BOLT BERANEK A N D NEWMAN INC

CONSULTING*DI?EID‘V’F’\\- R=TE S (BT A T RISE Al

BN MR Ty TRR T @S &R

MA023827

1y,

—— GO0 USS UNS Jug DEs wai Sy N L

t

~

BBN Report No. 3266 March 1976

THE FOREMAN: Providing the Program Execution Environment
for the National Software Works

Richard E. Schantz

Robert E. Millstein

Preliminary
March 31, 1976

This work was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and by Rome
Air Development Center. It was monitored by Rome Air
Development Center under Contract Number F306p2-76-C-0094
and by the Office of Naval Research under Contract Number

qﬁﬂ14-75-c-¢773.

& s
f |--\'.

Wy VR v S e

The Foreman: Providing the Program
Execution Environment for
the National Software Works

Richard E. Schantz
Bolt Beranek and Newman Inc.

Robert E. Millstein
Massachusetts Computer Associates Inc. s

Preliminary
March 31, 1976

i
Bolt Beranek and Newman Inc. Report No. 3266
Massachusetts Computer Associates Inc. Document No. CADD-7604-011" I

. This work was supported by the Advanced Research Projects ’
Agency of the Department of Defense and by Rome Air Development
[; Center. It was monitored by Rome Air Development Center under
contract number F30602-76-C-009M&and by the Office of Naval
Research under contract number NOO14-75-C-07T73.

Acknowledgement

The authors wish to thank Robert H. Thomas of BBN for help in t
developing this document.

e et e

Table of Contents

Section I - Introduction

Qverview

The Role of the Foreman

Aspects of the Foreman

Short Scenario of Beginning an NSW Session
Conventions Used in This Document

TSN P ST e
Ul =Wy —

Section II - Controlling the Execution of a Tool

Initiating an Instance of a Tool
Removing an Instance of a Tool
External Control of Execution
Erntry Vectors

Detailing the Functions
Voluntary Tool Termination

NSO AV AC RNV
a1 Ewh —

Section III - Status Probes and Resource Utilization Bounds
Section IV - NSW Runtime Environment

Section V - NSW File System

5.1 Two File Spaces

5.2 Using Local Workspace

5.3 Version Numbers

5.4 Maintaining an LND

5.5 File Names in NSW

5.6 File Semaphores

5.7 File Manipulation Primitives

5.8 Specification of the File System Primitives
5.9 Other File Related Primitives

5.10 Implementation of the File Primitives

5.11 Extension of the File Name Syntax -

Section VI - Tool tc Front End Communication
Section VII - Tool to Tool Invocation and Communication

7.1 Present State
7.2 Emerging Tool-Tool Concepts

Section VIII - Tool Zncapsulation f

Section IX - Batch Tools

Section X - Recovering from Errors and Malfuactions
(this section deferred for now)

ity

=

PRSI,

Section XI - The Foreman and Debugging NSW Tools
(this section deferred for now)

i Appendix 1 - Functional Summary and Transmission Values

; Appendix 2 - Foreman Induced M3G Additions

'

s B T N p—— 1 -

Foreman Specification March 31, 1976

The Foreman: Providing the Program Execution
Environment for the National Software Works

I. Introduction

1.% Overview

The Natfonal Software Works (NSW) is a facility resident on
the ARPANET, principally intended to support the construction of
computer programs and to provide software tools (e.g., editors,
compilers, debuggers, etc.) which can be used in the construction
activity. A prominent factor in the conception of NSW is the
expectation that the hardware, software, and human resources
needed for the execution of a task may be geographically and
administratively dispersed, although connected tnrough the
network. As such, the NSW is a distributed, multi-computer
system.

The major components of the NSW are the ARPANET, a
coll . bLion of tool-bearing hosts, one or more front-end (FE)
systems through which the users access the NSW, and an
acce:ss-granting, resource-allocating central component called a
Works Manager (WM). A tool-bearing host (TBH) is a computer
system which houses software development tools made available to
users through the NSW, and which additionally may provide storage
for NSW user files. To become a TBH, a host must implement a set
of supervisory software modules. Included in this set are the
modules which handle the NSW communication needs (see MSG: The
Interprocess Communication Facility for the NSW, Bolt Beranek and
Newman Inc. Report No. 3237 and Massachusetts Computer Associates
Inc. Document No. CADD-7601-2611), the modules which handle NSW
file transfer requirements (see File Package: The File Handling
Facility for the NSW, Mass. Computer Associates Document No.
CADD-7602-2011), and the modules which provide the local host
functions for invoking and controlling NSW tools, as well as
providing a local host NSW tool execution environment. These
latter tool-oriented modules are collectively known as the
Foreman component of the NSW, and are the subjeci of this
document.

The Foreman specification is especially intended for those
persons responsible for implementing TBH Foremen. In many cases,
we are merely presenting approaches to problems which must be
faced. While we do require that most (if not all) of the
functionality we will specify be made available to the tools, the
form in which it is presented to the tool is a purely local
decision. The only 3trict requirement is that each Foreman must
implement the various functions which can be invoked externally
(see Appendix 1). The exact time and sequence for the Forcman
itself invoking functions in the other NSW components (e.g., WM)

=1 =

e P e e i e R L et b bl LM e g L il et 1ol i et b L st el bt St bbb R L) 2 b L i AL e b LA A

P O e —

Foreman Specification March 31, 1976

is discretionary. In most areas, this document also suggests
implementation strategies which we feel are worthwhile. However,
because of the discretionary nature of the Foreman/tool
interface, aspects of this interface mentioned in this document
should not be considered as final specification to the tool
builder. Each Foreman implementer is responsible for providing
the exact details of his tool interface through a host specific
tool builder's guide. Potential tool builder's should contact
NSW TBH personnel for the tool's implementation host before
beginning to integrate their tool(s) into the NSW.

1.2 The Role of the Foreman

The Foreman is the local-to-the-tool component of the NSW
system. Each instance of a tool has a Foreman which is
responsible for the smooth operation of the tool with the other
NSW components. In conjunction with the facilities supported by
the Works Manager (WM) component, and to a lesser extent the
Front End (FE) component, the Foreman provides the tool instance
with its NSW execution environment. Every tool instance runs
under the control of a Foreman. Components which do not run
under a Foreman are considered part of the implemertation of the
NSW structure itself.

Note carefully the distinction between the concept of a
"tool" and the concept of a "tcol instance". A tool refers to a
computer program, while a tool instance corresponds to the
abstract notion of a process. A tool is a static concept in NSW,
while a tool instance is dynamic. The diffe¢rence is also
reflected in the nature of the information maintained by the NSW
about each. A tool has a static tool descriptor, maint=zined by
the WM, which describes information pertinent to each use of the
tool. Information pertaining to a tool instance is maintained in
a dynamic data base, partly within the WM and partly within the
Foreman. The dynamic entries referring to a tool instance are
maintained for the duration of the tool session only. In this
specification we shall often simply refer to "the tool" instead
of "the tool instance", in order to avoid the constant repetition
of the word instance. However, it should be clear from the
context whether we are referring to the static concept of a tool
as a program (hardly ever) or the dynamic concept of a tool
instance as the execution of that program (almost always).

The Foreman has two well defined parallel interfaces, both
of which are described in this specification. One interface is
between the Works Manager processes and the Foreman. This
interface is organized around the MSG message passing capability,
and involves both the WM instructing the Foreman about handling
the tool instance, and the Foreman requesting WM services on
behalf of its tool. The responses to these commands/requests are
obviously alsc part of the WM/Foreman message interface. The

2o

%,

o

ey
[e

poia

i

e

famrill

N
1
A
I
L
L
[

b Al arano s b UL A L e - PN L -y r L
|- ot i T BT e e T 1 I L1 L T e e et T T T R I T k(P W VTP gy AR P e e et -—_'.-.-L'lj

m e o s ki LN R
i ——
n
i

Foreman Specification March 31, 1976

% other well defined interface is between the Foreman and its tool
instance. The Foreman has a special relationship with the tool
it is monitoring. 1In addition to having the responsibility for
creating and subsequently removing the actual instance of the
tool, the Foreman maintains an operating-system-like interface to
the tool. It is through this interface that the tool can invoke

. the various functions provided by the NSW environment to augment
the host operating system environment. The tool/Foreman
interface can take any of a number of forms, the selection made

{ | by the implementer of the Foreman for a particular host.

Examples of the various types of tool/Foreman linkage include
subroutine call (as in MULTICS), operating system call (SVC in

‘ the IBM series, JSYS in TENEX), and short messages (ELF). A

host-specific tool implementer's guide will detail the exact

nature of the tool/Foreman linkage (for each system) as well as

i the exact nature of the NSW system calls available to tools on

' that host. In this document, we attempt to specify the functions

which the Foreman is expected to implement, help implement, or

¥

E i provide access to. Some implementation details are given. 1In
addition, we mention an optional Foreman function (encapsulation) i
which can greatly ease the task of bringing into the NSW selected [
r tools which already exist as local hust programs.

This document should be viewed as the first of a series of
specifications of functions to be performed by the Foreman. The
initial tools do not require sophisticated system support, nor
has there been adequate time to fully investigate important areas
such as error recovery. Because of this, and because of the [E 3
g phased implementation plan for the NSW, this document is vague in

some functional areas, and incomplete in others. (It is clearly H

noted where we intended to have functions incompletely specified. :
Other instances of this are oversights, and should be immediately

noted in any response to this specification.) Future revisions

of the Foreman specification will clarify and further define

these areas. In addition, as the NSW concept and the NSW system

evolve, extensions to the capabilities supported by the Foreman

can be expected. As a statement of intent, we feel that it is a

sound design strategy to provide tools with mechanisms for doing

(almost) all of the things a user at his terminal could do. The :
jnitial specification of the Foreman only partially reflects this i
goal. [

It is important to emphasize that the NSW project is not
involved in or based on writing new operating systems. Rather,
we are building the NSW by allocating subsets of the resources of
i | the participating machines, and using the existing operating
' system to help manipulate these resources (and at times transform
them into resources more appropriate to the NSW environment).

{ This approach is obvious upon examination of the abstract machine
under which tool instances are run. The tool environment is a
blend of the environment originally provided by the host
operating system, augmented in selected areas with facilities

o T bt & M il

z3a

R - ol oW
-

e

gk
gy et

e .
T A

L e e i s

Foreman Specification March 31, 1976

implemented by NSW components. Sometimes it will be necessary to
mold existing local host facilities into new specifications.

This is the case when we utilize anr existing local file system
capability to support access to files under the NSW system.

Other times the NSW facilities will be completely new to a host
environment, so that adopting NSW standards directly in the
operating system is a possibility. Such may be the case with an
MSG communication facility. Accordingly, the structure and
flexibility of the existing cperating system will greatly
influence the structure ot a Foreman component for any machine.
In specifying the role of the Foreman, we have tried to be as
independent as possible of the structure of any operating system
and avoid reliance on particular features of any system. We hope
an implementation is not only possible but reasonably efficient
on a wide variety of operating systems.

1.3 Aspects of the Foreman

There are five aspects of the functioning Foreman which are
of concern in this document., They are:

¥ providing for tool startup/control/termination

¥ providing the NSW runtime environment for tools written to
function in the NSW

¥ (optionally) providing for encapsulation of programs
written exclusively for the local host operating system by
defining mappings from existing local operating system
functions to NSW system functions

* providing for batch type tools

¥ providing mechanisms for debugging tools and recovering
from errors and malfunctions

Additionally, each tool must be prevented from interfering with
other tools and other processes running on the host operating
system. Toward this end, we envision a protection domain
surrounding the tool, and a temporary workspace for file
manipulation during a tool session. In some implementationc the
host operating system may provide support for these requirements
(e.g. separate work directories Lemporarily assigned fo the tool
for the duration of the tool session, and subsequently cleared
and used by other tools). Where the host operating system does
not provide such support, the Foremen themselves must assure tool
separation and maintain boundaries between workspaces.

W Ty

i e

S b AT R B

TR T

D s e L. e b

Foreman Specificatio March 31, 1976

1.4 Short Scenario of Beginning an NSW Session

At this point, we provide a scenario of the beginning of a
typical NSW session. It serves to illustrate the roles of the
various NSW components and sets a proper context for the
discussions to follow. The reader is assumed familiar with the
documents referred to above, and in addition the document Works
Manager Procedures, reproduced within Mass. Computer Associates
document CADD-7603-0411 (also available separately as MCA
document CADD-7603-0412).

In this scenario we assume that there exists an NSW process in
the (local to the user) Front End machine which is receptive to
an attention character on a terminal. We also assume that WM
command interpretation is done within this FE process. Our
scenario begins from the point where the user has a dedicated FE
MSG process assigned to handle his terminal port.

The FE process starts by prompting the user for his login
information. After accumulating the pertinent information, the FE
process sends the data to a Works Manager process using the
generic addressing facility of MSG. The WM receiving the login
message will verify the login parameters and note the full name
of the FE procers servicing this user. (The return address on
the message indicates the FE process name.) A specifically
addressed message from the WM process to the FE prlcess
communicates the success or failure of the user login.

If we assume a successful login, then, when the user wants to run
a tool, the FE gathers the name of the tool along with any other
pertinent information and sends the request generically to any
WM. The request is actually one in which the FE process is
asking the WM to establish a new instance of tiie tool on behalf
of the NSW user. The receiving WM verifies whether the user can
indeed run such a tool, and, if so, retrieves the tool descriptor
from an internal WM data base. Based on information accessible
to it, the WM formulates a message containing the tool
information and sends it generically to a Foreman process on the
host which has been selected (by the WM) to run the tnol
instance. This information includes the nature of the tool (e.g.
enczpsulated, uses MSG directly, etc.) and the MSG process name
of the FE process for this user. The Foreman selects a workspace
for the tool and establishes the tool instance in this workspace.
The Foreman then returns (to the WM which called it) the MSG name
of the too!l which was created. This is done using the specific
send MSG c-pability. The tool name may be different from the
Fereman MSG name in the case of non-encapsulated tools using MSG
facilities. The WM then replies to the original calling I'E
process with a specifically addressed message which indicates the
MSG addresses of the tool process and the Foreman process.

et e —<-«-,

Foreman Specification March 31, 1976

For the case where the tool and FE communicate via MSG messages,
our scenario is complete since both the FE and tool/Foreman have
each other's specific name and can send messages directly to each
other. For the case where the tool is encapsulated, or where the
tool requests to use a network Telnet connection to the FE, the
Foreman sends a message to the FE indicating that a direct
FE-Tool connection is needed. Using each other's specific names,
the FE and tool/Foreman use MSG primitives to establish a direct
communication path. As soon as the MSG connection requests
match, and the connections are established, data can flow from
the user to the tool and vice-versa.

1.5 Conventions Used in this Document

To avoid confusion arising from the ambiguous nature of the
names of the various functions implemented within and for the
Works Manager, the Foreman and the tool, we adopt a convention
within this document to help the reader understand which
component implements a given function. We are using a prefix of
F$ to indicate an externally callable function implemented within
the Foreman (e.g. F$BEGINTOOL), a prefix of W$ to indicate a
function within the Works Manager (e.g. W$DELIVER) and all
capitals with no $ prefix to indicate Foreman-implemented,
tool-callable primitives (e.g. DELETELOCAL). The F$ and W$
prefixes are only used as expository aides, and are not part of
the actual function name in either the Foreman or the WM. The
actual function name is the string remaining after stripping off
the F$ and W$, as appropriate. Interprocess request transmission
conventions are currently those specified by Jon Postel (SRI) in
his network message of 10 March, 1976. These requests utilize a
modified PCPB8 format. However, this format is subject to
further changes. The exact specification of the arguments to be
sent to a Foreman and returned from a Foreman are compiled in
Appendix 1 of this document.

QT —— Ty ——

Foreman Specification March 31, 1976

II. Controlling the Execution of a Tool

2.1 Initiating an Instance of a Tool

m@m}?&luf DG e T e)

The MSG facility itself is responsible for the allocation of
Foreman processes in response to demand for their use. Thus we
can begin our specification assuming the existence of the Foreman
as an MSG process, and control lying within the Foreman. After
initialization, a Foreman must be receptive to a F$BEGINTOOL
message frcm a Works Manager process. The F$BEGINTOOL message is
sent as a generic message addressed to a Foreman of the proper
variety (i.e. host type), and can be received via the
Receivegenceric capability supported by MSG. The Receivegeneric
by the Foreman indicates that it is ready to support a new
instance of some tool, on commnand from a Works Manager. The
F$BEGINTOOL message contains a host specific name of the tool to
be run. (The WM retrieves the host specific name for this tool
from a static tool descriptor it maintains for each tool.) On
the basis of this name, the Foreman is expected to be able to
invoke an instance of the tool, while maintaining control over
the running tool.

Prior to initiating the tool, the Foreman selects a
workspace in which to run the tool. It then initializes this
workspace, usually by clearing it of any remaining files. The
set of Foremen processes on a TBH are responsible for managing
the set of workspaces the TBH has for NSW tool support. The
organization and utilization of the workspaces are left
completely to the Foreman. However, the WM must be informed as
to which workspace a tool has been assigned, so that it can
initiate proper file movement into and ~ut of the tool workspace.
The host specific parameters describing the workspace (e.g. in
TENEX they are a directory name and (if necessary) a password)
are returned to the WM as results of the F$BEGINTOOL. 1If there
is currently no available workspace, then the WM request must be
rejected. The WM maintains lists of the TBH workspaces which are
running tools, and these play an important role in helping a
Foreman recover from system crashes without losing user files
left in the workspace.

The F$BEGINTOOL message includes flags indicating whether or
not to start execution of the tool and whether or not the tool
knows about the NSW (new tool/old tool). The message also
includes the name of the process on whose behalf the tool was
created (usually the FE representing the user), and the process
which serves as the FE to the user (if different from the above).
An option of the F$BEGINTOOL message is the inclusion of a list
of local to the tool file names which are to be directly
accessible to the tool. These files are non-NSW files to which
tiie tool should be allowed direct access without any intervention
from the Foreman.

iy b e

Foreman Specification March 31, 197¢

2.2 Removing an Instance of a Tool

Throughout the tool session, the Foreman must be receptive
to an F$ERDTOOL specifically addressed MSG message from any Works
Manager process. The message will contain a reason for ending
the tool session. In all cases, the Foreman will return to the
caller the cost incurred by the tool which has been run, after
the actual termination of the tool. The Foreman will terminate
itself after responding to the F$ENDTOOL request, and the
assoc.ation between the tool/Foreman and the NSW system will be
broken.

To help Foremen be receptive to the F$ENDTOOL request, the
WM will precede a F$ENDTOOL request with an MSG alarm of code=1.
Receipt of this alarm code will signal the Foreman of the
forthcoming F$ENDTOOL message. Once a Foreman has received an
alarm with code=z1, it is expected to immediately begzin processing
its incoming messages, discarding all except the F$ENDTOOL
request. Once a Foreman bezins processing a F$ENDTOOL message it
need not be receptive to any further messages or alarms. A
F$ENDTOOL message which was not preceeded by an alarm with code=1
should be processed nonetheless.

The accounting information returned in response to an
F$ENDTOOL is a list of accounting data items. The first entry in
the 1list is an integer which is the cost in cents of running the
tool for this session. The remaining items in the list are host
specific measures of various resources consumed by the tool.

Each T3H implementation registers with the NSW which resource
measurements it takes and will return to the WM.

(Note: at some future time, it may be advantageous on
certain systems to simply halt the tool instead of terminating
it, with the possibility of eventually re-initializing the tool
as a different instance of the same tool. If such a mode of
operatinn were possible, and if the WM kept track of the tools
assigned to each Foreman, then startup costs for tool invocation
might be reduced by selecting a Foreman with the appropriate tool
already in place. Since this may not be relevant to all hosts,
we recommend that part of the F$ENDTOOL message specify whether
or not to try to maintain the tool in the inactive state, and
that the reply to F$ENDTOOL correspondingly indicate whether or
not this was done.)

2.3 External Control of Execution

If possible, the Foreman should be able to handle
F$STARTTOOL and F$STOPTOOL messages. These are used to
externally control the progress of the tool through its
algorithm. F$STARTTOOL can be used to initially start the tool
in cases where F$BEGINTOOL did not specify immediate startup. A

e

o

[]

Foreman Specification March 31, 1976

minimal start/stop facility woull provide for suspending the
execution of the tool while maintaining its complete current
state. The tool would be subsequently continued from the peint
it was stopped, or i* would be aborted. If the tool can be
stopped, then it must at least be able to be started (continued)
again. The suspending and resuming of tools on certain hosts may
not be possible because the host operating system does not
support such behavior. In these cases, tool execution will
automatically begin with the F$BEGINTOOL message, and F$STARTTOOL
and F$STOPTOOL messages will be rejected.

A more extensive start/stop facility encompassing stopping
as well as starting through an entry vector is often desirable,
and we have made provision for this at the WM command language
level. The implementation of this extension is highly desirable
where it is possible. We specify the characteristics of the
richest facility. It is the responsibility of the Foreman
implementation to either reject requests for which it has no
mechanism, or to map the request into an alternative well
documented in the tool builders guide. The facility the WM
supports builds upon the (required of all implementations)
F$BEGINTOOL and F$ENDTOOL messages. These requests initially
crezte the tool instance and ultimately (forcefully) cause the
tool to immediately cease its existence. These reguests roughly
translate to the user saying to the WM "runtool" and "aborttool".
During the execution of a tool, the user can of course request
that the WM stop the tool. To do this the WM sends to the
appropriate Foreman a F$STOPTOOL mecssage, indicating the reason
for stopping. [Note that 211 messages originating in the WM and
destined for a Foreman of an existing tool are sent using the
Sendspecific MSG facility, and can be received using tte
Receivespecific MSG facility. The responses (if any) are sent
directly to the WM which made the request. Requests emanating
from the Foreman, however, are sent generically to any WM, with
the reply obtained as a message specifically addressed to the
appropriate Foreman.] During a period of tool inactivity due to
the effect of a F$STOPTOOL, the Foreman still must process MSG
messages concerning the tool. It must always be able to process
an F$ENDTOOL message, and may have to process any replies to
outstanding requests made to other NSW processes (e.g. a request
to the WM to retrieve a copy of an NSW file). However, any
results to be returned to the tool may have to be queued awaiting
the command to continue tool execution.

2.4 Entry Vectors

In a complete Foreman implementation, a stopped tool can be
started in a number of ways. We introduce the notlion of entry
vector to unify the start tool concepts. The WM recognizes
several standard entry points for its tools. These are an
initial entry point (cold start), a standard re-entry point (warm

-9-

T I LT T T T T T, N I T T D s R rrrem pm e e L e

13

|

"

j

b

|

R S e LR L

-

W,

Foreman Specification March 31, 1976

start), a termination entry point, and a continue from where
stopped entry point. (Other system wide entry points will be
defined as needed. It may also be possible for tools to
implement private entry points invocable via the WM command
language.) The meaning of all of the standard entry points is
obvious, except perhaps for termination. The intent of the
termination entry point is to allow a user to force control to be
passed to a final tool cleanup routine, which may also involve
saving some of the work of the session. Tools will normally
implement commands to do this without WM intervention. However,
circumstances may exist (e.g. runaway tool, depletion of
resources) where it is useful to force an orderly termination
while circumventing the normal tool dispatching. It is expected
that the termination sequence implemented by the tool will
complete reasonably quickly. If the tool has not signalled its
Foreman that tool processing is complete within some host
specified time frame, then the Foreman has the right and
obligation to forcibly abort the tool execution without further
notice.

When installing a tool in the NSW, the tool supplier
indicates which entry point functions are available in the tool.
This information is maintained by the WM in the interactive tool
descriptor, and is used to regulate the type of F$STARTTOOL
requests that are sent to the Foreman. In the WM tables the
various entry points are statically denoted by a small integer
(index). The standard entry points are denoted by the same index
for each tool. It is entirely the responsibility of the Foreman
and its host operating system to devise a method of converting
these indices into actual program entry points (e.g. program
counters) for executing the onroper function. A Foreman
implementation can impose coding standards for these purposes on
the NSW tools which want to support the entry point concept.

N.B. When using any form of start/stop facility for tool control,
it is the responsibility of the WM command language interpreter
to insure the correct sequencing of the start and stop requests.
Since in general MSG makes no assurances regarding the order of
message delivery, and since WM command language requests are sent
generically to any WM, it is most convenient to enforce
sequencing at the command language intcipreter. All this really
means is that to ensure correct behavior, individual tool start
and stop requests should not be allowed to be pending
simultaneously. A final note on tool control is also in order.
The concept of tools controling other tools, as contrasted to the
NSW user controling a tool through the WM command language, is
currently being defined. We envision the same set of Foreman
procedures to be used in tool-tool control. This is discussed
further in a subsequent section of this document. However,
detailed elaboration of these concepts is postponed to a later
date.

2=

PRI OOy &< U S Y A T e e
BRI < -

Foreman Specification March 31, 1976

2.5 Detailing the Functions

Foreman procedures for tool control: (called by any WM process)
The reply to each function invocation includes a "result"
variable, which indicates if the operation was successful, and if
not supplies a code indicating the reason.

F$BEGINTOOL (program-name, tool-type, entvec, FE-addr, cr-addr,
filename-list) -> result, gstart, workspace-descriptor,
tool-addr

A recuest of this type brings the tool instance to life.
Prograri-name is a character string naming the program which
forms the body of the tool. Tool-type is a variable
indicating the nature of the program as an NSW tool (values
defined below). Entvec indicates whether or not to start
execution of the tool, and if started, through which entry
point. FE-addr and cr-addr are MSG process addresses of the
front end process and the creating process respectively.
Filename-list is an optionally specified list of non-NSW local
files (in the local host syntax) to which the tool is allnwed
unrestricted access. Some Foreman implementations may not
care to protect the access to non-NSW local files. Tools
running under such a Foreman would not need a file access list
passed to the Foreman at tool initizlization time. Tools
which do not use non-NSW files would also not need a file list
recorded with the WM for the tool initialization procedure.
Qstart indicates whether or not the tool execution was begun.
A workspace-descriptor is returned to the WM to allow file
movement into the tool workspace. Tool-addr is the MSG
address of the tool, which is often the same address as the
Foreman (see Appendix 2).

F$STARTTOOL (entvec) -=> result

The entvec variable indicates how the tool is to be placed
back in the executing state: either to be continued from where
it was last stopped, or through a specified entry location.

F$STOPTOOL (entvec) -> result

When a WM invokes this function the Foreman stops the
execution of the tool and saves its state. We have provided
entvec as an argument as a convenlence in performing the dual
operation of first stopping execution, and then commencing
execution elsewhere through an entry point. Attempting to
start an already executing tool, or stopping an already
stopped tool will elicit an error condition.

F$ENDTOOL (reason, termtype, gmaintain) -> result,
accounting-1list, gqmaintained

o 1

—

o ———ny

©

T

Foreman Specification March 31, 1976

i Reason is a code indicating why the tool instance is being

é, removed. Termtype indicates the type of file processing

| required of the Foreman before completing the F$ENDTOOL. This
7i1l be further clarified in later parts of the document.
Qmaintain is a boolean indicating whether or not the Foreman
should attempt to maintain the tool image for use as another

i instance. Qmaintained is another boolean which the Foreman
uses to communicate to the WM whether or not the image has
been maintained. Accounting-list indicates the resource cost
and utilization for the tool session.

tool-type: value is an index
=1 => encapsulated tool
=2 -> tocl uses NSW calls, does not use MSG
=3 -> tool uses NSW calls, also use MSG facilities

entvec: value is either empty or an index
’ empty -> do not start tool (if possible)
=0 -> continue from point where stopped (illegal in
f F$BEGINTOOL)
{ =1 => cold start entry point
-> warm start re-entry point
-> termination routine entry point
-> reserved for expansion
-> reserved for expansion
-> tool specific entry points

-

nou uu
(200) N = UV

2.6 Voluntary Tool Termination

As mentioned above, the Foreman must provide its tool with a
primitive operation for indicating that the tool has completed
execution. The HALTME primitive is the means by which a tool

{ voluntarily relinquishes control for the final time. The Foreman
may yet have to save files for the tool (see subsequent sections
on the file system and encapsulation) before actually removing

_ the job from the NSW domain. Through the termtype parameter of

} HALTME, the tool can indicate the type of Foreman file processing
it expects. The current choices are:

‘ * termtype=1 => no Foreman file processing

*¥ termtype=2 -> Foreman asks user which files need saving and
saves them

¥ ¥ termtype=3 -> Foreman automatically saves latest copy of
i modified files

After all peripheral operations by the Foreman are complete, the
Foreman notifies the WM of the tool completion by calling the WM
W$TOOLHALT procedure. The associated parameters of the WM
request include the accounting data list describing the tools

o

[. [oe Paen @ feeep feeew feen B _BRE- Poe

| et}

| My

il

e S, e

i

L i B s L Rl B i e sl oo o oo L oo o MRl o o o B B T R B R e L e e e . W PP, Lo g

Foreman Specification March 21, 1976

resource utilization. The tool can be terminated (in the local
host sense) gany time after it issues the HALTME primitive. The
Foreman terminates itself (in the MSG sense) after receiving the
response from the WM to its W$TOOLHALT call. A positive response
indicates that the association between the tool/Foreman and the
NSW has been broken.
Tool primitive operation:

HALTME (termtype) => never returns to tool
WM procedure for HALTME support:

W$TOOLHALT (reason, accounting list) =-. result

=18

e s
e

artaie o an sl e | bl
ekl i b

Foreman Specification March 31, 1976

IIT. Status Probes and Resource Utilization Bounds

The Works Manager, as well as the NSW user through his FE
process, may at times wish to closely monitor a tool execution in
terms of resource utilization and progress through its algorithm.
Toward this end, we specify two functional aspects of a Foreman
implementation which can be used to achieve a degree of "tool
watching".

Each Foreman must implement an externally invocable function
(e.g. requested by a WM process) for probing the status of the
tool currently being executed. We have taken the approach of
allowing many types of probes. Invoking a status probe is
different from invoking almost all other Foreman functions in
that it is not done using an MSG message. Rather a status probe
takes the form of an MSG alarm signal. The code transmitted as
part of the alarm indicates the type of probe. In response to a
probe alarm, the Foreman is expected to gather the requisite
values and send them via an MSG message (which itself requires nc
reply) to the invoking process. Status probes are assigned
Foreman alarm codes with values between 10 and 20 (octal). Two
probe types are initially identified here, with others added as
their need arises. One initial probe (alarm code 10) queries the
current state of the tool as a program in execution. In response
to a state probe, the Foreman returns the tool's current external
NSW state (e.g. running, stopped, running at termination code,
etc.), the tool's current internal N3W state (e.g. executing,
waiting NSW primitive completion, etc.), and the tool's current
local operating system state (e.g. running, blocked for I/0,
dismissed, etc., and its program counter). The second initially
defined probe (alarm code 11) queries the current state of the
tool resource utilization for the session. It returns the
accounting list referred to earlier. This includes the cost of
running the tool so far, and other resource utilization measures
maintained by the host operating system.

Currently there are no immediate implementation plans
involving these probes other than as an indicator that the

host/Foreman/tool complex is still functioni At this point it
is unclear which processes should be allowe nvoke which
status probes, and we may have to specify yet undefined)
option for results to be prepared for a hum her than for

program processing. Additionally, more thought needs to be
applied toward determining a useful set of measures in each probe
class. Because of these uncertainties, and because the "still
working" function can be fulfilled bv responding with an
"unimplemented function" response, we postpone the exact
specification of the values to be returned in a status probe.

A Foreman should also support the enforcement of resource

utilization bounds on the tool it is running. These bounds would
specify an approximation to the maximum use of a particular

el

L
w—

L]

o
a;..i
-y
"]
&

e
Ty . 4d ke e wn L g e ey et B s b e el g e el B el ool e il e al s Lol i G o e L

March 31, 1976

Foreman Specification

resource or a measure of total resource consumption to which a
tool session is limited. Exceeding these bounds would force a
cessation of tool execution (i.e. placing the tool in a stopped
state) along with the Foreman immediately notifying the Works
Manager of the excessive resource utilization. The WM could then
apply more resources to the tool session, or cause the tool to
execute at its termination sequence, or abort the tool
altogether. The initial bounds are passed as part of the
F$BEGINTOOL request. We mean these resource bounds to be
approximate monitors, and we have no interest in requiring very
close scrutiny of the tool execution in order to shut off service
the instant the tool exceeds a bound. On tne other hand, we
would require that the tool be monitored as closely as is
reasonable to ensure that it does not consume an arbitrarily
large piece of the specified resources (e.g. cpu time).

The WM procedures to support these bounds and the strategies for
their use have not as yet been defined. The management tools in
the NSW will surely have an impact on the nature of the facility
which is actually used. Thus, as with the status probe and other
features yet to be discussed, care should be taken not to exclude
such behavior, but implementation is not required or yet
possible. Future documents will detail the specification of
these functions, and we solicit suggestions on their form and

use.

Foreman Function:
(invocable via an alarm with code in the range 10-20 octal)

F$STATUSPROBE (type) =-> status item list

B

Sl Tl

o o oo oo bl i b e i

e b et

Foreman Specification March 31, 1976

IV. NSW Runtime Environment

The NSW tool environment differs in a few key areas from the
environment provided by the host operating system. The NSW has
its own means for inter-component communication and for
dynamically creating NSW entities, and maintains its own file
system. These facilities are in addition to any similar
facilities which the host operating system may already provide,
and may be used simultaneously if there is no conflict with
providing NSW services. The Foreman and other NSW components
provide access to the NSW facilities through enhancements to the
set of primitive operations available to tools. There are
primitive operations for dealing with each of the areas
mentioned:

*¥ NSW file system
* NSW process communication
¥ NSW process creation

These are discussed individually. The common thread is that the
operations are provided in operating sycstem-1like fashion to
tools, with the exact means of invoking a function or obtaining
its result/status dependent on the host implementation. We are
concerned here with the semantics associated with the primitive
calls, and the WM-Foreman message exchanges used in implementing
these semantics. It is the Works Manager which actually supports
the substance of much of the NSW environment. It is the Foreman
which provides the local interface to the NSW facilities.

The functionality of each of the specified primitives must
be made available to all tools. However, the exact form of the
Foreman calls and returns, and the exact nature of the Foreman
tool interface is left to the discretion of the Foreman
implementer. Thus where it is deemed desirable, certain calls
may be subsumed by a parameterization of other calls, or caiis
may be coupled to perform multiple functions. These are local
optimization issues. We are concerned only that it be possible
for each tool to somehow perform all of the operations which we
feel to be important in the NSW context.

LJ e R e N e TIL e T T T T 1 L T T T T L T P T Ty = T r o P g A L U, Tt B e T T T T o Ty T Ly [e ey R

- JIRE O CAP WY VU PP S WP S 1 e Rt -
e L et A s M e
!) - e W -
N
2

Foreman Specification March 31, 1976

V. NSW File System

5.1 Two File Spaces

A tool running under the NSW sys*em can independently
manipulate items in two distinct file spaces. One file space is
the sharable NSW global file space managed by the Works Mcnager
and maintained independently of any tocols that manipulate the
files. The other space is the non-sharable, temporary workspace
(local file space) for the copies of the files in use by a toocl
during the current tool session. A file entered in the central
catalog must have a unique global name, and hence is able to be
referenced (though perhaps not accessed) by any tool. A file
which exists in the workspace for a tool can be referenced only
by the tool operating in that workspace, and the mere existence
of such a file may be unknown to other tools and even to the WM.
It may also be the case that the name of a file in the workspace
is not unique in the NSW file system. There is no conflict as
far as the WM is concerned since the workspace file is unknown
outside of the tool domain, and the tool itself is provided with
a means for resolving any local name conflicts. Explicit name
conflict resolution must occur whenever a file is to be entered
into the global NSW file space.

5.2 Using Local Workspace

There is a considerable cost associated with inserting a
file into the global filespace. The cost of synchronizing local
activity with the global directory includes name conflict
resolution, file copy (possibly network copy) and delay
associated with synchronizing the WM and Foreman. Insertion into
the local workspace is immediate. The same cost relationship
holds when retrieving files for use by the tool. Therefore, it
is often good strategy to build tools which utilize the workspace
for storing and retrieving as much as possible, often waiting
either until it is explicitly desired to synchronize the file use
with other tools or until the end of the tool session before
delivering selected files. Delivering files to the global file
space at the end of a tool session means that only files which
actually need to be permanently saved invoke the large system
overhead, while files which do not require permanent name status
(e.g. files which are subsequently deleted during the course of a
tool session, or files which are only intermediate versions of a
particular file) incur a minimal overhead. Savings can also be
achieved by delivering multiple files in a single WM request, an
obvious optimization if files are batched locally.

217

R <% L -~ - . __.‘_" ...l —

Foreman Specification March 31, 1976

5.3 Version Numbers

Another aspect of the local workspace is the automatic use
of version numbers to distinguish files of the same name. 1In
essence, version numbering adds another field to "ecad" Filse
names. The Foreman knows about the use of this part of the name
field and supports certain default options for it. A version
number is a small integer which gets bumped automatically when
creating a file with an already zxisting (local name space) name
and a version number is not otherwise specified. The use of
version numbers is not part of the global NSW file space.
Therefore the user must disambiguate name conflicts when files
are moved from local space to NSW global space. In addition to
providing automatic local disambiguation through version
numbering, the Foreman must allow a tool to specify version
numbers when referencing files in local space, as well as provide
reasonable defaults for obtaining latest local copy and creating
a newest copy in the absence of specified version numbers., If
local files are cached for delivery (highly recommended) the
Foreman should provide a means for the user to select from among
the "new" NSW files only the ones he actually wants preserved.
Suitable defaults are required in the absence of this information
(e.g. the highest version number of each different file name is
delivered at the end of the tool session).

5.4 Maintaining an LND

In the course of implementing the local workspace concept,
the Foreman is required to maintain a local name dictionary (LND)
for the tool it is running. The LND is used to specify the
relationship between the NSW file name and the name of the file
(in local operating system terms) which represents the local copy
of that NSW file. Other information about the files which are
created and maintained during a tool session is also appropriate
for the LND. This includes information about version numbers,
indications of whether a file has been modified since the copy
was obtained (and therefore may need to be delivered), and short
abbreviated strings which the NSW user or tool uses to refer to
the NSW file. Some of the primitive operations provided to the
tool are expressly for the purpose of manipulating the contents
of the LND, and hence indirectly manipulate the local workspace.
It is imperative that the LND for each tool instance be kept in a
"crash-proof" manner (or as near to this as is reasonable and
possible), so as to make feasible a recovery procedure in the
event of a host system crash. Maintaining the LND in a carefully
maintained and identifiable file on the local file system is one
technique for achieving this. After a system crash which is not
so catastrophic as to destrcy the file system also, it would be
possible to run a scavenger program in the tool workspace to
retrieve the appropriate LND and save some of the results of the
tool session. When the host again becomes avallable, it may also

BB

-

Foreman Specification March 31, 1976

be possible to re-start (or continue) the use of the tool in the
same workspace and working with the saved LND. These issues are
further discussed later in this document. In any event, the
Foreman should attempt to insure that the effect of the host
system crash is no worse for the NSW tool user than for the
direct (non-NSW) users of that system.

5.5 File Names in NSW

The general syntax a.. semantics associated with file names
in the NSW are described ¢!sewhere. Here we are concerned with
the impact of the Foreman and local workspace concepts on the use
of NSW file names. The impact is two-foid: first in the
conventions used by tools in providing names as parameters for
file system operations, and second as extensions to the name
syntax to provide for the maripulation of files in the local
workspace.

To discuss file names as parameters to file system
operations we must first describe certain aspects of the central
NSW filing system as implemented via Works Manager procedures.
Generally, the WM file system procedure for retrieving a copy of
a file requires only a partial name (filespec) to specify the NSW
file for the operation. Specifically, only enough of the name
need be specified to disambiguate it. Thus we have the concept
of files being retrieved (and saved) using abbreviated names.
For example, WALDO.AUTHOR.TEXT might be addressed simply as
WALDO. Additionally, when a file name provided to the WM is
ambiguous (for retrieval) or already exists (for delivery), the
WM often negotiates directly with the user to clear up any
uncertainties. This is done only when requested by the tool.
Because of these features, most calls involving file names return
values which indicate the full NSW name of the file which was
actually operated on, as well as any change in the filespec for
the file as determined from the interaction with the user. (If
the user dialog results in a new filespec, the user will
presumably use this new name in future references to the file,)
It is a Foreman responsibility to keep an up to date LND
reflecting the latest information about NSW file names, as well
as to make these names available to the tools which may be
unaware of the change or clarification from the user. The names
can be provided to the tools either by returning their values
directly as part of the tool file operation, or (recommended) by
providing functions by which tools can retrieve the names when
they are needed. Since the names are kept in the LND anyway,
such an operation is rather simple.

To insure that a tool can achieve a maximum utility out of
the separation of global and local file spaces and the properties
of both, the file manipulation primitives each imply an explicit
domain (i.e. global or local space). This allows the tool to

e

e

Foreman Specification March 31, 1976

; appropriate to its particular purpose. Primitives dealing with
| { workspace files also provide for the explicit selection of a
particular version of a file, to enable a tool to override any

5 default assumptions. Supporting a reasonable set of default

r parameters is encouraged, provided the defaults can be overriden
g where appropriate.

!
E directly contrcl the spaces individually in the manner most
%

5.6 File Semaphores

Associated with each file in the NSW (global) file space is
a semaphore. This semaphore can be set by a tool on behalf of a
user (who intends and is able to modify the file) in order to
warn other potential users that the file may be undergoing
change. In general, this semaphote serves as a lcose lock- the
n NSW system will only warn other users, not restrict their access.
3 Under some circumstances, however, users will be prevented from
| accessing a file with the semaphore set. Note that the general
looseness of the lock does not cause a multiple writers problem.
, NSW files are not directly modified by tools. Only local
‘ workspace copies of NSW files are directly modified. The NSW
file is not modified until it is explicitly replaced. Thus a
user can obtain an internally consistent copy of an NSW file with
1 semaphore set, since it is only a workspace copy of that NSW file
which is actually undergoing modification. The user is warned by
the set semaphore that the modification is taking place (by some
other user), and that at some time in thre future, the NSW file
may be replaced by an altered, updated versicn.

tools which

Tools may be divided into two classes:

explicitly use semaphores
class go tools which note
| action and which are then

and tools which do not. In the first
when a user performs a file modifying
willing to request the setting of a

¢class may request that a semaphore be

semaphore. Tools of this
set when a copy is obtained of an NSW file. If this request is
made, then the Works Manager presumes that the tcol does not want
access unless the semaphore can be set. If it is already set (by
some other user) then the access request is blocked. In all
other cases of copy access, the requester of a file is merely

{ informed that the semaphore is set (and by whom- project and

§ node-name). Delete access is always blocked by a set semaphore.

Whenever a tool of the first class (explicit semaphore
users) requests a file, it may also request the setting of the
semaphore. As noted above, inability to set a c<ecraphore blocks
the access request. Subsequently, a tool of this class may
request the setting of the semaphore for a previously obtained
file. The semaphore may be read or unset at any time, either by
the tool or directly (via a WM command) by tlie user. If the
semaphore has been explicitly requested, then it may remain set
after the end of the use of the tool.

LP0a

:
:
]
E
:
f
l
:
E

T T T TR R R} T N . B B T e T SR

Py

Lo bat A el B et b b o oe

P g

g < oot : : e —

Foreman Specification March 31, 1976

Whenever a tool of the second class (non-semaphore user)
requests a file, the WM automatically tries to set the semaphore.
Failure to do so does not block the access; the user is merely
warned that the semaphore is already set. Again, the semaphore
may be read or unset at any time. The semaphore is automatically
unset when use of the tool is endad.

In all cases, a semaphore is unset whenever an NSW file is
replaced (or, obviously, deleted). Tie tool primitives to be
implemented for interfacing to the semaphore procedures of the WM
are listerd below. See the Works Manager Procedures document for
details of the implementation within the WM.

SETSEMAPHORE (filespec, ghelp) => result, NSW filename
UNSETSEMAPHCRE (filespec, qhelp) -> result, NSW filename
READSEMAPHORE (filespec, ghelp) =-> result, NSW filename

5.7 File Manipulation Primitives

A tool is provided with distirnct sets of primitive
operations to individually manipulate the NSW global filespace
and the local workspace. An additlional set of operations is
provided for moving file coples between the two spaces. 1In this
section, we introduce the major file manipulati-:n primitives in
each of the three sets.

A tool is provided with primitives for deleting, renaming
and copying files within the global NSW namespace. The WM
implements procedures which actually perform the DELETEGLOBAL,
RENAMEGLOBAL and COPYGLOBAL operations within the global space,
so these primitives ares merely a packaging .operation for calls on
those procedures.

Two tool primitives (GET and PUT) are provided which are
normally used to relate the files spaces in an automatic fashion.
These provide for obtaining a local workspace copy of a global
space NSW file (GET), and for depositing a local workspace file
as a global space NSW file (PUT).

To support local workspace file access, the Foreman provides
primitives for deleting, renaming and copying workspace files,
and OPEN and CLOSE primitive operations. DELETELOCAL,
RENAMELOCAL, and COPYLOCAL are all implemented totally within the
Foreman, and merely result in changes to the LND. The OPEN
primitive i3 used, with appropriate parameters, to gain access to
a local workspace file, or to create a new workspace file in
cases where one does not already exist. The CLOSE primitive 1is
used to signal the Foreman that the file access is complete, and
that the Foreman should assume responsibility for that versicn of
the file. It is the intent that OFEN should prepare a local
workspace file for direct access and modification by the tool,

ST

e Ty

— P Lt e

Foreman Specification March 31, 1976

and generally to return to the tool a handle on the file for such
access. The type of handle, as well as the types of file data
manipulations which are permitted, are local host operating
system dependent, based on the file system which underlies the
workspace implementation. One aspect of the CLOSE primitive is
the invalidation of such a handle so that the Foreman can
maintain a consistent copy of the file (via the LND) for possible
introduction into the global file catalog. After executing a
CLOSE operation on a file, the file data is not accessible to the
tool unless it executes another OPEN.

As a general scenario, a tool GETs a local work-nace copy of
the global space NSW file it wishes to access. The workspace
OPEN provides for direct access to the file data. The file
actually accessed is always a local workspace file. It may be a
copy of a global space file, or it may be a newly created,
currently empty local workspace file, or it may be a previously
referenced local workspace file which was originally one of the
above. We assume that the local host system provides the actual
data manipulation primitives for local workspace files. The tool
ultimately CLOSEs the file and may subsequently repeat the
OPEN-CLOSE sequence some number of times during the tool session.
These operations affect only local workspace file images, and new
versions of the original file copy may be created. Ultimately
the tool decides that some vercion(s) of the workspace file
shonld be placed into the global catalog, and it instructs the
Foreman to do so using the PUI operation. Although these
operations give the tool complete control over all phases of its
file system interactions, Foreman implementations can and perhaps
should often provide simplified means for performing common file
functions. As examples, we could consider a Foreman whi:ch
provides a GET which has the option of automatically opening the
retrieved copy of the file, or an OPEN which searches the local
space and if unsuccessful tries to GET a copy of the file, or
automatic PUTting of the highest new version of each different
workspace file upon tool termination. Any such local options
will be clearly noted in the host specific tool builders guide.

5.8 Specification of the File System Primitives

In specifying the parameters of the main file manipulation
primitives, there are many common arguments. Some are described
here as a general introduction to the primitive descriptions.

NSW~filename: The NSW-filename is the full identification of a
file in the NSW file system. This is generally a rather long
string of text. However, a user will never have to type in a
full filename. Instead, he will use either a "filespec" or an
"entry-name" (defined below) depending on the intended use of
the file. A full NSW-~-filename consists of two parts: the name
part and the attribute part, separated by a slash (/). The

LDB

._ﬁ

|
|
|
|
|

Foreman Specification March 31, 1976

name part is a sequence of name components, separated by
periods (.). The attribute part is a list of attributes
separated by cemi-colons (;). (For a more complete
description of NSW-filename and attributes, see the document
Works Manager Procedures.)

filespec: This is basically the supplied identifier for an NSW

filename. It is an abbreviated form of an NSW-filename, used
in contexts where the name of an existing file is required. A
filespec need contain only enough parts of the NSW-filename to
unambiguously denote the file. Unless changed by the tool, a
workspace file copy and all its derivative versions will be
referred to for the duration of the tool session by the
filespec. A filespec may also contain file attributes as part
of the name. (For a more complete description of filespec,
see the document Works Manager Procedures.)

entry-name: An entry-name is an abbreviated form of an

NSW-filename used in contexts where a new filename is to be
created. As described in Works Manager Procedures, the
contents of the user's enter scope is prefixed to the
entry-name by the WM when a file is delivered. Aside from
this abbreviation, however, the user (or tool) must specify
the entire name component of the file. (For a more complete
description of entry-name, see the document Works Manager
Procedures.)

version #: When the local workspace is searched, the version

number parameter guides the selection of a particular instance
of the files associated with the filespec. Version number is
either null (default) or is a decimal integer in the range 1
to 32. Special indicators exist for referencing the highest
version, one more than the current highest version, and the
lowest version of a filespec. The default value of version
number is different for the various primitives and is given
along with each primitive description. In general though,
defaulted version numbers use the highest version for file
access and creates a new highest version for file deposit.
When searching the global space, any version number
information is ignored.

ghelp: This argument has three possible values and conveys to the

WM how the tool would like filename conflicts handled. It is
used in conjunction with the various file system primitives.
The possible values and their meanings are:

¥ ghelp=0 ~> allow the user to supply help, through a help
call on his FE process

¥ ghelp=1 ->allow the tool tc provide help through a help call
back to the tool

Foreman Specification March 31, 1976

i * ghelp=¢ -> do not provide any help but instead report a
(failure on filename conflict, indicating this as the reason

The ghelp parameter applies only to calls involving the WM and
the global NSW file space. Primitives dealing with workspace
files need not support these help notions. Version number
defaulting provides a form of automatic disambiguation for
local space files. The Foreman must not allow the existence
of different workspace files named with the same filespec
(although different versions of the same file are obviously
permitted). The WM interactive tool descriptor provides for a
static default of the qhelp parameter, if the tool builder so
desires. For these tools, the value of ghelp is obtained
(each time) from the WM tables, regardless of the value passed
by the Foreman. This is especially useful for encapsulated
tools.

greplace: This argument is a boolean, and it indicates whether or
not a file being placed in the global space should force
replacement of an existing file of the same NSW name.

‘ Qreplace with value true means that such replacement should be
automatic, with the old file no longer accessible. Qreplace
with value false means that replacement is not automatic and

' that the WM should revert to the ghelp variable to determine
how to deal with the conflict.

success/failure code: An integer value representing the
success/failure code for the operation is always returned as a
result of each primitive. Each individual primitive has
associated with it a set of interpretations of these integers.
This code is always returned as a primitive result, but it
will not be explicitly shown as a return value in the
following primitive descriptions.

The description following each primitive operation reflects
the nature of the operation as seen by the tool. 1In this section
we limit ourselves to a description of the tool primitive (i.e.
what does the primitive do?), leaving implementation
considerations for the next section.

The tool has unrestricted access to all of the files within
its workspace. Once a copy of a global space file has been
obtained, all references to the local copy are permitted. The
global space, however, is tightly controlled, based on the
capabilities of the user and the tool he is using. Each
operation involving a global NSW file undergoes strict access
checking by the WM before it can be accepted. This is not of
concern to the Foreman implementation, since the WM provides all
of the access checks. The types of checks are mentioned here
only to completely describe the primitives that the tool uses.
The WM file system and its access controls are described in the
Works Manager Procedures document.

BT ey T T in o
ol >

)

- .

2L

) e R T e i Tl - F i L AR e o e b naaiihl e A

e

i
Foreman Specification March 31, 1976

g 5.8.1 Global NSW Filespace Primitives

K 1. DELETEGLOBAL (filespec, qhelp) -> NSW-filename

This is the primitive a tool uses to delete an existing file

from the global NSW file space. Global space deletion cannot

take place until the WM verifies that filespec designates a | g
unique file to which the user has delete access. This access ;
is blocked by a set semaphore. Assistance is obtained as

indicated by ghelp. Once a file has been deleted, it will no

longer be accessible for GET, COPYGLOBAL, RENAMEGLOBAL, etc. %
The actual full NSW filename of the deleted file is returned F
to the tool after a successful DELETEGLOBAL operation. i

2. RENAMEGLOBAL (filespec, entry-name, ghelp, qreplace) =>
src-NSW-filename, dst-NSW-filename

A tool uses this primitive to change the name of an existing
global space NSW file. It renames one global space file to be
another global space file. The WM verifies that filespec |
designates a unique file to which the user has delete access.
Enter access is also required for generating the new file
name. The new file acquires any tool supplied attributes of
the old file. A set file semaphore blocks a RENAME operation.
Qhelp and qreplace are used according to their definition.
1 Both source and destination NSW filenames are returned to
inform the tool of the operation which actually took place.

3. COPYGLOBAL (filespec, entry-name, qhelp, qreplace) =->
src=-NSW-filename, dst-NSW-filename

A tool uses this primitive to create a new global NSW file
which is a copy »f an existing global space NSW file. It is
f similar to RENAMEGLOBAL wi . the exception that on completion
both the source and destination files exist. For global
space copy, enter access is required as well as delete access
if copying to an already existing file name. Qreplace is a
] boolean which when true causes file replacement to be the
default on collision of file names. Qreplace with value false !
: means that either help must be obtained or the operation must
L fail. Both the source and destination full NSW-filenames
actually used to complete the COPYGLOBAL are returned for the
information of the tool.

o

sy

5.8.2 Primitives for File Movement Between Spaces

4. GET (filespec, input-attribute-code, gset, ghelp) -> i
NSW-filename, new-filespec (only if changed), version #

1
O TP g T T T P LRI TR ¥ P et WL TU By T o re— S ek o ol .J

<25+

1

 § Foreman Specification March 31, 1976 o
i -
A tool uses this primitive to cause a copy of the glcbal space
file denoted by filespec and having the attributes specified 1
by input-attribute-code to be moved into the tool workspace.)

This working copy can then be manipulated by the tool using
workspace file access primitives. When GETting a copy of a
file obtained from the central catalog. the WM verifies that
the user has copy access to the file, and that the file has]
the input-attributes specified by the tool. If these . N
conditions are met, the WM initiates the proper actions to .
have a copy of the file moved into the tool workspace. This E
file movement may involve a network file transfer. When
calling for a file transfer, the WM also insures that any file
conversions which are necessary and possible are indeed il
performed. File conversions are based on the current state of

the file and the intended use of the file by the tool® see The

File Package document). Qset indicates whether or not the

1 tool desires to set the semaphore associated with the original it
copy of the file. Note that in the event that the tool does
not choose to utilize semaphores (this is indicated in its
static tool descriptor) then the WM may automatically set the 9 3
semaphore regardless of the value of gset. Qhelp indicates

how the tool wishes to handle name ambiguity. The full

NSW-filename of the file actually copied into the workspace is

returned, as is any new filespec for this file (possibly

obtained via user help). The version number of the workspace
copy is also returned for the information of the tool.
GETting a copy of a file for which the workspace already has “nth

the matching filespec and NSW-filename causes a new highest
version to be created. GETting a copy of a file for which the
workspacz already has a matching filespec with a different £.L
NSW-filename will cause an error return to the tool.

5. PUT (filespec, version #, entry-name,

output-attribute-code, qreplace, qhelp) -> NSW-filename b
1 A tool uses this primitive to place a copy of a workspace file St
into the global NSW catalog. The file is identified by
. filespec and version number. Entry-name is the full 1
55 NSW-filename (less any defaulted Entry scope) the tool wishes
il the file to have. If not specified, entry-name defaults to

. the name part of the full NS%-filename contained in the LND
: entry for the filespec (this is usually the same name as the
one returned from the GET operation). If the LND has no

; NSW-filename and entry-name is not specified, then the Foreman
& returns failure to the tool. The WM requires that the user

ﬁ have enter access in order to deliver new files into the

% global space. The output-attribute-code is a tool dependent

code denoting an attribute which should be associated with the
file. The WM will convert these codes to textual attributes
which become part of the full NSW-filename. Qhelp guides the
WM in seeking help with filename conflicts, and qreplace

s

T L A T T — N I - pa— o o '
- - T T ¥ T oy T I T T T T W A Sy (T T W S e e o o

e, i L e e e 4 |
e,

March 31, 1976

Foreman Specification

indicates whether the tool desires that the current file

[replace any file which may already exist with the same name.

(The full NSW-filename of the file as it is put into the global
catalog is returned to the tool. A copy of the file also

remains 1n the workspace, and can be referenced again using

any workspace file manipulation primitive.

5.8.3 Primitives for Workspace File Manipulation

6. OPEN (filespec, version #, new-file-flag, %
old-file-only-flag, type-of-access) -> file-handle ‘ﬁ

[‘ The tool uses the OPEN primitive when it wants to actively I
access file data in a workspace NSW file, or to create a new

‘ workspace NSW file. A successful OPEN returns a handle for

[the referenced file. The handle is intended to be used when 3
subsequent manipulations of the file data are requested. The |

[nature of the handle, as well as the primitive operations

available for the actual data manipulation are host dependent,

based or the existing host file system, and are beyond the !

scope of this document. The handle is necessary since tools

use NSW syntax for dealing with NSW domain files, and for the

= most part remain ignorant of the intermediate representation

of the file in the local host file syntax. However, a Foreman

il implementation is not forbidden from using the local host

syntax for the file as the handle returned from the OPEN,

although this is not recommended. The file handle is also

r used to query the Foreman regarding any NSW information the |

Foreman maintains about the file, including the full NSW

filename, known attributes, etc., should such a primitive be

implemented.

an If the new-file flag is set, a new local workspace file is
created using filespec and version number (default is next
ol higher version). The only failure for creating new files,
other than failures due to the nature of the specific
workspace implementation, is when specifying a version number {
B of a filespec which already has such a version.]

e If the old-file-only flag is set, then success can be returned

only if an existing file adhering to the filespec,version !
specification is found. If neither the new file flag nor the
old file flag is set, then a failure to find an existing
workspace file results instead in creating a new local file
referenced by filespec.

L.

The type-of-access parameter is optionally specified by the :
tool to indicate more precisely the type of file access it | {8
requires (e.g. read, write, read&write). The default for 3
type -of-access is read & write. A Foreman may find the

type-of-access information useful in determining whether a

Ol

|
r
]
1
:
]

Foreman Specification March 31, 1976

file is being modified (and may need to be delivered back into
the global space), and in utilizing the structure ol the
underlying file system.

The search for an existing file matching filespec is within
the local workspace only. Version number defaults to the
highest existing version (except for new file as outlined
above).

7. CLOSE (handle, output-attribute code, gdisp) ->

The tool uses this primitive to indicate that it has completed
accessing the file denoted by handle and that the system
should now assume responsibility for it. In addition, using
gdisp the tool can guide the Foreman as to the ultimate
disposition of the file i.e. whether it needs to be placed as
a global NSW file (gdisp=true), thereby becoming referenceable
by other NSW tools; or whether it can remain a workspace file
until the end of the session or until such time as the tool
instructs the Foreman to do otherwise (qgdisp=false). The
default value of qdisp is true, i.e. deliver the file at the
end of the session. Completion of the CLOSE invalidates the
handle for the file, and further access to the file must be
preceeded by another OPEN.

The output attribute code is a tool dependent code denoting an
attribute(s) which should be associated with the file. When
the file is delivered to the global NSW space, the WM will
convert these codes to textual attributes which become part of
the full NSW filename.

8. DELETELOCAL (filespec, version #) -> version of deleted
file

This is the primitive a tool uses to delete an existing file
from its workspace. For DELETELOCAL only the workspace is
searched for the matching filespec. The default version
number is the lowest numbered version. Once a file has been
deleted, it will no longer be accessible with OPEN, PUT, etc.
The version number of the file actually deleted is returned to
the tool on a successful deletion.

9, RENAMELOCAL (from-filespec, from-version #, to-filespec,
to-version #) -> from-version #, to-version #

A tool uses this primitive to change the name of zn existing
workspace file. It renames one workspace file to te another
workspace file. The new file acquires any tool supplied

attributes of the old file. For RENAMELOCAL, from--version #

-

Foreman Specification March 31, 1976

defaults to the highest existing version and to-version #
defaults to a new highest version for the file. The version
number of the files actually operated on are returned to the
tool.

10. COPYLOCAL (from-filespec, from version #, to-filespec,
to-version #) -> from-version #, to-version #

A tool uses this primitive to create a new workspace file
which is a copy of an existing workspace file. Both the
"from" and "to" files exist in the workspace on successful
completion. Note carefully that COPYLOCAL merely makes a
copy of the file. It does not provide access to the file
data. In general, since the actual local host name of the
file remains unknown to the tool and no handle for it is
provided through COPY, accessing the file requires an OPEN
primitive. The from-filespec can not normally be delaulted,
but the to-filespec defaults to that selected for the
from-filespec. Default versions are highest version and next
higher version for from-version and to-version respectively.
The version numbers of both the "from" and "to" files are
returned to the tool.

5.9 Other File Related Primitives

There are a few other file related primitives which are

thought to be needed but not necessarily for the current set of
tools in the initial configurations.

5.9.1 Global Space Primitives

11. WARRANT (filespec, attribute code) -> new NSW-filename

This primitive is used by a tool to assign attributes to a
global space NSW file. (Recall that attributes can also be
assigned to an open file at the time it is CLOSEd, and also
when it is PUT into the global catalog. These are probably
the most prevalent means for assigning attributes to files).
The attribute code is a tool specific indicator for textual
attributes which become part of the file name. The new full
NSW-filename 1s returned to the tool, since the result of a
WARRANT may actually change the filename. Filespec must
uniquely identify an NSV fiie. Help is not provided, since
only toois (i.e. not users) can assign attributes to a file.
The warrant capability is not yet upported by the WM and
therefore need not now be supported by the Foreman.

[For completeness, we refer the reader to the previously
mentioned semaphore related operations, which are also global
space primitives.]

+29=

ook b i UL bl Lol Ll | oabiinh cs I ot B b e B e U at e b o i i b 2 i - L B R e L, R te et 4 L) M) kel b i £ Cil ot L

R e

N, el 1

b b

Foreman Specification March 31, 1976

5.9.2 Local Space Primitives

12. GETFILEDESCRIPTOR (local filespec or handle, version #,
data fields) =-> data structure with specified items

(A primitive of this type is an optional implementation item).
This primitive is used to view the information associated with
a workspace file through its LND. Typical data fields will
include: full NSW-filename, file attributes, existing
versions, etc.

13. CHANGEFILEDESCRIPTOR (local filespec or handle, version #,
data structure with changed items) -> change outcome
indicators

(A primitive of this type is an optional implementation item).
This primitive is used to change the LND information
associated with local workspace files. Some LND information
may not be subject to change. The exact nature of the
information kept in the LND will be implementation dependent.

5.9.3 File Movement Into and Out Of the NSW System

The following four primitives are used essentially to move
files into and out of NSW controlled spaces, either the global
NSW filespace or the tool workspace. The primitives serve as
interfaces to Works Manager facilities of the same name.
READDEVICE and WRITEDEVICE are used to move copies of non-NSW
files into a tool workspace, and to move copies of workspace
files into non=-NSW controlled space. IMPORT and EXPORT perform
the same functions using the global NSW filespace as its base of
operation. By non-NSW file space we mean not only space on file
oriented devices, but also physical devices such as card readers,
line printers, magnetic tape, etc. A user profile guides the
default locations for the various physical devices. That is, a
tool might request that 2 particular file be written
(WRITEDEVICE) to the LPT (lineprinter). The user profile would
indicate which lineprinter was local to the user, and perfcrm the
transfer. The details of using the user profile are currently
being worked out.

14. EXPORT (filespec, external-name, password, ghelp) ->
NSW-filename

EXPORT copies a global space NSW file to a non-NSW
destination. EXPORT verifies COPY access and sends a copy of
the source file to the location designated by external-name.
An external-name is either an ARPANET pathname or a device
pathname. Password is a string which is used for gaining

RO

- ——

Foreman Specification March 31, 1976

access to the external directory, device, etc. The full
NSW-filename of the file actually EXPORTED out of the NSW file
system is returned for the information of the tool.

15. IMPORT (external-name, password, entry-name, qhelp) ->
NSW-filename

IMPORT is the inverse of EXPORT, i.e. bringing a non-NSW file
into the global filespace.

16. READDEVICE (external, password, filespec, version #) =>
version #

READDEVICE is used by tools to input from sources outside the
NSW without making a global space file. The file is placed
directly in the tool workspace. Version # defaults to a new
highest version. The actual version number of the created
file is returned to the tool. When (if) the file is placed in
the global file space, it must be given a full NSW-filename.

17. WRITEDEVICE (filespec, version #, external-name, password)
-> version #

WRITEDEVICE is the inverse of READDEVICE i.e. copying a
workspace file directly to a source outside the NSW domain.
Version # defaults to the highest existing version. The
version number of the file actually transferred is returned to
the tool. ;

[Only IMPORT and EXPORT are available for tool invocation in
the current version of the WM.]

5.10 Implementation of the File Primitives

The WM has procedures that can be invoked by the Foreman to
implement the global space file manipulation operations. There
are procedures for deleting, renaming, and copying global space
files. These procedures and their call/return sequences are
described in the Works Manager Procedures document. Each
procedure is invoked by sending a generically addressed message
to a Works Manager process. Every procedure call generates a
reply which can be obtained using the ReceiveSpecific MSG
primitive. Replies to multiple outstanding procedure call
messages can be distinguished through the conventional use of
transaction IDs. These IDs are generated by the invoking process
(Foreman) and are included in the message specifying the
procedure call. The recipient of the message (a WM process)
includes the transaction ID of the call in any reply that it

<8

Foreman Specification March 31, 1976

generates. The NSW message transmission conventiouns (see
Postel's note of 10 March 1976) also include indicators of
whether a message is a new request or a reply to a previous
request. This enables the Foreman to distinguish replies for its
WM requests (e.g. W$DELETE) from WM commands regarding the tool
(e.g. F$STOPTOOL), since both types of messages are received
using the same ReceiveSpecific MSG primitive.

For GETting a local workspace copy of a global space file,
the Works Manager's W$OPEN procedure is invoked. The local host
syntax file name (of the new workspace file) which the WM returns
is used as part of the basis of a new LND entry reflecting the
NSW name given to the copy. For PUTting a file into the N3SW
global space, the Foreman merely invokes the Works Manager's
W$DF .IVER procedure regarding the local host file indicated by
the LND entry associated with the workspace filespec.

For local workspace file delete, rename and copy the obvious
LND manipulations are performed. The local host operating system
will usually provide help in actually deleting the files, should
7.3 be desirable. If not, and also in the case of RENAMELOCAL,
merely changing the contents of the appropriate LND entry is
sufficient, since the tool does not deal with host syntax file
names anyway. The OPEN and CLOSE primitives are implemented
entirely within the Foreman to perform the function of relating
the NSW file syntax and conventions to the underlying host file

system.

The Foreman is not expected to implement controls over the
type of access a tool has to workspace file copies since there is
no NSW concept of file write access, append access, etc. The NSW
is based on getting xerox coples of files, performing arbitrary
operations on the copies, and then trying to deposit the altered
copies back in the global spane. It is the act of obtaining a
copy (copy access) and the act of placing a new file (enter and
possibly delete access) in the system that require access
control. (However, since the host file system may require more
specific access type information, the implementation of a Foreman
for a particular host may require additional parameters
indicating the type of access a tool needs to the particular file
(i.e. the type-of-access parameter of the OPEN primitive).
Whether or not this is included, at file CLOSE time, it is the
responsibility of the Foreman to attempt to determine whether or
not a file has been modified, and may therefore be a candidate
for re-delivery into the global catalog. Modified files should
be so marked within the LND as an aid in post-tool delivery
decisions.

282

Foreman Specification March 31, 1976

5.11 Extension of the File Name Syntax

In the implementation of primitives which refer to a tool
user's files, it is often useful to have the system itself (in
this case the Foreman) gather from the user the strings for
identifying files. An example of such a facility is the GTJFN
(Get JFN) system call in the TENEX operating system, where as an
option, the program can defer the actual accumulation of the
filename string to the operating system. The alternative is to
have each tool gather its own filenames by using available
communication facilities. For tools that utilize direct channel
communication with the user, having the option of specifying the
connection to the user instead of a filespec, and letting the
Foreman gather the filename string can lead to a much simplified
tool implementation. It is recommended that Foreman implementers
consider such an interface to their file system primitives,

However, whether the Foreman or the tool gathers the filenames,
the user is often the ultimate source of the parameters supplied
with the file system operations and as such, the NSW user must be
provided with a way to syntacticly specify the exact file on
which to operate. That is, the user level NSW file syntax must
at least include an option for specifying a particular version
from a set of workspace files. If a tool does not provide
Separate user commands for operating on local and global files,
then it may also be necessary to syntactically specify the space
to which a filespec refers. We think it important to present
these features uniformly to the user, independent of the
tool/Foreman he is currently using. In that regard, we are now
specifying a syntactic extension to the NSW filename, which can
be used by NSW tool users to explicitly specify a version of a
particular file. Further extensions delimiting the domain of a
filespec may also become appropriate. We emphasize, however,
that these extensions are usable only within tools and Foremen,
and have no meaning whatsoever at the WM command language level.
A user must understand the local workspace concept and when it
applies to grasp the meaning of the syntactic extensions.

The syntactic extension consists simply in adding a field to the
end of the NSW filename syntax. This optionally specified field
is to be delimited at the beginning by a semi-colon (";")
character. Following the ";" can currently only be a decimal
integer between 1 and 32. This indicates a particular version of
a file. By its very nature, a file specified with a version
number must be a workspace file, since version numbers are not
supported at the global space level. Other extensions will be
defined as necessary. Filenames which do not include any
extensions (currently a version number is the only possible
extension) will take the normal default for the particular
operation.

~33=

PR ST T R PR WL SO T, T e, T W A TR TS R oy e T

S b b kR e) Bt e o o e b, Bl ol ' R A LA

A o i T i Stk
3
P
N)

Foreman Specification March 31, 1976

example:

i WALDO.GEORGE .TXT; 23
This file name selects version 23 (only) of WALDO.GEORGE.TXT in
the local workspace for use or creation depending on the context
in which it is used.

The determination of the version can be derived from either the
parameters associated with a call (i.e. version #) or explicitly
from the syntax of the filespec provided. Filespec syntax takes
precedence over tool parameters in the event of conflicts, since
we assume the user to be responsible for most syntax related
directives.

S

T T U o R T T T 1 U L I e T i 1 WL TR T e sy e A R

I ST S e I i T I m——— e
oL e Falg, e ——————a

Foreman Specification March 31, 1976

VI. Tool to Front End Communication

The NSW user accesses the NSW system through a Front End
process. For those tools that require direct user involvement,
the Foreman and the Front End must cooperate to provide channels
for the communication. We are firmly committed to providing
tools with the ability to utilize MSG for both message type
communication and direct connections with the FE. The FE could
interpret and package user input &nd transport the pertinent data
to the tool in a network MSG message. The tool to FE
communication could be handled in an analogous fashion. Another
approach to tool/FE communication is through the use of direct
network connections. This would typically take the form of an
ARPANET telnet connection pair from the FE directly to the tool.
The decision as to which type of communication facility a tool
uses is left entirely to the tool builder. The extent and type
of user interaction which the tool supports, as well as the
pocsibility of additional burden on the FE system must be weighed
in selecting a mode for tool communication. Using the techniques
outlined in the MSG document addition NSW Note #11 (and included
as Appendix 2 of this document) we will support tool
communication with the FE using direct (but controlled) tool
access to both the message and connection oriented MSG
facilities. A tool will be able to selectively use messages, or
sets of connections, or hoth, depending upon the tool
circumstances. However, again letting immediate necessity drive
our initial efforts, we find that the initial tools are not
written using a message type FE interface. Rather, they utilize
a terminal oriented interface, best served by a direct connection
from the tool to the FE (and hence the user). Because of this,
we temporarily defer extensive details of the tool-FE message
interface. These details will be of primary concern immediately
after the initial Formen implementations are complete. We do
require however, that the Foreman support direct FE to tool
connections as an immediate objective. This does not require any
of the modifications mentioned in Note #11, and hence is in line
with the short term implementation plan for all NSW components.

The Foreman initially received the MSG process name of the
FE process servicing its tool (see description of F$BEGINTOOL
request). Based on this information, the Foreman is required to
implement a CONNECTION-TO-FE primitive operation for its tool.
To establish the (Telnet) communication path between the FE and
the tool, the Foreman sends an MSG message to the designated FE
process. The message is a request to exchange MSG connection
operations, and indicates that the connection should be of type
telnet. After sending the request, the Foremen immediately
issues its MSG Openconn primitive directed toward the FE process.
If the Openconn succeeds, the handle for the connection(s) is
returned to the tool as the response to the CONNECTION-TO-FE
primitive. If the Openconn fails after a sufficiently long
timeout and retry period, then the Foreman reports failure to the

«35-

s

Foreman Specification March 31, 1976

tool. The MSG message sent to the FE process reqguesting the
connection requires no acknowledgement. The completing of the -
connection serves as a positive acknowledgement to the request.

In cases where the Foreman knows that the tool requires a
direct F. connection (e.g. encapsulated tool), the implementation
may be such that the Foreman acts to create the connection |
without requiring the tool to request it. However it is
accomplished, the initial Foreman requirement is that each tool i
be provided with a means of using a direct telnet connection t=
its FE process. The exact nature of the FE support for tool
connections is detailed in the forthcoming document describing a -
minimal Front End. !

236=
BB oy b mh b f e e e e i D L Lk e o T e R e ek L B e il 2 e T T ‘.zl.hf.—..-\;m.\d

My, 8 ol oA e o

Foreman Specification March 31, 1976

VII. Tool to Tool Invocation and Cemmunication

‘ 7.1 Present State

The mechanisms for tools invoking other tools or interacting
with other existing, background tools, and then for tool-tc-tool
. communication certainly constitute a part of the atstract tool
environment. However, no tool from the set of initially
anticipated tools needs to use such facilities. Therefore, we
are postponing the precise description of the mechanisms provided
to tool builders for dynamically creating other NSW entities and
communicating/synchronizing with them. At this point however, a
rough sketch of the planned me hanisms and a possible
implementation strategy can be given. It must be emphasized that
much of the content of this section is still in the design stage,
and is presented here only to give a more complete picture of a
future direction. The emphasis placed on these areas is
dependent on the nature of the tools which will populate the NSW,
and on whether or not people are willing to customize their tools
for the NSW. To even allow the possibility of extensive
] customization, we are presenting the concepts surrounding these
| other aspects of the tool environment. It is difficult to judge 3
the impact of these extensions in the absence of tool candidates |
which need to make use of them. However, we will pursue the |
refinement of some of the tool-to-tool concepts so that as tools
emerge which require such facilities (as they surely will), we
L will have a cohesive approach for handling them. Implementation
may await an expected use. To this end, we invite comments and
suggestions on these more complex uses of the NSW.

- .

7.2 Emerging Tool-Tool Concepts

As in the file system operations, the WM and the Foreman in
combination are responsible for the dynamic creation and
communication aspects of the tool virtual machine, with a large
assist from MSG. A general overview of the supported facilities

3 is that there is a variant of the Works Manager's W$RUNTOOL
procedure which can be invoked via the Foreman by a tool to
create a new instance of another tool. Each tool will be able to

o use MSG facilities for sending and receiving specifically
: addressed messages, sending and receiving alarms, and setting up

i and taking down direct connections, all to a selected list of
conversants which includes any tools it has started. Some of the
ancillary features of MSG are expected to be included in the tool

; domain (e.g. Rescinding MSG primitives, Resynchronization with a
4 correspondent). The direct use of MSG by tools is based on the

b, concepts outlined in Appendix 2. The tool will also be provided

with primitives for locating service facilities which are
L) implemented as tools, but which do not dynamically become part of
i the initiating tool's job, as is the case with tool-to-tool
1 creation. With proper verification, the tool can then engage in

) 37~

Foreman Specification March 31, 1976

message and/or connection oriented exchanges with the service
tools.,

For dynamic tool creation as well as for trying to locate
and utilize a background service tool, we provide tool primitives
which are fielded by the Foreman. The WM implements procedures
which perform the access checking as well as establishing new
comporcnts where needed using MSG facilities, and returns the
partinent information to the initiating Foreman. The information
returned includes the MSG process address of the new tool. The
initiating Foreman then manipulates its tool's environment using
MSG primitives to allow message and/or connection type of
communication between the tools. The initiating tool can specify
ths MSG process name of a process in its family tree which is to
serve as the FE process to the new tool. The Foreman of the
newly created tool receives the address of the creating tool as
well as the process which is to serve as the tool FE (if any) and
adjusts its tool's environment to facilitate communication with
these processes. In addition, we envision providing primitives
with which the creating tool can control the progress of the new
tool and terminate it, in much the same fashion as the user can
control a tool through the WM command language.

Once the tools are in communication, they can pass around
the names of other tocl instances that they know about. We
perceive a Foreman call by which a tool can ask that
"ocommunication to process xxx" be allowed. The Foreman would try
to get the WM to consent to the pair as legitimate conversational
partners. If they are, the appropriate Foremen are notified to
adjust the MSG environment for their tools, and communicatisn can
proceed without further Foreman intervention. How the WM decides
if two tools should be allowed to communicate is an aspect of the
tool-tool model still undergoing investigation. Another very
important aspect of the tool-tool problem, which also has no
immediate solution, is handling the situations in which system
failures cause breaks in the process trees.

+38+

e

<
e e

—ﬁ".‘
« I

14

DU -

Foreman Specification March 31, 1976

VIII. Tool Encapsulation

The initial TENEX approach to integrating tools into the NSW
was through an encapsulation technique. This approach has proven
very successful, and we, therefore, feel that each Foreman
implementation should consider a similar facility.

In general terms, NSW encapsulation implies the automatic
trapping and translation of local host operating system calls
into calls meaningful in the NSW system. Any trapping and
translation is done within the Foreman process. Using an
encapsulation technique, we take programs which are written
exclusively for the local host operating system execution
environment, and with little or no modification execute them as
NSW tools. This is possible only because of the similarity, in
many aspects, of the NSW system to a conventional single host
operating system. As an example, when an encapsulated tool issues
a local system primitive to gain access to a file, the Foreman
could get control and translate the request into one which
provides access to an NSW file. This assumes that the "old style
tool" is somehow capable of handling the NSW filename syntax
within the local host file manipulation primitives. In TENEX, for
example, this is often be very easy since the tool will
frequently allow the "system" to gather the filename from the
user. In TENEX encapsulation, the Foreman is interposed between
the tool and the operating system only for selected system calls.
With its intimate knowledge of both the local system primitives
and the NSW system structure, the Foreman gathers the NSW
filename and ensures that the tool utilizes NSW files. Using both
local host facilities and facilities supported by other NSW
components (e.g. WM), the Foreman "implements" the local host
file primitive in a ~»w context.

Encapsulation cannot be discussed in terms of its
algorithms. It requires an extensive knowledge of the local host
operating system primitive operations, and a determination of how
they can be made to relate automatically to the NSW environment.
Thus each TBH approach to encapsulation will probably be
different. As far as the other NSW components are concerned,
running an encapsulated tool is no different from running a tool
which was written to function in the NSW. The behavior of the FE
and the WM is identical in the cases of the integrated and
non-integrated tool, with theexception that the WM notifies the
Foreman in the F$BEGINTOOL messige that it will be running a tool
which requires encapsulation. We can, however, speak in general
terms about certain aspects of encapsulation.

Encapsulation requires some mechanism with which the Foreman
can gain control after the tool executes certain operating system
functions, but before the operating system proceeds with the
local implementation of the operation. The TENEX JSYS trap
facility is an exemple of such a mechanism. It is entirely left

-39-

M

Foreman Specification March 31, 1976

to the encapsulation implementation to determine which system
calls need trapping and how to integrate these calls with NSW
facilities. For the most part, the tool initialization and
termination conditions, interactions with the file system, and
the communication with the tool user will all require careful
attention within the encapsulation component of the Foreman. In
some cases, mapping the local system operation into a comparable
NSW facility will be straightforward. An example is the terminal
interface which drives many tools. The Foreman can simply request
the creation of a direct FE connection of type Telnet, and
provide this "NSW connection" to the encapsulated tool. In other
areas, the Foreman has a wide range of possible implementation
strategies. An example of this type is the handling of file
delivery into the NSW file system. Since encapsulated tools are
not aware of the NSW file system, they cannot guide the Foreman
as to the disposition of the files. The Foreman must choose an
implementation strategy for delivering new and changed files to
the global NSW file space. This can be done as the files become
available (i.e., closed in most operating systems), or cnly at
the end of the tool session, or even anywhere in between. Each
encapsulation implementation selects the strategy most
appropriate for the anticipated needs of the tools for that host.

TENEX NSW encapsulation already exists for selected tools.
In general, the simpler a tool is, the more easily it can be
encapsulated. By simple, we mean the straightforward use of
common operating system facilities. Such facilities are apt to
have analogous mechanisms in the NSW, since the NSW caters to
many of the same aspects of the tool environment but with wider
domain. Depending upon the effort placed into translating system
calls, a Foreman will be capable of encapsulating an expanding
set of "old tools." However, let us emphasize that encapsulation
has limitations. There will always be local htost programs which
cannot be NSW encapsulated. This is because the NSW system IS
different from the local host system, and substituted components
can be made to appear similar only to a certain degree. Tools
which utilize obscure features, or features peculiar to a
particular operating system are sure to be difficult or
impossible to encapsulate correctly. Very often this will mean
that certain features of a tool are not available when using the
tool encapsulated. If this is not satisfactory, or if other
problems prevent the tool from being encapsulated (e.g., the
local host does not have system facilities for building an
encapsulator) then the tool program must be modified to directly
call Foreman NSW primitives if it is to function as an NSW tool.
Let us also emphasize that for a tool to be most effective in the
NSW domain it should be coded using the NSW facilities directly.

We feel that for some TBHs encapsulation can have a high
payoff in establishing a large class of programs as NSW tools,
and should be actively explored. It is often undesirable to
recode existing programs, and it is in this area that

~4Q-

Foreman Specification March 31, 1976

encapsulation has its maximum effect. Designing an encapsulator
is in many ways similar to designing a tool which directly
utilizes the NSW facilities. As such, much of the discussion in
the preceding sections of this document will be helpful. As a
note of interest, the form of the TENEX encapsulator for the
initial test NSW system has influenced the design of the Foreman
component, since in a way, the encapsulator was an integrated
tool. Some of the concepts embodied in the TENEX encapsulator are
discussed as part of Appendix 1, to serve as a model to other
encapsulator builders.

e

i i LR B b T e e Il e, e e B

‘
|

it b b b

Foreman Specification March 31, 1976

IX. Batch Tools

B ek

Until the present section, this document has primarily
focused on interactive tools. Interactive tools are tools whose
users are on-line while the tool is running. There are also
batch tools ~ tools whose users may not be on-line. The primary
difference between batch and interactive tools, therefore, is the
time at which information about input/output files, parameters,
etc. is obtained. A user can supply information to an
interactive tool at any time while it is running. A user must
supply information to a batch tool before it is run. Thus, an
interactive tool needs controlled access to NSW resources while
it is running, and an active Foreman supplies the controlled
access. Access control for batch tools can be done before the
tool is run, so a much less complex Foreman is needed. (Note 1
that nothing in this discussion precludes building a Foreman for 48
batch tools with all of the functions described in this
specification. We are merely pointing out that such a c¢omplex
Foreman is not required.)

We shall sketch the features that are absolutely necessary
in a batch Foreman. Since batch tools in NSW will be handled by
the IP protocol for the immediate future, we defer details until
a later version of this specification.

In the current NSW model, execution of a batch job is
handled by the Works Manager Operator (WMO) process. The WMO is
given (by the WM) tables which contain skeleton job control
language (JCL) and a mapping between dummy parameters in the
skeleton JCL and NSW files, real values, etc. The WMO prestages
the job on a selected batch hosc by asking the WM to move (via
the File Package) all input files to that host. The skeleton JCL
is then edited to insert local file rames (obtained as a result
of the file movement) and parameter values, The IP server on the
batch host is then given the JCL and told to run the job. When
the job has run to completion, the IP server informs the WMO,
which then moves (again via the FP) the result files into NSW
file space. The minimum batch Foreman must support this model.
That is, it must have a WMO-invokable F$SUBMITJOB procedure and
it must invoke a WMO proceddre W$JOBHALT. (In addition, it rust
support status probes.)

A slightly more complex model requires that the batch
Foreman receive the tables now given to the WMO. The batch
Foreman would then be responsible for moving input files (either
prestaging or during execution) to the batch host, editing the
JCL, running the job, moving result files to NSW file space, and
informing the WM that the job was complete. We expect that many
batch hosts will prefer to control job execution more completely
in this later fashion.

L

!

Foreman Specification March 31, 1976

Finally, some hosts may choose to implement a complete
Foreman. F$SUBMITJOB would then be F$BEGINTOOL and file motion
would be handled dynamically. This last case is the least
explored of the possibilities although we expect that batch jobs
on interact:ve hosts (TENEX, MULTICS) will be handled by this
mechanism.

The WM and WMO will support these several different kinds of

batch Foreman so that batch tools may be run on hosts as diverse
as B4700, 360/91, and TENEX.

43

ij

:

st e

e e LR

k I AR Ly i e T T | —

March 31, 1976

Foreman Specification

Appendix 1. Functional Summary

This arpendix summarizes the externally invocable functions which
must be implemented by each Foreman, and proposes paramster value
conventions for the functions. Transmissions currently follow
the SRI conventions except where noted. That is, transmissions
are modified PCPB8 data structures of the form:

LIST (type, length, tid, parameter, args).

This appendix will be modified from time to time, as needed.

LTI e L . a1

L
-~

it st T P B T A

Foreman Appendix 1 April 14,1976

Functional Description and Transmission Formats

A. Functions implemented within each Foreman

(Note: Because of a phased implementation plan, and because all
functions may not be applicable to all host systems,
implementation may consist simply of replying with a rejection
message. In that sense, all functions must be implemented
(recognized) by all Foreman from the outset. The error code reply
value of 177777 (16 bit value) will be taken to mean
unimplemented function.)

All functions are invoked with a reply requested (i.e., using
TID) except where explicitly stated. Recall that the F$ prefix is
used as an expository aid in indicating a function implemented in
a Foreman. Where the string "n-" prefixes an elemert, it should
be read as the element repeated n times.

A.1 F$BEGINTOOL (program-name, tool-type, entvec, FE-addr,
er-addr, filename-list)->result, gstart,
workspace-descriptor, tool-addr

Program-nanec:
charstr: 1local host syntax completely specifying the program to
be run as NSW tool

tool-type:
index =1 => encapsulated tool
=2 -> tool uses NSW calls, does not use MSG
=3 => tool uses NSW calls & uses MSG

entvec:
index =0->do not start tool (illegal except in F$BEGINTOOL)
=1->continue from point stopped (illegal in F$BEGINTOOL)
=2->co0ld start entry point
=3->Wwarm start entry point
=f->termination routine entry point
=7->tool specific entry point

(Please note that the index value assignments for entvec
are changed from those indicated in the text of the
Foreman document.)

FE addr:
procaddr {(new data type corresponding to MSG process address)

cr-addr:
procaddr

!

e

Foreman Appendix 1 April 14,1976

filename-list:
list(n-filenames) -
filename:
charstr: full local host syntax
result:
empty -> success
index -> error code (error codes to be defined) :

gstart: |
boolean true -> program started ; ﬁ

talse -> program not started

workspace-descriptor:
list (name, acness-info)
namz: charstr
access-info: charstr -> infc used by File Package
to access workspace via name . _
empty -> access infu not needed by File &
Package !

tool-aadr: 'é
procaddr
A.2 F$STARTTOOL (entvec) -> result

entvec: index (see above)
result: index (see above)

A.3 F$STOPTOOL (entvec) -> result '

entvec: index (see above) L]
result: index (see above) j &

A.4 F$ENDTOOL (reason, termtype, gmaintain)-> result,
accounting-list, gmaintained

false -> don't maintain tool image (default)

a
reason:]
index =1-> user request i3

=2-> WM decision b

=3-> user disconnected w*1

termtype 3 'rf

index =1-> no LND processing necessary 3

=2-> step thru LND directly with user F

=3-> automatically deliver latest copy of changed files 1
gmaintain: f
boolean true -> maintain tool image if possible r

accounting-1list:
list (cost, n-list(type,amount))

A1-2

e TR

April 14,1976

Foreman AppendiX 1

B.
B.

B2

cost: an integer reflecting the cost in cents of
running the tool.

an index indicating the type of resource

accounted for
=5 CHl milliseconds
-> connect minutes
> I/0 operations
-> primitive calls
-> core usage

o
g
kel

@

Wwouwowun
. 1IN

to be defined as needed
(note: each TBH will select the types of

resource measures it will provide)

amount: integer
he session utilization for the

reflects U
corresponding resource type (either in

resource units or in cents).

qmaintained:

boolean as been maintained

true -> tool image h
false -> tool image has not been maintained
(default)

Alarms to be recognized by each Foreman

-> forthcoming tool termination request
immediately begin processing input
looking for F$ENDTOOL request;

ges are discarded

alarm code = 1
response:

messages
all other messa

alarm code = 10 -> status probe (name = STATUS)
response: return list (U-statevariables) to
invoking process

statevariablel: NSW external state
index > running

> stopped, never started

-> stopped

> running at termination code

-S> terminated (tool did HALTME)

NSW internal state
-> running
-> awaiting completion ol NSW

primitive # N

statevariab e2:

index

ZONJ:-'LA)N—-\O

wonwHn "wou

e

—

(note: the primitive name used |

by tools need not be uniform

across all TBHs. However,
status reports,

|
1
for }i
we standardize 1%

: id
-

g] R s T i

April 14,1976

Foreman Appendix 1

all tool functions by
equating each one with a code
indicating particular function
classes. It is this code
(non-zero) which indicates the
type of NSW function the tool
is executing).

statevariable3: current local operating system

state

0 => running

1 => I/0 wait

2 => dismissed

index

"o u

statevariableldi: current program counter
integer

NSW primitive functional classes:
1-> global file space manipulation
2=> local file space manipulation
3=> MSG communication
4-> tool invocation

B.3 alarm code = 11 -> accounting probe (name = ACCOUNT)
response: return accounting-list (defined earlier)
to invoking process

other alarms will be defined as needed

A1-4

) A

R < -, & S, i

B MR T T T e

i

l i‘ Foreman Appendix 1 April 14,1976 \)

l ;

b A rote on responses to alarm codes -

E (There is currently no convenient way to signify a response
to an alarm. Accordingly we are proposing the following addition

] to the transmission conventions as outlined by FPostel.

the standard message transmission format is:
LIST (type, length, tid, parameter, args)

for a response to an alarm we specify that

type = 3 (definition of a new type) af
length (same as before) F
tid = alarm code (the id field contains the 16 bit

alarm code for type 3 messages)
parameter (same as fcr type 2 = acknowledgement)
args (same as for type 2)

In accordance with this format, a d2fined alarm code which has no
Foreman implementation should return an error reply value of

' 177777 (unimplemented function).
‘ Receipt of an undefined alarm code can simply be ignored.

Foreman Appendix 1 April 14,1976

F C. TENEX Encapsulation

This section, which sketches selected aspects of the TENEX
NSW encapsulator, is included as a model for potential
encapsulator builders. Encapsulation provides the implementer
with large margins of flexibility, and each such implementer must
decide upon the nature of an encapsulatol’ best suited for the
existing local host programs.

An NSW encapsulated TENEX tool is automatically set up with
a network virtual terminal (NVT) to the FE process as its primary
input and output device. The structure of the TENEX operating
system has allowed the encapsulator to be programmed as an
ordinary user process. With respect to the tool it is running,
the encapsulator can gain control when the tool executes selected
system calls, and in addition can read from and write to the same
NVT which was given to the tool.

When a TENEX encapsulated tool requests access to a file

(using GTJFN operation), the call is such that in general the
program either provides a filename string or indicates & device

' or file which can be read to obtain the filename. To simplify
matters, in this discussion we will consider only the cases where
the program has specified that the filename is to be obtained

‘ from the NVT (i.e., from the user) or is provided as a text
string parameter of the system call. If the call indicates the
user as the scurce of the file name, the encapsulator reads the
file name using the NVT. Since the file name has been supplied
by the NSW user, we can be certain that it is an NSW syntax
Filename referring to an NSW file. As =*uch, we can simply check
the LND for a copy of the file, and feiling to find one, we can
try to obtain a copy from the global workspace. In either of
these cases, the tool is provided a direct handle for the TENEX
file representing the NSW file copy. In the case of a parameter
supplied filename string, the complexity increases. The filename
may refer to an NSW file (in NSW syntax) whose name was
previously obtained from the user. Alternatively, the filename

) may refer to a TENEX file (in TENEX syntax) whose use is outside
the NSW (e.g., a documentation file). The WM provides a list of
such locally accessible files to the encapsulator at tool startup

L time. Using this list, and based on its knowledge of both the
NSW and TENEX file name syntax, the encapsulator determines if
the file is a legally referenceable TENEX file or an NSW file.
Access to a TENEX file can be granted outright. Once .e
determine a file name to be an NSW name then we search the LND
and consult with the WM as necessary to provide file access.

—

For those cases where the program requests a "new" file (as
indicated by the TENEX system call parameters) it must de facto
be an NSW file, since encapsulated tools are not aware of the two
different file systems. In this case, an LND entry is created
and the encapsulated tool is given a handle on a TENEX file

bt on il ol
2 e .o

Rlaadad - .
SIS bl

A1-6

o
F

-

'
.

pmay goees

1

Foreman Appendix 1 April 14,1976

representing the NSW file. TENEX also has the facility to create
temporary files, i.e., files which disappear on logout. We have
taken the position that tools can utilize temporary files
unimpaired, since by their very nature they would not be
candidates for being maintained in the central catalog.

Since the encapsulated tooc. "e not reprogrammed for the
NSW environment, they do not inc. .te which files need to be
delivered to the WM and when. Thus when an encapsulated tool
indicates (in TENEX terms) that it has finished accessing an NSW
file, the encapsulator determines whether or not the file has
béen modified. If it has, then the file is marked in the LND as
possibly requiring delivery to the global space at a subsequent
time. We have taken the approach that file references are always
interpreted locally where possible. That is, in general, file
operations will only create new local workspace copies of NSW
files and access these copies when they exist. No files are
delivered to the global space until the tool terminates, and then
only selected files (e.g., latest versions of changed original
copies). Version numbering and defaulting are supported as in
TENEX, with some assist from the LND. The TENEX encapsulator

supports limited TENEX style command editing while accumulating a
file name from the user.

A1-7

Ly . r— ks et e b U e b e e e i T ey e e s a2
o i e e gl R e el ok e T -

R T U ¥ e ey cpag—

i
P

e o o ol e . oo

. N\

!] Foreman Specification March 31, 1976

2

| ' Appendix 2. Foreman Induced MSG Additlons

L(The following pages reproduce an appendix to the original MSG
design document. The document was originally introduced under

the name NSW Note #11. Because of the relevancy to the subject
of this document, and because it was not includ~d in the

. originally distributed MSG report, we are including it as part of
the Foreman specification document.

-45.

sy
.|.u...._... e e I L N T e L G N g alib e, T T g W AT v 03

A

- .

Eﬁ?%ﬁ%?-'

-

BBN NSW Working Note #11
January 27, 1976

The Impact of the Foreman Concept on MSG

The needs of the Foreman component of the NSW have
motivated some proposed additions to the MSG facility. In
essence, a Foreman is a local-to-the-tool component of the NSW.
The Foreman provides an interface to the tool for the facilities
provided by the Works Manager, and in addition helps to provide
the NSW environment in which the tool is run. This note
discusses one aspect of that environment, the communication
facjilities made available to the tool.

To a first approximation, the message oriented
communication modes provided by MSG to the components that
create the NSW environment are also appropriate for tools to
communicate with other tools and with the user through a front
end process. However tools, especially those in the debugging
stage, cannot be allowed to function directly in the uncontrolled
MSG environment.

The interprocess communication (IPC) needs of a tool, along
with the IPC needs of the Foreman component imply the existence
of two logical communication streams. One set of messages is
destined for the Foreman, while the other stream is destined for
the tool itself. If the IPC needs of a tool can be satisfied
using direct connections only, then message traffic can be
dedicated to the Foreman implementation. If, on the other hand,
the tool must be proviied with a message oriented IPC facility
which is supported by or derived from the MSG message passing
capability, then a multiplexing problem exists. In the following
we assume that it is indeed desirable to provide tools with a
message oriented communication facility for many of the same
reasons that such a facility was desirable for building the NSW
itself. We also assume, for obvious reasons, that such a
facility will indeed make use of similar MSG functions.
Therefore, we must address any problems this situation causes.

For the tool/Foreman complex in the current MSG context
there seem only two possibilities: either the Foreman and th=
tool occupy a single MSG process or they do not. [Note that in
any event, the Foremar must maintain a special relationship to
the tool. That is, it is the Foreman that provides much of tre
NSW virtual environment for the tool.] In the case where both the
Foreman and the tool occupy the same MSG process, the Foreman is
required to receive all incoming messages in order to filter out
the ones intended for the Foreman. This filtering would have to

A2-1

i
F

P . i s TS

st 2 e e e e R
o Rk + . i - b .0 b

i
™ -

, Foreman Impact on MSG 1/27/1976 e
4 4
i- be based on NSW addressing conventions transmitted as part of the /

message data. Messages intended for the tool would be passed to
| the tool by the Foreman using local operating system facilities
outside the scope of MSG. The major advantage of this approach
is that it is very convenient to apply the needed access controls
i on the tool's use of the message facility. The Foreman

! implemer ts for the tool a new abstract IPC facility which is
built upon the Foreman's use of MSG. The "new" IPC facility can

be customized for tool use if this is desirable. The major f
‘ disadvantage for the NSW stems from the fact that the IPC :
facility we want to provide to the tools is indeed very similar 4 %
to that offered by MSG. We would like a somewhat restricted i
version of MSG. Yet to achieve this, we must incur an extra r

transfer of control between the MSG facility and the Foreman for

each incoming and outgoing message of the tool. 1In addition,

this may involve additional handling/copying of the messages and T
duplicating some of the functions already performed by MSG (e.g.

s setting up and queuing alarms, handling multiple opesrations).

Furthermore, the Foreman's use of the MSG facility may conflict
(interfere) with that of the tool (e.g. MSG queues only a single 3
alarm; also, message sequencing is on an entire MSG process $
‘ basis). Such conflicts may force an otherwise unnecessary change
in the nature of the IPC facility available to tools.

i An alternative NSW design is one in which the Foreman and
its tool are separate MSG processes. Their distinct MSG

addresses would mean that MSG itself could mediate the separation
of Foreman messages from those of the tool. The main
disadvantage of this approach is that MSG, as currently defined,
does not provide any way for the Foreman to limit the tool's use 1
of the message passing facility. The type of control needed for *
the NSW application is fairly well understood. That is, we would
like to be able to limit the conversational partners with which
the tool can communicate, and have the Works Manager/Foreman 1

E combination responsible for changes in the set of legal

conversants. In addition, it may be necessary to forbid a tool

from executing certain MSG primitives which are not directly

) related to the sending and receiving of messages.

In the following sections we outline several additions to
MSG, which, if implemented, would allow an NSW tool to directly
i utilize the MSG IPC facility while allowing the Foreman to

i specify limitations on how the facility can be used. The MSG

' additions are in two basic areas. First, we would like to
establish the ability of an MSG process to "introduce" to MSG a
new process which MSG will then support. Such a new process has
presumably been created using whatever facilities are provided by
the local host operating system. The result of a process
introduction is that the new process is given an MSG process name
and can issue MSG primitives. Second, we would provide
additional MSG primitives which allow an introducing MSG process
to selectively manipulate an access control matrix which would be

A2-2

Foreman Impact on MSG, 1/27/1976

associated with every introduced process. Such an access control
matrix would indicate for each process the allowable objects of
each MSG primitive. [In general, the object of an MSG primitive
is an MSG process name.]

We view these additions to MSG as the cleanest, most
effective way to bring tools into %he NSW environment while
providing them with a flexible message passing communication
facility.

Introducing New MSG Processes

Many modern day operating systems provide mechanisms for
dynamic process creation. There has been no limitation placed on
the nature of an MSG process, so that multiple »nrocesses fin the
local host operating system sense) can serve as a single MSG
process. In this way MSG programs can continue to utilize any
dynamic process creation primitives available on the local host
operating system. However, as currently constituted, these MSG
processes must share a single MSG address and hence a single MSG
message stream. In some cases this is exactly what is desired
(¢.g. a structure which has one process (in the local system
sense) sending all messages, while another does the receiving).
However, in other instances (e.g. tool/Foreman) the concurrent,
asynchronous operation of multiple processes would be impeded by
the single message stream, and force each such MSG process to
implement its own local dispatching.

As suggested above, one way to allow MSG itself to mediate
the message stream between concurrent but cooperating processes
is to assign each a separate MSG address. It may at first seem
attractive to add to MSG the notion of a general purpose "t¢reate
new process". Such a general facility is not necessary for
building the NSW. To be sure, such a general inter-host process
creation and manipulation mechanism is a goal we have in creating
the support environment for the tools themselves, but it need not
be implemented by MSG alone. The current discussion is concerned
with being able to more flexibly use within the MSG context
whatever local host operating system process creation facilities
are avallable. With that goal, there are a number of reasons for
refraining from defining a standard MSG "create process"
primitive. One is that in many cases the creating process needs
to maintain a special relationship between itself and the created
process to maintaiu a particular type of cooperation. This may
take the form of being able to directly manipulate certain
aspects of the created process, or perhaps results from sharing
parts of an address space. In any event, it would be difficult
to be able to represent all of the potential r«~lationships from
all of the constituent systems, and even more difficult to
implement some of them. A second argument against a standard MS3G
"ocreate process" primitive is that it would have to be
accompanied by a suitable way of describing the process that was

A2-3

T R Y I L T T T T] LT T s e B i b L i

o e

ST AN I

A W, e e AR

=

RURIRPITS FETPUOTPpRo RN I PTG e —— e e

ERE <)

Foreman Impact on MSG 1/27/1976

to be created. Typically this is handled in the context of a e
file system, but there does not exist a unified MSG file store.
[Although a unified multi-host file system is part of the NSW

design, it is not realized at the MSG level.] i

An alternative to a unified MSG "create process" primitive
is the approach which acknowledges the local nature of the
creation and specification of new processes, but allows the
creating process to "introduce" to MSG the acreated process. Any
special relationship between the processes, as well as the means
of specifying how to create the process is handled on a strictly
local host basis. It is presumably complete before the
introduction is made.)

After introducing a new process to MSG, we will have
established two separate MSG addresses. The Foreman and tool can
have separate MSG message streams, with MSG mediating between
them. However, process introduction by itself does not solve all
of the problems raised by the NSW Foreman application.

Limiting the Use of MSG Facilities

Up until this point, the MSG documentation has been careful
to avoid specifying any hierarchy of control among the MSG
processes. The MSG processes are largely independent of one
another from a control standpoint. Communication between
processes via MSG messages is unrestricted, with each process
determining for itself the validity of any message it receives. +
The concept of "introducing" another process into MSG establishes

a natural place for integrating a form of control by selected MSG % 4
processes over other MSG processes. The introduction of any such
control is again motivated by the Foreman application. However, g

we attempt to define the use of the control facilities in a way
which does not preclude its application in other contexts.

As a result of process introduction, the introducing
process is established as the superior of the introduced process.
The superior/inferior relationship represents a tight coupling
among MSG processes, as ccatrasted to the loose coupling provided “
through message communication. Termination of a superior MSG
process also causes the termination of its inferiors. Superior
processes are permitted to regulate their inferior's use of the
MSG facilities. This is accomplished through the additior of a
control mechanism associated with the execution of MSG
primitives. 1In gen=zral terms, the control consists of
associating an access control matrix with each new MSG process,
and allowing superior processes to manipulate (through MSG
primitives! the contents of the matrix for their inferiors.
Entries in the matrix represent permission to execute a
particular MSG primitive on a particular object. MSG will reject
a primitive call from one of its processes if the access control

A2-4

—

Foreman Impact on MSG 1/27/1976

matrix does not indicate that this (call, object) pair is
allowable. An object is usually an MSG process name. However,
some MSG primitives (e.g. Stopme) do not take objects as
arguments. In such cases, a single entry regulates the ability
to execute such a primitive.

It may be helpful to view an MSG process which has no MSG
superior (i.e. has not been "introduced" by another MSG process)
as having an unrestricted access control matrix. An MSG process
can only supply its inferiors with rights that it currently has.
Removal of a right from an immediate inferior causes removal of
that right from any MSG process further down the hierarchy.
Applying access control to the sending of messages (data) has the
beneficial side effect of reducing bandwidth consumption by
unauthorized messages. It also increases the confidence in the
validity of messages which are received.

MSG Primitives

The following is a set of primitives which, if added to
MSG, would allow the Foreman to function in the previously
discussed mode. (This is just a rough sketch of the primitives,
along with some possible implementation details).

1. Introduce New Process (pointer to process descriptor, pointer
to initial access control information, location of returned MSG

name, disposition)

This is the primitive which is used to introduce a new process
into MSG. In response to this primitive, MSG establishes an MS3G
address for the introduced process. The generic component of the
generated namc is always null, implying MSG has no knowledge of
the function performed by the process.

It also establishes the issuing MSG process as the superior of
the process, and initializes the access control matrix based on
the data passed in the parameter list. The new MSG name is
returned to the calling process.

process descriptor: local host operatirg system dependent
parameter for conveying to MSG the identity of the new process.
The exact nature of this parameter is dependent on the entity
which is discernable as a process on the local operating system.

access control information: list of pairs, where each pair is of
type (primitive, list of objects). Primitive denotes a particular
MSG primitive, and list of objects is a list of MSG process
names. Special designations exist for the classes of objects
"a11" and "none". Individual process names include all defined
MSG process name fields, with the addition that each field may
optionally have the "all" designator.

A2-5

AR
Bestas

i T ol

Foreman Impact on MSG 1/27/1976

2. Renounce Process (MSG process address, disposition)

This primitive is the inverse of process introduction. MSG i
checks to see if the issuing process is the superior of the

object process, and if so MSG causes the removal of the object

process (including removing any knovwledge of its existence from

MS3 tables). This also forces immediate rejection of all

outstanding MSG operations on behalf of the object process. Any

MSG processes introduced by the object process are similarly

renounced. Note that this does not have to necessarily result in

the destruction (in the local operating system sense) of whatever g
constituted the MSG process. It only makes MSG itself unaware of :

its existence. .

2. Update Control Table (MSG process name, add/delete indicator,

-

pointer to access control information, disposition)

This primitive is used to manipulate the access contrel
information associated with an inferior MSG process. MSG checks
to see if issuing MSG process is the superior of the chject
process, and if so updates the access control matrix of the
object process according to the supplied parameters. In the case
of additions, the (primitive, object) pair specified must be i
currently accessible to the issuing process in order for this
update to succeed. A deletion causes the same pair to be removed
from any inferiors of the object MSG process.

access control information: same as defined in the introduce
primitive.

add/delete: boolean which distinguishes adding entries from
removing them.

A2-6

B e T s v] caaalet LT L e ke e e Bl Pell - il b i [E el s o s 1 L o i = W 4| - =
—) et gk bmlin oo e Tk e oY b et i bt bl e e it Lbe el Mlalpcial g el e i it i e Rk L)i - B L

Unclassified
_SECURITV CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE , L READ INSTRUCTIONS
Z. GOVT ACCESSION NO| & R I ENT'S CATALOG NUMBER
BE 23266 j

e Yoreman: Providing the Program“'“\

T

Execution Environment for the National
Software Works.

- [-

Scientific N”SFTQJ

i 2 6, PERFORMING ORG. REPORT NUMBER

i

v AT

010

7 y2u - l T. CONTRACT OR GRANT NUMBER(s)
Richard E./échantz #if
| Robert E./Millstein (1;'* _?}4'??iF'E??§¢

-, § Yh- C-gg7
9. PERFORMING ORGANIZATION NAME AND ADDRESS I

Vi
Bolt Beranek and Newman Inc.*- .
50 Moulton Street C;Zé;}
Cambridge, Massachusetts (2138
1. CONTROLLING OFFICE NAME AND ADDRESS il

Defense Advanced Research Projects

Information Processing Techniques
_'__'L_4_M Wilsaon,.Blvd., Arlington, VA
4

. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Olied] | 15. SECURITY CLASS. (of thie teport)
Office of Naval Research tnelassified
Code ONR-43(D
8ad .N. Qulng).l St.:r?et T84, DECL ASSIFICATION/DOWNGRADING
Arlington, Virginia 22217

16. DISTRIBUTION STATEMEN T (of this Report) _
Distribution ©f this document is unlimited. It may be
released to the Clearinghouse,‘Dgpartment of Commerce for

sale to the general public. é 7
(724 € 3p.
ch

17 DISTRINUTION STATEMENT (of the abefract enfered I-MUEk 2Ll dlilarnniiesestdpastjom

* (8 “This "research supported by DARPA under ARPA Order No. 29f1

(b) This report also published by Massachusetts Computer
Associates, Document No. CADD-7604-0111.

19. KEY WORDS (Coniinue on reveres side if neceseary and identify by biock number)

National Software Works Tool Bearing Host
Computer Networks Network Protocols
Distributed Systems Network File System

\\\ Resource Sharing
\

ABSTRACT (Continue on reveree side If neceeeay and identify by block number)

This report describes the function and operation of the
National Software Works (NSW) system component known as the
tool Foreman. A tool is a software development computer
program made available to users through the multi-computer NEW
system. The Foreman provides tools with their NSW execution
environment, and ensures the smooth operation of tools within
the NSW. Various aspects of the tool environment and the
|__Foreman interface with other NSW sSystem 2racesses are.descrihed. F(\

DD |52:u7: 1473 EOCITION OF) NeY 65 1S OBSOLETE

Unclassifi

SECURITY CLASBIFICATION OF THIS PAGE When Data Entefec) :

