
ESD-TR-75-95

DRI Call No H? (/fS4?

Copy No. cys,
SECURITY KERNEL EVALUATION FOR MULTICS
(INTERIM REPORT)

Michael D. Schroeder
M.I.T. - Project MAC
545 Technology Square

Cambridge, Mass. 02139

Honeywell Info. Systems, Inc.
Federal Systems Operations

7900 Westpark Drive
McLean, Va. 22101

September 1975

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION (AFSC)
HANSCOM AIR FORCE BASE, MA 0f73l

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VA22209

^fcnl'MD

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for
publication."

ROGiar R. SCHELL, Major, USAF
Te^iniques Engineering Division

WILLIAM R. PRICE, lLt, USAF
Techniques Engineering Division

FOR THE COMMANDER

STANLEY P^DERESKA, Colonel, USAF
Chief, Techniques Engineering Division
Information Systems Technology
Applications Office

SECURITY CLASSIFICATION OF THIS PAGE (mien Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-95

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

«. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

SECURITY KERNEL EVALUATION FOR MULTICS
(INTERIM REPORT)

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^)

Michael D. Schroeder

8. CONTRACT OR GRANT NUMBERf.l)

FI9628-74-C-0I93

9 PERFORMING n_Rf:ANI7 ATION N*«4F
".I.T - Project MAC M.

tun A nnt»c-ec 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1 I

Cambridge, Mass.
Honeywell Info. Systems, Inc.

Federal Systems Operations
McLean, Virginia

Deputy for Command and Management Systems
Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731

CDRL Item A004

12. REPORT DATE

September 1975
13. NUMBER OF PAGES

16
1«. MONITORING AGENCY NAME ft ADDRESSfU dltlerent from Controlling Ottice)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

15. SECURITY CLASS. (o(thla report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWNGRADING

SCHEDULE .
 N/A

16. DISTRIBUTION ST ATEMEN T (ol thta Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, It dltlerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide It neceaaary and identity by block number)

protection, security, privacy, security kernel,
operating system structure, verification, Multics

20. ABSTRACT (Continue on reveraa aide It neceaaary and Identity by block number)

This paper describes a research project to engineer a security
kernel for Multics, a general-purpose, remotely accessed,
multiuser computer system. The goals are to identify the minimum
mechanism that must be correct to guarantee computer enforcement
of desired constraints on information access, to simplify the
structure of that minimum mechanism to make verification of
correctness by auditing possible, and to demonstrate by test

DD .* FORM AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEflVhan Dmtm Entered)

implementation that the security kernel so developed is
capable of supporting the functionality of Multics
completely and efficiently. The paper presents the
overall viewpoint and plan for the project and discusses
initial strategies reing employed to define and structure
the security kernel.

This paper also appears in the Proceedings of the Association
of Computing Machinery SIC10PS Fifth Symposium on
Operating Systems Principles which was held at the University
of Texas in November 1975.

The research reported in this paper was supported in part
by Honeywell Information Systems, Inc; and in part by the
Air Force Information Systems Technology Applications
Office (ISTAO) and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA Order No. 2641
which was monitored by ISTAO under Contra. 1 No. F19628-74-C-
0193.

SECURITY CLASSIFICATION OF THIS PAGEi'Wim Dmtm Entered)

Introduction

This paper describes a research protect of the Computer
Systems Research Division of Project MAC at M.I.T. The objective
of the project Is to engineer a security Kernel for Multlcs.
This project Is part of an effort to develop a secure version of
Multlcs that implements the information release constraints of
the military security system. Involved In that effort are the
Electronic Systems Olvislon of the United States Air Force* the
MITRE Corporation, and Honeywell Information Systems Inc.

The paper starts with a brief introduction to the computer
security problem and the role that verification of correctness
Plays in producing a secure system. Next* the plan Is outlined
for evolving Multlcs Into a system* based on a security Kernel*
whose security properties are eesler to verify. The third
section presents a general discussion of a security kernel as the
structural basis for a secure system. Finally* to make the
nature of the Multlcs Kernel project more precise* a sample of
specific activities underway or planned is presented.

The issue of security arises when a single computer system
provides computation and Information storage service to a
community of users. As the functional advantages of such shared
systems have been recognized* so has the neeo to include
facilities for controlling the access of the various users to the
contained information. Many systems now Include protection
mechanisms providing enforcement of specific patterns of
externally specified constraints on the access of executing
programs to the contained information til. For applications
involving sensitive information* the usefulness of a shared
system can depend upon the ability of its protection mechanises
to prevent unauthorized release, modification* and sometimes
denial of use of the information it contains.

A system is secure if it is Known to prevent all actions
defined as unauthorized by the specification of its security
properties. Penetration exercises Involving several different
systems have made it apparent that existing shored*
genera I-purpose systems are not secure. In all such systems
confronted* a wily user can construct a program that can defeat
the access constraints supposedly enforced by the system. Design
and implementation flaws exist that provide paths by which the
protection mechanisms in the system can be circumvented* thus
violating the security of the contained information.

Building a secure system Is herd because security places
negative requirements en a system. To be secure mj I possible
ways to perform unauthorized actions must be blocKed; as. way to
circumvent the protection mechanisms can exist. A single flew in
the design or implementation is sufficient to allow a violation
of security* and the absence of such flaws cannot be demonstrated
by testing. F_ox a S*i±ej Ifi fte. considered, secure* a.

logical verification thai Uifi Jjplttwtntftd SYStei is a corrtct
njjllzation Hi i±s sifiufLLL* sotclflcition is ciaulcid«

The operating systems of shareo, genera I-purpose coeputers
have a well-known tendency to be extraordinarily large and
complex. This size and complexity interacts badly tilth the
negative nature of security requirements* It generates many
possible ways to perform unauthorized actions* some of Mhich Mill
go unnoticed by system designers and therefore remain unblocked
by the protection mechanisms provided, and Increases the
probability of exploitable errors In the implementation of the
protection mechanisms that are provided. It also makes the
required verification of correctness Impossible to perform.
Available formal program verification techniques are overwhelmed
and even verification by manual auditing Is thwarted by the
inability of one person to comprehend in detail the relevant
software.

The negative nature of security properties Is an intrinsic
problem. The size and complexity of existing, shared,
general-purpose systems, however, is not intrinsic. This
research project attacks the problem of producing a secure system
by exploring nays to reduce the size and complexity of the
software that must be correct for claimed constraints on access
to Information to be enforced.

BHHad fll Alias*

The problem of constructing a secure system has attracted
considerable interest recently and is being attacked with a
variety of different strategies 121• One approach being explored
Involves constructing a formal specification for the desired
security (and other) properties of a system* and then* through a
methodical* top-down design and Implementation process* building
a matching* operational system. The correspondence of the
Implemented system tilth the formal security specification is to
be proved using formal program verification techniques. The hope
Is to achieve a level of confidence in the match of the system to
the specification slmlllar to the confidence that a mathematician
has in the result of a well-wrought proof. A step necessarily
left to human intuition is determining how appropriate the
security properties expressed In the formal specification are to
a particular real-world application. Three current projects
13**1*5) are trying to proouce simple* experimental examples of
secure systems using different versions of this approach.

At the other end of the spectrum are efforts 16*7J to find*
cetalog* and repair security flams In existing systems. The
goals are to convince skeptics that the computer security problem
is real* to understand the sort of flaws that can be exploited*
and to try to reduce the ease with which available systems can be
penetrated.

Our project to reduce the size and complexity of the
software that eust be verified correct to produce a secure system
falls somewhere between these two extremes. Our plan is to
evolve Hultlcs (8 1* a genera I"purpose* remotely accessed*
multiuser system* into a prototype system with the same essential
features* but tilth a small and simple protected central core of
software. This core wl11 be a security Kernel embodying all
mechanisms necessary to enforce the claimed constraints on access
to information in the system* The goal is a kernel sufficiently
small* we 11-structured* and easy to understand that feasibly an
expert could verify Its correctness through manual auditing.
Such a Kernel also may be susceptible to verification through
formal techniques* although the programs may have to be rewritten
in a more appropriate style. The Kernel mill enforce access
constraints that combine nondlscretionary controls reflecting the
Information release policies of the military security system and
the discretionary controls on information sharing that were part
of the original Hultlcs design. (1)

The choice to evolve an existing system rather than proouce
a new one follows from our focusing on problems of system
structure* rather than on techniques for formal specification of
security properties* structured programming* or formal
verification of program correctness. Our goal is developing a
security Kernel that can be demonstrated to support the full set
of functions that are desirable in a shared* general-purpose
system* with the current understanding of computer systems* it
is hard to have confidence that the full Implications of a system
structure are understood without complete implementation.
Designing a new system without building It or building a simple*
experimental system (2) would not allow the completeness of our
Kernel design to be tested adequately. Thus* to start fresh
would mean undertaking the entire Job of building a new*
genera I-purpose system. By developing a security Kernel for an
existing* general-purpose system* we avoid this enormous effort.

A combination of factors makes Hultlcs well suited as a base
from which to engineer a security Kernel. To start with* Hultlcs
provides a full set of functional capabilities* Including
high-bandwidth direct sharing of information among computations
(ID* In addition* Hultlcs has been developed from the ground up
to protect the information it contains from unauthorized access*
It already Includes general protection mechanisms to control

(1) A formal specification 191 of the nondlscretionary controls
is being developed by a group at MITRE. An informal
specification of the discretionary controls is available In tioi.

(2) Two examples of features usually left out of experimental
systems that can complicate the Kernel of an complete*
general-purpose system are the storage quota and bacKup
mechanisms mentioned in a later section*

information sharing among users llOl and provides direct hardware
support for some of these mechanisms (121. Minimal features to
support the information release constraints of the military
security system recently have been added (131* Thus* the system
exhibits a set of security properties that mould be Interesting
to Implement correctly and provides hardware support that mill
make the fob easier* Also, the system) is met I organized for
evolution and modification because it is relatively modular* is
largely written in PL/I (1<*1, and mas originally constructed with
evolution as a primary objective. Finally* Hultlcs provides two
unique opportunities to test and export the results. First*
because Multics Is a commercially available product* ideas
developed in the course of this research that simplify the
system's structure without changing its functionality or reducing
Its efficiency can be added to the standard system. Second* the
security Kernel being produced is serving as the structural basis
for the secure version of Multics being developed by the Air
Force* MITRE* and Honeywell in an effort of which our protect Is
part.

in* Security Ktrne1

A security kernel* a minimal* protected core of software
whose correct operation is sufficient to guarantee enforcement of
the claimed constraints on access* Is the structural basis for
organizing a secure system. Rather than being dispersed
throughout the system software, all protection mechanisms are
collected in the kernel* so that only this kernel need be
considered In order to verify that the specified security
properties are Implementec correctly.

The security specification that a particular system must
match limits how small and simple (3) the kernel can be. The
patterns of access constraints to be enforced Is an obvious
factor. The set of abstract objects and operations to be
controlled may be even more important. In Multics* it appears
that most of the mechanism in the kernel will Implement the
abstract objects protected by the system, for example* processes*
segments* directories* and I/O streams* and mill be relatively
Independent of the specific patterns of access constraints
enforced by the system.

A characterization of the mechanisms that should be included
In a security kernel can be obtained by viewing the security
specification as a set of constraints on the interaction of the
various computations that occur In a computer system. The
protection mechanisms of the system prevent one computation from
exerting an unauthorized Influence on the input* progress* or
output of another. Permanently stored data is one form of the

(3) Unfortunately* no objective measure of overall complexity is
known. The degree of complexity must be estimated subjectively.

input and output of computations. This view suggests that the
security kernel should embody all system-provided mechanises that
are common to more than one computation (domain), because a
common mechanism Is required If one computation Is to Influence
another. A mechanism Is common to two computations If it uses
some set of data items whose value one computation can Influence
and the other can notice. The influence and notice may be
direct—one writes into a data Item and the other reads it—or
indirect—the invocation of a procedure by one somehow alters the
procedure's internal state so that the outcome of an invocation
by the other is affected. Common mechanisms are required to
implement any explicit or implicit communication among
computations. Thus* mechanisms implementing information sharing*
interprocess communication* and physical resource multiplexing
must be common. If no communication is involved* however* then a
common mechanism is not required to implement a function. Common
mechanisms carry a built-in risk—trey makm It possible for the
computation of one user to exert unauthorized Influence over the
computations or data of another. Malicious users must exploit
flams In common mechanisms to work their will. To thwart such
malicious activity the system designers must ensure that the
common mechanisms have no exploitable design or Implementation
flams* and must protect the common mechanisms against tampering.
Thus* a stcurity horntl st-outd ft* iba. I last aaflynl ol CQWIOD
•achanisa DIMIMCJI 1ft iaalaaant i b* aft terns QJ iDlflCiHUo
sharing* inter pro, cess cgaaunicatlpn* and physical rasourct
•ultiPlanin.il that AX* dasicad In ihs SILSIAI. <*•>

Although a security kernel contains alt the mechanisms that
must be verified as correct to produce a secure system* a correct
kernel does not guarantee the integrity of all computations or
stored data In a system. Nonkernel software still can cause
undeslred release of Information* modification of information, or
denial of Its use. But if the kernel is correct* then these
undeslred results mill not be unauthorized. To understand the
meaning of this distinction* consider the nonkernel software as
grouped in four categories.

First* there are the system-provided programs that execute
as part of user computations. These Include the library
subroutines available in most systems and all the programs
usually part of a supervisor that are not included in a security
kernel. These system-provided programs are not common
mechanisms* even though in many systems all computations may

(<•) According to this characterization of a security kernel* a
usual reason for including a mechanism in a supervisor* to
protect it from accldentlal breakage caused by errors in user
code* is not in Itself sufficient to include a mechanise in a
security kernel. Nonkernel mechanisms can be protected by
placing them In other domains that are private to each user's
computation.

Share the sen nonwriteabl« cod« that embodies their algorithms.
This Is so because a private copy of the alterable part of these
programs, the variable data, is provided for each computation.
Because they are private aechanlsest no lnteruser interaction can
occur through thee* Private mechanises may contain errors* but
these errors can by triggered only by the actions of the
computation that they eight daeage as a result. If one assumes
that the system programmers mho constructed them are not
malicious and did not ml 11 fully plant "trofen horses," then the
mistakes caused by these system-provided programs mill decrease
in tlee as all normally used functions are exercised. Under these
circumstances the threat posed by a potential randoa error
causing undeslred release* modification* or denial of a user's
data is acceptable for most applications* Unlike the common
mechanisms of the security kernel* the nonkernel system-provided
programs are not susceptible to willful exploitation by other
users* In any case* a user unsatisfied with their
trustworthiness may choose not to use them and substitute his onn
programs*

The second category of nonkernel software is programs
constructed by a user and executed in that user's computations*
Any undeslred result caused by errors In these is the user's own
problem. The only possible help to the user mould be providing
tools to aid verifying the correctness of his own programs.

The third category* possible in many systems* is progrses
borrowed from other users* These ere a real danger to the
borrower's computations* Borrowed programs can contain trojan
horse code maliciously constructed to cause results undeslred by
the borrower* (5) A user should borrow programs from snother
only when the borrower has reason to trust the lender* The
inclusion of security kernel facilities to support
user-constructed protected subsystems can reduce the potential
damage such a borrowed trojan horse can do by isolating it in a
separate domain of the borrower's computation* Due to the
confinement problem (151* however* and also to the possibility of
a borrowed program disrupting the borrower's computation simply
by calculating incorrect results* a user-initiated verification
of the borrowed program is the only complete protection.

The fourth category is common mechanisms that a group of
users sets up to implement soee function involving lnteruser
communication or coordination. For example* a team producing a
new compiler might set up a program development subsystem with a
common mechanism to control installation of new modules into the

(5) This is a special case of a common mechanism. The data item
whose value the lender can cause to change (and thereby Influence
the computation of the borrower) is the code of the borrowed
program itself. Even if the program is nonwrltable when
borrowed* It wes written by the lender when constructed.

•volving compiler. Such a mechenism Makes the group susceptible
to undeslred Interaction In the same May that an insecure
supervisor does for the whole user community* If a user agrees
to become party to such a common mechanism* then he aust satisfy
himself of Its trustworthiness*

Froa considering these four categories of nonHernel software
it is apparent that the essential aechanlsas to verify correct
are the coaaon aechanisa of the security Kernel. The security
Kernel has initial control of all paths for the interaction of
coaputatlons and every user of the system is forced to rely upon
it* A correct Kernel provides the tools with which a user aay
protect his coaputatlons and data against unwanted Interference
froa the coaputatlons of other users* In a systea providing for
direct sharing of prograas and data* however* users can agree to
cooperate in ways that the security Kernel cannot control. The
Kernel can prevent such sharing unless it Is explicitly
authorized, but cannot completely control the Interaction between
user's that agree to share. The security Kernel prevents
activities that the security specification for the systea defines
as unauthorized* but not all undeslred results are causec by
unauthorized activities*

A fifth category of nonKernel software also needs to be
considered* One iaportant technique for simplifying the
structure of the security Kernel is writing it with a high-level
prograaalng language* Using a high-level language to generate
the Kernel seeas to require that the compiler also be verified
correct* a troubling thought since the compiler may well be
larger than the Kernel* Verification of correct function aay be
less of a problem for the compiler, however* than for the Kernel.
The Kernel aust work correctly for all possible Inputs; the
compiler aust compile correctly only the specific programs of the
kernel—not all possible prograas. Thus, the compiler's effect
on the Kernel can be deterained by comparing the source code
specifications for each Kernel aodula with the coapllei—produced
object code implementation, a tasK much simpler than verifying
the compiler correct for all possible source prograas. (6)

A JLtrjDQj ±ox UuJJLi£S

Engineering a security Kernel for a system requires
isolating a minimum sat of functions capable of supporting the
system and finding a way to structure the Kernel to facilitate
verifying its correctness. Our plan is to produce a security
Kernel for Nultlcs by reaoving nonKernel aechanlsas froa the
supervisor* and restructuring the remaining Kernel and

(6) Use of a high-level language for Kernel construction can
generate a dilemma* An optimizing compiler can increase systea
efficiency* but may make impossible matching object code with
source code to verify correct compiler function*

partitioning it into multiple protection doaains. This section
describes these three interrelated categories of activities end
provides specific exaaples of work underway or planned in each.
The intention of the section is to communicate the spirit of the
work rather than to to discuss thoroughly the various activities.
The detailed results of Individual activities are being
communicated in other reports (16*17*181.

The first category of activities is taking functions not
requiring i ap lamentation as common aechanlsas out of the
supervisor to be lepleaented in the user doaains of a process.
In aany cases this transfer involves undoing a pattern causec by
a performance characteristic of the original Multlcs
implementation for the Honeywell 6<*5 computer. For that machine*
the multiple protection domains of a process* the so-called
protection rings* were simulated In software. Cross-ring calls
were quite expenslvel a call that went from a user ring in a
process to the supervisor ring cost much more than a call that
did not change protection rings. The effect on system structure
can be seen by considering two procedures* A and B. If a single
invocation of A can result in a flurry of calls from A to 8, then
there Is a performance benefit In placing both A and 8 In the
supervisor* even if only 8 needs to be part of the protected*
common mechanism. As a result of this performance characteristic
of the 6<t5 implementation* aany functions that did not need to be
Implemented as common mechanism were included in the supervisor.

The present hardware base for Hultics* the Honeywell Series
60/ Level 68 computer* implements protection rings in hardware.
Calls from one ring to another cost no more than calls inside a
ring. With the performance penalty associated with supervisor
calls removed* many modules Included in the supervisor for
performance reasons rather than protection reasons now can be
reaoved. (7)

Actually* removing a module from the supervisor is more
difficult than the example suggests. In most cases* the common
and private parts of a facility are not neatly packaged in
separate procedures but are Intricately intertwined in the same
supervisor procedures and data bases. The key problem Is
decomposing the supervisor into common and private primitive
functions.

Host removal activities have centered on the file system.
In one activity* now completed* the functions of dynamic
Intersegment linking and direction of file system searches to

(7) There may still exist other performance penalties associated
with removing functions from the supervisor that will inhibit
production of the smallest possible kernel. One goal of the
research Is to understand batter the performance cost of
security.

satisfy symbolic references have been removed froa the supervisor
Cl6»i7). This removed a vulnerable and coaplex mechanise froa
the supervisor* The vulnerability Is a result of the linker
having to accept user-constructed coda segments as Input data.
Numerous accidents had shown that such a complex -argument", If
maliciously alsstructured* could cause the linker to malfunction
while executing In the supervisor. Removing the linker
eliminated 10X of the gate entry points Into the supervisor and
6X of the total object code. The linker's removal also
demonstrated that linking procedures together across protection
boundaries (rings) could be done without resorting to a mechanism
common to both domains.

A second completed activity removed from the supervisor the
facilities for managing the association between reference names
and the segments In the address space of a process C161. Taking
this naming mechanism out of the supervisor required that a data
base central to the manageaent of the address space* the Known
Segment Table* be split Into a private part that maintains the
binding between reference names and segment numbers and a coamon
part that maintains the binding between segment numbers and
segments. Removal reduced fivefold the size of the protected
code needed to manage the address space of a process. It also
provided a new* simpler Interface to the file system portion of
the supervisor. Instead of identifying a directory by character
string tree name locating it in the file system hierarchy* a
segment number now Is used. The algorithms for following a tree
name through the file system hierarchy to locate the named
element are now Implemented by procedures executing in the user
ring. (The actual file system hierarchy remains protected Inside
the security kernel.) Because tree names are now resolved one
component at a time* the kernel had to learn to lie on occasion
about the existence of file system directories. This deception
keeps the kernel from divulging a directory's existence before an
accessible element in the subtree rooted by the directory Is
found.

An activity under investigation involves making most of
system Initialization execute once* in a user environment of a
previous system version* Instead of executing inside the
supervisor eech time the system is started. The change is to
produce a system tape with a bit pattern that* when loaded into
memory* manifests a fully Initialized system. At present the
system bootstraps Itself In a coaplex way each time it is loaded
from a tape containing the separate pieces. The new pattern of
operation removes most initialization software from the kernel.
The correct initialization of the kernel also should be easier to
verify* for most of the work of Initialization will occur when
the tape is made* in the stable environment of e fully
Initialized system.

Another activity is exploiting the equivalence between
entering a protected subsystem and creating a new process In

response to a user's log-in. The goal Is to Make a single
mechanism do both tasks, so that the privileged* protected code
used to authenticate and log-in users can be executed in the user
code protection environment. The authentication algorithm still
must be verified not to malfunction if the user trying to log-in
behaves unexpectedly. Such verification should be easy* however,
since the user/system Interface severely Halts user behavior*

The second category of activities is restructuring
mechanisms that must remain in the kernel* Such activities can
reduce both the size and the complexity of the kernel* In some
cases a piece of the kernel can be eliminated and Its function
assumed by another kernel mechanism* For example* one activity
Is exploring replacement of all external I/O mechanisms (to
terminals* tape drives* card readers* card punches* and prlntersl
Mlth the ARPA Network attachment* This would eliminate many
special mechanisms for managing I/O devices and leave a single
mechanism for managing the network attachment* Internal I/O
functions (for managing the virtual memory* performing backup*
and loading the system) would still be managed In the kernel*

A proposed buffering strategy for network input uses the
virtual memory to provide a core resident buffer that appears to
be infinite in length* Mlth the present circular buffer* which
has to be used over and over* complex mechanisms are required to
cope with messages not removeo before a complete circuit of the
buffer is made* The circular buffer scheme is really providing a
special-purpose storage management facility* The proposed
infinite buffer uses Instead the standard storage management
facility of the system—the virtual memory*

Several restructuring activities Involve the implementation
and use of processes* One activity* now nearing the end of the
design phase* is a relapleaentatlon of processes using two layers
of mechanism* (8) This new design simplifies the Interaction of
the process Implementation with the virtual memory management
mechanisms* It also simplifies the base-level interprocess
communication mechanisms of the system* The first level of
mechanism multiplexes the processors into a larger fixed number
of virtual processors* Because the number of virtual processes
Is fixed* this layer need not depend on the mechanisms for
managing the virtual memory* Several of the virtual processors
are peramnently assigned to implement processes for the dedicated
use of other kernel mechanisms, Including the virtual memory
management mechanism. The remaining virtual processors are
multiplexed by the second layer of the process Implementation
Into any desired number of full Multics processes that execute in
the virtual memory* Use of the proposed base-1 eve I Interprocess
communication facility can be controlled with the standard memory
protection mechanisms.

(8) This Idea is being explored by others as well (3*191.

10

The 1 up lenient at Ion (Implied above) of certain kernel
mechanisms as asynchronous parallel processes also simplifies
system structure* which no* forces many supervisor mechanisms
into sequential algorithms* The virtual memory mechanisms for
moving pages among the three levels of the memory hierarchy are a
good example. Whenever a missing page fault occurs in a process*
the fault handler attempts to initiate the transfer of the
desired page from bulk store or disk to primary memory. This can
be done only If a free primary memory block Is available. If
none is available the fault handler must move a page from primary
memory to the bulk store to make room. This* in turn* Is
possible only If a free block of bulk store Is available. If
not* a page must be moved from the bulk store* via primary
memory* to a disk. At present* this series of steps occurs
sequentially with the algorithms executing In the process that
took the page fault* and then in various other user processes
that happen to receive the subsequent I/O interrupts. The nem
scheme Involving multiple dedicated processes Is much simpler.
One process makes sure that some small number of free primary
memory blocks always exist. Whenever the number of free primary
memory blocks drops below that number* this process transfers
pages to bulk store. Another process keeps space free on the
bulk store by moving pages to disk when required. Signals from
processes that have taken a page fault and not found free primary
memory blocks activate the process that frees primary memory.
The process that frees bulk store blocks is driven in a similar
manner by signals from the process that frees primary memory
blocks. The path taken by a user process on a page fault is
greatly simplified. This process can Just malt until a primary
memory block is free and then initiate the transfer of the
desired page Into primary memory.

Interrupt handling is another possible application of
processes in the kernel. Each Interrupt handler mould be
assigned its own process in which to execute* rather than being
forced to inhabit whatever user process was running when the
interrupt occurred. As a result* the system Interrupt
Interceptor could turn each Interrupt into a signal to the
corresponding process. Being processes* the interrupt handlers
could use the normal system Interprocess communication mechanisms
to coordinate their activities with one another and user
processes* greatly simplifying their structure. The problem to
solve here Is implementing the interrupt processes so that system
performance is not degraded.

A major activity Is restructuring the portion of the file
system that must remain in the kernel. This software implements
the directory hierarchy and manages the virtual memory at the
level of segments. Work in this area is Just beginning* but
three changes with a potential* significant cumulative effect are
promising first steps. One change is removing physical
attributes of segments from directory entries. The physical
attributes will be recorded in data bases associated with the

11

various secondary storage devices. (This Modification Is being
lap lamented as part of a file systea overhaul done by Honeywell
for other reasons*) The second change Is removing storage quotas
froa directory entries, recording then Instead In a separate
(possibly hierarchical) data structure. The third Is eliminating
the dependence of the file backup mechanism on the date-time
modified Information recorded in directory entries and reflected
up the hierarchy toward the root. Eliminating this dependence
will allow the date-time modified Item to be removed from
directory entries as well. Backup will be driven by a queue of
requests from the machinery that controls deactivation of
segments from primary memory. As a result of these three
changes* It appears that the aanageaent strategy for the Active
Segaent Table can be modified to eliminate the need for holding
active the superior directories of an active segment til).

The various restructuring activities eventually will extend
to all parts of the kernel* and to its overall structure.

The third category of activities is partitioning the kernel
Into differently protected pieces to modularize the Job of
matching the kernel to the system security specification. (9)
The specific projects in this category are not as well developed
as the others. There appear to be several different design
principles with which to generate the kernel partitions. and it
Is not yet clear which proauces the kernel that Is easier to
verify. To Illustrate two possible approaches to partitioning a
kernel into multiple domains. Imagine that the security
specification is expressed as a set of security properties, each
of which must be met. One design principle Is to divide the
kernel Into domains arranged so that each property is Implied by
a subset of the domains. Then, to verify that the kernel
implements the security specification* an Independent
verification of each property is required* but each Involves only
a subset of the domains in the kernel* Another design principle
Is to ignore any structure suggestea by the security properties
and divide the kernel into domains according to some other
principle of structured programming (for example* Parnas* notion
of information hiding (20)) so that each domain has e siaple
interface behavior specification. Verification of each of the
security properties may involve all the kernel domains* but once
each domain has been verified to match its Interface
specification* then only these specifications need be considered
to verify each security property. Mhich of these two approaches
is preferable--or Indeed* whether they really are different
approaches—remains to be seen.

(9) Partitioning Is really the saae problem as dividing the
kernel into separate procedures and data bases* with the extra
property that the modularity is enforced by the system's
protection mechanises

12

Two specific methods for partitioning the Hultlcs Kernel are
available. The first is dividing the part of the kernel that Is
in the address space of each process into Multiple layers in
different rings of protection* The second is placing soae of the
kernel processes in separate addrass spaces and also using the
protection rings to layer then* Several suggestions have been
aade for layering the part of the kernel that is in each user
process. One is that the bottoa layer Implement a file system in
which all segments Mere named by system-generated unique
identifiers. The next layer would laplement a naaing hierarchy
on top of the primitive first-layer file system. Another
suggestion Is that mechanisms to provide the nondiscretlonary
controls on the flow of Information among processes be
Implemented at the bottom end mechanisms to control discretionary
sharing within the constraints of the nondlscretlonary controls
be implemented in the next layer. This last suggestion Is
particularly intriguing, because if correctly done, the notion of
minimizing common mechanisms mould be well supported. The
second-layer mechanisms would be common only within the access
constraints enforced by the first layer.

Partitioning through use of separate address spaces for
kernel processes is being considered In the case of the processes
that manage the various system resources. The protection rings
In these processes then could be used to separate the policy and
mechanism components of the resource managers. (10) For example,
the process described earlier that removed pages from primary
memory could be given Its own aodress space with multiple rings.
Programs in the most privileged ring would Implement the
mechanics of page removal, providing gate entry points for
requesting the movement of a particular page from primary memory
to a particular free block on the bulk store, and for obtaining
usage information about pages in primary memory. The policy
algorithm that decides which page to remove when another free
primary memory block needs to be generated would execute In a
less privileged ring, calling the gate entry points to collect
the necessary usage statistics and to do the actual moving* once
a decision was made. The policy algorithm* however* could never
read or write the contents of pages* learn the segment to which
each page belonged* or causa one page to overwrite another. Such
operations would not be available in Its ring of execution. The
result is that the policy algorithm could never cause
unauthorized use or modification of the information stored In the
pages. It could only cause denial of use. Under the
circumstance that denial of use was deemed less serious than the
other security violations* the policy algorithm need not be as
carefully verified as the rest of the kernel. It appears that
the idea of separating policy from mechanisms applies to all
resource management processes.

(10) Separation of policy from mechanism Is a structural
principle that has been explored by many others (21«22«23).

13

Conclusion

This paper has presented the plan for a research protect to
evolve the Hultlcs supervisor into a security Kernel capable of
supporting the functionality of Hultlcs completely and
efficiently. It has described a sample of the specific
Strategies being employed. The broad objective is finding nays
to reduce the size and complexity of the software that must be
correct for a shared general-purpose system to be secure.
Reduced size and complexity of security-relevant software is a
prerequisite to performing a convincing logical verification that
a system correctly implements the claimed access constraints* no
matter what verification techniques are used. Without such
verification of correctness* a system cannot be considered
secure.

At the time this paper Is being written, the project has run
for about half of its Intended four year span* and most of the
Initial tasks are nearing completion. So far* the expected
reductions in size and simplifications of structure of the
security-relevant software seem to be occurlng. It Is too soon
to tell* however* whether the security kernel for Hultlcs that
will result will be sufficiently small and simple to be
understood in detail by one person*

nChnotHtdgsiiints

In describing a group project of the Computer Systems
Research Division of Project HAC at H.I.T., this paper discusses
the work of several faculty members, graduate students* and staff
members in the Division. Rather than list all here* they will
receive credit for their contributions as specific activities are
completed and reported separately. Preparation of this paper was
aided by written commentaries on various drafts provided by E.
Cohen* F. Corbato, R. Fabry* 0. Hunt* P. Janson* D. Reed* J.
Saltzer* and R. Schell* and by comments from 0. Clark* A. Jones*
and 0. Rede II.

!<•

Baffirancas

CD J. H. Saltzer and M. D. Schroeder, "The Protection of
Information In Computer Systems*** Rro.c. !£££. ££* 9 (Sept.
1975), pp. 1278-1308.

(21 J. H. Saltzer, "Ongoing Research and Development on
Information Protection," A£H QftlCllXftfl £*£• Reylmw JJ, 3
(July 197<»), pp. 8-2<i.

131 L. Robinson, it. aJ..» "On Attaining Reliable Software for a
Secure Operating System," Int« Conf. O.Q RJLLXIILLI Software.
Apr. 1975, pp. 267-28<4.

[<•) 6. J. Popek and C. S. Kline, "A Verifiable Protection
System," IM- CfiOi. flD B&J lable Sqftware. Apr. 1975, pp.
29*»-30<».

151 w. L. Schiller, "Design of a Security Kernel for the
P0P-ii/*»5," The MITRE Corp. Tech. Rep. ESD-TR-73-29<», Dec.
1973.

16) J. Carlstedt, R. L. Blsbey II, and G. J. Popek,
"Pattern-Directed Protection Evaluation," U. of So. Calif.
Inf. Scl. Institute Tech. Rep. ISI/RR-75-31, June 1975.

17) P. A. Karger and R. R. Schell, "Hultlcs Security Evaluation!
Vulnerability Analysis," Air Force Elec. Sys. Dlv. Tech.
Rep. ES0-TR-7<»-i93, Vol. II, June 197*,.

(81 F. J. Corbato, J* H. Saltzer, and C. T. Cllngen, "Multlcs -
the First Seven Years," AFIPS Cjmt. Proc. Jtfl (SJCC 1972),
pp. 571-583.

(9) 0. E. Bell and L. J. LaPadula, "Secure Computer Systems,"
The MITRE Corp. Tech. Rep. ESD-TR-73-278, Nov. 1973.

HOJ J. H. Saltzer, "Protection and the Control of Information
Sharing In Multlcs," fiiCJJ ^1, 7 (July 1974), pp. 388-<»02.

Ill) A. Bensoussan, C T. Cllngen, and R. C. Oaley, "The Multlcs
Virtual Meaoryl Concepts and Design," LALh 15, 5 (May
1972), pp. 308-318.

tl2) M. 0. Schroeder and J. H. Saltzer, "A Hardware Architecture
for Implementing Protection Rings," £AJSil 15, 3 (Mar. 1972),
pp. 157-170.

113) Honeywell Information Systems Inc., "Oeslgn for Multlcs
Security Enhancements," Air Force Elec. Sys. Dlv. Tech. Rep.
E SO-TR-71,-176, 197<».

tl<») F. J. Corbato, "PL/I as a Tool for System Programming,"
nafatlon j£, 6 (May 1969), pp. 68-76.

15

115 1 B. M. Lampson, "A Note on the Confinement Problem*** QACH li,
10 (Oct. 1973)t PP. 613-615.

(161 P. A. Janson, "Removing the Dynamic Linker from the Security
Kernal of a Computer Utility," S.M. Thesis, Oept. of Elec.
Eng. and Comp. Scl., M.I.T., June l97<». (Also available as
Project MAC Tech. Rep. HAC-TR-132, June 1974.)

(171 P. A. Janson, "Dynamic Linking and Environment
Initialization In a Multl-Oomaln Computation," A£tt gth Symo.
OJQ Qomratlna £xs- Principles. Austin, Texas, Nov. 1975.

(181 R. 6. Bratt, "Minimizing the Naming Facilities Requiring
Protection In a Computer utility," S.H. Thesis, Oept. of
Elec. Eng. and Comp. Scl., M.I.T., July, 1975. (Also
available as Project MAC Tech. Rep. MAC-TR-156, Sept. 1975.)

(19) A. R. Saxena and T. H. Bredt* "A Structured Specification of
a Hierarchical Operating System," lot. Cpnf« ftO Rfljable
Software. Apr. 1975, pp. 310-318.

(201 0. L. Parnas, "On the Criteria to be Used in Decomposing
Systems Into Modules," £A£U Uz, 12 (Dec. 1972)* PP.
1053-1058.

(21) M. J. Spier, T. N. Hastings, and D. N. Cutler, "An
Experimental Implementation of the Kerne I/Domain
Architecture," AfiJi Operating SxS. BjtiLLfia It k (Oct. 1973) •
PP. 8-21.

(22) G. R. Andretist "COPS - A Protection Mechanism for Computer
Systems," Computer Scl. Teaching Lab., Unlv, of Wash., Tech.
Rep. 74-07-12, July 197*».

(23) H. Mulf, ej.. aj.., "HYORAI The Kernel of a Multiprocessor
Operating System," fiACJJ ±Z* 6 (June 197*,), pp. 337-3*»5.

16

