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PREFACE
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1.0 INTRODUCTION

It is highly desirable to more accurately measure "second-order"
aerodynamic effects resulting, for example, from Reynolds number in­
fluence. Consequently, all wind tunnel data systems are required to
provide a high degree of accuracy. One area that requires thorough
analysis is the magnitude of sting bending and oscillations that will exist
under high free-stream dynamic pressure and impulse starting loads
characteristic of some wind tunnels (Ref, 1).

The majority of aerodynamic data available from wind tunnels is
obtained from captive (restrained) model testing. In this situation, the
model is supported at the free end of a beam (the sting) which is canti­
levered forward from a support sector into the oncoming airflow in the
test section. Aerodynamic forces and moments are typically measured
with a six-component strain-gage balance located internal to the model.
The model is attached to the balance, and the balance is attached to the
end of the supporting sting as illustrated in Fig. 1. Both the sting and
the balance will defle ct under aerodynamic and inertial loads.

Deflected Sting

Model~ LSling

~alance
~+81/+FN

________ Ir · +PM
-----....--/ +zl

-----....f Model

Center-of- ----.............. ........ _______. _
S~or ~ ___
Rotation ~ ......

Undeflected Sting Position ~

Figure 1. Simple sting deflection geometry.
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Many models and stings will be subjected to a rapid application of
load during the tunnel starting process and will suffer large static de­
flections under certain important test conditions due to the magnitude
of the load applied. Figure 1 illustrates typical sting deflection geome­
try. For certain test conditions~ the sting tip angular and translational
deflection could be several degrees and inches~ respectively. These de­
flections are generally in excess of sting deflections normally encountered
in lower dynamic pressure facilities. However~ it is nofthe static de­
flection alone which causes concern during the portion of the run when
data are obtained. The oscillatory deflection of the sting~ superimposed
on the static deflection which is also present~ can have a major influence
on the accuracy of steady-state data (Ref, 2),

This investigation was undertaken primarily to evaluate the struc­
tural dynamics of sting-model systems subjected to transient load con­
ditions. The results are applicable to existing test conditions such as:

1, Blowdown or Short-Duration Facilities:
The highly impulsive flow conditions
create sting oscillations which can
influence data acquisition and accuracy
and cause structural integrity loss.

2. Facilities Utilizing Model Injection Systems:
The sting-model injection into the tunnel
test section under steady flow conditions
can create rather large sting deflections.
Here~ the primary concern is for the
sting-balance structural integrity rather
than data accuracy.

3. Facilities without Model Injection Systems:
Tunnel starting and stopping loads on the
model and sting are particularly severe for
transonic and supersonic facilities because
~of the normal shock which traverses the
test section.

4. Testing with Very High Angles of Attack:
High angle-of-attack stall and buffeting
of airplane models creates sting transient
deflection conditions and the associated
pr-eviously mentioned problems.

8
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5. Facilities Utilized for Dynamic Stability
Testing: During dynamic stability testing
for aerodynamic damping derivatives.
the basic sting oscillatory motion can be
superimposed on the dynamic balance
os cillatory motion. This creates data
acquisition and accuracy problems (Refs.
3 and 4).

This report discusses various sting materials and describes the
analytical techniques utilized to compute sting deflections. spring con­
stants. natural frequencies. and transient motion. Practical utilization
of these computational schemes is demonstrated by comparing experi­
mental model sting oscillatory data from a hypersonic impulse tunnel
with computed results.

2.0 ANALYSIS

2.1 STING MATERIALS

Slender beam deflection is primarily caused by bending moments,
and the deflection is inversely proportional to El. where E is Young's
Modulus and I is the cross-sectional area moment of inertia. Shear
deformation is usually less than 1 percent of the total deflection, unless
the beam is very short relative to its diameter ( L :::::;d). The allowable
bending stress (cry) is also a critical beam design item which, for a
given moment. is directly proportional to dll or 11 d3 .

The wind tunnel test section size limits the model size. The sting­
balance cross-section dimensions are dictated by model size limitations
and aerodynamic sting-model interference considerations. Since the
sting cross-section diameter is thus essentially specified. additional
stiffness and lower stress levels cannot always be gained by arbitrarily
increasing the diameter and moment of inertia (I). Consequently. any
reduction in sting deflection must eventually come from inherent
material stiffness parameters. which in this case is obviously Young l s
Modulus of Elasticity (E).

Traditionally. high strength alloy steels have been the primary
structural ingredient for wind tunnel stings and balances. However. in
order to combat excessive deflection, other materials, which are stiffer

9
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than steel, warrant serious consideration. Table 1 (Refs. 5, 6, and 7)
lists pertinent characteristics of alloy steels and additional materials
which are potential candidates for sting construction. It is acknowledged
that the alloy steels are cheaper and easier to fabricate, than any of the
stiffer materials.

Table 1 indicates that the sintered tungsten-titanium carbide
alloys are about three times stiffer than the steels. However, they
are somewhat marginalso far as the yield stress (cry) is concerned.
They also tend to fail in a brittle manner when the yield stress (essen­
tially the elastic limit stress) is exceeded. Even so, they merit serious
attention as a primary sting material because of the threefold stiffness
increase for cases in which sting deflections pose problems.

Table 1. Characteristics of Sting Construction Materials

Material

*Aluminum Alloys

*Titanium Alloys

. *N1ckle-Base Superalloys

*Steel Alloys

*Cobalt-Base Superalloys

*Molybdenum Alloys

*Tungsten

Sintered Tungsten-Titanium
Carbide Alloys

E x 10-6

Ib/in. 2

10.4

16.0

29.0

27.0 to 30.0

33.6

46.0

59.0

**90.0***
82.2

w,
Ib/in. 3

0.101

0.170

0.296

0.281

0.320

0.370

0.700

**0.525***
0.510

-3
0 y x 10 ,

Ib/in. 2

73

170

175

250

116

125

220

124****

*Ref. 5

**Ref. 6, Nominal Properties
*** Ref. 6, Conservative Estimate

**** .Estimated from We1bull's formula (Ref. 7)

10



AEDC-TR-76-41

2.2 STING DEFLECTION, STRESS, STRAIN, AND
NATURAL FREQUENCY

Because of model space limitations and aerodynamic sting-model
interference effects, sting configurations normally consist of one or
more linearly tapered sections combined with one or more untapered
sections. The balance strain-gage lead wires are generally brought
out through a hole down the center of the sting. Thus, cross-section
dimensions will usually not be uniform throughout the length of the sting.
These numerous cross-section discontinuities make closed form inte­
gration of the basic slender beam elastic curve equation (Eq. (1)) im­
practical for realistic stings. The basic slender beam elastic curve
equation is

(1)

where M is the total bending moment at x, and E and I are usually func­
tions of x also. Consequently, numerical integration of Eq. (1) is re­
quired for practical sting configurations. Because stings are normally
cantilevered from some rigid structure, they are ideally suited for
analysis by the first and second area moment propositions (Ref. 8). The
area moment analysis was incorporated in a computer program which
was written for the cantilever beam schematically illustrated in Fig. 2.
This beam has four different cross -section discontinuities. Each section
can either be a constant diameter cylinder or a linearly tapered cone

El
WI
RHI

E2
W2
RH2

E3
W3
RH3

E4
W4
RH4

E5
W5
RH5 R(NEND)

N3

R(NI)

NI N2

---1-"- L3 -r L4

N4
-t- L5

N5

T
2 R(NEND)

-L
NEND

Notes: R(Nl)---R(NEND) "Radius at Section Discontinuities
NI---NEND " Station Numbers at Section Discontinuities

WI---W5 "WeightNolume of Material in Each Section
El---E5 "Young's Modulus of Material in Each Section

RHI---RH5 " Radius of Hole through Section

Figure 2. Beam geometry and basic input for STING-1 program.
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frustum. Each section may have a hole of arbitrary constant diameter
along the centerline. The material of each section is also arbitrary
(i. e. steel, aluminum alloys, carbide alloys, etc.), The cross­
section shape must be a circle or concentric circles, although this is
not a requirement of the basic beam analysis.

This computer program, STING-l, can perform the following
calculations after the basic geometric and material properties are
provided.

1. Compute deflections (angular and translational) along the beam
length caused by the weight of the beam. This information is the static
deflection curve of the beam alone and is necessary for the computation
of the first natural bending frequency by Rayleigh's Method (Eq. (4»).
Maximum bending stress and strain (along the beam length) caused by
beam weight are also computed by the following standard relations,
respectively:

(2)

(3)

(4)

2. Deflection, stresses, and strain caused by concentrated loads
or moments at any station along the beam may be computed. In addition
to obvious design applications, the deflections caused by concentrated
loads are necessary to compute the beam spring constants or influence
coefficients (see Section 2.3). Figure 3 shows bending stresses for
a sting with a concentrated load of 24, 000 Ib at one end computed by Code
STING-1. Table 2 lists deflections for steel, carbide, and a composite
carbide-steel (C-S) sting computed by STING-l for these same
conditions.

3. The first natural frequency may be computed by Rayleigh's Meth­
od (Ref. 9). The effect of concentrated masses (the model for instance)
can also be included, The expression for the sting natural frequency is

fL M2 dx
o EI

where M is the total bending moment (including beam weight and con­
centrated weights) at station x, z is the static deflection at station x, z.
is the static deflection at the concentrated weight locations (xi)' and dni

12
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is the differential mass of the beam at station x. When the static de­
flection curve is used in Eq. (4» the computed frequency will be slightly
higher than if the true dynamic deflection curve is used. This occurs
because the small deviation of the static deflection from the first mode
dynamic deflection imposes some constraint which makes the beam more
rigid and its frequency higher. This is illustrated in Fig. 4 where
frequencies for the carbide-steel (C-S) sting are given; both for the
Rayleigh method with static deflection and the analysis of Section 2. 4
where the true dynamic mode deflection shape is computed. A compari­
son shows that the Rayleigh method frequency is approximately 6 per­
cent greater than the true dynamic mode frequency. Figure 4 also illus­
trates the influence of material and model weight on sting natural
frequency. The natural frequency of mono-material beams (without
concentrated weights) scales according to:

Using material properties from Table 1,

(5)

24,000 Ib

wCarbide

W Steel

d = 3.85 in.

All Dimensions Are in Inches

(90)(10 6 )(0.281)

(30)(10 6 )(510)

ID=l.Oin.

1.28

7.48 deg
d = 10.00 in,

162.0

120

"'" 100Ia
~

x
'v; 80
0-

vi 60VI
<1>.....-
Vl

0> 40
c
"0
C 20<1>

CCI

20 40 60 80 100
Station, x, in.

120 140 160

Figure 3. Maximum static bending stress in the sting.
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Table 2. HIRT Sting Deflections and Natural Frequencies

End Rotation, End Deflection, Frequency, cps
Material deg in. (Fig. 4, WM = 0)

Steel 7.37 8.30 17.0

carbide 2.47 2.74 .21.5

Composite 2.88 3.81 16.0
(Steel and
carbide)

To compute the above information, the following material proper­
ties were used:

Material

Steel

carbide

E,
lb/in. 2

30(106 )

90(106 )

w,
lb/in. 3

0.281

0.525

Steel and Carbide
(STI NG-l Results)

2.46 deg

Carbide (STING-l Results)

W~48.5L73.0 --L-32.
o 48.5 121. 5 162.0 in.

Note: The composite sting is steel from
station 121. 5 to station 162. O.

(J

(

~
\\\
\\'\

\".
\~, .~

'--...L ~ ....

I
" ... .....::::::::---" --...... -

......- ---------
Steel and Carbide ----7;;;(STING-l
(MATVEC Results) Results)

4

24

20

II>
Q. 16u

3"

~
c:
CI> 12:::l

liS....
u..

"iii....
:::l
m 8z

2,000500 1, 000 1, 500
Model Weight, WM, I.b

OL-----'-------I..------d------Io

Figure 4. Lowest natural frequency of the example sting for
various model weights and sting materials.
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The ratio from the more exact Eq. (4) (WM = O) is:

UJ Carbide

UJ Steel

21.5

17.0
= 1.26

4. Certain structural dynamic analyses require the beam to be
considered as a series of lumped masses connected by springs. The
selection of a particular beam portion or section to form a concentrated
mass is a decision requiring some discretion for best results. Once
the partitioning selection is made, the STING-l program will compute
the value of the lumped mass (mi), its mass moment of inertia (IYi) ,
and its centroidal position (xi)' This centroidal position is the point
at which concentrated unit loads and moments will normally be applied
to compute the beam spring constants or influence coefficients.

2.3 INFLUENCE COEFFICIENTS (SPRING CONSTANTS)

The structural dynamic analysis described in the next two sections
represents the sting-balance-model system as a series of "lumped
masses" or concentrated masses. These masses are considered to be
connected together by flat weightless springs. A load applied to one
mass will influence the deflection of the other masses because of the
spring connections. Consequently, the associated spring constants
have become known as structural influence coefficients.

References 10 (pp. 17-22), 11 (pp. 19-27), and 12 contain excellent
discussions on structural influence coefficients which basically can be
classified in one of two categories as:

1. Flexibility influence coefficients, defined by:

N
L COO Q.

j=1 . IJ J

where

N number of generalized forces applied

qi deflection (translational or rotational)
at point i

Qj Forces (or moments) applied at point j

C.. flexibility influence coefficientsIJ

deflection/unit load

15
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Equation (6a) can be written in matrix form as follows:

(6b)

Basically, Cij, corresponding to the location of the lumped masses
of the beam, can be computed from the deflection (translational and
rotational) caused by unit concentrated loads or moments applied at
the various lumped mass cg locations (xi).

For computational purposes, it is important to note the four differ­
ent types of elements which make up the Cij matrix (see Ref. 10, p. 22).
The Cij matrix can be partitioned as follows:

where

[ CTFiiJn [ CTMiil

[Coo]
I] N

[ CAFiit [ CAM ii] n
N = 2n

(7)

CTF ..
I]

translational deflection at i caused by unit
force at j, ft/lb

CTM .. = translational deflection at i caused by unit
I]

moment at j, ft/(ft-lb) = lIlb

CAF ..
I]

angular deflection at i caused by unit force
at j, rad/lb or l/lb

angular deflection at i caused by unit moment
at j, rad/(ft-lb) or lI(ft-lb)

This allows Cij to be computed by systematic application of the
STING-1 program to each of the concentrated mass positions.

2. Stiffness Influence Coefficients, given by

N
Qi = 2: K.. q.

i=L I] ]

16
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where
q.

J

Q.
1

K..
IJ

deflection (translational or rotational) at
point j

force (or moment) applied at point i

stiffness influence coefficients

load/ deflection

In matrix form, Eq. (8a) is written as

K ll K 12 KIN ql

K21 K 22 K2N q2
(8b)

---------- --

------------

KN1 KN2 KN qN

Note that Kij is completely analogous to the spring constant, K = lb/ in.
employed in one-dimensional spring analysis.

The Kij coefficients are difficult to compute directly from beam
theory. Consequently, they are generally computed by inverting the
Cij matrix. This is the manner Kij was obtained in the present analysis:

(9)

Another important property of the Cij and Kii matrices is that both are
symmetric. The Cij matrix as computed by :::>TING-1 was not symmet­
rical after the third or fourth decimal places (round off error, approxi­
mation, etc.). Thus Cij had to be made symmetric so that it would
properly invert and yield the following multiplication check:

(10)

where [I] is the identity matrix

It is important to note that the Cij coefficients can be determined
experimentally (Ref. 12). In fact, thIS is preferable to computing them
analytically and may be absolutely necessary for complex structures.

17
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In any case~ some experimental Cij data are valuable for verifying and
complementing theoretical results. The VKF balance calibration labo­
ratories currently measure deflection under loads applied at the model
attachment point so that static sting rotation from model airloads may
be accounted for in data reduction. This type of experimental informa­
tion was essential to the application which will be discussed in Section 3.2.

2.4 STING NATURAL FREQUENCIES AND MODE SHAPES

The first natural bending frequency may generally be computed with
sufficient engineering accuracy by the Rayleigh method as indicated in
Section 2.2. For design purposes~ primarily to avoid resonance condi­
tions~ the higher natural frequencies are occasionally required. Refer­
ence 9 (pp. 169-170) outlines a procedure by which the influence coeffi­
cient (CTFij) in conjunction with the lumped mass concept can be uti­
lized to compute the first and higher natural steady-state bending fre­
quencies and mode shapes. From Section 2. 3~ the CTFij coefficients
are defined as translational normal deflections at Xi caused by a unit
force applied at Xj. The final matrix formulation is:

CTF 1nffin 2 1 21

CTF 2nffin 22 2 2
(11)

=A

CTFnnffin 2n 2n

where .A = 1/ w2 • This is the standard matrix eigenvalue problem where
.A is the eigenvalue and the associated eigenvectors (zi) define that par­
ticular normalized mode shape. Once the [CTFijmi] matrix is formu­
lated~ the eigenvalues (frequencies) and associated eigenvectors (nor­
malized mode shapes) may be computed by the MATVEC program (Ref.
13), Concentrated weights such as the model may also be taken into
account by proper modification of the appropriate mi (see Figs. 4 and 5
for MATVEC results for the C-S sting), The mode shapes illus-
trated in Fig. 5 are typical for cantilever beams.

2.5 LAGRANGIAN FORMULATION OF STING-MODEL
MOTION EQUATIONS

Sting-balance-model systems tested in blowdown or short-duration
wind tunnels are exposed to transient aerodynamic loads which can act

18
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on both model and sting. Since useful data taking time is limited,
modern blowdown facilities are designed to vary the sting pitch angle
(Cl'p) during the run so that the quantity of data obtained is increased
Continuous-flow tunnels may also have this capability for similar reasons.
In addition to sector transient rotation capabilities, some modern faci­
lities are capable of translating the sting-model from a location outside
the test section into the flow field of the test section via a so-called
"injection" system.

d • 7.90 in.
d' 3.85 in.

WM' 32.2 Ib

o 20 40

Carbide --+--- Steel

60 80 100 120 140
Station, x, in.

160

1.0~ First Mode

! 0 ~~
zmax _-e-----e---e- WI. 14.57 cps-1.0 __-e--

1. 0tz Third Mode
. ---.......---....

! 0 ~- ~~~
zmax ~~ ~::::::::;::::;:~-..,-- W3· 137.62 cps

-1.0 ----------------------=--

Figure 5. Basic bending mode shapes for the example
carbide-steel sting.

Consequently, any realistic analysis of sting structural dynamics
must account for elastic deflection of the system caused by:

1. Transient air loads on both model and sting.

2. Transient loads associated with rigid body motion
of the system.

To investigate the general transient planar motion of a sting-model
system, it has been represented by a series of concentrated masses
as illustrated in Fig. 6a. These concentrated masses are connected
by springs so that the motion of one mass influences the motion of the
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other masses. Because of the rigid body motion of the sting, it is
necessary to employ three basic axis systems which are illustrated in
Fig. 6:

Inertial axis, XI is parallel to V00'

This axis is fixed to the unde£lected sting
and moves with it as shown.

This axis is fixed to the ith concentrated
mass and moves with it as shown.

Lagrange's formulation of dynamics (Refs. 14 and 15) is employed
to derive the equations of motion for the i th mass. Lagrange's method
provides a methodical and systematic approach which is especially
valuable in the present application involving two moving non-inertial
coordinate systems.

The present formulation is an extension to the example of the
cantilever beam and single concentrated mass given in Ref. 11 (pp. 40­
41). The present analysis is also similar, in some respects, to the
classical example of airfoil flutter given in Ref. 11 (pp. 210-212) and
Ref. 10 (pp. 532-536) where Lagrange's formulation is employed.

--_.. Voo

ZI I r-I np.rtiillL::AX;'
XI

Detlected

a P I / S'
~_I I / I

~ - ~(_~ / Sj / a P
--'r--a ,-- ~~ /

\ VOO X~-:.,:z~~~~ r / mi. IYi
Center-ot-Sector Rotation/~ f ~;_--.' ""

//i~-~/~"

Lundetlect:~~"",. "
Sting XIII.

I

a. Planar deflection geometry of the sting-model concentrated mass representation
Figure 6. Sting coordinate systems.
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2.5.1 General Lagrange Equation

The Lagrangian formulation of dynamics provides a systematic
approach that gives directly the equations of motion in whatever coor­
dinate system may be convenient (Ref, 14). Application of Lagrange's
procedure is remarkably straightforward even for relatively complex
systems involving moving non-inertial coordinate systems. Lagrange' s
basic equation is

d (aTJ aT au Qkdt aq - aqk
+

aqk
'~.~

'--------~'
~

(12)
In e~tial fore e s Conserva- Non-conservative

(or moments) tive forces forces (or moments)

(or moments)

where:

k

N
N

n

I---N

2n

number of degrees of freedom or independent
coordinates

number of lumped masses in the system
representation

generalized independent coordinate. In the present
analysis, qk will either be angular rotation or a

linear translation distance, both of which are easily
visualized physical quantities. The motion direc­
tion specified by Eq. (12) is in the exact direction
associated with qk (Ref. 15, pp. 157-158)

T

U

total kinetic energy of system and must be mea­
sured relative to an inertial axis system
(Ref. 14, p.33)

potential energy of the system. In the present
application, U is the W>rk done by the sting
acting as an elastic spring.

non-conservative generalized, applied force
(or moment) acting .on the i,~,mass,(m) corre­
sponding to the k!~ generalized coordinate. In
this application, Qk is primarily of aerodynamic

origin.

t = time, sec

The appropriate formulations of T J U, and Qk are given in the
following sections.
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2.5.2 The Kinetic Energy and Its Derivatives

In applying Eq. (12) to the sting-model system of concentrated
masses as represented in Fig. 6, a very crucial item is the evaluation
of the total kinetic energy and its associated derivatives. These yield
the inertial forces (or mOJ;nents) of the system. The total kinetic
energy for this system is

n
T = 2, T.

i=l 1
(n = number of masses) (13a)

(l3b)

(14a)

T i is the kinetic energy of the mass (mi) and Vabs is the absolute
velocity of an element of mass (dm), which is located as shown in Figs.
6b and c with respect to the inertial axis (XI, 2r). The coordinates
of the particle (dm) with respect to the XI' 2 1 origin are

XI X + xII cos a + zII sin a
pOi PiP

+ xIII. cos (a p + ei ) + zIII. sin (a p + ei )
1 1

Inertial
Axis

Z - XII sin a + zn cos a
a i PiP

---" Voo

ffij

(14b)

b. Coordinates of mass element with respect to moving axis systems
Figure 6. Continued.
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/

Local
Deflected

" Sti ng Axi s
"" at Poi nt i

"
lip XIII'

I

XI

c. Coordinates of mass element with respect to an inertial axis system
Figure 6. Continued.

Differentiating Eq. (14) with respect to time yields the absolute
velocity components of the particle (dm). Note that xIII, and zIII. =0

1 1
since the XlIIi' ZIIIi axis is fixed relative to mass (mi) and rotates with
it through the angle (Q:'p + 8i). The origin of the XlIIi' ZIII' axis is not
necessarily the center of gravity of the mass (mi) (Fig. 6cY. Note also
that xII' is a constant distance which denotes the location of the XIII" ZIII.

1 1 1
axis origin along the sting length. Strictly speaking. xII' does vary slight­

_1
ly as the sting deflects under load. but this very small change will be ne-
glected, The final relation for the total kinetic energy is

T =
n 2 2 2,2
~ {lloz [.it + Z - 2x x. a' sin a - 2 Z x. 'ap cos a p + x a

i:-l a a alp pal i P

+ 2 qi (xasin a p + za cos a p - xi~) + q} + 2 qi (xaap cos a p

- za a
p

sin a
p

) + q~a~]mi - [xa sin (a p + qi+n) + za cos (a p + qi+n)

+ (qi - xi ap) cos (qi+n) + qi ap sin (qi+n)](a p + qi+n)(xi m)

+ [xa cos (a p + ql'+n) - Z sin (a + q. ) - (q. - x. a ) sin (q.+ )a p Hn IIp 1 n

(15)
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where

qi ZII. z.
1

1

qi+n e.
1

x. XII.1
1

(see Fig. 6d)

(see Fig. 6d)

(see Fig. 6d)

(16a)

(16b)

(16c)

(17a)

(see Fig. 6 c) (17b)

(see Fig. 6c)
(17c)

(17d)

Note that Xo and 20 are the translational velocities of the model support
system moving as a rigid body. This motion will occur. for instance.
when a model is injected into a wind tunnel on a system in which the
model. sting. and support translate in unison.

---i.. P ~l Sting

--~------rt--.. Vco"', ::--} .
-., --, ~i mi 8

~j

Undeflected zn
Sting

d. Final coordinates of deflected sting with respect to undeflected sting
Figure 6. Concluded.
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Straightforward evaluation of the kinetic energy derivatives yields
the following results:

Force Inertial Terms (k = i)

d(aT)
dt Jq.

I

aT = (q. _ x.a.. _ q.o. 2 + z cosa + x sinap)miaq. I I pIp a p a
1

[cos (qi+n)(ap + qi+n) - sin (qi+n)(o. p + <Ii+n)2] (xi mi) (18a)

- [sin (qi+n)(a p + qi+n) - cos (qi+n)(o. p + <Ii+n) 2](zi mi)

Moment Inertial Terms (k = i + n)

+ (x + 2 <I' ex + q. a-x. ;2) sin (q. mi"· m.)a 1 p 1 pIp I+n I I

- [( q. + z - x. a - q. 0. 2) sin (q. ) - (xo + 2 <II' a..I a 1 p 1 P I+n p

+ q. a-x. ;2) cos (q. )](z. m.)1 p 1 P 1+n 1 1

(l8b)

2.5.3 The Potential Energy and Its Derivatives

In Eq. (12), the partial derivative (aU / aqk) represents that part of
the generalized forces that can be derived from a potential function (U).
In the present system, these are the stabilizing restoring forces created
by the elastic deformation of the sting. The sting's capacity to do work
is equal to its stored potential strain energy, which, according to Ref.
11 (p. 22), can be written as follows in terms of the stiffness influence
coefficients:

u
n n

1~ 2, 2, K.. q. q.
i=l j= 1 1J J 1

1~[Kll qi + K 21 q2 ql +- - - KN1 qN ql

2
+ K 12 ql q2 + K 22 q2 + - - - KN2 qN q2

+ - - - - - - - - - - - - - - - - -- - - - - - - - --
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It is shown in Ref. 11 that

n
l K.. q.
j=l IJ J

(20)
Q.

1

Force (or moment) at point i in the
direction of qi (see Eq. (7a))

In the present formulation,

au
aq.

1

au
aqi+u

2n
l K·· q.
j=l IJ J

Sting elastic restoring force at point xi

2n
l K. . q.
j=l Hn,J J

Sting elastic restoring moment at point xi

(21a)

(21b)

2.5.4 The Non-Conservative Generalized Forces

Equation (12) provides for the arbitary representation of time varying
generalized forces (Qk) that may drive and/ or damp the system motion.
Qk is a non-conservative force or moment which essentially means that
it is not derived from a potential function such as potential energy (Sec­
tion 2. 5. 3). For example, dissipative effects such as sting-model aero­
dynamic damping and sting structural damping are clearly in this cate­
gory.

2.5.4.1 Unsteady Aerodynamics

In the present application, the primary driving force (Qk) is creat­
ed by unsteady aerodynamic phenomena. The resulting aerodynamic
loads may be obtained by

1. Theoretical,analysis - Refs. 10 and 11 discuss and
critique the available theoretical efforts. Basic
trends are reasonably well defined for ideal config­
urations.
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2. Experimental measurements - Good experimental
data are highly desirable and should be utilized
when available (see Section 3.2).

3. Approximate analysis utilizing both theoretical and
experimental information - Practical requirements
for unsteady aerodynamic simulation of realistic
configurations may dictate such an analysis.

The following quasi-steady approximations are used in the present
formulation. For k = i, the aerodynamic normal force is

(22)

where qoo may vary with time and CNTi is composed of both a "static"
and "dynamic" contribution as follows:

Stati c Force
Coefficient

CNa,(::J ,eNq, CD
~

Dynamic Force
Coefficient

(23)

If nonlinear, then CN' is curve fitted to a suitable function of aT'. In
a similar manner for\: = i + n, the aerodynamic moments are 1

where

then,

Static
Moment

a S. d. C
'= I I m T .

I

aerodynamic pitching moment of mass

(mi) at point (Xi)

(aT.d)
+ Crn .. 2f- +

a l 00

Dynamic Damping Moment

27
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Also~ if Cm.(aT.) is linear~ then
1 1

(28)

Otherwise~ it is curve fitted as a function of aT" Now aT'~ the instan-
1 1

taneous angle of attack at station xi along the sting~ is:

~
Angular
Rotation '.

Xi a p - <'Ii Zo

V cos a V
00 p 00

~

Plunging Translation
(29)

Also:

+

....
Xi ap - qi

V cos a
00 p

(X.a - q.)a sina
1 pIp P

2Voo cos a p

(X. a - q.)v
1 P 1 00

v2
cos a

00 p

V
..
Z ­

00 0

(30)

The rotational part of aT. is qr' which is
1 1

AF1 is the instantaneous axial force on the model (m1)~ which is

(31)

(32)

The axial force contribution is a stabilizing influence (see Fig. 7) with
respect to the beam since its moment apparently acts to reduce deflec­
tion~ at least for the first mode shape. In most cases~ the axial-f.orce
moment is largest along the aft and stiffer portion of the sting so that
the stabilizing influence is minimized.

The above formulation for CNT (Eq. (23» and CmT (Eq. (27» is
called "quasi-steady" because it implies instantaneous response to aT'
This representation has been used in aircraft-missile trajectory
computer programs (Refs. 16 and 17~ for instance) with reasonably
satisfactory results. It has also been used in Ref. 2 for sting-model
motion simulation. Consequently~ its use is recommended in the
present application unless more precise theoretical and/ or experimen­
tal information is available. Certain configurations and test conditions
may require a more sophisticated aerodynamic force and moment
representation.
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Inclusion of the angular rate (aT' and qr') dependent aerodynamic
forces and moments has a negligible leffect oil. motion amplitude and
decay for the relatively stiff stings commonly employed in standard
static stability and control testing. However. attention must be focused
on their influence in dynamic stability testing when a highly sensitive
dynamic balance is utilized.

~lr
Deflected Sti ng ZIJZ'I f

zI xiSI

Sting

a P Ta nge nt to Deflected
Sting at Xl = 0

Axial Force Moment =AFI [XiSI - (zI - li) ]

Figure 7. Axial force bending moment schematic.

2.5.4.2 Structural Damping

Observation of experimental sting motion data obtained from the
VKF Tunnel F (Section 3.2) revealed that the motion was highly damped.
This timewise decrease in amplitude was much more than could be
accounted for by aerodynamic damping alone. An investigation revealed
that the decrease in amplitude was essentially linear with increasing
time. This manner of amplitude decay is normally associated with
Coulomb or friction damping (Ref. 9) and the single degree of freedom
differential equation is of the form:

fiX + Kx = -F __X__

I xI

29
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F is a constant friction force and always acts to oppose the motion.
Consequently, it was suspected that some form of structural damping
capable of dissipating a large amount of energy was prevalent in the
VKF Tunnel F sting.

A brief literature survey revealed that there are basically two
types of structural damping:

1. Internal damping of a solid homogeneous structural
member caused by internal grain structural, plastic
strain, magnetic-electrical, or thermal effects
(see Ref. 18 for a comprehensive survey), and

2. Damping of joints, connections, or interfaces of
the members of a total structure caused by inter­
facial Coulomb friction and slip (see Refs. 19 and
20).

Reference 20 reports that under optimum circumstances, the
energy dissipated in joint slip damping may be large, not only compared
with internal damping, but also compared with the total strain energy
of the structure. Since the VKF tunnel-sting contained several promi­
nent joints and its motion was highly damped with essentially a linear
decay, it is concluded that damping is primarily caused by interfacial
Coulomb friction.

Consequently, it is postulated that the sting damping could be
modeled in a rather gross manner by the following relations which are
somewhat analogous to the Coulomb friction force in Eg. (33). The
damping force at Xi is

2n • qi
QDF i = -FCOF i j~l K ij qj TD

The damping moment at x. is:
1

QDM j = -FCOM j I~~l Kj+n,j qjl

where
2n
I K.. q.
j=l 1]]

and

2n
I K· . q.

j=1 I+n,J ]

30
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are the sting elastic restoring force and moment, respectively, at xi
(Section 2.5.3). FCOFi and FCOMi are arbitrary constants which are
utilized to adjust the fractional magnitudes of the sting elastic restoring
forces and moments, respectively, which are resisting the sting motion.
They are determined by numerical experimentation and comparison
with experimental sting motion damping data (see Section 3.2).

Formulation of a more elaborate mathematical model of sting
structural damping than Eq. (34) will require both analytical and experi­
mental results for typical wind tunnel sting joints.

2.5.5 Specific Motion Equations

The specific motion equations of each individual concentrated mass
(mi) of the sting-model system for each of its two degrees of freedom
corresponding to the general formulation (Eq. (12)) can now be written
by combining appropriate results from Sections 2.5.2, 2.5.3, and
2.5.4.

For k =i, Eqs. (18a), (21a). (22), and (34a) are substituted in Eq.
(12) to yield the force relation (in the translational zi direction) for mass
(mi). It is convenient for future purposes to write this equation as
follows:

where:

(RHSF)i (35a)

(RHSF\

m·
I

- [cos (q.+ )(x. m.) + sin (q. )(2. m.)]I n I I l+n I I

(x. a + q. 0. 2 - Z· cos a - x sin a ) m·Ip Ip 0 po pI

+ [cos (q. )(2. m.) - sin (q. )(x. m.)](q· .l+n I I l+n I I l+n

2n
- 2, K.. q. + NT. + QDF ij=1 IJ J I

(36a)

(36b)

(36c)

For k = i + n, proper combination of Eqs. (18b). (21b), (25) and
(34b) yields the moment equation (in the rotational ei direction) for mass
(mi) . This is:
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(RHSM)i (35b)

where

(36d)

(36e)

(RHSM)I' = [(z - x. a - q. a2) cos (q. ) + (x + 2q·. ao I pIp l+n 0 I P

+ qi Up - Xi a;) sin (qi+n)] (xi mi) + [(zo - xi ap - qi a;) sin (qi+n)]

.. .2 _ 2n
- (xo + 2qi ~ + qi a p - xi a p) cos (qi+n)](zi mi) - j~l Ki+n,j qj

- AF1[x/ql+n) - (ql '-- qi)] + MT . + QDM i
I

(36f)

Equation (35) is comprised of the basic equations which are both
statically and dynamically coupled together in the general case. NTi
and MT' are still in arbitrary form. If NT. and MT., as represented
by EqS.l(22}, (23), (26), (27), (29), (3D), ahd (31), eire substituted
appropriately, then:

(37a)

- [cos (q. )(x. m.) + sin (q. )(z. m.)]l+n I I l+n I I (37b)

(RHSF\ ( .. . 2.. .. . )
Xl' a p + q. a - Z cos a - X sm a m·lp 0 po pI

(x. a - q.)Y
. I P I 00

y 2 co sa
00 p

Z Vjo 00

y 2
00

2 2n
+ [cos (qi+n)(Zi m) - sin (qi+n)(xi mi)](qi+n + ap) - j~l Kij qj

(xi ap - qi)(a p sin a p)
+---''------:::-''---_....:.....

Y cos 2 a
00 p
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(37d)

(37e)

[(2 0 - xi a p qi a;) cos (qi+n) + (xo + 2qi ap + qi ap

- x. a2
) sin (ql'+n)] (x. m.) + [(2 - x. a - q. a2) sin (q. + n)Ip 11 DIp Ip 1

z V]o 00

+-­
y 2

00

+ (Ma. + Mq,l
1 1

(37f)

Note that FNi (aT) and PMi(aT) are the "static" aerodynamic force and
moments, respectively, which may be nonlinear functions of aT and
other variables as well. In general, curve fitting or table look-up
interpolation of these quantities will be required.

2.5.6 Numerical Solution

Equation (35) is a system of 2n second-order differential equations
which must be solved simultaneously. The general complexity is such
that a numerical solution is required. To accomplish this, a computer
program (RKAM) documented in Ref. 21 was employed. In order to
apply this computer program written for simultaneous first-order dif­
ferential equations, it is first necessary to solve Eq. (35) for qi and
qi+n explicitly. This yields

m2 2 .(RHSF)i - m1 2 .(RHSM)i
1 1

Z.
1
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ffill.(RHSM)j - ffi21.(RHSF)j
1 1

e.
1

These are 2n second-order equations of the general form:

qk = fk(qj' Cr
j
" t) {i = 1 --- 2n}

k = 1 --- 2n

where the initial conditions are:

(38b)

(39a)

{

k = 1 --- 2n}

k = 1 --- 2n
(39b)

Equation (39) can be reduced to a system of 4n first-order equations
by the following substitution:

Then

k 1 --- 2n (40a)

k = 1 --- 2n (40b)

Equation (40) is a set of 4n first-order equations to be solved simul­
taneously subject to the following initial conditions from Eq. (37b):

k

k

1 --- 2n

1 --- 2n
(40c)

Equations (40a). (40b). and (40c) are in the form required for
solution by the RKAM program (Ref. 21). The resulting computer pro­
gram is hereafter referred to as SMD2NDOF.

The sting rigid body motion variables (Qlp. lip. Gp • *0' xo' zo. and
zo) must be known as a function of time. These variables are required
if the sting system moves as a rigid body (for example. during.model
to tunnel injection or sector rotation). Va:l and. occasionally. V 00 and
qlD must be known as a function of time. These transient variables are
currently curve fitted by a Fourier Series or a least-squares polynomial
and can thus be computed in SMD2NDOF when needed as a function of
time. A table look-up interpolation representation may also be employed.
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3.0 APPLICATIONS

3.1 HIRT STING DESIGN AND TRANSIENT RESPONSE

References 22 and 23 provide information concerning the Advanced
Transonic Transport or the Advanced Technology Transport (ATT)
model which is a representative candidate for analysis. Figure 8 illus­
trates the predicted history of the dynamic pressure in a pilot l high
Reynolds number l Ludwieg-type wind tunnel. This information is
based primarily on experience with such a VKF pilot facility (Ref. 1).
Maximum steady-state dynamic pressures (Clocm. ) were selected from
conditions reported in Ref. 22. ax

-

1.00.80.4 0.6
Time, t, sec

0.2

~St~rti ng-----lr- Time ·1

oo

0.8

0.6

1.0

0.4

O. 2

Figure 8. Predicted variation of dynamic pressure ratio in a Pilot
LUdweig-Tube Wind Tunnel.

Both the steel sting and the C-S sting were investigated at critical
sting design load conditions. One critical point was test condition No. 7
of Ref. 22 1 Table 2. For this condition l the ATT model at aT of 8. a deg
generates an aerodynamic normal force of 24 1 000 lb (see Fig. 3). This
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means that Q:'p (the initial fixed preset angle of the sting~ Fig. 6a) plus
81 (the angular deflection at the model location) must essentially equal
8 deg. Thus~ in order to initially set Q:'p before the run~ 81 (t) must be
computed.

The steel sting exhibited highly unsatisfactory deflection divergence
characteristics under dynamic load conditions. Just a small initial
preset angle of attack (Q:'p) was enough to cause very large sting deflec­
tions before the sting strain energy restoring force became sufficient
to prevent further deflection (see Fig. 9). The situation is analogous
to the torsional divergence of a wing (Ref. 11~ Chapter 3). A small
increase in Q:'p from 0.60 to about 0.85 would surely result in catastro­
pic sting failure. The situation is so unstable that this ATT model
could not be tested at this condition with a steel sting.

1.61.4

Remarks--
CNa Only

78. 10 ± 0.03

77.21 ± 0.03

1.2

DOF

2

Model
Weight, Ib

305

0.6 0.8 1.0
Ti me, t, sec

rEnd of Tunnel Starti ng Time

10.0 Normal Force
24,690lb

--------
8.0

c 6.0

...:.
N

4.0

2.0

0

10.0

Nor mal Force
8.0 24,690lb

- --------

6. 0
C1
Q)
"0

...:.
cD

4.0

2.0

0
0

a. a p =0.60 deg
Figure 9. Motion history for ATT model and steel sting, condition

No.7, basic qoo variation.
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10. a Normal Force
24, 000 Ib

8. a

a p : 0.50 deg

c 6. a

v,
N

4.0 la, 000 Ib
a p : 0.25 deg

2. a

a

10. a

Normal Force ap = 0.75 deg
8.0 24, 000 Ib

6.0 a p = 0.50 deg
Cl
Q)
"0

CIJv,
4.0 10,000 Ib

a p = 0.25 deg

2.0

a
a o. 2 0.4 0.6 0.8 l.0 1.2

Time, t, sec

b. a p =0.25, 0.50, and 0.75 deg
Figure 9. Concluded.

Figure 10 illustrates the motion history (81 and z 1 versus time) for
the ATT model and the composite C-S sting. Here, Qip is 5.0 deg, and
the ATT test condition No. 7 is being simulated. Deflection is less than
half of that observed for the steel sting (Fig. 9a); however, this is a
critical condition for the carbide portion of the sting (x < 48. 5 in. )
because of bending stresses at these loads. Results for-two model
weights and two different lumped-mass representations (n = 1 and n = 15)
are shown in Fig. 10. For n = 1, note that essentially the same results
are obtained for both model weights (except for the frequency). The fre­
quencies agree very well with predictions for the C-S sting in Fig. 4,
particularly the MATVEC results. For n = 15, the sting is represented
by 14 lumped masses so that sting inertia is taken into account. This
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more complex simulation of the sting makes about 15-percent difference
in the results which may be enough to warrant inclusion in some detailed
analysis. However, the n = 15 results shown required about 7 hr of
computation time on the IBM 370/165, whereas the n = 1 results required
only a few minutes.

Figure 11 illustrates what would happen if the dynamic pressure
were a step input for ATT test condition No.7. Results for two model
weights are shown (:s, was held constant). Considerable oscillation is
present with the heavier model exhibiting the larger magnitude. It is
speculated that the C-S sting would fail catastrophically for this particu­
lar step load input condition.

Several computer runs (not illustrated herein) were made with the
basic wind tunnel qco variation (Fig. 8) perturbed so as to yield slightly
faster initial rise times. The resulting sting oscillation amplitudes
were then somewhat more than for the basic qco variation (Fig. 10) but
considerably less than for the step qco input (Fig. 11). Both the heavy
and light models exhibited practically identical oscillation amplitudes
(very low) for the basic qco variation (Fig. 10, n = 1). The basic qco
(Fig. 8) aerodynamic loading is then essentially like a "static" loading
since inertial loads were almost nil. For the step qco input (Fig. 11),
the loading was indeed "dynamic" and the heavy and light models did
not oscillate at the same magnitudes because of the strong inertial
effects. It is worth noting that, if the tunnel dynamic pressure rise
time is slower than the basic variation of Fig. 8, then the steady­
state run time is decreased accordingly, and very little decrease in
sting oscillation amplitude is gained. Consequently, it is concluded
that the example wind tunnel's basic qco transient variation was
essentially optimum from the viewpoint of both sting oscillation and
steady-state run time for model-sting systems of this size.

In lieu of actual experimental transient data, the aerodynamic loads
for the ATT were generated from Eqs. (22) and (26) where qoo = qoo (t).
Computer runs were made with reasonable estimates of CN ' CN.' CN '

. Q' Q' q
Cm ' Cm ., and Cm . It was found, for this particular model and sting

Q' Q' q
attachment point, that only the normal force (CN ) influenced the sting

Q'
deflection to any practical extent. This behavior was also noted in a
sting-model motion simulation reported in Ref. 2. These stings are so
stiff that aerodynamic damping exerts practically no influence. Grossly
exaggerated static moment inputs (both stable and unstable via Eq. (28))
did produce noticeable changes in deflection (approximately += 15 percent,
respectively).
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3.2 VKF TUNNEL F STING DYNAMICS

Recent results obtained in VKF Tunnel F have provided an opportunity
for comparison with experimental motion data. During this test program,
the sting angular deflection'was found to be greater than could be account­
ed for by model aerodynamic loads alone. High-speed motion pictures
(framing rate ~4000 frames/ sec) were taken during several shots to
provide a record of the sting-model deflection. It was speculated that
there were significant aerodynamic and inertial loads on the sting itself
which contributed to the observed deflection. Consequently, the SMD2NDOF
computer program was applied to simulate the sting motion, both with
and without sting aerodynamic loads. A general description of the VKF
Hypervelocity Tunnel F is contained in Ref. 24.

The Tunnel F sting-balance was modeled structurally via the
STING-1 program. Some experimental calibration rotational deflection
data for the balance alone and the balance plus sting were required to
obtain a reasonable stiffness representation of this model support
system. The basic sting utilized for this particular test is not as stiff
as its exterior dimensions would suggest because of numerous joints
and cross-sectional area discontinuities. Figure 12a illustrate's the
actual sting used during the tests, including the force balance. The
general complexity of this actual sting force balance system is such that
a number of dimensional iterations were necessary via the STING-l pro­
gram to obtain the structural stiffness synthesis illustrated in Fig. 12b.
A somewhat more complete synthesis of the sting-force balance system
is feasible and should be incorporated in future analyses.

Transient model loads (corrected for inertia effects) were measured
during the test. These were curve fitted with a Fourier series and
input as forcing functions (NT1(t) and MT1 (t» to the SMD2NDOF program
(Fig. 13). Strictly speaking, the forward and aft normal loads measured
by the force transducers in the balance were converted into a normal
force and pitching moment which were assumed to act at a single model­
balance attachment point (the physical cg location of the model, Fig. 12b).
This pitching moment makes a sizable contribution to the sting deflection
and cannot be neglected.

Figure 14 illustrates the Tunnel F transient flow velocity history
for this particular test.
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Since airloads on the sting were to be included~ the sting was sub­
divided into 14 sections (concentrated masses~ n = 15~ including the
model). No experimental data were available for the aerodynamic loads
acting directly on the sting itself. Consequently ~ these airloads were
estimated in the following manner. It was assumed that the airloads
(NTi) on the individual sting masses (mi) had the same timewise varia­
tion as the airload (NT1 ) on the modeL However~ the magnitude of the
sting airloads is not equal to model airloads because of different plan­
form areas and different shape effects. The sting is composed of a
series of circular cylinders and cone-frustums~ while the model is
essentially conicaL The airload normal force on a cylindrical concen­
trated mass is then

(41a)

where CN1 (model) and CNi (sting mi) are based on planform area. CNi
for the sting was estimated from the Newtonian normal force coefficient
for circular cylinders (Ref. 25~ Chapter 17). The ratio (CN/CN1)
remains practically constant from 15 to 17 deg which essentially brackets
the observed angles of attack. Api and Ap . are the planform areas of
the model and mi~ respectively. Planform

1
areas (Api) corresponding to

the actual sting (Fig. 12a) were employed. For cone-frustum sections
of the sting~ shape effects were assumed to be similar to those of the
model so that

N (t) = (APi)N (t)
T. A T 1

1 PI

Equations (41a) and (41b) have the general form:

(41b)

(41c)

The- loads on the sting section were assumed to act at the lumped mass
cg and produce no pitching moment (MT.(t)).

1

Only the last 12 sting masses were considered to be aerodynami­
cally loaded since the two forward portions of the sting are inside the
model. The summation of Ci (i = 4 to 15) yields the ratio of the sting
total normal airload to the model normal airload. In this particular
case. 15

I C. = 3.31
i=4 1
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This indicates that the sting airloads are about three times the model
airloads, Fortunately, the sting loads are distributed primarily along
the stiffer aft sections which alleviates their deflection contribution
considerably, The theoretical magnitude of the sting airload contri­
bution to the static deflection can be computed via the deflection influ­
ence coefficient approach (Section 2,3), Theoretical results from
SMD2NDOF indicate that

e1 {with sting loads}

e1 {without sting loads}
1.12

Figures 15 and 16 illustrate both experimental results and
SMD2NDOF predictions for this TlU1nel F test. Motion predictions
were made with and without sting aerodynamic loads. Each prediction
requires about 45 min actual computation time on the IBM 370/165.
The experimental data (from high-speed motion pictures) are e1 (Fig.
15) and znose (Fig~ 16) versus time. znose was computed by SMD2NDOF
as illustrated in Fig. 17.

The predicted dynamic oscillation amplitude (oscillation about the
mean or static level, Fig. 15a) is somewhat greater than the experi­
mental magnitude, particularly near the end of the run. It is evident
from the experimental data (Figs. 15a and 16a) that considerable damp­
ing of the oscillation is occurring. From previous results (Section 3. 1),
it is known that the damping is structural rather than aerodynamic.
Sting structural damping was included in the SMD2NDOF predictions
illustrated in Figs. 15b, d and 16b, d. The numerous joints of the actual
sting (Fig. 12a) make an important contribution to structural damping
(Section 2.5.4. 2). This is fortlU1ate from a "static" data accuracy
viewpoint and more than compensates for the apparent decrease in
stiffness introduced by the joints.

The average magnitude (mean value. of the amplitude) of e1 versus
time is shown in Fig. 15c. Examination of these mean amplitudes
reveal a maximum difference of about 0.08 deg between experiment
and prediction with sting loads, and about 0,20 deg difference between
experiment and prediction without sting loads. The predicted results
with sting loads included are in remarkably good agreement with ob­
served magnitudes near the beginning of the run. These results show
that it is feasible to account for sting aerodynamic loads on e1 (and
hence aT1)'

There is a slight discrepancy between the predicted (48 cps) and
experimental (55 cps) oscillation frequencies. When modeling the
sting balance system, the structural stiffness synthesis was of primary
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concern. and when those criteria were satisfied. wi was 48 cps for
sting-balance plus model (STING-l program). This was deemed satis­
factory since the system frequency was known to be on the order of 50
cps. A large amount of structural damping distorts the sinusoidal
amplitude variation considerably (Figs. 15b and 1Gb) and some discre­
tion is required when computing the frequency from a limited number
of cycles of experimental data.
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Figure 15. Theoretical and experimental angular deflections of the Tunnel F model.
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Figure 17. Model nose tip translational deflection geometry.

A realistic assesment of the Q'plunge magnitude in Tunnel F is of
more than academic interest since it is difficult to measure experimen­
tally and it does contribute to the total transient angle of attack. of the
model (Q'T 1). From Eg. (29)1

(43)

where in the present case l

v cos a
00 p

(44)

Theoretical results (including sting aerodynamic loads and struc­
tural damping) for both Q'plun e and zl are illustrated in Fig. 18. The
maximum value of the predicted Q'plunge is approximately one tenth of
a degree. Because of the large amount of structural damping present l

it is concluded that the maximum Q'plunge will normally be less than
0.025 deg for force tests in Tunnel F when steady-state data are taken
after the initial starting transients.
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Figure 18. Theoretical results for aplunge and model cg translation (Z1)'

4.0 SUMMARY

This investigation of wind tunnel sting structural dynamics has
essentially followed two paths. These are:

4.1 STING STRUCTURAL DESIGN

A brief analysis (Section 2. 1) has shown that~ for a given wind
tunnel facility (with fixed dimensions)~ any real gain in sting stiffness
must ultimately come from inherent stiffness properties (E) of the sting
material itself. This means that materials stiffer than steel must be
considered. Certain carbide alloys (sintered tungsten-titanium
carbide) are about three times stiffer than steel and warrant serious
attention as a sting construction material. However. any sting material
must be able to withstand bending stresses of about 120. 000 lb/in. 2.
It is not clear that carbide alloys in sting size beams will consis-
tently handle bending stresses of this magnitude. This should be checked
by standard experiments.
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To assist in structurally analyzing realistic sting configurations,
a computer program (STING-i) was written (Section 2.2). With geome­
trical and material properties as input data, STING-l computes deflec­
tions, first natural frequency, and influence coefficients (spring con­
stants) for cantilever beams with mixed tapered and untapered sections.
The material of each section is arbitrary so that a certain type of com­
posite sting may be analyzed. Sting design applications are obvious;
however, perhaps the most important application so far has been the
computation of structural influence coefficients (Section 2.3) required
for certain dynamic analysis procedures (Section 2.4 and 2,5.3). The
STING-l program is based primarily on elementary strength of material
concepts but is general and flexible enough to model most of the more
common sting-balance configurations.

The MATVEC computer program (Ref. 13) which solves the standard
matrix eigenvalue problem is recommended for the computation of sting
steady-state vibration natural frequencies and mode shapes. The input
required is the [CTFij mi] matrix (Section 2,4), where both CTFij
and m. may be computed by the STING-l program, Prior experience
in a slructural laboratory with cantilever beams has verified MATVEC
predictions,

4.2 STING STRUCTURAL DYNAMICS

Lagrangian mechanics has been employed to derive the coupled dif­
ferential equations of planar motion for a rather general sting-balance
system (Section 2. 5). This system is represented by concentrated
masses which are tied together by spring constants (influence coefficients)
and may be subjected to arbitrary known transient forces and moments.
The formulation allows sting loads as well as model loads to be included.
Also the system is allowed to move (rotate and translate) as a rigid body.
Thus with the proper input, transient conditions occurring during model
to tunnel injection and/ or sector rotation may be investigated.

The general formulation is such that a numerical solution is required
for all but the simplest, almost trivial, cases. Consequently, a stand­
ard program (Ref. 21) for solving simultaneous differential equations
was employed and modified as required. The resulting program
(SMD2NDOF) is versatile enough to simulate a wide variety of sting
structural dynamic situations. The sting-model synthesis does not have
to be an elaborate multi-mass system to provide useful information. For
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example l see Section 3. 1 where a single mass representation was em­
ployed for the analyzed sting-model. The simulation of the Tunnel F
system (Section 3.2) required a more elaborate multi-mass representa­
tion since sting aerodynamic loads were to be included.
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NOMENCLATURE

Three basic axis systems are used in the sting planar motion anal­
ysis of Section 2.5. Figure 6 illustrates these axis systems. and
they are further explained as follows:

This is a fixed inertial axis with XI aligned
parallel to V00' The location of the origin is
arbitrary.

This axis is fixed to the undeflected sting and
moves (rotates and translates) with the unde­
fleeted sting. The origin is at the center of
the sector rotation and XII is directed along
the undeflected sting centerline. This is the
basic axis system from which sting deflections
are measured.

This axis system is fixed to the i th lumped mass
of the system and rotates and translates with
this mass. XIII' is tangent to the deflected
sting centerline.l The origin is arbitrary but
if chosen at the mass cg will eliminate terms
involving ximi and zimi in the motion equations.

Additional symbols and nomenclature and abbreviations us ed herein
are defined as follows:

Instantaneous axial force on the model. lb.
(Eq. (32) and Fig. 8)

Planform area of model, ft2

Planform area of the i th mass of the sting, ft2

Advanced transonic transport or advanced technol­
ogy tran sport.

Initial value of qk at t = to (Eg. (39b))

Initial value of elk at t =to (Eg. (39b))

Instantaneous axial-force coefficient (Eg. (32))

Angular deflection at i caused by unit force at
j (Eg. (7))
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CAM··IJ

C-S

CTF..
IJ

CTM ..
IJ

c

cg

DOF

Angular deflection at i caused by unit moment at
j (Ego (7))

Constant defined by Ego (41)

Flexibility influence coefficients (Ego (6))

Static aerodynamic pitching-moment coefficient
(Ego (28))

Aerodynamic pitch damping moment coefficient
caused by gR (Ego (27))

Total aerodynamic pitching-moment coefficient
(Ego (27))

Slope of static pitching-moment coefficient.
dCm/da (Ego (28))

Aerodynamic pitch damping moment coefficient
caused by a (Ego (27))

Static aerodynamic normal-force coefficient
(Ego (24))

Aerodynamic normal-force coefficient caused by
gR (Ego (23))

Total aerodynamic normal-force coefficient
(Ego (23))

Slope of static normal force coefficient.
dCN / da (Ego (24))

Aerodynamic normal force coefficient caused
by a (Eg. (23))

Carbide-Steel composite sting

Translational deflection at i caused by unit
force at j (Eg. (7))

Translational deflection at i caused by unit
moment at j (Eg. (7))

Distance from beam neutral axis to surface.
(Ego (2)). c =d/2 for circular cross-section
stings

Center of gravity or. more correctly. center of
mass location

Degrees of freedom (number of independent
coordinates necessary to describe motion)
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d

E

E1 to E5

F

FN

FCOFi.
FCOMi

f k

g

I

ID

i. j. k

K

K ..
1J

L

L1 to L5

L
Ncg

M

M
q

AEDC-TR-76-41

Aerodynamic reference length. ft or sting
diameter. in.

Modulus of elasticity or Young's Modulus.
Ib/in. 2

E for beam sections in STING-1 computer
program (Fig. 2)

Friction force (Eq. (33))

Static aerodynamic normal force. lb
(FN = qO) S CN)

Structural damping constants (Eq. (34))

General functional form of C]k (Eq. (39a))

Gravitational constant. lbm/lbf /ft/ sec2

Area moment of inertia of beam cross section.
in. 4 or ft4

Internal diameter of a hole through a sting
section. in. (Fig. 12)

Mass moment of inertia of the model or a
discrete lumped mass of the system represen­
tation. ft-Ib-sec2 (Eq. (17d))

General indices

Linear spring constant. force/deflection

Stiffnes s influence coefficients (Eq. (Sa))

Length of sting. in. or ft

Length of individual sting sections (Fig. 2)

Length from model nose tip to cg position. in.
(Figs. 12 and 17)

Total bending moment acting on sting at
station x, in. -lb, or ft-Ib

Total aerodynamic pitching moment, ft-Ib
(Eq. (26))

(qO) S d
2

/2 VO») C
m

q
2

(q 0) S d / 2 V 00) C
m.

Q'
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m

m·1
m lli

m12i

m21·1

m22'1
N

NT

Nl to NEND

Nq

N
bt

n

aD
PM

QDF.
1

QDMi

qoomax
RHl to RH5

Mass, Ib-sec2 /ft

Mass of i th system component, Ib-sec2 /ft

Quantity defined by Eqs. (36a) or (37a)

Quantity defined by Eqs. (36b) or (37b)

Quantity defined by Eqs. (36d) or (37d)

Quantity defined by Eqs. (36e) or (37e)

Number of DOF, N = 2n in the analysis of
Section 2. 5

Total aerodynamic normal force, lb (Eq. (22»

Station numbers in STING-l program (Fig. 2)

(qoo S d/2 V<D) CNq
(qoo S d/2 V <D) CND:

Number of lumped or concentrated masses
employed in system representation

Outer diameter of sting, in.

Static aerodynamic pitching moment, in. -lb or
ft-Ib (PM = qoo Sd em)

Non-conservative generalized force (or moment)
(Section 2.5.4)

General structural damping force, Ib (Eg. (34a))

General structural damping moment, ft-Ib
(Eq. (34b»

Generalized independent deflection coordinate,
used also with various indices such as i, j, or
i + n

dqk/ dt

d2qk/dt2

ap + e, rotational portion of aT' radian/ sec

Free-stream dynamic pressure which may be a
transient quantity, Ib/ft2

Maximum value of qoo' Ib/ft2

Hole radius in sting sections, STING-l Program,
in. (Fig. 2)
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(RHSF)i

(RHSM)i

R(Ni) -R(NEND)

S

T.
1

t

u

VABS

W·1

WM
Wi to W5

w

x
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Right-hand side of i th force Eq. (35a)
(Eqs. (36c) or (37c))

Right-hand side of i th moment Eq. (35b)
(Eqs. (36f) or (37f))

Radius at sting section discontinuities in
STING-i Program, in. (Fig. 2)

Reference area, ft2.
qk' (Eq. (40a))

fk , (Eq. (40b))

Total kinetic energy of sting-model system,
ft-1b (Section 2.5.2)

Kinetic energy of the i th mass of the system
representation, ft-1b (Section 2. 5.2)

Time, sec

Initial time, usually taken as zero before
transient conditions begin, sec

Total potential energy of the sting-balance
system, ft-1b (Section 2.5.3)

Absolute velocity of a particle of mass (dm),
ftl sec (Section 2.5.2)

Free-stream tunnel veo1city which is allowed
to be a transient quantity, ftl sec. V (J) must
be known to compute Qlplunge.

Weight of a concentrated mass, 1b

Weight of model, 1b

Specific weights of sting section material in
STING-i program, 1bl in. 3 (Fig. 2)

Specific weight of sting material, 1bl in. 3

General coordinate along undeflected sting
centerline measured from sector rotation
point, in.; also general distance coordinate

Horizontal location of XII' ZII axis origin with
respect to the XI' ZI axis origin, ft
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x·1

x·1

XIII·
I

z

z·1

.
z·1-z·1

z·1

Horizontal velocity component of Xn ~ Zn
axis (sting-model system moving as a rigid
body), ft/ sec

Horizontal acceleration component of Xn ~ Zn
axis~ ft/ sec2

xII.~ location of i th mass measured along unde-
1

flected sting centerline from model attachment
point~ in. (Eq. (16 c) ~ Fig. 6)

Location of cg of mass (mi) with respect to
XIII. ~ ZnI. origin~ ft (Eq. (17b)~ Fig. 6c)

1 1

Horizontal location of particle of mass (dm) with
respect to XI ~ ZI axis origin~ ft (Eq. (14a) ~

Fig. 6c)

xi ~ location of i th mass measured along unde­
flected sting centerline along XII from XII,

Zn axis origin~ ft (Eq. (16c), Fig. 6)

Location of particle of mass (dm) with respect
to Xnli ~ ZIni origin~ ft~ (Fig. 6b)

General deflection coordinate of sting center­
line~ measured perpendicular to undeflected
sting centerline~ in.

Vertical location of XII ~ Zn axis origin with
respect to the XI ~ ZI axis origin~ ft

Vertical velocity Xn ~ Zn axis (sting-model
system moving as a rigid body) ~ ft/ sec

Vertical acceleration component of Xn ~ Zn
axis~ ft/ sec2

ZII or qi ~ deflection of i th mass relative to
undeflected sting centerline~ in. (Eq. (16a)~

Fig. 6) also normalized deflections (eigenvectors)
in Eq. (11)

dz i / dt or cli ~ ft/ sec

d2z i / dt2 or qi ~ ft/ sec

Location of cg of mass (mi) with respect to
Xln. ~ ZnI. axis origin~ ft (Eq. (17c)~ Fig. 6c)

1 1
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Znose

zamplitude

e.
1

,
e.

1..
e.

1

e.
lav

e·Imax
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Vertical location of particle of mass (dm) with
respect to XI' Zl axis origin, ft (Eq. (14b),
Fig. 6c)

zi or qi' deflection of i th mass with respect
to XII axis, in. (Eq. (16a), Fig. 6)

Location of particle mass (dm) with respect
to XlIIi' ZIIli axis origin, ft (Fig. 6b)

Average amplitude of z, ft or in.

Maximum amplitude of zi' ft or in.

Amplitude of model nose tip translation, in.
(Fig. 17)

Oscillation amplitude of z, ft or in. ,
(z = Z - Z )amplitude max av

Pitch angle of sting-model acting as a rigid
system (rotation of XII' ZII axis), deg or rad

Angular rate of XII' ZII axis rotation, rad/ sec

Angular acceleration of XII, ZII axis, rad/ sec 2

Angle of attack caused by transverse plunging
velocity components, deg or rad (Eqs. (29), (43),
and (44»

Total angle of attack, deg or rad (Eq. (29»

daTI dt, rad/ sec (Eq. (30»

Moment arm of axial force, ft (£:'i = xiei ­
zl + zi) (Fig. 7)

Maximum bending strain at station x, in/ in. ,
(Eq. (3»

qi+n' rotational deflection of sting at station xi'
deg or rad (Eq. (16b»
,
qi+n' rad/ sec

'q' rad/ sec2
i+n'

Average amplitude of ei , deg

Maximum amplitude of ei , deg
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(J.
lamplitude Oscillation amplitude of (Ji. deg ((Ji l't d =

(J. _ (J. ) amp 1 u e
lmax lav

1/w2, (CTFij mi) matrix eigenvalue, (Eq. (11))

Maximum bending stress at station x. lb/ in. 2
(Eq. (2))

Material yield stress. lb/ in. 2 (Table 1)

Frequency of vibration of the i th mode. cps
(i = 1.2.3.etc.)
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