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Introduction 

This paper describes a research protect of the Computer 
Systems Research Division of Project MAC at M.I.T. The objective 
of the project Is to engineer a security Kernel for Multlcs. 
This project Is part of an effort to develop a secure version of 
Multlcs that implements the information release constraints of 
the military security system. Involved In that effort are the 
Electronic Systems Olvislon of the United States Air Force* the 
MITRE Corporation, and Honeywell Information Systems Inc. 

The paper starts with a brief introduction to the computer 
security problem and the role that verification of correctness 
Plays in producing a secure system. Next* the plan Is outlined 
for evolving Multlcs Into a system* based on a security Kernel* 
whose security properties are eesler to verify. The third 
section presents a general discussion of a security kernel as the 
structural basis for a secure system. Finally* to make the 
nature of the Multlcs Kernel project more precise* a sample of 
specific activities underway or planned is presented. 

The issue of security arises when a single computer system 
provides computation and Information storage service to a 
community of users. As the functional advantages of such shared 
systems have been recognized* so has the neeo to include 
facilities for controlling the access of the various users to the 
contained information. Many systems now Include protection 
mechanisms providing enforcement of specific patterns of 
externally specified constraints on the access of executing 
programs to the contained information til. For applications 
involving sensitive information* the usefulness of a shared 
system can depend upon the ability of its protection mechanises 
to prevent unauthorized release, modification* and sometimes 
denial of use of the information it contains. 

A system is secure if it is Known to prevent all actions 
defined as unauthorized by the specification of its security 
properties. Penetration exercises Involving several different 
systems have made it apparent that existing shored* 
genera I-purpose systems are not secure. In all such systems 
confronted* a wily user can construct a program that can defeat 
the access constraints supposedly enforced by the system. Design 
and implementation flaws exist that provide paths by which the 
protection mechanisms in the system can be circumvented* thus 
violating the security of the contained information. 

Building a secure system Is herd because security places 
negative requirements en a system. To be secure mj I possible 
ways to perform unauthorized actions must be blocKed; as. way to 
circumvent the protection mechanisms can exist. A single flew in 
the design or implementation is sufficient to allow a violation 
of security* and the absence of such flaws cannot be demonstrated 
by testing.  F_ox a S*i±ej Ifi fte. considered, secure*  a. 



logical   verification    thai   Uifi   Jjplttwtntftd SYStei is a corrtct 
njjllzation Hi i±s sifiufLLL* sotclflcition is ciaulcid« 

The operating systems of shareo, genera I-purpose coeputers 
have a well-known tendency to be extraordinarily large and 
complex. This size and complexity interacts badly tilth the 
negative nature of security requirements* It generates many 
possible ways to perform unauthorized actions* some of Mhich Mill 
go unnoticed by system designers and therefore remain unblocked 
by the protection mechanisms provided, and Increases the 
probability of exploitable errors In the implementation of the 
protection mechanisms that are provided. It also makes the 
required verification of correctness Impossible to perform. 
Available formal program verification techniques are overwhelmed 
and even verification by manual auditing Is thwarted by the 
inability of one person to comprehend in detail the relevant 
software. 

The negative nature of security properties Is an intrinsic 
problem. The size and complexity of existing, shared, 
general-purpose systems, however, is not intrinsic. This 
research project attacks the problem of producing a secure system 
by exploring nays to reduce the size and complexity of the 
software that must be correct for claimed constraints on access 
to Information to be enforced. 

BHHad fll Alias* 

The problem of constructing a secure system has attracted 
considerable interest recently and is being attacked with a 
variety of different strategies 121• One approach being explored 
Involves constructing a formal specification for the desired 
security (and other) properties of a system* and then* through a 
methodical* top-down design and Implementation process* building 
a matching* operational system. The correspondence of the 
Implemented system tilth the formal security specification is to 
be proved using formal program verification techniques. The hope 
Is to achieve a level of confidence in the match of the system to 
the specification slmlllar to the confidence that a mathematician 
has in the result of a well-wrought proof. A step necessarily 
left to human intuition is determining how appropriate the 
security properties expressed In the formal specification are to 
a particular real-world application. Three current projects 
13**1*5) are trying to proouce simple* experimental examples of 
secure systems using different versions of this approach. 

At the other end of the spectrum are efforts 16*7J to find* 
cetalog* and repair security flams In existing systems. The 
goals are to convince skeptics that the computer security problem 
is real* to understand the sort of flaws that can be exploited* 
and to try to reduce the ease with which available systems can be 
penetrated. 



Our project to reduce the size and complexity of the 
software that eust be verified correct to produce a secure system 
falls somewhere between these two extremes. Our plan is to 
evolve Hultlcs (8 1* a genera I"purpose* remotely accessed* 
multiuser system* into a prototype system with the same essential 
features* but tilth a small and simple protected central core of 
software. This core wl11 be a security Kernel embodying all 
mechanisms necessary to enforce the claimed constraints on access 
to information in the system* The goal is a kernel sufficiently 
small* we 11-structured* and easy to understand that feasibly an 
expert could verify Its correctness through manual auditing. 
Such a Kernel also may be susceptible to verification through 
formal techniques* although the programs may have to be rewritten 
in a more appropriate style. The Kernel mill enforce access 
constraints that combine nondlscretionary controls reflecting the 
Information release policies of the military security system and 
the discretionary controls on information sharing that were part 
of the original Hultlcs design. (1) 

The choice to evolve an existing system rather than proouce 
a new one follows from our focusing on problems of system 
structure* rather than on techniques for formal specification of 
security properties* structured programming* or formal 
verification of program correctness. Our goal is developing a 
security Kernel that can be demonstrated to support the full set 
of functions that are desirable in a shared* general-purpose 
system* with the current understanding of computer systems* it 
is hard to have confidence that the full Implications of a system 
structure are understood without complete implementation. 
Designing a new system without building It or building a simple* 
experimental system (2) would not allow the completeness of our 
Kernel design to be tested adequately. Thus* to start fresh 
would mean undertaking the entire Job of building a new* 
genera I-purpose system. By developing a security Kernel for an 
existing*  general-purpose system* we avoid this enormous effort. 

A combination of factors makes Hultlcs well suited as a base 
from which to engineer a security Kernel. To start with* Hultlcs 
provides a full set of functional capabilities* Including 
high-bandwidth direct sharing of information among computations 
(ID* In addition* Hultlcs has been developed from the ground up 
to protect the information it contains from unauthorized access* 
It  already  Includes  general  protection  mechanisms to control 

(1) A formal specification 191 of the nondlscretionary controls 
is being developed by a group at MITRE. An informal 
specification of the discretionary controls is available In tioi. 

(2) Two examples of features usually left out of experimental 
systems that can complicate the Kernel of an complete* 
general-purpose system are the storage quota and bacKup 
mechanisms mentioned in a later section* 



information sharing among users llOl and provides direct hardware 
support for some of these mechanisms (121. Minimal features to 
support the information release constraints of the military 
security system recently have been added (131* Thus* the system 
exhibits a set of security properties that mould be Interesting 
to Implement correctly and provides hardware support that mill 
make the fob easier* Also, the system) is met I organized for 
evolution and modification because it is relatively modular* is 
largely written in PL/I (1<*1, and mas originally constructed with 
evolution as a primary objective. Finally* Hultlcs provides two 
unique opportunities to test and export the results. First* 
because Multics Is a commercially available product* ideas 
developed in the course of this research that simplify the 
system's structure without changing its functionality or reducing 
Its efficiency can be added to the standard system. Second* the 
security Kernel being produced is serving as the structural basis 
for the secure version of Multics being developed by the Air 
Force* MITRE* and Honeywell in an effort of which our protect Is 
part. 

in* Security Ktrne1 

A security kernel* a minimal* protected core of software 
whose correct operation is sufficient to guarantee enforcement of 
the claimed constraints on access* Is the structural basis for 
organizing a secure system. Rather than being dispersed 
throughout the system software, all protection mechanisms are 
collected in the kernel* so that only this kernel need be 
considered In order to verify that the specified security 
properties are Implementec correctly. 

The security specification that a particular system must 
match limits how small and simple (3) the kernel can be. The 
patterns of access constraints to be enforced Is an obvious 
factor. The set of abstract objects and operations to be 
controlled may be even more important. In Multics* it appears 
that most of the mechanism in the kernel will Implement the 
abstract objects protected by the system, for example* processes* 
segments* directories* and I/O streams* and mill be relatively 
Independent of the specific patterns of access constraints 
enforced by the system. 

A characterization of the mechanisms that should be included 
In a security kernel can be obtained by viewing the security 
specification as a set of constraints on the interaction of the 
various computations that occur In a computer system. The 
protection mechanisms of the system prevent one computation from 
exerting an unauthorized Influence on the input* progress* or 
output of another.  Permanently stored data is one  form  of  the 

(3) Unfortunately* no objective measure of overall complexity  is 
known.   The degree of complexity must be estimated subjectively. 



input and output of computations. This view suggests that the 
security kernel should embody all system-provided mechanises that 
are common to more than one computation (domain), because a 
common mechanism Is required If one computation Is to Influence 
another. A mechanism Is common to two computations If it uses 
some set of data items whose value one computation can Influence 
and the other can notice. The influence and notice may be 
direct—one writes into a data Item and the other reads it—or 
indirect—the invocation of a procedure by one somehow alters the 
procedure's internal state so that the outcome of an invocation 
by the other is affected. Common mechanisms are required to 
implement any explicit or implicit communication among 
computations. Thus* mechanisms implementing information sharing* 
interprocess communication* and physical resource multiplexing 
must be common. If no communication is involved* however* then a 
common mechanism is not required to implement a function. Common 
mechanisms carry a built-in risk—trey makm It possible for the 
computation of one user to exert unauthorized Influence over the 
computations or data of another. Malicious users must exploit 
flams In common mechanisms to work their will. To thwart such 
malicious activity the system designers must ensure that the 
common mechanisms have no exploitable design or Implementation 
flams* and must protect the common mechanisms against  tampering. 
Thus* a stcurity horntl st-outd ft* iba. I last aaflynl ol CQWIOD 
•achanisa DIMIMCJI 1ft iaalaaant i b* aft terns QJ iDlflCiHUo 
sharing* inter pro, cess cgaaunicatlpn* and physical rasourct 
•ultiPlanin.il that AX* dasicad In ihs SILSIAI.  <*•> 

Although a security kernel contains alt the mechanisms that 
must be verified as correct to produce a secure system* a correct 
kernel does not guarantee the integrity of all computations or 
stored data In a system. Nonkernel software still can cause 
undeslred release of Information* modification of information, or 
denial of Its use. But if the kernel is correct* then these 
undeslred results mill not be unauthorized. To understand the 
meaning of this distinction* consider the nonkernel software as 
grouped in four categories. 

First* there are the system-provided programs that execute 
as part of user computations. These Include the library 
subroutines available in most systems and all the programs 
usually part of a supervisor that are not included in a security 
kernel. These system-provided programs are not common 
mechanisms*  even  though  in  many  systems all computations may 

(<•) According to this characterization of a security kernel* a 
usual reason for including a mechanism in a supervisor* to 
protect it from accldentlal breakage caused by errors in user 
code* is not in Itself sufficient to include a mechanise in a 
security kernel. Nonkernel mechanisms can be protected by 
placing them In other domains that are private to each user's 
computation. 



Share the sen nonwriteabl« cod« that embodies their algorithms. 
This Is so because a private copy of the alterable part of these 
programs, the variable data, is provided for each computation. 
Because they are private aechanlsest no lnteruser interaction can 
occur through thee* Private mechanises may contain errors* but 
these errors can by triggered only by the actions of the 
computation that they eight daeage as a result. If one assumes 
that the system programmers mho constructed them are not 
malicious and did not ml 11 fully plant "trofen horses," then the 
mistakes caused by these system-provided programs mill decrease 
in tlee as all normally used functions are exercised. Under these 
circumstances the threat posed by a potential randoa error 
causing undeslred release* modification* or denial of a user's 
data is acceptable for most applications* Unlike the common 
mechanisms of the security kernel* the nonkernel system-provided 
programs are not susceptible to willful exploitation by other 
users* In any case* a user unsatisfied with their 
trustworthiness may choose not to use them and substitute his onn 
programs* 

The second category of nonkernel software is programs 
constructed by a user and executed in that user's computations* 
Any undeslred result caused by errors In these is the user's own 
problem. The only possible help to the user mould be providing 
tools to aid verifying the correctness of his own programs. 

The third category* possible in many systems* is progrses 
borrowed from other users* These ere a real danger to the 
borrower's computations* Borrowed programs can contain trojan 
horse code maliciously constructed to cause results undeslred by 
the borrower* (5) A user should borrow programs from snother 
only when the borrower has reason to trust the lender* The 
inclusion of security kernel facilities to support 
user-constructed protected subsystems can reduce the potential 
damage such a borrowed trojan horse can do by isolating it in a 
separate domain of the borrower's computation* Due to the 
confinement problem (151* however* and also to the possibility of 
a borrowed program disrupting the borrower's computation simply 
by calculating incorrect results* a user-initiated verification 
of the borrowed program is the only complete protection. 

The fourth category is common mechanisms that a group of 
users sets up to implement soee function involving lnteruser 
communication or coordination. For example* a team producing a 
new compiler might set up a program development subsystem with a 
common mechanism to control installation of new modules into the 

(5) This is a special case of a common mechanism. The data item 
whose value the lender can cause to change (and thereby Influence 
the computation of the borrower) is the code of the borrowed 
program itself. Even if the program is nonwrltable when 
borrowed* It wes written by the lender when constructed. 



•volving compiler. Such a mechenism Makes the group susceptible 
to undeslred Interaction In the same May that an insecure 
supervisor does for the whole user community* If a user agrees 
to become party to such a common mechanism* then he aust satisfy 
himself of Its trustworthiness* 

Froa considering these four categories of nonHernel software 
it is apparent that the essential aechanlsas to verify correct 
are the coaaon aechanisa of the security Kernel. The security 
Kernel has initial control of all paths for the interaction of 
coaputatlons and every user of the system is forced to rely upon 
it* A correct Kernel provides the tools with which a user aay 
protect his coaputatlons and data against unwanted Interference 
froa the coaputatlons of other users* In a systea providing for 
direct sharing of prograas and data* however* users can agree to 
cooperate in ways that the security Kernel cannot control. The 
Kernel can prevent such sharing unless it Is explicitly 
authorized, but cannot completely control the Interaction between 
user's that agree to share. The security Kernel prevents 
activities that the security specification for the systea defines 
as unauthorized* but not all undeslred results are causec by 
unauthorized activities* 

A fifth category of nonKernel software also needs to be 
considered* One iaportant technique for simplifying the 
structure of the security Kernel is writing it with a high-level 
prograaalng language* Using a high-level language to generate 
the Kernel seeas to require that the compiler also be verified 
correct* a troubling thought since the compiler may well be 
larger than the Kernel* Verification of correct function aay be 
less of a problem for the compiler, however* than for the Kernel. 
The Kernel aust work correctly for all possible Inputs; the 
compiler aust compile correctly only the specific programs of the 
kernel—not all possible prograas. Thus, the compiler's effect 
on the Kernel can be deterained by comparing the source code 
specifications for each Kernel aodula with the coapllei—produced 
object code implementation, a tasK much simpler than verifying 
the compiler correct for all possible source prograas. (6) 

A JLtrjDQj   ±ox UuJJLi£S 

Engineering a security Kernel for a system requires 
isolating a minimum sat of functions capable of supporting the 
system and finding a way to structure the Kernel to facilitate 
verifying its correctness. Our plan is to produce a security 
Kernel for Nultlcs by reaoving nonKernel aechanlsas froa the 
supervisor*  and  restructuring  the  remaining  Kernel   and 

(6) Use of a high-level language for Kernel construction can 
generate a dilemma* An optimizing compiler can increase systea 
efficiency* but may make impossible matching object code with 
source code to verify correct compiler function* 



partitioning it into multiple protection doaains. This section 
describes these three interrelated categories of activities end 
provides specific exaaples of work underway or planned in each. 
The intention of the section is to communicate the spirit of the 
work rather than to to discuss thoroughly the various activities. 
The detailed results of Individual activities are being 
communicated in other reports (16*17*181. 

The first category of activities is taking functions not 
requiring i ap lamentation as common aechanlsas out of the 
supervisor to be lepleaented in the user doaains of a process. 
In aany cases this transfer involves undoing a pattern causec by 
a performance characteristic of the original Multlcs 
implementation for the Honeywell 6<*5 computer. For that machine* 
the multiple protection domains of a process* the so-called 
protection rings* were simulated In software. Cross-ring calls 
were quite expenslvel a call that went from a user ring in a 
process to the supervisor ring cost much more than a call that 
did not change protection rings. The effect on system structure 
can be seen by considering two procedures* A and B. If a single 
invocation of A can result in a flurry of calls from A to 8, then 
there Is a performance benefit In placing both A and 8 In the 
supervisor* even if only 8 needs to be part of the protected* 
common mechanism. As a result of this performance characteristic 
of the 6<t5 implementation* aany functions that did not need to be 
Implemented  as common mechanism were included in the supervisor. 

The present hardware base for Hultics* the Honeywell Series 
60/ Level 68 computer* implements protection rings in hardware. 
Calls from one ring to another cost no more than calls inside a 
ring. With the performance penalty associated with supervisor 
calls removed* many modules Included in the supervisor for 
performance reasons rather than protection reasons now can be 
reaoved. (7) 

Actually* removing a module from the supervisor is more 
difficult than the example suggests. In most cases* the common 
and private parts of a facility are not neatly packaged in 
separate procedures but are Intricately intertwined in the same 
supervisor procedures and data bases. The key problem Is 
decomposing the supervisor into common and private primitive 
functions. 

Host removal activities have centered on the file system. 
In one activity* now completed* the functions of dynamic 
Intersegment linking and direction of  file  system  searches  to 

(7) There may still exist other performance penalties associated 
with removing functions from the supervisor that will inhibit 
production of the smallest possible kernel. One goal of the 
research Is to understand batter the performance cost of 
security. 



satisfy symbolic references have been removed froa the supervisor 
Cl6»i7). This removed a vulnerable and coaplex mechanise froa 
the supervisor* The vulnerability Is a result of the linker 
having to accept user-constructed coda segments as Input data. 
Numerous accidents had shown that such a complex -argument", If 
maliciously alsstructured* could cause the linker to malfunction 
while executing In the supervisor. Removing the linker 
eliminated 10X of the gate entry points Into the supervisor and 
6X of the total object code. The linker's removal also 
demonstrated that linking procedures together across protection 
boundaries (rings) could be done without resorting to a mechanism 
common to both domains. 

A second completed activity removed from the supervisor the 
facilities for managing the association between reference names 
and the segments In the address space of a process C161. Taking 
this naming mechanism out of the supervisor required that a data 
base central to the manageaent of the address space* the Known 
Segment Table* be split Into a private part that maintains the 
binding between reference names and segment numbers and a coamon 
part that maintains the binding between segment numbers and 
segments. Removal reduced fivefold the size of the protected 
code needed to manage the address space of a process. It also 
provided a new* simpler Interface to the file system portion of 
the supervisor. Instead of identifying a directory by character 
string tree name locating it in the file system hierarchy* a 
segment number now Is used. The algorithms for following a tree 
name through the file system hierarchy to locate the named 
element are now Implemented by procedures executing in the user 
ring. (The actual file system hierarchy remains protected Inside 
the security kernel.) Because tree names are now resolved one 
component at a time* the kernel had to learn to lie on occasion 
about the existence of file system directories. This deception 
keeps the kernel from divulging a directory's existence before an 
accessible element in the subtree rooted by the directory Is 
found. 

An activity under investigation involves making most of 
system Initialization execute once* in a user environment of a 
previous system version* Instead of executing inside the 
supervisor eech time the system is started. The change is to 
produce a system tape with a bit pattern that* when loaded into 
memory* manifests a fully Initialized system. At present the 
system bootstraps Itself In a coaplex way each time it is loaded 
from a tape containing the separate pieces. The new pattern of 
operation removes most initialization software from the kernel. 
The correct initialization of the kernel also should be easier to 
verify* for most of the work of Initialization will occur when 
the tape is made* in the stable environment of e fully 
Initialized system. 

Another activity is exploiting the equivalence between 
entering a protected subsystem and creating  a new process  In 



response to a user's log-in. The goal Is to Make a single 
mechanism do both tasks, so that the privileged* protected code 
used to authenticate and log-in users can be executed in the user 
code protection environment. The authentication algorithm still 
must be verified not to malfunction if the user trying to log-in 
behaves unexpectedly. Such verification should be easy* however, 
since the user/system Interface severely Halts user behavior* 

The second category of activities is restructuring 
mechanisms that must remain in the kernel* Such activities can 
reduce both the size and the complexity of the kernel* In some 
cases a piece of the kernel can be eliminated and Its function 
assumed by another kernel mechanism* For example* one activity 
Is exploring replacement of all external I/O mechanisms (to 
terminals* tape drives* card readers* card punches* and prlntersl 
Mlth the ARPA Network attachment* This would eliminate many 
special mechanisms for managing I/O devices and leave a single 
mechanism for managing the network attachment* Internal I/O 
functions (for managing the virtual memory* performing backup* 
and loading the system) would still be managed In the kernel* 

A proposed buffering strategy for network input uses the 
virtual memory to provide a core resident buffer that appears to 
be infinite in length* Mlth the present circular buffer* which 
has to be used over and over* complex mechanisms are required to 
cope with messages not removeo before a complete circuit of the 
buffer is made* The circular buffer scheme is really providing a 
special-purpose storage management facility* The proposed 
infinite buffer uses Instead the standard storage management 
facility of the system—the virtual memory* 

Several restructuring activities Involve the implementation 
and use of processes* One activity* now nearing the end of the 
design phase* is a relapleaentatlon of processes using two layers 
of mechanism* (8) This new design simplifies the Interaction of 
the process Implementation with the virtual memory management 
mechanisms* It also simplifies the base-level interprocess 
communication mechanisms of the system* The first level of 
mechanism multiplexes the processors into a larger fixed number 
of virtual processors* Because the number of virtual processes 
Is fixed* this layer need not depend on the mechanisms for 
managing the virtual memory* Several of the virtual processors 
are peramnently assigned to implement processes for the dedicated 
use of other kernel mechanisms, Including the virtual memory 
management mechanism. The remaining virtual processors are 
multiplexed by the second layer of the process Implementation 
Into any desired number of full Multics processes that execute in 
the virtual memory* Use of the proposed base-1 eve I Interprocess 
communication facility can be controlled with the standard memory 
protection mechanisms. 

(8) This Idea is being explored by others as well (3*191. 
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The 1 up lenient at Ion (Implied above) of certain kernel 
mechanisms as asynchronous parallel processes also simplifies 
system structure* which no* forces many supervisor mechanisms 
into sequential algorithms* The virtual memory mechanisms for 
moving pages among the three levels of the memory hierarchy are a 
good example. Whenever a missing page fault occurs in a process* 
the fault handler attempts to initiate the transfer of the 
desired page from bulk store or disk to primary memory. This can 
be done only If a free primary memory block Is available. If 
none is available the fault handler must move a page from primary 
memory to the bulk store to make room. This* in turn* Is 
possible only If a free block of bulk store Is available. If 
not* a page must be moved from the bulk store* via primary 
memory* to a disk. At present* this series of steps occurs 
sequentially with the algorithms executing In the process that 
took the page fault* and then in various other user processes 
that happen to receive the subsequent I/O interrupts. The nem 
scheme Involving multiple dedicated processes Is much simpler. 
One process makes sure that some small number of free primary 
memory blocks always exist. Whenever the number of free primary 
memory blocks drops below that number* this process transfers 
pages to bulk store. Another process keeps space free on the 
bulk store by moving pages to disk when required. Signals from 
processes that have taken a page fault and not found free primary 
memory blocks activate the process that frees primary memory. 
The process that frees bulk store blocks is driven in a similar 
manner by signals from the process that frees primary memory 
blocks. The path taken by a user process on a page fault is 
greatly simplified. This process can Just malt until a primary 
memory block is free and then initiate the transfer of the 
desired page Into primary memory. 

Interrupt handling is another possible application of 
processes in the kernel. Each Interrupt handler mould be 
assigned its own process in which to execute* rather than being 
forced to inhabit whatever user process was running when the 
interrupt occurred. As a result* the system Interrupt 
Interceptor could turn each Interrupt into a signal to the 
corresponding process. Being processes* the interrupt handlers 
could use the normal system Interprocess communication mechanisms 
to coordinate their activities with one another and user 
processes* greatly simplifying their structure. The problem to 
solve here Is implementing the interrupt processes so that system 
performance is not degraded. 

A major activity Is restructuring the portion of the file 
system that must remain in the kernel. This software implements 
the directory hierarchy and manages the virtual memory at the 
level of segments. Work in this area is Just beginning* but 
three changes with a potential* significant cumulative effect are 
promising first steps. One change is removing physical 
attributes of segments from directory entries. The physical 
attributes will be recorded in data  bases  associated with the 
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various secondary storage devices. (This Modification Is being 
lap lamented as part of a file systea overhaul done by Honeywell 
for other reasons*) The second change Is removing storage quotas 
froa directory entries, recording then Instead In a separate 
(possibly hierarchical) data structure. The third Is eliminating 
the dependence of the file backup mechanism on the date-time 
modified Information recorded in directory entries and reflected 
up the hierarchy toward the root. Eliminating this dependence 
will allow the date-time modified Item to be removed from 
directory entries as well. Backup will be driven by a queue of 
requests from the machinery that controls deactivation of 
segments from primary memory. As a result of these three 
changes* It appears that the aanageaent strategy for the Active 
Segaent Table can be modified to eliminate the need for holding 
active the superior directories of an active segment til). 

The various restructuring activities eventually will extend 
to all parts of the kernel* and to its overall structure. 

The third category of activities is partitioning the kernel 
Into differently protected pieces to modularize the Job of 
matching the kernel to the system security specification. (9) 
The specific projects in this category are not as well developed 
as the others. There appear to be several different design 
principles with which to generate the kernel partitions. and it 
Is not yet clear which proauces the kernel that Is easier to 
verify. To Illustrate two possible approaches to partitioning a 
kernel into multiple domains. Imagine that the security 
specification is expressed as a set of security properties, each 
of which must be met. One design principle Is to divide the 
kernel Into domains arranged so that each property is Implied by 
a subset of the domains. Then, to verify that the kernel 
implements the security specification* an Independent 
verification of each property is required* but each Involves only 
a subset of the domains in the kernel* Another design principle 
Is to ignore any structure suggestea by the security properties 
and divide the kernel into domains according to some other 
principle of structured programming (for example* Parnas* notion 
of information hiding (20)) so that each domain has e siaple 
interface behavior specification. Verification of each of the 
security properties may involve all the kernel domains* but once 
each domain has been verified to match its Interface 
specification* then only these specifications need be considered 
to verify each security property. Mhich of these two approaches 
is preferable--or Indeed* whether they really are different 
approaches—remains to be seen. 

(9) Partitioning Is really  the  saae  problem  as dividing  the 
kernel  into separate  procedures and data bases* with the extra 
property  that  the  modularity  is  enforced  by the   system's 
protection mechanises 
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Two specific methods for partitioning the Hultlcs Kernel are 
available. The first is dividing the part of the kernel that Is 
in the address space of each process into Multiple layers in 
different rings of protection* The second is placing soae of the 
kernel processes in separate addrass spaces and also using the 
protection rings to layer then* Several suggestions have been 
aade for layering the part of the kernel that is in each user 
process. One is that the bottoa layer Implement a file system in 
which all segments Mere named by system-generated unique 
identifiers. The next layer would laplement a naaing hierarchy 
on top of the primitive first-layer file system. Another 
suggestion Is that mechanisms to provide the nondiscretlonary 
controls on the flow of Information among processes be 
Implemented at the bottom end mechanisms to control discretionary 
sharing within the constraints of the nondlscretlonary controls 
be implemented in the next layer. This last suggestion Is 
particularly intriguing, because if correctly done, the notion of 
minimizing common mechanisms mould be well supported. The 
second-layer mechanisms would be common only within the access 
constraints enforced by the first layer. 

Partitioning through use of separate address spaces for 
kernel processes is being considered In the case of the processes 
that manage the various system resources. The protection rings 
In these processes then could be used to separate the policy and 
mechanism components of the resource managers. (10) For example, 
the process described earlier that removed pages from primary 
memory could be given Its own aodress space with multiple rings. 
Programs in the most privileged ring would Implement the 
mechanics of page removal, providing gate entry points for 
requesting the movement of a particular page from primary memory 
to a particular free block on the bulk store, and for obtaining 
usage information about pages in primary memory. The policy 
algorithm that decides which page to remove when another free 
primary memory block needs to be generated would execute In a 
less privileged ring, calling the gate entry points to collect 
the necessary usage statistics and to do the actual moving* once 
a decision was made. The policy algorithm* however* could never 
read or write the contents of pages* learn the segment to which 
each page belonged* or causa one page to overwrite another. Such 
operations would not be available in Its ring of execution. The 
result is that the policy algorithm could never cause 
unauthorized use or modification of the information stored In the 
pages. It could only cause denial of use. Under the 
circumstance that denial of use was deemed less serious than the 
other security violations* the policy algorithm need not be as 
carefully verified as the rest of the kernel. It appears that 
the idea of separating policy from mechanisms applies to all 
resource management processes. 

(10)  Separation of  policy  from  mechanism  Is  a  structural 
principle that has been explored by many others (21«22«23). 
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Conclusion 

This paper has presented the plan for a research protect to 
evolve the Hultlcs supervisor into a security Kernel capable of 
supporting the functionality of Hultlcs completely and 
efficiently. It has described a sample of the specific 
Strategies being employed. The broad objective is finding nays 
to reduce the size and complexity of the software that must be 
correct for a shared general-purpose system to be secure. 
Reduced size and complexity of security-relevant software is a 
prerequisite to performing a convincing logical verification that 
a system correctly implements the claimed access constraints* no 
matter what verification techniques are used. Without such 
verification of correctness* a system cannot be considered 
secure. 

At the time this paper Is being written, the project has run 
for about half of its Intended four year span* and most of the 
Initial tasks are nearing completion. So far* the expected 
reductions in size and simplifications of structure of the 
security-relevant software seem to be occurlng. It Is too soon 
to tell* however* whether the security kernel for Hultlcs that 
will result will be sufficiently small and simple to be 
understood in detail by one person* 
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