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I. INTRODUCTION

The prime practical limitation encountered in attempts to restore

degraded imagery arises from noise inherent in the detected image data.

The most basic source of such noise lies in the photon fluctuations

associated with the detection of the finite amount of light energy

available to the imaging system. Thus photon fluctuations pose a funda-

mental limitation to the "restorability" of a degraded image.

In the first part of this report we develop a model which can be used

to mathematically and statistically describe an image detected at low

light ievels. This model serves to clarify some of the basic properties

of photon noise, and provides a basis for the analysis of image restoration

to follow.

In the second part of the report we consider the problem of linear

least-square restoration of imagery limited by photon noise. The form

of the invariant least-square restoration filter is derived using the

statistical model appropriate for photon noise. The mean-square error

achievable with such a filter is then derived in terms of the total

number of photo-events detected in the image, the complexity of the

object, and the type and severity of the image blur. Finally, in the last

part of the report, examples are presented for the case of atmospherically

degraded images.

2. MODELING OF PHOTON-LIMITED IMAGERY

Our model for the detected imagery is essentially a two-dimensional

analog of the semi-classical model developed by Mandel [1,2] for the study

of photon counting statistics. This semi-classical model is known to

yield results that are in complete agreement with a rigorous quantum
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mechanical model for all detection problems involving the photoelectric

effect [3]. Thus the vast majority of image detection problems are

properly included in this framework.

2.1 SEMI-CLASSICAL MODEL

The model utilized is that of an inhomogeneous or compound Poisson

impulse process. Thus the detected data d(x,y) is represented by

N
d(x,y) = I 6(x-xnY-yn) (1)

n=1

where 6(-,.) is a two-dimensional Dirac delta function, (xn,yn)

represents the location of the nth photoevent (i.e., the release of a

photoelectron), and N is the total number of photoevents produced by

the image. In this representation, N x and y are all regarded

as random variables, with statistical properties to be described in the

following.

In accord with the semi-classical theory of photodetection, th,;

probability that N events occur in an area A on the detector is taken

to be Poisson,

_ ff X(xy)dxdy1

P A(N) N! exp[- [F 1ix~y)dxdyj
A

(2)

where the "rate" X(x,y) is related to the classical image intensity

i(x,y) falling on the detector through

X(x,y) = n i(x,y) T (3)
hV

-2-



Here n is the quantum efficiency of the photosurface (assumed independ-

'-nt of (x,y)), h is Planck's constant, v is thre ,i.an optical

frequency, and T is the detector integration time.

Since the distribution i(x,y) of classical intensity is unknown

a priori, A(x,y) must ultimately be modeled as a random process.

However, in calculating average properties of the detected image, it is

often helpful to first treat A(x,y) as a given known function, and then

average the results over the statistics of X. This procedure is entirely

consistent with Baye's rule of statistics. We further note for future use

that, for a given X(x,y) , the "event locations" (xnyn) are independent

random variables for different n's , with common prcbability density

function [4]

P(XnYn) = (, y) (4)

JJ X(x,y)dxdy

Note further that, because X(x,y) is proportional to the classical

intensity , X(x,y) > 0.

Before turning to an examination of the image properties implied by

this model, we point out some of the ways it can be generalized. First,

in practice the photoevents registered by a real distributed detector

consist of finite'spatial pulses, not delta functions. This fact can be

incorporated in our model by passing our ideal detected data (Eq.(l))

through a linear spatial filter, thus spreading the deltp functions into

pulses. Second, due to photoelectron multiplication noise, the areas and

shapes of the various pulses may themselves be random variables. This

property can be included in our model by making the SDatial filter

- 3 -



randomly space-variant. These sophistications can all be included in the

model, but since our interest lies in fundamental limits, there is little

to be gained by incorporating these additional non-fundamental degradations.

We close this section by showing in Fig. I a typical classical

intensity distribution and a corresponding typical detected image, the

illustration being one-dimensional for simpl;city.

2.2 SPECTRAL DENSITY OF PHOTON-LIMITED IMAGERY

One of the fundamental properties of a detected image is its spectral

density. Our goal in this section is to calculate the spectra) density

of the detected image described by Eq.(]). If D(vxVvY) represents the

Fourier transform of d(x,y) , i.e.,

D(vxVY) = d(x,y)e j dxdy (5)
CO

then our goal is to calculate

d (VXy) = E[jD(vX,vY)1 2] , (6)

where the symbol E['] indicates an expectation over the statistics of

N , (xny) , and X. Before makina this calculation, we must first

mention a physical restriction we impose on the random process X(x,y)

i.e., on the statistical properties of the classical intensity in the

image plane.

Any image produced by an optical system must contain finite total

energy. From this fact it follows that for every sample function of

the random process X(x,y)

jJ X(x,y)dxdy < .(7)

-4-



This equation is sufficient to imply that any particular sample function

,(x,y) has a well-defined Fourier transform,

A(vxvy) = Jf k(x,y)e-j 27 (v xX+. yy) dxdy (8)

Our goal now is to relate the spectral density 1, d(v,ýy) of the detected

image to the spectral density

CN(VOvy) = E[IA(vxvy) 12] (9)

where the expectation is over the statistics of .(x,y).

To calculate the spectral density d (vXV ) of the detected image,

we first Fourier transform Eq.(l), with the result

N j2r( Xx+,yy)
D(vxVY) = je YO)

n=l

The squared modulus of this quantity is

2 N N -j 2•[VX (Xn-Xm) +vy (yny)]
ID(vX9vy) 0 e- (Il) Yn-r

n=l m=l

It remains to find the expected value of this quantity over the statistics

of N , (xnyn) and X(x,y). It is convenient to first regard N and

X(x,y) os given (known) quantities, average over the statistics of

(x ,yn) and (xmy) and then average over N and X. Thus our first

goal is to compute

Enm[jID(vX~vY) 121

•E xp-j27r Xnm)y(yn-m (12)
n[exp[ 21[vX(xn-xm)+v(Yy )] n2)

n1l m-1
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where Enm signifies an average over (x nyn and (xmYM).

Two classes of terms can be identified. First, there are N terms

for which n.- m , each of which yields unity. Second, there are

N 2 N terms for which n 0 m. For such terms we knowj that (xnYn)

and (x mym) are independent random variables,and therefore that

>'i•.,A,(XnYn) A;k (mYm)

P(xnYn;xtm) - • ) (13) .

fJ A(x,y)dxdy J'(xy)dxdy

For these N - N terms, the result of the averaging process is.

e-j[11[vX(xn-xm)+vYy(n-ym)]]

?• Ii j2n• (VX+Vyy) 2

11 A(X.y)e X dxdy

•'ff N.(x,y)e dxd-= (1)

JJ

The result of averaging ID(vxvY)12 over the statistics of (xnYn)

"and (xYm) becomes

2
12] JA ( vX, vy)I

Enm[ID(vX.vy)12] " N + (N2 -N) (OA O , " (15)

Continuing our averaging process, we next find the expected value of

Eq.(IC1 over the random variable N . given A(xy). Representing the

conditional mean of N (given A) by N(•) , and noting that, for

Poisson statistics,

"-6-
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E[ " = (N)2

N-(A) A A(x,y)dxdy - .(0,0) , (16)

we. find that.

Enn DN[D(vX.vyx ) 2] A . I ,, ,) 2 . (I7V

Finally, averaging over thestatistics of. A.(x,y) ,we obtain

d(VXtvy) = N 4 + (V ) (18)

where N is the unconditional mean of N.

Thus the spectral density of the detected image is the sum of a

constant spectral level N , plus the spectral density of the rate function,

Alternate forms of this result are also useful. First, if we define

a normalized spectral density

bA (VX, Y

(Vxx'S(Vx'V~Y) = '; (0,0) (19)

then we have that

d(VXVy) = N" + (NR) 2 (VXVY) • (20)

Furthermore, since A(x,y) is proportional to the classical intensity

i(x,y) , we must have

A (VxVy 0 (vxy) (21)

where l(VXVy) is the spectral density of the classical intensity,

normalized to unity at vx 0 Vy 0. Thus we write our final result,

,- ,.,

""(V VY) R + (N) .)• V (22)

d X -1-V



We illustrate this result in Fig. 2.

2.3 FLUCTUATIONS OF SPECTRAL DENSITY ESTIMATES

In a certain class of imaging problems, the desired end result is an

accurate estimate of the normalized spectral density ¢. of the classical

image intensity. For example, such is the case for Labeyrie's speckle

interferometer [5], which is currently of great interest in astronomy.

Because of the simple relation that exists between ¢. and the spectral

density Cd of the detected image, a reasonable approach is to first

estimate 0 d then express Pi as (c.f. Eq.(22))

d - (23)

The quantity N is simply a measure of the total image brightness, which

we assume Is either known a priori or can be determined accurately by a

suitable photometric measurement. Thus the fluctuations in our estimate

of 4¢i will be determined by the fluctuations inherent in our measurement

of 0d" It Is these fluctuations that we wish to find here.

An estimate of 0d is made by measuring ID(v•x'v)1 2 for a single

detected Image. The expected value of this measurement is, of course,

Cd(VXIVY). But how far off from the expected value Is a single measure-

ment likely tc be? To answer this question, we must find the second

moment of ID12 , i.e., we must calculate

N N N Nrl~ID1 - X X E exp -j21 V x xnm + xp-xq
n-l m-I p=l q=Il Xnr + p q

+ V Y(Yn(ym + Yp'Yq)]I] ' (24)

This calculation is a lengthy one and Is deferred to the Appendix.

For a known (non-random) A(xy) , the result Is

-8-
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4II]=Nx ((X)) 2 + (+T)l~xv)12

+ IA(2vx,2vI 2(25)
.•+ .A: . * A( )I2

A(2vx2vy )[A* + A(2vX)2vy)[A(v Y

+ JA('4 )I

Representing A(vXVY) in terms of a modulus and phase,

IA(VXV)e(VX9Vy

A(vX'vy) =)le (26)

we can equivalently express the second moment of ID2 as

E[IDI - (X) + 2(W(X) + ) 4(l+N(x)) 1A(vXVvY)2

+ 2
+ IA(2vxp2vY) H

+ 21A(2vx,2vy) IIA(vXvy)2cos[e(2vX,2vy) - 2e(vX,vy)1

+ IA(vx,Vy)1 (27)

The task now remains of averaging over the statistics of ),(x,y).

If the Image intensity distribution extends over a region of size LxL

then under rather general conditions, the central limit theorem can be used
1 

I (XV) 
saprimtl

to show that, for vx >> and Vy >> AGO is approximately a

circular complex gaussian random process, with correlation extending

Over a region of dimensions . x . in the frequency domain. It follows

that the phase e is uniformly distributed on (-rtr) , and that IA!2 12 I

obeys negative exponential statistics. Furthermore, for such frequencies

e(2vx,2vX) , O(V•xV) , IA(2vx,2vy)I and IJ(AxG v )I are all approximately

indep4'ndent. From these facts we conclude that

-..............-......



* E[iA(vX,'vy)12.] OX*(VXOv)

E[I A (2VX, 2VY1 1 (2VX2Vy)

E[21A(2Vx,2vy)jIA(VXV•(2 0(2VX,2vy) -20(v ] 0
[X l ] - • . ...

E[IA(VXvy)] (V.xy, (28)

Now if we subtract the square of the mean of IDf2 i.e., the square

of Eq.(18), we obtain the variance of IDI 2

IDI+OL12 "N **+ (gj)2 + 2(2+N)4)(vx,vy)

2

+ 0 (2vX, 2Vy) + 4N(VXVY) (29)

Equivalently, using (21), we have
(g2(- x,)2

2 -2
a (N)12 2(2N)(N-) + (vXvy

:; + (N)25i(2VX,2VY) +(N) *2(f'v) (0

An important conclusion can be drawn directly from Eq.(30). The

fluctuations of the spectral density of the detected image at frequency

(VXvy) depend not only on the spectral density of the classical intensity

at (vXVy) , but also on that spectral density at frequency (2 vx, 2 vY)

Stated in other words, a frequency component of the classical intensity

at frequency (2vx,2vY) induces fluctuations of the spectrum at

(vXVy). This "half-frequency noise" phenomenon is a fundamental property

of photon limited Images. It has been noted previously in a different but "1*

related context by Walkup [6].

We close this section by presenting an expression for the rms

signal-to-noise ratio associated with an estimate of 0 at frequency

(VXVy). Subtracting the bias N associated with the mean of IDI2,

- 10-



we obtain

E )D2]
!•i Nrms 12O

D I).

1D2
^2 (v2v) + 0i (Vt+4 ,vy)X . (2vX,2vy +¢(xy) *--5VxVy) + i+ xt -3

Note that as N + , the r.m.s. signal-to-noise ratio approaches unity,

in agreement with the classical results on the statistical fluctuations

of periodograms [7].

Figure 3 illustrates the conclusions of this analysis with a specific

-example. The classical intensity distribution is taken to be a sinusoidal

fringe of frequency vO and length L. A typical sample function of

2ID(v)I is shown. Note that excess fluctuations are present ac vO/2

due to the presence of the fringe at frequency v.

3. LINEAR LEAST-SQUARES RESTORATION OF DEGRADED

r, PHOTON-LIMITED IMAGES

In many practical problems of interest, the detected image data arises

from a blurred Image of the object of interest. For example, the object

may suffer significant motion during the detection interval I thus

blurring the Image. Alternatively, and of greater Interest here, the

detected image may be seriously degraded by the spatial and temporal

fluctuations of the refractIve index of the atmosphere, i.e., by "atmospheric

seeing". At low light levels, the detected Image further suffers from

photon noise of the type discussed In the previous section. In order to

extract as much information as possible about the object from the detected

image data, we seek a method of image restoration which will enhance object

.. . .. . .. . .. . .. . . .... . . . . . .
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detail without unduly emphasizing the noise associated with the discrete

photo-events composing the detected Image. In the sections to follow,

we consider one approach to this problem.

3.1 LINEAR LEAST-SQUARES RESTORATION

The'approach we shall investigate here is commonly referred to as

'linear least-squares restoration. The philosophy behind this approach is

perhaps best explained with the aid of Fig. 4. The function o(x,y)

represents the true object br.ightness distribution, or alternatively the

image that would be produced by an ideal optical system (free from

aberrations and free from any blur due to diffraction) and an ideal

noise-free detector. Our goal is to determine o(x,y) from the actual

detected data with the greatest possible accuracy. Following the upper

branch of Fig. 4, the ideal object suffers a perfectly known blur on passage

to the inmage plane, this blur being introduced by diffraction, fixed

aberrations, and other external causes, such as object motion, atmospheric

seeing, etc. We assume that all of these blurs can be lumped together

and represented by a single known linear, space-invariant filter, with

impulse response b(x,y) , or optical transfer function B(vx,vy),

-j 21r (vxx+vy)

-J b(x,y)e dxdy

B(V y) -- (32)

"To represent the statistical fluctuations Introduced by the detection

process, the blurred Image is now applied to a "Poisson generator", which

produces a Poisson Impulse process with rate )A(x,y) proportional to the

Intensity of the blurred Image. The output of the Poisson generator Is

- 12-

• e ---------- ".ii / i i l Oki a-i+l ..• '-'I• Z ':;' !:''"+•• ',° <'+•'+"



•~~ .• . .., . ...: ..,

I -7,.

the detected image data d(xy) , on which we must base our estimate of

0(x y).

Our restoration.procedure is to apply the detected image data to a

linear, .sp ce-invariant restoration filter with impulse response h(x.y)

and optical transfer function H(vxVy). This transfer function will be

chosen to minimize the expected value of the mean-squared error,

i:1 E[J{ e2(x~y)dxd] EL (r(x~y)-(x~y)1 dxdj

(33'

where the error e(xy) represents the.difference between the restored

image r(x,y) and a certain filtered version of the object, o(x,y)
the expectation being over the statistics of o(x,y) and the stat.istic!

of the detection process.

The choice of a filtered object o(xy) , rather than the true object

o(x,y) , for defining the error requires some comment. The restoration of

object frequency components beyond the diffraction-limited cutoff of the

optical system is impossibl.e to achieve with any linear invariant

restoration filter. Hence the best we can hope to accompl'ish is

restoration of those frequency components lying within the diffraction-

limited passband. Accordingly, we count as error only the differences

between the restored spectrum R(vx,vy) and the (possibly modified)

portion of the spectrum lying within the observable passband. The frequency

spectrum of o(x,y) is thus

{)(VxOVy) In observable passband
cvvY) (34)

0 otherwise

- 13-
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Usually we .will take S(v Y) to be of the form

-1 (VXy) in observable

J" passband

S(vxSvY) = (35)

0 otherwise

However, we note that the resulting 6 (x,y) can have negative values in

this case. We could alternatively choose S(vX,vY) to be the diffractic

limited optical transfer function of the system, thus guaranteeing a

positive o(x,y). In the analysis to follow we leave S(vXvy) completely

general, but eventually we choose the form of Eq.(35) for mathematical

simplicity.

Some final comments are in order regarding the non-optimality

of the restoration procedure described above. First, it is well known

that linear least-squares restoration is not optimal I n the sense of

maximum likelihood or maximum a posteriori probability when the image

statistics are Poisson. Rather, non-linear filtering is required for true

optimality E7]. Secondly, the choice of a space-invariant linear restor-

ation filter undoubtedly reduces performance even further; it seems clear

intuitively that a space-variant filter can perform better than a space-

invariant filter In the presence of signal-dependent noise. However, It

should be puinted out that both optimal non-linear filtering and optimal

space-variant linear filtering are in general computationally less

efficient than linear space-invariant filtering. For this reason, there

remains a strong interest in knowing the limitations of linear space-

invariant least-squares restoration for photon-limited imagery.

14I
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3.2 THE FORM OF THE RESTORATION FILTER AND THE QUALITY

OF THE RESTORED IMAGE

In this section we first derive the form of the linear space-
invariant least-square restoration filter for photon-limited images.

Our goal is to choose a filter transfer function H which minimizes

Ewff e (x,y)dxdy]. .By Parseval's theorem, it is equivalent to minimize

E [Ef I8((VXVy)I dvxdv 0 where & is the Fourier transform of' c.

Interchanging orders of integration and expectation, we find that it

suffices to minimize at each (Vx .Y)

E E[(vX,,,y)12] E[JDH - 01 2] (36)

where O(vxVY) is the Fourier transform of o(xy). The minimizat ion i

straightforward and yields

'do
H (vX'9y) = "d (37)

where P is the spectral density of the detected image d(x,y) , while
d

@do is the cross-spectral density of d(x,y) and O(x*y)

ado(VXt y) = E[D(.'x,,Vy)0 (-X9)y)0 (38)

Straightforward calculations, using the Poisson impulse model, show that

21 2
(V y) = , V+)- aXV G

(dovX Y (N)2 S(vX9vy)B':(VX,\ )' o Xvy) (39)

We conclude that the transfer function of the restoration filter is given

by

15-
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H v ) WS(V~vx Y )& (.VXJyd) 0 (vOy)()
XYI+ FIB. (vxiiVy) 0 I Y

Note that at zero spatial frequency the gain of this filter is

Nk/(-+7N).. Thus the normalized restoration transfer function is

(l+N)S(vxtv Y)B.. (V X 1 VY)4%(VX$V Y)
H(VX,vy) = 727i ^(V#V (41)

We turn next to calculation of the total mean-squared error E

achieved when the restoration filter of Eq.(40j is used. Using (36)

we see that

E &(VVSVY) dviXd
£ [J (vfy)fv

(42)

JJ[I H.1 41 - NO do - H .4 j 6+ 1dv dv Y

Substituting (39) and (40) in (42), we obtain after some algebra

L d v d vvx(d3)

wif + N91B( 0

The total mean-square error in the image is not a particularly

meaningful quantity in itself. Note in particular that, as W grows

large, so too does c , in direct proportion to N. However, the mean-

square value of the object within the observable passband Is

f1) ISI P odv Xdv Y ; hence the "signal" component of the output power

rises in proportion to~) yielding a net Increase In restored Image

jquality as N Increases.

L -~16j



F hI

It is highly appealing to define a single parameter Q to represent

the. overall quality of the restored image. Many definitions of. such a

parameter are possible, but none can be fully justified as being the

best conceivable choice. Here we shall consider two possible choices

for a definition of Q.

Our first definition depends on the mean-square error , which takes

into account both the statistical fluctuations of the restored image due

to the photodetection process and the defects of the restored image caused

by residual uncompensated blur. Noting that as NW 0 , £ (W)2ff si 2

4 0odvxdvy , we find the proper definition of the quality factor to be

oo

(+)2 1f I12 4 dvxdv

or equivalently

ff 1I - 2- dv 
.)J~ IS 2 %dv y -(44)

= ~~ II;dv dv~
fo X Y 

•

A second possible quality parameter which has a great deal of appeal

will now be discussed. This second parameter is defined to be J
(A)2 lgI + (5

Q2  N)~o9l~ ;(5
2I

where (Av) 2  is a measure of the two-dimensional restored bandwidth,
I

while S/N is a measure of the mean-square signal-to-noie ratio in the

restored Image. The similarity of this quality measure to a measure of

Information content is apparent. A reasonable definition of the restored

-17- i
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777

bandwidth is

"(&V) BHldvdvY (46)

where

ONN (48

2^o

N A1('v)2frAs for the parameter S/N mthe choice of a definition is less clear

degree of freedom of the restored image,

N i ••2 (48)

A 1(40

where AwI represents the dep of thi the restored image. Only the

pfirst f the above qualo ty easures (tl) win be used in sectir n wa Is

!:,, 3.3 THE DEPENDENCE OF THE NORMALIZED SPECTRAL DENSITY i

OF THE OBJECT ON OBJECT COMPLEXITY •

The results of the previous sections have demonstrated that the

i ~degree to which restoration is possible depends not only on the totali

•:light flux (19) and the uptical transfer function of the blur (B) , but

also on the normal ized spectral density of the object (0o)0 In this

, section we explore the dependence of this normalitzed spectrum on "object

•: complexity". To explore this question In a completely general way is

extremely difficult. Accordingly, we examine two specific models of the

object, neither of which Is entirely realistic, but from which we can

deduce trends valid for more general object models.

- 18 -
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For compar;son purposes we note that the simplest possible object

is an ideal. point source,, with.brightness distribution

ox,yj 0- O0 (x-x1,y-y1 ) .(9)

While such an object cannot exist physically, nonetheless it serves as.

a useful. 'idealized case against which we can compare the results of..

complicated object models., For the point source described above,, the

normalized spectral density is given by

o( . 1 (all xv ) . (50)

The first model utilized to represent a more complicated object is

a natural generalization of the case of a single point source. We

suppose that there exist M equally intense point sources,

M
O(Xy) X 0 o 6(x-Xmty-ym) (51)

ni-I0 xy )

We suppose that the locations (x mYm) are independent random variables,

unifornmly distributed over a square object field of size LL. Omitting

the calculations, which are straightforward, we find the normalized

object spectral density in this case to be

I I svnc Lv sinc 2 LvY (52)So(VX.$v) - )

which is shown in Fig. 5a. Note that an increase of object complexity

has led to a decrease in the level of the normalized spectral density.

except at extremely low spatial frequencies.

What is the effect of object complexity, represented by H , on the

quality of the restored image? Using the fact that ýP .0 over

most spatial frequencies of interest, examination of Eqs. (44), (45)

- 19"



and (48) shows that I and Q2 are primarily functions of the total

number of photoevents contributed by a single point source,.

N (53)

If n is held fixed, Q is essentially independent of how many point

sources are in the field.

A second and somewhat more veneral "'odO for the object can be formu-

lated as follows. Let the object be modeled as a stationary randoit

2
process, o(xy) > 0 , with mean o 0 and variance . We further

suppose that this stationary random process is confined to an L'L

square, and is zero outside that square. This space limitation can be

explicitly introduced by multiplying the stationary okx.y) by a windo,.-

function rect(x/L)rect(y/L). We wish to calculate the norimialized

spectral density for this object model. The calculation is tedious but

again straightforward. To state the results in succir-ct forum, we def irint.

the following additional symbols:

A L2 represents the area of the object field;

"A represents the correlation area of thk.C

random process o(x.y) , and is specifically

defined as-!,
A v 'I(Ax,Ay)dAxdAy

where y is the autocovariance of o(x.y)

normalized to unity at the origin; and

06o(Vxv ) is the spectral density of the fluctuation%,

of the object about its mean, normalized to unity

at the origin.

20-
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With these definitions, the normalized spectral density can be expressed

"approximately "as

F -((VXV -) sinc2Lvx sinc2 Lvy

(c7) 2 A

the.. nomlie +pcta denit haavauelsthny)o (AI).

where the chief approximation is that o

- ii

A

n -'..A(56)A c

Figure 5b shows a typical plot of this normalized spectral density.

Of most importan c e , we note that, except at the lowest spatial frequencies,
the normalized spectral density has a value less than ((o /o) 2.(Ac/A).

This parameter plays a role similar to (M)" in the previous model. In

this case we define the parameter n as the mean number of photoevents

contributed by a single correlation area of the object.

-- T Ac (56)

Again referring to Eqs.(44), (45) and (48), we find that the quality

of the restored image will depend primarily on the paramet er n(,) o/O)2

for any given blur.

4. APPLICATION TO ATMOSPHERICALLY DEGRADED IMAGES

Our goal here is to apply the results of section 3 to the specific

case of atmospherically degraded images. All imagery considered here

will be assumed to be recorded with an exposure time that is much longer

than the characteristic fluctuation time of the atmosphere. Thus we are J

-21-
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dealing only with long-exposure imagery. However, we consider both

ordinary long-exposure imagery and "tilt-removed" long-exposure imagery.,

In the second case it is assumed that a perfect tilt removal system

operates to-keep the image perfectly centered on a fixed point at all

times.

Using the results of Fried [8], we have that the OTF of atmospherically

induced blur is given by

1/3
B Mv exp ~3.44(2L [I - 1F~ (57)

where

A is the mean wavelength;

F is the focal length of the telescope;

D represents the telescope diameter;

+ Vy represents radius in the spatial frequencyX= X

plane;

r represents the coherence parameter of the atmosphericS~0

wavefront distortions, as defined by Fried (8]; and

C& takes on the value zero, one half, or one, according to

whether the image is recorded with no tilt removal

(a-O); with tilt removal and "far field" atmospheric

propagation conditions (8] (a=½); or with tilt removal

and "near field" atmospheric propagation conditions

(8] (awl).

In addition to the atmospherically Induced blur, we assumt that blur

is introduced due to diffraction by the finite aperture size of the

telescope. For a perfect circular telescope, we have an optical transfer

function

- 22 -
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2-
(V) Cos- -(58)

B 00) - 0 0°

for v < vo 0 zero otherwise, where v° D/7)rersnt h

diffraction limited cutoff frequency. For computational purposes, a '1

*.convenient approximation due to Hufnagel [9] can be used,

4
B(v) = 1 - .0. 2 5( )59) (5

The total OTF of the imaging system is simply the prc:'uct of Eqs.(57)

and (58) or (59), .

8(v) = BT(v)BA() M (60)

Incorporating the definition of v in Eq.(57), we obtain for the0,

total OTF,

8(v) - L25(ŽL) + 0.25(" ()J

xexp- 3.44(\~~~ ' (..)'[ - O l/] (61)

for v < , zero otherwise.

We have used numerical integration to calculate (Av) (Eq.(46)),

and Q, (Eq.(44)) for the case of a point-source object ( 1 I) with

blur i of Eq,(61), and an Ideal transfer function S of Eq.(35).

In this case,

V0

(Av)2 = 2ir(l+N) JIBf(v)I 2y dv 2(62)'

'!•" and we can show

- 23-
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= Q 10c and • cm

O ,.,

D0 152.5 cm

S= 5xlO"5 cm.

it is not necessary to assume a specific focal length for the telescope

• if we work with spatial frequencies •2 = Fv measured in cycles per

radian of arc in the sky. The ratio of v/vo in Eq.(61) is replaced

22

Sby a/fo , where • = Fv~o , and we calculate (As)2 = F(Av)2 rather

• than (Av)2. Likewise, QI is re-defined as

= ,o(AV) 2-

Q 2 (64)

0

il with no change In its numerical values resulting.

in Fig. 6 we show plots of the "maximum restorable frequency"

vS. N for the case of a point-source object and the parameter

-;: values specified above. The incident light flux is varied over eight

• orders of magnitude. Figure 6a corresponds to the "no tilt removal"

case, while 6b and 6c represent the "tilt removed" cases for far-field

and near-field atmospheric propagation conditions, respectively. Note

0I

that in all cases, the maximum restorable frequency increases very slowly

with N * implying that, for the parameter values specified here, truly

enormous amounts of light flux are necessary to record an image whlch

can be substantially restfred.

To Illustrate this point further, consider the transfer function
8da of the cascade of the blur T nd the deblur. Formn Eq.(67) with

- 22 2
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!0n,

>> 'I and 0 1 we see that within the diffraction-limited passband

we have.

-2
SH B (65)

If we wish to restore the frequency component at v to ½the amplitude

it had before the blur, we require that W1j 12 , or

-2 (66)

Assuming that a 0 (no tilt removi.l) and for simplicity neglecting

the diffraction-limited portion of the OTF, we require from Eq.(61) that

i.=exp16 .83Q2) (67

5/3

exp 6.88 ij-,/

with 2 expressed in cycles per milliradian. Now for Sý 0 /2 =.1520

cycles per milliradlan, we find that

N 6x108 photoevents

8B7Thus more than Iu0 photoevents are required in the detection process

to achieve this degree of restorationt

In Fig. 7 we have plotted the quality factor Q for the same

II
-25-



again correspond to no tilt removal, tilt removed with far-field atmos-

pheric propagation, and tilt removed with near-field atmospheric propa-

gation. Again, for the parameters chosen, there is only a small change

of image quality over this wide range of N.

These results support the experimentally observed fact that long-

time-average atmospherically degraded images are extremely difficult to

restore in practice. In principle, if enough light flux were utilized

in the detection of the image, significant restoration would be possible

However, the theoretical results above imply that, for the conditior.,;

interest here, the amount of light flux required is prohibitively large.

We note In closing that, although the results above have been

derived for the case of a po'it-source object, they can be shown to be a

close approximation for the case of a more complicated object provided

a and N is replaced by n , the average number of photoevents

per correlation area of the object.

5. FUTURE WORK

The formalism described above is now ready for application to several

problems Important for compensated imaging. We are now in the process

of deriving comparable results for the case of a partially compensated

imaging system, modeling the residual wavefront errors as a gaussian

phase screen. In addition, we intend to explore the restorability of

short-exposure images using the model developed here.

- 26 -
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APPENDIX

Our goal in this appendix is to show that the fourth-order

moment of Eq.(24) ieduces to the result indicated in Eq.(25). Thus we

wish to find

4] N N N N
E[IDrJ) E[ex4- j211 [v (Xxn + x -Xq

n-I rn-I p=I q=l -m

(y %f Y + Y y (A-1)

4The N terms in this summation can be placed in 15 different classes

as follows:A

I) n-m-p-q N terms

(2) ~mp~qn~pN(N-l) terms

()n-rn, p~q~n N(N-I)(N-2) terms

(4) n-p, m=q, n~m N(N-l) terms *
(5) n-p, m~q~n N(N-l)(N-2) termsJ

(6) n-q, rn-p, n~m N(N-l) terms

(7 Z:7Z~pn (N1)N-)termnsJ

(9) n=m=q, n~p N(N-I) terms

(10) n-p-q, n~p N(N-l) terms

(11) p-q-in, n~m N(N-l) terms

(12) nmpuq, ~ ~ N(N-l)(N-2)(N3 terms

(13) m-q, n~m~p N(N-1)(N-2) terms

(15) niup, n~n~q N(N-l)(N-2) terms

-27-



IMP.

We regard the rate' A(x,y) of the process as a known1, deterministic

function, and average over the 2N+l random variables (x1,y1

(x21 y),*.(~,~ N.. Noting that, for a Poisson random variable

the contributions of the 15 sets of terms are:

(I) N(A

22

(22

31o Iv~y)1

]21 12

(43) ~N~]A(2vXVy)2

(V4 3ý ]32vX.2vy Xvy)] 2

2 6

(6) W 4.N.



Here, as before, the definition.

-i21r (v X+v )JJ (x,y) e~' Y dxdy

A(v xsv Y). 00 (A-3)

ff Xx,y)dxdy

is used. Noting further that

A(vxpv) =N)A(vxI-vy (A-4.)

and comibining all of these results, we obtain Eq.(25),

E [I DI4] - ()+ 2 (W(W))2 +4(1(A AvXv)2

2
+ IA(2vxt2v Y)I

+A(2v x,2v y)Avv)] + A*(2vX,2vY)[A(vX$V Y)]2

+4 .(-5)

IA(v v )I A

t
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(aY)

d (x, y)

x

1. Model of photon-limited Imagery: (a) classical Intensity incident

on detector; (b) resulting detected Image.

N 31



!''

1.0

2. Relation between (a) normalized spectral density of the classical

Intensity distribution, and (b) spectral density of the detected

Image.
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i~x~y)

(a)

IO(v) 12

HALF- TRUE
FREQUENCY SIGNAL
NOISE

-V0  9* *0Y

2 L
(b)

3.Single image estimate of spectral density illustrating "half-

frequency" noise. (a) sinusoidal fringe of classical intensity;

(b) single-iotage estimate of the spectral density of that intensity

distribution.
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B i(X*y POISSON d(x,y) r (x, Y)

1.. Block diagram for least-mean-square-error restoration.
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1.0

Y*1

r1.

5. Normalized spectral densities for two object models:

(a) M independent point sources, and (b) stationary object over

a finite region.

- ~~35 . . .



S--

2~ ~~~LN 3EXPOS8UROLEGEPSUE*IL EOVDFR IL

22

2' -L _4 1 L 6 1 OGEXPOSURE-TLA~VDER1L 2TL REOE FA FIE7LD 9

(0))

* I2

LO. MaXimSUmE restrabl frequenc NEAR vs.L 3 fo4r 5 cm and 10cm

D -152 cm and X r- 1x00c;(a ogepoue otitrmvl

6. Maxihilesthrbe dashuedhrontal lines. feoresn r 5 for the 10cm
0

va)lusofg rxpo used heltre. oena-il toshrcpoaain

36 *



r ... .I ..
LOW XPSUR

LONG EXPOSUR-TILT REMOVED FAR FIELD

-33

7. Quality parameter Q, for numbers identical with those of Fig. 6

parts (a),(b) and (c) corres,.jnding to the same cases Indicated there.I


