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SUMMARY

The research is devoted to modifying the Bayesian techniques

associated with determining the minimum sample size required to con-

struct interval estimates of the true mean of an experimental or sampling

process which is modeled by a normal distribution with unknown parameters.

The procedure considers only the case where the prior information can be

represented by a normal distribution with known mean and known variance.

Rigorous Bayesian analysis of this situation would result in

using a posterior distribution which has a normal-gamma density to con-

struct interval estimates. In order to circumvent the obvious diffi-

culties of working with this rather complex density, a procedure, which

is felt to be more compatible to the U. S. Army Operational Testing

environment, if offered for approximating the required Bayesian sample

size.

2If the variance of the sampling or experimental process, a , were

known, the minimum Bayesian sample size required to construct an intervPl

estimate about the true mean, p, with confidence coefficient, cy, and

width, k, is:

nb F 2 z 12  2_2
b L k 12

where Z /2 refers to the percentage points of the standard normal dis-

tribution such that P(Z > Z 1 2 ) = 01/2, and ot2 is the variance of the

prior distribution or, the prior variance of the true sampling mean, 4.
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s2
Substituting the sample variance, S , for the true process

variance and the term t /2, n* - ijfor Z 1/ 2 in the above expression,

f the width of the confidence interval as a function of t'-:

sample v-ariance, i.e., k = 8S, results in the following expression fur

the approximate Bayesian sample size:

I F 2 t(a/2, n*2

nb L F n*l)]2

where n* is the classical sample size required tc construct an interval
c

eztimate of width k about the true mean, p, of the sampling process.

The term t(c/2, n* - 1) refers to the percentage points of the Student'sc

t distribution with n* - 1 degrees of freedom such that P[(t > t(cy/2,

cc
n* 1) ] = /e2.

The expression for the approximate Bayesian sample size is solved

iteratively, starting with a fraction of the classical sample size

required for the interval estimate of the same specified confidence

and accuracy, as the first approximation. The iterative procedure is

programed for a UNIVAC 1108 computer and applied to a hypothetical

example to demonstrate the effectiveness of the methodology.

It' accurate prior information is available, the results achieved

by the procedure developed to approximate the Bayesian sample size and

construct interval estimates of the unKnoAn sampling mean, •, of

specified confidence and accuracy are comparable to the results obtained

using classical techniques. These results, however, are achieved using

rnialler samples sizes than required for the classical case. A pro-
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ccdur4:- was suggested for examining the accuracy of the prior information

and ascertaining whether or not Bayesian analysis was appropriate for

a given sampling or experimental situation. However, the expected

results of using this procedure were not obtained.



CHAPTER I

INTRODUCTION

The General Problem

This study is an investigation of the problem of determining

the minimum sample size of an experiment, that is, the minimum number

of replications of the experiment, required to estimate the mean of the

experimental variable to within a predetermined accuracy. In general,

the sttdy is limited to a certain type of testing situation which has

the following characteristics:

a. The test variable, whose mean is to be estimated, can be

modeled by a normal distribution with unknown mean and unknown variance.

b. Information is available, prior to sampling or experimenting,

from which a probability distribution of the mean of the test variable

can be constructed.

c. This prior information can be represented by a normal dis-

tribution with known mean, m', and known variance, a.2

The Specific Problem

A U. S. Army Operational Test (OT) is an overall evaluation of

a system which has been developed for general use within the U. S. Army

structure (2). In this'context, a "system" may be not only hardware,

but also doctrinal concepts, and is usually a mixture of both. The

test is conducted in an environment which duplicates or closely

simulates those conditions under which the system will be employed if
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it is adopted for general use. It is this fact that generally differen-

tiates OT from engineering, developmental, pre-production, and other

tests which may be conducted on the same system and which are usually

a part of the total development scheme of the system. In fact, OT is

required to be an independent evaluation of the system. Thus, OT is a

vital part of the process by which new equipment and concepts are

incorporated into the U. S. Army structure.

An Operational Test is in essence a systematic plan for evaluating

the total system being tested. it is composed of numerous subtests

which address specific issues (unknown parameters) which are considered

critical or paramount to the total evaluation of the system (3). The

specific critical issues to be evaluated by each subtest and the order

of these tests govern the overall structure of the Operational Test.

Once the specific structure of the Operational Test has been

established, a decision must be made as to the number of replications

of each subtest to conduct in order to properly evaluate the critical

issue in question. Time and budget constraints place emphasis on con-

ducting the minimum number of replications possible; while the disastrous

consceuences that could result if a critical issue is not properly

evaluated, make it imperative that accuracy is not sacrificed for

economy. Thus, the problem reduces down to one of determining the

minimum r'unber of replications of each subtest to conduct in order to

evaluate the critical issues in question to within a predetermined

accuracy.

Current procedural and policy documents governing the conduct

of Operational Tests (3, 4, 11) suggest that for the most part, sample
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sizes are determined using non-Bayesian or classical statistical methods.

These methods do not consider prior information available concerning

the variable being tested; therefore, inferences and decisions about

the variable are based entire." on the experimental or sampling results.

Bayesian techniques, on tu_ ý,'her hand, attempt to use both the prior

information and the experimental results in making inferences and

decisions about the variable. Thus, this investigation is essentially

a search for a practical procedure for applying Bayesian techniques to

Operational Testing. The principal Operations Research tools used in

this study are statistical inference and estimation techniques to

develop the methodology, and computer simulation techniques to demon-

strate the procedures developed.

Operational Testing is an expensive undertakivg which must

operate in an environment constrained by budget and time considerations.

The author believes that a methodology which effectively reduces the

number of replications required to evaluate the critical issues

addressed by each subtest and also maintains the accuracy and confidence

desired of the test, is a worthwile pursuit directly applicable to the

Operational Testing environment.

Background

During the last decade, there has been an increasing emphasis

and drive within the military community to develop and formalize a

methodology to adequately identify and evaluate the risks associated

with the development and procurement of major weapons systems. The

underlying premise which initiated this action was that unanticipated



cost and time over-runs and performance shortcomings, which had become

increasingly prevalent, were the resolt of inadequate assessment of

the risks involved with the materiel acquisition process. The metho-

dology which grew out of this effort is knowm as decision risk analysis.

In a report prepared for the Army Materiel Systems Analysis Agency

(AMSAA), Atzinger, Brooks, et al., (6) present a brief history and

description of the major concepts of the decision risk analysis process.

The authors define risk analysis as follows: "Decision risk analysis

is a discipline of systems analysis, which in a structured manner, pro-

vides a meaninfgul measure of the risks associated with various alter-

natives." The purpose of the report is to structure this decision risk

analysis process so that the trade-offs inherent in the alternatives

are visably and meaningfully displayed. It cites the following four

major areas as the underlying concepts of decision risk analysis:

a. Subjective Probability

b. Monte Carlo Methods

c. Network Analysis

d. Bayesian Statistics

Bayesian statistics and Bayes Theorem have attracted renewed

interest in many fields of applied and theoretical statistics in recent

years. This theorem is essentially a mechanism for combining new

information with previously available information so that decisions or

inferences can be based on all the information available. Over the

years, a controversy has developed between the Bayesian and the more

orthodox classical statistical concepts. Anscombe (1) provides a brief
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ibut concise history of the development of both philosophies.

During the last few years there has been a revival of interest
among statistical theorists in a mode of argument going back to the
Reverend Thomas Bayes- (1702-61), Presbyterian minister at Tunbridge
Wells in England, who wrote an "Essay To-wards Solving a Problem in
the Doctrine of Chances," which was published in 1763 after his
death. Bayes work was incorporated in a great development of pro-
bability theory by Laplace and many others, which had general
currency right into the early years of the century. Since then
there has been an enormous development of theoretical statistics,
by R. A. Fisher, J. Neyman, E.S. Pearson, A. Wald and many others,
in which the methods anu concepts of inference used by Bayes and
Laplace have been rejected.

The orthodox statistician, during the last twenty-five years or
so, has sought to handle inference problems (problems of deciding
what the figures mean and what ought to be done about them) with
thi utmost objectivity. He explains his favorite concepts, signi-
fiance level, confidence coefficient, unbiased estimates, etc., in
terms of what he calls probability, but his notion of probability
bears little resemblance to what the man in the street means (rightly)
by probability. He is not concerned with probable truth or plausi-
bility, but he defined probability in terms of frequency of occur-
rence in repeated trials, as in a game of chance. He views his
infcrence problems as matters of routine, and tries to devise pro-
cedures that will work well in the long run. Elements of persona2
judgment are as far as possible to be excluded from statistical
calculations. Admittedly, a statistician has to be able to exer-
cise judgment, but he should be discreet about it and at all costs
keep it out of the theory. In fact, orthodox statisticians show
a great diversity in their practice, and in the explanations they
give for their practice; and so the above remarks, and some of the
following ones, are no better than crude generalizations. As such,
they are, I believe, defensible. (Perhaps it should be explicitly
said that Fisher, who contributed so much to the development of the
orthodox school, nevertheless holds an unorthodox position not far
removed from the Bayesian; and that some other orthodox statisti-
cians, notably Wald have made much use of formal Bayesian methods,
to which no probabilistic significance is attached.)

The revived interest in Bayesian inference starts with another
posthumous essay on "Truth and Probability," by F. P. Ramsey 2 (1903-
30), who conceived of a theory of consistent behavior by a person
faced with uncertainty. Extensive developments were made by B. de
Finette and (from a rather differený point of view) by J. Jefferys.
For mathematical statisticians the most thorough study of such a
theory is that of L. J. Savage3, 4 . R. Schlaifer 5 has persuasively
illustrated the new approach by reference to a variety of business
and industrial problems. Anyone curious to obtain some insight
into the Bayesian method, without mathematical hardship, cannot do
better than browse in Schlaifer's book.



6

The Bayesian statistician attempts to show how the evidence of
observations should modify previously held beliefs in the formation
of rational opinions, and how on the basis of such opinions and of
value judgments a rational choice can be made between alternative
available actions. For him probability really means probability.
He is concerned with judgments in the face of uncertainty, and he
tries to make the process of judgment as explicity and orderly as
possible.

Atzinger, Brooks, et al., (6) obviously consider Bayesian

statistical procedures to have great potential in the decision risk

analysis process; they state:

Bayesian statistics er'joys a unique position in risk analysis.
There frequently exist situations where the analysist has both data
and expert judgment to draw upon in constructing the probability
distribution of interest in the consolidation activity. Bayesian
statistics provides the analyst with a tool for synthesizing all
of this information into one probability distribution which can
then be used to directly estimate risks.

Review of the Literature

The statistical literature dealing with sample size determination

is quite extensive, particularly in the area of classical techniques.

Bayes, T., Essay Towards Solving a Problem in the Doctrine of Chances,

reprinted with bibliographical note by G. A. Barnard, Biometrika,
45 (1958), 293-315.

2 Ram-!iy, F. P . The Foundations of Mathematics, London: Rowtledge and

Kegan Paul, 19-l.

Savage, L. J., The Foundations of Statistics, New York, John Wiley,
1954.

Savage, L. J., Subjective Probability and Statistical Practice, to
be published in a Mehtuen Monograph.

5 Schlaifer, R., Probability and Statistics for Business Decisions:
An Introduction to Managerial Economics Under Uncertainty, New York,
McGraw-Hill, 1959.
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Mace (12) provides an excellent and thorough coverage of classical pro-

cedures for determining the optimum sample size of a research experiment.

This publication is applications oriented and provides procedures,

formulas, and tables for determining economical sample sizes for some

forty different types of research objectives. Unfortunately, the

author considers only one rather limited application of Bayesian tech-

niques to sample size determination. The limitation in this particular

example, that the variance of the sampling process must be known, seems

to occur cite frequently in the literature of Bayesian techniques for

determing minimum sample sizes.

There has been extensive research in the application of Bayesian

techniques to reliability engineering and quality control. White (15)

presents a promising methodology for periodic reliability assessment

using Bayesian techniques to combine analytical predictions with limited

test results to obtain greater precision in the reliability estimate.

The main limitation of this paper is that it considers only the gamna

distribution in the analysis. Gilbreath (8) has devised sampling

procedures for use in sequential sampling models which have direct

application in quality control and in economic lot size determination.

These techniques, however, are more applicable to hypothesis testing

than to the estimation problem.

Atzinger and Brooks (5) provide -An excellent comparison of

Bayesian and classical decision making under uncertainty for a class

of problems where the decision variable is the Bernoulli success pro-

bability, p. If the outcome of any particular test or experiment is
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viewed as a success or failure, the resulting data classification is

characteristic of a Bernoulli process. The authors persuasively argue

that historically, one of the major objectives in test and evaluation

processes has been to estimate this unknown Bernoulli success parametei.

Unfortunately, such an analysis does not address the actual parameters

of the sampling or experimental process itself.

Winkler (16) provides a rather detailed and complete development

and treatment of Beyesian applications to inference and decision theory

at the introductory level. Although the concepts developed in this

publication are very thoroughly covered, the scope of the material is

rather limited. 'That is, only two specific sampling processes are

analyzed in detail: the sampling process modeled by the Bernoulli

distribution, and the sampling process represented by the normal dis-

t ibution with known variance.

Raiffa and Schlaifer (13) provide an extensive mathematical

development of Bayesian technqiues applied to statistical decision

theory. However, once again, extensive analysis of the normal dis-

"tribution is generally restricted to the case where the variance of

the sampling population is known.

Thus, Bayesian applications to the problem of sample-size deter-

mination deal only with very specialized situations in the current

literature. There appears to be no substantial research into the

examination of the general problem. On the other hand, classical

statistical techniques commonly apply iterative type algorithmn to the

to the general problem of sample size determination. The author believes

that these techniques can be validly extended to Bayesian analysis and
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produce equally valid results. The aim of this investigation, then, is

to extend the application of these well known techniques to the general

sampling situation using Bayesian analysis.
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CHAPTER II

THE TEST METHODOLOGY

The Assumptions of Normality

The normail-ity assumptions stated in the introduction int•r•duc Jon

are crucial, albeit restrictive, to this investigation. The assumption

that the prior distribution, which represents the distribution of the

mean of a random variable, is normally distributed has solid support

in the Central Limit Theorem. Hines and Montgomery (9) state the

essence of this important theorem as. follows:

If XI, X2  , Xn is a sequence of n independent random

variables with E(Xi) = ni and V(Xi) = T2 (both finite) and Y = XI

+ X2 + . + Xn, then under some general conditions

ni=l 2

vL

Z = 1
n n

7 i2
i=l

has an approximate N(O,l) distribution as n approaches infinity.
The "general conditions" mentioned in the theorem are informally

sunmarized as follows: The terms Xi, taken individually, contri-
bute a negligible amount to the variance of the sum, and it is not
likely that a single term makes a large contribution to the sum.

The principal implication of this theorem, then, is that in

general the sum of n Independent random variables is approximately

normally distributed for sufficiently large n, regardlecs of the dis-

tribution of the n individual random variables. Unfortunately, the



assumption that the random variable to be tested is normally distributed.

;s much more restrictive. However, in many cases, real-world situations

can be satisfactorily approximated by a normal process. Also, statisti-

cal inference and estimation procedures, particularly those concerning

"the mean of random variables, are generally robust (insensitive) to the

normality assumption (12).

The Prior Information

At first glance, the requirement that Operational Testing be

independent of other testing conducted on the same system may seen an

insurmountable obstacle in attempting to obtain adequate prior infor-

mation. This, however, is usually not the case; other sources of prior

information do exist. For example, most new systems undergoing testing

have been specifically designed to replace older or outmoded systems

which are currently a part of the U. S. Army stracture. These older

systems represent a vast source of historical data from which prior

distributions for nearly any critical issue can be developed. In

those rare cases where no historical data exist from which to construct

a prior distribution for a specific critical issue, the Delphi technique

o, Other proven methods of developing subjective assessments of uncer-

tainties can be used to develop the prior distribution (6).

In any event, to the- Bayesian statistician, the prior information

represents tle best available estimate about an uncertain quantity,

regardless of its source. This fact even suggests that it is reason-

able and logical to modify the prior distribution developed from

historical data to reflect the improved design characteristics of the
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new system. Suppose, for example, that one of the critical issues being

evaluated during OT of a new weapons system is the accuracy of the

weapon at a specified range. The distribution of the mean-error of

similar weapons currently in use can be determined from historical

data. If the new system is expected to be significantly more accurate

beceuse of new design characteristics, the mean of the prior distri-

bution developed from the historical data can be adjusted to reflect

the expected increase in the performance of the new system. In dis-

cussing techniques for the assessment of prior distributions and the

use of diffuse prior distributions to represent the situation where no

prior information is available, Winkler (16) states:

It should be stressed that in general, there is no such thing as
a "totally informationless" situation and the use of particular
distributions to represent diffuse prior states of information is
a convenient approximation that is applicable only when the prior
information is "overwhelmed" by the sample information. In most
real-world situations, non-negligible prior information (non-
negligible relative to the sample information) is available, and
the concept of a diffuse prior distribution is not applicable.

The Basic Alternatives of Determining Sample Size

This study considers only two basic approaches to determining

the appropriate sample size in an experimental process. One approach

is to simply disregard any prior knowledge or information available

about the variable of interest, and use classical statistical techniques

to solve the problem. The other approach is to combine the prior

information with the results of a limited number of replications of

the experiment, if possible, and then use these results to solve the

problem.
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The Classical Method

Classical estimation procedures and techniques are well documented

in the literature (9, 10, 12). This method uses only the results of

the sampling or experimental process in the estimation procedures and

ignores all prior information. Starting from the basic assumption that

the sampling process is normally distributed with unknown mean, p, and
2

unknown variance, a , the raudom variable representing the outcome of

the sampling process can be represented by:

c2 2
X. -. N(p, C ), with 45, 2 unknown

Let (XI, X2 , . , Xn) represent the results of n replications

of the experiment. The sample statistics based on the specific n

values obtained from the sampling process can be expressed as:

n

I" X., the sample mean
n .

i=l

and n

S(Xi. T)2

s2i=l
=n - 1 , the sample variance

The appropriate expression for a (1 - cl) percent confidence

interval about the unknown mean, p, for a process which is normally

distributed and for which the variance is unknown is constructed using

the Student's t distribution, i.e.;
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P - t(ct/2,n-l) Sp- 5 ! + t (cy/2,n -l1) .S 1- (2-1)

'There the expression t(ae/2,n-l) refers to the percentage points of the

Student's t distribution with n-l degrees of freedom such that P(t >

tGWt2,n-l) = a/2.

Recall from the introduction that the classical interpretation

of probability differs considerably from the Bayesian interpretation.

Thus, the interpretation of equation (2-1) is based on long-run con-

siderations. That is, the classical statistician would say that if a

confidence Interval based on a sample size of n is constructed each

time, Then in the long run, 1-a percent of such intervals would contain

the true mean of the normally distributed sampling process. The value

o)f Ct, which is preselected at some low value, can then be thought of

as protect.ion against failure of the interval to include the true

value of the mean of the sampling proc-ess. Tbe value, a' = 0.05, is

often selected for statistical inference and estimation problems because

9f traditional useage. The second type of error that can occur in

interval estimation problems is that the interval Constructed based

,)n a set of specific sample results may t.-- too widoý, even though the

interval does include the true -value of the mean of the sampling pro-

cess. This, then, is a problem of the accuracy associated with the

confidence interval. Protection against this type of error is accom-

plished by controlling the width of the confidence interval constructed.

The vidth of each specific 'confidence interval is dependent on the
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sample size and the value of cy specified.

The terms

UL = X - t(t/2, n-l) -Z-

Vn

and

UU = + t(a/2, n-l) SJn

which are real-valued functions of the sample results, are the lower

and upper limits, riespectively, of the interval estimate. The Student's

t distribution is very similar to the standard normal distribution, and

for degrees of freedom, v = n-1 >.20, the two distributions are virtually

indistinguisable. And in fact, the Student's t distribution is identical

to the standard normal distribhtion for degrees of freedom, v = M (10).

This fact allows accurate approximations in computing the minimum

sample size by approximating the value of t(a/2,n-1) by t(01/2, ) =

zaI2 for mrderate sample sizes. The experssion Za/2 refers to the

percentage points of the standard normal distribution such that

P(z > Za/2) = /2

For the moment, let the preselected width of the confidence

interval be simply equal to k. Then from equation (2-1), the half-

interval width can be expressed as:

t(cy/2, n-l) S k
- -2

2
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Solving this equation for n, results in the following expression for

the minimum sample size required for a confidence interval width equal

to k.

n*Lc = k c ] (2-2)

It is more convenient to express the width of the confidence interval

in terms of the sample standard deviation in order to simplify equation

(2-2). Thus, if k = 6S is substituted into the equation, the minimum

sample size required can then be expressed as:

2t(a/2, n*c -1) 2 (2-3)

Equation (2-3) cannot be solved explicitly for n*c, since the

value of t(a/2,n* -1) is a function of the saaple size n* . But since

the value of t(0/2, n*c-1) is approximately equal to t(a/2, O), which

is equal to Zy/2, for moderate sample sizes a good first approximation

for the solution of equation (2-3) is obtained by substituting the

value of Zo/2 for the value t(q/2, n* c-1). This first approximation

is known to be too small, although for large sample sizes it is quite

close to the actual value of n* . Using this first approximation,
c

call it no, to evaluate t(&/2,no-1) and to solve equation (2-3) again,

to obtain a better second approximation for the value of n* . Thisc

iterative procedure can be used to approximate the value of n* to anyc

desired accuracy; however, there is usually no significant improvement

in the approximation after the second or third iteration.
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Table 1 shows the values of n* obtained for a 95 percent (a =C

0.05) confidence interval for various values of 6 using this iterative

procedure. Because of the premimum placed on accurate estimates in

Operational Testing, values of 9 > 1.0 were not considered. The values

shown in the table under the headir- P(K) are the approximate proba-

bilities of a single observation from the sampling process falling

between the lower and upper linits of the confidence interval, i.e.,

P(K) = P(K ! x -< UV). This value gives a probabilistic measure of

the accuracy (width) of the confidence interval. The values of n*c

in the table have been rounded up to the next highest integer. As

illustrated in Table 1, equation (2-3) points out that in order to

decrease the width of a confidence interval by one-half, the sample

size must be increased approximately by a factor of four.

Table 1. Minimum Sample Size - Classical Method

6 P(K) n*

1.0 0.383 18
0.9 0.347 22
1.8 0.311 27
o.7 0.274 34
0.6 0.236 46
0.5 0.197 64
o.4 0.159 99
0.3 0.119 174
0.2 0.080 387
0.1 0.04o 1537
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A Bayesian Approximation

Bayes Theorem for Continuous Random Variables. The essence of

Bayes Theorem for continuous random variables is depicted in Figure 1

shown below. The densities f(6) and f(Gly) represent the prior dis-

tribution and the posterior distribution respectively, and f(y Ie)
represents the likelihood or sampling function. It is important to

keep in mind always that it is the prior distribution or the statisti-

cians prior state of knowledge that is modified by the sampling results

and not the reverse.

Sample
Information

(y)

0 e
f(e) f(yIe) f(Ofy)

Figure 1. hyes Theorem for Continuous Random Variables

The prior and posterior distributions must be proper density

functions. That is, they must possess the following mathematical

properties applicable to the density function of any continuous random

variable, X, which has range space or domain, R :

(i) f(x) ý 0 for all xeRx

(ii) JR f(x)dx = 1
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The likelihood or sampling function, f(yje), represents the probability

of obtaining a given value, y, for the range of possible values of 9.

The likelihood function is not a proper density function because the

events f(yie) are not mutually exclusive over the range of 9.

As suggested in Figure 1, Bayes Theorem is essentually a process

of combining the prior distribution with the sample information to

yield the posterior distribution. The resultant posterior density has

the following form:

f(e0ly -.- f(e) f(yle) (2-4)

j@ f(e) f(yIe)de

This result can be expressed in words as:

posterior density noormalizing r prior 2 r likelihood
L constant .J L density i L function j

where the normalizing constant, I/ j f(e)f(yIG)de, is needed to make

the posterior distribution a proper density function.

Before the advent of the high speed computer which greatly eased

tve computational burden involved with numerical integration techniques,

application of equation (2-4) to revise density functions in the light

of sample information often proved extremely difficult because of the

integration required to compute the normalizing constant. For this

reason, Bayesian statisticians developed the concept of "conjugate"

distributions, which are families of distributions that ease the compu-

tationa.l burden when they are used as prior distributions (16). Of
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,-ourse the resultant form of the posterior distribution depends on the

likeliho)od function as well as the prior distribution. Thus, conjugate

prior distributions are selected on the basis of the statistical pro-

pertie.s of the model chosen to represent the sampling process. When

the prior distribution is conjugate to the likelihood or sampling

function, the resultant posterior distribution is also a member of

the ýtie conjugate family of prior distributions.

BXyes Theorem for Normal Distributions. If it is possible to

model the population or process being sampled by a normal distribution,

the proper choice for a family of conjugate prior distributions depends

on the statistician's knowledge of the parameters of the normal data

generating process used. Raiffa awd Schlaifer (13) sumnarize the

effects of the statistician's knowledge of the two parameters of the

normal distributions on the proper choice of conjugate prior distri-

butions as follows:

Case (1) Li knowna 2 unknown: The appropriate famile of conjugate
distributions have a ganua-2 density.

2Case (ii) a known, L unknown: The appropriate famile of co-jugate
distributions have a normal density.

Case (iti) both L& and a2 unknown: The appropriate family of conju.-
gate distributions have a normal-gama density.

An Approximation Procedure. Since it was assumed that within

the context of this study.the model representing the sampling process

in Operational Testing was nornelly distributed with unknown mean, i,
2

and unknown vairance, a , the appropriate family of conjugate distri-

butions to use in this case have a normal-gamma density. In order to

overcome the obvious difficulties associated with computing interval
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estimates with the normal-gamma density, a procedure is suggested here

to modify the Bayesian analysis of this sampling process so that the

family of conjugate prior distributions have a normal density function;

as is the case when the variance of the population or sampling process

is known.

Assume for the moment that the variance of the sampling process

is known. Then the conjugate prior distribution has a normal density

function of the form:

1 e-(P - M' 2/2a'2S--e
4 2m I

where the prime (1) is used to signify a parameter or constant which
,2

is associated with the prior distribution. Thus, a is the va'iance

of the prior listribution or, the prior variance of the unknown para-

meter, &L; and m' is the mean of the prior distribution of this para-

meter.

If n replications of the experiment were now conducted and a

sample mean,

n
m =nI- i

ni Xi

and a sample variance,

n
0,2 l 2

n-l ~(Xi M)
i=l

were observed, the resultant posterior distribution would also have a
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normal density function of the form:

f~l611 ) 2 - (p - m1" ) 2/2cr"12
f"G(•jy) = I

where 2y,, 2  e

where y represents the sample results, and the double prime (") is

used to indicate a parameter or constant which is associated with the

posterior distribution. Thus, a" 2 is the posterior variance of p,

and m" is the mean of the posterior distribution of p. These posterior

parameters can be computed from the following formulas:

1 i n-- = -• -• (2-5)
Cy Ct2 Cr

and

,, (1/a'l 2' + (na 2)m (2-6)

=(Il/'21) + C,(n/2 )

Equations (2-5) and (2-6) indicate that the reciprocal of the

posterior variance is equal to the sum of the reciprocal of the prior

variance, a,2 and the reciprocal of the variance of the sample mean,

21c /n. The posterior mean is a weighted average of the prior mean, mI',

and the samp1r mean, m. The weights being the reciprocal of the res-

pective var-ances.

As depicted in Figure 2., an important feature of the posterior

dintribution is that the posterior mean, m", always lies between the

prior mean, m', and the sample mean, m. The posterior variance, a
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is always smaller than the prior variance, a'2 (16). From equation

(2-5), if the variance of the prior distribution, a'2, decreases, the

amount of prior uncertainty decreases, and the prior information is

given more weight in the determination of the posterior distribution.

Similarly, as the variance of the sample mean, a /n, decreases, the

sampling information is given more weight in the determination of the

posterior distribution.

a,,
posterior

S12 likelihood

MI ISI I

Figure 2. Bayes Theorem for Normal Distributions

A different parameterization of this problem might help clearify

the results obtained.

2
let n' = a

a,2

Then the prior variance can be written in terms of n' and the process

or sampling variance, thus:
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2

Sirilarly, if

2
n"

,,2

then

a,,2 j 2

Substituting these results into equations (2-5) and (2-6), the para-

meters of the posterior distribution are then

or simply,

n = n' + n

and

2 2m"= (n'/a )m' + (n/a )m

(n/ 2•) + (n/l )
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or simply,

n'm' + rm (2-10)
n +n

In his interpretation of the results obtained by using these

new parameters, Winkler (16) suggests that the prior distribution can

be thought of as roughly equivalent to the information contained in a

sample of size n' with a sample mean of m' from a normal sampling pro-

2cess with variance a . That is, n' appears to be the sample size

required to produce a variance of a'2 for a sample mean equal to m',

since the variance of the sample mean from a sample si7e n' is equ:al

to a /n' Winkler also considers equations (2-7) and (2-3) as formulas

for pooling the information from the two samples. Under this inter-

pretation, the posterior or pooled sample size is equal to the sum of

the two individual smuple sizes, one from the prior distribution

and one from the sampling process. The posterior or pooled sample mean

is equal to a weighted average of the two individual sample means.

This pooling process suggests that a reasonable estimate of the

sample mean, based on all the information available, is the posterior

or pooled mean, m". Notice that if n' > n, then the posterior or pooled

mean is closer to the prior mean than to the sample mean. That is,

the prior information is given more importance than the sample results

in the determination of the posterior parameters. Of course, the

posterior mean is closer to the sample mean if n > n'; and if n' = n,

the posterior mean is exactly midway between the prior mean and the
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sample mean. Notice also that since the sample mean, m, is as equally

likely to fall above as it is to fall below the true population or

sampling mean, p; it is then equally likely that the sample mean and

the mean of the prior distribution, m'. to be on the same or opposite

sides of p. When m' and m fall on the same 'ide of p, the -Aean of the

posterior distribution, m", will be further from -, th&.: the sample mean.

That is, the posterior mean will be a less accurate estimate of the true

population mean than the sample mean. When m' and m are on opposite

sides of p, then it cannot be determined whether the posterior mcran will

be closer or further from ýL than the sample mean. Each specific case

must be examined separately; the results will depend on the sample

size, the specific value of the prior mean, and the variances of the

prior and sampling distributions.

Since the point estimate of p based on all information available

is the posterior mean which is normally distributed with mean, m", and
112

variance, &i , the statistic

a

has a standard normal distribution, i.e., Z - N(O, 1). Therefore the

appropriate expression for a (1 - a') percent interval estimation of

for this case is constructed using the standard normal distribution,

P(m - Z /2 a" :5 m " + /a2 1 - (2-11)
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The lower and upper limits of the confidence interval in this case are

UL = m" - Z a/2 " and UU = m" Z /2 a, respectively.

If, as was done in the classical case, the width of the con-

fidence interval for the general case is set equal to k, then from

equation (2-11) the half-interval width can be expressed as:

Z it k
,2x a"

Now substituting the expression for all2 from equation (2-5) into the

above expression results in the following:

Z•2[ 1/'+n/ i ]=k

Z/ 2 L1/a'2  + n/,2  j 2

Z a2 'a•2 2 k
a/2 j =+ +na

and finally,

nb= 2Z 0 • 2 2 (2-12)b L k J -,2

This then, is the Bayesian solution for the minimum s3mple size

required to establish a confidence interval of width k about the mean

of the sampling process under the special condition that the variance
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of' the sampling process is known. Several cha.racteristics of equation

(2-12) deserve mention. First of all, the first term in the equation,

[2 Za/ 2 a/k], is in fact the exact expression for the classical solution

to the problem of determining the minimum sample size required to

establish a confidence interval of width k about the mean of a sampling

process with known variance. Second, the last term in the equation,

2 2
a la' , is the expression developed earlier for n' in equation (2-7).

Recall Winkler's interpretation of n' as being roughly the equivalent

sample size, relative to the sampling process, of the information con-

tained in the prior distribution. The ratio 2 /a'2 = 0 is also used to

define a diffuse prior distribution, !..e., an informationless prior
2

state. Assuming that the variance of the sampling process, a > O,

the ratio a 2/a = 0 only if the variance of the prior distribution,

ca2 = W. In this case, the variance of the prior distribution would

represent a condition of total uncertainty and since n' = 2/C'2 = 0,

equation (2-12) would . yield the same results as in the classical case.

Tying all these facts together, equation (2-12) can be inter-

preted as follows: the minimum Bayesian sample size required to esta-

blish an interval estimation of the mean of any specified width or

accuracy is equal to the minimum sample size required to establish

the same interval estimation using classical methods, minus the value

of the prior information in terms of an equivalent sample size. Or,

more clearly:

n* = n* - n'
b c
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Now, consider once again equation (2-12) in order to address the

fact that the variance of the sampling process is in fact not known.

Substituting the sample variance for the variance of the sampling pro-

cess and the term t(a/2, n* - 1) for Z in equation (2-12) and oncec 2 i

again defining the width of the confidence interval as k = 8S, results

in the following expression for the approximate Bayesian sample size:

S[2 t/p, n - 1 2 s2
b*C (2-13)

where

S* 1 ~
n (X - i)

b

and m is equal to the sample mean based on n*b observations.

Examination of equation (2-13) reveals that the first term in

the equation is identical to equation (2-3), the classical solution

to the minimum sample size problem for a normal sampling process with

unknown variance. The last term in the equation is an approximation

of the equivalent sample size of the information contained in the prior

distribution, where the value of n' = a2/c'2 is approximated by n' =

$ 2/cr2. Of course equation (2-13) cannot be evaluated explicitly, even

though the value of the first term in the equation Is exactly known

from the results obtained using the classical method, since the value

of 32 depends on the specific observations obtained during the sampling

proccess.
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Before suggesting a. procedure for approximating a solution to

equation (2-13) for the general case, it may be more appropriate at

this point to examine the general implications of using the posterior

distribution to construct cofidence interval estimates about the mean

of the sampling process. An interval estimation based on the posterior

distribution has as its midpoint the posterior mean, m"'; while the mid-

point of an interval estimation based on the sampling process alone is

the sample mean, m. Referring to Figure 2, it is obvious, then, that

an interval estimate of width 6S which is based on the posterior dis-

tribution will not include the sample mean, m, if mn" and. m are separated

by more than JAS. A large separa~tion between mn" and m is indicative of

prior information which is not very compatible to the results obtained

from the sampling or experimental results. In other words, the prior

infor!mition does not predict the behavior of the sampling process very

well. This is an important consideration in Operational Testing, since

it is Important to decide whether or not to use the prior information

in estimating the mean of the sampling or experimental process.

It would seem appropriate then, to develop at least a heuristic

rule to reject the use of prior information which causes the posterior

and sampling means to differ beyond some pre-established lirv.t. The

general form of such a rule would be of the form:

Im" - m Ie q6S

where the valute of q is slectec'. in a manner such that if the inequality
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were not satisfied, the application of Bayesian techniques would be

aborted and the appropriate sample size for the specific situation would

be determined by using classical techniques.

Returning now to the problem of constructing an interval estimate

of width 6S for the mean of the sampling process using Bayesian techni-

ques, the following procedure is suggested as a reasonable approach to

approximating the solution of equation (2-13) for the general case.

a. Determine the minimum sample size, n*c, required for the

classical method. This value, caLL it nog is the upper limit of the

Bayesian sample size.

b. Aq a first approximation to the Bayesian sample size, let

n1 = n P.. Where the value of d is selected with consideration given

to the classical sample size being used. That is, for small values of

n*, d sho.uld be chosen at some low value (such as 2 or 4) in order thatC•

n be large enough to yield suitaule sample statistics. For large

values of n*c, d may be increased since the resulting nI samples would

still yield suitable statistics. The objective here is to approximate

the Bayesian sample size concervatively while insuring that the approxi-

mation decided upon is large enough to yield reasonably valid sample

statistics.

c. Conduct the nI replications of the experiment and from the

results compute the sample statistics:
n

L.Xi
i-- 1
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and n m) 2S(x1 -

S = i=l ni-1

d. Use these statistics to compute the approximations:

1 2

1

nrim' + •m,I" n 1, + n1

e. Determine the second approximation of the Bayesian sample

.ize by using the value obtained for the first approximation and the

following relationship:

S= n, + A(nO - n' 1l)

where & is chosen with the same considerations as was the value of d.

The expression for the nith approximation of the Bayesian sample size

is:

n j = n_- + A(no - nlj.I)

f. Determine if sufficient replications of the experiment have
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been conducted after each iteration by comparing the computed approxi-

cation of the Bayesian sample size to the classical sample size minus

the computed value of n'. That is, continue the iterative procedure

uni nj I n - .',.

g. After computing the final approximation of the Bayesian

sample size, determine if the prior information should be accepted or

rejected. That is, if Im" - ml i q6S, use the n replications already

conducted to construct the interval estimate of the mean of the experi-

mental process using Bayesian techniques. If Im" - ml > q6S, reject

the use of the prior information; conduct the remaining n0 - nfj repli-

cations of the experiment and construct the desired interval estimate

of the mean of the experimental process using classical techniques.
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CIkPTER III

DEMIONTRATION OF THE METHODOLOGY

Progring the Model

The model developed for approximating the minimum Bayesian sample

size for the special test situation described in Chapter I is programmed

fer the UNIVAC 1108 computer using standard Fortran IV language. The

program consists (f four basic segments designed to perform the follow-

Ing functions: generate the required data and compute the sample

statistics; camzte the minimum classical sample size required for an

Interval estimation of specified width; compute the approximate Bayesian

aqle size required for the same interval width; and construct the

confidence intervals desired based on the sampling results.

The Box and Mueller technique (7) is used to generate the normal].y

distributed pseudo random numbers representative of a normal process

with specified mean and variance. The random number generator was tested

for various sample sizes and values of the model parameters using the

chi-square goodness-of-fit test for normality. The results of these

tests were quite favorable and are summarized in Table 2.

Equation (2-3) is solved iteratively for the minimum classical

sample size by using two standard UNIVAC M1TH-STAT library functions

t!h). The function TINDfl is used to compute the value of the inverse

of the stancard normal distribution given the value of the probability

for which the ordinate is to be calculated. The function STUDIN is
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used to calculate the inverse of the Student's t distribution for a

j-lven confidence coefficient. The results obtained from the subroutine

used to calculate the classical sample size for each specified value of

6 are shown In Table 1.

Ap~row=tions for the Bayesian sample size for a given value of

delta are computed using the iterative procedure developed in the pre-

cedizM chapter. The value of the classical sample size computed for a

given wrlue of dleta is Input to this subroutine which uses this value

to calculate the first approximation of the Bayesian sample size.

Confidence intervals are computed by using the STUDIN library

function to calculate the value t(&/2, n*-l), where n* is the computed

classical or &ayesian saumple size. The subroutine then computes the

lower and upper lim.ts of the confidence interval, i.e.,

S
UL- - t(&/2, n* -1) c

C

c

for the classicas case, and

S
U =m" -t~a/2,n% -) b)

and
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S b

=m" + t(a/2, n*b - 1)S

for the Payesian case.

Demonstrating the Model

In order to demonstrate the model developed to approximate the

Bayesian sample size in the preceding chapter, various values of the

constants, d, , end q used in the iterative procedure were tried in

preliminary simulations. The values d = 4, A = 1/4, and q - 3/8 were

chosen for the following reasons:

a. Values of d < 4 tended to produce first approximations of

the %syesiaw sample size which were too large when working with small

values (. the classical sample size, no. That is, nI I no - n', after

the first approximation. Larger values of d produced more conservative

first apprcoxmtions of the Bayesian sample size for small values of

no, but at the same time resulted in unreliable, i.e., greatly variable,

sample statistics.

b. Values of A < 1/4 were rejected because for large values of

no the number of iterations required to compute the approximate Bayesian

sample size was considerably increased. It was felt that this result

was undesirable in an Operational Testing mode and, of course, it also

meant increased computer times to solve the approximation. A scheme

of using a variable value for A was tried, i.e., A was decreased by

one-half after each iteration. This scheme was also rejected because
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for larger values of no the iterative procedure quickly evolved into

a sequential type of sampling procedure.

c. The value of q = 3/8 was selected as a reasonable choice

based on the illustration shown in Figure 3. The interval a-d repre-

sents an interval estimation based on the posterior distribution. Then

from previous definitions, a-d x 6S, and the intervals a-rn" a m"-d =

1/2 6S. Then if the intervals a-b = c-d = 1/8 6S, the sample mean, m,

is required to be within the interval b-c - 3/4 6S, i.e., In" - ml

3/8 6S is the prerequisite for incorporating the prior information

into the estimation procedures. It was felt that 1/8 AS would allow

for sufficient variation of the sample mean due to differences in

sample results.

posterior

distribution I

likelihood
I I function•

I I

a b '" m c d

Figure 3. Separation of the Posterior and Sample Means
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The procedure to approximate the Bayesian sample size was demon-

strated using a hypothetical case having the following characteristics:

a. the ratio C2/C 2= 16.

b.o* - 5 nd Im' - = 10.

22
where p aind a are the true (but assumed unknown) values of the para-

meters of the sampling process aMd n' and m' are the parameters of the

prior distribution.

The first test of the procedure involved a computer simulation

of 100 runs for each value of delta from 1.0 to 0.2. The model was not

tested for the value of delta equal to 0.1 in this or subsequent tests

of the procedure because the large sample sizes involved required an

excessive amount of computer time. The results of this first test are

suairized in Table 3 for the case where Im' - 41 = 5 and in Table 4

for the case where Im' - 41 = 10. These results appear quite favorable

as shown in the percentage of reduction achieved over the classical

Zample sizes. Note that the computed Bayesian sample size does not

depend o the value of 1' - 1l. That is, the Bayesian sample sizes

are identical in Tables 3 and 4 for a given value of delta. The con-

fidence and accuracy of the interval estimates produced, i.e., the

nmuber of times the true mean of the sampling process is contained

within the interval and the width of the interval constructed, is

comparable to the results obtained using classical methods for the

rase where Im' - L.I = 5. For 'he case where In' - 1 = 10, the desired

confidence is not achieved until the situation involving the two largest

..3mple sizes. The separation between the posterior and sample means
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,lecreases as the sample size increases and the sampling information is

given more wei4,ht in the determination of the posterior distribution.

For this reason, the test suggested for determining whether or not to

use the prior information does not work well at all. For both the case

where IM' - i1 = 5 and Is' - pl = 10, the test rejects the prior infor-

mation too often for small sample sizes and erroneously allows the use

o1 the prior information in large sample sizes. It appears that a

better decision rule as to whether or not to reject the prior information

should :onmider the difference between the prior mean (rather than the

posterior mean) and the sample mean. The accuracy of the approximation

procedure is quite good; the overall average reduction in the sample

size for all values of delta is 12.0 samples, which equates to approxi-

mately 75 percent of the true difference between the classical and the

Bayesian sample sizes, which is 1.6 samples fcr this particular case.

Th'e second test of the procedure involved computing the Bayesian

sample size required for each value of delta and for various values of

Im' - t raringag from one standard deviation below the true mean of the

sampling process to one standard deviation above this value. The spec-

ific valuaes chosen for Im' - pl and the results of the test are shown

in Table 5. The results obtained when the value of Im' - pi is within

*one-half standard deviation on either side of p are quite favorable,

with only three cases-out of the total of 63 trials where the Bayesian

interval estimate did not include the true value of the mean of the

samplping process. Overall, there were a total of 24 cases, out of the

?9 total trials, where the Bayesian interval estimate did not include
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the true value of the mean of the sampling process.

The final test conducted on the model was to fix the value

Im' - = 5 and to compute the Bayesian sample size required for each

2 2
value of delta and for various ratios of the variances, a l/a. The

:pccific values chosen for the ratio of the variances and the results

of the test are shown in Table 6. The results obtained when the ratio

of the sampling and the prior variances was 4 or greater are good, with

only one case out (if a total of 63 trials where the Bayesian interval

estimate did not include the true value of the mean of the sampling

process. Overall, there were a total of seven cases out of the 99

trials where the Bayesian interval estimate did not include the true

value of the mean of the sampling process.
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CHAFkER IV

CONCLUSIOWS AND RECOMMENDATIONS

Cone bis ions

The re-sults of this study indicate the following conclusions.

1. The suggested procedure to approximate Bayesian sample sizes

*Lnd construct interval estimates for the mean of the sampling process

should be used for the ncrmal samplini, process when accurate prior

inforvation is av.ailable. That is, when the prior mean is within one-

1v.1f standard deviation ff the true mean of the sampling process.

2. In the worst case, the procedure will yield the same sample

sizes as would classical techniques, in this case, the interval esti-

mates should be based on the classical method, since in essence, the

prior information has been rejected.

3. The accuracy and confidence levels associated with the

interval estimates based on the approximation procedure are comparable

to those obtained by using classical techniques if the prior information

is accurate.

U. The heuristic rule s~grested to determine whether or not

to use the prior information did not work well because the value

1m" = ml is a function of the sample size as well as be.ng a function

,f the value of the prior mean, m'.

5. The results obtained in the demonstration of the procedure

for the values of delta selected, indicate that the procedure to approxi-
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mate the Bayesian sample size and construct interval estimates is a

viable concept which has direct applicability and value in Operational

Testing.

Recommendations

As in most cases involving research of a limited scope, perhaps

more problems are unearthed than are resolved in this study. The

limited results obtained, however, show some merit and applicability

to Operational Testing. As a matter of future research in the area

covered by this study, the following recommendations are suggested.

1. Further efforts are required to improve the iterative pro-

cedure used to approximate the Bayesian sample size. A refined pro-

cedure should take into account the need to treat large and small

nample sizes as separate problems. Perhaps the increment added to the

approximation at any specific iteration should be some function of the

number of iterations already conducted. Care must be taken, however,

that any procedure developed for this situation be compatible to the

Operational Testing environment, where ease of application and simili-

city are prime objectives.

2. The sample standard deviation, S, in equation (2-13), is the

only variable in the equation for a specific sample size. This parti-

cular random variable is related to the chi-square distribution. Per-

haps further work with this particular element of the expression for

the approximate Bayesian sample size would lead to more accurate

approximations of the equation.

3. A workable decision rule for determining whether or not to
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use the prior information iz needed. It is suggested that the relation-

ship between the prior and sample means, i.e., Im' - mi!, will yield

more viable results than the technique used in this study. Obviously,

whatever rule is developed, it must treat the differences associated

with large and small sample sizes separately.

4. There are obvious limitations in applying this procedure to

Operational Testing. Although the procedure holds some potential of

reducing costs associated with Operational Testing by reducing the

number cf replications required of a specific tests, any iterative

sampling scheme is inherently difficult and costly to apply because of

the problems involved with multiple scheduling and set-up costs. The

procedure seems better suited to those testing situations where a large

number of samples are required and the cost of sampling is relatively

low. For these reasons, a scheme to incorporate the concept of loss

Iuinctions into this procedure is needed before it can assume the cloak

of a true decision making procedure.
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APPENDIX I

FORTRAN PROGRAM FOR THE APPROXIMATE

BAYESIAN PROCEDURE
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C~ITH~~IXN.T113. rHATt3)
C?ýý'l,/Frvr/ ALP4A. 111L3), U1'(0)
C'V-"rN /r-EVEN/ Ke(r5)s PFL7,A

C*0*.16 14T PASIC PARA,.rTEPS
8 v R t 1

.FArAf59P1 ALPSIA

~ YvrFMII2I YVAR12

C*oe** <TAR~T UP UNIFOR~M GrMFIATnM Tn RA~nOrt"!ZF STAPTITr De'TKI

t~z U14dF(Al
1w CONTI'hir

READ("*, R, ckt= 9?9) ;'rLTA

C***** OVT1C1sNF T'4r 'I'r CLASSICAL rSA`,PLr CT~
CALL CLASS( Km 1)
CALL R?.WPI(I I

C*'**' Z1FTEkc~f#r THE MINIKP'' !SAYrsIAN SAIAPLF ST7F, IF APOPOPfTATr
CALL -JAVE.t ?I1)s N4(2)

C'r*4** CnVOUTF CONFTO)EN;CF TNTFPVALS; FOR THE~ DATA PPIrer
CALL CýIJFTDM M(119 3 1
CALL O1nTO(l)
CALL CO'"FTr( n(1), I I

Co**** PRINT NUTPJT
CALL O1UTPUT

1ŽCO'%TI'

9q9 CNT I 'VE
FRITE r6,7v1

7)FCMRVAT(11111

STOP

Copy OCi½ cDzo docs not
pexrait f-ully logible reproduction
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-RFCR*IS RANON

C#*o**THIS SURRflUTINE GENERATES NORYALLY nl!STPntR'TFr) Petre-R~)~
C NJ?'BERS HAVING A SPECIFIED KEAN AND VARI.ANCF
C
C*.**.A~rIJFfMEIT nFFNT~4TION
C X IS THE ARRAY OF RANDOMV NUMB~ERS (OUTPUT)
C N IS THE KkIN1BER OF RANDOM NUM('ERS nESIRED (INPI1T)
C XPAEAN IS THE MEAN OF THE RANnO:A NUVTFRS (INPUIT)
C XVAR IS THE VARIANCEF OF\ýTHE RANDOM. NUMOVRS (INPUT)~
C
Co****TNIS StnRQOUTINE USFS THF BOX AND %q'UrLLFP mFTHrfl Fnq
C Gr,4EPAT ION nF NORMAL PSEUDO-PAN1%nM MUvPFRS

SLIBROUTINF RANnN(j)

CO?4W'j)/ONF/ X(?,IOnO). N(31
Clo?'v0%/TWOI xVEAN(I~o XVAR(3)

EXTER'IAL tINIF

TPI z6.2831R1;2
DO 1:;3 1:1, N(J), 2

Aw UNIF(Il
A= UNIF(21
Xt! .11 X'MFAN(7)+ 5DfRTf-2.'l*xVARr214ALenC-(AI )*CV')I;(,fln)
XI2*1It X(lII)
1I 1 . 1
Xi19i1hz XMEA'1f2)+ SORT(-2.0*XVAP(2)*ALnr,(All)Nlf(TPINPi
xf2oIli= XtIoIt)

100 CONTINUE

RETURN
END

-RFO)P*IS UNIlE

FUNCTION 'INIF(A)
DATA lY/96581/
IY=IY*3125

-- 1Ff IY)5t6,6

5 IY=IY+1'&34359739367
6 YFL~tV

~rtlF YL2.*J-
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-QFORIS ORDER

C~**"* THIS SUBROUTINE SORTS A GIVEN SET OF DATA FROM THc LOWFST
C VALUE TO THE HIrHFST, AND COMPFUTFS THE SAMPLE STATISTICS
C (MEAN AND STANDARD DEVIATION) OF THE DATA PROCrSS
C
C*.*** ARGtYE'ENT DrFIN!TInN
C Xs Tt!F ARRAY OF DATA VALUFS TO RE SORTED tINP",T/OliTPPTl
C N- THE NUMB3ER OF OATA POINTS (INPUT)

c ~XHAT= THE SAYPLE MEAN OF THE DATA PqnCrvS 1O!IT~llTl
c SHATz THE 5AMPLF STANDARn DEvIATION Or THr r)ATA
C PROMFS (OUTPUT I

SU'9ROLTINF OPnER (k0

CORVOR/4THREE/ XHAT(3), SHAT(3)

NMI3= N'K- I
DO 2t'0 Ic1. NMI

In 130 J= WI. NII)
IF( Y(KoII *LE. Y(K*Jl G (O TO !O00

X(K*JIc TEMP
a 10.1 C!ONTINUE

20uJ CONTINUE

C004p Cnv~PtITF THE SAMPLE STATISTICS rOR Tiff DATA. 0Rrflr5r
SUMI=1.0
SU'42=".P
DO 3.") J=Js N(K)

l;,JY I= SUMI + X fK~f

3nnl COnTINUEF

Y~z '4(K)
XHATfK)= SUMI/YN
RN= Y?4- 1.0
sLP'Ž22 s'P42- tstfmIW*21/yN
SHAT(K)= SORT(su?12?/PN)

8 RFTURN
E NP
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-RFOR IS CLASS

C.*e49 THIS, SURcoliTINF CALCO'LATPS THr MtNItw~tJ rLASSIC'Aj. 'ýA%*PLF eIZr
C P=U14Fb Tn CONSI-OlCr A CONFTDFCE INTFPVAL nF (,TvrN W.r)TIJ
C ABOUT THr MEAN OF A NORPAI- SAMPLTN6 POP!1LATCON MF JOW
C VARIANCE
C**.*** ARGUEMANT DFFIMTI^-4

C ~AL~PHA= THE CIJNFIVENCE COFFFIC1EFIT tIj~tiTl
C DELTA= A FUNCTION OF THE INTERVAL WTr)TH tINOIITi
C NCLASS= THE COMPUTED SAMPLE SIZE (0tUTPflT)

SUORCUTINF CLASSINCLASS)

COl'mfcN/SEVE4I/ NCt5ho DFLTA
~~ LAO)P(21* &KVY9 DMAx

Co**** ClýPP#TF THF FIRST APPROXIM4ATION OF THF: CLASSI('AL eA*'Ptr

C SIZF* NC(fl, BASE!) ON THF STANDAPT) NORMAL nilTRI~tiTIONJ. w"TCH
C IS !!)EVNICiAL TO THF T DISTRIBLtTION %'ITH INrIMITE EnrCFrcS
C OF FREFDOPA

ALPHA1z ALPHA,?.O
Sw TIOR~lfALPNAI9 1151
GO' To Is

I'- WRITE(69171
147 FORVATt//. In~v, 61 RH FPRP'R Ao5AGE--n'vFqFLOI' C14 JNVrQeC %-OVAA 'T1cT

IRJISUTION--FOP'¶AT IS
CALL FXIT

I8 CONTINUE
RCALCz (2.-)*S/DELTA)*-12
?gCt1i= INTfRFALCI
IFI NC1l .LT* REALC ) NC('111 iC1.

C***** Cý)'PwITE THF' !SUCrFFI)TNr, APPROXIMATInNS; nr Ts-fF CLASý,!C.A ;P.VPIJ
C cZZE* NCCjis RASFT' ON THE T PISTRIP11IO~N' wlTu nrr~orr- or
C FREEDOw F~tIAL TO~NC-1 1. STOP THE !T71ATtvfr ma~rer!t,."

C *MFAI N(J) IS F04.1L Tln 'IfJ-lt
1O 131 J?2. IC

Nf)F= NC(J-11- I
T= STI'IiNCALPHA, NlDFq S211

GO TO 24

21 iCRiTEI6921'
23 FORMAT(//, lo)x. 7414 ERROR MESSAGE--ovERFLOe.: ON S~~'fr.Tn T 01SrT!!11i

lTIOP4 FUNCTION--FORMAT 21
CALL EXIT

RFK'AL(> (2.,'!*T.DFLTA)092
NCUJl= INT(REALCI
IF( NC(JI *LT. RFALC INCIJIT Nr(JI* I
IF t .0C(J) oEO. NCtJ-ll rC TO I3
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8 30 CONTINUE

O**.** ASSIGN THE COMPUTED SAMPLE STZL NCLASS

35 NCLASS= NC(J1
LOOP(I1) J
RETURN

E K 1
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-RFOR91S BAYES

C THIS SUBROUTINE CALCULATES THE MINIMUMr BAYESIAN SA'APLF SIZE*

C IF APPROPRIATE, TO CONSTRUCT A CONFIDENCE INTERVA\L OF GIVEN

C wIDTH ABOUT T.-F ME AN OF A NORMAL SAPPLINc, POPilLNTION

C dITH UNKNOWN VARIANCE

C
C"***' ARGUFMANT DFFINITION

C K= THE MINIMUM CLASSICAL SPMPLE SIZE 1INPVT)

C NBAVEs= THE COMPUTED SAMPLE SIZE (OUTPUT)

SUBROUTINE BAYES ( K. NBAYES

COPMt.ON/ONE/ X(2*100)oU N(3)

COM*AOr/TWO/ XMEA14(3)* XVAR(3)

CO?-'."ON/THRLE/ XHAT(3) . SHAT(3)

COMSOX/SEVEN/ NC(5). DELTA

COWv'.Cl/EIGHT/ Nb(1O), NPRIMCID)s 01FF

COMM~ONITEFNI LOOP(21v KEY* D'MAX

C"~ COMPUTE THE FIRST APPROXIMATION* NII)v OF THE BAYCSIAN

REALBS FLOATIKI/4.'i
NB(1Is INT( REALB )

IF( ~480) #LTa QEALB ) NgtI)= NB(1)+ I

N(2)= NO(Ii

C'**'* TAKE N~l) SAMPLES AND COMPUTE THE SAMPLE STATISTIrS VOR THE

C DATA PROCESS AND THE POSTERIOR PARAMETERS BASED Ov THESE

C N4(I) OBSFRVATIONS
CALL CRDEP(2)
APPN= SHAT(2)**2/XVAR(II

NDRI%4tl)= INT( APPN

XMEANI(31= ( NPI()XMA( NR(I)*XHAT(2) I/

I FLOAT( NPRIM(I)+ NBtl)I
OIFFx APS( XMJEAN(31- XHATII

UNAx DIFF

IFI N(2) .GFe K- NPRIM(l1) GO TO 55

Cot*** COMPJTE THE SUCCEEDING APPROXIMATIONS, N(J)t OF THE BAYESIAN

C SAMPLE SIZE. STOP THE ITERATIVE PRO.CEDUJRE WHEN 4nflJ) 1S

C GREATEP THAN OR EJUAL TO K- NPRIMIJI

DO lCO J=29 2A

RINDx FLOAT( K- NPRIMtJ-1) )/4.0,

INC= INTt RINC )

Ut( INC -LT. RINC ) INC= INC-& I

N3(j)= Ng(J-l.I- INC

N(2)= NB3(J2

C0044* TAKF FACH SUCCFEDING N(J) SAMIPLES AND) C,)NPiiTr TJF~ rA'-'[L!

SSTA'ISTICS FOR THE DATA PROCESS AND THE POSTURIOR ,A1TR

CtIASED ON THESE NIJ) CflSERVATIONS

CALL ORDFR(2)
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APPN= SHAT(21**2/xVAR~l')
NPRIM(J)= INTH APPN

IF( NPRI?'JtJ &LT* AOPN ) NPRIM(J)= NPRImtJ)+

XMEAN(31= ( NPRIM(Jl*xN4EAN(1)+ NFB(j)*xHAT( )/

IFLOAT( NPR!F'(J)+ NA(J)

DIFF= AI3S( XMEAN(3)- XHAT(2)

IF( 01FF .LEo DMAX )Go TO 35

D1MAx 01FF
KEY= J

35 CONTINUE
IFt ?12) .GE. K- NPRI?'(Jl ) GO TO 45

I0n CONTINUE

C *** ASSIGN THE SAMPLE SIZE COMPUTED 
ABOVE TO NPAYFS ANin OcTFRMINP

C THE POSTFRIOR (POOLED) SAMPLE SIZE

55 CONTINUE
NBAYFS= N(2)

IF( NBAYFS oGTo K ) N(RAYESx 4

N(3)= N~BAYES+ NPRIM11)

XHATtlir xmrAN(3)

SHATI31= 'tHAT(2)
LOOP(21= 1

GO TO 999

45 CONTINUE
NF3AYES= NS(J)
IF( NSAYES .GTe K INBAYESw K

N(3)= NBAYES+ NPRIOA(J)

XHAT(lix XMFAN(3I

SHATI3)z SHAT121
LOOP(21= J

999 RETURN
END
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-RFORIS CONFID

C****. THIS SUBROUTINE CALCULATES A CONFIDENCE INTERVAL FOR THF mEAN
C OF A NORMAL POPULATION WHEN THE VARIACE IS UNKNO14N
C
C***** ARGUEMENT DEFINITION
C N= THE NUMBER OF DATA POINTS IN THE SAMPLE (IlPtIT)
C ALPHA= THE CONFIDENCF COEFFICIENT (INPUT)
C XHATz THE SAMPLE MEAN OF THE DATA PROCESS (INDUT)
C SHAT= THE SAMPLE STANDARD DEVIATION OF THE DATA
C PROCESS (INPUT)
C UL= THE LOWER CONFIDENCE LIMIT FOR THF MFAN (fUTPtUT)
C UU= THE UPPER CONFICENCE LIMIT FOR THF MEAN eM'TP('T)

SJBROUTINE CONFIDIN9 J)

COMMON/THREE/ XHAT(3). SHAT13)
CO''Ol/F;VE/ ALPHA, UL(3), UU(3)

C**9** CO'PUTF THE DEGREES OF FREEDOM ASSOCIATFD WITH THF CAVPLE

NDF= N-1

Cf.*** DETERMINE THE VALUE OF THE STUDENT(S T r)ISTRTBtiTIitN AT A
C SIGNIFICANCE LEVEL. = ALPHA
C NOTE--THIS OPERATION ilSES A STAT#PACT F"NCTION CAI LED STI'rIN
C TO CALCULATE THE INVERSE STi0DENTS T VALtr GIVEN THE
C CONFIDFNCE COEFFICIENT ALPHA

T= STUDIN(ALPHA, NDF. $I0)
GO TO 700

1C WRITF(691S)

15 FORVAT(//.ICX, 74H ERROR MESSA6C--OVERFLOW ON STIIENT(S T 0IcTRIf'l

ITION FUNCTION--FORMAT 700 ,)

CALL EXIT

701 CONTINUE

YN==N

C*'*** COMPUTF THF LOWER CONFIDENCE LIMIT
UL(Jl= XHAT(J)- T*(SHAT(J)/SORT(YN)l

C*** COMPUTE THE UPPER CONFIDENCE LIMIT
UU(J)= XHAT(JU) T*(SHAT(JI/SORT(YN)?

RETURN
LN0

- RP~A P
LIb SYST[.11*74ATUSTAT.
-xaT
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-RFOR9IS OUTPUT

SUBROUTINE OUTPUT

CO4MOP4/ONE/ X(2*1000), N(3)
COMMON/TWO/ X'4EAN(3)9 XVAR(31
C(W'%*ON/THREE/ XHATr0)o SHAT(3)
CCM4O4N/FIvE/ ALPHAs 01-13), Uu30
COtAVON/SEVEN/ NC(S). DELTA
CO.4mICN/EIGHT/ Nt5(10)q NPRIM(10), DIFF
CCOP'40N/.IINE/ WIIJTH(21
COMO'40/TEN/ LOOP(2'i, KEY, DMAX

C*"** PRINT HEAD)INGS FOR PRINTED OUTPUT
DO 10h) J19~ 2
WRITE(691S)

15 FORP'AT(IH1)
IFf J *EO. 2 1GO TO 40
WRITE(6*35)

35 FORVATI///, 40X9 45H DATA VALUES USED IN THE CLASSICAL ANALYSIS
GO TO 50

40 WRITE(6945)
45 FCRMAT(/,,. 4UX, 45H DATA VALUES USED IN THE BAYESIAN ANALYSIS

Cos*** PRINT BASIC PARAMETERS ASSOCIATED wITH rACH DATA CDP0CF5SI
5'; CONTINUE

WiRITE(6952) N(J)

52 FORIPATf//u. lOX, 26H NUM~BER OF OnSERVATIONS, )
vtRITFg6*54) XMEAN(2)

54 FOR'AAT(1c;Xo 19H LIKFLIHOOrI MEAN v * I
IF( J .EO% 21 WRITE(69561 XK-EAN(fl

56 FOR.AT(IH+, T82, 1414e PRIOR MEAN ,F8.3)

oRItEI6958) XVAtRI2)
58 FOR4AT(IUX9 2311 LIKELIHOOD VARIANCE 9 F83

IF( J *EO* 2) WRITF(69,60H XVAR(II
6J FORNIAT(lH.. T82* 18H PRIOR VARIANCE s F8.31

WvRITF(6v621 DELTA
62 FOFAlATIlUX, 9H DELTA F, 2

C*4*0 PRIN4T THE DATA VALUES GENFRATED 9Y RANDN

65 FOR~sATt///9 10l(3X9 FR.3))

C"".* PRINT THE SAMPLE STAT!5TICS OF THE DATA PROCESS;
IF( j .Eu. 2 ) wRITLg6,72) xtiAT(?

72 Fr.RIAT///. 1,x. 4714 TAF ,.,.AN OF THE P~~I~P~P:'T~

*.!RIl-I6.7¶,) XHAflJI. S'HAT(J)
0' ý T (~A /I / / 1:,~X, 4cH ,HF cA~'PLý NIrAN 0! THF I)ATA P!,'~r yl * IA T

c,~ . ///.~ I 'X, `-H Tlif 'ýAMPLI rTANr)ARI) r)rvI ATJC'ti f'[ 'F T~lrATA P
'N'2C! :, ,g %HAFT *
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C'~'PRINT THE fl-ALPHA) CONFIDENCE INTERVAL ASSOCIATEM WITH FACH
C PROCESS

4IDTHCJI, OFLTA*SHAT(J
WRITE(6985j wIDTH(J)

65 FORM4AT(.//* 1GXq 52H THE DESIRED WIDTH OF THri CONFIDENCE INTFRvAL I
15 = F6.2
UL(2)z UL(31
L.U(21 tJtUg3)
WiRITFA6.99S) ALPHA, ULIJ3. tlU(J)

95 FOR!-,A"(//, I'Xo 47H Tr4F (1-P4LPHA) CONFIDENC-r INTFRVAL FOP THF vEAN
I s /9 1CX9 38H 4ITH CONFIDENCE COEFFICIENT. ALPHA ,F4.3,

2 8m# IS = f F8.39 2H, q F8*3, 1H) I

IFI J .cO. 1) GO TO 97

jXRI72E(6998) DIFF
98 FiCRvATf//q I0X# 71H THE ABSOLUTE DIFFERENCE RETI.!-EFN THE PO54TrRIOR

lAND SAM~PLE MEANS. DIFF =,F6.31
'XRITE(6.99) ONMAX9 KEY

99 FORMAT(//g lflx9 711 ODAx v F6.3, 10H AT LOOP z 9 12)

97 CONTINUE
WRITE(6*96) LOOP(J)

896 FOR%!Atl//. lf)X* 9H LOOPS z *12)

Iv-- CONTINUE

RE TURN
E ND
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APPENDIX II

FORTRAN PROGRAM FOR THE CHI-SQUARE

TEST OF NORMALITY
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-R&OR9IN CHISO
C***** THIS SUBRC"ITINE TAKES A SET OF OQDERED nATA (ARRA~'nFfln~*

C THE LO'lrEST TO THE HIGHEST VALUE) A?~r
C (1) ESTABLIS14ES K LOUAL-PROP.ABILTTv CEL'-!, -HEOF K DNFPiP~S ')4

C THE SAVOLE SIZE9 Io.,. K= 20 Fr'R N .,'E. Inn~, K= I-~ FOP 'I ~
C 5w *AND. )LT. 1ý!., AND K= 5 FOR N .LT. 5f)
C it-) PrEDFnRM~S A CHI-SO'IARE GCf)CF-,S-Z-F -FIT TEST F-P 'AIY
C OnJ THE DATA SAMPLE AND flFTERMINP-S THE StriNIFTCANC- LEVE fL
C AT 4HICH 'tE CAN ASSUPIE THAT THE ')ATA SAFPLF IS IN FArT
C RFPRFSEN'TATIVE OF A NOR.MAL PPOCESS
C***** ARGUEv.FrT DEFIN~ITION
C X= THF ARRAY OF DATA VALUES TO E'E TFSTFO) (I'NPIT)
C N= THF NL'WbER OF DATA PIONTS (INPUT)

K= TmE NuW3ER OF CELLS INTO 11141C04 THr DATA IS njjnf (INP11T
c XHAT= TH-E SA'VPL- v.EA.N OF THF PýATA PRO)CESS
C SHAT= THE SAMPLE STANDARD flEVIATION OF THE nATA PROCFSS
C Ctl15= T-4F CHT-S01'ARE STATISTIC .0*ACP(?T~r) FRO'.'

C TH4E DATA (-,:JTPI;T1
C ý'CGL= T147 SIGNIFICANCF LEVFL OF THE TEST MO'TP-T)

SUB~ROUT INE (.HISO
Coy-.*loN/cl;1E/ X(500) 9 N

C~V4~/T40/X'MANs XVAR
COY*40J?j/FZýUR/ K, KLESSlo C14lS, SIGL
CO7MM'CN/SIX/ CBSTMo(I9)q CtbNORM(193. KOUNT(20)
ZDIvNSZ4, ALPtiA(191

C***** ';FT A'LL CFLL COUj:!TFRS' TO ?ERO
DO5 1=10 K
KO''!7(Il=_n

s CONTPJUE

,':*** C'*T THE CELL-~iiRFAK POP4NTS rVR TH7 r1/ ) ATA
C PlfCTE--TtfIr OPERATICtý Ur-Er A STAT-PACT rIMCTIoth Ctl 1. TIP!^_.j

C ITC C0*4DUTE THL VAL11E OF THE INVERSE. OF TH- lI:rc*AL ('91) ~S

ALPmA(13= n.2'

(,') -1O

20J 00 25 1=1. KLESS1

25 CONTI~urE
'JO 7 1 5'!

1,) DC 35 1=1. KIESS1

35 CtY4T IN*,:E

',f I -= A I=: I, Ai'PA I)

bo To iA

I 7

Tl-)N-- P4~FC'%-AT Idf1

b (O~NUL~J
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C#4***- CC'2IT THE NU~1tER OF OBSERVATIONS FALLINC, IN rACH rFLL
DO 3,., 1=1, N

I ct X (I) .GT. CfOhOR.l(J) )(!0 TO 190
K' - tl2iTCJ) = (Cl'34T(J) +1
(V' r'C 3)0

19) JF(J cro' KLrSS1 ) Kr"IMi(K)= KCINTK+

C.4.~* C~*;-'TE THE CHI-SO1;ARE cTATISTIC, CHIS

k%=~ FLOAT( I/3 FLOAT( K3

(H-fjz CHI 1+(KOy!Tt I)-RN)**2

CFJIS= C";I1/RN
(4~TP *1'-,WE 3 C4Ne7 Lr-VEL OF THE TFST

~rT--~.)J nPtTý"S. A AT-PACT F-'MCTIr`4 CA! LFr) CHT TI)
`) TFRu4I;'F THE CHI-3eL'ARE DISTR~IP11TICN Cr1VEN THF P^INT 0.1,r

;14 ;~P F O FRFEI:

tq)F-= (-3

CU59- ;,RI (HIS, .6'3

,i '~ ATI//,I.'X. 74H ERROR MESSAGE --OVER FLO'-' ON Clil-",*:''AE DLSTRIt0''T

I I'~:N'C 7 !!---F0R*IA T 64 ,24H CHI-50I1AiRt -TATISTIC 9 lý2

?7' 7' 7
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