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I. INTRODUCTION 

This report describes the modifications completed for the 
SMITE Code in transforming the axisymmetric version to plane flow 
The reader should refer to BRL Contract Report No. 239 for a more 
detailed description of the method of analysis. Several test cal¬ 
culations have been carried out at 65° angle of attack and are re¬ 
ported upon. 



II. 

Baile Differantial Equations 

a) Plana Strain Elastic Modsl 

When a material supports shear stresses, it is necessary 
to include, in addition to the pressure forces, terms which 
account for the presence of these stresses. The equations of 
motion for such a malarial can be derived by applying the 
physical laws describing the conservation of mass, momentum 
and energy to a finite element of the material body. In addi¬ 
tion, a statement of the stress-strain relationship of the 
material is required. For this paper a linear theory is assumed, 
i.e. material bodies will satisfy Hooke's law. Then these laws 
may be usefully written as a set of partial differential equations 
in a cartesian coordinate system, as follows. If the substantial 
or particle derivative is defined as 

d 
cTt 

V 
3_ 
3Y 

then the conservation of mass can be written in terms of the density 
(the mass per unit volume) p , and the divergence of the velocity 
field, with components u and v in the x and y direction respectively 
as 

P ( 
3u 
7x 

3Vv (2.1) 

The two momentum laws reflect the appearance of the stress 
components . The x-component of the momentum satisfies 

and the y-component of the momentum satisfies 

(2.2) 

(2.3) 

The evolution equation for the internal energy, e, per unit 
volume is given by 

pde 
dt 11 

3U 4. T ÍÍV + T 
■JÏÏ + T22 37 + T 12 

(2.4) 
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The stresses required in the above relations must be obtained 
from the strains and strain rates. The lir.car stress-strain laws, 
with correction for rotation, are usually written in terms of 
deviator stresses S^. The rate of change of the stress component 

are given in terms of the strain rate, j* via 

dSll 
at~ 

¿V /,3u 9 V. ,du 
“3“ (237 5y)+ T12 (5y ' 

9u 9Vv 
5x) 

(2.5) 

dS 

3F 
12 ,3u . Sll"S22 

37’-5- 
• 3u 

(îÿ 

3v. 
(2.6) 

dS 
22 

dt ^ "ft 
3u. T fiü _ 3V\ 

T12(37 Jï’ (2.7) 

dS 
33 = _ 2u (3u + 3v 

dt 3 3x 3y (2.8) 

The above Hookian laws. Equations (2.5) - (2.8), are connected 
to the evolution laws (2.1) - (2.4) by the algebraic conditions 

T . . = S. . - pó . 
1} il *13 6ij = 1 for i = 3 

= 0 otherwise (2.9 - 2.11) 

The pressure p is related to the density p and specific 
internal energy e through the equation of state 

p = P(p,e) (2.12) 

The above set form a system of twelve equations for the twelve 

unknowns p, u,v,e,p, Tn, t12, T33/si1»S22 and S33* 

At this point we show that Equations (2.1) - (2.12) form a 
system which is not self consistent. To see this add Equations 
(2.5), (2.7) and (2.8). It is clear then that the sum 

I S.. satisfies 
i=l 11 

dt (£11 + S22 + S33) 0 

7 
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which implies that the sum of these stress deviators is a constant 
of the motion of the materiali without loss of generality this 
constant can be taken to be xero for at t-0 each S^-0. Thus 

£ S,4 - 0 (2.14) 
i-1 

for all time. 

Now if we sum Equations (2.9) through (2.11) 
obtain the relation 

T11 + T22 + T33 “ S11 + S22 + S33 " 3p 

which yields, after satisfying Equation (2.14), 

for i*j, we 

(2.15) 

T11 + t22 + T 33 
- 3p (2.16) 

Equation (2.16) states that the pressure p is determined by the 
mean of the stress tensor. This is a contradiction of Equation 
(2.12) which states the pressure is a function only of the density 
and internal energy. 

Hooke's laws can be written in the form 

T 
Ü 

2U.Ü . Xlejj 1,2,3 (2.17) 

. . = 2ue. 
i] 13 

Here y is the shear modulus of the material,X is a Lame constant 
and the strain e^ is defined by 

.119*"1. !ii) 
ij ‘ ï '357 + 

(2.18) 

The displacements are xi. 

Differentiating Equations (?.17) and (2.18) with respect 
to time yields 

'a * 2viu * u4jj 
j (2.19) 

ij 2yeij 
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Thus, Equation (2.12) should, for consistency, be close to 
Equation (2.21) but obviously cannot in qeneral be the same. 
To be consistent then, there is really no degree of freedom in 
the choice of the form for an equation of state. Equation (2.12), 
in the system (2.1) - (2.12). 

One possible way to avoid the above inconsistency is to 
replace the stresses appearing in Equations (2.1) - (2.4) by 

the deviatoric stresses and the pressure p through the use of 

Equations (2.9) - (2.11) and then eliminate Equations (2.9) - 
(2.11). The stress deviator can also be eliminated by using 

Equation (2.14). The resulting set of equations can be written 
as 

(2.23) 

(2.22) 

(2.24) 

(2.26) 

(2.27) 

(2.28) 

p » P (p,e) (2.29) 



Thus we have eight equations 1er the eight unknowns p, u, 
V, e, Sllf S12, S22, and p. Equations (2.22) - (2.29) are 

consistent. The only disadvantage of this set of equations is 
that Hooke's law of linear elasticity can not be recovered. This 
is ¿ue tc the fact that the pressure in Equation (2.29) is the 
thermodynamic pressure while Hooke's law does not attempt to 
include thermodynamic effects. If nonadiabatic terms are included 
so as to produce a modified Hooke's law then the relation (2.21) 
would be modified to include temperature effects while the stress 
deviators would be unchanged. Hence the quantities . in 

Equations (2.22) - (2.29) are the stress deviators and an addi¬ 
tional constant, i.e. k in Equation (2.20) (in addition to the 
shear modulus y ), usually encountered in two dimensional linear 
elasticity, is eliminated by the inclusion of an equation of 
state (2.29) 

b) A Plastic Model 

Equations (2.26) - (2.28) express the stress-strain relations 
for a material behaving with linear elastic properties. Before we 
proceed, we first rewrite these equations in a more convenient 

form. We define the derivative jjt to be a tensor operator unaffected 

by rotations. Then, we construct this operator from the substantial 
derivative of the stress deviators 

Dt eft 

DS,„ dS,„ S,,-S„„ 

(2.30) 

Dt eft 

The time derivatives of the strain deviators can be written using 
the definitions: 

e 

T Tx ~ 1 jy 
2 9 u 1 9 v 

(2.31) 
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22 
3 V 1 

1 
,3 u 
(5T 

3 v\ 
rÿ5 

1 3 u . 2 3 V 
T 5-ïï + T Tÿ 

12 
1 
2 

,3 u 
<3 y 

3 

Then, Equations (2.26) - (2.28) can be written so that the 
deviator stress components of the stress tensor are obtained from 
the deviator strain components of the strain tensor, i.e.. 

DS 11 
Dt 

2ye 11 

DS 

Dt 
12 

(2.32) 

DS 
22 

Dt 
2ye 22 

Equations (2.32 are applicable only in the elastic region of flow. 
In general a material which exhibits a linear variation of strain 
with stress is called linear elastic. However at the proportional 
limit the strain may increase more rapidly with increasing stress. 
In this region, the material deforms plastically. If the strain 
is allowed to increase with no increase in the stress the material 
is called perfectly plastic. If some variation in stress occurs 
the material is experiencing work hardening. 

A material when exposed to external loading can experience 
permanent deformation as stresses exceed certain characteristic 
limits of the material. A tacit assumption is made in elastic 
theory: the assumption that a scalar function f(Tij» e?j»w) called 

a yield function, exists. Arguments Tij' an<^ ^ correspond 

to the stress state, the plastic strain and a measure of the 
loading history respectively. 
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The equation 
f = 0 

represents a surface in stress space; for f < 0 the change in 
plastic deformation is zero while only when f=0 is plastic 
deformation allowed to occur. If the material properties are 
independent of strain rate, f >0 has no meaning. In the plastic 
region, in place of System (2.32), we invoke the Prandtl- 
Reuss formulation for plastic flow. 

In a mixed elastic plastic flow material System (2.32) 

applies whenever 

Z S^ = 2 (S?, 

1 <i, j < 3 

(2.33) 

with K2 a constant of the material. However, whenever the von 
Mises yield condition, based on the assumed form for the yield 
function f=f (ES^j), requires that 

(2.34) 2 2 
Esfj > 2ÏT 

be satisfied, then System (2.32) is replaced by a viscoelastic 
model system patented after a viscoelastic constitutive relation 

of the form 

DS 

(2.35) Dt 

DS 
= 2u(e22 - XS22) 

Dt 

Now the constant X is determined by requiring equality in the 
von Mises yield criterion (2.34) rather than setting it to 1/2 pv, 
V the kinematic viscosity of the material. Multiply each Equation 

(2.35) by S^ and sum: 

(2.36) 
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mgmm ■ * -• ■ •»» « 

Now use the fact that l 8?^ * 2K2 - conateint, 

can then be solved explicitly for ^ , 

Equation (2.36) 

2K 2 1 Sij 'ij (2.37) 

In cartesian coordinates (2.37) can be expressed as 

1 X = 

+ s 

2K 

22 

2 S11 [ux - 1/3 <uxx + v] 

fv - 1/3 (u + V n L y XX yy J 

+ S12 (uy + V + <S11 + S22) i1'3 (uxx + 

2K4 S11 uxx + S22Vyy + S12 

9 u 

''yy’]} 

(2.371) 

Here we have used the notation ^ = u . etc. 
o X X 

In this way both the elastic and plastic regions can be 
described by Equation (2.35). The prescriptior is 

Elastic 

2 2 
E sf j < 2IT 

2 2 
or E Sfj = 2k 

(2.38) 

X = 0 ES-jê.j _< 0 (unloading) 
J J 

r 

Plastic - 

= 2K 

(2.39) 

2K 2-ISijEij >0 

Equations (2.38) and (2.39) show that,- in the plastic 
region, if one begins on the material yield surface, and in 
the absence of unloading, then one remains on the yield surface. 

14 
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Because of the complicated boundary conditions together 
with the nonlincarities of Equations (2.38) and (2.39) this 
system must be solved numerically. If one uses a finite difference 
technique in the plastic region then the truncation errors 
inherent in any difference scheme will result in a set of 
deviatoric stresses which no longer lie on the yield surface. 
It is therefore necessary to change the finite difference 
schemes in the plastic region to insure that unloading does 
not occur due to truncation errors. Thus, * in the numerical 
method will not strictly be determined by Equation (2.39) but 
instead the derivation of this formula will be used to force the 
yield condition to be satisfied numerically. 

In order to describe the method used, which is second order 
accurate, we assume that a solution is known at time t and we wish 
to determine the solution at time t + At. The solution to 
Equation (2.40) with X =i) (i.e. the elastic case) will be denoted 

by S®j. Then, by using a backward Taylor series in time one has 

s. • (t) = S. . (t+ At) - At S. . (t+ At) 
ij 13 13 

or 
+ .Sij (t+ At) + 9( (A t)3) 

Si;.(t+ At) = Sij (t) + At Si;j (t+ At) 

- JAU g (t+A t) + 9( (Is t)3) 
Z 1J 

(2.40) 

Using the differential Equation (2.35) in Equation (2.40) yields 

Si;. (t+A t) = Sij (t) + 2Aty 

-X (t+ At ) S j j (t+A t) 
>]- 

(t+A t) 

2y 
( At) r* ■ L 13 

(t+At » 

X (t+ At ) S ¿ j ( t+ At) - X(t)S^(t) 

A t 
(2.41) 

6 
Or introducing the elastic deviatoric stresses, ., Equation (2.41) 
can be written as 
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Sij (t+ At) * S®j (t+ At) - 2 At V X (t+ At) Sij (t+ At) 

+ At y [x (t+ At)Sij (t+ At) - X (t)Si;j (t)J (2.42) 

Because all terms containing s¿j (*+ ût) are linear, we may solve 

directly for the predicted deviatoric stress at the advanced 
time level via 

Sij (t+ At) = 
a [Si 

j (t+ At) - At yX (t)Si:. (t) 3 (2.43) 

All terms on the right hand side of Equation (2.43) are known 
except for a. We determine a by requiring the s¿j(t+ At) to 

lie on the yield surface. As before we square Equation (2.43) 
and sum over i and j. Then 

2K .1. S? . (t+ At) = a 2 E [s? . (t+ At) 
i»j i»j L1'-» 

r - ( At)yX (t)Sij (t)| 

Solving for a we obtain 

(j STj (t+ At)- AtyX (t)Si^(t) '] (2.44) 

To sum up, the procedure for solving Equation (2.35) is given 
by the following three step algorithm: 

i) Determine s¿j (t+ At) by solving Equation (2.35), by 

any second order method, with X =0. 

ii) Test if E^S®j(t+ At)J < 2K2. If true, set 

Sij (t+ At) = (t+ At) otherwise determine a from Equation (2.44). 

iii) Finally solve for the deviatoric stresses at the 
advanced time level using 

Si;j (t+ At) = a[Sij(t+A t) - ( At)yX(t)Si:j (t) j (2.45) 

with 

2_X . 
X * (20 E Sit) e (t) 

mn mn 

1 < m < 3 
1 < n < 3 
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g) Final Forro of the Differential Equations 

It is now appropriate to describe the form of the differ¬ 
ential equations used for the solution interior to the domain. 
Here we write the first four differential equations in con¬ 
servation form choosing the entries of the vector w to be the 
quantities conserved across discontinuous transitions, i.e.. 

w 

P \ 

Pu 

Pv 

E 

Here E is the num of the specific internal and kinetic energy, 

the total energy, E = P (e + 1/2(u^ + v^)). 

The continuity equation is 

Pt + (Pu)x + (Pv)y = 0 
(2.46) 

The axial momentum equation is 

(pu)t + (pu - t11)x + (puv - S12)y = 0 (2.47) 

The radial momentum equation is 

(pv)t + (puv - S12)x + (pv - T 22 ) y = 0 (2.48) 

Conservation of energy requires that E satisfy 

Et + [(E - Tll)u - S12v]x + [E - t22)v - S12u]y = 0 
(2.49) 

17 



The streat strain relationships are not relationships that 
express a conservation principle. Hence they are rewritten 
here in their quasilinear component forms 

sU,t + “hl.* + vSU,y + ?u(-2u* + V 

+ si2 <vx-y 
(2.50) 

S12,t + uS12,x + vS12,y - “«“y + vx» 

SU"S22 
<Vvx> * 

S22,t + uS22,x + vS22,y + ¥ 
+ S,_ (u -V ) = 0 

12 y X 

In the next section we describe the 

0 (2.51) 

<-2Vy + ux) 

(2.52) 

difference scheme used. 

18 



Ill 

Finite Difference Equations 

The partial differential equations described in Section III-C 
are partially in conservation form (2.46 - 2.,49) and quasilinear 
form (2.50 - 2.52). This differential form is used to construct 
the difference scheme to be used at interior mesh points. This 
discussion concerns the difference scheme used, the two step 
method for the conservation form of the defining partial differ¬ 
ential equations. 

We wish to solve the set ot equations defined in the pre¬ 
vious section, Equations (2.46 - 2.52), on a set of mesh points 

= iAa , i = 0,1 

ßj = jAß , j = 0,1 

tn = nAt , n = 0,1 

I # • e o f 

(2.53) J 9 • • • § 

Here we have introduced the coordinate transformation a = a(x,y) 
and ß = ß(y). 

For convenience we introduce vector notation for the first 
four equations (2.46 - 2.49). Let f and g be four vectors defined 
by 

(2.54) 

T 
Then with w (p, pu, pv, E) we have 

(2.55) 
wt + fx + gy = 0 

In the a - ß plane (2.55) becomes, after application of the chair 
rule 

or 

(2.56) 

where £ where f = f + a g 
the tilda on f.^ 

For the remainder of the discussion we drop 

19 



(2.57) 

The numerical solution to (2.56) is called V; 

V(V8j'V - w(°i'Bj'tn) 

This approximate solution is written as a two step difference 
equation. Predicted values V are first obtained at the midpoints 

*ai+l/2'^j+1/2't+nût* of the mesh 3 first order difference 

approximation. These values are then used to obtain a second 
order accurate solution at regular mesh points. Letting = At/Aa 

and X2 = At/Aß the finite difference equation for the first step 
is 

V n 
vi+l/2,j+l/2 i/4 (vi+i,j+i+ + + v^j> (2-58> 

-n-1 n-1 rn-l 

- - ‘zu * ‘u.i - 

n-1 n-1 n-1 n-1, 
- 1/2X2(9i+lfj+1 “ ^i+l,j + gi,j+1 " 9i,j 

Introducing the notation f=f (V) the second step is defined 
by the finite difference equations 

„n _ ..n—1 i /t\ ^ ^ + 
Vi,j " Vi,j " 1/4Xl(fi+l,j fi-l,j fi+1/2,j+1/2 

" *i-l/2,j+1/2 + ?i+l/2,j-l/2 “ ?i-l/2,j-l/2) 

1/4x2(gi,j+l ■ 9irj“l gi+l/2,j+1/2 

" gi+l/2,j-1/2 + gi-l/2,j+1/2 " gi-l/2,j-1/2 

(2.59) 

) 

Stability of the above difference scheme is achieved if 
an artificial viscosity Q is added to the right hand side of 
Equation (2.59) 

20 



PPMPi... RWRII 

0 * K ixl [l“i+l,j - “i,jl <Vitl,J - Vi.j1 - l“i - ^1-11 (Vi, 

■ Vi-l,j3 + X2 [|Vi,j+l ■ ^i,jl " Vi,j) 

(vi.j * 
- V. (2.60) 

where u and v are equal to 5t and respectively. The time step ût 
is kept at approximately 2/3 of the maximum allowable CFL value, 
i.e.. At * .65 At—.* We compute the Courant-Friedrichs-Lewey time 
step by finding n. 

TÖ {«'B ♦ 1 O/Ax, (V + 6yC ) / Ay 

over all mesh points. The maximum time step is then «CÍL * 1/D"- 

Equations (2.50), (2.51) and (2.52) for the deviatoric stress 
components are solved in an analogous manner. Now let 
-T „ „ v _T 

(S11' S12' S22)' s 3 ( p,u,v,e,, S^2 * ®22^# 

4 ' 
- yUU 

- yv 

TyU / 

and g 

2 ■jyv 

- yu (2.61) 

- V / 

and define the matricies a and b as 

12 

Sll-S22 

\o -s 12 

0 

0 

0 

u 

0 

0 

0 (2.62) 

and 

b « 

-S 12 

Sll"S22 

12 
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Then introduce two transform matricies A and B given in terns of 
a and b, A = a + (a+ayb)/ßy and B-B. In vector notation the form 

used to generate the difference scheme, in terms of the above 

matrices, with * (f ♦ ay9)/Py just 

(2.63) 

If the terms with coefficients in Equation (2.63) when put into 
difference form are centered, the same two step algorithm (2.58) and 
(2.59) results for the stress deviators w. 

The above difference scheme, in order to be applied at all in¬ 
ferior points of the mesh (2.53) requires the definition of depen¬ 
dent variables at all lattice points of the finite difference mesh. 
Fo- interior points which do not have all nearest neighbors the 

following scheme is used. 

Th*» fnur nearest neiahbors are checked first. If any of these 

\ 
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IV. RESULTS 

In order to demonstrate the versatility of the algorithm, two 
problems were consideredn Each material in both problems is assumed 
to have an equation of state which is given by Tillotson: 

Compressed states: p*p 

Pc * (a + .E k-) Ep +A£ + b£*, p>pn,o< E< E 
T+l s 

E0n' 

where ç * n - 1 , n * p/p. 

Expanded States: p=p 

pe - aEp + 

-T<I . 1, .„(I - I)2 , p < c. 

bE(> +A5e n \ n 
» E > E ,+1 

V 

Intermediate States: 

(E ‘ Es^pe + (E¿ - E)pc 
P < Pn , Eb < E < E' US s 

The constants used in the above equation of state for the pre¬ 
sent calculation are given in the following table. 

23 





The GQcffiGicnt of viscosity K in Equation (2.60) was taken 
to be 0.0. The transformation 

D(z-mr) - = tan 
m O) 

where u = angle of attack measured from the x-axis, is used in the 
projectile. There is no ß transformation used in the projectile and 
no transformation in a and ß used in t'ie target. The constants for 
the transformations applied to each material domain are given in the 
accompanying table. 

TRANSFORMATION CONSTANTS 

90/25 
Tungsten az-1 65° 

RHA 90° 

Maraging-300 Az 65° 

The mesh (iAa» jAß), which was chosen such that 1< j <1, 
* is given in the following table for each of the domains. 

There were two problems considered for each of the two cases 
described below: 

Case 1: Silver Bullet, ui=650 and U =.0186-^2- 
target thickness = 0.9525 cm. (2.54 cm.)” usee. 

Case 2: Round nose sheathed, u=65° and U =.0234-^2- 
00 US6C 

target thickness = 0.9525 cm. (2.54 cm.) 

MESH CONSTANTS 

1 J io"ri9ht io~top j 0“bottom i0-left Az Ar 
cm cm 

90/25 15 35 12 34 2 3 .33 .14 
Tungsten (15) (35) (12) (34) (2) (3) (.275)(.98) 

RHA 17 140 15 139 2 
(14) (140) (12) (139) (2) 

10 .16 .58 
(7; (.16) (.58) 

Maraging- 36 15 
300 (40) (15) 

32 
(32) 

14 2 3 12 2.43 
<14> (2) (3) (.09)(3.18) 

Note: Case 2 data is represented by () in the above table. 



_. jpp.V 

Here an<^ ^0 rePresent respectively the initial a position 

of the material right justified on the mesh and the initial maximum 
height of the material in the ß direction. The initial starting 
value of 1q left justified is also shown and the minimum value of j/% 
is also shown. u 

The initial velocity components as used in Case 1: (-.05781, 
-.124); Case 2: (-.0647, -.1388). 

Figure 1 shows the configuration of projectile and target at the 
moment of impact for case 1. Figure 2 is a blow-up of the interaction 
region. After slightly more than 20u-sec. the projectile has essen¬ 
tially perforated the target; this is shown in Figure 3. The plastic 
flow regions are indicated by "P" at the mesh points which satisfy 
(2.39). A blow-up of this interaction region i. ".hown in Figure 4. 
Due to the thin target, projectile damage is prea tably small - 
essentially limited to a slight degree of blunt;- jn the upper pro¬ 
jectile surface at the ogive. The computation allowed to proceed 
until slightly greater than 25Psec. elapsed, ar shown in Figure 5. 
The back face of the target is moving out rapi ..y at this late stage 
but there is no further enhancement of damage ,o the projectile. 

For comparison, an identical computation was run with a target 
which was 2.54 cm. thick compared to the .95 cm. target described 
above. As would be expected, the damage imparted to the projectile 
indicates the beginning of a significant level of upper body distor¬ 
tion on the forward end of the projectile. Some binding is noted 
by observing deflection of the lower edge of the forward portion of 
the projectile. This is seen in Figure 6 with a blow-up of the inter¬ 
action region shown in Figure 7. 

For the second case the geometrical configuration is shown at the 
moment of impact in Figure 8. In Figure 9 we see the complete con¬ 
figuration after slightly more than 20usec. with a blow-up of the inter¬ 
action region in Figure 10. The plastic wave travel in the core of 
the projectile is a numerical artifice and is directly controllable 
by requiring that the ratio of mesh increments Ax/Ay be on the order 
of less chan 3 to 1. It was a difficult ratio to achieve in this 
calculation due to the fine resolution required in the sheath of the 
projectile. Future modifications to SMITE will allow greater flexi¬ 
bility in allocation of memory space so that such resolution require¬ 
ments will not be a future problem. 

To compare this calculation, in a similar manner to thet carried 
out in the first problem, a second computation in which the same 
materials were used, including precisely the same projectile, but a 
target of 2.54 cm. thickness, rather than a target thickness of 
.95 cm. which was used in the above problem. After slightly more 
than 20usec., shown in Figure 11, with a blow-up of the interaction 
region shown in Figure 12, we see rather severe distortions of the 
frontal region of the projectile. A large degree of downward bending 
is apparent with indications that the projectile core is starting to 
leave the forward edge of the top of the sheath. At this point in 
time the target is still holding up well,, To determine a better 
appraise! of the extent of projectile distortion, the computation 
would have to be carried out for at least another 20 usee. 
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APPENDIX 1 

Modifications to the input data deck for the SMITE Code for 
plane strain. 
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Input cards 2 and 3 have been changed. These cards should 
now read as follows: 

DESCRIPTION 

Maximum problem time in micro¬ 
seconds . 

Print output increment in micro¬ 
seconds . 

CARD COLS. TYPE NAME 

2 1-10 R TMAX 

11-20 R TPRIN 

21-30 R TPRPL 

31-40 R TPLOT 

41-50 R TSAVE 

51-60 R TCOMP 

Printer plot output increment 
in microseconds. 

Plot tape output increment in 
microseconds. 

Restart output increment in 
microseconds„ If any output 
increment is negative that out 
put is suppressed. 

Maximum computation time in 
seconds. 

3 1-10 R 

11-20 R 

21-30 R 

31-40 R 

RDIS Maximum fractional mesh allowed. 
If a point is closer to the 
boundary than this fraction of 
mesh size, interpolation will 
be used. 

PSCL Scale of printer plot in centi¬ 
meters per inch. 

XORG Value in centimeters corres¬ 
ponding to left side of printer 
plot. 

YORG Value in centimeters corres¬ 
ponding to bottom of printer 
plot. 

Preceding page Hank 

41 



APPENDIX 2 

Sample of input data deck for the two ^ases (thin target) 
discussed in this report. 

Preceding page blank 43 



INPUT for case 1 

S*u 
40,U 
0.5 

2 
2 

17 
O.VL-25 
0 . fell77 
•0.V523 
•0,9525 
Ü.0 

10.0 
5,0 

2.5 
-20,0 

a.» 
40,0 

27 
J.40 

5 
139 

15 
3.31. 
1,29*7 

5.57HÍU 
4^445 
2.87450 
1,9M773 
1.6^175 

,63014 
,02323 

.5‘ 164 
1.63571 
2.77366 
2.77386 

4. 3*136 
1‘>;3P136 
5.57800 

oh 
3.fli 
0.7''!, 

34 

27 1 5 
13 15 2 

«0.0 69,9 
0.01219 7.an 
10,0 --),9525 
90,0 0.1 
90.0 o.n 

2 3 4 6 
35 3 12 2 

37,,1 65,0 
0,)111 17.J4 

55,711,4 5,41687 
53,39862 3,?9U7 
50,79349 2,*930? 
49,31637 1,91331 
49 , i 10 '■* J 1,4B939 
40,97357 ,¿4724 
49,745*0 ,00385 
5u.2591.1 , *• 6136 
51. y.>8.21 ,<»4580 
54,60648 l,90«l4 
57,43039 
5?. 50 (9 2.47000 
8á,¿46 )5 
85,24445 5,64721 
55.711 '4 

5 » 13 17 
15 3 52 2 

3u,4 6K, 0 
0,,)192 «.JO 

1^,1* 7.46 30,46246 l9,086l4 
7 Í51*49 59,737/3 7,36738 
6,79209 56,11199 6,-^34 
5,97512 56.49843 
5,97512 56,^9dó3 5,84721 

3 7,05525 85,03725 3,)9,,75 
2,96884 57.90048 3,.44()4 
3,67961 59.56336 3,"6145 
*•,41494 61,213-44 4.ul)542 

I8;il76« 86,462*6 
1 

3 
3 

1--00,0 
0.0 
50,0 
9„,U 
50,0 

¿1 
1.0 
-, 05781 

14 
2 

1.0 

IS 
4 

f 0.0 
0.0 
-0.9525 

r.o 

5 5 
6-6 37.0 

-0 .x24 

2000.0 

2 46 
600 1 

0,0 

90.O 

10.0 

43 
1 99 99 
0,0 0.65 

-0,9525 10.0 

200 09 99 
0.3 0 , u 0,6^ 

55,07465 
52,7441« 
50 114780 
49,22851 
48,041)59 
49,2/655 
49,8/657 
50,33628 
52,56347 
55,3632? 

57,38605 

56,55826 

!». 06735 
3.62372 
2.10693 
1.83134 
1.32676 

.12987 
0.00000 

.09710 
1.10453 
2.18512 

3.09675 

5.64458 

54,71385 
52,0918? 
49,5040" 
49.14603 
48.89386 
49.45291 
5n,00000 
30.44125 
53.26661 
56.05785 

57.840E« 

56.09225 

4,71328 
3,25140 
2,04950 
1,73431 
1,11822 

,06242 
,00920 
,34207 

1,36784 
2,46665 

54.05517 
51.44172 
49.40920 
49,06965 
48.87041 
49,60600 
50.11734 
51.15080 
53.96761 
56.75036 

17,05425 85.83725 

5,74072 

22 27 3? 36 40 
14 13 7 13 200 

1.0 E-6 30.4 0.0 
-,05781 -0.124 

42 
1 

4" 
3 

44 
99 

45 
99 

0.0 

86,1-1126 
49,33014 
57,70749 

56,55828 
57,84084 
58,31736 
59.97715 
61,62454 

7.96774 
7.19061 
4.38692 

18.32136 
2.96684 
3.32090 
4.04496 
4.79556 

60.55525 
58.92331 
57.30376 

85.24685 
57.90046 
58.73347 
*0.39016 
62,03446 

7,77495 
6,99?i8 
6,18185 

56.04742 

46 47 

.65 

60.14610 
58.51727 
56.90081 

17,68830 85.54205 

3,49943 
4,23012 

17,14922 

59,14880 
60.80239 
•6.91446 

Preceding paga blank 
Reproduced from 
bes) available copy. 
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t * 
Input fo« case 2 

case- 2 
40,c 
O.f 

3 
?. 

450 

21 
140 

2 
35 

¢1 
14 

0.9525 
0.8077 
•U,952- 
•0,9525 
O.C 

1 
n 

2.74;s 
1.2967 

3 ;3-j23V 
1182752 
1.19133 

,67l31 
,2*700 

■),0*000 
1.36M73 
1.56157 
1,86966 
*,86966 

l4,92 7 A!> 
15,3596J 
15,71360 
:-1,00()60 
14,16901 
3,52677 
3.62^37 
3,7 7 • 2 7 
3,77127 
i 8 

4; 15 

10.0 
5,0 

21 
7 

t>O.U 
0,01219 
10,ú 

.0 vt 
vo.u 

I 0 

2.5 
•20,0 

1 » 
12 2 

89.9 
7.50 
--.,95(65 
0.0 
P.u 

4 6 
12 2 

65,0 
17.04 

2,5 
40,0 

5 3 
139 3 

UtH.'j 
0,0 
50,.) 
90,u 
50,0 

1.0 2030.0 

1 51 , 2 63 
2 4 700 l 
20.0 0,0 
•3.0 
-0.9525 90.0 

0.0 10.0 

23 
1 99 99 
3.0 0.65 

■0.9523 10.0 

34 33 33 
1 » F - 6 

.3647 
49,44053 
48 , ),/798 
48,68634 
48,91819 
49,37352 
*0,59977 
‘4,04339 
’ 3,1-6463 

230 

. .-111 
5u,9164i> 2,63.435 
48,72674 1,05346 
48,66052 1,052,14 
48,04134 ,954fl4 
49,/3349 .11-135 
»U.CH'.’u ,12839 
!»3,u5j47 1,41339 
53.. 4899 1.61738 
53.293.. 9 
53.29341 14;3V^9U *U.14906 
¿6.634^) 15,w4S7o 111,667/.1. 

iO, 67957 13,45428 #iij,f,o203 
00.5567 3 15, /92j6 80,50452 
9J.29i-3t 16, 59ß4 00,1951(, 
/9, 76953 16. 'fclSJ 79,3o2u 
5»,>2965 3,84541 r2,16557 
52.12914 3,56327 11,9956o 
51.>2155 
51,12155 3,40759 53,91645 

15 Z,. 27 35 43 
3 37 2 14 9 43 

39,7/2 65.3 1,0 E-O 
0.796 0,0192 6.00 -.8647 

19,33064 88,54684 20,57964 ?7,9o722 
87,33831 20,22857 67,21499 
91.92155 
91,72133 3,/3239 91,94213 
52,1291-4 3.59669 52,06787 
92.2296S 3,51741 92,31364 
/9,76934 14,14914 79,94754 
80.29)31 19,936(13 ii'1,37233 
«0,53673 15,63113 83.60034 
80,67957 15,26047 S'J,68735 
»0,63459 14,/98(15 83,5/758 
93,29347 1,/4380 63,13835 
53,0489) 1,90944 53,04126 
93,05167 1,826()5 53,00423 
53,06079 1/,/4287 88,37423 
88,066O6 18,09364 89,12646 

46 * ) 

2 
32.0 
0.1388 

2.2374o 
1.49o89 

.91894 

.44593 

.08732 
1.28527 
1.46()20 
1.67845 

1*1.64899 
J 9•15614 
1(..54471 
15.86632 
16.10953 

5.55657 
3,56931 
3.69532 

0.1 
2 99 
0.0 

99 
0.65 

43.95668 
48.65387 
48.72542 
49.00829 
49.53821 
33.08079 
33.03973 
51.09153 

30.47837 
So.68409 
30.63546 
80.44331 
00.08330 
32.50394 
52.11277 
31.96677 

2,01798 
1,33732 

,791/3 
,34592 
.02918 

1,32605 
1.50944 
1,74880 

14.79805 
15,26047 
15,63113 
15,93603 
16,14918 

3,31741 
3,59689 
3,73235 

43,81066 
48,64907 
48.77715 
49.11277 
49,73605 
53.06420 
3J.04126 
53.13835 

an,5/758 
8,-.68735 
8 0 . o J û 3 4 
»0.3/233 
70.94714 
52.31364 
52.36787 
51.94213 

2.7i3 

1^96423 
.->.77127 
3,77127 
3,62737 
3,5267/ 

16,10900 
16.00060 
15,71360 
15,35965 
14.92745 
1.86966 
1.56157 
1,36073 
1,28927 

17,87895 

7 300 
39.772 0,0 
0.1388 
20.36495 
14.71328 

09 99 
0.0 0.65 

87.50682 
75.38676 

20,10031 
8,37401 

.3.69332 
3.56931 
3.55957 

16.10968 
19.86632 
15.54471 
18.15614 
14.64899 
1.67845 
1.46020 
1.28527 

18.00731 
19.33664 

51.96677 
52.11277 
52,50594 
8Q.08330 
00.44331 
00.63540 
00.68409 
00.47837 
33.09153 
53.03973 
53.08079 
88.29082 
08.34684 

3,66027 
3,54941 

16,08180 
16,05904 
15,79206 
15,45428 
15,04970 
14,39290 

1,61738 
1,41339 

87,63022 
61.79215 

51.99566 
52.16557 
79.36211 
80.19518 
80,50452 
80.66203 
80.667/1 
80.14966 
53,06463 
53.04339 

18,14359 88.34266 

Reproduced from 
best available copy. 



APPENDIX 3 

Notes on Setting Up the Computational Mesh 

The mesh spacing in each coordinate direction is specified 
on input by giving a length and the indices of the first and last 
mesh points that would occupy that length. If the domain is ro¬ 
tated through the angle of attack, the first length should be the 
maximum cross-sectional area. The second length is always the 
initial length of the domain in the y coordinate direction (not 
the length along the axis). If possible, no part of a domain 
should contain less than four mesh lines, though less than four 
may not be harmful if it occurs in only a small portion of the 
material domain. An aspect ratio of one to one is desirable, 
though in no case should the aspect ratio be greater than four to 
one for accurate results. It should be remembered that the mesh 
for each domain is completely independent of the mesh for any 
other domain. Once the mesh sizes have been determined, this mesh 
is defined in the entire region set aside for a material and the 
material boundary is imbedded in the mesh region. Plots of the 
meshes generated for each of the materials in case 1 are given as 
examples of mesh generation. 
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APPENDIX 4 

Sununary of Computations 

Case 1 

Silver Bullet 

Case 2 

Projectile mass/ 
(per unit width) 

core 
sheath 

Impact Velocity 
at 65 degrees 

Y-component 
X-component 

Residual Velocity 

Y-component 
X-component 

Target damage 

Estimated hole size 

1600. gm/cm 
188.0 gm/cm 

-1240. meters/sec 
- 578.1 meters/sec 

-1236. 
- 576. 

5-6 cm diameter 
at 20 u-sec 

1100. gm/cm 
398. gm/cm 

-1388. meters/sec 
- 647. meters/sec 

-1385.2 
- 639.6 

5-6 cm diameter 
at 20y-sec 

Hole Shape 

Estimated Exit Angle 
of Penetrator 

Upper surface is a 
shallow sliced 
crater with an in¬ 
cluded angle of 
approximately 30° 
measured clockwise 

Upper surface moves 
away from core and 
therefore makes a 
steeper angle com¬ 
pared to case 1. 
Lower surface is 

from the target face, similar to case 1. 
The upper surface 
follows the ogive 
of the core fairly 
well. Lower surface 
is a gauge type cut 
of approximately 125° 
measured from the 
target face. 

At an increasing 
angle of attack 

At a decreasing 
angle of attack 

(>65°) (< 65°) 
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