FILE COPY

-

ESD-TR-75-95
ESD serrse

DRI Call No. ?Z?‘S’7
Copy No. j___ of Z Cys,

SECURITY KERNEL EVALUATION FOR MULTICS
(INTERIM REPORT)

Michael D. Schroeder
M.I.T. - Project MAC
545 Technology Square

Cambridgeéngass. 02139

Honeywell Info. S%stems, Inc.
Fedéral Systems Operations
7900 Westpark Drive

McLean, Va. 22101

September 1975

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION (AFSC)
HANSCOM AIR FORCE BASE, MA 0173i

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VA?22209

ADR A 4D

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for

publication."

R. SCHELL, Major, USAF WILLIAM R. PRICE, 1Lt, USAF
niques Engineering Division Techniques Engineering Division

FOR THE COMMANDER

STANLEY P¢/ DERESKA, Colonel, USAF
Chief, Techniques Engineering Division
Information Systems Technology
Applications Office

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-75-95
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOO COVERED

SECURITY KERNEL EVALUATION FOR MULTICS
(INTERIM REPORT)

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

F19628-74-C-0193
Michael D. Schroeder

9. PFRENRMING ORGAN|7ATINN ANP ARNBECe 10. PROGRAM ELEMENT, PROJECT, TASK
o e e roject Mﬁg AREA & WORK UNIT NUMBERS
Cambridge, Mass.
Honeywell Info. Systems, Inc. CDRL Item A004
Federal %ystems Operations
11 6VMC\I,'%arE.(’i,) .J\'.Eggmr}_lnc?muun::a S 12. REPORT OATE
eputy tor Command an anagement Systems 7
Electronic Systems Division (AFSC) ED NuMESgLeFmPtZSSrESI9 2
Hanscom AFB, MA 0173I 16

14, MONITORING AGENCY NAME & AOORESS(iIf different from Controlling Office) 1S. SECURITY CLASS. (of this report)
Defense Advanced Research Projects Agency

1400 Wilson Boulevard UNCLASSIFIED
Arlington, VA 22209 TSa. DECLASSIFICATION/ OOWNGRAOING
SCHEOULE
N/A

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.,

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side If necessery and Identify by block number)

protection, security, privacy, security kernel,
operating system structure, verification, Multics

20. ABSTRACT (Continue on reveree eide If neceesary and identify by block number)

This paper describes a research project to engineer a security
kernel for Multics, a general-purpose, remotely accessed,
multiuser computer system. The goals are to identify the minimum
mechanism that must be correct to guarantee computer enforcement
of desired constraints on information access, to simplify the
structure of that minimum mechanism to make verification of
correctness by auditing possible, and to demonstrate by test

DD 1':2,?”73 1473 EOITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

i

implementation that the security kernel so developed is
capable of supporting the functionality of Multics
completely and efficiently. The paper presents the
overall viewpoint and plan for the project and discusses
initial strategies fFeing employed to define and structure
the security kernel.

This paper also appears in the Proceedings of the Association
of Computing Machinery SIGOPS Fifth Symposium on

Operating Systems Principles which was held at the University
of Texas in November 1975.

The research reported in this paper was supported in part

by Honeywell Information Systems, Inc; and in part by the

Air Force Information Systems Technology Applications

Office (ISTAO) and by the Advanced Rescarch Projects Agency
(ARPA) of the Department of Defense und¢i” ARPA Order No. 2641
which was monitored by ISTAO under Contra.t No. F19628-74-C-
0193.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Introductlion

Thls paper descrlbes a research project of ¢the Computer
Systems Research Olvislon of Project MAC at M.I.T. The objective
of the project 1ls to englneer 2a securlity kernel for Multlcs.
Thls project 1ls part of an effort to develop a secure verslon of
Mul tlcs that lmpliements ¢the Information release constralnts of
the mliltary security system. Involved In that effort are the
Electronlc Systems Olvision of the Unlted States Alr Force, the
MITRE Corporation, and Honeywell Information Systems Ince.

The paper Sstarts with a brlef Introductlon to the coaputer
securlty problem and the role that verlficatlon of correctness
plays In produclng a secure system. Nexty, the plan 1Is outllned
for evolving Multlics Into a system, based on a security kernel,
whose securlty properties are easier to verifye. The third
sectlon presents a general dlscusslon of a securlty kernel as the
structural basls for a secure system, Filnally, to make the
nature of the Multlcs kernel project more preclsey, a sample of
speclflc actlvitles underway or planned Is presented.

The 1lssue of securlty arlses when a slngle computer system
provlides computation and Intormation Storage sService to a
communlty of users. As the functlonal advantages of such shared
systems have been recognlzed, so has the need to Include
tacliltles for controlllng the access of the varlous users to the
contalned Informatlon. Many systems now (include protectlon
mechanlsms providing enforcement of specltic patterns of
externally speclfled constralnts on the access of executing
programs to the contalned Information (1l). For appllcatlons
Involving sensitive Information, the usefulness of 2 shared
system can depend upon the ablllty of Its protectlon mechanlises
to prevent unauthorized releasey modlflcatlon, and sometlmes
denlal of use of the Information It contalns.

A system |s secure lf It 1ls known to prevent all actlons
deflned as unauthorlzed by the speclfication of Its securlty
propertles. Penetratlon exerclses Ilnvolving several different
systems have made 1t apparent that exlsting shared,
general-purpose systems are not secure. In all such systens
confrontedy, a wlly user can construct a program that can defeat
the access constralnts supposedily enforced by the system. 0Oeslgn
and lmplementation flaws exlst that provide paths by whlch the
protectlon mechanisms 1In the system can be clrcuavented, thus
violating the securlty of the contailned Information.

Bulliding a secure system Is hard because securlty places
negative requlrements on a syStem. To be secure alil possible
ways to perform unauthorlzed actlons must be blocked; pno way to
clrcumvent the protectlon mechanlsms can exlst. A single flaw In
the deslign or Implementatlon is sufficlent to allow a violation
of securlty, and the absence of such flaws cannot be demonstrated

by testlng. For a syStes 1o bhe conslidered sacyre, a convingcling

loglcal verlification 1that 1the Jisptemented systes is a correct
ceallzatlon of lis securlty specltfication ls regulced.

The operating systems of sharedy, general-purpose computers
have a well-known tendency to be extraordinarily large and
complex. Thls size and complexity Interacts badly wlth the
negative nature of securlty requlrements. It generates many
possible ways to perform unauthorized actlons, some of which wlll
go unnoticed by system desligners and therefore remain unblocked
by the protection mechanisass provided, and Increases the
probabillty of exploltable errors In the Implementation of the
protection wmechanisms that are provided, It also makes the
requlred verlfication of correctness Impossible to perfornm.
Avalilable formal program verification technliques are overwhelimed
and even verlification by manual auditing Is thwarted by the
inabitity of one person to comprehend In detall the relevant
software.

The negative nature of security properties Is an Intrinslic
problem, The size and complexlty of existlng, shared,
general-purpose systeams, however, IS not intrinsice. Thils
research project attacks the problem of producing a secure system
by exploring ways to reduce the size and complexity of the
software that must be correct for clalmed constralnts on access
to Information to be enforced.

Method of Attack

The problem of constructing a secure system has attracted
conslderable Interest recently and Is belng attacked with a
variety of different strategles [(2]. One approach belng explored
Involves constructing a formal speclification for the desired
securljity (and other) properties of a systemy, and then, through a
methodicals top-down deslign and Implementatlon process, bullding
8 matching, operatlonal system. The correspondence of the
Ilmplemented sysStem with the formal securlty speciflication Is to
be proved using formal program verlficatlon techniques. The hope
Is to achleve a level of confidence In the match of the system to
the specification similiar to the confldence that a mathematiclan
has In the result of a well-wrought proof, A step necessarily
left to human Intultion 1Is deteraining how approprlate the
securlty properties expressed In the formal specification are to
a particular real-world appllication. Three current projects
{3:445) are trying to proguce simple, experimental examples of
secure systems using different versions of this approach.

At the other end of the spectrum are efforts [(6+s7) to find,
catalogy and repalr securlty flaws In existing systems, The
goals are to convince skeptlics that the computer security problem
Is realy to understand the sort of flaws that can be explol ted,
and to try to reduce the esse with which avallable systems can be

penetrated.

Our project to reduce the slze and complexity of the
software that must be verlflec correct to produce a secure system
falls somewhere between these two extremes. Our plan ls to
evolve Multics (8), a general-purpose, remotely accessed,
nul tluser system, Into a prototype system with the same essentlal
features, but wlth a small and slmple protected central core of
software. Thls core wlil be a securlty kernel embodylng all
mechanlsmes necessary to enforce the clalmed constralnts on access
to Information In the system. The goal ls a kernel sufflclentiy
small, well-structured, and easy to understand that feaslbly an
expert could verlfy |lts correctness through manual audltlng.
Such a kernel also may be susceptlble to verlflcatlion through
formal technlques, although the programs may have to be rewritten
In a more appropriate style. The kernel wlll enforce access
constraints that coabline nondiscretionary controls reflecting the
Intormatlion retease pollcles of the mlltjitary securlty system and
the dlscretlonary controls on Informatlion sharing that were part
of the orlginal Mul tics deslgn. (1)

The cholce to evolve an exlsting system rather than procuce
a new one follows from our focusing on problems of systesm
structures rather than on technlques for formal speclflcation of
securlty properties, struc tured programalng, or formal
verlflcatlon of program correctness. Our goal |[s developling a
securlty kernel that can be demonstrated to support the full set
of functlons that are deslirable In a shared, general-purpose
system. Hith the current understanding of computer systems, |t
1s hard to have confldence that the full Impillcatlons of a2 system
structure are understood wlthout complete lmplementation.
Deslgning a new system wlthout bulliding 1t or bulliding a simple,
experlmental system (2) would not allow the completeness of our
kernel deslign to be tested adequately. Thus, to start fresh
would mean undertaklng the entire Job of bullding a new,
general-purpose system. By developing a securlty kernel for an
exlstlng, general-purpose system, we avold thls enormous effort.

A comblilnation of factors makes Multics well sulted as a base
from which to englneer a securlty kernel. To start with, Multics
provides a full set of functlonal capabliltles, Includlng
high-bandwldth direct sharlng of Informatlon among computatlons
{11). In addition, Multics has been developed from the ground up
to protect the Information lt contalns from unauthorlzed accesse.
It already Includes general protectlon mechanisms to control

(1) A formal speclficatlon (9) of the nondlscretlorary controls
ls belng develoged by a group at MITRE. An Informal
speclflcation of the discretionary controls ls avallable In [10).

(2) Two examples of features usually left out of experimental
sys tems that can compllcate the kernel of an complete,
general=-purpose system are the storage quota and backup
mechanlsas mentloned In a later sectlon.

Intformation sharlng among users (10) and provides dlrect hardware
support for some of these mechanlsas (12)J. MInimal features to
support the Informatlon release constralnts of the milltary
securlty system recently have been added (13). Thus, the systenm
exhlblts a set of securlty propertlaes that would be Interesting
to Ilmpliement correctly and provides hardware support that wlll
make the Jjob easler. Alsoy, the system [s well organlzed for
evolutlon and modiflcatlon because 1t s ref{atlively modular, lIs
targely wrltten In PL/I (14), and was orlglnally constructed wlth
evolutlon as a prlmary objectlve. Flnally, Multlcs provides two
unlque opportunltles to test and export the results. Flrst,
because Multlcs 1ls &8 commerclally avallable product, ldeas
developed In the course of thls research that slapllfty the
system®s structure wlthout changlng lts functlonallty or reduclng
Its efflclency can be added to the s tandard system. Second, the
securlty kernel! belng produced 1ls serving as the structural basis
for the secure verslon of Multlics belng developed by ¢the Alr
Forcey, MITRE, and Honeywell In an effort of which our project ls
parte.

Ihe Security Karnsl

A securlty kernely, a mlnimal, protected core of software
whose correct operation Is sufficlernt to guarantee enforcement of
the <clalmed constralnts on accessy Is the structural baslis for
organlzlng a secure system, Rather than belng dlspersed
throughout the system software, all protectlon mechanlses are
collected In the kernely, so that only thils kernel need be
consldered In order to verlfy ¢that the speclfled securlty
properties are Impilementec correctiy.

The securlty speclflcatlon that a partlcular system must
match llmlts how small and silaple (3) the kernel can be. The
patterns of access constralnts to be enforced ls an obvlous
tfactor. The set of abstract objects and operatlons to be
controlled may be even more lmportant. In Multlcs, It appears
that most of the mechanism In the kernel wlll Implement the
abstract objects protected by the system, for example, pProcesses,
segmentsy, dlrectoriesy and I/0 streams, and wliil be relatively
Independent ot the speclflc patterns of access constralnts
enforced by the system.

A characterization ot the mechanlsms that should be Included
In a securlty kernel <¢an be obtalned by viewlng the securlty
speclflcatlon as 8 set of constralnts on the iInteractlon of the
varlous computatlons that occur In a computer system. The
protectlon mechanisms of the system prevent one computatlion from
exerting an unauthorlzed Infiluence on the Ilnput, progress, or
output of another. Permanently stored data Is one form of the

(3) Unfortunatelys no objectlive measure of overall complexlty 1Is
known. The degree of complexlty must be estimated subjectlively.

Input and output of computationse Thls view suggests that the
securlty kernel should embody all system=-provided mechanlisms that
are common to more than one computation (domalin), because a
common mechanism 1Is required It one computation Is to Influence
another. A mechanlsm Is common to two computatlions If It wuses
some Set of data items whose value one computation can Influence
and the other can notlce. The Influence and notice may be
direct--one writes Into a data Item and the other reads lt--or
Indlrect--the Invocation of a procedure by one somehow al ters the
procedure’s Internal state so that the outcome of an Invocatlon
by the other s affected. Comnmon mechanlisms are required to
implement any explliclt or imptlicit communjication among
coaputationse Thus, mechanisas implementing Informatlon sbtaring,
Interprocess communlicatlon, and physical resource muitiplexing
nust be common. If no communication Ils lnvolvedy, however, then a
coamon mechanism Is not required to [mplement a functlion. Common
mechanlisms carry a bullt=Iln rlsk=-trey make 1t possible for the
coaputation of one user to exert unauthorlzed Influence over the
computatjons or data of another. Mallclous users aust explolt
flaws In common mechanlisms to work thelr will. To thwart such
maliclous activity the system deslgners must ensure that the
common wmechanisms have no exploltable design or [mplementation
flaws, and must protect the common mechanlsms agalnst tamperinge.

Thus, 2a secuclty kernel sShould bhe the least amount of cosean

Al though a securlty kerne! contalins all the mechanlisms that
must be verlfled as correct to produce a secure system, 3 correct
kernel does not guarantee the Integrity of all computatlions or
stored data In a systenm. Nonkernel software still can cause
undesired release of Informatlon, modlificatlion of Information, or
denial of |ts wuse. But |f the kernel lIs correct, then these
undesired results will not be unauthorlized. To wunderstand the
meaning of this distinctlon, consider the nonkernel software s
grouped In four categorliese.

Flrst, there are the system-provided programs that execute
as part of user computationse. These |[nclude the | lbrary

subroutlines avaltlable In most systems and all the progranms
usually part of a supervisor that are not Included in a securlty
kernel. These systema-provided programs are not commaon

mechanisms, even though In sany systems all computations may

(%) Accordling to thlis characterjzation of a securlty kernel, a
usual reason for Including @& wmechanism In a supervisor, to
protect |t from accldentjal breakage caused by errors 1In wuser
codey, 1Is not In IJtself sufficlent to Include a mechanlise In a
security kernel. Nonkernel mechanlisms can be protected by
placing them In other domains that are private to each user®s
computation.

share the same nonwriteable code that embodles thelr algorlthase.
Thls 1Is so because a prlvate copy of the alterable part of these
programs, the varlable data, ls provlided for each computeation.
Because they are prlvate mechanlsms, no Infteruser Interactlon can
occur through them. Prlvate mechanlsms may contaln errors, but
these errors can by trlggered only by the actlons of the
computation that they alght damage as a result, If one assumes
that the system prograsmers who constructed them are not
mallcious and dld not wlllitully plant "trojan horses,™ then the
mistakes caused by these System-provided programs wlll decrease
In time as all normally used functions are exerclsed. Under these
clrcumstances the threat posed by a potentlal random error
causing undesired reiease, modlflcatlon, or denlal of a user®s
data ls acceptable for most applicatlons. Unllke the common
mechanisms of the securlty kernel, the nonkernel system-provlided
programs are not susceptlble to wliliful explolitation by other
userse. In any case, a user unsatlstled ulth thelr
trustworthlness may choose not to use them and substitute hls own
programs.

The second category of nonkernel software [S prograas
constructed by a user and executed In that user®s computationse.
Any undeslred result caused by errors In these ls the user®s own
problem. The only posslible heilp to the user would be providing
tools to ald verlfylng the correctness of hls own programs.

The third category, posslible Iln many systems, ls programs
borrowed from other userse. These are a real danger to the
borrower®s coaputatlionse. Borrowed oprograms can contaln trojan
horse code matlclously constructed to cause results undesired by

the borrowere. (5) A user should borrow programs from another
only when the borrower has reason to trust the [ender. The
Incluslion of securlity kernel facliltles to support

user-constructed protected subsystems can reduce the potentlal
damage such a borrowed trojan horse can do by lsolating 1t In a
separate domaln of the borrower®s computatione. Due to the
conflnement problem (15), however, and also to the possiblilty of
a borrowed program dlsrupting the borrower®s computation simply
by calculating lncorrect resulits, a user-inltlated verlflcation
of the borrowed program ls the only complete protection.

The fourth category 1ls coamon mechanisms that a group of
users sets up to lImpliement some functlon Involiving Interuser
communicatlon or coordlnatlion. For example, a tezm producling a
new compllier might set up a program development subsystem wlth a
common ®mechanlsa to control Installiation of new modules Into the

(5) Thls ls a speclal case of a common mechanlsm. The data |ltenm
whose value the lender can cause to change (and thereby Influence
the computation of the borrower) 1Is the code of the borroxed
program Jltself., Even If the program 1[Is nonurltable when
borrowed, It was written by the lender when constructed.

evolving compiters Such a mecheniss makes the group susceptible
to undesired Interaction In the same way that an Insecure
supervisor does for the whoie user community. If 8 wuser agrees
to become party to such a common mechanlismy, then he must satisfy
himsetf of Its trustworthliness.

From conslidering these four categorles of nonkernet software
it ls apparent that the essential mechanisms to verlify correct
are the common mechanism of the securlty kernel. The security
kernel has Inltial control of all paths for the |[nteractlon of
computations and every user of the system ls forcea to rely upon
Ite A correct kernel provides the tools with which a user may
protect hls computations and data agalnst unwanted Interference
from the computatlons of other userse In a system providing for
dlrect sharlng of programs and data, however, users can agree to
cooperate In ways that the securlty kernel cannot control. The
kernel can prevent such sharlng unless It 1Is expllcitiy
authorlzed, but cannot complietely control the Intersctlon between
user®’s that agree to share. The security kernel prevents
actlvities that the securlty specliflicatlon for the system deflnes
as unauthorlzedy, but not all wundesired results are causec by
unauthorlzed activities.

A fltth category of nonkernel software also needs to be
consldered. One Important technlque for simpilfylng the
structure of the securlty kernel ls writing (¢t with a hlgh=-level
programming (anguage. Using a high-level l(anguage to generate
the kernel seems to require that the compliler also be verliflied
correcty a troubllng thought since the complier may weil be
farger than the kernel. Verlflication of correct function may be
less of a problem for the complier, however, than for the kernel.
The kernei must work correctiy for all possible [nputs; the
complier must complie correctly oniy the speclilfic programs of the
kernei--not ali possible programs. Thus, the complier®s effect
on the kernel can be determined by comparing the source code
speciflcations for each kernel module with the complier-produced
object code Ilmpiementatlon, a task much slimplier than verifylng
the complier correct for all posslible source programs. (6)

A XKerpel for Multics

Englneering a securlty kernel for a system requlres
lsolating 2 minlmum set of functions capable of supporting the
system and finding a way to structure the kernel to facliitate
verlifylng Its correctness. Our plan (s to produce a securlty
kernel for Muitlcs by removing nonkernel mechanisms from the
supervisor, and restructurling the remalning kernel and

(6) Use of a high-leveal tanguage for kernel constructlon can
generate a dliemma. AN optlimlizing complier can Increase system
efflciency, but may make lmpossible matchlng object code wlth
source code to verlfy correct complier functlon.

partlitloning 1t Into multiple protectlion domainse This sectlon
descrlibes these three Interreiated categorles of actlvitlies and
provides speclfic examples of work underway or planned in each.
The Intentlon of the sectlon Is to communicate the splirit of the
work rather than to to dlscuss thoroughly the varilous activitles.
The detal led results of Indlvlidual actlvities are belng
communicated In other reports (16,174,18).

The first category of actlivitles 1ls takling functlons not
requliring lmplementation as common wmechanlsas out of the
supervisor to be Impiemented In the user domalins of a processe.
In many cases thls transfer Invoives undolng a pattern causec by
a performance characterlistic of the orliginal Multics
Implementation for the Honeywell 645 computer. For that machlne,
the wmultiple protection domalns of @8 processy the so-called
protectlon rlngs, were simulated In software, Cross-ring calis
were qulite expenslivet a call that went from a user rling In a
process to the supervisor ring cost much more than a calt that
dld not change protectlon rings. The effect on system Structure
can be seen by conslidering two procedures, A and B. If a single
Invocatlion of A can result In a fiurry of calils from A to B, then
there 1[s a performance beneflt In placing both A and B8 In the
supervisor, even lf only B needs to be part of the protected,
common mechanisme AS a result of thlis performance characteristic
of the 645 [mplementation, many functions that did not need to be
Ilmplemented as common mechanlsm were Included In the supervisor,

The present hardware base for Mulitlcsy the Honeywelil Serles
60/ Level 68 computer, lmplements protection rlngs In hardware.
Calis from one ring to another cost no more than calis Inslde a
ringe. With the performance penalty assoclated with supervisor
calls removedy, many wmoduies Included In the supervisor for
per formance reasons rather than protectlon reasons now can be
removed. (7)

Actually, removing a module from the supervisor |[S wmore
difficult than the example suggests. In most cases, the common
and private parts of a faclilty are not neatly packaged In
separate procedures but are Intricately Intertwlned In the same
supervisor procedures and data bases. The key problem |Is
decomposing the supervisor |[Into common and private primlitive
functlonse.

Most removal activitles have centered on the flie systen.
In one actlivity, now completed, the functlons of dynaamlc
Intersegment ilnking and dilrectlon ot flie system searches to

(7) There may still exist other performance penaitles assoclated
with removing functlons from the supervisor that wlit Inhibit
productlon of the smallest posslible kernetl. One goal of the
research ls to understand better the performance cost of
securltye.

satisfy symbollc references have been removed from the supervisor
(16417} This removed 38 vulnerable and complex mechanlswe fronm
the supervisor. The vulnerabliity Is a result of the I(lnker
having to accept user-constructed code segments as Input data.
Numerous accldents had shown that such a complex ™argument®™, |[f
mallclously alsstructured, could cause the |lnker to malfunctlon

whlle executing In the supervisor. Removing the Ilnker
ellminated 10X of the gate entry polnts Into the supervisor and
6% of ¢the total object code. The Ilnker®s removal also

demonstrated that I(lnking procedures together across protection
boundaries (rings) could be done wlthout resorting to a mechanlism
common to both domalns.

A second completed actlvity removed from the supervisor the
faclliltles for managing the assoclation between reference names
and the segments In the address space of a process (18). Taking
thlis naming mechanism out of the supervisor requlred that a data
base central to the management of the address spacey the Known
Segment Table, be spllt into a private part that malntalns the
binding between reference names and segment numbers and a common
part that malntalns the blnding between segment numbers and
segaents. Removal reduced tivefold the slze of the protected
code needed to manage the address space of a process. It also
provided a new, Sslimpler Intertace to the flle system portlon of
the supervisor. Instead of ldentlfylng a dlrectory by character
string tree name locatling it In the ftile system hlerarchy, a
segment number now ls usede The algorithms for following a tree
name through the flle system hlerarchy to lecate the named
element are now Implemented by procedures executlng In the user
ringe (The actual flile system hlerarchy remalns protected Inslde
the security kernel.) Becsuse tree names are now resolved one
component at a tlme, the kernel had to learn to (le on occaslon
about the existence of flle system alrectorles. Thls deceptlon
keeps the kernel from divuiging a directory®’s exlstence before an
accessible element |n the sSubtree rooted by the directory ls
tounde.

An actlvlity under Investigation Involves making most of
system |[nltlallzatlion execute onces In a user environment of a
previous system verslon, Instead of executing Inslde the
supervisor each ¢time the system lIs startedes The change ls to
produce a system tape with a bit pattern that, when l|oaded Into
memory, manlfests a fully Initlallzed system. At present the
system bootstraps Itself In a complex way each time [t IS (loaded
from a tape containing the separate plecess The new pattern of
operation removes most Inltlallzation software from the kernel.
The correct Initiallzation of the kernel also should be easler to
verlfy, for wmost of the work of Inltiallzatlon wlll occur when
the ftape 1Is wmadey, In the stable environment of a tully
inltlalized system.

Another activity 1ls exploiting the equlvatlence betwean
enterlng a protected subsystem and crestlng a new oprocess In

response to a user®'s log-In. The goal 1s to make a single
mechanlisa do both taskss, so that the privileged, protected code
used to authentlcate and log-in users can be executed In the user
code protectlon environment. The authentlicatlon algorlithm stllil
must be verlfled not to malfunctlion 1f the user trylng to log-In
behaves unexpectediy. Such verlficatlon should be easy, however,
slnce the user/system Interface severely llmlts user behavior.

The second category of actlvitles 1s restructurlng
mechanlsms that must remaln In the kernel. Such actlvitles can
reduce both the slze and the complexlty of the kernel. In some
cases a plece of the kernel can be elimilnated and 1ts functlon
assumed by another kernel mechanlism. For example, one asctlvlty
ls exploring replacement of all external I/70 mechanlsas (to
termlnals, tape drlves, card readers, card punches, and prilnters)
wlth the ARPA Network attachment. This would ellmlnate many
speclal mechanlisms for managlng I/0 devices and Ileave a8 single
mechanism for managing the network attachment. Internal I/0
functlons (for managing the virtual memory, performing backup,
and loading the system) would stlll be managed In the kernel.

A proposed buffering stratecy for network Input uses the
virtual memory to provide a core resident buffer that appears to
be Infilnite In tength. WNith the present clrcular buffer, which
has to be used over and over, complex mechanlsmas are requlred to
cope wlth messages not removed before a complete clrcult of the
buffer 1ls made. The clrcular buffer scheme ls really provliding a
speclal-purpose storage management faclllity. The proposed
Infinlte buffer uses Instead the standard storage management
faclilty of the system--the virtual memory,

Several restructuring actlvities Involve the Iimplementatlon
and use of processes. One actlvity, now nearlng the end of the
deslgn phase, ls a relmplementation of processes using two layers
of mechanlsm, (8) Thls new deslign simplifies the Interactlion of
the process Ilmplementatlion with the virtual memory management
machanlsmse. It also slimpllifies the base-level Interprocess
communicatlon wmechanlisms of the system. The flrst level of
mechanlsm multiplexes the processors Into a larger flxed number
of virtual processors. Because the number of virtual processes
ls filxed, this layer need not depend on the mechanisms for
managing the virtual memory. Several of the virtual processors
are permanently assligned to lmplement processes for the dedlcated
use of other kerne!l waechanlsasy Including the virtual memory
management mechanlsam. The remalnlng virtual processors are
multiptexed by the second layer of the process Implementation
Iinto any deslired number of full Mul tlcs processes that execute In
the virtual memory. Use of the proposed base-level Interprocess
communication faclllity can be controlled with the standard memory
protectlon mechanlsmse.

(8) Thlis ldea ls belng explored by others as well (3,191].

10

The Implementation (Ilmplled above) of certaln kernel
mechanjisms as asynchronous parallel processes also siaplifies
system structure, which now forces many supervisor mechanisms
Into sequentlial algorithmse. The virtual memory mechanlsas for
moving pages among the three levels of the memory hlerarchy are a
good example. Whenever a mlssing page fault occurs In a process,
the fault handler attempts to Initlate the transfer of the
deslred page from bulk store or disk to primary memory. Thls can
be done only It a free primery memory block [s avallable, If
none [s avallable the fault handler must move a page from prlmary
memory to the bulk store to make room. Thisy, In tuern, |Is
possible only It a free block of bulk store Is avallable. If
not, a3 page must be moved from the bulk store, via oprimary
memory, to a disk. At present, thils serles of steps occurs
sequentially with the algorlithms executling In the process that
took the page fault, and then In various other user processes
that happen to recelive the subsequent I/0 Interrupts. The new
scheme [nvolving multlple dedicated processes ls much simplar.
One process makes sure that some smgll number of free oprimary
memory blocks always exist. Whenever the number of free primary
memory blocks drops below that number, thils process transfers
pages to bulk store. Another process keeps space free on the
bulk store by moving pages to disk when requlired. Signals from
processes that have taken a page fault and not found free prilsary
memory blocks actlivate the process that frees primary memorye.
The process that frees bulk store blocks Is drlven In a simiilar
manner by signals from the process that frees orimary memory
blockse The path taken by a user process on a page fault s
greatly slimpllifled. Thls process can just walt until a priwmary
memory block s free and then Initilate the transfer of the
deslred page Into primary memorye.

Interrupt handling 1[Is another possible applicatlon of
processes In the kernel. €Each Interrupt handler would be
assligned |[ts own process In which to execute, ratrer than belng
forced to Inhablt whatevar user process was running when the
Iinterrupt occurrede As a result, the system Interrupt
Interceptor could turn eackh Interrupt Into a slignal to the
corresponding processe. Belng processesy, the Interrupt handlers
could use the normal system Interprocess communicatlion mechanlisns
to coordlnate thelr actlvities wlth one another and user
processesy, greatly simpllfylng thelr structure. The problem to
solve here ls Iimplementing the Interrupt processes so that system
per formance [s not degradede.

A major activlity ls restructuring the portlon of the (ftlile
system that must remaln In the kernel. Thils software [mplements
the directory hlerarchy and manages the virtual memory at the
fevel ot segments, WHork In this area [Is just beginning, but
three changes with a potentlal, signifilcant cumulative effect are
promising flrst steps. One change Is removing physlcal
attributes of segments from directory entrles. The physlical
attributes will be recorded In data bases assoclated with the

11

var lous secondary storage devices. (Thlis modiflcatlon ls belng
Implemented as part of a file system overhaul done by Honeywell
for other reasons.) The second change Is removing storage quotas
from dlrectory entrles, recording them Instead In a separate
(posslibly hlerarchlcal) data structure. The third Ils ellminating
the dependence of the flle backup mechanism on the date-time
modlfied |[nformatlon recorded In directory entrles and reflected
up the hlerarchy toward the root. Ellmlnating this dependence
wlll allow the date-tlme modliflied ltem +t0 be removed from
directory entries as well. Backup wlill be driven by a queue of
requests from the machlnery that controls deactlvation of
segments from primary memory. As a result of these three
changes, It appears that the management strategy for the Actlive
Segment Table can be modifled to ellminate the need for holdling
actlve the superlor directorles of an actlve segment f11).

The various restructurlng activities eventually will extend
to all parts of the kernel, and to [ts overall structure.

The third category of activitlies ls partitionlng the kernel
Into differently protected pleces to modularlze the Jjob of
matchlng the kernel to the system security speclflcation. (9)
The specific projects In thls category are not as well developed
as the others. There appear to be several different deslgn
princlples with whlich to generate the kernel partitions, and [t
Is not yet clear which proguces the kernel that ls easler to
verify. To lllustrate two posslble approaches to partltlioning a
kernel Into mul tiple domalns, Imaglne ¢that the securlty
speclfication Is expressed as a set of security properties, each
of whilch must be wmet. One deslgn princlple Is to dlvlde the
kernel Into domalns arranged so that each property (s Implled by
a subset of the domalns. Then, to verlfy that the kernel
Implements the securlty speciflcation, an Independent
verlficatlon of each property lIs required, but each [nvoives only
a subset of the domains In the kerneles Another design princilple
Is to lgnore any structure suggested by the securlty propertles
and dlvide the kernel I[nto domalns accordlng to some other
principle of structured programmlng (for example, Parnas® notlon
of Information hlding 1[20}) so that each domaln has & slirmple
Interface behavior speclflcatlon. Verlflcatlon of each of the
securlity oproperties may lnvolve all the kernel domalns, but once
each domaln has been verified to match its Interface
speclfication, ¢then only these specl flcatlons need be consldered
to verlfy each securlty property. Khich of these two apgroaches
Is preferable--or |[ndeed, whether they really are dlfferent
approaches--remalns to be Seen.

(9) Partltioning ls really the same problem as dividing the
kernel |[nto separate procedures and data bases, with the extra
property that the modularity 1Is enforced by the system®s
protection mechanlsas

12

Two speclfic methods for partlitlioning the Multics kernel are
avallable. The filrst Is dividing the part of the kernel that |Is
In the address space of each process Into multiple |ayers In
difterent rlngs of protectlon. The second ls placing some of the
kernel processes In separate address spaces and also uslng the
protection rilngs to layer them. Several suggestlons have been
made for layerilng the part of the kernel that 1Is In each wuser
process. One ls that the bottom layer lmplement a flle system In
which all segments were named by system-generated unique
ldentlflers. The next layer would Ilmpliement a naming hlerarchy
on ¢top of ¢the oprimltive flrst-layer flle systenm. Another
suggestlion Is that mechanlsss to provide the nondlscretlonary
controls on the tfilow ot [Informatlon among processes be
lmplemented at the bottom and mechanlsms to control discretlonary
sharlng within the constralnts of the nondlscretlonary controls
be lmplemented In the next layer. Thls last suggestlon ls
particulariy Intrlgulng, because [f correctly done, the notlon of
alnimlzing common mechanlisms would be well supported. The
second~-layer mechanlsms would be common only within the access
constralnts enforced by the first layer.

Partltlonlng through use of separate address spaces for
kernel processes lIs belng consldered In the case of the processes
that manage the varlous system resourcese The protectlon rings
In these processes then could be used to separate the pollcy and
mechanlsm components of the resource managers. (108) For example,
the process described earller trhat removed pages from primary
memory could be glven ltSs own address space wlith multliple rings.
Programs In the most privileged ring would Implement the
mechanlcs of page removaly, providing gate entry polnts for
requesting the movement of a particular page from primary mesory
to a partlcular free biock on the bulk store, and for obtalning
usage Informatlion about pages In primary memory. The pollicy
algorithm that decldes whlich page to remove when another free
primary wmemory block needs to be generated would execute In a
less privileged ringy callling the gate entry polnts ¢t0 collect
the necessary usage statlistlcs and to do the actual moving, once
a declislion was made. The pollcy algorlthmy, however, could never
read or wrlte the contents of pages, learn the segment to whlch
each page belonged, or cause one page to overwrlte asnother. Such
operatlons would not be avalliable In Its rilng of execution. The
result ls that the pollcy algorithm could never ceuse
unauthorlzed use or modification of the Information stored In the
pages. It could only cause denial of use. Under the
clrcumstance that denlal of use was deemed |ess serlous than the
other securlty violatlions, the pollicy algorlthma need not be as
carefully verlfled as the rest of the kernel. It appears that
the ldea of separating pollicy from wmechanisms applles to all
resource managesent processes.

(10) Separatlon of pollcy from mechanism 1Is a structural
princlple that has been explored by many others [21,22+23).

13

Goncluslian

This paper has presented the plan for a research project to
evolve the Multlics supervisor Into a securlty kernel capable of
supporting the functlonaillty of Mul tlcs completely and
efficlentliy. It has descrlbed a sample of the speclflc
strategles belng employede The broad objectlive 1ls finding ways
to reduce the slze and comsplexlty of the software that must be
correct for &8 shared general-purpose system ¢t0 be securee.
Reduced slze and complexlty of securlty-relevant software 1s a
prerequlslte to performing a convincing loglcal verlflcatlion that
a system correctly lmplements the clalmed access constralnts, no
matter what verlflcatlon technlques are used. Hithout such
verlflcatlon of correctness, a8 system cannot be consldered
securee.

At the tlme thlils paper 1S being written, the project has run
for about half of lts Intended four year span, and most of ¢the
Inltlal tasks are nearling completlon. So far, the expected
reductlons In slze and simpllificatlons of structure of the
securlty-relevant software seem to be occurling, It Is too soon
to telly however, whether the securlty kernel for Multlics that

wlill result will be sufflclentiy small and slmple to be
understood In detall by one persone.
Ackpouiedgements

In describing a group oproject of the Computer SysStess
Research Olvislon of Project MAC at M.I.T., thls paper dlscusses
the work of several faculty members, c¢raduate students, and staff
members In the Olvision. Rather than (lst all here, they will
recelve credit for thelr contributions as speclflc activlities are
completed and reported separately. Preparation of thls paper was
alded by written commentaries on varlous drafts provided by E.
Cohen, Fo Corbatb. Re FBbrY' D Hunt, Pe Janson. D. Reed’ Je
Saltzer, and R. Schell, and by comments from D. Clark, A. JOnes,
and D. Redell,

14

References

(1)

(2]

(3)

(4)

(5]

(6l

{71

(s)

(9]

£10)

(11)

(121

(13)

(14)

Je He Saltzer and M. De Schroeder, "The Protection of
Intormatlon in Computer Systems,”™ Proc. IEEE £3, 9 (Sept.
1975), pp. 1278-1308.

Je He Saltzer, *0Ongolng Research and Development on
Information Protection,” ACM Qperating Sys. Reylew 8, 3
(JU'Y 1974), DPpe 8-24.

L. Roblnson, gt ales "0On Attalinling Reliable Software for a

Secure Operating System,™ Int. Conf. on Rellable Softwarse.,
ADP. 1975' PDe 267-284,

Ge Jo Popek and Ce. Se. Killney, *“A Verlflable Protection

System,” Int. GCont. an Reilable Softwace, Apr. 1975, pp.
29“'30“0

We Le Schlller, *“Design of a Securlty Kernel for the
POP=-11/45," The MITRE Corp. Tech. Rep. ESD=TR-73-294, ODec.
1973.

Je Caristedt, R. L. Blsbey II, and Ge Jo Popek,
“Pattern-0Olrected Protectlon Evaluatlion,” U. of So. Calife.
Inf. Scle. Instlitute Tech. Rep. ISI/RR-75-31, June 1975,

P. A. Karger and R. R. Schelly *"Multics Securlty Evaluationt
Vulnerablllity Analysls,” Alr Force Elec. Sys. 0Olv. Tech.
Rep. ESD-TR=-74-193, Vol. II, June 1974,

Fe Je Corbatd, Je He Sal tzer, and Ce T. Clingen, "Multlcs -
the First Seven VYears,™ AFIPS Cont. Proc. 44 (SJCC 1972),
PDe 571-583,

D. E. Bell and L. Jo LaPadula, ™Secure Computer Systens,
The MITRE Corpe. Tech. Rep. ESD-TR=-73-278, Nov. 1973.

Je He Saltzer, "Protection and the Control of Informatlon
Sharing In Mul tics,™ CACM 1Z, 7 (July 1974), pp. 388-402.

A. Bensoussany, Ce. To. Clingeny, and R. C. Daley, "The Multics
Virtual Memoryt Concepts and Design,” CACHM 415, 5 (May
1972), ppe. 308-318.

M. DO, Schroeder and J. H. Saltzer, “A Hardware Architecture
for Implementling Protectlon Rings,™ CACM 15, 3 (Mar. 1972),
ppe 157-170.

Honeywell Information Systems Inc., "Deslgn for Multlics
Securlty Enhancements,™ Alr Force Elec. Syse. Div. Tech. Rep.
ESD=-TR=74-176, 1974,

Fe Jo Corbatd, “PL/I as a Tool for System Prograaming,*
Datamatlon 1%+ 6 (May 1969), pp. 68-76.

15

(15)

{161

(17)

(18]

(19]

(201

(211

(221

(23]

Bs M. Lampson, “A Note on the Conflnement Problem,” CACM 16,
10 (Oct. 1973), PPe 613-615.

Pe A. Janson, “Removing the Oynaamic Linker from the Securlty
Kernal of a Computer Utllilty,™ S.M. Thesls, Oept. of Elec.
Enge and Compe SCley MeleTey June 1974, (Also avallable as
Project MAC Teche Rep. MAC-TR-132, June 1974,)

Pe Ao Janson, “Dynamic Linking and Environment
Inltlaylzation In a Multl-Oomaln Computation,™ ACM S5th Svyap.
on Operating Sys. Pripnclpless Austin, Texas, Nov. 1975.

Re Go Bratt, “"Minimlzlng ¢the Naming Facliltles Requlrling
Protectlon In a Computer Utllilty,™ S.M. Theslis, Dept. of
Elece. Eng. and Conmpe. Scles MeloeTes JU'Y' 1975. (Also
avallable as Project MAC Tech. Rep. MAC-TR-156, Sept. 1975.)

A R. Saxena and T. He Bredty, ™A Structured Speclficatlon of

a Hlerarchlcal Operatlng Systea,” Int. Cont. gn Rellabls
Sgftwares Apre. 1975, ppe. 310-318.

D Lo Parnas, "On the Crlterla to be Used 1In Decomposing
Systeas Into Modules,™ CACHK 1%, 12 (Dece. 1972)s DPo
1053-1058.,

Me Jo Splers, Te. N. Hastlngs, and 0D. N. Cutier, "An
Experlimental Inplementation of the Kernel/Domaln
Archltecture,™ AGHM QOperatlpg Sys. Raviewn Zs &4 (Oct. 1973),
PDe 8'210

G. R. Andrews, "COPS - A Protectlon Mechanlsm for Computer
Systems,” Computer Scl. Teachlng Lab., Unlv, of Wash., Tech.
Repe 74-07-12, July 1974,

He MUiIf, gt Bleysy “HYDRAS The Kernel of a Multlprocessor
Operating Systems™ CACHM 17+ 6 (June 1974), ppe. 337-345.

16

