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APPROXIMATE CONFIDENCE LIMITS FOR A PRODUCT 

OF INDEPENDENT POSITIVE RANDOM VARIABLES 

AS APPLIED TO ASW EXERCISE DATA 

by 

Niels Bache 

ABSTRACT 

\ 
A general, but approximate, method is suggested to determine confi- 
dence limits for a product of independent positive random variables. 
The method is developed and the accuracy of the approximation is 
discussed in one of its applications:  the Bayesian confidence 
limits for the product of N binomial parameters.  Four appli- 
cations (including the above), in which the factors in the product 
are probabilities are given together with numerical examples. 
These are from the antisubmarine warfare (ASW) field and constitute 
to the evaluation of operational data in that field and statistical 
data in many other fields, s. 

PREFACE 

This work is done as part of the exercise research programme at 
SACLANTCEN and supports the evaluation of measures of operational 
ASW performance collected in the "SACLANTCEN Compendium of NATO ASW 
Exercises", 
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INTRODUCTION 

In SACLANTCEN's analysis of the data obtained from NATO's ASW 
exercises, as in' similar statistical analyses for other purposes, 
probabilities are frequently used as measures of performance.  For 
example, the performance of shipborne sonars in detecting submarines 
can be measured statistically by recording the frequencies of 
detection at different ranges and using those data to estimate 
the probabilities of detection at selected ranges of interest. 
However, like all statistically-derived values, these estimates 
uö»e little value to the user, and may even mislead him, unless 
they can be provided with some indication of the statistical 
uncertainties resulting from the inadequacies of the basic data. 
The purpose of this paper and of a preceding paper [Ref. l] by the 
same author is to present a method of giving approximate confidence 
limits to such estimates of probability. 

The original problem [Ref. 1] was to find confidence limits for the 
probability that a sonar-fitted surface ship would detect a sub- 
max'ine by its sonar outside a given range from the ship to the sub- 
marine.  To that end a sample of relative tracks between the ship 
and submarine was collected, including notes about detections and 
opportunities for detection as functions of range between ship 
and submarine.  The range was divided into bracketsj calling c^ 
the probability of detection in range bracket i, the probability 
of detection outside a given range could be written as 

i - n (i - c±), 
i 

where the product was taken over all brackets outside the given 
range. 

We would like to find confidence limits for that expression, given 
some distribution for  c. 

It was noted that this problem was a special case of a more general 
problem:  to find confidence limits for a product of independent 
positive random variables.  If one could solve this problem one 
would not only have solved the present problem but many other 
related problems involving a product of random variables. 

Considerable work has been done in this area.  The only exact 
method known to the author is that by Springer and Thompson 
[Ref. 2], which assumes a particular distribution for each 
factor.  Other methods [Refs. 1, 3, 4] are both approximate 
and assume particular distributions for the factors.  The purpose 
of this paper is to present a method that does not assume 
particular distributions for the factors.  The method however 
is only approximate. 



All data collectors, who are trying to estimate products of random 
(stochastic) variables on the basis of sampling experiments on the 
individual factors, have an interest in confidence limits.  As 
examples, one can mention: 

a) Estimation of sonar, or radar, detection proba- 
bilities as a function of range or* time. 

b) The use of a product or probabilities of detection, 
correct classification, localization, and 
successful attack, as a measure of effectiveness 
for a tactical process. 

c) Estimation of failure rates (from small samples) 
cf series, parallel and series-parallel systems 
(electronic apparatus, missiles, aircraft, etc.) 
in reliability and quality 'control problems. 

The author believes that it is more important to present confidence 
limits for a measured quantity than to give an estimate of it. 
At once it must be said that it is generally more difficult to 
determine the confidence limits than to determine an estimate, 
because confidence limits require some knowledge of the distribu- 
tion of the quantity whereas an estimate often does not.  Confidence 
limits contain more information than an estimate; having confidence 
limits one can always find an estimate but not vice versa.  Confidence 
limits are important when comparing two measures, such as results 
from two experiments (in the form of figures or curves), as they 
can give a first indication of whether the two quantities could 
stem from the same population or not (however a proper test has to 
be performed in the end).  Estimates for the two quantities give 
no information in that respect. 

This paper generalizes the determination of confidence limits for a 
product of probabilities, so as to cover problems involving a 
product of independent positive random variables in general. 

Because of this generalization, the problem posed by the present 
author in Ref. 1 is solved with fewer approximations. 

The opportunity is also taken here to correct an error in Sect. 1.4 
of Ref. 1, which should read: 

Equation 1 to be used as an exact expression in both 
the discrete and the continuous case. 

Equation 3 to be used only as an approximation for 
the easy calculation of the confidence limits in Ch. 2. 

However this latter approximation is no longer needed due to the 
improved method presented in the present memorandum, which in 
fact, should now be regarded as a replacement for Ref. 1. 



1. 

1.1 

GENERAL METHOD 

Definition of the Problem 

We want confidence limits for the random variable C, which is 
given by 

N 
C =   II  C. , [Eq. 1] 

i=l  X 

where C-J  is a set of independent positive random variables with 
density functions f.(c.). 

We denote a random variable by an upper-case letter (e.g. C) and 
use the corresponding lower-case letter (e.g. c) for a particular 
value that the random variable assumes.  The problem is to find 
a confidence limit for C., c , such that 

Proh lc < c } = p , 
P   i 

[Eq. 2] 

p is usually called the confidence level (or coefficient) and has 
to be decided in advance. 

g(c) is the density function of C and c  means that c is 
dependent on the chosen  p. 

g(c) 

FiG  1   DEFIN TON OF CONFIDENCE LIMIT 

1.2 Outline of the Method 

The method presented in this paper can be divided into four stages: 

a.  Transform the problem of finding confidence limits 
for a product of independent positive random 
variables to the problem of finding confidence 
limits for a sum of new independent (not 
necessarily positive) random variables by 
means of a logarithmic transformation. 

■M 



b. Find the characteristic function (related to the moment 
generating function) as a sum of independent random 
variables.  When this is done, the distribution of 
the sum is in principle determined. 

c. Determine the cumulants (related to the moments) of 
this distribution by means of the characteristic 
function. 

d. Apply a method of finding the inverse of a distribu- 
tion function by means of its cumulants. 

1.3 Transformat ion 

Already at this stage something can be said about  g(c):  under 
fairly general cond.it ions [Ref. 5], g(c) will approach the 
lognormal distribution as  N *♦ • , independent of the form of the 
density functions for the factors  fi(c£).  This is a direct 
consequence of the central limit theorem. 

Figure 2 shows the shape of the lognormal distribution. 

MODE X MEAN3 = MEDIAN3 

F G 2 THE LOGNORMAL D STR1BUH0N 

t In most practice- cases it is impossible or very difficult to 
find  g(c)  by analytical means (for example, transformation by 
the characteristic function or by the Jacobian determinant) for 
most of the distributions (binomial, poisson, normal, etc.) 
assumed for  t -L(i L)     (the rectangular and beta distributions 
are exceptions in some cases, see Ref. 3)» 

The approach in this paper uses a general method to determine an 
arbitrary distribution developed by Cornish and Fisher in 1937 
[quoted in Refs. 6, 7 and 9j ,  which takes as its starting 
point the normal distribution and finds a transformation between 
this well-known distribution and the actual distribution.  This 
transformation is a function of the higher moments of the actual 
distribution.  The Cornish-Fisher approximation [copied from 
Ref. 9] is given in Appendix A. 



The important point at this stage is that the method is based on 
the normal distribution.  Therefore we will transform the stochastic 
variable  C into a new stochastic variable Y  so that instead 
of  g(c) we will have a new density function h(y), which will 
approach the normal distribution as  N-*».  This transformation 
is simply Y = Sn  C: 

Adding the additional assumption  C^ > 0 we are able to define a 

[Eq. 3] 

new set of independent random variables  Y., as 

Y. =hC. 
x      1 

and 

E Y. . [Eq. 4] 

Then Eq. 2 is equivalent to (the function e  is single valued 
and monotone) 

wnere 

ProbJY < yp} 

y = In c 
P     P 

P > 

[Eq. 5] 

The problem is now to find y_, the confidence limit for a sum  Y 
of independent random variables  Y^, where the density function 
h(y)  of  Y will approach the normal distribution as  N-»», 
because of the central limit theorem. 

We have now assured that the Cornish-Fisher method will be accurate 
for large  N.  For small and moderate N nothing can be said in 
general, except that the more h(y) differs from normality, the 
more inaccurate the method will be.  The cases of small N is 
discussed later in the special case where fi(ci)  is beta 
distributed. 

1.4 Cumulants 

In this section we will make use of the characteristic function 
of a random variable, X, defined as 

cp(t) = - r eitx f(x) dx [Eq. 6] 

where t is a real variable,  i ■ J-£    (i  is also used as a 
suffix, this is believed not to create confusion) and  f(x) is 
the density function of X. 

_ A 



We will also use the characteristic function of a function of the 
random variable  Xj, g(x), defined as 

cp 
g 
(t) = J*eitg(x) f(x)dx. [Eq. 7] 

The cumulants  Ki , K2 , K ,  are defined formally by the 
ident ity in  t 

xplKjt+Ka   ~ +   ...   + Kr iy +  ...} 

i 2 

* X +^ +^'   TT +  •"   +^r  rT + 

where ji!  is the  r  moment about the origin: 

»I  =  j   xr f(x)dx, 

which is assumed to exist. 

Provided an expansion in power series exists for 2n  cp(t)  it can 
be shown that 

(C, it + K2 >*y
8 + ... + K iiil- + ... = At Cp(t) . i     z  2 I rrl TV ' [Eq. 8] 

Therefore 

K = r d(it)1 
2m  cp(t) 

t=0 

Bn  cp(t) is called the cumulant generating function or just the 
cumulative function. 

As mentioned before, the Cornish-Fisher method is a transformation 
of a variable. The transformation used is a function of the first 
six cumulants of the distribution h(y) (see Appendix A). 

Appendix B derives a means by which these first six cumulants 
of the distribution of  Y may be determined from a knowledge of 
the distribution functions of the C.. 

1.5 Inversion 

Once the first six cumulants of the distribution of  Y are 
available to us we may make use of the Cornish-Fisher expansion 
(Appendix A) to find ~.t  approximation for the required confidence 
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limits, i.e. that value  y  from which  prob(Y>yD) = p.  This 
can be transformed back into a value of by means of Eq. 5^ 

It is of interest to note that Cornish-Fisher asymptotic expansions 
can also be used to derive an estimate of the distribution function 
of a stochastic variable, which is the sum of random variables 
drawn from different distributions, so in principle we are not 
limited to finding only the confidence limits, although this is 
possibly the most important application. 

1.6 A Limitation of the Method 

Applications of the method are dependent on whether the integral, 
which appears in Appendix B, 

I.(s, 0) s I (ßn c±)
s  • fi(ci) «d^ ,  säl integer 

can be evaluated (exactly or approximately). 

Since  Ci £ 0 by definition, the only point where 2n  c^  is not 
defined is  ci=0.  Therefore a necessary condition, v ilch is not 
always fulfilled, is that 

f.(c.) 
0. 

0 
i—- ^ + 

in such a way that the integral  Ii(s, 0) is finite.  A way of 
avoiding this problem is to redefine  Ci  such that  Ci > 0. 
Examples of both these cases will be given later.  If  Ci has 
no upper limit then v;e nmst also have as a necessary condition, 
that  Ii(s, 0) be finite.  If Ci is a discrete random variable 
we must define  Ci> 0 or have  fi(0) » 0. 

!  I 

2.      APPLICATIONS 

2.1    Confidence Limits for Products of Probabilities 

2.1.1   Product of probabilities 

In this case the factors Ci in the product C are probabilities, 
so fi(ci) = 0 for Ci     outside the interval (0, l).  The family 
of integrals that we must evaluate in order to apply the method 
can thus be written as 

I±(s, 0) -     J   (fin c±)
s  • r\(c.) • dc. . [Eq. 9] 
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Let us assume that for each factor L±     there have been run a 
number of trials to estimate  Cj.  Let the number of trials be n. 
and the resultant number of successes be  xj., where x^Sn^ 
The number  x^  will then be binomially distributed. 

If  ci  is the true, but unknown, probability on which we would 
like to place confidence limits, then the probability of  x^ 
successes from n-^ trials is 

B(x 
n. 
l 

x. 
( x) • c. . (1 - c.) vx.! x       v    x' 

n.-x. 
i  x [Eq. 10] 

We adopt a Bayesian approach to find the posterior density distri- 
bution fj(cj|xt, nj.), in which the number of successes x^ of 
the  n^  experiments are given.  The posterior distribution will 
be used in Eq. 9 instead of  fi(ci).  The density function 
fi(ci'xi> ni.)  expresses our limited knowledge about the 
probability c. . 

From Bayes1 theorem we have 

f.(c. x., n. ) = xx   x! x' 

B(x.In., c.) f-(c.) v x1 x* x'     xv x' 

B(x.|n., c.) f.(c.) dc. J   v X1 X*  X7  x% x' X 

[Eq, 11] 

Without any a priori knowledge of C\     we have, according to 
Bayes1 postulate: 

f±(c.) - 1, 0 < c. < 1 
X 

[Eq. 12] 

This is the most important assumption in this application and 
means that,before we have carried out any trials to determine the 
value of Ci, any value of Q\    between 0 and 1 must be accepted 
as equally likely. 

Substituting Eq. 10 and Eq. 12 into Eq. 11 gives 

n.   x. 
f .(c. |x., n. ) = (n. +1) ( x)  c.x  (1 -c. ) xv x' x* x'      K  x       ' vx. •  x  x   x' 

n.-x. x x [Eq. 13] 

which is the beta distribution .. 

When we use this density function in the definition of the family 
of integrals, Eq. 9, we obtain 

1^8,0) = (n.+l) (x
i) j ''(fa c.)S Ci

1(l-ci) 
i  * dc.    [Eq. U] 

mm 
  



In  Appendix   C  this   is  shown  to   reduce   to  the   computationally- 
easier   form  of 

/n.-«.\ 
n.      ni-Xi \   Xj 

I.(s, 0)=  (-l)Ssl (n.+lH1)       E     (_!)J  -i J _T. 
1 X Xi       j=0 (x,+j+l)s+1 

[Eq.   15] 

We are now in a position to use the general method given previously. 

A computer program has been written and to check and determine the 
accuracy of the method for this application a comparison has been 
made between values obtained by the method and corresponding exact 
values for the important cases of small sample sizes, n£, and few 
factors, N, in the product.  The exact values have been obtained 
by deriving an analytical expression in each case. 

TABLE 1 

MAXIMUM ABSOLUTE ERROR FOR UPPER AND LOWER CONFIDENCE LIMITS 

OF 10% EACH, MULTIPLIED BY 103 

<v X 1 2 3 4 

0 11.7 1.4 0.25 0.045 

1 6.2 0.90 0.22 0.054 

2 4.2 0.05 0.18 - 

3 3-2 0.51 - - 

Each cell in the matrix above contains the maximum absolute error 
for all combinations of and n \> where at least one has 
the value shown in the left-hand column.  Table 1 is valid only 
for upper and lower confidence limits of 10$ each and only for 
this application. 

The main conclusion from Table 1 is that the accuracy is sufficient 
for all practical applications, because usually N will be greater 
than 2 or 3. One could have feared that the error in Table 1 would 
begin to increase outside the frame of the table. This is not so, 
as shown in Appendix D. The highest value of the error will be in 
the cell (n£, N) = (0, 1). However, Appendix D has not taken into 
account the computational inaccuracy. 

Simpler and more accurate methods exist for the case N =1  and 
finding confidence limits for cases where the values of n^  are 
large is usually of little interest. 

10 
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The material of this section makes use of Bayes's theorem (or formula) 
and Bayes's postulate.  Bayes's postulate is rar from being univer- 
sally accepted and therefore the application in this section should 
be seen in this light. 

An example is given in Appendix E. 

2.1.2   Cumulative probability curve 

The application in this section is also based on Bayes's theorem 
but instead of using Bayes's postulate we use an extension of this 
postulate proposed by H. Jeffrey (1948) [Ref. 8] and therefore the 
method in this section is on an even looser ground than the appli- 
cation in Sect. 2.1.1. 

Let a process (for example a detection process) be dependent on a 
continuous parameter t (for example a distance or time) and let 
the index i in Sect. 2.1.1 represent an interval of the parameter t 
from t i-1 to t. 

i-1 t. 

and call xi the number of failures of ni trials run when t 
was known to be in the interval i.  Then, following the notation 
in Sect. 2.1.1, where C£ now is the (unknown) probability of 
failure for the interval i, 

N 
i - n 

i=i 
[Eq. 16] 

represents the probability of at least one success in all 
intervals  i = 1,..., N.  We have assumed that an outcome (success, 
failure) in one interval is independent of outcomes in other 
intervals. 

Section 2.1.1 can be used again to find confidence limits for 
Eq. 16, except that C±    is no longer a random variable of 
which we have no a priori knowledge.  It is possible in this case 
to say something about ci a priori because of the independence 
assumption stated above. 

Define 
Y(t)»dt = probability of success in a small interval 

dt around t. 

c(t. ,,t)= probability of failure in the interval 
t. |  to t. 

Then we can set up a differential equation using the independence 
assumption 

i 

c(t 
i-lJ 

t) - c(t i-1' t - dt)[l - Y(t)dt] 

i 

11 
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leading to 

;i = expj-J X 
Y (t ) dt. [Eq. 17] 

Y is now the basic random variable of which we assume to have no 
a priori knowledge. 

It is noted that Eq. 17 is not a one-to-one transformation between 
c±     and  Y(t).  F°r a given c±     there is an infinite number of 
functions Y(*) that satisfy Eq. 17, but not vice-versa.  Therefore 
Eq. 17 is regarded to contain some information about c±,   and  Y is 
regarded to be a more basic variable than c.. 

Since 0<Y<* we must use the Jeffrey extension [Ref. 8] of Bayes' 
postulate, which states that if Y ranges from 0 to • the prior 
distribution is taken as proportional to dy/Y (instead of just to 
dY as in the original postulate of Bayes, which deals only with a 
finite definition range): 

g(Y)dY = *L 0 £ Y • 

f 

I 

To find the density function f.(c.) of  c. the (Jacobian) 
transformation 

f.(c.) |dc.| = g(Y) UY| 

gives, instead of Eq. 12, 

f. (c. ) dc . =  ;—■  -~. iv x'  i   c. fe c.   x 

Proceeding as in Sect. 2.1.1: 

dc.,  K negative constant . 

X.-l ni"X4 
c,x     (1-c.) x 

[Eq. 18] f . (cjx., n.) - -j—j-y—  , 

where, provided IS x. < n^ - 1 

pi   x.-l n.-x.     dc. i~ i ./n.-x.\ 
2(x., „,) = J  c4i   .(i-Ci) 

l   1
tr^~-   £   I-DH'J 7-Mj+Xi) 

0 X 1=0 . j=° [Eq. 19] 

r>,      x.-l n.-x. s-1      . _      -- 1 i   A 1 ,, »11/. \S-1 Xi^S*U^    = Q(x.,n.)   J      Ci       '^~c0 '^ci> *aci 
XX Q 

/n.-xA . n.-x. (   l     i) 

}>   ;(r1>!     s   (-i)j-i-ä-^, .u. 
*x   x»      i' j=0 (j+x^- 

12 
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Again we are in a position to use the general method given 
p:eviously. 

During the determination of Q(x±,   n^) the following restrictions 
on  xj  were necessary 

1 < x. < n . - 1 . x 

It can be shown that 

I±(ss 0) 

x. •♦ n. 
1   l 

0 ,    all  s >-  1 

Although from Eq. 18 and Eq. 19 we have 

M„0) =11» J (-I)"1-(«-!)»  1 
x.+ 0   * «n(x. ) • x?     } 

this application is not defined for  xi = 0 (no failures), 
since a >  ~ •  (See Appendix A). 

It means that this application can be used only if there is at least 
one failure in each interval (xi>0).  The minimum values of  x^ 
and n^  is  (x^, n^) = (1, 1).  Intervals with no successes 
(x^ = Pi.)  need not to be included in the calculation of the 
cumulants, since they do not contribute to Eq. B.2 in Appendix B. 

The need to have a well-defined binomial process (constant  n^) 
in each interval determines the intervals. 

The major assumption in this section is the use of Jeffrey's 
extension of Bayes' postulate.  Other distributions than dy/Y 
can be used if better arguments than Jeffrey's can be given. 

An example is given in Appendix E. 

t 

* 

CONCLUSION 

The purpose of this paper was to present a method for obtaining 
confidence intervals for a product of independent positive random 
variables, that does not assume a special type of distribution 
for the factors in the product.  This is done, although the method 
is only approximative. 

The problem of finding confidence limits has been reduced to the 
task of finding a family of definite integrals for each factor 
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in the product separately.  The important thing is that the area 
of work has been transformed from the product to each factor. 

The applications show that in some important cases the integrals 
can be found exactly. 

In the application where the factors are binomial distributed 
the accuracy is acceptable even for very small sample sizes. 
All the applications given can be used down to sample sizes 
from zero to two depending on the application. 

In general the accuracy of the method is no better than that of 
the asymptotic expansion used and is sometimes worse due to 
additional computation before applying the expansion. 

The method cannot be upheld as an elegant mathematical technique. 
It was believed that elegance should'be sacrificed in favour of the 
development of a usable general method. 
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APPENDIX  A 

ASYMPTOTIC  EXPANSION   FOR THE  INVERSE  FUNCTION 

OF  AV ARBITRARY DISTRIBUTION  FUNCTION 

For   a  detailed discussion,   see  Refs.   A.l,   A.2.      A briefer 
description  is given  in  Ref.   A.3*   as  follows: 

Let  the  distribution  function  of   a  stochastic  variable     Y    be 
denoted by     F(y)   and  its  cumulants by    Kr.     Then the   (Cornish- 
Fisher)   asymptotic  expansion  for  the   value   of     y       such that 
F(y   )   = 1  -  p     is   (~    means  asymptotically  equals 

y    «/    m  + o   •   w 

where       m = Kj , =    V/KT and 

w  = x + Yihj. (x) 

+ Y8ha(x)  + Yihu (x) 

+ Y3h3(x)  + YiY2hls(x)+ Y?hm(x) 

a a 

+ Y4^(x)  + Yab;»(x)-<- YiY3hX3(x)+ Yi Yahug (x) + Yihuu (x) 

+  [Eq.   A.l] 

where     Y     is defined as     Y     o  =    —  .        r  2   3 r-2 r   * 
a 

and       x     determined by 

7= expl-  -x-j dt = p 
yß* 

X  is the fractile of the normalized normal distribution.  The 
terms on each line in Eq. A.l are the same order of magnitude. 
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hi(x) 

hs(x) 

hu(x) 

h3(x) 

^12 (x) 

Iiui (x) 

h4(x) 

h22(x) 

h13(x) 

hU2 (x) 

hiai (x) 

£ He2 (x) 

24 He3(x) 

- JZ  [2He3(x) + Hei (x)] 

12Ö He4(x) 

- -ft  [He4(x) + Hea(x)] 

jij [12He4(x) + 19Hea(x)] 

720 He5(x) 

- jg^ [3He5(x) + 6He3(x) + 2Hex(x)] 

- x!o [2He5(x) + 3He3(x)] 

j%$  [14He5(x) + 37He3(x) + 8^ (x)] 

- yi- [252He5(x) + 832He3(x) + 22 7HCl (x)]. 

The  Hen(x)  are the Hermite polynomials, which can be calculated 
recursively from 

Heo (x) - 1,   Hex (x) = x 

and 

He„j.i(x)  = x.He (x) - n.He  , (x),   n 2 1. n+1 n n-1 
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APPENDIX B 

THE FIRST SIX CUMULANTS 

We will find expressions for the first six cumulants by means 
of the characteristic function  cp_.(t)  of  Y. 

Using Eqs. 4 and 6 of the main text and the assumption that the 
Y.  are independent leads to 

N 
cPY(t) =   n   cpY (t) , 

i=l   i 

where  Cpy(t)  is the characteristic function for the  Y.. 

Using Eq. 7 of the main text for the function in Eq. 3 of the main 
text gives 

cpy (t) - JexpjitftiCj} fi(ci) dc± , 

with limits of integration from zero to infinity; thus 

cpY (t) = J   c*fc fi(ci) dCi. [Eq. B.l] 

From Eq. 8 of the main text we have 

*. cp (t) -  E K l&f- . 
r=l 

Denoting the cumulants of the distribution of  Yi by K,   we 
have again from Eq. 8 of the main text ' 

*. cp (t) -  £ K.   &£-, 
Xi      r=l 1,r r ' 

leading to 

S r       i=l   l>r 
[Eq. B.2] 
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r  i 

K. can be  determined by 

- - [ d(it) r    ** *Y 1       Jt=0 

Substituting Eq, B.l in Eq. B.3 gives 

K i,r d(it)1 
} Ik | c. ' f. (c^)dc. , 

* J  _ t=ü 

Define a function  I.(s, t)  as 

I.(s, t) = JV c.)s cj* f.(c.) dc± , 

then we have the property of  I.(s, t): 

WV«' t} I±(s+1, t). 

Equation B.4 can then be written as 

i»r d(it)1 
ßn 1,(0, t) 

t=0 

From Eq. B.5 we find 

K. , 

K. 

i»3 

K. 

1,5 

wi,e 

ijd, o). 

It(2, 0). K^. 

It(3, 0) - ^.yKir  K.ti. 

Ii(4, 0) - 4^.^,-61^1^- 3K»i>8- K*.)X. 

Ii(5, 0) - SK.^.K.^IOK.^K.^-IOK3,^.^ s 

1^6, 0) - 6Ki#l.Ki>r lSK^,-^f%- ISK^^.K.^ 

-60K. • K.  .K.  - 20K8. ,.K,  - 45K,  »K* i,i  i,a  i,a    1,1  i,s  *■* 1,1  i,a 

-15K^ • K.  - 101^  - 15K*  - K?  . 1,1  i,a    i,3   J  i,a   i,i 

18 
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I I 

K (r = 1,..., Ö) can now 
be evaluated: 

I.(s, 0)  = JVc.)S. f.Cc^.dc. 

be determined, provided I^s, 0) can 

[Eq. B.6] 
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APPENDIX C 

EVALUATING A DEFINITE INTEGRAL 

Dropping the index i in Eq. 14 of the main text we have: 

I(s, 0) = (n + l).(^). p (fa  c)S. cx • (l-c)n"x . dc      [Eq. C.l] 

kn-x (l-c)"-A can be expanded xn a binomial series: 

(1_C)«-* = 
nEX («"*) (.c)kg 

k=0  K 
[Eq. C.2] 

Using Eq. C.2 in Eq. C.l: 

I(«, 0) = (n+l).(n). nEX (-l)k.(n"X). p(^c)s.cx+k -de. [Eq. C3] 
k=0 

From standard integral tables: 

s (0     xs      x+k   . ,    cx+k+1 
(inc)   .c       -de  = s;.^^ .    £ (-l)J.(^c)s-J 

j=0  (s-j) I •   (x+k + l)J 

Therefore 

r ks    _x+k c)s.c*™.dc     rjMi .    W— . 
e_^.0j_       x+k + l       (x+k + 1)s [Eq.   C.4] 

Substituting Eq. C.4 into Eq. C.3 gives Eq. 15 of the main text. 
As a partial check we must have  1(0, 0) = 1. 
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APPENDIX D 

LOCATION OF THE MAXIMUM ERROR 

From Eq. B.2 in Appendix B we see that 
we may write 

K 

K *v 0(N) 

Then 
K 

fr-2 
K* 
r/s ~ ©(N1~r/s) , 

is of order Nj 

r 2 3 

(see App.A) 

[Eq. D.l] 

The Y's are a measure of the deviation of h(y) (see main text) 
from the normal distribution.  Because of Eq. D.l the absolute 
error will then decrease monotonically as N increases. 

Therefore a maximum, apart from  (n£, N) = (0, 1),  must lie 
in the column  N=1 of Table 1 of the main text, if a maximum 
exists.  For N = l the density function h(y) for Y = Ik C 
is (dropping the index i): 

h(y) = (n+D-O e<
x+1)-y. (l-e>T-x. 

This function has a maximum, except for x = n, which is the 
case that differs most from the corresponding normal density 
function with the same mean and variance.  This does not change 
with increasing n.  Therefore the maximum error will always 
come from this family of curves (x = n). 

For these curves we have 

K.,0) - t-1)*'81 
(n+l)S 

giving 

K = r 
(n+1)1 

A is a constant 

rr-2 
«.' 

r 
r7T - Al-/S r * 3  (see App.A) [Eq. D.2] 
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Hence the  Y's  are constants, independent of n.  The argument  y 
in Appendix A can then be written 

Jp  n +1 
(A is a new constant > 0). 

So the argument for  C will then be 

c ru  e 

A 
n+1 

(see Eq. 5 of main text). 

A direct evaluation of c  is 
P 

g(c) = (n+l)cn 

j  (n +1) cndc = 1 - p => n+1    , c      = 1 - p 
P 

c = 
P  

n+1 

The difference 

A    foQ-p) 
n+1      n+1 e     - e 

which is the error given in column N =1 in Table 1 of the main 
text, has only one maximum at  n=0  and tends to zero as n ■* • . 

Looking at Table 1 in the main text, the error is seen to fall off 
more slowly vertically than horizontally.  This is because the 
Y*s (which are related to the error) remains constant (D.2)for 
increasing n (N fixed) whereas the Y'

8
 decreases (D.l) towards 

zero for increasing N (n fixed). 
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APPENDIX  E 

TWO  NUMERICAL  EXAMPLES 

E.l        Product, of   Probabilities   [Referring to   Sect.   2.1.1   of 
main  text] 

Maritime patrol aircrafts (MPA) detected submarine 
certain ASW exercises.  On these ten occasions, th 
localized eight times.  Another sample shows that 
occasions when submarines were localized, seven re 
attack on the submarine by the aircraft.  A third 
that out of four occasions when the submarine was 
were evaluated as successful.  The above data are 
and;, for sake of comparison, have been made equal 
used in the example in Ref. E.l. 

s ten times in 
e submarine was 
out of nine 
suited in an 
sample shows 
attacked three 
hypothetical 
to the data 

The? question is:  What is the confidence limits for the true 
probability that the submarine will be killed, given that the 
aircraft has detected it? 

The result is: 

TABLE E.l 

AN EXAMPLE : 
PRODUCT OF PROBABILITIES 

THIS METHOD EXACT VALUE 
[Ref.E.l] ERROR IN % 

UPPER 10A 

MEDIAN 

LOWER 105S 

0.54270669 

0.35047715 

0.1945911s 

0.54224843 

0.35666951 

0.19460653 

+ 0.085 

- 0.054 

- 0.0079 

The error- consists of both computational error and error due 
to the approximation. 

E.2       Cumulative Probability Curve [Referring to Sect. 2.1.2 of 
main text] 

Sample tracks have been collected of a submarine and a sonar- 
fitted surface ship trying to make a sonar detection of the sub- 
marine (Fig. E.l).  A dot means a detection.  From this sample 

, .. .  . ..... .. .. .. -....  
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0 
SENSOR 

10 20 30 40 50      RANGE 

FIG. E.l   A SAMPLE OF DETECTIONS AND OPPORTUNITIES 
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we want confidence limits for the true probability of the ship 
detecting the submarine outside a given range.  This example could 
as well have treated radar, visual or ECM detections or other kinds 
of detections.  The range is divided into brackets containing a 
constant number of opportunities  n.. 

Figure E.2 gives a general picture of each interval. 

f 

l\ 

• 

n. i 
l 

• X-l 

1 < x . < n . 
1   x 

F'G E2  'NTERVAL 

Table E.2 is produced from Fig. E.l, leaving out intervals with 
no detections. 

TABLE E.2 

AN EXAMPLE : 
CUMULATIVE PROBABILITY CURVE 

DETECTIONS) 
AT RANGE 

n. X. 
l 

10.0 2 1 

23.0 3 2 

1   27.0 11 10 

28.0 12 11 

31.5 14 13 

36.0 13 12 

37.3 15 13 

39.0 16 15 

41.4 21 20 

41.7 22 21 

42.8 23 22 

45.5 21 20 

46.8 22 21 

47.5 23 22 

48.2 24 23 
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By using the method explained in Sect. 2.1.2 of the main text on 
the data in Table E.2 we obtain Fig. E.3»  Figure E.3 also marks 
with crosses the confidence intervals corresponding to a division 
of the range into brackets of 10 units starting with range 0. 
Without relation to the sample such a division is arbitrary and 
creates difficulties in choosing an appropriate value for the 
number of opportunities. 

REFERENCE 

E.l  SPRINGER, H.D. & THOMPSON, W.E.  Bayesian confidence limits 
for the product of N binomial parameters.  Biometrics 53» 
1966: 611-613. 

Probability 

0.S 

IT' 

i 

—• 

SO  RANGE 

FIG. E.3   CONFIDENCE LIMITS 
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APPENDIX F 

CONFIDENCE LIMITS OP A FUTURE OBSERVF^ VA1/IE OF PRODUCTS 

OF PROBABILITIES, BASED ON A SAMPLE ALREADY TAKEN 

F.l Product of Probabilities 

Usually an estimate for the value of product  C is wanted. 
Instead of choosing a suitable ewtimator (mean, median, mode etc. ) 
based on the distribution of  C a much simpler (but not as 
satisfactory) procedure is often followed, namely, that of choosing 
a suitable estimate for each of the factors  Ci in the product C 
and then forming the product.  If  R^ 
of mn- opportunities for each factor 

successes are observed out 
i, the maximum likelihood 

estimator for the true probability of success  c^  is 

Let 

Ri/mi< 

C. = R./m^ 1 < R. £ m. 

R.  is a random variable 

m.  is a non-random variable, x 

: 

We are interested in finding confidence limits for the product 

N 
n    R, /m. 

i=l x i 

given that we have observed x^  successes out of n^ opportunities 
for each factor  i (as in Sect. 2.1.1 of the main text). 

The m|s could be a future sample to be collected and  (x^, n-j_) 
could be a sample already obtained.  If z^ successes are observed 
out of m^ outcomes in the future sample, then the product 

N 
z = II z, /m. 

i=l x    x 

lies inside the confidence limits for the product 

N 
n 

i=i 
Ri/mi 

in a certain fraction of cases (dependent on the confidence level) 
under the hypothesis that the underlying process (generating successes 
and failures) is the same for the sample obtained (x^, n±)  and for 
the future sample (z£, m^). 

Therefore if the product z lies outside the confidence limits it 
is an indication that the underlying process has changed between 
the sample  (x^, n^) and (zj., mi). ' 
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The inequality 1S R^ < mj means that we assume continuing the 
experiments until we have at least one success (R^sl) for 
each factor i.  (R^/mi is then no more the maximum likelihood 
estimator).  The reason is to overcome the singularity at Ri= 0. 
This assumption is not necessary for the sample  (x^, n^).  Our 
knowledge about the true probability of success, c±,   is in the 
form of the distribution for  cf (the beta distribution) 

(n. +1).( i). c.£.(l-c.) v x   '   vx. '   x  v    x' 

n.-x. 
l  x [Eq. F.l] 

The  probability that     R.     will take the value    a    is 

m.-l a-1 m.-a 
/   X       \ U-l    /, \    x („    , ) • c.     • (1 - c. ) va-l '      x       v        x7 

Therefore 

PI   m. _ , 1 «   s     m.-l       „   1 m.-a 
i^o)-!      £ (fc-SL) .( i    ).cp.(i-c ) x   • 

Jo     a=l      mi a-x      x x 

n.       x. n.-x. 
•(n.+l)-(  1).c.1.(l-c.)  x    x-dc. v  i     '   vx,'    i     x       x7 x 

m.-l   /m. - 1\ 
n.+1        n. ''       [til „   s 

I. (8,0)«    —£— .(*).    Z     )  a - 1/ . r »   (Än-S.)     . 
xv m.+ni     vx.'    a=1    /mJ+Sp 1> m±' 

r 

Of interest is the case m^ = n^, which is implemented in the 
computer program. 

The case m± m  "i means that a future sample is to be collected 
with exactly the same sample sizes as the sample already obtained. 
Confidence limits for the product 

N 
n R</n. 

i=l x x [Eq. F.2] 

can then be used as a measure of uncertainty for the product 

N 
II x./n. 

i=l x    x 

already obtained. 

28 



Therefore confidence limits for Eq. F.2 is, in the following, 
called "limits for an observed value of the product". 

EXAMPLE 

The same example is used as in Appendix E.  The upper and 
lower 10% limits for the observed product 

± x 1 x 1 
10  9  4 

is given in Fig. F.l, together with confidence limits for the 
true probability computed in Appendix E. 

1 • 
Probability 

TRUE 

0.542 

I 0.195 
OBSERVED 

T0.721 

10.188 

FIG. F.'    LIM TS FOR AN OBSERVED VALUE 

f 
: 

F.2  Cumulative Probability Curve 

Calling RJL number of failures (R^al) and replacing Eq. F.l 
by Eq. 18 of the main text 

x.-l.      n.-x. 
1 • <l-c4) 

x     x px  i     s m.-l  x-1     n.-x c.  • (1-c.) 

x      J0 x-1  mi X~X        x x Ö(xi,n1).*1 c. 

or 

rn.-l 

dc., 

h<*>0) "oCx^)'^ (^»7)S- Ci"i)-ö<Jt+«i-1' mi+ni-1)- 

Again the case m. - n. is of interest. 

Difficulties have been encountered in computing  0,(x+x.-l,m,+n.-l) 
accurately for larger N(N>20), therefore another expression 
for  Q giving more accuracy than Eq. 19 of the main text has 
been used in the computer program.  A listing of the computer 
program and test examples are available from SACLANTCEN. 
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