36	0-07-04-04 0-02 0-35	9E-0 20.0	0.02 0.36 0.02 0.36	0.02 0.36 0.02 0.36	0.919643 0.02 0.35
2.668415 1.08497830	2.668415 1.08487770	2.668415 1.08477710	2.668415 1.08467650	2.568415 1.09460000	2.664415 1.06728283	2.66ñ415 1.03461429	2.664415 1.02081801	2.564415 1.01282454	7.668415 1.00729045	2.668415 1.00317231	2.668415 0.99995651	2.658415 0.99732409
0.000263992 1.72357292	0.000264093 1.22502645	0.000264194 1.2264A008	0.000232425 1.22793372	0.000592401 1.22934775	0.005340961 1.24405417	0.034193978 1.28125000	0.001657875 1.32291667	0.000940009 1.36458333	0.000656661].40625000	0.000493244 1.44791667	5420954200°0 545087°1	0.000321442
0.585%97 27.692938 (59.47 0.00260791 C030ACI= 0.0373 C100DCI= 0.0225	0.586594 7.7.694745 7 59.54 0.00260757 C0309C1= 0.0373 C1009C1= 0.0225	P.N	0.587988 27.689766 (57.88 0.00260950 C030nC1= 0.0370 C100DC1= 0.0224		n.589381 29.756109 (107.53 0.00225980 C030nC1= 0.0446 C100DC1= 0.0149	€\$\$4413 32,509683 (\$9,08 0.00189236 \$900C1# 0.0427 \$1000C1# 0.0319	0.614245 31.538117 0. 45.08 0.00201075 1 C0300C1= 0.0546 C1000C1= 0.0277	0.4534220 30.438123 (43.38 0.00215971 C030DC1= 0.0522 C100DC1= 0.05282	0.654196 30.111665 4.02 0.00220577 C030DC1~ 0.0509 C100DC1= 0.0290	0.674171 29.917633 (40.80 0.00223448 C0307C1= 0.0499 C1007C1= 0.0797	0.694147 29.760458 1 40.4A 0.00225914 C030DC14 0.0491 C10CDC1= 6.0303	0.714.22 29.63A516 1 40.16 0.00227676 C030DC1= 0.0484 C100NC14 0.0309

C & Shirt and a start

analia de ar

29		5	9	8	87	8	•	B		
0 0 2 4EE071.1	0 0 2 1.144917	0 0 2 1.165289	5 467FT1.1	0 0 2 1.187274	0 0 0 1.220892	1.244451	0 0 2 1.242322	1.243527 1.243527		
0.007410 2.859310	0.008524	0.009333 2.850629	2.875392	0-010590 2-922953	0.011947 3.806475	0-012681 3.064080	192264	2274CLD.0		
0.010242 0.043420	0.010938 0.046288	3.011857 0.049721	0.013745 0.056257	0.052910 0.052910	0.014828 0.056334	16/510°0	0.016456	0.058224 0.058224		
0.010688 0.641246	0.011578 0.504607	0.549613	0.013554 0.488813	0.014574 0.431288	0.015421 0.399973	0.475150	0.016162 0.564083	0.62A625		
2600.1 1.917880	1.0075 1.0075	2-050327	10005.2 850011.5	2800.1 2.165057	1.0085	1.0075 1.00965.5	2.247225	2,248711 2,248711		
96.5 0.051784	101.3	106.938	112.4 0.052090	117.9 0.053294	123.4 0.056354	127.1	128.2 0.058350	128.4 0.058463		
96.020.0	0.921956 0.02 0.36	0.923630 0.02 0.36	0.02 0.36	0.938177 0.02 0.34	0.02 0.35	7.938442 0.02 0.36	0.937553 0.75 0.36	0.938004 0.02 0.36 186		
7.668415 0.99509798	7.668415 0.99202367	2.668415 0.98932622	2.66#415 0.98754404	2.668415 0.98754404	2.668415 0.98754404	7.668415 0.98754404	2.668415 0.78754404	183420 28.773406 0.00000000 2.666415 19.00141572 2.65464417 0.9754404 0.1 564841100 Mas Occupatio - Calculate form Dfag 564841100 Mas Occupatio - Calculate form Dfag Deag = 4.7739	1 1 1	
0.000270414 1.57291467	29.407042 0.000204552 .00231274 1.64583333 10	0.000145113 1.72916667	0.00054628 1.a1250000	0.00000000 1.89593333	24.750506 0.00000000 0.00241957 1.97916667 34	0.00000000 2.03491625	00000000000000000000000000000000000000	0.00000000 2.1546417 UPAFÖ - Calcu		
9.536992 00229244	29.407042 (0.10231274 410 343	110475.5 19855500	.122874 00235910	9.768118 00241551	29.750506 0.00241957 53A \$19	a 759980 00241798	3.787255 00241340	28.713406 (0.00241572 1104 HAS OCCI 1704 AAS		
6.734099 2. 41.39 0. 0.00001= 0.0482 0100001= 0.0334	0.754073 2° 41.91 0. C0309C1# 0.04M0 C1009C1# 0.0343	n.749030 24 42.69 0.4 C0300C1= 0.0444 C1009C1= 0.0355	0.829981 2 -2.04 0.0 -0.0496 -0.00001= 0.0372	n.849932 2 47.84 0.0 47.84 0.0 C0307C1= 0.050A C100DC1= 0.0403	0.908463 21 50.11 0. 50.0071= 0.0538 5190071= 0.5519	0.46A34 2 53.53 0. 53.53 0. 53.50 50 53.50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.000001= 0.05561 21 53.91 0.0 0.000001= 0.0436	0.983420 54.03 567403 717al 00ag =		i

DISTRIBUTION

Addressee	No. of Copies
Chief of Naval Material (MAT-0313, 03L4)	2
Office of Naval Research (Code 438-Dr. R. Cooper; Code 472-Mr. G. Neece)	2
Office of Naval Research, Branch Office,Boston (Attn: Dr. A. Wood)	1
Naval Sea Systems Command (SEA-034, 037, 037C, 08, 425, 2052, PMS-393, PMS-393-A3, PMS-395) (SEA-035 Dr. T. Peirce, 035 Dr. McKinney)	9 2
Naval Air Systems Command (AIR-52032 - Mr. P. Stone)	1
Naval Ship Engineering Center (NSEC-6101, 6103, 6110, 6101E, 6111, 6114D, 6136 (Mr. Cauldwell))	7
Naval Facilities Engineering Command (NFAC-03)	1
NSRDL, Annapolis (Mr. Greenberg)	1
NSRDC Carderock (Attn: Mr. R. Converse, Mr. P. Granville)	2
NURDC Pasadena (Dodes 2501, 254, 2543) (Atta: Dr. Hoyt, Dr. Donohue)	5
NRL Washington, D. C. (Code 6100-Dr. R. Kagarise, Dr. King)	2
Naval Intelligence Support Center (Code 4324-Mr. B. Valenti)	1
Oceanographer of the Navy	1
Strategic Systems Project Office	1

U.S. Naval Academy (ATTN: Dr. Bruce Johnson)	1
Naval Science and Technical Intelligence Center (Code 234)	1
Air Force Office of Scientific Research 1400 Wilson Blvd Arlington, VA 22090	1
U.S. Army Mobility Equipment R&D Center Fort Belvoir, VA 22060 (Attn: K. L. Treiber)	1
Maritime Administration, Office of R&D 441 G. Street NW Washington, D. C. 20235	2
Library of Congress Science and Technology Division Washington, D. C. 20540	1
National Science Foundation Engineering Division 1800 G. Street NW Washington, D. C. 20550	1
Defense Documentation Center, Alexandria, VA	12
St. Anthony Falls Hydraulic Lab., Univ. of Minn. 3rd Ave. NE Minneapolis, Minn. 55414 (Attn: J. M. Killen, J. Wetzel, J. Ripkin)	3
LTV Research Center P.O. Box 6144 Dallas, Texas 75222 (Attn: C. S. Wells)	1
Columbia Research Corporation P.O. Box 485 Gaithersburg, Md. 20760 (Attn: N.C. Witbeck)	1
University of Rhode Island West Kingston, R. I. (Attn: Prof. V.C. Rose)	1

.

1

•

1

*

£

75

•

University of Delaware	
Dept. of Chemical Engineering	
Newark, Del. 19711	
(Attn: Prof. A.B. Metzner)	1
University of Missouri	
Dept. Of Chemical Engineering	
Rolla, Missouri 65401	
(Attn: Prof. G. K. Patterson)	1
Admiralty Underwater Weapons Establishment	
Portland, United Kingdom	
(Attn: D.R.R. Gawler)	1

•

•
