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p ABSTRACT

*RAND weather data tapes have been used to obtain statistics of

Z visibility, relative humidity and cloud ceiling heights for a number of

global weather stations to generate probabilities for atmospheric attenuation

in the infrarecq spectral region. LOWTRAN atmospheric models for clear-air

and rural fog-haze transmission have been used to correlate the observed

photopic visibility (.55 - .66j1im) and humidity to the IR attenuation. A

maritime fog-haze model of Barhydt has been incorporated in the analysis

to predict atmospheric attenuation losses for the 8.0 - l1.511m band. Statis-

tics for rain atfanuation in the 0.6 to 1O.Gwiim region were computed using

the extinction data reported by Rensch and Long. The basic results of the

J study are global seasonal probabilities for horizontal sea level trans-

mission losses for several narrow IR bands (1.0 - 1.2), (3.8 - 4.2),

(8.0 11l.50i and four laser lines (1.06), (3.83), (4.73), and (l0.6win).

Correction factors are provided to scale horizontal transmission losses to

slant path transmnittances. 3
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PREFACE

Weather statistics are extremely important in the design of electro-

optical systems for tactical operations. In the HOWLS Program, several

such systems are being considered. Existing analyses and weather statis-

tics were inadequate for effectiveness evaluations and it was necessary to

' initiate an effort to extrapolate available data. The present study is an

attempt to correlate extensive meteorological data from a network of global
weather stations sufficiently different in climatological conditions to

establish a representative data base on world-wide atmospheric attenuation

i in the l.O-14.O0im IR radiation band. Weather histories of photopic visibil-

ity and relative humidity were obtained from the RAND Weather Data Bank and

were reduced to IR atmospheric propagation mudels. The transmission models

used in the analysis are continuously being updated by current HOWLS weather

measurements and through ongoing measurements programs under Project OPAQUE.

The results of this work should prove valuable to many users concerned with

electro-optical, global all-weather performance.
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I. Introduction
Under the HOWLS Program, the analysis of FLIR imaging systems and IR

sensor devices for ,target acquisition and PGM (precision-guided munitions)

terminal guidance applications has led to the need to assess the impact of

weather statistics and atmospheric attenuation in the infrared on the effect-

iveness of such types of tactical weapon systems. The primary objective of
IR-weather analysis is to collate meteorological data for a number of world-

wide weather stations and to determine the extent and frequencies of IR

attenuation losses extrapolated from photopic visibilities and relative

humidity measurements. RAND Weather Tapes have been processed by a

computer to determine the seasonal and geographical variations of these

weather parameters for a number of selected Northern Hemisphere weather

stations: Berlin, Dresden, Essen, and Hamburg in Germany; Nicosia, Cyprus;

Cairo, Egypt; Hue, South Vietnam; Hanoi, North Vietnam; and Falmouth, MA,

USA. These statistics and the AFCRL LOWTRAN atmospheric models for clear

air and fog-haze transmission2 have been correlated to generate probability

curves for horizontal sea level atmospheric attenuation losses for three

narrow IR radiation bands (1.0-1.2), (3.8-4.2), (8.0-11.Sxm) and four

laser lines (1.06), (3.83), (4.73), (10.6pm). Joint probabilities of trans-

"mission losses with cloud ceiling height have also been computed and in-

dicate the seasonal and worldwide variability. Synoptic weather statistics

for precipitation, cloud ceiling heights and photopic visibilities have

been included for examination to demonstrate similarities and differences

in weather between the various geographical locations.
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2. RAND Weather Data Bases

Weather data have been compiled by the RAND Corporation1 for a network

of global weather stations and are available on 9 track, 1600 bpi density

magnetic tapes. The data bank of each weather station is a chronology of

atmospheric variables including the parameters of dew point temperature

(relative humidity), photopic visibility, weather conditions (rain, fog,

haze, drizzle, etc.) and cloud data (cloud amounts, ceiling heights). The

principle source of the RAND Weather Data Bank (RAWDAB) is derived from

weather observation records collected by the USAF Environmental Technical

Applications Center 3. The RAWDAB tapes are written in EBCDIC Code having

a physical record block of 50 logical records, 96 characters in length.

Groups of weather stations in close proximity were chosen to compare sim-

ilarities in local weather conditions. Sufficient groups were chosen with

widely varying weather patterns to provide a representative global weather

data base.

3. Atmospheric Transmission Models

In the present study, the atmospheric attenuation of radiation in the

l.O-14.04nm infrared region is of primary interest. Models for atmospheric

transmis~ion in the IR deal primarily with molecular absorption by atmos-

* pheric CO2 and water vapor gases, and with the scattering of radiation by

various types of aerosols (rural, continental, maritime), whose normalized

extinction coefficients are shown for comparison in Figure 1. The AFCRL

LOWTRAN computer program has been used to compute atmospheric transmittances
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for three narrow IR radiation bands (1.0-1.2), (3.8-4.2), and the (8.0-11.51rm)

thermal band for horizontal sea level paths. The LOWTRAN code was run for

;j a sequence of relative humidities and visibility ranges with the resultant

transmittances being fitted to exponential laws of the form4:

3.1 Clear Air Transmission Equation

Ta = exp [-R(A/W + B)] (1)

and

3.2 Fog-Haze Transmission Equation

TF exp [-R(A/Vc)] (2)

where R is the optical path length, kmi, W is the amount of H120 absorber,

ft per mm of precipitable, H20 (Ft/nm-prec H20), V is the photopic visibility

range, km, and A, B, and C are the coefficients derived from a three-point

average curve fit. The amount of water vapor absorber in ft/mm-prec H120

is given in terms of the percent relative humidity, RH, and the air tem-

perature, TK (°K,) by 5

r 'TK~ 16.8
I W 3.3(10 ) /I H TK7- - .616RH (3)

p 6or in terms of the H20 partial pressure6, PH1 0
2

W = 0.114(102) TK/PH2 (4)

Hi 0

2
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I Similar clear air and fog-haze transmission expressions were derived

for four IR laser lines using spectral absorption and extinction coefficients 0

obtained from AFCRL?. Barhydt's maritime fog-hazL model was used as a

lower bound to the LOWTRAN rural aerosol model for the (8.0-II.5pm) band.

Clear air transmission for the lO.6pJm laser line was calculated with the

expression given by Long, et al, in a study of water vapor continuum ab-

sorption of CO2 l.aser radiation near lOpm6 . A comparison of Barhydt's and

Long's transmission curves with the LOWTRAN Model is shown in Figure 2.

Figure 3 shows the clear air and fog-haze transmission curves for the IR

radiation bands calculated with the LOWTRAN code. A summary of the at-

mospheric clear air and fog-haze transmission models used in the meteorology

statistical analysis is given in Table 1. The difference in the trans-

mission equations for the bands and lines reflects the fact that the band

coefficients are related to vibrational-rotational line spectral absorption

and extinction factors integrated over the bandwidth. Based on the work of

EldridgeB, the fog-haze atmospheric boundary occurs abruptly and represents

.1 a transition at about a 1.2 km visibility. Hulbert 9 has found that the

haze-clear boundary condition is more diffusive, approximately a 15 km

visibility range. Table 2 catalogs the different types of fogs according

Sto their photopic visibilities and compares the attenuation loss perfeorances

for the (3.8-4.2) and (80-ll.5wii) bands, and the 1.06 and l0.6um laser

lines.
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"TABLE 1

IR NARROW BAND AND LASER LINE ATMOSPHERIC
TRANSMISSION EQUATIONS

Narrow Band Atmospheric Transmission in the Infrared

Radiation: Clear Air Transmission Fog Haze Transmission

a(l-1.2))im TW : exp {-R[35.9/(W) + .065]} TF = exp {-2.02R/(V) 997}

(3.8-4.2)pm Tw exp {-R[IO.47/(W) + .098]) TF exp {-.796R/(V).855

b(g-ll.5)pm TW = exp {R[.987/(W)' 38 4  TF = exp {-0.8R/(V)I' 26 }

+ 5930/(W)1 86]D

a. Ref. 2, b. Ref. 5

Laser Line Atmospheric Transmission in the Infrared

Radiation: aClear Air Transmission Fog-Haze Transmission

(1.06)pm Tw = exp {-O.R/w) TF exp {-2.20R/(V)}

(3.83)ipm TW exp {-R(.002078 + 1.9371w)} TF exp {-.526R/(V))

(4.73)w TW exp {-R(.0013 + 16.366/w)) TF exp {-.44R/(V))

(10.6)im = exp '-R (144.(295./TK) 1 5  TF exp {-.391R/(V))'* W

(10)"970/TK + .0374 (TK/W)

+ .1078 (TK/W) 1)

Units, W(FT/MM - prec H20, V(KI4), R(KM), TK( 0 K)

a. Ref. 7, b. Ref. 6

15
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TABLE 2

COMPARISON OF FOG-HAZE VISIBLE/INFRARED
ATMOSPHERIC TRANSMITTANCES

V IIR BANDS pM1 LASER LINE piM

H0CONTENT VISIB DB KM~ DB KM1

*TYPE 2(GtM3) (KM) (3.8-4.2) (8-11.5) 10.6 1.06

*ITHICK 0.4 .03 69.9 45.3 58.1 318.4

MEDIUM .16 .085 28.9 17.7 21.4 112.4

* ILIGHT .063 .170 16.4 10.1 11.5 56.2

MIST .027 .30 10.3 6.6 7.2 31.8

HAZE .005 1.0 4.1 3.2 3.2 9.6

*Inland Fog @ 700, 90% relaitive humidity

LOWTRAN rural fog-haze model
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The slant path correction factor Ais used to convert sea level hori-

zontal attenuation losses to slant path attenuation losses and is given by

the expression.6

3.3 Slant Path Correction Factor

hsýe ý dh (5)

.= . cse

e H
0

where a - n is the geometric mean vertical scale factor for the water
AU

H0

vapor number density and aerosol particle number density, L is the slant

path range, ks , h is the vertical height, and is the elevation angle.

Equation 5 was evaluated using the vertical scale normalized distributions

showh in Table 3. Values of the slant path correction factors are given in

Figurea 4 for slant angles between 0 and 900 elevation and slant ranges from

0.5 to 10 kmis. The geometric mean slant path correction factors are used

for atmospheres having 2 km to 10 km visibilities. Limiting exact solutions

for scaling sea level horizontal attenuation losses to slant path losses

are obtained by m ising the exact aerosol or water vapor slant path correction

factor for atjospheric visibilities ,- 2 km and > 10 kin, respectively.

4. Rain Attenuation

In the visible and IR spectral region, attenuation by rain is expected

to be independent of wavelength because the raindrop radius (typically, about

0.5 cm) is much larger than the wavelength where the Mie extinction effici-,

ency factor asypcotically approaches the value 2. Measured values of the

7
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visible and IR extinction coefficients through rain are found to compare

favorably with theoretical predictionI 0 as shown in Figure 5. These rain

attenuation results and the LOWTRAN clear air transmission models were used

to reduce meteorological relative humidity and visibility data to IR
attenuation losses through rain.

5. Cloud Free Line-of-Sight Probabilities

The cloud free line-of-sight (CFLOS) probability is another important

weather parameter used in optical-systems analysis and is defined as the

frequency of time an observer will find a line-of-sight unobstructed by

clouds along a viewing angle from ground level to a given point above

ground. RAND meteorological data have been queried to obtain seasonal

(CFLOS) statistics as a function of viewing angle, a and line-of-sight from

ground level to points, h in space. The CFLOS probabilities are computed

from the equation

PCFLOS E c (a,k) , D (h,k), (6)
k=O

where D (h,k) is the cumulative probability that the cloud cover in eights,

k (Octas sky cover) will be equal to or less than a given height, and c

"(ctk) is the clear view function (Table 4) related to the probability that

a cloud free line-of-sight will exist through cloud cover at or below the

11. . . . ...... viewing point along the viewing angle . CFLOS probabilities have been

"detenniined from available cloud data for Berlin, Essen, Hamuurg, Nicosia,

Cairo, Hue and Falmouth USA representing the HOWLS weather data base. These

9
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results are given in Table A-2 of the appendix for viewing angles of 1, 2,

3, 5, 15, 45, 90 degree-elevation and line-of-sight paths from ground to

.333, .5, 1. and 2 km cloud heights.

S6. Stations Selected for IR Weather Analysis

The RAND Weather Data Bank (RAWDAB) was used in the present study to

provide visibility, relative humidity, cloud ceiling heights and synoptic

weather parameters for four typical regions of the Northern Hemisphere;

Europe, North Africa, Southeast Asia and Eastern USA. A qeneral meteorologi-

cal description of each geographic area is given below as summarized by

Rosen and Schutz.l

Europe: (Berlin, Essen, Dresden, Hamburg)

These weather stations lie in the rolling hills of northern German

plains and come under the influence of a prevailing westerly flow of moist

polar air generated in the North Atlantic high. There is extensive cloudi-

ness throughout the year and little regional variation in climate. In

4 'winter, the moist Atlantic polar air becomes cool and stabilizes, resulting

in persistent low broken-to-overcast stratus or strato-cumulus cloud

cover. In sumier, the higihest cloud amounts occur during the day, since

t • the land is warmer than the surrounding ocean creating unstable convective

currents in the moist polar air mass. Overcast conditions are half that

of winter, although the frequency of broken cloud cover remains about the

same. Cumulus and cumulonimbus clouds (rain clouds) tend to dominate.

The frequency of this cumulonimbus activity takes place on the average 4 to

* 11



6 days per month. These line squalls are similar to those experienced

across the eastern United States, but are less violent because the polar

air masses tend to .be less moist than the tropical air masses influencing

1' eastern United States.

"North Africa: (Nicosia and Cairo)

These weather stations lie on the coastal reaches of the eastern

Mediterranean, aid come under the influence of the Atlantic polar air mass

moving clockwise around the North Atlantic high. Expansion and compression

of this air mass while crossing the east-west mountain chain of western

Europe causes a loss in moisture. Before reaching the Nicosia and Cairo

areas, however, some moisture is again added to the lower levels by passage

over the warm Mediterranean. This added moisture accounts for the high

percentage of scattered to broken clouds annually. Characteristically,

Cairo and the eastern Mediterranean coast are wet in winter and dry in

s uniiuer. In winter, storms intensify over the eastern portion of the polar

front in the vicinity of Cyprus on an average of 4 to 6 times per month

and account for the high percentage of broken-to-overcast cloud layers.

In summner, low strato-cumulus clouds move inland as the land cools in the

late afternoon. They remain through the night and then dissipate or form

small cumulus clouds by late morning as the land becomes wanmier. During
the early morning period to early evening, the cloud cover increases rapidly

ietween 2 and 4000 ft then remains constant. The low stratus or cwnulus-

type clouds provide the only obscuration of the ground from all levels

12
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above. Weak upper-level disturbances occasionally pass the eastern

Mediterranean area but have little or no effect on the cloud pattern be-

low 16,000 ft. ,

Southeast Asia: (Hue, Hanoi)

Vietnam and the remaining peninsula of Southeast Asia come under the

influence of two major monsoonal flows. From May to September, the south-

west monsoon brings dried tropical ocean air to the Hue area. In October

a shift begins, so that from November to March the northeast monsoon pre-

vails, sending moist polar continental air into Hue and the surrounding

coast. These area masses are somewhat similar to those that infiuence the

area south and east of the Great Lakes. Winter conditions at Hue and along

the coastal slopes of the Annam Range (from about 12°N latitude to the Red

River delta) give broken-to-overcast low clouds approximately 70 percent of

the time. This results from dry stable polar continental northeast flow

over the Gulf of Tonkin and the South China Sea and accounts for the sharp

increase below 6000 ft of persistent low stratus and strato-cumulus weather.

From May to September, the period of the southwest monsoon, cloudiness

during the daytime (0600 to 1800 LST) decreases caused by a drying of the

unstable tropical ocean air through an adiabatic cooling and heating process

as the air mass moves across the Annam Range from the southwest. Cloud

cover is predominantly scattered-to-broken cumulus-type clouds with base

heights around 2500 ft.

13
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Eastern United States: (Falmouth)

The east coast region of the United States comes under the influence

of the continental polar air mass in winter and a tropical ocean air mass in

summer. In winter, the eastern United States has clear weather about 8

percent of the time and has only 10 percent scattered cloudiness. The Gulf

Stream which carries moist tropical ocean air along a frontal path extending

to the western coast of Europe (England) is modified by the cooler polar

North Atlantic high, creating infrequent extended periods of fog for this

area. In winter, the same Gulf Stream is turned westward by this polar
Canadian high creating similar fog conditions along the eastern border of

the United States. Winter fogs in western Europe are similar to those of

I eastern United States, both regions being fed by the same moist tropical

air masses. Summer weather is less complicated by extensive storms, al-

though line squalls in late spring and early fall sometimes prevail. The

predominant cloud is cumulus within the dominating moist, unstable Atlantic

air mass.

Of the stations considered in this study, from an annual viewpoint,

Eastern United States and Europe represent the cloudiest stations. Hue or

Southeast Asia is next in amuunt of cloud-cover and the Cairo area, being

represented by a relatively dry polar air mass, has a minimum of cloud

cover. The information provided by these global weather areas represents in

this report a broad sample of the kind of climatic variation suitable to

form the basis for a statistical analysis applicable to atmospheric IR

attenuation losses on a worldwide scale.

14
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7. Statistics

Some meteorological data for certain weather stations were not avail-

able on the RAWDAB tapes for statistical analysis. It was found for example

that the Berlin and Falmouth tapes did not contain records on synoptic

"weather conditions. Also, the Dresden and Hanoi tapes did not have data on

cloud ceiling heights. For clarification, a definition of the statistical

quantities used i.n the analysis will be briefly discussed here.

Frequency of occurrence: the fraction of time a statistical parameter

is recorded within a given data group.

Synoptic probability: the frequency of occurrence of a given weather

condition, i.e., rain, fog, haze, fraction of cloud cover.

Seasonal probability: frequency of occurrence during winter, DEC.

JAN. FEB.; Spring, MAR. APL. MAY; summer, JUN. JUL. AUG.; and fall, SEPT.

OCT. NOV.

Atmospheric attenuation probability: the integrated frequency of

occurrence where the meteorological parameter is equal to or greater than

its value (independent of cloud ceiling height).

Joint probability of cloud ceiling height and atmospheric attenuation:

probability that the attenuation is equal to or greater than its value and

ii the cloud ceiling height is equal to or below the indicated cloud height.

Cloud ceiling height probability: defines the integrated frequency

of occurrence of the cloud height being equal to or below the indicated

value.

15



Photopic visual probability: defines the integrated frequency of

occurrence of the (.5 - .61im) visual range being equal to or less than the0. 1I indicated value.

Attenuation losses of selected narrow band and laser line transmitt-

ances in the l.O-14.Oim IR region were calculated from relative humidity

and photopic visibi-lities, using clear air and rural fog-haze expressions

given by the AFCRL LOWTRAN atmospheric models. The LOWTRAN models for

rural, continental and urban aerosols show relatively small differences in

their normalized extinction coefficients for the 1.O-14.0im spectral region,

thereby making the present analysis less sensitive to the types of inland

fogs and almost completely general for correlation with photopic visibilities.

"For the 8.0-II.5uvi band, atmospheric attenuation losses were computed with

"the maritime fog-haze transmission model of Barhydt.

.8 Weather Statistics and IR Atmospheric Attenuation Averages for Germany

Synoptic weather, photopic visibility and cloudceiling height: The

synoptic weather averages for Germany (Figure 6) show that the frequency of

occurrence of clear days during the year varies from about 55 percent of the

time in winter and increases to about 70 percent of the time for summer.

Tile second dominant weather condition is rain, occurring about 25-30 percent

of the time throughout the year. Tihe occurrence of fog appears to be

greater in winter and fall, but slightly less in spring and suiminer and

- . averages between 5 and 10 percent of the total weather events. The standard

deviations from the mean values suggest that for Gernmany or European weather

16
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there is little regional variation in climate throughout the year, in agree-

ment with the meteorological description of Rosen and Schutz.

Average meteorological visibilities for Germany (Figure 7) show that

visibilities equal to or less than 10 km occur about 80 percent of the time

in winter and about 40 percent of the time in summer. Poor weather, where

visibilities are equal to 1 km and less, appears to take place with a

"frequency between 5 and 10 percent throughout the four seasons and tends

to correlate well with the synoptic weather data for fog and haze frequen-

cies. Plots of short-term (6-hour time intervals) visibility data for

three European cities; Leipzig, Dresden, and Prague (Oct. 10-30, 1960) are

shown in Figure 8. These data have been cross-correlated , also, to show

the degree of temporal similarities in visibility for typical European

weather.

Cloud ceiling height averages (Figure 9) show that base heights equal

to or below 1 km occur between 60 and 80 percent of the time for winter,

spring, and fall. In sunbner, base heights that are equal to I km and below

occur about 55 percent of the time, again reflecting the year round cloudy

characteristics of European weather. Figure 10 shows that the short-term

variability of cloud ceiling height for Leipzig, Dresden and Prague. The

almost complete correlation in cloud heights for these three weather zones

indicates that cloud cover extends uniformly over large distances in Europe.

IR atmospheric attenuation loss averaes: Average IR attenuation

losses for Genrmany were computed for the three narrow band wavelengths,

(1.0-1.2), (3.8-4.2), and (8.O-ll,5)im shown in Figure 11. The error bars

17
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in the figure indicate typically about a 10 percent standard deviation from

the mean values calculated from the Berlin, Dresden, Essen and Hamburg

weather data. The results show that for the (8.0-II.5)pim band, the at-

tenuation loss in winter for clear and fog-haze weather conditions is equal

to or more than 1.5-1.75 dB/km about 10-5 percent of the time, respectively.

In summer, the (3.8-4.2)pm band shows about the same statistics on the

average. The reason for the high performance of the (8.0-II.5)pm band in

winter and the high performance of the (3.8-4.2)pim band in summer is

accounted for by the low relative humidity in winter, since the (8.0-11.5)pm

band is more sensitive to water vapor absorption and less sensitive to fog-

haze scattering. The (3.8-4.2)pm band is better in summer, since this

spectral band is less sensitive to water vapor absorption or high relative

humidity and only moderately affected by fog-haze conditions. The (1.0-

1.2)pm band which is most sensitive to aerosol scattering gives attenuation

losses about a factor of two greater for the same frequency of occurrence.

Rain attenuation loss averages: The average frequency for rain at-

tenuation losses in Germany is shown in Figure 12. The attenuation losses

were calculated for the (1.0-1.2), (3.8-4.2), (8.0-11.5)imJ IR bands and

the visible wavelength interval (.5 - .6)Vjm. These calculations included

clear-air water vapor absorption and losses due to rain drop scattering

and liquid absorption. These data show little variation in attenuation

losses for the IR-bands and the visible region, indicating that the

attenuation loss here is dominated by rain scattering and absorption and

less by clear-air water vapor absorption. The results show that for

.- :.:.:.18 !



Germany, about 50 percent of the time, the atmospheric losses on the average

can be expected to be equal to or greater than 3 dB/km in rain.

Figure 13 is ,shown to compare the probability of atmospheric attenua-

tion losses for clear weather, fog-haze and rain atmospheric conditions.

This figure also shows rain rates correlated to attenuation losses for the

visible (.5 -. 6),Pm band. The results indicate clearly the advantages of

the IR bands for.fog-haze transmission over the visible band. It is also

noticed that in the visible, attenuation losses are greater in fog than in

rain all of the time. In the infrared, attenuation losses less than 2 dB/ki

occur in fog between 20 and 35 percent of the time. These conditions never

exist in the rain.

Attenuation due to rain is always greater than 2 dB/km, with 50 per-

cent of the rain having attenuation between 2 and 3 dB/km. However, for

infrared attenuation above 3 dB/km, an inversion takes place between rain

and fog transmission, where attenuation losses equal to or less than 3 dB/km

occur more frequently in rain than during foggy conditions.

9. Use of IR-Weather Data: Examples

Weather statistics and probabilities for IR and visible attentlation

losses are compiled in the Appendix according to the weather stations

studied in this report. A number of examples are treated here to illustrate

"the use of these figures.

- SYnoptic eather Statistics (Figures A*.l)

These figures provide the fraction of time during the four seasons

19
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b that clear weather, haze, fog, drizzle and rain occur, respectively.

- Probability of Cloud Ceiling Height (Figures A*.2)

base will be equal to or less than a given altitude, h. The cumulative

probability that a cloud base will be equal to or greater than this altitude

is

PC 1 - PC(h).
SPCH PCH

The probability, , that a cloud base will occur at or below a slant

range, L and elevation angle 4 is

PcH(S) = PcH(H)l

where H = L sin 0, the terminal altitude of the slant path.

- Probability of Photopic Visibility (Figures A*.3) '

These figures give the cumulative probability, Pvis(v) , that the

vis o
horizontal sea level visibility will be equal to or less than a given

meteorological range, v. The probability that the visibility will be

equal to or greater than this range is

vis I vis 0'

The probability, P Ms(V)s, that the visibility along a slant path, (V) of

range, L and slant angle, 0 is equal to or less than a given value is the

probability along an equivalent horizontal sea level visibility path,

(V)O i.e.,

02
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-••. P(V~s 0 (~o;•

- iwhere

o(V)o (V) x A

and A is the slant path correction factor for a slant range, L and angle,.-ý

(Figure 4).

- Probability of Atmospheric Attenuation (Figures A*,4 and A*.5 bands and
laser lines)

These figures give the cumulative probability, Pa ) that the hori-
sa x t

"zontal sea level attenuation loss is equal to or greater than a given value,

for a particular band or laser line (X). Tine probability that the

attenuation loss is equal to or less than this value is

Pa I-P W•
a• a xk 0

The probability, Pa(B along a slant path of 'range, L and slant angle 4 is

• '-a pa s a P(x 0

where (Odo is the equivalent sea level attenuation loss

ttuand A is the corresponding slant path correction factor. The joint pt-
m -iPal X,'ability P X, that the attenuation loss is equal to of- greater than a

given value is

S-a l l2 Pa(al)o P 2a (-. )o
2I

.2 '." 21
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for a horizontal sea level path and two wavelength intervals X and X

"The corresponding probability for the attenuation loss to be equal to or

less than a certain value is

For slant path joint probabilities the equations are
IiI

2 .(s) P Pa (a (B o P(2)
a a xs ax s a X10 aX0

where

S( )o W( x A-

n n X

and n is either A1 or X.

Joint Probability of Cloud Height/Atmospheric Attenuation (Figures A*.6
San-A* I Bands and Laser Lines)

These figures give the joint probability PCHa' that the horizontal

sea level attenuation loss (B)oCH for a band or laser line will be equal

to or greater than a given value for cloud ceiling heights equal to or less

than a given altitude. The slant path probability that-the attenuation

loss along the path is equal to or greater than a given value for a cloud

ceiling height equal to or less than a given altitude is

A .' hr PCHa(XsC PHa (a•oC ':'i

C. )a o s,CH ) CH•,a CH

where

W. A
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h
and slant angle @ arcs-n (L). The conditional probability that the slant

path attenuation loss for two wavelengths be equal to or greater than a

given dB loss becon,!s

PCH~as PCH,•F. l) x P CH,a( x2)S.

The probability that the slant path attenuation loss for two wavelengths
be equal to or less than a given dB loss is

CHla CH,a x s] [ CH,a s

The conditional probability that the cloud ceiling height be equal to or

greater than a given altitude, and the slant path attenuation for two wave-

lengths be equal to or less than a given dB 'loss is

1 22!'i~lo " k• I PcH(h)] OPcH I2 ..i

CH,as -CH ] m1

- HOWLS Application of These Data: Examples

that t. Calculate for a 2-color IR passive homing sensor the probability

that the cloud ceiling height will be equal to or greater than .33 km al-

titude along a 3 km slant path where the attenuation loss foe both the

(3.8 - 4.2)hni band and the (8.0 - 11.5)pm band is less than or equal to

10 dB for winter (Hamburg, Geimany, data). From Figure A4.2, the probability

for the cloud height to be equal to or greater than .33 km is

'03II • •



I '~P = P- (1) = 0.92

4 i The slant angle, 0 is

4) = arcsin ( 6) =60

The slant path correction factor Ageom for a slant range of 3 km and 60

slant angle is (Figure 4)
I'i

Ae =0.8
geom

The equivalent horizontal sea level attenuation loss for the (3.8 - 4.2)ipm

and (8.0- ll.5)lim bands are

3.5)0 (08.0)o (3.3) / .8 4 dB/km.

The corresponding probabilities that the attenuation loss will be equal to

or greater than 4 dB/km for cloud ceiling heights equal to or below .33 kmi

(Figure A4.6) are

(3.8-4.2)vm band

PCHa 33 3.8 . 07

(8 0i -ll 5).5Ln band

-CH,a (.338.0)o,1 .05

The conditional probability that the cloud ceiling height be equal to or

greater than .33 kin, and the 3 km slant path attenuation for the two wave-

lengths be equal to or less than 10 dB loss is

24



xI I.

S 1PC = [.921[l - .07][l - .05] ..81

f i.e., about 80 percent of the time this conditional probability will occur.

2. Calculate for the IR Countermortar System the joint probability

as a function of slant angles (10, 20, 30) that the cloud ceiling will be

equal to or greater than the terminal altitude for the slant range of 5 km

"i'A and a transmittance equal to or less than 12 dB in attenuation losses for

the (8.0-II.5)pm band in winter (Hamburg, Germany, data). Using the same

procedure as in the previous example, the results of this problem are given

in Table 5. It is seen in this case, that the system will work about 40 per-

cent of the time in winter for a slant stare-angle of 30, and that the

systems utility is increased to about 60 percent of the time for a stare-

angle of 10,

1A
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APPENDIX

The appendix contains the detailed results for each of the stations

used in this work.. Seven sets of plots (where data were available) are

given for each location, as follows:

- Probability of Synoptic Weather (for each season)

- Probability of Cloud Ceiling Height

- Probability of Photopic Visibilities

- Probability of Atmospheric Attenuation for IR Bands (for each of

8.0-11.5, 3.8-4.2, and l.0-l.2pm bands)

- Probability of Atmospheric Attenuation i:or IR Lines (for each of

10.6, 4.73, 3.8, and 1.061im laser lines)

- Joint Probability of Cloud Heights and Atmospheric Attenuation for

IR Bands (for each of three bands and altitudes of 0.33, 0.5, 1.0,

and 2.0 km)

- Joint Probability of Cloud Height and Atnospheric Attenuation for

IR Lines (for each four lines and four altitudes)

Probability curves are given for each of the nine stations listed below.

Berlin, Germany (52'-28'N, 13o-24'E)

Dresden, E. Germany (510 -08,'1, 13".46,E)

Essen, Genrany (51°-24'N, 60 -.58'E)

Hamburg, Germany (53'-38'Nj% 9-W'9'E)

Cairo, Egypt (300-84N. 31°-'141'E)

Nicosia, Cyprus (350 -9'N, 33'-17'E)

Hue, S. Vietnam (160-24%N, 107 0-51'E)

27i" i "I'



Hanoi, N. Vietnam (210 -1'N, 105'-51'E)

Falmouth, Mass. USA (41 0 -39'N, 700-31'W)

Table A-i indicates the figure number which presents each of these

sets of data.

Table A-2 gives seasonal cloud free line-of-sight statistics as a

function of viewing angle and line-of-sight path above ground for the

same geographic area.

~1
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TABLE A-2

GLOBAL CLOUD FREE LINE-OF-SIGHT STATISTICS
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Fig. 11. German average IR attenuation losses for the (1.0-1.2), (3.8-4.2),
and (8.0-l1.5)pm wavelength bands.
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Fig. 12. Average rain attenuation losses in Germ~any.
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tieterorological data not available.

Fig. A 1.1 Probability of Synoptic Weather
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Fig. A 1.3 Probability of Photopic Visibilities
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Fig. A 1.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands
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*Ieterorological data not available.

Fig. A 2.2 Probability of Cloud Coiling Height
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Fig. A 2.3 Probability of Photopic Visibilities
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I J6int meterorological data not available.

""I.

Fig. A 2.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands

Si I

Joint meterorological data not available.

Fig. A 2.7 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for Laser Lines
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Fig. A 5.2 Probability of Cloud Ceiling Height
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'2 70



In 4

jt I

0.

*140

0

UNN

0 
0

0

Q U.

(O 3 Inaa

71~~r. I q 9 N.



-. L

(U

0,U-4-

72 n0



R~tJoint meterorological data not available."!

Fig. A 5.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze :!
Attenuation for IR Radiation Bands
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i•...! IJoint meterorological data not available.
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Fig. A 5.7 Joint Probability of Cloud Height and Clear Air/Fog-Haze

Attenuation for Laser Lines
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V1

Joint meterorological data not available. ' "

Ii

Fig. A 7.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze
Attenuation for IR Radiation Bands

Joint meterorological data not available.

I-'

Fig. A 7.7 Joint Probability of Cloud Height and Clear Air/Fog-Haze .
Attenuation for Lase-zILines
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tieterorologijcal data not available.

Fig. A 8.2 Probability of Cloud Ceiling Height I
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Joint meterorological data not available.

Fig. A,8.6 Joint Probability of Cloud Height and Clear Air/Fog-Haze

I Attenuation for IR Radiation Bands

Joint ineterorological data not available.

Fig. A 8.7 Joint Probability of Cloud Height and Clear Air/Fog-Haze,

Attenuation for Laser Lines
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Meteorological data not available

Fig. A 9.1 Probability of Synoptic Weather
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