ESD-TR-76-67 e

o~ -,

Project Report 1TT-7

A. P. Modica
H. Kleiman

ADA024311

Statistics of Global IR
Atmospheric Transmission

3 March 1976

Prepared for the Defense Advanced Research Projects Agency
under Electronic Systems Division Contract F19628-76-C-0002 by
oo =3
Lincoin Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY '

LEXINGTON, MASSACHUSETTS

Approved for public release; distribution unlimited. 4’\’}

B




The work reported in this document was petformed at Lincoln Laboratory,
a center for rescarch operated by Massachusetts Institute of Technology.
This work was sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract F19628-76-C-0002 (Agf_;},p;dar-Q?SZ).

This report may be reproduced to satisfy needs of U.S. Gowt,agencxes.

The views and conclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
official policies, either exptessed or implied, of the Defense Advanced
Research Projects Agency of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

E&me C. Raabe, Lt.Col., USAF

Chief, ESD Lincoln Laboratory Project Office




)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

STATISTICS OF GLOBAL IR
ATMOSPHERIC TRANSMISSION

A. P. MODICA
H. KLEIMAN

Group 53

PROJECT REPORT TT-7

ACRESION o %
me P Suter g )
e M Stm ) 3 MARCH 1976
T

HETRIVDIS, ATMRMNITY €065
[ #a S sw/w Sl

at |

Apptaved for public telease; disttibution unlimited.

LEXINGTON MASSACNUSET TS



~

ABSTRACT

RAND weather data tapes have been used to obtain statistics of
visibility, relative humidity and cloud ceiling heights for a number of
global weather stations to generate probabilities for atmospheric attenuation
in the infrared spectral region. LOWTRAN atmospheric models for clear-air
and rural fog-haze transmission have been used to correlate the observed
photopic visibility (.55 - .66um) and humidity to the IR attenuation. A
maritime fog-haze model of Barhydt has been incorporated in the analysis
to predict atmospheric attenuation losses for the 8.0 - 11.5um band. Statis-
tics for rain attenuation in the 0.6 to 10.6um region were computed using
the extinction data reported by Rensch and Long. The basic results of the
study are global seasonal probabilities for horizontal sea level trans-
mission losses for several narrow IR bands (1.0 - 1.2), (3.8 - 4.2),

(8.0 - 11.5u) and four laser Yines (1.06), (3.83), (4.73), and (10.6um).
Correction factors are provided to scale horizontal transmission losses to

slant path transmittances. '

FRECEDING VAGE ELANK.LOT FILMED

—— S e —



CONTENTS

ABSTRACT ‘ iii
1. Introduction 1
2. RAND Weather Data Bases

3. Atmospheric Transmission Models

w NN

3.1 Clear .Air Transmission Equation

3.2 Fog-Haze Transmission Equaticn

3.3 Slant Path Correction Factor

. Rain Attenuation

WO NN W

. Cloud Free Line-of-Sight Probabilities

>
S i

4
5

6. Stations Selected for IR Weather Analysis N
7. Statistics 15
8

. Weather Statistics and IR Atmospheric Attenuation Averages 16 ffé
for Germany :

5 9, Use of IR-Weather Data: Examples 19
APPENDIX 27
REFERENCES k1|

‘ab,

L D NS P Rt YT WS S| e R G Lt g s
<




PREFACE

Weather statistics are extremely important in the design of electro-

optical systems for tactical operations. In the HOWLS Program, several

such systems are being considered. Existing analyses and weather statis- .

tics were inadequate for effectiveness evaluations and it was necessary to

initiate an effort to extrapclate available data. The present study is an

73; ' ?4 attempt to correlate extensive meteorological data from a network of global

weather stations sufficiently different in climatological conditions to

establish a representative data base on world-wide atmospheric attenuation

T Tt R I IR T ke
R o

3 oé,% in the 1.0-14.0um IR radiation band. Weather histories of photopic visibil-

ity and relative humidity were obtained from the RAND Weather Data Bank and

/fé i were reduced to IR atmospheric propagation mudels. The transmission models

k. "

5? | % used in the analysis are continuously being updated by current HOWLS weather

\éf ‘?{1% measureinents and through ongoing measurements programs under Project OPAQUE.

¥ b The results of this work should prove valuable to many users concerned with L

E;g_ ,é electro-optical, global all-weather performance. ; 3.

} - o ."je

o v 8

;ft - ?'f’
- - 5.
S , vi 3

L S e g it o me o vam



i e N S e i el v A R g s o
e e = i et et e e ety -

1. Introduction

Under the HOWLS Program, the analysis of FLIR imaging systems and IR
sensor devices for target acquisition and PGM (precision-quided munitions)
terminal guidance applications has led to the need to assess the impact of
weather statistics and atmospheric attenuation in fhe infrared on the effect-
iveness of such types of tactical weapon systems. The primary objective ofn
IR-weather analysis is to collate meteorological data for a number of world-

wide weather stations and to determine the extent and frequencies of IR

.....

humidity measurements. RAND Weather Tapes]

have been processed by a
computer to determine the seasonal and geographical variations of these
weather parameters for a number of selected Northern Hemisphere weather
stations: Berlin, Dresden, Essen, and Hamburg in Germany; Nicosia, Cyprus;
Cairo, Egypt; Hue, South Vietnam; Hanoi, North Vietnam; and Faimouth, MA,
USA. These statistics and the AFCRL LOWTRAN atmospheric models for clear
air and fog-haze transmission2 have been correlated to generate probability
curves for horizontal sea level atnospheric attenuation losses for three
narrow IR radiation bands (1.0-1.2), (3.8-4.2), (8.0-11.5um) and four

laser lines (1.06), (3.83), (4.73), (10.6um). Joint probabilities of trans-
mission losses with cloud ceiling height have also been computed and in-
dicate the seasonal and worldwide variability. Synoptic weather statistics
for precipitation, cloud ceiling heights and photopic visibilities have
been included for examination to demonstrate similarities and differences

in weather between the various geographical locations.
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2. RAND Weather Data Bases

Weather data have been compiled by the RAND Corporation] for a network

of global weather stations and are available on 9 track, 1600 bpi density

magnetic tapes. The data bank of each weather station is a chronology of

.
I R KT

atmospheric variables including the parameters of dew point temperature
(relative humidity), photopic visibility, weather conditions (rain, fog,

haze, drizzle, etc.) and cloud data (cloud amounts, ceiling heights). The

principle source of the RAND Weather Data Bank (RAWDAB) is derived from

weather observation records collected by the USAF Environmental Technical

Applications Center3. The RAWDAB tapes are written in EBCDIC Code having

a physical record block of 50 logical records, 96 characters in length.

Groups of weather stations in close proximity were chosen to compare sim-

ilarities in local weather conditions. Sufficient groups were chosen with

widely varying weather patterns to provide a representative global weather

data base.

3. Atmospheric Transmission Models

In the present study, the atmospheric attenuation of radiation in the
1.0-14.0um infrared region is of primary interest. Models for atmospheric
transmisSion in the IR deal primarily with molecular absorption by atmos-
phe}ic CO2 and water vapor gases, and with the scattering of radiation by
various types of aewosols (rural, continental, maritime), whose normalized
extinction coefficients are shown for comparison in Figure 1. The AFCRL
2

LOWTRAN computer program~ has been used to compute atmospheric transmittances
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for three narrow IR radiation bands (1.0-1.2), (3.8-4.2), and the (8.0-11.5um)
thermal band for horizontal sea level paths. The LOWTRAN code was run for
a sequence of relative humidities and visibility ranges with the resultant

transmittances being fitted to exponential laws of the form4:

’

3.1 Clear Air Transmission Equation

Ty = exp [-R(A/W + B)] (1)
and

3.2 Fog-Haze Transmission Equation

T. = exp [-R(A/V)] (2)

where R is the optical path length, km, W is the amount of H20 absorber,

ft per mm of precipitable H20 (Ft/mm-prec HZO)’ V is the photopic visibility
range, km, and A, B, and C are the coefficients derived from a three-point
average curve fit. The amount of water vapor absorber in ft/mm-prec HZO

is given in terms of the percent relative humidity, RH, and the air tem-

perature, TK (°K,) by5

16.8
W= 3.3010%) / [RH (?{17‘-—) . .616RH] (3)

or in terms of the H,0 partial pressureﬁ. P
2 H20

W= 0.114(10%) TK/P, 4 (8)
2
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Similar clear air and fog-haze transmission expressions were derived
for four IR laser lines using spectral absorption and extinction coefficients
obtained from AFCRL?. Barhydt's maritime fog-haze mode15|was used as a
Jower bound to the LOWTRAN rural aerosol model for the {8.0-11.5um) band.
Clear air trahsmission for the 10.6um laser line was calculated with the
eipression given by Long, et al, in a study of water vapor continuum ab-
sorption of 002 laser radiation near 1Oum6. A comparison of Barhydt's and
Long's transmission curves with the LOWTRAN Model is shown in Figure 2.
Figure 3 shows the clear air and fog-haze transmission curves for the IR
radiation bands calculated with the LOWTRAN code. A summary of the at-
mospheric clear air and fog-haze transmission models used in the meteorology
statistical analysis is given in Table 1. The difference in the trans-
mission equations for the bands and lines reflects the fact that the band
coefficients are related to vibrational-rotational line spectral absorption
and extinction factors integrated over the bandwidth. Based on the work of
Eldridgeg, the fog-haze atmospheric boundary occurs abruptly and represents
a transition at about a 1.2 km visibility, Hulbert9 has found that the
haze-clear boundary condition is more diffusive, approximately a 15 km
visibility range. Table 2 catalogs the different types of fogs according
to their photopic visibilities and compares the attenuation loss perfermances

for the (3.8-4.2) and (8.0-11.5um) bands, and the 1.06 and 10.6um laser

lines.
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TABLE 1

IR NARRGW BAND AND LASER LINE ATMOSPHERIC
TRANSMISSION EQUATIONS

Narrow Band Atmospheric Transmission in the Infrared

Radiation: Clear Air Transmission Fog Haze Transmission

1t
]

1-1.2)um T, = exp (-R[3.9/(W) + .065]} T =exp {-2.02%/(v) %)

F
(3.8-4.2)um

exp {-R[10.47/(K) + .098]}  T. = exp {-.796R/(v)*3%%}

T
b
(8-11.5)um T,

F

= exp {R[.987/(w) 38 T. = exp {-0.88/(V)!+26

W F
+ 5930/ (W) 8673

a. Ref. 2, b. Ref. 5

Laser Line Atmuspheric Transmission in the Infrared

Radiation: 3C1ear Air Transmission aFog;Haze Transmission

(1.06)um Ty = exp {-0.R/w) Tp = exp {-2.20R/(V)}

(3.83)um Ty = exp {-R(.002078 + 1.937/w)} Tp = exp {-.526R/(V)}

(4.73)um Ty = exp {-R(.0013 + 16.366/w)} Tp = exp {-.44R/(V)}

(10.60m  Pry = exp IR [144. (295. /7)1 9 Tp = exp {-.391R/ (V)

(10)"970/7K 0378 (TR/W)
+ 1078 (TK/W)2])
Units, W(FT/MM - prec Hy0, V(KH), R(KN), TK(°K)
a. Ref. 7, b, Ref. 6
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TABLE 2

COMPARISON OF FOG-HAZE VISIBLE/INFRARED
ATMOSPHERIC TRANSMITTANCES

*TYPE

IR BANDS uM LASER LINE uM

Hy0 CONTENT  VISIB DB KM 0B KM”!
(G/M3) (kM) (3.8-4.2) (8-11.5) 10.6 1.06

THICK

MEDIUM

LIGHT

MIST

HAZE

0.4 .03 69.9 45.3 58.1 318.4

16 .085 28.9 17.7 21.4 12.4

.063 170 16.4 10.1 1.5 56.2

.027 .30 10.3 6.6 7.2 31.8

.005 1.0 4.1 3.2 3.2 9.6

* Inland Fog @ 70°, 90% relative humidity

LOWTRAN rural fog-haze model
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The slant path correction factor % is used to convert sea level hori-

zontal attenuation losses to slant path attenuation losses and is given by

the expression.6

ETTRGE R e

. 3.3 Slant Path Correction Factor

(=

dh (5)

x 2

" -] -L -
A =L"" csed j e
_ 0 0

=

is the geometric mean vertical scale factor for the water

! where ¢

0

vapor number density and aerosol particle number density, L is the slant

path range, km, h is the vertical height, and ¢ is the elevation angle.

- Equation 5 was evaluated using the vertical scale normalized distributions

§hcwﬁ’in Table 3. Values of the slant path correction factors are given in

Figure 4 for slant angles bewween 0 and 90° elevation and slant ranges from

0.5 to 10 km. The geometric mean slant path correction factors are used 5, igf

Limiting exact solutions

for atmospheres having 2 km to 10 km visibilities.

for scaling sea level horizontal attenvation losses to slant path losses

are obtained by using the exact aerosol or water vapor slant path correction

factor for atmospheric visibilities <2 km and > 10 km, vespectively.

4, Rain Attenuation

In the visible and IR spectral region, attenuation by vrain is expected

to be independent of wavelength because the raindrop radius (typically, about

0.5 cm) is much larger than the wavelength where the Mie extinction effici-

ency factor asympcotically approaches the value 2. Measured values of the



a1z 0%Huyz]  uean -wosg g
(061) %081 “6 -3dp -iddy ‘-7 *uemslll 2
{5961) 3uswucsiaul aoeds pur S245A4dO3YH 3O AOOGHUEH i

¥00° h00° HH L£10° L2o° 850° 621° 271 W3R "WOZD

L¥00" 2v00° 9v00° S900° gLo- 610° 01 08083y 2

6£00° 9%00° 90" 601" 61° ve” 271 d¥A Y3LYA {

] £ [€5)]
Oksguin - (4)2

SNCILNBIYULISIQ T0S0¥3Y GNY B04¥A
Y3LYM JI¥IHISOWLY Y04 SYOLIVS IWIS TWIIL¥3A G371 TAYOH

€ 378Vt




RN i e SR A

M hcans
1 B R

S R T el DA PTO SR RSTR P

visible and IR extinction coefficients through rain are found to compare
favorab]y witq theoretical pv'ediction]0 as shown in Figure 5. These rain
attenuation résu]ts and the LOWTRAN clear air transmission models were used
to reduce meteorological relative humidity and visibility data to IR

attenuation losses through rain.

5. Cloud Free Line-of-Sight Probabilities

The cloud free line-of-sight (CFLOS) probability is another important
weather parameter used in optical-systems analysis and is defined as the
frequency of time an observer will find a line-of-sight unobstructed by
clouds along a viewing angle from ground level to a given point above
ground. RAND meteorological data have been queried to obtain seasonal
(CFLOS) statistics as a function of viewing angle, o and line-of-sight from
ground level to points, h in space. The CFLOS probabilities are computed

from the equation

[+<]

pCFLOS = ki() ¢ (a,k) + D (h,k), (6)

where D (h,k) is the cumulative probability that the cloud cover in eights,
k (Octas sky cover) will be equal to or less than a given height, and ¢
(a,k) is the clear view function (Table 4) related to the probability that
a cloud free line-of-sight will exist through cloud cover at or below the
viewing point along the viewing anglell. CFLOS probabilities have been
determined from available cloud data for Berlin, Essen, Hamburg, Nicosia,

Cairo, Hue and Falmouth USA representing the HOWLS weather data base. These
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results are given in Table A-2 of the appendix for viewing angles of 1, 2,
3, 5, 15, 45, 90 degree-elevation and line-of-sight paths from ground to
.333, .5, 1. and 2 km cloud heights.

Stations Selected for IR Weather Analysis

The RAND Weather Data Bank (RAWDAB) was used in the present study to

provide visibility, relative humidity, cloud ceiling heights and synoptic

weather parameters for four typical regions of the Northern Hemisphere;
Europe, North Africa, Southeast Asia and Eastern USA. A general meteorologi-

cal description of each geographic area is given below as summarized by
B

L T e T o s T M TR B T = 6 et

Rosen and Schutz.

Europe: (Berlin, Essen, Dresden, Hamburg)

S Y AT R
ez

OIS A SRy

These weather stations lie in the rolling hills of northern German

plains and come under the influence of a prevailing westerly flow of moist

e e EN S T e
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polar air generated in the North Atlantic high. There is extensive cloudi-

Rt

ness throughout the year and little regional variation in climate. In
winter, the moist Atlantic polar air becomes cool and stabilizes, resulting

in persistent low broken-to-overcast stratus or strato-cumulus cloud

.
'f
A
- §
1
é
g

cover. In summer, the hiohest cloud amounts occur during the day, since
the land is wavmer than the surrounding ocean creating unstable convective
currents in the moist polar air mass. Overcast conditions are half that
of winter, although the frequency of broken cloud cover remains about the
same. Cunulus and cumulonimbus clouds (rain clouds) tend to dominate.

The frequency of this cumuloniubus activity takes place on the average 4 to
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6 days per month. These line squalls are similar to those experienced
across the eastern United States, but are less violent because the polar

air masses tend to be less moist than the tropical air masses influencing

eastern United States.

North Africa: (Nicosia and Cairo)

These weather stations lie on the coastal reaches of the eastern
Mediterranean, and come under the influence of the Atlantic polar air mass
moving clockwise around the North Atlantic high. Expansion and compression
of this air mass while crossing the east-west mountain chain of western
Europe causes a loss in moisture. Before reaching the Nicosia and Cairo
areas, however, some moisture is again added to the lTower levels by passage
over the warm Mediterranean. This added moisture accounts for the high
percentage of scattered to broken clouds annually. Characteristically,
Cairo and the eastern Mediterranean coast are wet in winter and dry in
summer. In winter, storms intensify over the eastern portion of the polar
front in the vicinity of Cyprus on an average of 4 to 6 times per month
and account for the high percentage of broken-to-overcast cloud layers,

In summer, low strato-cumulus clouds move inland as the land cools in the
late afternoon. They remain through the night and then dissipate or form
small cumulus clouds by late morning as the land becomes warmer. During

the early morning period to early evening, the cloud cover increases rapidly

detween 2 and 4000 ft then remains constant. The low stratus or cumulus-

type clouds provide the only obscuration of the ground from all levels

g Tl
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above. Weak upper-level disturbances occasionally pass the eastern
Mediterranean area but have 1ittle or no effect on the cloud pattern be-

Tow 16,000 ft.

Southeast Asia: (Hue, Hanoi)

Vietnam and the remaining peninsula of Southeast Asia come under the
influence of two major monsoonal flows. From May to September, the south-
west monsoon brings dried tropical ocean air to the Hue area. In October
a shift begins, so that from November to March the northeast monsoon pre-
vails, sending moist polar confinenta] air into Hue and the surrounding
coast. These area masses are somewhat similar to those that infiuence the
area south and east of the Great Lakes. Winter conditions at Hue and along
the coastal slopes of the Annam Range (from about 12°N latitude to the Red
River delta) give broken-to-overcast low clouds approximately 70 parcent of
the time. This results from dry stable polar continental northeast flow
over the Gulf of Torkin and the South China Sea and accounts for the sharp
increase below 6000 ft of persistent low stratus and strato-cumulus weather.
From May to September, the period of the southwest wonsoon, cloudiness
during the daytime (0600 to 1800 LST) decreases caused by a drying of the
unstable tropical ocean air through an adiabatic cooling and heating process
as the air mass moves across the Annam Range from the southwest. Cloud
cover is predominantly scattered-to-broken cumulus-type clouds with base

heights around 2500 ft.

s,
|




Eastern United States: (Falmouth)

The east coast region of the United States comes under the influence
of the continental polar air mass in winter and a tropical ocean air mass in
summer. In winter, the eastern United States has clear weather about 8
percent of the time and has only 10 percent scattered cloudiness. The Gulf
Stream which carries moist tropical ocean air along a frontal path extending
to the western coast of Europe (England) is modified by the cooler polar
North Atlantic high, creating infrequent extended periods of fog for this
area. In winter, the same Gulf Stream is turned westward by this polar
Canadian high creating similar fog conditions along the eastern border of

the United States. Winter fogs in western Europe are similar to those of

eastern United States, both regions being fed by the same moist tropical

air masses. Summer weather is less complicated by extensive storms, al-
though line squalls in late spring and early fall sometimes prevail. The
predominant cloud is cumulus within the dominating moist, unstable Atlantic
air mass.

O0f the stations considered in this study, from an annual viewpoint,
Eastern United States and Europe represent the cloudiest stations. Hue or
Southeast Asia is next in amount of cloud-cover and the Cairo area, being
represented by a relatively dry polar air mass, has a minimum of cloud
cover, The information provided by these global weather areas represents in
this report a broad sample of the kind of climatic variation suitable to
form the basis for a statistical analysis applicable to atmospheric IR

attenuation losses on a worldwide scale.
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7. Statistics

Some meteorological data for certain weather stations were not avail-
able on the RAWDAB tapes for statistical analysis. It was found for example
that the Berlin and Falmouth tapes did not contain records on synoptic
weather conditions. Also, the Dresden and Hanoi tapes did not have data on
cloud ceiling heights. For clarification, a definition of the statistical
quantities used in the analysis will be briefly discussed here.

Frequency of occurrence: the fraction of time a statistical parameter

is recorded within a given data group.

Synoptic probability: the frequency of occurrence of a given weather

condition, i.e., rain, fog, haze, fraction of cloud cover.

Seasonal probability: frequency of occurrence during winter, DEC.

JAN. FEB.; Spring, MAR. APL. MAY; summer, JUN. JUL. AUG.; and fall, SEPT.
OCT. NOv.

Atmospheric attenuation probability: the integrated frequency of

occurrence where the meteorological parameter 1is equal to or greater than
its value (independent of cloud ceiling height).

Joint probability of cloud ceiling height and atmospheric attenuation:

probability that the attenuation is equal to or greater than its value and
the cloud ceiling height is equal to or below the indicated cloud height.

Cloud ceiling height probability: defines the integrated frequency

of occurrence of the cloud height being equal to or below the indicated

value.

!
{
!
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Photopic visual probability: defines the integrated frequency of

occurrence of the (.5 - .6um) visual range being equal to cr less than the
indicated value.

Attenuation losses of selected narrow band and laser line transmitt-
ances in the 1,0-14.0um IR region were calculated from relative humidity
and photopic visibilities, using clear air and rural fog-haze expressions
given by the AFCRL LOWTRAN atmospheric models. The LOQTRAN models for
rural, continental and urban aerosols show relatively small differences in
their normalized extinction coefficients for the 1.0-14.0um spectral region,
thereby making the present analysis less sensitive to the types of inland
fogs and almost completely general for correlation with photopic visibilities.
For the 8.0-11,5uwn band, atmospheric attenuation Yosses were computed with

the maritime fog-haze transmission model of Barhydt.

8. Weather Statistics and IR Atmospheric Attenuation Averages for Germany

Synoptic weather, photopic visibility and cloud ceiling height: The

synoptic weather averages for Germany (Figure 6) show that the frequency of
occurrence of clear days during the year varies from about 55 percent of the
time in winter and increases to about 70 percent of the time for summer,

The second dominant weather condition is rain, occurring about 25-30 percent
of the time throughout the year. The occurrence of fog appears to be
greater in winter and fall, but slightly less in spring and summer and
averages between 5 and 10 percent of the total weather events. The standard

deviations from the mean values suggest that for Gerimany or European weather
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there is little regiopal variation in climate throughout the year, in agree-

ment with the meteorological description of Rosen and Schutz.

visibilities equal to or less than 10 km occur about 80 percent of the time

in winter and about 40 percent of the time in summer. Poor weather, where

frequency between 5 and 10 percent throughout the four seasons and tends
to correlate well with the synoptic weather data for fog and haze frequen-
cies. Plots of short-term (6-hour time intervals) visibility data for

three European cities; Leipzig, Dresden, and Prague (Oct. 10-30, 1960) are

shown in Figure 8. These data have been cross-corre]ated]z, also, to show

the degree of temporal similarities in visibility for typical European
weather,

Cloud ceiling height averagés (Figure 9) show that base heights equal

to or below 1 km occur between 60 and 80 percent of the time for winter,
spring, and fall. In sumner, base heights that are equal to 1 km and below
occur about 55 percent of the time, again reflecting the year round cloudy
characteristics of European weather. Figure 10 shows that the short-term
variability of cloud ceiling height for Leipzig, Dresden and Prague. The
‘.almost complete correlation in cloud heights for these three weather zones
indicates that cloud cover extends uniformly over large distances in Europe,

IR atmospheric attenuation loss averages: Average IR attenuation

losses for Germany were computed for the three narrow band wavelengths,

(1.0-1.2), (3.8-4.2), and (8.0-11.5)um shown in Figure 11. The error bars
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in the figure indicate typically about a 10 percent standard deviation from
the mean values calculated from the Berlin, Dresden, Essen and Hamburg
weather data. The results show that for the (8.0-11.5)um band, the at-
tenuation loss in winter for clear and fog-haze weather conditions is equal
to or more than 1.5-1.75 dB/km about 10-5 percent of the time, respectively.
In summer, the (3.8-4.2)um band shows about the same statistics on the
average. The reason for the high performance of the (8.0-11.5)um band in
winter and the high performance of the (3.8-4.2)um band in summer is
accounted for by the low relative humidity in winter, since the (8.0-11.5)um
band is more sensitive to water vapor absorption and less sensitive to foé-
haze scattering. The (3.8-4.2)um band is better in summer, since this
spectral band is less sensitive to water vapor absorption or high relative
humidity and only moderately affected by fog-haze conditions. The (1.0-
1.2)um band which is most sensitive to aerosol scattering gives attenuation
losses about a factor of two greater for the same frequency of occurrence.

Rain attenuation loss averages: The average frequency for rain at-

tenuation losses in Germany is shown in Figure 12. The attenuation losses
were calculated for the {1.0-1.2), (3.8-4.2), (8.0-11.5)um IR bands and
the visible wavelength interval (.5 - .6)um. These calculations included
ciear-air water vapor absorption and losses due to rain drop scattering
and liquid absorption. These data show little variation in attenuation
losses for the IR-bands and the visible region, indicating that the
attenuation loss here is dominated by rain scattering and absorption and

less by clear-air water vapor absorption. The results show that for
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Germany, about 50 percent of the time, the atmospheric losses on the average
can be expected to be equal to or greater than 3 dB/km in rain.

Figure 13 is shown to compare the probability of atmospheric attenua-
tion losses for clear weather, fog-haze and rain atmospheric conditions.
This figure also shows rain rates correlated to attenuation lasses for the
visible (.5 - .6)um band. The results indicate clearly the advantages of
the IR bands for.fog-haze transmission over the visible band. It is also
noticed that in the visible, attenuation losses are greater in fog than in
rain all of the time. In the infrared, attenuation losses less than 2 dB/kn
occur in fog between 20 and 35 percent of the time. These conditions never
exist in the rain.

Attenuation due to rain is always greater than 2 dB/km, with 50 per-
cent of the rain having attenuation between 2 and 3 dB/km. However, for
infrared attenuation above 3 dB/km, an inversion takes place between rain
and fog transmission, where attenuation losses equal to or less than 3 dB/km

occur more frequently in rain than during foggy conditions.

9. Use of IR-Weather Data: Examples

Weather statistics and probabilities for IR and visible attenuation
losses are compiled in the Appendix according to the weather stations
studied in this vreport. A number of examples are treated here to illustrate
the use of these figures.

- Synoptic Weather Statistics (Figures A*.1)

These figures provide the fraction of time during the four seasons

~ g e ¥ T oty o R T




that clear weather, haze, fog, drizzle and rain occur, respectively.

- Probability of Cloud Ceiling Height (Figures A*,2) °

These figures, give the cumuiative probability, PCH(h), that a cloud
base will be equal to or less than a given altitude, h. The cumulative
probability that a cloud base will be equal to or greater than this altitude
is

Pey = 1 = Peylh).

The probability, PCH(S)’ that a cloud base will occur at or below a slant

range, L and elevation angle ¢ is

Pey(S) = Pey(H),

where H = L sin ¢, the terminal altitude of the siant path.

- Probability of Photopic Visibility (Figures A*.3)

These figures give the cumulative probability, Pvis(v)o’ that the

horizontal sea level visibility will be'equal to or less than a given

meteorological range, v. The probability that the visibility will be

equal to or greater than this range is

Pvis =1 - Pvis(v)o‘

The probability, pvis(v)s' that the visibility along a slant path, (V)S of
range, L and slant angle, ¢ is equal to or less than a given value is the
probability along an equivalent horizontal sea level visibility path,

(V)o. i.e.,




(V)O B (V)S X Aaero

4"
and A is the siant path correction factor for a slant range, L and angle, ¢

(Figure 4).

- Probability of Atmospheric Attenuation (Figures A*.4 and A*.5 bands and
Taser lines) ~

These figures give the cumulative probability, Pa(BA)o that the hori-
zontal sea level attenuation loss is equal to or greater than a given value,
BA for a particular band or laser line (A). The probability that the

attenuation loss is equal to or less than this value is

Pa=1-P (Bx)o‘

The probability, Pa(BA)s along a slant path of 'range, L and slant angle ¢ is

PG(EA)S ) Pa(BA)o

where (Bx)o is the equivalent sea level attenuation loss
IS
(8,), = (8,), * b

Ny
and A is the corresponding slant path correction factor. The joint pri-

nability Pa*1*2. that the attenuation loss is egual to oy greater than a

given value is

MA, L
Pa 172 = Pa(ﬁx

])o : Pa(a_k‘?)o
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for a horizontal sea level path and two wavelength intervals A] and AZ.
The corresponding probability for the attenuation loss to be equal to or

less than a certain value is %
Ady - . |
P12 = [1 - Pa(Bx])o ] [. Pa(BAZ)O]

For slant path joint probabilities the equations are

A = Y. = .
P12 {s) = P (B Vg P (B g3 P8y )y P (B )y
1 2 ] 2
where
’\:.l ;
(8, ), = (8 ) x4 |
Ano )\ns E

and n is either A] or kz.

- Joint Probability of Cloud Height/Atmospheric Attenuation (Figures A*.6
and A*.7 TR Rands and Laser Lines)

These figures give the joint probability PCH a’ that the horizontal L

sea level attenuation loss (B)‘)0 CH for a band or laser line will be equal

to or greater than a given value for cloud ceiling heights equal to or less

than a given altitude. The slant path probability that the attenuation

loss along the path is equal to or greater than a given value for a cloud

ceiling height equal to or less than a given altitude is

Pea Bads.ch = Pera Bado,cn

where

n,

A -1

8o, cn = By cn - As,on



v
and A cn is the slant path ~orrection factor evaluated for a slant range L,
’ h

and stant angle ¢ = arcsin (L). The conditional probability that the slant

path attenuation loss for two wavelengths be equal to or greater than a
given dB loss beconas
M

p
CH,aS

p =P

CH,a(BA])s ' CH,a(Bkz)s.

The probability that the slant path attenuation loss for two wavelengths
be equal to or less than a given dB loss is

172 _
'PCH,as ) [] ) PCH,a(BA])s] E ) PCH,a(BAZ)s]

The conditional probability that the cloud ceiling height be equal to or
greater than a given altitude, and the slant path attenuation for two wave-
Tengths be equal to or less than a given dB loss is

A A

AJA
172 . . 172
“ch’as - [] - PCH(h)] 'PCH‘aS

- HOWLS Application of These Data: Examples

1. Calculate for a 2-color IR passive homing sensor the probability
that the cloud ceiling height will be equal to or greater than .33 km al-
titude along a 3 km slant path where the attenuation loss for both the

(3.8 -« 4.2)um band and the (8.0 - 11.5)um band is less than or equal to

10 dB for winter (Hamburg, Germany, data). From Figure A4.2, the probability

for the cloud height to be equal to or yreater than .33 km is

JENERV P
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'PCH =1 - PCH(l) = 0.92

The slant angle, ¢ is

0

¢ = arcsin (;%3 =6

v

The slant path correction factor A for a slant range of 3 km and 6°

geom
slant angle is (Figure 4)

"

Ageom = 0.8

The equivalent horizontal sea level attenuation loss for the (3.8 - 4.2)um

and (8.0 - 11.5)um bands are
= - v
(B3 £)y = (Bg gl = (3.3) / .8 = 4 db/knm.

The corresponding probabilities that the attenuation loss will be equal to
or greater than 4 dB/km for cloud ceiling heights equal to or below .33 km

(Figure A4.6) are

(3.8-4.2)um band
Penya $333.8)0,1 =

07

(8.0-11.5)um band
Per.a 330000 °

05

The conditional probability that the cloud ceiling height be equal to or
greater than .33 km, and the 3 km slant path attenuation for the two wave-

lengths be equal to or less than 10 dB loss is




)\] Xz

CH,a, [.92101 - .071[1 - .05] ¥ .81

llp

i.e., about 80 percent of the time this conditional probability will occur.

2. Calculate for the IR Countermortar System the joint probability

as a function of slant angles (1°, 2°, 3°) that the cloud ceiling will be
equal to or greater than the terminal altitude for the slant range of 5 km

and a transmittance equal to or less than 12 dB in attenuation losses for

the (8.0-11.5)um band in winter (Hamburg, Germany, data). Using the same
procedure as in the previous example, the results of this problem are given
in Table 5. It is seen in this case, that the system will work about 40 per-
cent of the time in winter for a slant stare-angle of 3°, and that the
systems utility is increased to about 60 percent of the time for a stare-

angle of 1°.
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APPENDIX
The appendix contains the detailed results for each of the stations
used in this work.. Seven sets of plots (where data were available) are

given for each location, as follows: §'

- Probability of Synoptic Weather (for each season)

- Probability of Cloud Ceiling Height

-----

~ Probability of Atmospheric Attenuation for IR Bands (for each of

8.0-11.5, 3.8-4.2, and 1.0-1.2um bands)
- Probability of Atmospheric Attenuation for IR Lines (for each of

10.6, 4.73, 3.8, and 1.06um laser lines)

- Joint Probability of Cloud Heights and Atmosbheric Attenuation for

IR Bands (for each of three bands and altitudes of 0.33, 0.5, 1.0,

and 2.0 km) j
- Joint Probability of Cloud Height and Atmospheric Attenuation for

IR Lines (for each four lines and four altitudes)

Probability curves are given for each of the nine stations listed below.

Berlin, Germany (52°-28'N, 13°-24'E)
Dresden, E. Germany (51°-08'N, 13"-46'E)
Essen, Germany (51%-24'N, 6°-58'E)
Ef Hamburg, Germany (539-38'N, 9%-59'¢) ; é;f
;f Cairo, Egypt (30°-8'N, 310-&4'E) %-f;)
" Ef Nicosia, Cyprus (35%-9'N, 33%-17'E) §»ii

‘»3 Hue, S. Vietnam (16%-24'N, 1070»51'5)
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Hanoi, N. Vietnam (21°-1'N, 105°-511F)
Falmouth, Mass. USA (41°-39'N, 70°-31'W)

Table A-1 indicates the figure number which presents each of these

sets of data.

s ;iiﬁ - Table A-2 gives seasonal cloud free line-of-sight statistics as a

function of viewing angle and line-of-sight path above ground for the

same geographic area.

. i

) I

g ]

7 14

& i B

B SR s '

i f .

i ;
L i




a|gejLeAe jou ejep |edLbofol093ay

aqe|Leae jou ejep jeoibojoscsazaw jutop

sauLy J43se] ¥i

L e -ua3ly -ouny/pnoy) -Goid 3u16p

spueg 41

E ‘ua33y -ouIy/pPNoLd "qo4d 3uiop

s3uL] J43se] Yl

5tV -us13y -ouly -qoid

spueg I

L4 ‘U333Y TouRy -qodd

€Y A3r1191s1A D1do3olg Godd

A4 Bul{1a3 pnoy) -gqodd

Loy Lzy 43y3eal D13douks -qoig

y3nowje4 Bangquey uapsasg

NOILVANILLY JIYIHISOWLY CNY HIHIVYIM
TYIILSTLIVIS 9INIIN3ISIUd XIGNIddV NI SI¥N9Id
-v 378vL

o s bt £ ST A A T




TABLE A-2

GLOBAL CLOUD .FREE LINE-OF-SIGHT STATISTICS
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Fig. A 2.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands 3
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Joint meterorological data not available.

Fig. A 5.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands

Joint meterorological data not available.

Fig. A 5.7 Joint Probability of Cloud Height and Clear Air/fFog-Haze
Attenuation for Laser Lines
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Joint meterorological data not available.

Fig. A 7.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands

Joint meterorological data not available.

Fig. A 7.7 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for Lasexr Lines
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Joint meterorological data not available.

Fig. A-8.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands

Joint meterorological data not available.
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Fig. A 8.7 Joint Probability of Cloud Height and Clear Aiv/Fog-Haze
Attenuation for Laser Lines
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Attenuation for IR Radiation Bands
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