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SUMMARY

The research is dévoted to modifying the Bayesian techniques
assoéiated with determining the minimum sample size required to con-
struct interval estimates of the true mean of an experimental or sampling
process which is modeled by a normal distribution with unknown parameters.
The procedure considers only the case where the prior information can be
represented by a normal distribution with known mean and known variance.

Rigorous Bayesian analysis of this situation would result in
using a posterior distribution which has s normal-gamme density to con-
struct interval estimates. In order to circumvent the obvious diffi-
culties of workirg with this rather complex density, a procedure, which
is felt to be more compatible to the U. S. Army Operational Testing
environment, if offered for approximating the reéuired Bayesian sample
size.

If the variance of the sampling or experimental process, og, were
known, the minimum Bayesian sample size required to construct an intervel
estimate about the true mean, p, with confidence coefficient, ¢, and

width, k, is:
22 o2 2
n* = [ ___Jnéi__ ] .o
. 0'2
where Za/2 refers to the percentage points of the standard normal dis-

tribution such that P(Z > 20/2) = /2, and 0'2 is the variance of the

prior distribution or, the prior variance of the true sampling mean, u.
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. 2
Substituting the sample variance, S, for the true process
A
variance and the term % , n* - 1ljfor Z in the above expression,
Q//Z C ’ Q//2
nrn aefinang the width of the confidence interval as a function of the

sample variance, i.e., k = 85, results in the following expression fur

the arproximate Bayesian sample size:

2 t(of2, n*c-l) 2

r S
n*, = A ] -T2

where n*C is the classical sample size required tc construct an interval
estimate of width k about the true mean, p, of the sampling process.

The term t(a/2, n*é - 1) refers to the percentage points of the Student's
t distrihution with n*c - 1 degrees of freedom such that P[(t > t(¢/2,
n*é -1)] = of2.

The expression for the approximate Bayesian sample size is solved
iteratively, starting with a fraction of the classical sample size
required for the interval estimate of the same specified confidence
and accuracy, as the first approximation. The iterative procedure is
programed for a UNIVAC 1108 computer and applied to a hypothetical
example to demonstrate the effectiveness of the methodology.

It accurate prior information is available, the results achieved
by the procedure developed to approximate the Béyesian sample size snd
construct interval estimates of the unknown sampling mean, pu, of
specified confidence and accuracy are comparable to the results obtained

using classical techniques. These results, however, are achieved using

smaller samples sizes than required for the classical case. A pro-

.
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cedurc: was suggested for examining the accuracy of the prior information
and ascertaining whether or not Bayesian analysis was appropriate for
a given sampling or experimental situation. However, the expected

results of using this procedure were not obtained.



CHAPTER I

INTRODUCTION

The General Problem

This study is an investigation of the problem of determining
the minimum sample size of an experiment, that is, the minimum number
of replications of the experiment, required to estimate the mean of the
"experimental variable to within a predetermined accuracy. In general,
the stiudy is limited to a certain type of testing situation which has
the following characteristics:

a. The test variable, whose mean is to be estimated, can be
modeled by a normal distribution with unknown mean and unknown variance.

b. Information is available, prior to sampling or experimenting,
from which a probability distribution of the mean of the test variable
can be constructed.

c. This prior information can be répresented by a normal dis-

tribution with known mean, m', and known variance,.c'2

The Specific Problem

A U. S. Army Operational Test (OT) is an overall evaluation of
a system which has been developed for general use within the U. S. Army
structure (2). In this ‘context, a "system" may be not only hardware,
but also doctrinal concepts, and is usually a mixture of both. The
test is conducted in an environment which duplicates or closely

simulates those conditions under which the system will be employed if



it is adopted for general use. It is this fact that generally differen-
tiates OT from engineering, developmental, pre-production, and other
tests which may be conducted on the same system and which are usually

a part of the total development scheme of the system. 1In fact, OT is
required to be an independent evaluation of the system. Thus, OT is a
vital part of the process by which new equipment and concepts are
incorporated into the U. S. Army structure.

An Operational Test is in essence a systematic plan for evaluating
the total system being tested. It is composed of numerous subtests
which address specific issues (unknown parameters) which sre considered
critical or paramount to the total evaluation of the system (3). The
specific eritical issues to be evaluated by each subtest and the order
of these tests govern the overall structure of the Operational Test.

Once the specific structure of the Operational Test has been
established, a decision must be made as to the number of replications
of each subtest to conduct in order to properly evaluate the critical
issue in question. Time and budget constraints place emphasis on con-
ducting the minimum number of replications possible; while the disastrous
conscauences that could result if a critical issue is not properly
evaluated, make it imperative that accuracy is not sacrificed for
economy. Thus, the problem reduces down to one of determining the
minimum rrmber of replications of each subtest to conduct in order to
evaluate the critical issues in question to within a predetermined
accuracy.

Current procedural and policy documents governing the conduct

of Operational Tests (3, 4, 11) suggest that for the most part, sample



sizes are determined using non-Bayesian or classical statistical methods.
These methods do not consider prior information available concerning
the variable heing testéd; therefore, inferences and decisions about
the variable are based entirel - on the experimental or sampling resul<s.
Bayesian technigues, on ti. oiher hand, attempt to use both the prior
information and the experimental results in making inferences and
decisions about the variable., Thus, this investigation is essentially
a search for a practical procedure for applying Bayesian techniques to
Operational Testing. The principal Operations Research tools used in
this study are statistical inference and estimation techniques to
develop the methodology, and computer simulation techniques to demon-
strate the procedures developed.

Operational Testing is an expensive undertakirg which must
operate in an enviromment constrained by budget and time considerations.
The author believes that a methodology which effectively reduces the
number of replications required to evaluate the critical issues
addressed by each subtest and also maintains the accuracy and confidence
desired of the test, is a worthwile pursuit directly applicable to the

Operational Testing enviromment.

Background

During the last decade, there has been an increasing emphasis
and drive within the military community to develop and formalize a
methodology to adequately identify and evaluate the risks associated
‘with the development and procurement of major weapons systems. The

underlying premise which initiated this action was that unanticipated



cost and time over-runs end performance shortcomings, which had become
increasingly prevalent, were the resvlt of inadequate assessment of
the risks involved with fhe materiel acquisition process. The metho-
dology which grew out of this effort is known as decision risk analysis.
In a report prepared for the Army Materiel Systems Analysis Agency
(AMSAA), Atzinger, Brooks, et al., (h) present a brief history and
description of the major concepts of the decision risk analysis process.
The authors define risk analysis as follows: "Decision risk analysis
is a discipline of systems analysis, which in a structured manner, pro-
vides a meaninfgul meaéure of the risks associated with various alteré
natives.” The purpose of the report is to structure this decision risk
anglysis process so that the trade-offs inherent in the alternatives
are visably and meaningfully displayed. It cites the following four
nmajor areas as the underlying concepts of decision risk analysis:

a. Subjective Probability

b. Monte Carlo Methods

c. Network Analysis

d. Bayesian Statistics

Bayesian statistics and Bayes Theorem have attracted renewed
interest in many fields of applied and theoretical statisties in recent
vears. This theorem is essentially a mechanism for combining aew
information with previously available information so that decisions or
inferences can be based on all the information available. Over the
years, a controversy has developed between the Bayesian and the more

orthodox classical statistical concepts. Anscombe (1) provides a brief



but concise history of the development of both philosophies.

During the last few years there has been a revival of interest
among statistical theorists in a mode of argument going back to the
Reverend Thomas Bayesi (1702-61), Presbyterian minister at Tunbridge
Wells in England, who wrote an "Essay Towards Solving a Problem in
the Doctrine of Chances," which was published in 1763 after his
death. Bayes work was incorporated in a great development of pro-
bability theory by Laplece and many others, which had general
currency right into tie early years of the century. Since then
there has been an enormous development of theoretical statistics,
by R. A. Fisher, J. Neyman, E.S. Pearson, A. Wald and many others,
in which the methods anu concepts of inference used by Bayes and
Laplace have been rejected. )

The orthodox statistician, during the last twenty-five years or
sc, has sought t» handle inference problems (problems of deciding
what the figures mean and what ought to be done about them) with
th= utmost objectivity. He explains his favorite concepts, signi-
fiance level, confidence coefficient, unbiased estimates, etc., in
terms of what he calls probability, but his notion of probabiiity
bears little resemblance to what the man in the street means (rightly)
by probability. He is not concerned with probable truth or plausi-
bility, but he defined rrobability in terms of frequency of occur-
rence in repeated trials, as in a game of chance. He views his
infcrence problems as matters of routine, and tries to devise pro-
cedures that will work well in the long run. Elements of personal
Jjudgment are as far as possible to be excluded from statistical
calculations. Admittedly, a statistician has to be able to exer-
cise judgment, but he should be discreet about it and at all costs
keep it out of the theory. In fact, orthodox statisticians show
a great diversity in their practice, and in the explanations they
give for their practice; and so the above remarks, and some of the
following ones, are no better than crude generalizations. As such,
they are, I believe, defensible. ({(Perhaps it should be explicitly
said that Fisher, who contributed so much to the development of the
orthodox school, nevertheless holds an unorthodox position not far
removed from the Bayesian; and that some other orthodox statisti-
cians, notably Wald have made much use of formal Bayesian methods,
to which no probabilistic significance is attached.)

The revived interest in Bayesian inference starts with another
posthumous essay on "Truth and Probability," by F. P. Ramsey® (1903-
30), who conceived of a theory of consistent behavior by a person
faced with uncertainty. Extensive developments were made by B. de
Finette and (from a rather differené point of view) by J. Jefferys.
For methematical statisticians the most thorough study of such a
theory is that of L. J. Suvage3s%. R. Schlaifer? has persuasively
illustrated the new approach by reference to a variety of business
and industrial problems. Anyone curious to obtain some insight
into the Bayesian method, without mathematical hardship, cannot do
better than browse in Schlaifer's book.



The Bayesian statistician attempts to show how the evidence of
observations should modify previously held beliefs in the formation
of rational opinions, and how on the basis of such opinions and of
value judgments a rational choice can be made between alternative
available actions. For him probability really means probability.
He is concerned with judgments in the face of uncertainty, and he
tries to make the process of judgment as explicity and orderly as
possible.

Atzinger, Brooks, et al., (6) obviously consider Bayesian

statistical procedures to have great potential in the decision risk

analysis process; they state:

Bayesian statistics ernjoys a unique position in risk analysis.
There frequently exist situations where the analysist has both data
and expert judgment to draw upon in constructing the probability
distribution of interest in the consolidation activity. Bayesian
statistics provides the analyst with a tool for synthesizing all
of this information into one probability distribution which can
then be used to directly estimate risks.

Review of the Literature

The statistical literature dealing with sample size determination

is quite extensive, particularly in the area of classical techniques.
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Mace (12) provides an excellent and thorough coverage of classical pro-
cedures for determining the optimum sample size of a research experiment.
This publication is applications oriented and provides procedures,
formulas, and tables for determining economical sample sizes for some
forty different types of research objectives. Unfortunately, the
author considers only one rather limited application of Bayesian tech-
niques to sample size determination. The limitation in this particular
example, that the variance of the sampling process must be known, secms
to occur cuite frequently in the literature of Bayesian techniques for
determing minimum sample sizes.

There has been extensive research in the application of Bayesian
techniques to reliability engineering and quality control. White (15)
presents a promising methodology for periodic reliability assessment
using Bayesian techniques to combine analytical predictions with limited
test results to obtain greater precision in the reliability estimate.
The main limitation of this paper is that it considers only the gamma
distribution in the analysis. Gilbreath (8) has devised sampling
procedures for use in sequential sampling models which have direct
application in quality control and in economic lot size determination.
These techniques, however, are more applicable to hypothesis testing
than to the estimation pgoblem.

Atzinger and Brooks (5) provide <n excellent comparison of
fayesian and classical decision making under uncertainty for a class
of problems where the decision variable is the Bernoulli success pro-

bability, p. If the outcome of any particular test or experiment is



viewed as a success or failure, the resulting data classification is
characteristic of a Bernoulli process. The authors persuasively argue
that historically, one of the major objectives in test and evaluation
processes has been to estimate this unknown Bernoulli success parameter.
Unfortunately, such an analysis does not address the actual parameters
ot the sampling or experimental process itself.

Winkler (16) provides a rather detailed and complete development
and treatment of Basyesian applications to inference and decision theory
at the introductory level. Although the concepts developed in this
publication are very thoroughly covered, the scope of the material is
rather limited. That is, only two specific sampling processes are
analyzed in detail: the sampling process modeled by the.Bernoulli
distribution, and the sampling process represented by the normal dis-

t ‘ibution with known variance.

Raiffa and Schlaifer (13) provide an extensive mathematical
development of Bayesian technqiues applied to statistical decision
theory. However, once agelin, extensive analysis of the normal dis-
tribution is generally restricted to the case where the variance of
the sampling population is known.

Thus, Bayesian applications to the problem of sample-size deter-
mination deal only with very épecialized situations in the current
literature. There appears to be no substantial research into the
examination of the general problem. On the other hand, classical
statistical technigues commonly apply iterative type algorithms to the
to the general problem of sample size determination. The author believes

that these techniques can be validly extended to Bayesian analysis and
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produce equally valid results. The aim of this investigation, then, is
to extend the application of these well known techniques to the general

sampling situation using Bayesian analysis.
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CHAPTER II
THE TEST METHODOLOGY

The Assumptions of Normality

The normaility assumptions stated in the introduction intr-duciion
are crucial, albeit restrictive, to this investigation. The assumption
that the prior distribution, which represents the distribution of the
mean of a random variable, is normally distributed has solid support
in the Central Limit Theorem. Hines and Montgomery (9) state the

essence of this important theorem as follows:

Ir X, . « « 5 X 1is & sequence of n independent random
1 n . >
variables with E(Xi) =, and v(xi) = ~ (both finite) and Y = X,
+ x2 + .. .+ Xn, then under some general conditions
-l W
7 = i=1
n_ n
[N 6.2
v . %
i=1

has an approximate N(0,1) distribution as n approaches infinity.

v The "general conditions"” mentioned in the theorem are informally.
sumarized as follows: The terms X;, taken individually, contri-
bute a negligible amount to the variance of the sum, and it is not
likely that a single term makes a large contribution to the sum.

The principal implication of this theorem, then, is that in
general the sum of n Independent random variables is approximately
normally distributed for sufficiently large n, regardlecs of the dis-

tribution of the n individual random veriables. Unfortunately, the
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assumption that the random variable to be tested is normally distributed
is much more restrictive. However, in many cases, real-world situations
can be satisfactorily approximated by a normal process. Also, statisti-
cal inference and estimation procedures, particularly those concerning

the mean of random variables, are gonerally robust (insensitive) to the

normality assumption (12).

The Prior Information

At first glance, the requirement that Operational Testing be
independent of other testing conducted on the same system may seen an
insurmountable obstacle in attempting tc obtain adequate prior infor-
metion. This, however, is usually not the case; other sources of prior
information do exist. For example, most new systems undergoing testing
have been specifically designed to replace older or cutmoded systems
which are currently a part of the U. S. Army structure. These older
systems represent a vast source of historical data from which prior
distributions for nearly any critical issue can be developed. 1In
those rare cases where no hictorical data exist from which to construct
a prior distribution for a specific critical issue, the Delphi techniqué
or other proven methods of developing subjective assessments of uncer-
tainties can be used to develop the prior distribufion (6).

In any event, to the Bayesian statistician, the prior information
represents tre best available estimate about an uncertain quantity, |
regardless of its source. This fact even suggests that it is reason-
able and logical to modify the prior distribution developed from

historical data to reflect the improved design characteristics of the
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new system. Suppose, for example, that one of the critical issues being
evaluated during OT of a new weapons system is the &accuracy of the
weapon at a specified range. The distribution of the mean-error of
similar weapons currently in use can be determined from historical
data. If the new system is expected to be significantly more accurate
beceause of new design characteristics, the mean of the prior distri-
bution developed from the historical data can be adjusted to reflect
the expected 1lncrease in the performance of the new system. In dis-
cussing techniques for the assessment of prior distributions and the
use of diffuse prior distributions to represent the situation where no
prior information is available, Winkler (16) states:

It should be stressed that in general, there is no such thing as

a "totally informationless" situation and the use of particular

distributions to represent diffuse prior states of information is

a convenient approximation that is applicable only when the prior

information is "overwhelmed" by the sample information. In most

real-world situations, non-negligible prior information (non-

negligible relative to the sample information) is available, and
the concept of a diffuse prior distribution is not applicable.

The Basic Alternatives of Determining Sample Size

This study considers only two basic approaches to determining
the appropriate sample size in an experimental process. One approach
is to simply disregard any prior knowledge or information available
about the variable of interest, and use classical statistical techniques
to solve the problem. The-other approach is to combine the prior
information with the results of & limited number of replications of

the experiment, if possible, and tlien use these results to solve the

problem.
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The Classical Method

Classical estimation procedures and techniques are well documented
in the literature (9, 10, 12). This wmethod uses only the results of
the sampling br experimental process in the estimation procedures and
ignores all prior information. Starting from the basic assumption that
the sampling process is normally distributed with unknown mean, u, and

unknown variance, 02, the raudom variable representing the outcome of

the sampling process can be represented by:
2 . 2
X, ~ N(u, o), with Wy o unknown

Let (Xl, X2, e e e s Xn) represent the results of n replications
of the experiment. The sumple statistics based on the specific n

values obtained from the sampling process can be expressed as:

n
z 1 ©
X = - ia Xi, the sample mean
i=1
and
n
2
Y x5 -0
s? - L= i ——  the sample variance

The appropriate expression for a (1 - o) percent confidence
interval about the unknown mean, u, for a process which is normslly

distributed and for which the variance is unknown is constructed using

the Student's t distribution, i.e.;
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P(X - t(af2,n-1) S sp <X+ t(g/2,n-1) S ) = l-g (2-1)
n n
where the expression t(q/2,n-1) refers to the percentage points of the
Student's t distribution with n-1 degrees of freedom such that P(t >
t(a/2,n-1) = o/2.

Recall from the introduction that the classical interpretation
of probability differs considerably from the Bayesian interpretation.
Thus, the interpretation of equation (2-1) is based on long-run con-
siderations. That is, the classical statistician would say that if a
confidence interval based on a sample size of n is constructed each
time, ihen in the long run, l-g percent of such intervals would contain
the true mean of the normally distributod sampling process. The value
of @, which is preselected at some low value, can then be thought of
as protect.on against failure of the interval to include the true
value of the mean of the sampling process. The value, ¢ = 0.05, is
often selected for statistical inference and estimation problems because
of traditional useage. The second type of error that can occur in
interval estimation problems is that the interval constructed based
on a set of specific sample results may t- too wide, even though the
interval does include the true value of the mean of the sampling pro-
cess. This, then., is a problem of the accuracy associated with the
confidence interval. Protection against this type of error is accom-
plished by controlling the width of the confidence interval constructed.

The vidth of each specific ‘confidence interval is dcpendent on the
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sample s8ize and the value of g specified.

The terms

UL = X - t(of2, n-1) =
n

UU = X + t(of2, n-1) _S..: >
n
which are real-velued functions of the sample results, are the lower
-
and upper limits, fespectively, of the interval estimate. The Student's

t distribution is very similar to the standard normal distribution, and
7\';
//‘~\

for degrees of freedom, v = n-1 > 20, the two distributions are virtually

indistinguisable. And in fact, the Student's t distribution is identical
to the standard normal distrihvtion for degrees of freedom, v = o (10).
This fact allows accurate approximations in computing the minimum
sample size by approximating the value of t{q/2,n-1) by t(e/2, =) =
Zgf2 for mrderate sample sizes. The experssion Zgf2 refers to the
percentage points of the standard normal distribution such that
P(Z > 2gf2) = of2. |

For the moment, let the preselected width of the confidence
interval be simply equal to k. Then from equation (2-1), the half-

interval width can be expressed as:

-3
=2

1§

‘t(a/z, n-l)
v

o]
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Solving this equation for n, results in the following expression for
the minimum sample size required for a confidence interval width equal

to k.

. [ 2t (of2, n*c-l)S f

; (2-2)

It is more convenient to express the width of the confidence interval
in terms of the sample standard deviation in order to simplify equation
(2-2). Thus, if k = 65 is substituted into the equation, the minimum

sample size required can then be expressed as:

2t(of2, n* -1) . 2 ‘
n¥, = [ - 5 : ] (2-3)

Equation (2-3) cannot be solved explicitly for n*c, since the
value of t(q/E,n*é-l) is a function of the sauaple size n*é. But since
the value of t(o/2, n*é-l) is approximately equal to t(q/2, =), which
is equal to 20/2, for moderate sample sizes a good first approximation
for the solution of equation (2-3) is obtained by substituting the
value of Zgf2 for the value t(o/2, n*é-l). This first approximation
is known to be too small, although for large sample sizes it is quite
close to the actual valug of n*é. Using this first approximation,

call it n_, to evaluate t(a/2,no-l) and to solve equation (2-3) again,

O’
to obtain a better second approximation for the value of n*é. This
iterative procedure can be used to approximate the value of n*é to any

desired accuracy; however, there is usually no significant improvement

in the approximation after the second or third iteration.
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Table 1 shows the values of n*é obtained tor a 95 percent (o =
0.05) confidence interval for various values of § using this iterative
procedure. Because of the premimum placed on accurate estimates in
Operational Testing, values of § > 1.0 were not considered. The values
shown in the table under the headirz P(K) are the approximate proba-
bilities of a single observation from the sampling process falling
between the lower and upper lirits of the confidence interval, i.e.,
P(K) = P(ﬁi <x < 6@3. This value gives a probabilistic measure of
the accuracy (width) of the confidence interval. The values of n*,
in the “able have been rounded up to the next highest integer. As
illustrated in Table 1, equation (2-3) points out that in order to
decrease the width of a confidence interval by one-half, the sample

size must be increased approximately by a factor of four.

Table 1. Minimum Sample Size - Classical Method

6 P(K) n¥_
1.0 0.383 18
0.9 0.347 22
1.8 0.311 27
0.7 0.274 34
0.6 0.236 L6
0.5 0.197 an
0.4 0.159 ' 99
0.3 0.119 174
0.2 0.080 387
0.1 0.0L0 1537
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A Bayesian Approximation

Bayes Theorem for Continuous Random Variables. The essence of

Bayes Theorem for contimuous random veriables is depicted in F'igu;'e 1
shown below. The densities f(6) and £(6]y) represent the prior dis-
tribution and the posterior distribution respectively, and f(y|e)
represents the likelihood or sampling function. It is important to
keep in mind alwsys that it is the prior distribution or the statisti-

cians prior state of knowledge that is modified by the sampling results

and not the reverse.

Sample

—9 Infcirr.)aation —)
Yy

0 8
(o) f(y|e) £(ely)

Figure 1. Bayes Thecrem for Continuous Random Varisbles

The prior and posterior distributions must be proper density
functions. That is, they must possess the following mathematical
properties applicable to the density function of any continuous random
variable, X, which has range space or domein, Rx:

(i) f(x) 2 0 for all xeR_

(:1) & £lx)ax = 1

X
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The likelihood or sampling function, f(y]B), represents the probability
of obtaining a given value, y, for the range of possible values of 8.
The likelihood function is not a proper density function because the
events f(y|8) are not mutually exclusive over the range of §.

As suggested in Figure 1, Bayes Theorem is essentually a process
of combining the prior distribution with the sample information to
vield the posterior distribution. The resultant posterior density has

the following form:

£(aly) = L8 ivle) (2-4)
7 £(8) £(yle)as

This result can be expressed in words as:

_ " normalizing [ prior 7 [ likelihood
posterior density = | . ctant J L density JL function

rﬂ

vhere the normalizing constant, 1/ | f(0)f(y|e)de, is needed to make
the posterior distribution a proper density function.

Before the advent of the high speed computer which greatly eased
the computational burden involved with numerical integration techniques,
application of eguation (2-&’ to revise density functions in the light
of sample information often proved extremely difficult because of the
integration required to compute the normalizing constant. For this
reason, Bayesian statisticians developed the concept of "conjugate"
distributions, which are families of distributions that ease the compu-

tations=1l burden when they are used as prior distributions (16). Of
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«ourse the resultant form of the posterior distribution depends on the
likelihood function as well as the prior distributicn. Thus, conjugate
prior distributions are selected on the basis of the statistical pro-
perties of the model chosen tc represent the sampling process. When
the prior distribution is conjJugate to the likelihocod or sampling
function, the resultant posterior distribution is also a member of

the ame conjugate family of prior distributions.

bayes Theorem for Normal Distributions. If it is possible to

model the population or process being sampled by a normal distribution,
the proper choice for a family of conjugate prior distributions depends
on the statistician's knowledge of the parameters of the normal data
Zenerating process used. Raiffa and Schlaifer (13) summarize the
effects of the statistician's knowledge of the two parameters of the
normal distributions on the proper choice of conjugate prior distri-
butions as fcllows:

Case (1) u known, 02 unknown: The appropriate famile of conjugate

distributions have a gamnma-2 density.

Case (ii) 02 known, u unknown: The approp-iate famile of cor-jugate
distributions have a normal density.

Case (iii) both u and 02 unknown: The appropriate family of conju-
gate distributions have a normal-gamma density.

An Approximation Procedure. Since it was .e.ssumed that within

the context of this study the model representing the sampling process
in Operational Testing was normally distributed with urknown mean, u,
and unknown vairance, 02, the appropriate family of conjugate distri-
buticns to use in this case have a normal-gamma density. 1In order to

nvercane the obvious difficulties associated with computing interval
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estimates with the normal-gamma density, a procedure is suggested here
to modify the Bayesian analysis of this sampling process so that the
family of conjugate prior distributions have a normal density function;
as is the case when the variance of the population or sampling process
is known.

Assume for the moment that the variance of the sampling process
is known. Then the conjugate prior distribution has a normal density
function of the focm:

-(u -m' )2/2072

£1(u) = e
¥ 2no’
vwhere the prime (') is used to signify a perameter or constant which
is assocliated with the prior distribution. Thus, 0'2 is the variance
of the prior distribution or, the prior variance of the unknown para-
meter, y; and ' is the mean of the prior distribution of this pafﬁ-
neter.
If n replications of the experiment were now conducted and a

saople mean,

and a sample variance,

were chserved, the resultant posterior distribution would also have a
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normal density function of the form:

1 - (- m")?/20"

' (uly) = Tomz
o
where y represents the sample results, and the double prime (") is
used to indicate a parameter or constant which is associated with the
posterior distribution. Thus, 0"2 is the posterior variance of u,

and m" is the mean of the posterior distribution of u. These posterior

parameters can be computed from the following formulas:

1l 1 n
2= 2tz (2-5)
[0 g g
and
(L/o'¥ ' + (nf/o°Im
n" = (2-6)

(1/0*%) + (n/d®)

Equations (2-5) and (2-6) indicate that the reciprocal of the
posterior variance is equal to the sum of the reciprocal of the prior
variance, 0'2, and the reciprocal of the variance of the sample mean,
caln. The posterior mean is a weighted average-of the prior mean, m',
and the sample mean, m. - The weights being the reciprocal of the res-
pective var’ances.

As depicted in Figure 2., an important feature of the posterior
distribution is that the posterior mean, m", always lies between the

. . 2
prior mean, m', and the sample mean, m. The posterior variance, o"“,
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is always smaller than the prior variance, 0'2 (16). From equation

(2-5), if the variance of the prior distribution, 0'2, decreases, the
amount of prior uncertainty decreases, and the prior informstion is
fiven more weight in the determination of the posterior distribution.
Oimilarly, as the variance of the sample mean, oa/n, decreases, the

sampling information is given more weight in the determination of the

posterior distribution.

2
"
posterior o

likelihood

|
l
|
| ] |
m

”

Figure 2. Bayes Theorem for Normal Distributions

A different parameterization of this problem might help clearify

the results cobtained.

o
! e e
let n' = 3

Q

Then the prior variance can be written in terms of n' and the process

or sampling variance, thus:
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Sirilarly, if
|v2
o
then
ol =

2 &
nv

Substituting these results into equations (2-5) and (2-6), the para-

meters 2f the posterior distribution are then

" []
S=5+5
o (22 o
or simply,
n" =n'+n
and

o = (n'/ci')m' + (n/e°)m
(@'/e") + (n/")

2k
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or simply,

] 4
m' = LR _*mm (2-10)

In his interpretation of the results obtained by using these
new parameters, Winkler (16) suggests that the prior distribution can
he thought of as roughly equivalent to the information contained in =&
sample of size n' with a sample mean of m' from a normal sampling prd-
cess with variance 02. That is, n' appears to be the sample size
required to produce a variance of 0'2 for a sample mean equal to m',
since the variance of the sample mean from a sample size n' is equal
to oz/n'. Winkler also considers equations (2-7) and (2-3) as formulas
for pooling the information from the two samples. Under this inter-
pretation, the posterior or poocled sample size is equal to the sum of
the two individual snmple sizes, one from the prior distribution
and one from the sampling process. The posterior or pooled sample mean
is equal to a weighted average of the two individual sample means.

Tnis pooling process suggests that a reasonable estimete c<f the
sample mean, based on all the information available, is the posterior
or pooled mean, m". Notice that if n' > n, theﬁ the posterior or pooled
mean is closer to the prior mean than to the sample mean. That is,
the prior information is given more importance than the sample results
in the determination of the posterior parameters. Of course, the
posterior mean is closer to the sample mean if n > n'; and if n' = n,

the posterior mean is exactly midway between the prior mean and the
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sample mean. Notice also that since the sample mean, m, is as equally
likely to fall above as it is to fall below the true population or
sampling mean, p; it is then equally likely that the sample mean and
the mean of the prior distribution, m'. to be on the same or opposite
sides of p. When m' and m fall on the same <ide of p, the mean of the
posterior distribution, m", will be further from . tha.: the sample mean.
That is, the posterior mean will be a less accurate estimate of the true
population mean than the sample mean. When m' and m are on opposite
sides of u, then it cannot be aetermined whether the posterior mcan will
be closer or further from y than the sample mean. ZEach specific case
must be examined separately; the results will depend on the sauple
size, the specific value of the prior mean, and the variances of the
prior and sampling distributions.

Since the point estimate of u based on all information available
is the posterior mean which is normally distributed with mean, m", and

variance, 0"2, the statistic

has a standard nommal distribution, i.e., Z ~ N(O, 1). Therefore the
appropriate expression for a (1 - o) percent interval estimation of u

for this case is constructed using the standard normal distribution,

)
Leda e

1 i 1" ~ 1y _ -
P(m -20/240 Spusm +L-a/20')—-l o (2 ll)
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The lower and upper limits of the confidence interval in this case are

L LIS

UL =mnm" - 2 "and UU = m" 7 ", res ectivei .
0/2 o) a/z c p y
If, as was done in the classical case, the width of the con-
fidence interval for the general case is set equal to k, then from

equation (2-11) the half-interval width can be expressed as:

Now substituting the expression for 0"2 from equation (2-5) into the

above expression results in the following:

1
2o | otz ] -
of2 l/c'2+n/02 2

L
2 | o? & F.: :
of2 2+ ng'2 2

[ k22 J - 02 + nc'2

and finally,
22 g -2 2
X r Q/ZZ B ]
* = - — -
=Lk g (2-12)

This then, is the Bayesian solution for the minimum sample size
required to establish a confidence interval of width k about the mean

of the sampling process under the special condition that the variance

PR E——
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of' the sampling process is known. Several cheracteristics of equation
(2-12) deserve mention. First of all, the first term in the equation,
(2 Zq/2 c/k}z, is in fact the exact expression for the classical solution
to the problem of determining the minimum sample size required to
establish a confidence interval of width k about the mean of a sampling
process with known variance. Second, the last term in the equation,
02/6'2, is the expression developed earlier for n' in equation (2-7).
Recall Winkler's interpretation of n' as being roughly the equivalent
sample size, relative to the sampling process, of the information con-
tained in the prior distribution. The ratio 02/0'2 = 0 is also used to
define a diffuse prior distribution, i.e., an informetionless prior
state. Assuming that the variance of the sampling process, 02 > 0,
the ratio 02/0'2 = 0 cnly if the variance of the prior distribution,
0'2 = o». In this case, the varience of the prior distribution would
represent a condition of total uncertainty and since n' = 02/0'2 = 0,
equation (2-12) would yield the same results as in the classical case.
Tying all these facts togetner, equation (2-12) can be inter-
preted as follows: the minimum Bayesian sampie size required to esta-
blish an intervai estimation of the mean cf any specified width or
accuracy is equal to the minimum sample size requifed to establish
the same interval estimation using classical methods, minus the value

of the prior information in terms of an equivalent sample size. Or,

more clearly:
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Now, consider once again equation (2-12) in order to address the
fact that the variance of the sampling process is in fact not known.
Substituting the sample variance for the variance of the sampling pro-
cess and the term t(o/2, n* - 1) for Z of2 in equation (2-12), and once
again defining the width of the confidence interval as k = §5, results

in the following expression for the approximate Bayesian sample size:

2t n¥ -1 .2 2
2? S
o[ —E——1 -5 (e-13)
o—'
where n

PRCARE
2 _i=l

S
n* < 1
b

and m is equal to the sample mean based on n""b observations.
Examination of equation {2-13) reveals that the first term in
the equation is identical to equation (2-3), the classicai solution
to the minimm sample size problem for a normal sampling process with
unknown variance. The last term in the equation is an approximstion
of the equivalent sample size of the information contained in the prior
distfibution, where the value of n' = 02/0"2 is approximated by n' =
Sa/a’e. Of course equation (2-13) cannot be evaluated explicitly, even
though the value of the first term in the equation is exactly known
from the results obta.ined'using the classical method, since the value
of 82 depends on the specific observations obtained during the sampling

process.
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Before suggesting a procedure for approximating a solution to
equation (2-13) for the general case, it may be more appropriate at
this point +o examine the general implications of using the posterior
distribution to construct cofidence interval estimates about the mean
of the sampling process. An interval estimation based on the posterior
distribution has as its midpoint the posterior mean, m"; while the mid-
point of an interval estimation based on the sampling process alone is
the sample mean, m. Referring to Figure 2, it 1s obvious, then, that
an interval estimate of width 65 which is based on the postericr dis-
tribution will not include the sample mean, m, if m" and m are separated
by more than 34S. A large separction between m" and m is indicative of
prior information which is not very compatible to the results obtained
from the samrpling or experimental results. In other words, the prior
information does not predict the behavior of the sampling process very
well, This is an important consideration in Operational Testing, since
it is important to decide whether or not to use the prior information
in estimating the mean of the sampling or experimental process.

it would seem appropriate then, to develop at leest a heuristic
rule to reject the use of prior information which causes the posterior
and sempling means to differ beyond some pre-established limit. The

general form of such a rule would be of the form:

jm" - m| < q8S

where the valu« of q is slected. in a manner such that if the inequality
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were not satisfied, the application of Bayesian techniques would be
aborted and the appropriate sample size fo: the specific situation would
be determined by using classical techniques. IR

Returning now to the problem of constructing an interval estimate
of width 6S for the mean of the sampling process using Bayesian techni-
ques, the following procedure is suggested as a reasonable approach to
appreximating the solution of equation (2-13) for the general case.

8. Determine the minimum sample size, n*c, required for the

classical method. This value, cail it n,, is the upper limit of the

0
Bayesien sample size.

b. A< a first approximation to {he Bayesian sample size, let
n, = n\/d. Where the value of d is selected with consideration given
to thz classical sampie size being used. That is, for small vaelues of
n*é, d should be chosen at some low value {such as 2 or 4) in order that
ay be large enough to yield suituule sample statistics. For large

values of “*é’ 4 may be increased since the resulting n. samples would

1
still yield suitable statistics. The objective here is to approximate
the Bayesian sample size concervatlvely while insuring that the approxi-
mation decided upon is large enough to yield reasonably valid sample
statisties.

c. Conduct the n; replications of the experiment and from the

results compute the sample statistics:

v
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and
n )2
- (X -
i i |
2 i=1
Sl = e T
d. Use these statistics to compute the approximations:
2
Co
By = e
and

[ ] [ ]
S Sl
[]
1 n1+n1

e. Determine the second approximation of the Bayeslan sample

3ize by using the value obtained for the first approximetion and the
following relationship:

ny =1y + Any - n'y)

where A is chosen with the same consideraticns as was the value of d.
The expression for the n.j th approximation of the Bayesian sample size

is:

n:’j =N + A(no - n',j-l)

f.

Determine if sufficient replications of the experiment have

S ) e T Rt N U




been conducted after each iteration by comparing the computed approxi-
mation of the Bayesian sample size to the classical sample size minus
the computed value of n'. That is, continue the iterative procedure
until nJ 2n, - n'J.

g. After computing the final approximation of the Bayesian
sample size, determine if the prior information should be accepted or
rejected. That is, if |m" - m| < &S, use the n, replications already
conducted to construct the interval estimate of the mean of the experi-
mental process using Bayesian techniques. If |m" - m| > q8S, reject
the use of the prior information; conduct the remaining n, - n 3 repli-
cations of (he experiment and construct the desired interval estimate

of the mean of the experimental process using classical techniques.
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CHAPTER III

DEMONSTRATION OF THE METHODOIOGY

Programming the Model
The model developed for approximating the minimum Bayesian sample

size for the special test situation described in Chapter I is programmed
fcr the UNIVAC 1108 computer using standard Fortran IV language. The
prograa consists L four basic segments designed to perform the follow-
irgg functions: generate the rejquired data and compute the sample
statistics; coampute the minimum classicel semple size required for an
interval estimation of specified width; compute the approximate Bayesian
sazrle size required for the same interval width; and construct the
confidence intervals desired based on the sampling results.

The Box and Mueller technique (7) is used to generate the normally
distributed pseudo random numbers representative of a normal process
with specified mean and variance. The random number generator was tested
for various sample sizes and values of the model parameters using the
chi-square goodness-of-fit test for normality. The results of these
tests were quite favorable and are summarized in Table 2.

Equatior (2-3) is solved iteratively for the minirum classical
saxple size by using two standard UNIVAC MATH-STAT library functions
t:1). The function TINORM is used to compute the value of the inverse
of the stanaard .norml distribution given the value of the probability

for which the ordinate is to be calculated. The function STUDIN is
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used to calculate the inverse of the Student's t distribution for a
ziven confidence ~oefficient. The results obtained from the subroutine
used to calculate thé classical sample size for each specified value of
6 are shown in Table 1.

Aprrox;mations for the Bayesian sample size for a given value of
delte are computed using the iterative procedure developed in the pre-
ceding chapter. The value of the classical sample size computed for =
given value of dleta is input to this subroutine which uses this value
to calculate the first approximaticn of the Bayesian sample size.

Confidence intervals are computed by using the STUDIN library
function to calculate the value t{qf2, n*-1), where n* is the computed
classjcal or Bayesian sample size. The subroutine then computes the

lower and upper limits of the confidence interval, i.e.,

S
UL =a ~ t{o/2, n*, - 1) ==
n*
c
and
sc
UU=a+ t(gf2, n* - 1)
c JoF
c
{for the classicai case, and
B Sb
L LA
UL = o" - t(of2, % 1) =
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Sp

UU = m" + t(o/2, n* - 1)
b NN

for the Rayesian case.

Demonstrating the Model

In order to demonstrate the model developed to approximate the
Bayesian sample size in the preced.ng chapter, various values of the
constante, 4, A, =nd q used in the iterative procedure were tried in
preliminary simulations. The values d = 4, A= 1/4, and q = 3/8 were
chosen for the following reasons:

a. Values of d < i tended to produce first approximations of
the Bayesian sample slze which were too large when working with small
values " the classical sample gize, n,- That is, n, 2 n, - n‘J after
the first approximation. Larger values of d produced more conservative
first approximations of the Bayesian sample size for small values of

n., but at the same time resulted in unrelisble, i.e., greatly variable,

90
sample statistics.

b. Values of A < 1/l were rejected because for large values of
By the number of iterations required to compute the approximate Bayesian
sample size was considerably increased. It was felt that this result
was undesirable in an Opezr-ationa.l Testing mode and, of course, it also
meant increased computer times to solve the approximation. A scheme
of using a variable value for A was tried, i.e., A was decreased by

one-half after each iteration. This scheme was also rejected because



39

for laryer values of n0 the iterative procedure quickly evolved into
a sequential type of sampling procedure.

c. The value of q = 3/8 was selected as a reasonable choice
based oa the illustration shown in Figure 3. The interval a-d repre-
sents an interval estimation tased on the posterior distribution. Then
from previous definitions, a-d = §S, and the intervals a-m" = m"-d =
1/2 5S. Then if the intervals a-b = c-d = 1/8 §S, the sample mean, m,
is required to be within the interval b-c = 3/4 6S, i.e., |m" - m| =
3/8 5S is the prerequisite for incorporeting the prior information
into the estimation procedures. It was felt that 1/8 &S would allow
for sufficient variation of the sample mean due to differencés in

sample results.

posterior
distribution

likelihood
function

o G s memus co— N\ —— —

jo ]
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Figure 3. Separation of the Posterior and Sample Means



The proccdure to approximate the Bayesian sample size was demon-
strated using a hypothetical case having the following characteristics:

a. the ratio o°/o'> = 16.

b. |a' -u|=5amd |n' -yl = l0.
where y and 02 are the true (but assumed unknown) values of the para-
meters of the sampling process and m' and 0‘2 are the parameters of the
prior distributicn.

The first test of the procedure involved a computer simulation
of 100 runs for each value of delta from 1.0 to 0.2. The model was not
tested for the value of delta equal to 0.1 in this or subsequent tests
c¢f the prccedure because the large sample sizes involved required an
excessive amount of computer time. The results of this first test are
summarized in Table 3 for the case where |m' - u| = 5 and in Table L
for the case where |m' - u| = 10. These results appear quite favorable
as shown in the percentage of reduction achieved over the classical
saiple sizes. Note that the computed Bayesian sample size does not
depend on the value of |=' - u|. That is, the Bayesian sample sizes
are identical in Tables 3 and L for a given value of delta. The con-
fidence and accuracy of the interval estimates produced. i.e., the
rmumber of times the true mean of the sampling process is contained
within the intervel and the width of the interval constructed, is
comparasble to the results obtained using classical methods for the
case where |m' - ul = 5.' For *he case where |m' - 4 | = 10, the desired
confidence is not achieved until the situation involving the two largest

sample sizes. The separation between the posterior and sample means
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decreases as the sample size increases and the sampling information is
given meore weight in the determination of the posterior distributicn.
For this reason, the test suggested for determining whether or not to
use the prior information does not work well at all. For both the case
where |m' - ul = 5 and jm' - 4| = 10, the test rejects the prior infor=-
mation too often for small sample sizes and erronecusly allows the use
of" the prior informaticn in large sample sizes. It appears that a
hetter decision rule as to whether or not to reject the prior information
should consider the difference between the prior mean (rather than the
posterior mean) and the sample mean. The accuracy of the approximation
procedure is quite good; the overall average reduction in the sample
size for all values of delta is 12.0 samples, which equates to approxi=-
mately 75 percent of the true difference between the classical and the
Bayesian samplc sizes, which is 16 samples fcr this particular case.
The second test of the procedure involved computing the Bayesian
sample size required for each value of delta and for various wvalues of
In' - u] rangng from onc standard deviation below the true mean of the
sampling process to one standard deviation above this value. The spec-
ific values chosen for |m' - u] and the results of the test are shown
in Table 5. The results ob%ained when the value of Im' - pi is within
one-half standard deviation on either side of u are quite favorable,
with oniy three cases-out of the total of 63 trials where the Bayesian
interval estimate did not include the true value of the mean of the
sampling process. Overall, there were a total of 24 cases, out of the

79 total trials, where the Bayesian interval estimate did not include
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the true value of the mean of the sampling process.

The final test conducted on the model was to fix the value
lm' - u| = 5 and to compute the Bayesian sample size required for each
value of delta and for various ratios of the variances, 02/0'2. The
specific values chosen for the ratio of the variances and the results
of the test are shown in Table 6. The results obtained when the ratio
of the sampling and the prior veriances was 4 or greater are good, with
only one case out of a total of 63 trials where the Bayesian interval
estimate did not include the true value of the mean of the sampling
process. Overall, there were a total of seven cases out of the 99

trials where the Bayesian interval estimate did not include the true

value of the mean of the sampling process.
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CHAPTER IV
COGNCLUSICNS AND RECOMMENDATIONS

Conclusions

The results of this study indicate the following conclusions.

1. The suggested procedure to approximate Bayesian sample sizes
and construct interval estimates for the mean of the sampling process
should be used for the ncrmal sampling process when accurate prior
information is available. That is, when the prior mean is within one-
half standard ceviation «f the true mean of the sampling process.

2. In the worst case, the procedure will yield the same sample
sizes as would classical techniques. 1n this case, the interval esti-
mates should be based on the classical method, since in essence, the
prior infermstion has been'rejected.

3. The accuracy and confidence levels associated with the
interval estimates based on the approximation procedure are comparable
to those obtained by using classical techniques if the prior information
is accurate.

L. The heuristic rule suggested to determine whether or not
to use the prior information did not work well because the value
In" = ml is a functioﬁ of the sample size as well as be.ng a function
« £ the value of the prior mean, m'.

5. The results obtained in the demonstration of the procedure

for the values of delta selected, indicate that the procedure to approxi-
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mate the Bayesian sample size and construct interval estimates is a

viable concept which has direct applicability and value in Operational

Testing.

Recommendations

As in most cases involving research of a limited scope, perhaps
more problems are unearthed than are resolved in this study. The
limited results obtained, however, show some merit and applicability
to Operational Testing. As a matter of future research in the area
covered by this study, the following recommendations are suggested.

1. Further efforts are required to improve the iterative pro-
cedure used to approximate the Bayesian sample size. A refined pro-
cedure should take into accocunt the need to treat large and small
cample sizes as separate problems. Perhaps the increment added to the
approximation at any specific iteration should be some function of the
mmber of iterations already conducted. Care must be taken, however,
that any procedure developed for this situation be compatible to the
Operational Testing enviromment, where ease of application and simili-
city are prime objectives.

2. The sample standard deviation, S, in equation (2-13), is the
only variable in the equation for a specific sample size. This parti-
cular random variable is related to the chi-square distribution. Per-
haps further work with this particular element of the expression for
the approximate Bayesian sample size would lead to more accurate
approximations of the equation.

3. A workable decision rule for determining whether or not to
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use the prior information is needed. It is suggested that the rela.tion-
ship between the prior and sample means, i.e., |m' - m}, will yield
more viable results 7tha.n the technique used in this study. Obviously,
whatever rule is developed, it must treat the differences associated
with large and small sample sizes separately.

L, There are obvious limitations in applying this procedure to
Operational Testing. Although the procedure holds some potential of
reducing costs associated with Operational Testing by reducing the
nummber of replications required of a specific tests, any iterative
sampling scheme is inherently difficult and costly to apply because of
the problems involved with multiple scheduling and set-up costs. The
procedure seems better suited tc those testing situations where a large
mumber cf samples are required and the cost of sampling is relatively
iow. For these reasons, a scheme %o incorporate the concept of loss
functions into this procedure is needed before it can assume the cloak

of a true decision making procedure.



APPERDIX I

FORTRAN PROGRAM FOR THE APPROXIMATE
BAYESIAN PROCEDURE
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=2FCRHIS Aty

TP RNITNEY Y2010 e N()

Co = 2Ty X¥EANTI3Y, XVAR( )
CRSACNR/ITRIERE 7 XHAT (1Y, SHATI(3)
CRrarnyFIVE Y, ALPHA, 11 13y, tNH{R)
CU NN IREVENY KOtSYe DELTA
CHATNR/ICIOHTY, BRI )y NPRIMUIICY, DIFF
CHLATRIMINE Y, WIDTH(2)

RO/ TINT LODPI2Ye KFYs DMAX
EXTCRNAL vnifr

Cevsac 2EAN 1IN AASTIC PARAMFTERS
8 FORMAT {
IFANDIS P ALDHA
TADIS.RY NSU
E23054S) X¥TAN(I]1)s YVAR(])
FAL(5.A) YVUFAN(2)s XVAR(2)

R
2
Cosesn START UP UNIFORM GFMNFRATHAR TO RANDOIZF STARTINA oNnINT
o 1T J=1, N5U
= UNliFal
1v QONTIRIT

20 145 £K= 1. 3C

READLS, B, EXN= 9739) DFLTA

Ceesss  DETEIVINF THF WININUY CLASSICAL SAMPLF <17r
CALL CLASSE K(1)
CALL RANAM(])

Cosnes CETERMING THE MINIMUY SAYFSIAN SAMPLF SI7Fe 1F APOROPRIATF
CALL TAYES( NMr1)e N(2Y )

Ceeses  COVOUTE CONFIDENCE INTFRVALS FOR THE DATA PRACEESr<
CALL CONFIRC N(31s 3
CALL 0RMIOL1)
CALL COMFING M{1)s 1 )

Ceeses  DRINT AUTPYT
CALL QUTPUT

100 CONTINUSG

999 COANTINE
WRITE(6+70)
73 FORVAT(IHD)

LTCP
Ty e
Copy ovcilehle io DT does not

permit fully legible repreduction
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~RFCR+1S RANDN

CoeansTHIS SURRNUTINE GENERATES NORMALLY DISTRIAUTIFD PSFNINA-RANDOM

C
C

NUBERS HAVING A SPECIFIED MFAN AND VARTANCF

CenuanaARGUFMENT DEFINITINON

[aXala¥aXa¥aXa)

1040

X IS THE ARRAY QOF RANDNOM NUMBERS (QUTPUT)

N IS THE RKUMBER OF RANDOM NUMRERS DESIRFR (INPIT)
XMEAN 1S THE MFAN OF THE RANNOM NUMAERS (INPUT)
XVAR 1S THE VARTANCF OF\THE RANDOM NUMBVRS (INPUT)H

SsveeTHIS SIURRNUTINE USFS THF BOX AND MUFLLER MFTHAN FNR

CENFRATION OF NOQMAL PSFUNO=RANNOM MUMRFRS

SUBROUTINE RANDKLJ)

COMMIN/ONF/ X{12+103001e N(3)
COMVON/TAO/ XVEAN(3) . XVARL3)

EXTERNAL UNIF

TP1=6.28318%2
DG 123 I=1s N(J)y 2
Az UNIF(]1)Y
B= UNIF(2)}
X{Iell= XMFAN(?2)4 SORT(-=2.08XVAR(ZV#ALNG(AIY*CNS (TP RN
Xt2¢102 Xt1,1%
Il1= 1+ 1}
X{lalld= XMEAN{2)4+ SORT(=2.0UXVAR(2I®ALOGIAYIRCIN(TPINN)
Xt2+113= Xt1011)
CORTINUE

RETURN
FND

~-RFNAR, IS UNIF

r W0

FUNCTION UNIF(A)
DATA 1Y/G&58B1/
1vy=1Y=*312%
IF{1Y)I9+646
1Y=1Y+1+34359738367
YFL=1Y

UNIFs yRL#2,00%%(=35)

RETUIN
END
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Censss
C
C

(o)

(]
[
[
[
*
]

[aNaRaRaXa

23

ORDER

THIS SUBROUTINE SCRTS A GIVEN SET OF DATA FROM TR LOWFST
VALUE TO THE HIGHF ST, AND COMPUTFES THE SAMPLE STATISTICS
{MEAN AND STANDARD DEVIATION) OF THE DATA PROCFSS

ARGUEMENT DFFINITION
X= THF ARRAY OF DATA VALUES TO BE SORTED (INPUT/QUTPUIT)
Nz THE NUMBER OF OATA POINTS (INPUT)
XHAT= THE SAVMPLE MEAN OF THE DATA PROCFSS (NUITONIT)
SHAT= THE SAMPLF STAMDARD DFVIATION OF THE DATA
PROCESS (OUTPUT)

SUSROUTINE OFDER(X)

COVMON/ONE/ X(2+410001s N3}
COMMNON/THREE, XHAT(3)s SHAT(3)

Nv]
ale]

8 100
200 CON

(esense
SUmMm
Suv
20

300 CoM
YN=

XHA
RN=

Sum

= N(X)- ]

200 I=1. NM1

IP1=1e1}

MM 130 J= IP1. N(K)

IFL X(Xs]) oLEe X(KeJ) ¥} GO TO 1IN0
TF¥P= X{K.1

X(Lelds XiKo)

X(XeJYe TEMP

CONTINUE

TINUE

COMPUTE THE SAMPLFE STATISTICS FOR THE DATA DRINCFSe
1=37.0

2="a0

A5 1=1e NIK)

SuvMl= SUMI+ XIK,1)

SUV2z QM2+ X(K,1)%82

TINUE

NIX)

Ti{K)= SUM1/YN

YN=- 1.0

22= SUM2- (S1MI#&2) ,yN

SHAT(X)= SORT(SUM22/RN?

8 RFT
END

URN
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-RFOR415 CLASS

Cessee  THIS SURROUTINF CALCULATFS THF MINIMUM FLASSICAL <AWPLF <12€
PEQUIRED TN CONST2UCT A CONFIDENCE INTFRVAL NF GIvEN wIDTWH
ABOUT THE MEAN 0OF A NNRMALL SAMPLING POPHILATION NF 1INKNOYWN
VARIANCE

Ceenes  ARGUEMANT DFFIMITION

< ALPHA= THE CONFIDENCE COFFFICIENT (I4PUT)

C DELTA= A FUNCTION OF THE INTERVAL #INTH (INPUT)

C NCLASS= THE COMPUTED SAMPLE SIZF (QUTPUT)

[aNaNa]

SUBRCUTINF CLASSINCLASS)

COVMNN FIyE s ALPHA, L 13, 1I{3)
COM2OR/SEVES, NCUSYe DFLTA
TOEMCN/TENT LODO(21e KEYs DMAX

Cosons  CrepiTF THF FIRST APPROXIMATION OF THE CLASSICAL <AMPLF

c SI1ZEs NC(1), BASFD ON THE STANDAPD NCRMAL DISTRIRNTION, wHICH
c IS IDENTICAL TO THF T DISTRIARUTION wITH INFINITE REGRFFS
C OF FREEDC™

ALPHAL= ALPHAZ? .0
S= TINORV(ALPHAL, $15)
G2 TO 18 2

15 WRITELH,17)
17 FORMAT(//76 17X, 68BH ERRNAR MESSAGE--OVFRFLOW 0N THYFQeE unouAL DT CT

IRIRLTION~-~FORMAT 15 ¥
capy ExIT

18 CONTINUE
RCALC= (2.,0%S/DELTAYR2
NC(l1= INTIRFALQO)
PFL NCU1) oLTe REALC Y KRC(13= NC({1)s ]

Cossoe COONTE THFE SUCCTEINING APPROXIVATIONS NF THF CLASAICAL SAVDLF

C SIZEe NCUJYe BASED ON THE T NISTRIBUTINM wITw NFADFFS NT
C FREEDO™ FQUAL Tt NC(JU=15= 1o STOP THF TFRATIVE nRN EM DT
C WHEN NUJ)Y IS EOINL TO N{J-1)

Lo 30 JU=2. 12

NDF= NCi(J-11- 1

T= STUDIN{ALPHA, NDF, %211
GD 10D 24

21 wWRITE(6.27)

23 FORMATI//7. 10X T4H ERROR MESSAGE--OVERFLOW DN STUDFmMTE T DISTRI8Y
ITION FUNCT!ON~~FORMAT 21 )
CALL EXIT

26 CONTIRUF
REALC= (2.72*T/DFLTAYe8)?
NCiJi= INTIREALO)
TFC NCUJ) oLTe RFALC )y NCtJY= NCU(LUY+ ]
XF { VC(J) -EO. N('J',, ) r'C 10 3"



8 30 CONTINUE

Ceesne ASSIGN THE COMPUTED SAMPLFE SIZL
35 NCLASS= NC(J)
LoorPily= J
RETURN
£ND

NCLASS

N

A1)
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-RFOR. IS BAYES .

TH1S SUSROUTINE CALCULATES THE MINIMUM BAYESIAN SAMPLF S1ZE»
IF APPROPRIATEs TO CONSTRUCT A CONFIDENCE INTERVAL OF GIVEN
WIDTH ABQUY THF MEAM OF A NORMAL SAMPLING POPULATION

41TH UNKNOWN VARTANCE

LA A ARGUZMANT DEFINITION
K= THE MINIMUM CLASSICAL SAMPLE SIZE LINPUT)
NBAYES= THE COMPUTED SAMPLE STZE (OUTPUT)

laRaXaXaXakakakal

SUBROUTINE BAYES { K. NBAYES )

COMNON/ONE/ X(2410001s N(3)
COMMOR/TWO/ XMEANT3) s XVARI3)
COMAON/THREEZ XHAT(3) SHAT(3)
COMMON/ZSEVEN/ RC(3)s DELTA
COMMON/EIGHTZ NB(10) NPRIM{10)y DIFF
COMMON/TEN/ LOOP(2te KEY DVAX

Coenns COMPUTE THE FIRST APPROXIMATIONS Ni])e OF THE BAYFSIAN
C SAMPLE SIZF

REALBT® FLOATIK1 /GO

N8(13= INT{ REALB )

IFt NBI{1) oLTe REALB )} NBU1)= NBil)+ ]

Nt2)= NBI(1}

(eeane TAKE N(1) SAMPLES AND COMPUTE THE SAMPLE STATISTICS FOR THE
C DATA PROCESS AND THE POSTERIOR PARAMETERS BASED ONn THESE
C N{1l) OBSERVATIONS
CALL CRDER(2)
APDN= SHAT(21%#2/XVAR(])
NDRIMI1)= INT( APPN )
[F{ NPRIM(1) «LTe APPN ) NPRIM(1)= NPRIM{IY*
XMEAN(3)= ( NPRIM{11®xMEAN(]1)+ NR{1)XHAT(2) )/
1 FLOAT( NPRIMI1)+ NB(1) )
DIFF= ARS( XMEAN{3)- XHAT(2} )
UMAxX= OJIFF
KEy=z 1
IFL N(2) +GFe K- NPRIMI1} } GO TO 55

Creses CoMPUTF THE SUCCEEDING APPROXIMATIONSs N(J)s OF THE RAYF51AN
C SAMPLE SIZEe STOP THE ITERATIVE PROCEDURF WHEN NRIJ) 15
C GREATER THAN OR EQUAL TO K= NPRIMI(J)

DO 1CO J=2, 20

RINC= FLOAT( ¥X- NPRIM(J-1) 1/640

INC= INTU RINC

I#( INC oLTe RINC ) INC= INC* 1

NBtJY= NB(J=11+ INC )

Nt21= N8B
Cessoe TAKF €ACH SUCCEEDING N(J) SAMPLES AND COMPUTE THE SAVPLE
S STA ISTICS FOR THL DATA PROCESS AND THE POSTERIOR PARANETERS
C BASED ON THESE N(J) CBSERVATIONS

CALL CRDER(2)
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APPN= SHAT(2)#%2/XVAR(1)
NPRIM({J)= INT{ APPN )

IFt NPRIM{J) »LTe APPN ) NPRIMUJ)= NPRIMUJY+ ]
XMEAN(31= { NPRIMUJ)I*XMEAN(1)+ NRUJYEXHAT(Z) V/
1 FLOAT( NPRIM(J)+ NR(J) )

DIFF= ABS( XMEAN{3)- XHAT(2) )

{F{ DIFF +LEs DMAX ) GO TO 35

DMAX= DIFF

KEY= J

35 CONTINUE
IFL N{2) <GEe K= NPRIM(J) )} GO 70 4%

100 CONTINUE

Cunnxsn ASSIGN THE SAMPLE SIZE COMPUTED ABOVE TO NRAYFS AND NETFRMINE
C THE POSTERIOR tPOOLED) SAMPLE SIZE
55 CONTINUE

NBAYES= N{2)

1€( NBAYFS oGTe K ) NBAYES= ¥

N(3)= NBAYES+ NPRIMI1)

XHAT (312 XMPAN(3}

SHAT(3)= SHAT(2)

LoorPt21= 1

GO TO 999

4% CONTINUE
NBAYES= NB(J)
IF({ NBAYES «GTe K ) NBAYES= K
N{3)= NSAYES+ NPRIMUJ)
XHAT (312 XMEAN(3)
SHAT(31= SHATI(2)
LooPt21= J

999 RETURN
END




58

-]
-RFOR, IS CONFID

Canaxs THIS SUBROUTINE CALCULATES A CONFIDENCE INTERVAL FOR THF MEAN
C OF A NORMAL POPULATION WHEN THE VARIACE IS UNKNOYWN

C

Coonue ARGUEMENT DEFINITION

N= THE NUMBER OF DATA POINTS IN THE SAMPLE (InpPul)
ALPHA= THE CONFIDENCF COEFFICIENT (INPUT)

XHAT= THE SAMPLE MEAN OF THE DATA PROCESS (INDUT)
SHAT= THE SAMPLE STANDARD DEVIATION OF THE DATA
PROCESS (INPUT)

UL= THE LOWER CONFIDENCE LIMIT FOR THF MFAN (AUTPUT)
UU= THE UPPER CONFICERCE LIMIT FOR THF MEAM (nUTPUT)

aaNala¥aNalael

SUBROUTINE CONFID(N, J)
COMMCN/THREE/ XHAT(3), SHAT(3)
COMYON/FIVE/ ALPHA, UL(3)e UUI3)

Conaes COMPUTF THE DEGREES OF FREEDOM ASSOCIATFD WITH THF <SAVPLFE
NDF= N-1

Cosasasn DETERMINE THE VALUE OF THE STUDENTI(S T DISTRIBUTINAN AT A
SIGNIFICANCE LEVEL = ALPHA

NOTE=-=THIS DPERATION USES A STAT#PACT FuNCTION CALLED STHUNIN
TO CALCULATE THE INVERSE STUDENTS T VALUT GIvEN THE
CONFIDFNCE COEFFICIENT ALPHA

aNa¥aXal

T= STUDIN{ALPHA, NDF, %101
GO TO 700

1C ®RITE(H415)
1% FORMAT(//41CXe 74H ERROR MESSAGT--QVERFLOW ON STUDEMT(S T DISTRIAN
1TION FUNCTICN--FORMAT 700 %)
CALL EXIT
70U CONTINUE
YN=N

(osnne COMPUTF THF LOWER CONFIDENCE LIMIT
UL(Jr= XHAT{J)= TRISHAT(J)/SQRT(YN))

Cennns COMPYTE THE UPPER CONFIDENCE LIMIT
LUIJI= xHAT(J1+ THISHAT(J) /SQRT(YN))

RETURN
END

-RMAP
LIB SYSTEMB®MATHSTAT,.
-XQ7

4
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-RFOR.1S OUTPUT

SUBROUTINE OUTPUT

COMMON/ONE/ X(2+1000), NI(3)
COMMON/TWO/ XMEAN(3), XVAR()
COMVMON/THREE, XHAT(2), SHAT(3)
COMMON/ZFIVEZ ALPHA, ULI3), UU{3)
CO¥MIN/SEVENZ NCU(S)s DELTA
COMMCN/EIGHT/ NBL10), NPRIM{10}s DIFF
COMMON/NINEZ wIDTH(2)

COMMON/TEN/ LOOP(2)y KEYs DMAX

Crevas PRINT HEADINGS FOR PRINTED OQUTPUT

DO 100 JU=ls 2
WRITE(6+15)

15 FORMAT{1HL)
1F1 J +EGs 2 Y GO 1O 40
WRITE(6+35)

35 FORMAT(///7+ 4CXs 45H DATA VALUES USED IN THE CLASSICAL ANALYSIS
00 10 50

40 WRITE(64+45)
45 FCRMAT(///+ 4UXs 45H DATA VALUES USED IN THE BAYESIAN ANALYSIS

Cezans PRINT BASIC PARAMETERS ASSOCIATED WITH FACH DATA oROCFSS
SU CONTIHNUE '
WRITE(H452) NtJ)

52 FORMAT(//7+ 10Xs 26H NUMBER GF ORSERVATIONS = o 1)
WRITF(16254) XMLAN({2)
54 FORMAT(1CXe 19H LIKFLIHOOD MEAN = + FBa3)
B IFU U «EQe 2) WRITELK+56) XMEAN(])
€6 FORMAT(1H+s TB2s 14H PRIOR MEAN = o F8a3)

wRITE{5458) XVAR(2)

58 FORMAT(1uXxs 231t LIKELIHOOD VARIANCE = + Fled)
IFU J «EQe ) WRITE(6460) XVAR{])
6J FORMAT(1H+, T82s 18H PRIOR VARIANCE = o FB43)

WRITF(6262) DFLTA
62 FORMAT(1UXs 9H DELTA = v FLa2)

Ceoane PRINT THE DATA VALUES GENFRATED 8Y RANDN
WRITE(A46%) ( X(Jel)y I=1y N(J) )
65 FORMATL(///7s 10(3Xy FBe3) )

Cosune PRINT THE SAMPLE STATISTICS COF THE DATA PROCESS
[F( J eEGe 2 ) WRITE(6,72) XHAT(Y)
T2 FORMAT(/77s 10UXe 4TH YA MCAN OF THE PCATIRIDR DICTRImnTIAY, M--
H v tleS)
“RITT 16475 XHAT(J) s SHAT(D)
TS PQORMATI/77e L0Xe 89H THE SAMPLY MTAN OF THE DATAN PRNOFE A, YHAT =
1 FY wSe /7« 1axXs B30 THE AAMPLE STANDARD NDIYIATION F Titl DATA
CHIC 55y GrtAT = " F10he.5 )

)

*
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Cossnse PRINT THE {1-ALPHA) CONFIDENCE INTERVAL ASSOCIATEN wWITH FACH
C PROCESS
AIDTH(UY= DFLTA®SHAT(J)
KRITE(6+85) WIDTH(J)
65 FORMAT(//4 1UXe 52H THE DESIRED WIDTH OF THF CONFIDENCE INTFRVAL I
15 = vy Fbe2 )
ULe2i= ULt
vut2!= U3
SRITE(S.95) ALPRA, UL (J)s LU
95 FORMAT(//s 1UXxe 4TH THF (1-ALPHA) CONFIDENCF INTFRvAL FOP THF MEAN
1 o /¢ 1GX, 38H WITH CONFIDENCE CCEFFICIENT. ALPHA = |, F4,.3,
2 BHe IS = ( o+ F8e3, 2H, v FBe3s 1H)Y )

[Ft J Q. 1} GO TC 97

#R1712(6+98) DIFF
98 FORYAT(//4 10UXe 71H THE ABSOLUTE DIFFERENCE RETWEFN THE POSTERIOR

1AND SAMPLE MEANSs DIFF = s F6ea3)
ARITE(6+79) DMAXs KEY
99 FORYMAT{(//s 1CXe TH DM¥AX = v F6edy 10H AT LOCP = v 12)

@7 CONTINUE
ARITELSH+76) LOOP(J)
B 96 FORMAT(//, 171Xes 9H LOOPS = v 12}

lvg CONTINUE

RETURN
END
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-RFQORs IN CHISQ
Cedtans THIS SUSBRCHUTINE TAKES A SET OF ORDERED DATA {ARRAMGED FDAY
THE LOWEST TC THE HIGHEST VALUE) ANC
(1) ESTABLISHES K LQUAL-PROBABILITY CELLS, “HERE ¥ DFEPFNNS DN
THE SAVMPLE SIZEs JeFey X= 20 FOR K JGE. 10N, K= 11~ FNOC 1 ,GF,
50 eANDe JLTe 1:'3s AND K= 5 FOR N <LT. &N
{2) PIRFORMS A CHI-SOMIARE GOOADNFSS-0F =FIT TEST FAR N/RUALLITY
0N THE DATA SAMPLE AND DFTERMINFS THE SIGNIFICANCE LEVFRL
AT 9HICH »€ CAN ASSUMNE THAT THE DATA SAMPLF IS Inm FACT
RFPRESENTATIVE OF A MORMAL PROCLSS
susuR ARGUEVENRT DEFINITICN
= THF ARRAY OF DATA VALUES TO RE TESTED (INPUT)
N= THF NUNMHBER OF DATA PIONTS (INFUT)
K= THE NUM3ER OF CELLS INTO wHICH THE DATA 1S nIvINFDR (INPHT
XHAT = THE S5AYPLF MEAN OF THF NATA PRNOCESS
SHAT= THE SAMPLE STANDARD DPEVIATION NF THE DATA PROCFSS
CHIS= THE CHI-SOUARE STATISTIC JOMPRITED FROY
THE DATA (DUTPUT)
ZIGL= THF SIGNIFICANCFE LEVEL JF THE TEST (0U'TP'T)

[a¥aNa¥a¥alaNala¥a¥a¥alaNa¥akaNalal

SUBROUJTINE (H]SO

COMMON/ONEY/Z X(500)s N

COVEDN/THD/ XMTANs XVAR

CO¥SBON/FIURY Ks KLESS1e CHISH SIGL
COMNMCN/SIX/s CRSTRDI19) s CHNORM(I19) s KOUNTI20)
JDIPeNSIZN ALPHA(LY)

Cossas SFT ALl CFLL COUNTERS TO 7ERO
209 I=1s X
KCrntT(e1i= . 0
S CONTINUE

weesss CRUonTT THE CELL-dRTAYX POAINTS FOR THT GIvTY DATA
C MOTE—<THIS OPERATICON LISES A STAT=-PACLT FUmMCTINt CRALLED TI97RY
C TC COMDPUTE THL VALU'E OF THE INVERSE OF THT NORMAL (7.1) DISTR.
[F(=1.0110 276 32
o V0 15 i=x1l,s KLFSSI
ALPMA(T = N2%]
15 CONTINGE :
oD TC 50 :
20 20 25 i1=1l. XLESSI
ALPHA(I)= 0, 1#]
25 CONTINUE
LY TO 5N
2 P2 35 1=
LLPHA
35 CONTINLE
55 10 100 T=1e XKLFSSE
Cos3TRDelI= TINORMUIALPHA(IY, 370
CnidR (11 CuSTRDITIESORTE XvAR )+ X't/

LZ T tel

7 TITI RN
) PR TATU/ /016X eBbBH 1 IROR DFACALL ma UL R [ Te b et ey
TiRIN T LIN=-=FCRMAT ¢ )

1¢ . CONTINUL



63

Co2rens COUNMT THE NUMBER CF OBSERVATIONS FALLING IN CACH cSLL
DO 3«2 =1 N
D7 240 J=1e KLESSI .
IF¢C XU1) «GTe CONORM(J) ) GO TO 190
ConMT Y)Y = L8UNTJ) +1
67 T2 2
19 IF(S oS0 KLFSS1) KOUNT((K)= KOUNTIK) 4]
270 CANTINIE
I CONTINT

crerne CHMD2TE THE CHI=-SQUARE STATISTIC, CHIS

(=]izvel
<N= FLIJAT( M )y FLOATHE K )
S Yo 1=l K
CHils CHI1+(XOUNT(1)-RN)**2
SU. CONTINL

CH1s= CHI1/RN
(e3ens DETETUINE THE SIGNIFICARNCE LFYEL OF THE TFSTY

“ MOTC~-=TH]6 CPERATINN 1SFS A STAT=PACT FImCTINN CALLFD CHT TH
C DETERMINE THE CHI-SQUARE DISTRIPUTICN GIVEN THF PAINT AND
e THE DEAREES OF FRFEOCM

ROF= K3

Custyz I (HISS NDF. 2670 )
Slvon= leu= CUD

0T T 6%

S50 wRkITr (&eb)o) CHIS
Bl "ORNATUZ7410%e T0H ERROR MESSAGE==0OVERFLOW ON CHI=SMARE DISTRIBNT
1I0% FUNCIION==FORMAT 601 +24H CHI=SNUARE STATISTIC = 4 F5.2)

TR T
ceNT TR

5H2 RITEN

[N

)
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