U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-AC24 591

ADDITIONAL ENERGY SOLUTIONS FOR PREDICTING
STRUCTURAL DEFORMATIGONS

SauTHWEST RESEARCH INSTITUTE

PREPARED FOR

EDGEWOOD ARSENAL

NoveMer 1875

N




o . Ty

I

i

AbAOR4091

EDGCGEWOOUD ARSENMAL CONTRACTOR REPORT
EM-CR-76031
Report No. 1

ADDITIONAL ENERGY SOLUTIONS FOR
PREDICTING STRUCTURAL DEFORMATIONS

by
P.S. Westine
P. A.Cox B
n D C
TN TR
| r EN
Novemoer 175 e R L ‘.““
: v
sl
T |18}

SOUTHWEST RESEARCH INSTITUTE
Post Offica Drawer 28510, 8500 Culebro Roaod
San Antonic, Texas 765284

Contract No. DAAALS-75-C-0083

DEPARTMENT OF THE ARMY
Hacdouarters, Edgewood Aisenal
Aberdeen Proving Ground, Maryland 21010

Approved for public release; disiribution unlimited

KEFPROOUCED BY

' NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT UF COMMERCE
STRINGFILLD. YA 22:61




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ( When Data Entered;

READ INSTRUCTIONS
REPORT DOCUMENTATIN PAGE BEFORE COMPLETING FORM

1 REPORT NUMEBZR 2 GOVT ACCESSIONNOJ| 3 RECIPIENT'S CATALOG NUMBER
EM-CR-76031

4 TIVLE (and Subntte) S TYPE OF REPORT & PERIQD COVERED
ADDITIONAL ENERGY SOLUTIONS FOR PREDICTING ;:;:"‘l'f;; 4"}‘!’0‘0 ; u]‘j 1975
STRUCTURAL DEFORMATIONS & PERFORMING ORG WErOATNUWBER

Report No. 4

7. AUTHOR/sj 8. CONTRACT OR GRANT NUMBER 3/
P. S Westine
P. A. Cox DAAA15.75LC-0083

9. PERFORMING ORGANIZATION NAME AND ADDRESSES 10. PROGRAM ELEMENT PROJECT. TASK
Southwest Rescach Institute 4PEA & WORK UNIT NUMBERS
P. O. Drawer 28510
San Antonio, Texas 78284 PA A 5751264

11. CONTRCLLING OFFICE NAME AND ADDRESS 12. REPORTY DATE
Conmmander, Edgewood Arsenal Novemnber 1975
Attn: SAREA-TS-R 13 NUMBER OF PAGES
Aberdecn Proving Ground, Maryland 21010 3
14. MON'TORING AGENCY NAME & ADDRESS 1S. SECURITY CLASS (.f this report)
1) different fram Conteatiing Office!

Commander, Edgewood Arsenal UNCU ASSIFIED
Attn: SAREA-MT-H 152 CECLASSIFICATION D 5
Aberdecn Preving Ground, MD 21010 : SCHELDULIL l AN; OWNGRADING
(CPO M1, Bruce Jezek. 671-2661) o

16 OISTRIBUTION STATEMENT jouf this Repurt)

Arproved for public release: distribution unlimuted.

17 DISTRIBUTION STATEMENT (of the abstract entered m Block 20, f different from Report;

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue un reverse nde if necessary andidenn’y by block numbder)

Energy solutions Beams
Impulsive response Plates
Quasi-static response Shells

Plastic deformation

20 ABSTRACT /Cuntinue on reverse nde 1f necessary and wdentify by biock number)

Revised and newly developed formulas for prediction of plastic deformations of structurai esements
in suppressive structures are presented in this report  These equations give imnroved agreement wiih
literature, data and solutions for more structural elements than previous reports.

2 EDITION OF 1 NOV 36 IS OBSOLE TE
DD FORM 1473
1JAN 73

UNCLASSIFIED

‘ . SECURITY CLASSIFICATION OF THIS PAGE (When Daita Frrercd:

Nl * e 5

N

o bl

[T ] T

I~ -

i




SUMMARY

Revised and newiy developed formulas for prediction of plastic deformations o strug-
tural clements in suppressive structures are presented in this report. These formulas supple-
ment previonusly reported design equations. Revised equations give improved agreement with
hiterature data, witile equations for additional structural elements allow prediction for o
wider spectrum of struciural compoenents. Some comparisons are made of predictions from
these design formulas with results of computer code calculations.

PREFACE

The investigation descrnibed in this report was authontzed under PAC A 4932, Project
S751204. The work was performed at Southwest Rescarch Institute under Contract
DAAAIS-7SC-0I83.

The use of trade names in this report u.es not constitute an othicial endorsement or
approval ot the use of such commercial hardware or software. This report may not be cited

tor the purposes of advertisement.

The infonnation in this document has been cleared tor relegse 12 the geaneral pubhe.
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ADDITIONAL ENERGY SOLUTIONS FOR PREDICTING
STRUCTURAL DEFORMATIONS

i. INTRODUCTION

]

A number or structural gesge oLl SaL DL :

chasndevelgped i the sopnreacoes oty e
tures program to predict the plastic detormations of vatious structural ciements to blast
loads. These equations are based on the principles ol bt design whinch allow vange plastic
deformation short of collapse or tailure, and on energy balunce prmaples. Reterences 1 and
2 report our imtial ettorts i devetopment of such structural response cquations, and inclide
design toreulas tor predicting permanent detommations ol simple ngrd -plastic sy stems,
beams with vaiious boundan cond:tions, circular plates, rectangular plates, spherical shells,
and oylindrical shells, Bn the carlier work, we reported only cquations tor either asymptote
of blast loading. 1 ¢ . the mmpubsiv e loading regine or the quasistatic loading regime.

This report extends and supplemeits the work of Reterences Tand 20 1t includes revised
analyaes o plate response which achieve better ggreement with experunental data from the
literature. and new andlyses tor ather structura clements which have been encovnteredan
the design of suppressne structures . Some ot the fermulas apply tor the amultaneous
apphcation of the two asymptotic loading conditions

This work was pertformed tor Fdgewood Arsenal under Contract DDAAA N1 5L -UUNR as
pari of the suppressive structures program

ll. ANALYSIS
A.  Genreral

Most of the analyvses which we have conducted in the suppressive structures program are
based on energy solutions to estimate the ultimate loadcarrying ability of structural com-
ponents. The technigue used to create these analyses was developed in References 1 and 2.
A critical tinst step in this approach is 1o assume a final deformed shape of a structural element
50 the strain energy can be computed. In the impudsive loading realm, one then computes
the Kinetic encigy imparted to the structure and equates this to the strain energy. In the
quasi-static loading realm, one compuies tie work perfonmed by the peak force deflecting
the structure and equates this to the strain energy. References 1 and 2 used elementary
rheulogical models, and data for beams and plates to illusarate the procedures. This report s
a stipptomont on the ivsponse of plates and other structural elements. Farher analyses for
beams are still valid: however. plate solutions should be replaced with the rollowing dis-
crecion as additional data have led to moditicaticns that give mote acvurate numerncal
resul';
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B. Ciamped Circular Plates

The tist plate solution will be for clamped arcualar plates subjected 1o either undorm
impulse or umtoria pressates. This solution adds additional terms to the strain ¢ncrgy
capiassionsan Reteren-es Fand 2, as both bending and extensional actuon are present. An
agyropriate assuimed detormed shape tor a damped detarmed asoalar g late s

W= n, (I ,:) (”

The deformed shape s desenbed by a polar coordinate system with its origin at the center of
the plate. Because of symme.ey . the detormed shape woindependent ot the angle ¢ and no
shears exist. Fyuation (1) i an equation for a cone 1 an aceeptabie deformed shape, as
at r = Q. the mavimum detormation s fintte O = w, b ana 2t 7 = K,ow = 0. The slope s not
reroatr = Roas a plastically detorming plate s bent over the edge ot the clamp along an
abrupt yield hne that has an angle change ot @ =0 (dvodr)y - 4 ord = (w, R).

Because no change in length occurs circumferentrlls at the boundary | there s no cir-
cumlerentigl extensional strain: howeser, arcumterential bending stram does occur. The
crrcumlerential plastic stram energy per vt difterential length dr equals the plastic vaeld
monent tunes the circumivrence tunes the circumferenual cunature of (0, #° -4) times
(2 aryumes [ C-indw dryi. Radially, the deformung plate stores energy in membrane action.
Tios tadiad sisnn encigy pos unil dificiengl jenpilc dr equais ihe vicid sttess tunes il
thichness times the circumference of a ring at location 7. times the extensional strain. Using
the well-hnown approximate extensional strain relationship 172 (dwidr)? tor the average
change in radial stram means that the radial extensionas! strain energy stored an the plate per
unit differential length dr s given by o, ) times (2 imes (1720 (dw:dry* . The third and
final amount of strain encrgy stored in g clamped plate is that asociated with plastically
bending the plate over the edge of the clamp. Bending strain energy along this vield line s
caivtisted by ntwiipiving the vield moment per unit width times the circumference of the

plate times the change in angle at the edge of the plate o1 (o, #°:4) times (22K ) umes v, R).

The total stramn energy (s the sum of these contributions or

ts (o;h:) -mR) ( ‘) -f( ) (07 /i) ( rl:;':)d’ +_’ ty, H-lrh)( )(d“) dr

— T, N I RN, Nl ’\
bending over circumferential bending radial extension
nm ()

Ghiicrentiating Eq. (1) subsututingat into kg (2), and gathenng, wnns tnen yields.

1 L e
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. " s
U=rmohiw, + 0, hw; 4)

The hinete energy AE for a umfonnhy applicd impulsive load imparted to a plate 1s ob-
tained by summung the inpulse squared dnaded by two tumes the incremental muass over the
sartace ot the entirs plate. This procedure leads to the tollowing integration., -

Lol b

.
L

R 2 2 N

i (2rr) (dn)
KE=f s )
o WPh (2rryddn)

Or. 3
3

g E

k- 3

AL = —— () :

Mph ' é

E

E

bguatng L (Fq (4] to AE [Eq. (6)] viclds the asvmptote tor the unpulsive loading E
realin. é
§

LR ? W, W,y 2 ] =

. [\/__';’“] 2 ( 5 ) + ( I;')_) {clrcular plate, impulsnce rcalm} N 5

A companson between Eq. (7) for a uniform impulse imparted 1o a clamped circular plate
and experimental tost data can be made using results by Florence.? Residual permanent mid-
span detormations were measured on clamped circular 6061-T6 aluminuin plates and 1018-
cold rolled steel plates that had been load~d unitormly with vanous thicknasses of sheet
explosive. The 22 duminum data points. 20 steel data puints, and Fq. (7) are all shownan
Figure | There 1s a reasonable agreement between Fq. (7) and the test results. i there
exosts a systematic error. i s a tendency for the analytical cune to shghtly underestimate
defernauvons whenever w, 7 is large. This error is probably caused by the assumed deformed
shape not vielding the mummum stran energ) . For small values 040w, 710 the analy tical cunve
overestimates detormations. This error s probably created because we assume that defor-
mations extend over the entire span of the plate. When loads and deformations are smali

the deformed shape undoubtedly cuvers only & porion of the entire plate.

A solution for a clamped circuiar plate in the Quasi-static Lo ding realm is obtained by
computing the work and equating 1t to the stramn energy. The work WA s given by the
integral of the maximum pressure tumes a difterential area tmes the detlection of the

difterential area, and s expressed by Lq. ()

R
Wa= § Pwlardr (8)

[~d
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C. GCiamped Rectangular Plates

The most general plete soletion is toi the plastic response of rectangular ) Ltes to ether
amtormiy apohicd inpabos o prosares. Thissolution imaoduces new complications Booannse
at extensional aed bendimg shieass Fora clamped rectaneeia plate, Bendmg wel occut slony
vichd haos at the oundanies, and the plate will detorm o membrane action, AL approprate
doetor ned shape s assumed 1o be ginven by

LY i
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>\ )
whete
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ceter of the plate
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the negatnne oi the angle change when the plate s bient over the aamp. The strgin energy
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per unit volume in a structural clement under a biaxial state of stress is:

8
ST f [O.r\df.\,\ + :Ux_rd(n 1 u,, dcl,\] 1)
Vol. strains
Because we have yietding. we will assume 0, =0, and 5, . = 0, . bu: for the shearing stress

we will use @ Huber-Mises-Hencky distortion energy yicld cniteria of 0, = (0, A/3). At first
glance. one would say that Mohr’s cirele for stress is a point it g,, = ¢,, ; hence. no shears
can occur. Such an observation is correct for any instgnt in time, but normal stress dis-
turbances propagate faster than shearing disturbances. We are wnting an energy expression
for final state und do not care about the tining of events. It is sulticient for our purposes
to know that plate distortions trom normal stresses and from sheanng stiesses can oveur at
difterent times; thus, permitting the use of distortion energy prnnciples to determiie yield
stresses. The normal extensional strains in g rectangular plate are similar to those in a circular
plate with €,y = €1 200w dv) and €, = (120w 83)*. The extensional sheanng strain
€,, = (0w ox)ow/dy)as a it approximation. These obsenvations mean that the exten-
stonal strain energy g s given by

Ditferentiating the detormed shape [Eq. (13)], substituting 1t mto kq. (15), and performing
the required triple integration yvields:

L il hw; ).+'\' A hwe, 1
e T U hiwg . - 0y WS (10}
8 1 X ) \,/} 1 [&

Normal stresses associated with bending of the vield line along the clamp cause additional
strain cnergy Uy, 10 be stored. This energy. analogous to similor terms tor the circular plate,
Is given by

, v ow Y ow
Upn= =4 [ M, (a\-'). di 4 oM, (5) L (17)

“ =X I

Substituting (g, /17 )4 for M, . ditferentiating the deformed shape so it can be evaluated at
the boundary and further substituting then yields:




T o, Y\ /M, ) my dr +4 Iz) ™ LAY 4 (18)
hn = (—E—)< fLOS_‘—)— v ( 3 (-))fLOS "‘ X

Or:

: | y x]
: - L"hn g, « “n . T (19) -
- A

IRk (LY

Finaliy. there exists a shearing strain cnergy associated with bending Up, in the localized
zonce around the vield lines. 1f the smali deformation equation for shear strain, €,, =
Z(O0Tw/axdn ), is used, the energy Uy per unit volume is given by

(.hs g, 0w
. =:(---) (::-—;) (20)
Vol VI avar .

at the boundarics

If we assume that the localized shear zone is four plate thickniesses wide, Eq. (20) becomes

4 1 ! /9% w
Cos = g0 1 1 20z £ v o) (o )
L ¥

: A N v Ay

é z

4 4 nil - A 3w H

¥ oy 0 @) [ 2d: f dv e - 2n f

3 A\ o S \d\ =) i

3 ’ |

Or. after differentiating Eq. (13) to substitute for 3°w/dv31 at the boundary: ;;

2 ) R & 0. /wg hiz oy T A ‘l ;
Ups = T ‘) —1f ,," [_ sin —)] d:- drv -L“( “f [ sm: d-dy (22 ]

: A

Performing the required doubie integration then vields:

, lom N Lo h )
L,,,=\;/_§ o, 1" w, I’+;; (23)

The total strain energy U stored in a rectangular plate is the sum of U, plus Uy, plus U, or:

(,_ﬂ’o I )'+.\' + 4 il 4o B Y+X. +]hn 2 |71 +h o4
=g O, 1T T T T O IV LA LY " = Y Y -
g My Ty T e Ty Ty TR e e Iy Ty e

The Kinetic energy KE amiparted to a plate is not dependent upon the deformed shape.
For a unitormly applied impulsive load imparted to a rectangular plate, the Kinetic energy




is obtained by summing up the impulse squared divided by two tinies the incremental mass
over the surtace ot the plate. The appropriate integration is given by:

XY i dv)? ()
E=4 - = {25)
A ‘:f 2 ph(dv) (dyv)
or
pp==trAl (26)
ph

Equating G {Eq. (24)] to AL [Eq. (20}] yields the asymptote for the impulsive loading
realm.

o O EC R b 26 (Y]
4 \7:,{ (';—I’) (f) (27)

Tius 1s the general solution for an inpuizively loaded plate. 1t can be coniparcd o test
data reported by Jones, et al.> Rectangular plates with an aspect ratio ¥/X equal to 1.695
were loaded with sheet explosive in these tests. Both hot-rolled mild steel plates and 6061-To
aluminum plates were (ested and can be seen plotted in Figure 4. Although various thick-
nesses of plate were used, we will use an average value for (X/4),y, = 10.2 in the second term
of Eq. (27). Using an average value for X/l creates very little error, as the (w, //1}* membrane
term predominates. Substituting for /X in Eq. (27) yields Eq. (28), which is compared to
the test data in Figure 4.

’I: )’: < —'( “‘l)) + 4 zg(“‘U): (18)
- =), \] — A0 — -
po, ne ! (I: h

Agreement is excellent when data are compared to Eg. (28) as in Figure 4. The little error
which does oc ur tor small values of w, //1 is probably caused by the deformed shape
ovcupying only a portion of the full span when deformations are small.

A quasi-static loading realm solution for rectangular plates is developed if the work is
cquated to strain energy. The work WK is given by Eq. (29) in a manner analogous to that
for a circular plate.

X
Wk= [ f 4Pwdvdy (29)

o [}
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T, A P

Substituting the assumed deformed shape as given by Eq. (13) and performing the required
double integration then yields:

16
W= Pw, XY (30)

Equating U [Eq. (24)] to WA [Eq. (30)] yields the asymptote for the quasi-static
loading realm.

i G AR B R o2 R )

We can evaluate the validity of Eg. (31) by comparing it to test data taken by Hooke
and Rawlings.® In these experinients, clamped rectangular, mild-steel plates of various
thicknesses and aspect (Y/X) ritios were subjected to step pneumatic pressures of very long
duration. Because the pressures are pneumatically applicd, no avershoot is present as in the
quasi-statically, shock-loaded, circular ptates. Figurcs S and 6 present some of these data in
plots of scaled applied load IPXZ/(O'\./IZ )1 as a function of scaled permanent mid-span
deflection (w, /it), for squarc plates and for rectangular plates with an (X/Y) of 1/2. An
average value for scaled plate thickness (X/h) of 53.5 was used to determine the analytical
lines in Figures 5 and 6. Because (X//1) varied over a limited range, and because its influence
1s only moderately important, a single value suffices when Eq. (31) is applied. Substituting
for (X/Y)and (X/h)in Eq. (31) yields Eq. {32) for the square plate

Px? TOR
P =195+ 296 (T) square plate test by Hooke (32)
v h !

and Eq. (33) for tests on a rectangular plate with X'/Yequal to 1/2.

PX? W
[a ) 2] = 1.038 + 1.664 (I—O> rectangular plate tests by Hooke (33)
v 1

Agreement is excellent in Figures S and 6. Because test results are now consistent with
the theoretical approach in both the impulsive anu quasi-static loading realms, the physical
viewpoints being reflected in this analysis anpear tn be substantiated, and we now feel we
know how to handle structural members which are under a biaxial state of stress as well as a
uniaxial one.

18
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D. Rings Constraining §-beams

Lo the final design coneept for the Category | structure, the basic structure consists ot a
series of mterlocking vertical I-beams. supported by several angs or hoaps. Because of thiy
symmetry of the structure and the applicd loading. ring respouase 1s represented by a unitorm
tadial expansion. 11 the energy absorbed in deformation of the 1-beams s neglected. then the
ring response can be conveniently determined by an energy balance. 1o do this the Kinetic
caergy imparted to the I-beams and nings by the initial blast wave, plus the work done by the
Qusisstatic pressure as the evlinder expands. are cquated to the strain energy in the nings.
Figure 7 shows the geometry of the cylinder wall.

For uniform radial expansion the maximum possible kinetic energy imparted to the beams

and ring is

1 i 2 ., 2
. e m (1, L ®Rpi 17 L
Kt = | ’ml d« f < ({_y_f‘) R;Q,d():—ﬁ'—’—-—s- (15)
e T o - m m
where i = mass per unit circumference
R Lgm
R; CShgy
Ly - length ot the beams supported by one ring
mpg - mass per unit length of the beams

CSBg, circumfcrential spacing of the beams as measured at Ry
A J

Rgr radius to the ring ¢

Ag - ring cross-scctional arca

p -- density of the ring material
1 — reflected specific impulse

The maximum possible work done by the quasi-static pressure during the ring expansion
is given by:

T AR AR
WA = (PLB AR dC = r Pl_ﬁ(-—- Ry Rd0=-nRR RI-B — P (30)
: o Rk Ry

«

where
R - mean radius of the intetlocking 1-beams
P - peuak quasi-static pressufre

AR - radial expansion of the ring
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FIGURE 7. GFOMETRY OF BEAMS AND RINGS IN THE CYLINDER WALL




THIS CXPIESSION assumes a constant quasi-static pressure ~La vrus o 2nsepvative tor nings with
tong response lmes. The degree ol consenvatisim can be estimated trom the response caloue
tations reported in Reference 7. The caleulated response tme tor a ning in the Category |
prototype (with a crossssectional area of 140 in® ¥ as found from Reterence 7 to be about 49
ms. Figure 8 shows the telationshup between the response time of the ning and the decay ol
the quast-static pressure. An estungate of the error s made by companing the actual arca
under the pressure-tinie cune tampulse nrodaced by the quasistalic prossure b to the areda tog
comstant /2 The ditterence m arcas, shown shaded, approximates the creror. It

|
P(“‘O) '.“P+I‘4n )y (40)
Lrror = + — - - m e X U= 4970
NUEN R

PQS / 40

o o= - e > -

0 40 ms 225 ms

FIGLURL 8. SCHEMATIC OF FRROUR INCURRED BY ASSUMPION
OF CONSTANT QUASESTATIC PRESSURL P

For rigid-plastic behavior, the strain ¢, will equal AR 'Ry and the strain energy i the
ring undergoing radial expansion is given by:

2x

) oK
U=Axg [ o0, € Rg d0=20 Ry Ax 0, ( - ) (37
0 ' "~ \Rg

where o, = yield stress of the ring matenal

Now. by cquating

AL F WA =U

wa ‘”‘"“V’“ wwnw‘uw\rn mtr -




the following relationship is obtained

ik =~(.‘§_R) (38)
mdgo, —KRlgh) " \Rg, )

Vo estmate the degree ol conservation in Eq. (38) caused by neglecting the encrgy
absorbed by plastic defermation of the I-beams, we again used the response calculations for
the beams and nings deseribed in Reference 7. Based on the calculated deformations fer the
beamis and nng in the Category 1 prototype shicld, the cnergy absorbed by each was com-
puted tor companson. For the W8 X 67 beams supported by nngs of cross-section 140 in°,
the plastic deflection of the inner beams between the center and lower nngs was found to

be about 1.0 inches which gives
W,/ =106/120=0.0133

An ostimate of the strain energy absorbed by the beams with this center deflection ts found
from cquation (C.21) of Reterence |

o oM W
' L

N )

where

M, - plastic moment of the bearn = 2.613 X 10* in-b
N - number of beams in the inner layer = 157

Therefore the energy absorbed by the inner beams was
=16 (2613 X 10% indb) (0.0133){157)=87.3 X 10® in-lb

If we conservatively assuine that the outer layer of beans absorbs equal strain energy the total
energy absorbed by the beams is

U=2873 X 10° indb) = 1746 X 10" in b

The energy abserbed by the nngs is estimated from the tota! radial deflection of the center
ring from Reference 7 and Equation (37). Fromn the table AR = 18.2.n. 50 that

LR 182

Rg 2835

=10.0042
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with

Ax 10an?
U, 40,000 ps

(=20 Ry 1 (@)=«4u=x|n" A4t
xRy g o, EIUR Coan
Ry

Thoretore the fraction ol the total encrgy absorbed by the beams i

1746 X 100

Y R AAEAS AN S

el + 1730 -
Alihough this number s ligh, because the assumption was made that the outer Liyer of beam
absorbs the sane ameant ot energy as the maer beams ot stdbadicates thao 1 ¢as g pond
deal of consenatioe m g €38). bven so, the equation can be wsed to obtar L aick, con
wnatinve esttmates of the fing requiremoents.

E. Hemuspheres (Domes)

Eoumitorm toadimg o assumed on the mner surtace of the sphere, and il the radial de-
flection at the base s assumed to be equal to that in the remaimder of the henusphere, then g
UREIOEM Fadal CXPANSION CNICHY reprosents the dome response Vhisos shownan gare 9
In actaal structures the nemaisphere usually will be secured at s base 1o a evhndrcal section
whose tadial cxpansion may not mateh exactly that of the hemisphiere. In other cases the

| 1

VERTICAL REACTION(TYP.))
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dome may even be secared Urigidly” o @ seintoreed concrete toundation. The sfect of thy
restramt on the (otal energy absorbed by the demie should be aceentably staall tor the Urgnd™
Cane and neghgible for the other. Thie assumption of unitorm load.ng s also avceptad’, because
the quassstatic pressure is uniform «nd the initial blast wave s approxunately umforim
depending on the charge Lo tion relative to the center of the hemisphere as well as the change
geomeinry. We have also observed that in the Category | design,” the guasisstatic pres.are
makes the greatest contribution to the dome thickness requirements

As i the case of tings, the maximum dome deformation is obtained by ¢ yuating the
Kinetic energy imparted to the dome by the initial blast wave, plus the wurk done by the
quasistatic pressure during hemispherical dome expansion, to the strain energy absorbed by
the dome. Kinchic encegy s given Ly '

1 . . 7R}
AL= N> mbidas ) 7 df=—" (40)
- A R m
where
m o mass per umt area of the dome
R dome radiis
i, speafic reflected unpulse
The work done by the quasisstatic pressure dunng expansiton ol the domie is
. %
WA = _fPARd.-I’-‘ZRR"P(;{-) 1)

A

Pas the peak quasisstatic pressure and its decay over the response tir - of the dome has been
ignored.

Elastic stran energy per umt volume of the dome matenial is given by the well-known
formuly

(ug€y Y €,¢, + 20,6, )dvdrd: 42

For nd. pertectly-plastic behavior, shear stresses vanish and the stress 1s constant so that
the strain energy doubles. Equation (22) can then be wnitten

1= (o, €, +0, ¢,)hd1 (4.3
A
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where /1 = thickness of the material. Because the stresses and strains are uniform throughout
the hemisphere for the assumpiion we have made, the cquation further reduces to

U=h §20edA=4nRhoe I P
A

Since the s: ain can be expressed as - s

N T

€=

AR
R

the strain energy finally becomes

AR
U=4nR o, 3 (45)

ror a dome thickness 7 and yield stress ¢,
Now, equating.
- KE+Wk=1U

The tollowing relationship 15 obtained

.___.i____ =2 (ﬁ‘ﬁ) (40)
_ ph(2ho, —PR) R

where pf . as replaced m in the kinetic energy term.

For somc applications to suppressive shiclds, two cu »co. *ric Jomes are used with a
filler in between. The purpose of this arrangemient is to defea. *© rzagments with the inner
dome and filler, allowing the undamaged outer done to resist the internal loads. This dome
arrangement is given in Figure 10. Response of this dome arrangement differs from that of
the single dome in the foliowing ways.

t1) The response is altered because ot the added mass

(2) The inner dome stretches along with the outer dome

(3) The radial load is reduced because of the reduction in the loaded radius,
but the total vertical foad is unchanged because of the pressure acting
on the ring which closes thc bottoya of the space between the domes.

Although the inner dome expands along with the outer dome and thus absorbs energy also.
- it 1s also possible that catastrophic rupture will initiate at fragment damage locations during
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FIGURE 10. GEOMETRY OF THE DOUBLE-DOME SEPARATED BY FILLER MATERIAL ‘

its cxpansior. Thus, the contribution of the inner dome to the strain encrgy is ignored. Also.
the reduction in the toaded radius 1s ignored bhecause the vertical oading is unchanged. Thus.
a conservative estimate ! the response is obtained by modifying only the mass in the kinetic

energy term given by Eq. (40). Instead of 11 = ph for a single dome we h .ve

ot

m=ph +m,

where m, = added mass produced by the inner dome and tiller matenal divided by the arca of
the cuter dome.

Equation (46) becomes simply

i} , (AR
= - (“ 47)
(phr + mgy 2 ho, —PR R

for the double-dume arrangement. To date no compariions with experintent have been made
for cither Eq. (40) or (47).
1. RESULTS

The results of the cnergy balance analyses presented here update and extend those given
in References 1 and 2. Because these formulas now are rather numerous, we have summarized




g gy

them in a2n extensive table (Table 1), giving a description of the structural element. the assumned
detormed shape. and the solution for combined impulsive and quasi-static blast loads. These
formulas reduce to the quasi-static and impulsive loading asvmptotes fori, =0 and p =0,

7 :lcspcclively. Symbols in Table 1 are defined in Table 2. No dimensions are given because
the equations are in essentially dimensionless form. and correct for any self-consistent set

of units.

e
.

1V. DISCUSSION

WA i g

[—

The energy solutions presented in this report should give designers additional tools for
rapid estimation of plastic deformations in suppressive structures or elements of these structures,
for the initial blast loading. for the longer duration quasi-static pressures and for botii of these
loads applied simultaneously. The revised equations for plate deformations consider strain
energy terms not inciuded in previous analyses, and also utilize detormed shapes which are
closer to experimentally observed final deformations.

This report describes the current status of the work on a portion of the suppressive
structures program. The energy solutions given here will undoubtediv be supplemented by
other solutions or modified as more data on dynamic plastic responses in this program:
notably BRL. NSW(C White Oak, and Corps of Engineers at Huntsvilie, Alabama. Results on
response prediction methods from these studies and other work in the literature should be

. compared as the program progresses. The energy methods are powerful and potentially

: qu. e meful e mnse they vield relatively simple design formulas. They do. however, involve

. : a number of simplifving assumptions and should not be expected to yield the accuracy in

! P response prediciion possible with a number of available dynamic response computer codes,
nor can they predict time histories of deflections or strains. One should probably rely on
the energy solutions for initial analysis and design, and to compare feasibility of different

) concepts. Then. designs can be refined by specific calculations using more complex and

more nearly exact dynamic response computer programs. This was the procedure followed
in the design of the Category | structure reported in Reference 7.
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Symbol

AR

CSBp
h

i

Lg

mg

Oy

TABLE 2. DEFINITION OF SYMBOLS USED IN TABLE |
Definition

beam cross-sectional area
ring crass-sectional area
luaded width of beam
circumferential beam spacing in the 1-beam cylinder measured at Rg
thickness of plate or dome
specific reflected impulse from initial blast wave, plus reflections if applicable
length of beam for which the deformation is being determined
length of beam which is restrained by a single ring .n the l-bean. cylinder
mass per unit area of the inner dome and filler materiai for the double-dome roof
mass per unit length for the beams in the I-beam cylinder
beam plastic moment
factor in the beam equation; N = | for simple support, N = 2 for clamped support
quasi-static pressure
axial yield force of the beam
radius to arbitrary point on a circular plate
mean radius of the hemisphere (dome)
meean radius of the ning ine the i-beam cylinder
radial expansioa of the ring or domc
lateral d- tlect.on of a beam or plate at point x or r, respectively
center dcflecuion of a beam or plate
distance alony th> beam or plate, normally measured from the center

shortsemi-span of Vi plate

distan:c aiong platc center line normally measured fiom the plate center
long semi-span of the plate

matenial density

yield stiength of the material
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