
ESD-TR-75-364

ESD ACCESSION LIST
DRI Call No... VVS^.3

opy ^SEAKCfl^N-AUrtJWlATIC PROGRAMMING

President and Fellows of Harvard College
Cambridge, MA 02138

December 1975

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

Ah&m^

LEGAL NOTICE

When U. S. Government- drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

GEORGE E/ REYNOLDS 0 CHESTER G. CLARK, Lt. Col., USAF
Engineering Planning Division (MCIO) Chief, Engineering Planning Division (MCIO)

FOR THE COMMANDER

* Ml fJ
FRANK J. EMM*, Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

«. REPORT NUMBER

ESD-TR-75-364

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLFfmdSubt/«.)

RESEARCH ON AUTOMATIC PROGRAMMING

5. TYPE OF REPORT ft. PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf»J 8. CONTRACT OR GRANT NUMBERfs)

FI9628-74-C-0083

9. PERFORMING ORGANIZATION NAME AND ADDKFSS

President and Fellows of Harvard College
Cambridge, MA 02138

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

Program Element 61101E
Project A02568

H. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, Hanscom AFB, MA 01731

12. REPORT OATF

3t December '975
13. NUMBER O"7 PAGFS

25
14. MONITORING AGENCY NAME 4 AODRESSflf dill-rent 'r^m Controlling Oflice) 15. SECURITY CLASS, (of thla report)

UNCLASSIFIED
15a. OLCLASSiFlCAriOi-l/DOWNGRADING

SCHEDULE
1 N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

| '7. DISTRIBUTION STATEMENT (of Ih* abatrncl erieied It: B.ock 2", It d'.ltermt from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revarae aide If necessary and Identify by block number)

Programming Languages Operating Systems
Programming Systems ARPANET

20. ABSTRACT (Continue on rererae aide 1/ neceeeary and Identify by block number)

This report describes the results of the program of rerearch carried out at Harvard
Unversity during the period October 1, 1973 through August 31, 1975 utilizing the
PDP-10 and various resources on the ARPANET. The results are concerned with
enhancement of the ECL Programming System, use of the ARPANET for data storage
and transfer, and devising system architectures for higher level languages.

DD 1 j°N 73 1473 EDITION OF t NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEfHTian Dmf Enlerad)
• i i »

SECURITY CLASSIFICATION OF THIS PAGEflWi»n Data Enlrrrd)

SECTION I

TECHNICAL SUMMARY

This report describes the results of the program of
research carried out at Harvard University during the period
October 1, 1973 through August 31, 1975 utilizing the PDP-10
and various resources on the ARPANET during that period.

The work was divided into three major areas: Automatic
Programming Research and Tools for Software Production; Data
Storage and Transfer; and, Operating System Research.

In the first area, our major results have been related
to the enhancement of the ECL Programming System and the
utilization of ECL as the basis for tools for software
production. We have also experimented with a number of
applications of ECL. Finally, a number of efforts have been
concerned with various aspects of the question of program
optimization.

During the period considerable use has been made of the
ARPANET for data storage and transfer; a major programming
system has been developed (PPL on the PDP-11/45) using a
variety of tools and resources at several sites on the net.

Our efforts in the operating systems area have been
concentrated primarily on devising system architectures for
higher level languages.

Finally, the last few months have seen the beginning of
design work on various components of a Program Manipulation
System — a system devised to integrate the various tools
for program development, optimization, and maintenance.

This research was undertaken pursuant to contract
F19628-74-C-0083 with Air Force Electronic Systems Division,
Hanscom Air Force Base, Bedford, Massachusetts.

SECTION II

INTRODUCTION

This report describes the results of the program of
research carried out at Harvard University during the period
October 1, 1973 through August 31, 1975 utilizing the PDP-10
and various resources on the ARPANET during that period.

The major area of effort has been that of developing
tools for software production and investigating various
aspects of automatic programming, particularly those having
to do with program transformation and optimization. During
the period the ECL system has been considerably enhanced and
a number of new tools developed based on ECL. The system
has also been used for production problems by at least one
government agency.

A second area of interest has been in the use of the
ARPANET and various resources for data storage and transfer
available at several locations on the net. Perhaps the
major accomplishment here was in tying together the
resources available at several sites to provide the tools
which we used to implement a major programming system -- a
full PPL system for the PDP-11/45 computer.

The third area, that of operating systems research, has
been concerned primarily with the question of machine
architectures for higher level languages.

The sections following are devoted to the various
research areas in which we have been working in the course
of the contract period. In each we have attempted to
provide a brief review of the problems with which we have
been concerned, cite the accomplishments during the contract
period, and provide reference to the Bibliography where the
reports, papers, and memoranda which contain the detailed
results are listed. Copies of these documents are available
upon request from the Librarian of the Center for Research
in Computing Technology.

SECTION III

AUTOMATIC PROGRAMMING AND TOOLS FOR SOFTWARE PRODUCTION

1. Construction of Tools

1.1 Development of the ECL System

General Improvements

As part of the general effort to improve the usability
of ECL for other tasks in this contract, a number of new
features were added during this contract period. The error
reporting and trapping facility was greatly expanded. Since
197^ the number of specific errors reported upon in detail
has been increased from fifty to one hundred and
twenty-four. Error messages of varying lengths keyed to
each specific error were put into an error message file,
expanding the text of the error messages from about 5000
characters to 23,000 characters. Appropriate user
accessible parameters are also provided for each error. By
revealing the precise nature of each error, these new
diagnostics have greatly facilitated the rapid debugging of
programs. In addition, they have been of great help to
those learning the ECL language.

Direct access I/O routines were added to the system,
thus allowing both random reading and writing of selected
bytes of a file. These routines were of great utility in
allowing the error message fite to be indexed and the
specific message for a given error to be rapidly accessed.
Also, by remembering the byte position at which routines are
defined in files to be compiled, it has now become possible
to segment the compilation of large packages efficiently.
The direct access 1/0 features were also of great use in the
implementation of paged procedures.

In addition, a case statement, more powerful selection
semantics, parallel declarations, and procedure mode
validation were added, and these features documented in the
new ECL manual [Manual]. The ECL system assembly language
code was modularized, and monitor dependent code isolated in
a single module in order to simplify the process of
producing a version of ECL appropriate for use with the
TENEX operating system used on many PDP-IOs. A document
describing the internal representation of ECL data types was
produced to ease maintenance, and to aid in implementing ECL
on other machines [Conrad 1].

(a) The ECL Compiler

The ECL compiler has been operational for over two
years; it has been tuned and improved during the

contract period. Its new features are principally
documented in [Manual] and [Opt-final], so they will
only be summarized here.

A number of compiler options have been added to
increase the efficiency of compiled code in situations
where critical simplifying assumptions about the
program or its data are not otherwise available. For
example, expression data (list structures that can be
both manipulated and evaluated) are quite common in
ECL; however, they must normally remain uncompiled. A
means has now been provided for specifying which
expression data values will not be modified and may
therefore be compiled. As another example, options now
make possible the elimination of run-time checks during
access of data components and pointer referents, so
that thoroughly debugged production programs are not
burdened with redundant type checking.

A variety of declarations about free variables may
be used. For example a free variable can be "frozen"
to given constant or shared values; if free variables
are not "frozen" the user may still provide certain
information about their modes and dynamic behavior.
Other declarations allow the programmer to control the
accessibility of local and global names in his
production package, creating precisely the environment
he wants its user to see.

Two methods now exist by which procedure calls may
be eliminated during compilation for efficiency. The
call may be replaced by an expression derived from the
procedure body by substituting actual expressions for
formal parameters. Or a user-defined routine may be
invoked during compilation to supply a replacement
derived from the given actual arguments. These
substitution features are useful for efficient
integration of user-defined mode behavior functions
into compiled code.

An optional optimization phase has recently been
added to the compiler. The optimizer is designed to
remove the sorts of redundancy that most commonly arise
in ECL programs, while staying within the strict
resource limits that usually govern use of the
compiler. Although ECL's semantic flexibility
complicates the data flow analysis problems of
redundancy removal, the optimizer incorporates a simple
data invalidation detection scheme that enables
significant improvements without elaborate analysis.

The user interface to the compiler (the collection
of programs that help the programmer develop the global

declarations that bind his routines into a production
package) has been expanded and smoothed. The use of
ECL's program editor in this package building process
has permitted the addition of features that make the
use of the compiler much more straightforward. Several
functions written using the editor's command repertoire
have been provided for manipulating compiler
declarations and checking them for consistency.

Using a new data module linking package,
facilities have been added that permit compiling large
programs in limited storage, either through separately
compiled modules linked at loading time or by
partitioning the program dynamically during
compilation.

(b) User-Defined Data Types

User-defined data types were introduced into hXL
in late 1972. They have been clarified and
strengthened by the addition of several features during
the present contract period. Fir3t, user-defined
generation functions are now used consistently
throughout the system in all instances of generation.
Second, the user generation function is now used as a
conversion function by taking conversion to be a case
of generation by example. Third, through the addition
of user-defined apparent dope vectors, it is now
possible to model dimensioned data structures (e.g.
matrices) using underlying representations which have
different dimensionality (e.g. pointers). The double
colon operator, which allows the specification of
extended modes, was changed to take keywords followed
by an argument to allow flexibility in defining the
behavior of these modes.

(c) Free Storage Management

The compactifying garbage collector and the
"fastmode" or "freebie count" storage allocation
method, made possible by the compactifying garbage
collector, became an integral part of the ECL system
early in the contract period. It has become possible
to handle much larger problems in a smaller period of
time because the compactifying garbage collector
enables "fragmentation", which results in a large
number of relatively small blocks of storage but
relatively few large blocks of storage, to be corrected
by consolidating discontinuous free storage regions
into one large contiguous free area. Fragmentation
inhibits the allocation of large blocks of storage even
though enough free space exists to accommodate them.
With the compactifying garbage collector, it has been

possible to allocate pages of core storage without
doing a garbage collection every time the storage free
list becomes empty. This ability to allocate storage
freely without damaging side effects has cut typical
garbage collection time figures by a factor of from
five to ten times [Conrad 2].

The compactifying garbage collector has also
allowed the addition of expandable stacks to the ECL
system. Since stack overflows can be trapped, and the
stacks lengthened without losing the context of the
program being run, the number of failures of programs
to run because of stack overflow has been greatly
reduced. The ability to adjust stack sizes dynamically
is particularly important because it is difficult to
determine in advance the stack requirements of a
particular program used with varying sets of data.

A CEXPR (compiled procedure) paging mechanism was
implemented in order to run larger programs in smaller
core sizes. The basic method used was to prepare a
"little brother" for each CEXPR to be paged; the
"little brother" determines whether its "big brother"
is already in core or whether it must be read in from a
disk file. The "little brother" contains the file name
and byte position of its "big brother" in the paging
file. These permit the "big brother" to be brought
rapidly into core, the recently implemented direct
access I/O routines. Routines to delete CEXPRs not
currently in use and to add the freed space to the
system's free list without a garbage collection were
also written. This paging mechanism has been
successfully used to page the ECL editor, a very large
program which requires only small subsets of its many
routines to be in core at any given time.

The attempt to implement the Bobrow-Wegbreit
control model revealed serious questions relating to
its overall effect on the efficiency of the ECL system.
Basically, the fact that new nomenclature (named
variables) may be introduced in any ECL statement (as
contrasted to LISP) leads to of very high overhead if
the Bobrow-Wegbreit control model is directly
implemented. The problem is particularly severe in
compiled code. Since the introduction of a new named
variable creates a new access environment that may need
to be retained, the compiler's ability to optimize
accesses would be greatly hampered. The matter is
treated in more detail in the reference,
"Bobrow-Wegbreit Control Model Reconsidered" [Conrad
33.

(d) SPECL Compiler

The SPECL (Systems Programming in ECL) project is
intended to extend the use of ECL into areas normally
reserved for so-called "implementation languages."
SPECL is a dialect of ECL for which code can be
compiled that runs without the support of ECL's runtime
facilities. It offers the opportunity to "contract"
ECL for special applications, since SPECL-produced code
can be augmented by just the runtime support (such as
storage management or I/O) that is actually needed.

SPECL also offers the user control over the actual
code generated for built-in functions and permits him
to control the selection of underlying data
representations down to the level of machine words and
bits, if he wishes. For example, suppose a programmer
wants to implement doubly linked lists using a minimum
of storage for the links. One trick is to give each
element a single link field containing the bitwise
Exclusive OR of the address of its predecessor with
that of its successor. Given pointers to any two
successive elements, it is then a simple matter to move
forward or backward along the list.

SPECL is ideal for such an application because it
permits the user to manage storage as he chooses and
allows him to give machine code definitions for the
necessary pointer operations. Access to the hardware
level is isolated in code generation templates called
Compiler Control Expressions (CCE). CCE's tell the
compiler how to implement a given operator, depending
on the states of its operands. The descriptions of
operand states serve as goals for the code generator
and they enable code selection for the various
situations in which the corresponding user-specified
operator will be used. Optimization of expressions
containing user-specified operators is safe because the
CCEs contain all the information about side effects and
register use that the compiler needs to know.

The compiler consists of three phases. The first
labels the program tree with temporary storage
requirements (for subtrees free of common
subexpressions) in a manner similar to the Sethi-Ullman
method. Properties required for register allocation
and assignment are attached to the program tree: lists
of variables potentially invalidated by assignments,
variables whose addresses may be tracked by register
allocation, and a variety of minor properties necessary
for code generation such as the number of locals
declared in a block. An initial pruning of the
possible code generation templates takes place as well.

The second phase operates on the tagged tree. It
reorders computations to try to minimize the use of
temporary storage. This step is necessary because the
Sethi-Ullman algorithm does not allow for common
subexpressions. The method is heuristic and incomplete
because the minimization problem is polynomial
complete.

Register allocation and assignment are also
performed during the second phase. Like minimization,
the assignment problem is polynomial complete, and it
is handled heuristically.

The third phase simply translates the optimized
program tree into object code.

Starting from a trial ordering of the expressions
in each context (straight-line program section), the
temporary-minimization procedure examines the variation
in storage requirements over each context. The
vicinities of peaks in the requirements are scanned for
target positions that meet a simple numeric criterion
based on the temporary usage and result size of the
neighboring computations. Expressions are moved to
these favorable positions in order to reduce overall
storage use. Subtrees free of common sub-expressions
move as units, subject to safety contraints. Most of
the time used by this process is actually spent in
recalculating the temporary requirements after an
expression has been moved.

Register allocation begins with analysis of
variables and common sub-expressions, first determining
in what regions their values are relevant and then
determining the minimum distance to next use of these
items. This information suffices for optimal register
allocation in straight-line code. Where branches are
involved, however, a simple distance-to-next-use is not
designated. Instead, the allocator must compare
distances using a heuristic. The best one would
include information about relative probabilities of
taking one branch over another. Lacking such
information the choice may be made on the basis of a
simple average. Once the allocator determines the
overall strategy of register allocation the assignment
process must determine which register to use for each
generation of a variable and must do it consistently at
branches and join points of the program. The allocator
must also allow for occasional specific register
assignments. Heuristics are needed to avoid a "try all
assignments" approach. At present, we have only simple
algorithms for this problem. As usual, the issue is
the trade-off between the cost of the algorithm and the

8

improvements in the code it makes.

In summary, then, SPECL extends to the hardware
level the methodology that characterizes code
improvement at higher levels. Users will be permitted
to become involved in the optimization of their
programs, and they will not need to forsake good
structure to achieve highly efficient performance.

(e) ECL Model

The original definition of the semantics of the
EL1 language [Wegbreit 2] was given as an EL1-coded
version of the interpreter -- the so-called ECL model.
By the fall of 1973, major revisions in the ECL system
had rendered this definition out of date as well as
incomplete. At that time, work was started to develop
a new model.

There were a number of motivations for this work.
First, as was the case in the thesis cited above, this
method of modelling has proved to be valuable both in
development and documentation. Partial models have
been coded on several occasions:

1. An updated model of portions of the interpreter
was prepared for instructional purposes during
fall, 1973.

2. The revised mode compiler was modelled [Conrad
2] in early 1975.

3. Modelling was used extensively in preparing the
revised edition of the ECL programmer's manual
[Manual] in January 1975.

4. The parser and parser window were modelled
during summer, 1975 [Sockut 1, 2, 3],

In the first two instances, the main purpose was
pedagogical. In the second instance, however, the
model preceded the implementation of the revision of
declaration semantics. Models have been an important
guide in the current development of the PDP-11/45
implementation of ECL.

In spring, 1974 we started a long-term effort to
develop a model for the entire ECL system, not just for
the interpreter. The major goal of the model is to
serve as a guide for implementations of ECL on other
hardware systems. Accordingly, much of the design
effort in the model entails the attempt to isolate the
machine-dependent aspects of the system (as has been

done in the machine language code for the PDP-10
implementation of the sytem) and, at the same time, to
preserve maximum readability of the code. A major
revision of the implementation strategy for the model
took place in spring, 1975 to this end.

(f) Editor

The ECL list structure editor (EDIT) is an in-core
editor which operates on the internal representation of
uncompiled routines and unevaluated data rather than on
character strings, as do conventional editors.

We have extended the editor to include a file
editing facility (FIXIT). FIXIT allows a package
consisting of one or more source files to be defined.
It loads the package by parsing each file to construct
a single block containing all of the commands in each
source file in the package. At the same time, it
relates each definition (that is, assignment command)
to the corresponding source file. The source files are
similarly related to the package so that several
packages may be in core at the same time. This process
is equivalent to loading, except that the properties
allow the file to be reconstructed for output.

A routine, FIX, may be used at any time during
debugging to apply EDIT to any routine loaded or to the
form representing any file loaded by FIXIT. In the
latter case, upon exit from the editor, FIX rebinds the
definitions in the file in case new or revised
definitions have been edited into the file form.
Finally, the routine DUMPE, taking a package name as
argument, will write out new versions of any files in
the package that have been edited or any of whose
definitions have been edited.

1.2 Programmable Theorem Prover

A number of issues relevant to developing a
programmable theorem prover were investigated. These
included techniques for specifying the behavioral properties
of some data structure in an implementation independent
manner, thus allowing verification of the correctness of
concrete implementations of the data structure. These
results are described in [Spitzen & Wegbreit].

1.3 Measurement Package

A number of additional mechanisms for measuring and
probing ECL programs have been completed during the contract
period. One is a procedure which takes the mode of a class

10

of data objects and returns the amount of space that an
object from that class will require on a PDP-10. We have
also extended the basic metering facility to permit a
(non-redundant) measure to be made of an arbitrary
collection of statements within a procedure. As part of
this extension we can now produce a profile display of the
metering results for greater readability. [Conrad 4]

1.4 Closure Mechanism

The closure mechanism [Wegbreit 1] is a program
transformation that replaces a procedure by an equivalent
one in which the values of some formal parameters and free
variables have been fixed and corresponding simplifications
have been made.

It is a kind of optimization that becomes increasingly
relevant as we learn more about "prefabricated construction"
techniques for building large systems from standard
components by tailoring them to special needs. It is well
suited to program development by stepwise refinement, an
implementation discipline that appears to enhance
reliability and maintainability of programs.

Just before and during the early part of the contract
period, we constructed a preliminary procedure closure
mechanism. The intent was two-fold. It was to provide
immediate benefit to ECL users as a practical
code-improvement tool, and it was to give us insight into
the nature of incremental optimization techniques. As a
practical tool, that preliminary closure program was not a
success. It proved awkward and very inefficient to use. It
was not released to the general ECL user community, and in
its stead several features were installed in the compiler.
These included the ability to "freeze" free variables to
constant or shared values or to fix their modes, facilities
for in-line procedure expansion and invocation, and
redundant expression optimization.

On the other hand, our experience with closure
profoundly shaped our views of how the programming process
can be automated. It has led us, in fact, to try to solve
the problem by generalizing it. Some of the key
difficulties raised by our study of the closure problem are:

(a) The need for precise user guidance.

As a semi-automatic tool, closure requires that
simplifying assumptions be supplied from which to
derive specializations. The restriction to assertions
about the free variables and formal parameters of an
entire procedure was too severe. In practice, one
needs to guide the simplifier to particular program

11

regions selected by pattern, by identifier scope, by
the data types of constructs to be affected, and the
like.

We have begun to satisfy this need for precise
guidance in program transformation by the development
of a Rewrite Mechanism [James] and by recent
improvements in the ECL program editor [Manual]. The
Rewrite Mechanism is a pattern-directed transformation
facility that permits replacement rules to be
associated with the lexical scopes of variables. These
rules can embody simplifying assumptions and they
themselves will be the object of simplifications (in a
future system). The ECL editor is also
pattern-directed, and it is now fully programmable, so
that user-defined transformation routines can be
applied to pattern-selected program regions.

(b) The need for program investigation aids.

Even though a program improvement tool may require
user help to achieve significant results, it should not
be assumed that the user is intimately familiar with
the program being processed. In the important case
that a library routine is being tailored to special
requirements, quite the opposite may be true. Thus,
facilities that help the user become familiar with a
program package should be provided, so that he can be
sure his simplifying assumptions about its behavior are
valid.

As a step toward such a facility, we have
implemented a program that studies free variable
reference patterns in an ECL package [Jensen]. The
information is displayed in a skeletal rendering of the
program that also exhibits its recursive calling
structure.

(c) The need for a data base supporting stepwise
development.

Large-scale software seems to be most reliable and
least expensive when it is produced in careful
increments, each of which specializes some aspect of an
abstract algorithm into more concrete terms.
Optimization should be involved at each step, or vital
information may be lost in the clutter of low level
detail. If the program must be reanalyzed each time an
optimizer is invoked, the cost is likely to be
extremely high and disciplined implementation may
disintegrate.

12

Thus the optimizer should be able to make
incremental improvements without full reanalysis by
maintaining a data base of information about the
program acquired through user assertion, measurement,
and analysis. Since implementation often proceeds by
trial and error, the data base should include a history
of the development and the user should be able to undo
decisions, revise them, and then repeat unaffected
portions of the implementation.

(d) The need for a common store of general-purpose
optimization techniques.

The closure experiment was an attempt to achieve a
limited class of code improvements with limited
resources. It demonstrated the difficulty of trying to
factor global program analysis into a set of
independent tools without gross duplication of effort.
A strong conclusion is that automatic programming tools
should be integrated around a single, general-purpose
semantic analyzer, so that all can share a common
representation, a common data base, and a store of
analytical and manipulative expertise.

To answer these needs, a new program manipulation
system is under development. Its basis will be a full
Symbolic Evaluator for ECL programs. This analyzer will
maintain a Program Data Base to support incremental
optmization and to preserve the refinement history of the
user's program as its implementation progresses.

These facilities will not be cheap. Deep analysis of
practical programs is costly to obtain and to maintain. On
the other hand, a deep analysis can be viewed as an
investment whose dividends will be the relative simplicity
of adding such special-purpose tools as closure, better code
generators to the kernel system for ECL and SPECL, and a
data representation optimizer.

2. Applications

2.1 Parallel Processing

The SYNVER system (see [Griffiths 2]) has been
developed during the contract period. The SYNVER system
permits a high level specification of problems in concurrent
control in the SAL specification language, which has been
designed and implemented. The SYNVER synthesizer then
generates ECL runnable code which enables concurrent
processes to communicate with each other in the manner
specified. A technique has now been developed whereby the
correctness of the specification can be verified.

13

Code generated to effect the synchronization makes use
of the ECL control extension facility (Prenner's CI, see
[Prenner]). The adaptation to a code generator for Hoare's
monitors (CACM, Oct. 1974) is written but not implemented.
In addition, a code generator for Dijkstra's P and V
semaphore operations [Dijkstra] is being developed. Initial
results for this code generator are very encouraging; in
many cases generated code is equivalent to that which would
be hand-written.

The results of this work are described in [Griffiths
2].

2.2 Data Type Optimization

The extension to ECL to accommodate sets, tuples,
stacks, and queues has been done. The extension includes
new notational facilities (in the case of sets) for more
natural specification of operations. We have used the mode
behavior facility to specify the intended behavior of
objects from the classes of data objects. In the case of
sets we have implemented several different underlying
machine representations for objects. In each case we have
defined the necessary primitive operations. We have not yet
solved the problem, however, of (mechanically) choosing
efficient representations for objects, taking into
consideration the access patterns and other primitve
operations on the objects (e.g. insertions and deletions).
This is a more difficult problem than anticipated, but it
still promises high pay-off.

2.3 Compound Objects and Operations

We have developed the foundations for exploring the
customizing of general purpose algorithms for the domain of
matrices. We have implemented a package of basic general
purpose operations and defined a collection of
representations for matrices, with particular concern for
sparse matrices. The package will use information about
algebraic properties (in particular algebraic identities) of
the matrices and do some optimization of the operations
taking into account these properties. It will also define
for the user some non-basic operations, such as transitive
closure, permitted by the properties. The package includes
a number of notational extensions to facilitate the user's
writing of iterations (e.g. M[I,*] to specify the selection
of the Ith row) and partitions of a matrix. Several
underlying representations have been implemented for sparse
matrices, and we are now at the stage of considering the
interaction among representations.

14

2.4 Resource Management

A linkage loading and dumping facility (LINK) which is
more general than those in previous systems has been added
to the ECL system. While the earlier version of the system
allowed a package to be compiled in several modules, which
were then loaded together for execution, linkage between
different nodules was effected by invocation of the
interpreter. In order to eliminate this interpretation at
run time, a reference to a routine external to the package
being compiled may be replaced at load time by a pointer to
a routine external to that particular compilation. This
affords exactly as tight binding as would have been the case
if the two routines had been compiled together.

External references are defined to the compiler by a
compiler driver list, which is a list of pairs containing
the identifiers and modes of external routines and/or data.
Following compilation, the linkage dumper traces all
compiled routines in order to locate all external references
in the compiled code. The results of compilation are then
dumped, together with tables which allow the linkage loader
to link separately-compiled modules to each other and, where
required, to routines and data which are already loaded.

The link dumper may, in fact, be used to separate a
mass of loaded routines and data into separate files. Inese
files will include the information required for linkage
loading, independent of use of the compiler. Due to the
manner in which routines and data are represented in core,
such separation can be effected for any data objects which
are bound to identifiers at top level or on the name stack.
Thus, for instance, if a data table consisted of, among
other things, a sequence of routines, different routines
might be dumped into different files with the resulting
files being reloadable. A forthcoming version of the
package will extend this behavior to arbitrary data objects
including those which are not necessarily related to a
compilation.

3. Related Research Efforts

3.1 Property Extraction

Property extraction is a generic name for a set of
techniques for efficiently extracting from some set of
programs a collection of properties which enable program
transformation and optimization. During the contract period
a prototype system to explore the technique was developed
and reported in [Scherlis]. Work is continuing.

15

SECTION IV

DATA STORAGE AND TRANSFER

4.1 Use of the DATACOMPUTER

Experience with the use of the DFTP (Datacoraputer File
Transfer Program) developed by Computer Corporation of
America (CCA)has shown that a more automatic method of file
archiving and retrieval, while feasible, is probably not
worth the development effort required. We have also
investigated the feasibility of referencing files stored on
the Datacomputer from ECL programs. While this facility is
easily irapleraentable in ECL, given recent improvements in
the input-output and error-handling facilities, the result
would be to overburden the currently limited number of
network ports on CCA's TENEX computer at very little gain to
our own operation. Therefore, no actual development work
has been undertaken in this area.

4.2 Datacomputer and Datalanguage Development

Except for several consultations with CCA, no work has
been done in this area. Our current attitude with regard to
conversion of data stored on the Datacomputer is that, in
the absence of economic justification in the case of any
particular application, the actual computations required
should take place at other sites. Such conversions may be
done with significantly less overhead by a facility which
knows both the source and target data types than is possible
at a centralized facility which must deal with a far larger
set of data types and formats.

4.3 Graphics Studies

The development of a sophisticated graphics system was
undertaken. The objective of this effort was to experiment
with the viability of graphics processors with graphics
instructions sets capable of directly interpreting a high
level data structure to produce graphical output. This
approach is to be contrasted with the classical real-time
compilation of a data structure into some low-level object
format suitable for execution by a graphics controllor.

A system that would support research in
micro-programmed graphics instruction sets was designed and
partially implemented. It consisted of a graphics processor
(PDP-11/40) linked to a local processor (PDP-11/10) and a
PDP-10 host machine. The PDP-11/40 was extensively modified
to be a dynamically micro-programmable graphics processor.
We added a writeable control store, hardware micro-program
development aids, and (partially implemented) registers
accessable at the micro-program level which drive display

16

hardware. A special interface allows the two PDP-11s to
share the same address space. A high-speed parallel channel
was built to permit fast access to the PDP-10.

Prints covering the installed hardware are available,
as well as listings of associated software. There were no
patentable inventions which resulted.

17

SECTION V

SYSTEM ARCHITECTURE FOR HIGH-LEVEL LANGUAGE

The problem of implementing complex computations as
embodied by, say, high-level languages has customarily been
attacked in relation to classical machine architectures.
These architectures have been and persist in being rather
arbitrary in that they do not, in any formalized way,
reflect the nature of the computations that are anticipated.

The problem of constructing machine architectures that
are appropriate to specific computational problems, (in
particular EL1 programs), is currently being investigated.
The objective of this effort is to develop formal methods by
means of which a system designer may take a representation
of a desired computation and transform it into an
implementation that capitalizes on the specific nature of
the computation.

The approach being pursued represents a computation
within a formalism that introduces no overhead and exhibits
all potential concurrency. This representation, resembling
an infinite Petri net, is then subjected to a series of
transformations that reduce it to a finite form, and in
particular, a form with properties making it readily
implementable by some set of hardware primitives. Each
transformation is chosen by the system designer and has a
quantitative effect on performance that may be readily
perceived.

This research is aimed at developing a system that
achieves representational and execution efficiency by using
EL1 as the lowest level of machine language. We seek to
determine the facilities and characteristics such a system
should possess as a whole.

This work is reported on in [Marcuvitz].

18

BIBLIOGRAPHY

[Brosgol] Bro3gol, Benjamin M., Deterministic translation
grammars, Ph.D. Thesis, Harvard University, November
1973; Center for Research in Computing Technology,
TH-3-7M.

[Byrn] Byrn, William H., Sequential processes, deadlocks,
and semaphore primitives, Ph.D. Thesis, Harvard
University, November 1974; Center for Research in
Computing Technology, TU-7-75.

[Cheatham] Cheatham, Thomas E., Jr., The unexpected impact
of computers on science and mathematics, Harvard
University, Center for Research in Computing
Technology, TR-27-74, December 1974.

[Cheatham & Townley 1] Cheatham, Tnomas E., Jr., and Judy A.
Townley, A proposed system for structured programming,
Harvard University, Center for Research in Computing
Technology, TR-11-72*, May 1974.

[Cheatham & Townley 2] Cheatham, Thomas E., Jr., and Judy A.
Townley, A look at programming and programming
languages, Harvard University, Center for Research in
Computing Technology, TR-18-75, June 1975.

[Cohen & Taft] Cohen, Dan, and Edward Taft, Harvard network
graphics systems, Working paper, Harvard University,
Center for Research in Computing Technology, TR-4-74,
November 1973.

[Conrad 1] Conrad, William R., A compactifying garbage
collector for ECL's non-homogeneous heap, Harvard
University, Center for Research in Computing
Technology, TR-2-74, January 1974.

[Conrad 2] Conrad, William R., Internal representations of
ECL data objects, Harvard University, Center for
Research in Computing Technology, TH-5-75, February
1975.

[Conrad 3] Conrad, William R., Bobrow-Wegbreit control model
reconsidered, Center for Research in Computing
Technology, Harvard University, March, 1975, CR-3-75.

[Conrad 4] Conrad, William R. , PROBE Timing Algorithms,
Harvard University, Center for Research in Computing
Technology, December 1975, CR-12-75.

[Dijkstra] Dijkstra, W.W., Cooperating Sequential Processes,
in Programming Languages, (F. Geneey, ed.), Academic
Press, New York, 1968, pp. 43-112.

19

[German] German, Steven li. , A program verifier that
generates inductive assertions, Harvard University,
Center for Research in Computing Technology, TR-19-74,
May 1974.

[Griffiths 1] Griffiths, Patricia, SAL: a very high
specification language, Harvard University, Center for
Research in Computing Technology, TR-25-74, November
1974.

[Griffiths 2] Griffiths, Patricia, SYNVER: a system for the
automatic synthesis and verification of synchronization
processes, Harvard University, Center for Research in
Computing Technology, TR-22-74, September 1974.

[James] James, Bernard, A rewrite mechanism for stepwise
refinement, Center for Research in Computing
Technology, Harvard University, April 1975, CR-4-75.

[Jensen] Jensen, Philip, Finding free variables in ECL
programs, Center for Research in Computing Technology,
Harvard University, May 1975, CR-5-75.

[Manual] ECL Programmer's Manual, revised edition. Harvard
University, Center for Research in Computing
Technology, TR-23-74, September 1974.

[Marcuvitz] Marcuvitz, Andrew, The impact of a high-level
language on systems architecture, Center for Research
in Computing Technology, February 1974, CR-2-74.

[Mealy] Mealy, George H., Data structures: theory and
representation, Harvard University, Center for Research
in Computing Technology, TR-10-75, May 1975.

[Opt-final] Final report on research in optimization
techniques. Harvard University, Center for Research in
Computing Technology, June 1975; ESD-TR-75-81.

[Prenner] Prenner, Charles, J., Multi-Path Control
Structures for Programming Languages. Ph.D. Thesis,
Harvard University, June 1972; ESD-TR-70-30; Harvard
University, Center for Research in Computing
Technology, TR-10-72.

[Scherlis] Scherlis, W.L. , On the weak interpretation method
for extracting program properties. Harvard,
University, Center for Research in Computing
Technology, May 1974, CR-5-74.

20

[Shostak] Shostak, Robert E. , Refutation graphs and
resolution theorem proving, Working paper, Harvard
University, Center for Research in Computing Tecnology,
TR-1-74, January 1974.

[Sockut 1] Sockut, C-ary, The new parse window, Harvard
University, Center for Research in Computing
Technology, October 1975, CR-9-75.

[Sockut 2] Sockut, Gary, Using and compiling the parser
table generator, Harvard University, Center for
Research in Computing Technology, October 1975,
CR-10-75.

[Sockut 3] Sockut, Gary, Using the ECL model's lexical
analyzer and parser, Harvard University, Center for
Research in Computing Technology, October 1975,
CR-11-75.

[Spitzen] Spitzen, Jay M., Approaches to automatic
programming, Ph.D. Thesis, Harvard University, June,
1974; Center for Research in Computing Technology,
TR-17-74.

[Spitzen & Wegbreit] Spitzen, Jay M., and Ben Wegbreit, The
verification and synthesis of data structures. Acta
Informatica, 4, 127-144 (1975).

[Wegbreit 1] Wegbreit, B. Procedure closure in EL1,
Computer Journal, 17, 38-43, (Feb. 1974).

[Wegbreit 2] Wegbreit, B. Studies in extensible languages.
Ph.D. Thesis, Harvard University, June 1970;
ESD-TR-70-297; Harvard University, Center for Research
in Computing Technology, TR-3-72.

21

