
uu^ZSbwa^ """"""v,! Mmmmmmm - _

I
J
I
I
I <M

00
I CO

to

I
I
I
I
I
I
I
I
I
I

BOLT BERANEK AND NEWMAN «* *

CONSULTING
RESEARCH

BBN Report No. 3266 March 1976

THE FOREMAN: Providing the Program Execution Environment
for the National Software Works

Richard E. Schantz

Robert E. Millstein

Preliminary
March 31, 1976

This work was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and^y Rome
Air Development Center. It was monitored hy Rome hir
Development Center under Contract Number ^^Jj;7 J'^S«
and by the Office of Naval Research under Contract Number
N.0014-75-C-0773.V

i

m^mmmhitm.^^^. ■-.-■■■-. ■ ^■.. ^ ——- rtiiii«Mii%aii#ai«ia%f#

iMhtte •.a^».,.

.;■ A

The Foreman: Providins the Program
Execution Environment for
the National Software Works

Richard E. Schantz
Bolt Beranek and Newman Inc.

Robert E. Millstein
Massachusetts Computer Associates Inc

/

Preliminary
March 31, 1976

Bolt Beranek and Newman Inc. Report No. 3266
Massachusetts Computer Associates Inc. Document No. CADD-7604 Oil,

This work was si pment
supported by the Advanced Research Projects

Agency of the Department of Defense and by Rome f^ develop ^
einher It was monitored by Rome Air Development C«ntjr undtr
contract number F30602-76-C-009^and by t^e 0 f.ce of Naval
Research under contract number N0014-75-C-UfrJ.

.£ I

Acknowledgement

The authors wish to thank Robert H. Thomas of BBN for help In
developing this document.

k

-

li

. .. .

Table of Contents

Section I - Introduction

1.1 Overview
1.2 The Role of the Foreman
1.3 Aspects of the Foreman
1.4 Short Scenario of Beginning an NSW Session
1.5 Conventions Used in This Document

Section II - Controlling the Execution of a Tool

2.1 Initiating an Instance of a Tool
2.2 Removing an Instance of a Tool
2.3 External Control of Execution
2.4 Entry Vectors
2.5 Detailing the Functions
2.6 Voluntary Tool Termination

Section III - Status Probes and Resource Utilization Bounds

Section IV - NSW Runtime Environment

Section V - NSW File System

5.1 Two File Spaces
5.2 Using Local Workspace
5.3 Version Numbers
5.4 Maintaining an LND
5.5 File Names in NSW
5.6 File Semaphores
5.7 File Manipulation Primitives
5.8 Specification of the File System Primitives
5.9 Other File Related Primitives
5.10 Implementation of the File Primitives
5.11 Extension of the File Name Syntax Ä

Section VI - Tool to Front End Communication

Section VII - Tool to Tool Invocation and Communication

7.1 Present State
7.2 Emerging Tool-Tool Concepts

Section VIII - Tool Encapsulation <

Section IX - Batch Tools

Section X - Recovering from Errors and Malfunctions
(this section deferred for now)

ii

LI

G

D
D

-

'

a
:

.:

:: \

D
n «

—

i

i'i 1 i

j i

.-««i ' 7TfcMrii£»>

Section XI -

Appendix 1 -

Appendix 2 -

The Foreman and Debugging NSW Tools
(this section deferred for now)

Functional Summary and Transmission Values

Foreman Induced M3G Additions

i i

111

U^iZBMtfttfi'fc i
HPm HPRIBilH

■HMHHHiMM

Foreman Specification March 31, 1976

The Foreman: Providing the Program Execution
Environment for the National Software Works

Introduction

i

0
v.
D

M

i Overview

The
the ARPAN
computer
compilers
activity,
expectati
needed fo
admlnlstr
network,
system.

Natfo
ET, p
progr
, deb

A p
on th
r the
ative
As s

nal Soft
rincipal
ams and
uggers,
rominent
at the h
executi

ly dispe
uch, the

ware Works (NSW) is a facility resident on
ly intended to support the construction of
to provide software tools (e.g., editors,
etc.) which can be used in the construction
factor in the conception of NSW is the

ardware, software, and human resources
on of a task may be geographically and
rsed, although connected through the
NSW is a distributed, multi-computer

The major components of the NSW ar
coll '-ion of tool-bearing hosts, one o
system, through which the users access
acce s--granting, resource-allocating ce
Works Manager (WM). A tool-bearing hos
system which houses software developmen
users through the NSW, and which additi
for NSW user files. To become a TBH, a
of supervisory software modules. Inclu
modules which handle the NSW communicat
Interprocess Communication Facility for
Newman Inc. Report No. 3237 and Massach
Inc. Document No. CADD-7601-2611) , the
file transfer requirements (see File Pa
Facility for the NSW, Mass. Computer As
CADD-7602-2011), and the modules which
functions for invoking and controlling
providing a local host NSW tool executi
latter tool-oriented modules are collec
Foreman component of the NSW, and are t
document.

e the ARPANET, a
r more front-end (FE)
the NSW, and an
ntral component called a
t (TBH) is a computer
t tools made available to
onally may provide storage
host must implement a set

ded in this set are the
ion needs (see MSG: The
the NSW, Bolt Beranek and

usetts Computer Associates
modules which handle NSW
okage: The File Handling
sociates Document No.
provide the local host
NSW tools, as well as
on environment. These
tively known as the
he subjecr of this

The Foreman specification is especially intended for those
persons responsible for implementing TBH Foremen. In many cases,
we are merely presenting approaches to problems which must be
faced. While we do require that most (if not all) of the
functionality we will specify be made available to the tools, the
form in which it is presented to the tool is a purely local
decision. The only strict requirement is that each Foreman must
implement the various functions which can be Invoked externally
(see Appendix 1). The exact time and sequence for the Foreman
itself invoking functions in the other NSW components (e.g., WM)

-1-

 ; i

Biimli ift lii r gfJK- "'' ' •, A;..

Foreman Specification March 31, 1976

is discretionar
implementation
because of the
interface, aspe
should not be c
builder. Each
the exact detai
tool builder's
NSW TBH personn
beginning to in

y. In ra
strategi
discreti
cts of t
onsidere
Foreman
Is of hi
guide.
el for t
tegrate

ost are
es whic
onary n
his int
d as fi
impleme
s tool
Potenti
he tool
their t

as,
h we
atur
erfa
nal
nter
inte
al t
•s i
ool(

this document also suggests
feel are worthwhile. However,

e of the Foreman/tool
ce mentioned in this document
specification to the tool
is responsible for providing

rface through a host specific
ool builder's should contact
mplementation host before
s) into the NSW.

1.2 The Role of the Foreman

The Foreman is t
system. Each instanc
responsible for the s
NSW components. In c
the Works Manager (WM
Front End (FE) compon
with its NSW executio
under the control of
under a Foreman are c
NSW structure itself.

he local-to-the
e of a tool has
mooth operation
onjunction with
) component, an
ent, the Forema
n environment,
a Foreman. Com
onsidered part

-tool component of the NSW
a Foreman which is
of the tool with the other
the facilities supported by

d to a lesser extent the
n provides the tool instance
Every tool instance runs

ponents which do not run
of the implementation of the

No
"tool"
compute
abstrac
while a
reflect
about e
the WM,
tool.
a dynam
Foreman
maintai
specifi
of "the
of the
context
as a pr
instanc

te carefully the distinction between th
and the concept of a "tcol instance",
r program, while a tool instance corres
t notion of a process. A tool is a sta
tool instance is dynamic. The diffire

ed in the nature of the information mai
ach. A tool has a static tool descript
which describes information pertinent
Information pertaining to a tool instan
ic data base, partly within the WM and

The dynamic entries referring to a t
ned for the duration of the tool sessio
cation we shall often simply refer to "
tool instance", in order to avoid the

word instance. However, it should be c
whether we are referring to the static

ogram (hardly ever) or the dynamic cone
e as the execution of that program (aim

e concept of a
A tool refers to a
ponds to the
tic concept in NSW,
nee Is also
ntained by the NSW
or, maintained by
to each use of the
ce is maintained in
partly within the
ool instance are
n only. In this
the tool" instead
constant repetition
lear from the
concept of a tool

ept of a tool
ost always).

The Foreman has two well defined parallel interfaces, both
of which are described in this specification. One interface is
between the Works Manager processes and the Foreman. This
interface is organized around the MSG message passing capability,
and involves both the WM instructing the Foreman about handling
the tool instance, and the Foreman requesting WM services on
behalf of its tool. The responses to these commands/requests are
obviously also oart of the WM/Foreraan message interface. The

-2-

^-N

Foreman Specification March 31, 1976

[

i
1.

I

1
I I

Ü

i
I

other well de
instance. Th
it is monitor
creating and
tool, the For
the tool. It
the various f
the host oper
interface can
by the implem
Examples of t
subroutine ca
the IBM serie
host-specific
nature of the
the exact nat
that host. I
which the For
provide acces
addition , we
which can gre
tools which a

fined interface
e Foreman has a
ing. In additio
subsequently rem
eman maintains a
is through this

unctions provide
ating system env
take any of a n

enter of the For
he various types
11 (as in MULTIC
S, JSYS in TENEX
tool implemente
tool/Foreman li

ure of the NSW s
n this document,
eman is expected
s to. Some impl
mention an optic
atly ease the ta
Iready exist as

is between the Foreman and its tool
special relationship with the tool
n to having the responsibility for
oving the actual instance of the
n operating-system-like interface to
interface that the tool can invoke

d by the NSW environment to augment
ironment. The tool/Foreman
umber of forms, the selection made
eman for a particular host.
of tool/Foreman linkage include

S), operating system call (SVC in
), and short messages (ELF). A
r's guide will detail the exact
nkage (for each system) as well as
ystem calls available to tools on
we attempt to specify the functions
to implement, help implement, or

ementation details are given. In
nal Foreman function (encapsulation)
sk of bringing into the NSW selected
local hjst programs.

This docume
specifications o
initial tools do
has there been a
such as error re
phased implement
some functional
noted where we i
Other instances
noted in any res
of the Foreman s
these areas. In
evolve, extensio
can be expected,
sound design str
(almost) all of
initial specific
goal.

nt should be viewed as the first o
f functions to be performed by the
not require sophisticated system

dequate time to fully investigate
covery. Because of this, and beca
ation plan for the NSW, this docum
areas, and incomplete in others,
ntended to have functions incomple
of this are oversights, and should
ponse to this specification.) Fut
pecification will clarify and furt
addition, as the NSW concept and

ns to the capabilities supported b
As a statement of intent, we fee

ategy to provide tools with mechan
the things a user at his terminal
ation of the Foreman only partiall

f a series of
Foreman. The

support, nor
important areas
use of the
ent is vague in
(It is clearly
tely specified,
be immediately

ure revisions
her define
the NSW system
y the Foreman
1 that it is a
isms for doing
could do. The
y reflects this

It i
involved
we are bu
the parti
system to
them into
This appr
under whi
blend of
operating

s impor
in or b
ilding
cipatin
help m
resour

oach is
ch tool
the env
system

tant to
ased on
the NSW
g machi
anipula
ces mor
obviou
instan

ironmen
, augme

emphasize that the NSW project is not
writing new operating systems. Rather,
by allocating subsets of the resources of

nes, and using the existing operating
te these resources (and at times transform
e appropriate to the NSW environment),
s upon examination of the abstract machine
ces are run. The tool environment is a
t originally provided by the host
nted in selected areas with facilities

•

•

L i

-3-

I

Foreman Specification March 31, 1976

implemented b
mold existing
This is the c
capability to
Other times t
environment,
operating sys
MSG communica
flexibility o
influence the
In specifying
independent a
and avoid rel
an implementa
on a wide var

y NSW components
local host faci

ase when we util
support access

he NSW facilitie
so that adopting
tem is a possibi
tion facility,
f the existing o
structure of a
the role of the

s possible of th
iance on particu
tion is not only
iety of operatin

Sometimes it
lities into new
ize an existing
to files under t
s will be compie
NSW standards d

lity. Such may
Accordingly, the
perating system
Foreman componen
Foreman, we hav

e structure of a
lar features of
possible but re

g systems.

will be
specifi
local f
he NSW
tely ne
irectly
be the
struct

Will gr
t for a
e tried
ny oper
any sys
asonabl

necessary to
cations.
ile system
system,
w to a host
in the

case with an
ure and
eatly
ny machine.
to be as

ating system
tem. We hope
y efficient

1.3 Aspects of the Foreman

There are five aspects of the functioning Foreman which are
of concern in this document. They are:

* providing for tool startup/control/termination

* providing the NSW runtime environment for tools written to
function in the NSW

* (optionally) providing for encapsulation of programs
written exclusively for the local host operating system by
defining mappings from existing local operating system
functions to NSW system functions

* providing for batch type tools

* providing mechanisms for debugging tools and recovering
from errors and malfunctions

■ ■■

- -

■it

!

Additionally, each tool must be prevented from interfering with
other tools and other processes running on the host operating
system. Toward this end, we envision a protection domain
surrounding the tool, and a temporary workspace for file
manipulation during a tool session. In some implementations the
host operating system may provide support for these requirements
(e.g. separate work directories temporarily assigned to the tool
for the duration of the tool session, and subsequently cleared
and used by other tools). Where the host operating system does
not provide such support, the Foremen themselves must assure tool
separation and maintain boundaries between workspaces.

-4-

0

D
n

 ^.__......

■ i r« »i ~^^f-v-" am

u
n

1.

D

D
D

Foreman Specificatio

1.4 Short Scenario of Besinning an NSW Session

March 31, 1976

At this point, we provide a scenario of the beginning of a
typical NSW session. It serves to Illustrate the roles of the
various NSW components and sets a proper context for the
discussions to follow. The reader Is assumed familiar with the
documents referred to above, and In addition the document Works
Manager Procedures, reproduced within Mass. Computer Associates
document CADD-7603-0411 (also available separately as MCA
document CADD-7603-0412).

In this scenario we assume that there exists an NSW process In
the (local to the user) Front End machine which is receptive to
an attention character on a terminal. We also assume that WM
command interpretation is done within this FE process. Our
scenario begins from the point where the user has a dedicated FE
MSG process assigned to handle his terminal port.

The FE process starts by prompting the user for his login
information. After accumulating the pertinent information, the FE
process sends the data to a Works Manager process using the
generic addressing facility of MSG. The WM receiving the login
message will verify the login parameters an.i note the full name
of the FE proce; s servicing this user. (The return address on
the message indicates the FE process name.) A specifically
addressed message from the WM process to the FE process
communicates the success or failure of the user login.

If we assume a s
a tool, the FE g
pertinent Inform
WM. The request
asking the WM to
of the NSW user,
indeed run such
from an Internal
to it, the WM fo
information and
host which has b
instance. This
encapsulated, us
of the FE proces
for the tool and
The Foreman then
of the tool whlc
send MSG c-pabll
Foreman MSG name
facilities. The
process with a s
MSG addresses of

uccessful login, then, when the user wants to run
athers the name of the tool along with any other
atlon and sends the request generically to any
is actually one in which the FE process is
establish a new Instance of the tool on behalf
The receiving WM verifies whether the user can

a tool, and, if so, retrieves the tool descriptor
WM data base. Based on Information accessible

rmulates a message containing the tool
sends it generically to a Foreman process on the
een selected (by the WM) to run the t^ol
Information Includes the nature of the tool (e.g.
es MSG directly, etc.) and the MSG process name
s for this user. The Foreman selects a workspace
establishes the tool Instance in this workspace.
returns (to the WM which called it) the MSG name

h was created. This is done using the specific
ity. The tool name may be different from the
in the case of non-encapsulated tools using MSG
WM then replies to the original calling TE

peclflcally addressed message which indicates the
the tool process and the Foreman process.

-5-

i ^

.«feiyii.,;,..vrnftrffi' '■ ■ -..m'ii—^—

Foreman Specxfication March 31, 1976

For the ca
our scenar
each other
other. Fo
tool reque
Foreman se
FE-Tool co
the FE and
communicat
match, and
the user t

se whe
lo is
1 s spe
r the
sts to
nds a
nnectl
tool/

ion pa
the c

o the

re th
compl
cific
case
use

messa
on is
Forem
th,
onnec
tool

e tool
ete sin
name a

where t
a netwo
ge to t
needed

an use
As soon
tions a
and vie

and FE c
ce both
nd can s
he tool
rk Telne
he FE in

Using
MSG prim
as the

re estab
e-versa.

ommuni
the FE
end me
is enc
t conn
dicati
each

itives
MSG co
lished

cate
and
ssag
apsu
ecti
ng t
othe

to
nnec
, da

MSG messages,
)l/Foreman have
tirectly to each

via
too.

es d;
lated, or where the
on tc
hat

o the FE, the
a direct

r's specific names,
establish a direct
tion requests
ta can flow from

1.5 Conventions Used in this Document

To avoid confusion arisin
names of the various functions
Works Manager, the Foreman and
within this document to help t
component implements a given f
F$ to indicate an externally c
the Foreman (e.g. F$BEGINT00L
function within the Works Mana
capitals with no $ prefix to i
tool-callable primitives (e.g.
prefixes are only used as expo
the actual function name in ei
actual function name is the st
the F$ and W$, as appropriate,
conventions are currently thos
his network message of 10 Marc
modified PCPB8 format. Howeve
further changes. The exact sp
sent to a Foreman and returned
Appenlix 1 of this document.

g from the ambi
implemented wi
the tool, we a

he reader under
unction. We ar
allable functio
), a prefix of
ger (e.g. W$DE
ndicate Foreman
DELETELOCAL).

sitory aides, a
ther the Forema
ring remaining

Interprocess
e specified by
h, 1976. These
r, this format
ecification of
from a Foreman

guous nature of the
thin and for the
dopt a convention
stand which
e using a prefix of
n implemented within
W$ to indicate a
LIVER) and all
-implemented,
The F$ and W$

nd are not part of
n or the WM. The
after stripping off
request transmission
Jon Postel (SRI) in
requests utilize a

is subject to
the arguments to be
are compiled in

D
Ö

n

oj

a

-6-

Foreman Specification March 31, 1976

II. Controlling the Execution of a Tool

2.1 Initiating an Instance of a Tool

i
i
D

The MSG faci
Foreman processes
can begin our spe
as an MSG process
initialization, a
message from a Wo
sent as a generic
variety (i.e. hos
Receivegeneric ca
by the Foreman in
instance of some
F$BEGINT00L messa
be run. (The WM
from a static too
the basis of this
invoke an instanc
the running tool.

lity itself i
in response

cification as
, and control
Foreman must

rks Manager p
message addr

t type), and
pability supp
dicates that
tool, on corrM]
ge contains a
retrieves the
1 descriptor
name, the Fo

e of the tool

s responsible
to demand for
suming the ex
lying within
be receptive
rocess. The
essed to a Fo
can be receiv
orted by MSG.
it is ready t
and from a Wo
host specifi
host specifi

it maintains
reman is expe
, while maint

for the allocation of
their use. Thus we

istence of the Foreman
the Foreman. After
to a F$BEGINT00L

F$BEGINTQOL message is
reman of the proper
ed via the

The Receivegeneric
o support a new
r!:s Manager. The
c name of the tool to
c name for this tool
for each tool.) On
cted to be able to
aining control over

Prior to initiating the tool, the
workspace in which to run the tool. I
workspace, usually by clearing it of a
set of Foremen processes on a TBH are
the set of workspaces the TBH has for
organization and utilization of the wo
completely to the Foreman. However, t
to which workspace a tool has been ass
initiate proper file movement into and
The host specific parameters describin
TENEX they are a directory name and (i
are returned to the WM as results of t
is currently no available workspace, t
rejected. The WM maintains lists of t
running tools, and these play an impor
Foreman recover from system crashes wi
left in the workspace.

Foreman selec
t then initial
ny remaining f
responsible fo
NSW tool suppo
rkspaces are 1
he WM must be
igned, so that
^ut of the to

g the workspac
f necessary) a
he F$BEGINT00L
hen the WM req
he TBH workspa
tant role in h
thout losing u

ts a
izes this
lies. The
r Managing
rt. The
eft
informed as
it can

ol workspace,
e (e.g. in
password)

If there
uest must be
ces which are
elping a
ser files

The
not to s
knows ab
includes
created
which se
An optio
of local
accessib
the tool
from the

F$BEGI
tart ex
out the
the na
(usuall
rves as
n of th
to the

le to t
should
Forema

NTOOL m
ecution
NSW (n

me of t
y the F
the FE

e F$BEG
tool f

he tool
be all

n .

essage mc
of the to

ew tool/ol
he process
E represen
to the us

INTOOL mes
lie names

These f
owed direc

ludes fla
ol and wh
d tool) .
on whose

ting the
er (if di
sage is t
which are
lies are
t access

gs indicating whether or
ether or not the tool
The message also
behalf the tool was

user) , and the process
fferent from the above).
he inclusion of a list
to be directly

non-NSW files to which
without any intervention

-7-

Li

Foreman Specification March 31, 1976

ZJ,? Removing an Instance of a Tool

Throitghout the tool session, the Foreman must be receptive
to an F$EK;)TüOL specifically addressed MSG message from any Works
Manager process. The message will contain a reason for ending
the tool session. In all cases, the Foreman will return to the

after which has been run caller the cost incurred by the tool
the actual termination of the tool. The Foreman will terminate
itself after responding to the F$ENDT00L request, and tne
association between the tool/Foreman and the NSW system will be
broken .

To help
WM will prec
Receipt of t
forthcoming
alarm with c
its incoming
request. On
need not be
F$ENDT00L me
should be pr

Foremen be receptive to the
ede a F$ENDT00L request with
his alarm code will signal t
F$ENDT00L message. Once a F
ode=1, it is expected to imm
messages, discarding all ex

ce a Foreman begins process!
receptive to any further mes
r.sage which was not preceede
ocessed nonetheless.

F$ENDT00L request, the
an MSG alarm of code=1.

he Foreman of the
oreman has received an
ediately begin processing
cept the F$ENDT00L
ng a F$ENDT00L message it
sages or alarms. A
d by an alarm with code=1

The accounting information returned in response to an
F$ENDT00L is a list of accounting data items. The first entry in
the list is an integer which is the cost in cents of running the
tool for this session. The remaining items in the list are host
specific measures of various resources consumed by the tool.
Each TBH implementation registers with the NSW which resource
measurements it takes and will return to the WM.

(Note: at
certain systems
it, with the po
as a different
operation were
assigned to eac
might be reduce
already in plac
we recommend th
or not to try t
that the reply
not this was do

some future t
to simply ha
ssibility of
instance of t
possible, and
h Foreman, th
d by selectin
e. Since thi
at part of th
o maintain th
to F$ENDT00L
ne.)

ime, it may be advan
It the tool instead
eventually re-initia
he same tool. If su
if the WM kept trac

en startup costs for
g a Foreman with the
s may not be relevan
e F$ENDT00L message
e tool in the inacti
correspondingly indi

tageous on
of terminating
lizing the tool
ch a mode of
k of the tools
tool invocation
appropriate tool

t to all hosts,
specify whether
ve state, and
cate whether or

D

u
7.
* •

o

■:

I

2.3 External Control of Execution

If possible, the Foreman should be able to handle
F$STARTT00L and F$ST0PT00L messages. These are used to
externally control the progress of the tool through its
algorithm. F$STARTT00L can be used to initially start the tool
in cases where F$BEGINT00L did not specify immediate startup. A

-8-

•
1

„I* 1. •Mwe^..

Foreman Soecification
I

March 31, 1975

minimal start/stop facility wouK" provide for suspending the
execution of the tool while maintaining its complete current
state. The tool would be subsequently continued from the point
it was stopped, or i* would be aborted. If the tool can bv?
stopped, then it must at least be able to be started (continued)
again. The suspending and resuming of tools on certain hosts may
not be possible because the host operating system does not
support such behavior. In these cases, tool execution will
automatically begin with the F$BEGINT00L message, and F$STARTT00L
and F$ST0PT00L messages will be rejected.

A more extensive start/si:,op facility encompassing stopping
as well as starting through an entry vector is often desirable,
and we have made provision for this at the WM command language
level. The implementation of this extension is highly desirable
where it is possible. We specify the characteristics of the
richest facility. It is the responsibility of the Foreman
implementation to either reject requests for which it has no
mechanism, or to map the request into an alternative well
documented in the tool builders guide. The facility the WM
supports builds upon the (required of all implementations)
F$BEGINT00L and F$ENDT00L messages. These requests initially
create the tool instance and ultimately (forcefully) cause the
tool to immediately cease its existence. These requests roughly
translate to the user saying to the WM "runtool" and "aborttool".
During the execution of a tool, the user can of course request
that the WM stop the tool. To do this the WM sends to the
appropriate Foreman a F$ST0PT00L message, indicating the reason
for stopping. [Note that ill messages originating in the WM and
destined for a Foreman of an existing tool are sent usirg the
Sendspecific MSG facility, and can be received using tKe
Receivespecific MSG facility. The responses (if any) are sent
directly to the WM which made the request. Requests emanating
from the Foreman, however, are sent generically to any WM, with
the reply obtained as a message specifically addressed to the
appropriate Foreman.] During a period of tool inactivity due to
the effect of a F$ST0PT00L, the Foreman still must process MSG
messages concerning the tool. It must always be able to process
an F$ENDT00L message, and may have to process any replies to
outstanding reauests made to other NSW processes (e.g. a request
to the WM to retrieve a copy of an NSW file). However, any
results to be returned to the tool may have to be queued awaiting
the command to continue tool execution.

D
D
D
I I
Li

2.H Entrv Vectors

In a complete Foreman implementation, a stopped tool can be
started in a number of ways. We introduce the notion of entry
vector to unify the start tool concepts. The WM recognizes
several standard entry points for its tools. These are an
initial entry point (cold start), a standard re-entry point (warm

-9-

Foreman Specification

start),
stopped
defined
impleme
languag
obvious
termina
passed
saving
impleme
circums
resourc
while c
that th
complet
Foreman
speclfi
obligat
notice.

a terminati
entry point
as needed .

nt private e
e .) The mea
, except per
tion entry p
to a final t
some of the
nt commands
tances may e
es) where it
ircumventing
e terrainatio
e reasonably
that tool p

ed time fram
ion to forci

on entry p
. (Other
It may al

ntry point
ning of al
haps for t
-jint is to
ool cleanu
work of th
to do this
xist (e.g.
is useful
the norma

n sequence
quickly,

recessing
e, then th
bly abort

oint, and a
system wide
so be possib
s invocable
1 of the sta
ermination.
allow a use

p routine, w
e session,
without WM
runaway too
to force an

1 tool dlspa
implemented
If the tool

is complete
e Foreman ha
the tool exe

March 31, 1976

continue from where
entry points will be
le for tools to
via the WM command
ndard entry points is
The intent of the

r to force control to be
hich may also involve
Tools will normally
intervention. However,
1, depletion of
orderly termination
tching. It is expected
by the tool will
has not signalled its

within some host
s the right and
cution without further

When installing a tool in the NSW, the tool supplier
indicates which entry point functions are available in the tool.
This information is maintained by the WM in the interactive tool
descriptor, and is used to regulate the type of F$STARTT00L
requests that are sent to the Foreman. In the WM tables the
various entry points are statically denoted by a small integer
(index). The standard entry points are denoted by the same index
for each tool. It is entirely the responsibility of the Foreman
and its host operating system to devise a method of converting
these indices into actual program entry points (e.g. program
counters) for executing the oroper function. A Foreman
implementation can impose coding standards for these purposes on
the NSW tools which want to support the entry point concept.

N.B.
it is
to in
Since
messa
gener
seque
means
and s
simul
The c
NSW u
curre
proce
furth
detai
date.

When usi
the res

sure the
in gene

ge deliv
ically t
ncing at
is that

top requ
taneousl
oncept o
ser cont
ntly bei
dures to
er in a
led elab

ng a
pens
cor

ral
ery,
o an
the
to

ests
y-
f to
roll
ng d
be

subs
orat

ny form
ibility
rect seq
MSG make
and sin

y WM, it
command

ensure c
should

A final
ols cont
ng a too
efined.
used in
equent s
ion of t

of star
of the
uencing
s no as
ce WM c
is mos
langua

orrect
not be
note on
roling
1 throu
We env

tool-to
ection
hese co

t/stop fac
WM command
of the st
surances r
ommand Ian
t convenie
ge Intel pr
behavior,
allowed to
tool cont

other tool
gh the WM
ision the
ol control
of this do
ncepts is

ility
lang

art a
egard
guage
nt to
eter,
indiv
be p

rol i
s, as
comma
same
. Th
cumen
postp

for tool
uage inte
nd stop r
ing the o
requests
enforce
All thi

idual too
ending
s also in
contrast

nd langua
set of Fo
is is dis
t. Howev
oned to a

control,
rpreter
equests.
rder of
are sent

s really
1 start

order.
ed to the
ge, is
reman
cussed
er,
later

T

::

I

««

-10-

igiiii TMii'iiair' '•" " 'itf'

1

1
Foreman Specification

2.5 Detailing the Functions

March 31, 1976

Foreman procedures for tool control: (called by any WM process)
The reply to each function invocation includes a "result"
variable, which indicates if the operation was successful, and if
not supplies a code indicating the reason.

F$BEGINT00L (program-name, tool-type, entvec, FE-addr, cr-addr,
filename-list) -> result, qstart, workspace-descriptor,
tool-addr

u

I I

A recuest of this type brings the tool instance to
Program-name is a character string naming the prog
forms the body of the tool. Tool-type is a variab
indicating the nature of the program as an NSW too
defined below). Entvec indicates whether or not t
execution of the tool, and if started, through whi
point. FE-addr and cr-addr are MSG process addres
front end process and the creating process respect
Filename-list is an optionally specified list of n
files (in the local host syntax) to which the tool
unrestricted access. Some Foreman implementations
care to protect the access to non-NSW local files,
running under such a Foreman would not need a file
passed to the Foreman at tool initialization time,
which do not use non-NSW files would also not need
recorded with the WM for the tool initialization p
Qstart indicates whether or not the tool execution
A workspace-descriptor is returned to the WM to al
movement into the tool workspace. Tool-addr is th
address of the tool, which is often the same addre
Foreman (see Appendix 2).

life,
ram which
le
1 (values
o start
ch entry
ses of the
ively.
on-NSW local
is allowed
may not
Tools

access list
Tools

a file list
rocedure.
was begun,

low file
e MSG
ss as the

F$STARTT00L (entvec) -> result

The entvec variable indicates how the tool is to be placed
back in the executing state: either to be continued from where
it was last stopped, or through a specified entry location.

F$ST0PT00L (entvec) -> result

When a WM invokes this function the Foreman stops the
execution of the tool and saves its state. We have provided
entvec as an argument as a convenience in performing the dual
operation of first stopping execution, and then commencing
execution elsewhere through an entry point. Attempting to
start an already executing tool, or stopping an already
stopped tool will elicit an error condition.

F$ENDT0GL (reason, termtype, qmaintain) -> result,
accounting-list, qmaintained

-11-

fe^Btal*iiir.lii -

Foreman Specification March 31, 1976

i

Reason is a code indicating why the tool instance is being
removed. Termtype indicates the type of file processing
required of the Foreman before completing the F$ENDT00L. This
jill be further clarified in later parts of the document.
Qmaintain is a boolean indicating whether or not the Foreman
should attempt to maintain the tool image for use as another
Instance. Qmaintained is another boolean which the Foreman
uses to communicate to the WM whether or not the image has
been maintained. Accounting-list indicates the resource cost
and utilization for the tool session.

tool-type: value is an index
=1 -> encapsulated tool
=2 -> tool uses NSW calls, does not use MSG
=3 -> tool uses NSW calls, also use MSG facilities

entvec: value is either empty or an index
empty -> do not start tool (if possible)
=0 -> continue from point where stopped (illegal in
F$BEGINT00L)
=1 -> cold start entry point
=2 -> warm start re-entry point
=3 -> termination routine entry point
=4 -> reserved for expansion
=5 -> reserved for expansion
=6 ... -> tool specific entry points

2.6 Voluntary Tool Termination

As mentioned above, the Foreman must provide its tool with a
primitive operation for indicating that the tool has completed
execution. The HALTME primitive is the means by which a tool
voluntarily relinquishes control for the final time. The Foreman
may yet have to save files for the tool (see subsequent sections
on the file system and encapsulation) before actually removing
the job from the NSW domain. Through the termtype parameter of
HALTME, the tool can indicate the type of Foreman file processing
it expects. The current choices are:

* termtype=1 -> no Foreman file processing

* termtype=2 -> Foreman asks user which files need saving and
saves them

* termtype=3 -> Foreman automatically saves latest copy of
modified files

After all peripheral operations by the Foreman are complete, the
Foreman notifies the WM of the tool completion by calling the WM
W$T00LHALT procedure. The associated parameters of the WM
request include the accounting data list describing the tools

-12-

■ruf. ■ l'"**** ■■! 11.1.1.1 I ' -■ ' '-

Foreman Specification March 31, 1976

lii

I

resource utilization. The tool can be terminated (in the local
host sense) «any time after it issues the HALTME primitive. The
Foreman terminates itself (in the MSG sense) after receiving the
response from the WM to its W$T00LHALT call. A positive response
indicates that the association between the tool/Foreman and the
NSW has been broken.

Tool primitive operation:

HALTME (termtype) -> never returns to tool

WM procedure for HALTME support:

W$T00LHALT (reason, accounting list) -/ result

-13-

..L .fc.

-m1! ii i itfOm

•rf»

Foreman Specification

III. Status Probes and Resource Uti1ization Bounds

March 31, 1976

The Works Manager, as well as the NSW user through his FE
process, may at times wish to closely monitor a tool execution in
terms of resource utilization and progress through its algorithm.
Toward this end, we specify two functional aspects of a Foreman
implementation which can be used to achieve a degree of "tool
watching" .

Each Foreman mu
(e.g. requested by a
tool currently being
allowing many types
different from invok
that it is not done
takes the form of an
part of the alarm in
probe alarm, the For
values and send them
reply) to the invoki
Foreman alarm codes
probe types are init
their need arises,
current state of the
to a state probe, th
NSW state (e.g. runn
etc .) , the tool's cu
waiting NSW primitiv
local operating syst
dismissed, etc., and
defined probe (alarm
tool resource utiliz
accounting list refe
running the tool so
maintained by the ho

st implement an exte
WM process) for pro
executed. We have

of probes. Invoking
ing almost all other
using an MSG message
MSG alarm signal.

dicates the type of
eman is expected to
via an MSG message

ng process. Status
with values between
ially identified her
One initial probe (a
tool as a program i

e Foreman returns th
ing, stopped, runnin
rrent internal NSW s
e completion, etc.),
em state (e.g. runni
its program counter
code 11) queries th

ation for the sessio
rred to earlier. Th
far, and other resou
st operating system.

rnally invocable function
bing the status of the
taken the approach of
a status probe is
Foreman functions in

Rather a status probe
The code transmitted as
probe. In response to a
gather the requisite
(which itself requires nc
probes are assigned
10 and 20 (octal). Two
e, with others added as
larm code 10) queries the
n execution. In response
e tool's current external
g at termination code,
täte (e.g. executing,
and the tool's current

ng, blocked for I/O,
) . The second initially
e current state of the
n. It returns the
is includes the cost of
rce utilization measures

invol
host/
is un
statu
optio
progr
appli
class
worki
"unlm
speci

Currentl
ving the
Foreman/
clear wh
s probes
n for re
am proce
ed towar

Becau
ng" func
plemente
fication

y there are no immediate implementatio
se probes other than as an indicator t
tool complex is still functionir At
ich processes should oe allowe nv
, and we may have to specify ye
suits to be prepared for a hum -he
ssing. Additionally, more thought nee
d determining a useful set of measures
se of these uncertainties, and because
tion can be fulfilled hy responding wl
d function" response, we postpone the
of the values to be returned in a sta

n plans
hat the
this point it

oke which
t undefined)
r than for
ds to be
in each probe
the "still

th an
exact
tus probe.

]

1
1

D
a

u
]

A Foreman should also support the enforcement of resource
utilization bounds on the tool it is running. These bounds would
specify an approximation to the maximum use of a particular

-14-

1. ,
Foreman Specification March 31, 1976

D
1

resource or a measure of tota
tool session is limited. Exc
cessation of tool execution (
state) along with the Foreman
Manager of the excessive reso
apply more resources to the t
execute at its termination se
altogether. The initial boun
F$BEGINT00L request. We mean
approximate monitors, and we
close scrutiny of the tool ex
the instant the tool exceeds
would require that the tool b
reasonable to ensure that it
large piece of the specified

1 resource consumption to which a
ceding these bounds would force a
1 e. placing the tool in a stopped
immediately notifying the Works
urce utilization. The WM could then
ool session, or cause the tool to
quence, or abort the tool
ds are passed as part of the
these resource bounds to be

have no interest in requiring very
ecution in order to shut off service
a bound. On tne other hand, we
e monitored as closely as is_
does not consume an arbitrarily
resources (e.g. cpu time).

s^hTehaJlor, but l"Pl™entation Is not raq^red or yet
oossible Future documents will detail the speciiicatiun u
?hese functions, and we solicit suggestions on their form and

use.

\™J™°ul'n alarm with code In the range 10-20 octal)

F$STATUSPROBE (type) -> status item list

n

D
D

liiil.

-15-

a*£*^

•■- HMMMI^ MMM

4/

Forenan Specification

IV. NSW Runtime Environment

The
environme
its own m
dynamical
system.
facilitie
and may b
providing
provide a
set of pr
primitive
mentioned

NSW tool
nt provid
eans for
ly creati
These fac
s which t
e used si
NSW serv

ccess to
imitive o
operatic

environment di
ed by the host
inter-componen
ng NSW entitle
ilities are in
he host operat
raultaneously i
ices. The For
the NSW facili
perations aval
ns for dealing

March 31, 1976

ffers in a few key areas from the
operating system. The NSW has

t communication and for
s, and maintains its own file
addition to any similar

ing system may already provide,
f there is no conflict with
eman and other NSW components
ties through enhancements to the
lable to tools. There are
with each of the areas

* NSW file system
* NSW process communication
* NSW process creation

These are discussed individually. The (.omraon thread is that the
operations are provided in operating syj.'tern-like fashion to
tools, with the exact means of invoking a function or obtaining
its result/status dependent on the host implementation. We are
concerned here with the semantics associated with the primitive
calls, and the WM-Foreman message exchanges used in implementing
these semantics. It is the Works Manager which actually supports
the substance of much of the NSW environment. It is the Foreman
which provides the local interface to the NSW facilities.

The functionality of each of the specifi
be made available to all tools. However, the
Foreman calls and returns, and the exact natu
tool interface is left to the discretion of t
implementer. Thus where it is deemed desirab
may be subsumed by a parameterization of othe
may be coupled to perform multiple functions,
optimization issues. We are concerned only t
for each tool to somehow perform all of the o
feel to be important in the NSW context.

ed primitives must
exact form of the

re of the Foreman
he Foreman
le, certain calls
r calls, or caxls

These are local
hat it be possible
perations which we

D
i

j

1
ö
1

-16-

a

TTäV

Foreman Specification

V. NSW File System

5.1 Two File Spaces

March 31, 1976

[]

A tool running under the NSW system can i
manipulate items in two distinct file spaces,
the sharable NSW global file space managed by
and maintained independently of any tools that
files. The other space is the non-sharable, t
(local file space) for the copies of the files
during the current tool session. A file enter
catalog must have a unique global name, and he
referenced (though perhaps not accessed) by an
which exists in the workspace for a tool can b
by the tool operating in that workspace, and t
of such a file may be unknown to other tools a
It may also be the case that the name of a fil
is not unique in the NSW file system. There i
far as the WM is concerned since the workspace
outside of the tool domain, and the tool itsel
a means for resolving any local name conflicts
conflict resolution must occur whenever a file
into the global NSW file space.

ndependently
One file space is

the Works Menager
manipulate the
emporary workspace
in use by a tool

ed in the central
nee is able to be
y tool. A file
e referenced only
he mere existence
nd even to the WM.
e in the workspace
s no conflict as
file is unknown

f is provided with
Explicit name

is to be entered

5.2 Using Local Workspace

There is a considerable cost associated with inserting a
file into the global filespace. The cost of synchronizing local
activity with the global directory includes name conflict
resolution, file copy (possibly network copy) and delay
associated with synchronizing the WM and Foreman. Insertion into
the local workspace is immediate. The same cost relationship
holds when retrieving files for use by the tool. Therefore, it
is often good strategy to build tools which utilize the workspace
for storing and retrieving as much as possible, often waiting
either until it is explicitly desired to synchronize the file use
with other tools or until the end of the tool session before
delivering selected files. Delivering files to the global file
space at the end of a tool session means that only files which
actually need to be permanently saved invoke the large system
overhead, while files which do not require permanent name status
(e.g. files which are subsequently deleted during the course of a
tool session, or files which are only intermediate versions of a
particular file) incur a minimal overhead. Savings can also be
achieved by delivering multiple files in a single WM request, an
obvious optimization if files are batched locally.

-17-

'"rtL.

XA

Foreman Specification March 31, 1976
m *

5.3 Version Numbers

Another aspect of the local workspace is the automatic use
of version numbers to distinguish files of the same name. In
essence, version numbering adds another field to "local" file
names. The Foreman knows about the use of this part of the name
field and supports certain default options for it. A version
number is a small integer which gets bumped automatically when
creating a file with an already sxisting (local name space) name
and a version number is not otherwise specified. The use of
version numbers is not part of the global NSW file space.
Therefore the user must disambiguate name conflicts when files
are moved from local space to NSW global space. In addition to
providing automatic local disambiguation through version
numbering, the Foreman must allow a tool to specify version
numbers when referencing files in local space, as well as provide
reasonable defaults for obtaining latest local copy and creating
a newest copy in the absence of specified version numbers. If
local files are cached for delivery (highly recommended) the
Foreman should provide a means for the user to select from among
the "new" NSW files only the ones he actually wants preserved.
Suitable defaults are required in the absence of this information
(e.g. the highest version number of each different file name is
delivered at the end of the tool session).

■

5.4 Maintaining an LND

In the course of implementing the local workspace concept,
the Foreman is required to maintain a local name dictionary (LND)
for the tool it is running. The LND is used to specify the
relationship between the NSW file name and the name of the file
(in local operating system terms) which represents the local copy
of that NSW file. Other information about the files which are
created and maintained during a tool session is also appropriate
for the LND. This includes information about version numbers,
indications of whether a file has been modified since the copy
was obtained (and therefore may need to be delivered), and short
abbreviated strings which the NSW user or tool uses to refer to
the NSW file. Some of the primitive operations provided to the
tool are expressly for the purpose of manipulating the contents
of the LND, and hence indirectly manipulate the local workspace.
It is imperative that the LND for each tool instance be kept in a
"crash-proof" manner (or as near to this as is reasonable and
possible) , so as to make feasible a recovery procedure in the
event of a host system crash. Maintaining the LND in a carefully
maintained and identifiable file on the local file system is one
technique for achieving this. After a system crash which is not
so catastrophic as to destroy the file system also, it would be
possible to run a scavenger program in the tool workspace to
retrieve the appropriate LND and save some of the results of the
tool session. When the host again becomes available, it may also

-18-

. I ■:.■■

::

D
■?

."■

D
n

iftäftiT •i: ^ "; •w>" - --

■■■. .- ■■■;«';r:-. -j

Foreman Specification March 31, 1976

1
be possible to re-start (or continue) the
same workspace and working with the saved
further discussed later in this document.
Foreman should attempt to insure that the
system crash is no worse for the MSW tool
direct (non-NSW) users of that system.

use of the tool in
LND. These issues
In any event, the

effect of the host
user than for the

the
are

I

5.5 File Names in NSW

The general syntax a-» semantics associated with file names
in the NSW are described tlsewhere. Here we are concerned with
the impact of the Foreman and local workspace concepts on the use
of NSW file names. The impact is two-fold: first in the
conventions used by tools in providing names as parameters for
file system operations, and second as extensions to the name
syntax to provide for the manipulation of files in the local
workspace.

To discuss file names as parameters to file system
operations we must first describe certain aspects of the central
NSW filing system as implemented via Works Manager procedures.
Generally, the WM file system procedure for retrieving a copy of
a file requires only a partial name (filespec) to specify the NSW
file for the operation. Specifically, only enough of the name
need be specified to disambiguate it. Thus we have the concept
of files being retrieved (and saved) using abbreviated names.
For example, WALDO.AUTHOR.TEXT might be addressed simply as
WALDO. Additionally, when a file name provided to the WM is
ambiguous (for retrieval) or already exists (for delivery), the
WM often negotiates directly with the user to clear up any
uncertainties. This is done only when requested by the tool.
Because of these features, most calls involving file names return
values which indicate the full NSW name of the file which was
actually operated on, as well as any change in the filespec for
the file as determined from the interaction with the user. (If
the user dialog results in a new filespec, the user will
presumably use this new name in future references to the file.)
It is a Foreman responsibility to keep an up to date LND
reflecting the latest information about NSW file names, as well
as to make these names available to the tools which may be
unaware of the change or clarification from the user. The names
can be provided to the tools either by returning their values
directly as part of the tool file operation, or (recommended) by
providing functions by which tools can retrieve the names when
they are needed. Since the names are kept in the LND anyway,
such an operation is rather simple.

To insure that a tool can achieve a maximum utility out of
the separation of global and local file spaces and the properties
of both, the file manipulation primitives each imply an explicit
domain (i.e. global or local space). This allows the tool to

•

-19-

...... a.. -, ,.,«..,..^.,. ^*__

--"N

Foreman Specification March 31, 1976

directly control the spaces individually in the manner most
appropriate to its particular purpose. Primitives dealing with
workspace files also provide for the explicit selection of a
particular version of a file, to enable a tool to override any
default assumptions. Supporting a reasonable set of default
parameters is encouraged, provided the defaults can be overriden
where appropriate.

5.6 File Semaphores

Associ
a semaphore
user (who i
warn other
change. In
NSW system
Under some
accessing a
looseness o
NSW files a
workspace c
file is not
user can ob
semaphore s
which is ac
the set sem
other user)
may be repl

ated with each file in
This semaphore can

ntends and is able to
potential users that t
general, this semapho

will only warn other u
circumstances, however
file with the semapho

f the lock does not ca
re not directly modifi
opies of NSW files are
modified until it is
tain an internally con
et, since it is only a
tually undergoing modi
aphore that the modifi
, and that at some tim
aced by an altered, up

the NSW (global) file space is
be set by a tool on behalf of a
modify the file) in order to
he file may be undergoing
i e serves as a loose lock- the
sers, not restrict their access.
, users will be prevented from
re set. Note that the general
use a multiple writers problem,
ed by tools. Only local
directly modified. The NSW
explicitly replaced. Thus a
sistent copy of an NSW file with
workspace copy of that NSW file
fication. The user is warned by
cation is taking place (by some
e in the future, the NSW file
dated version.

Tools
explicitly
class go to
action and
semaphore.
set when a
made, then
access unle
some other
other cases
informed th
node-name).

may be divided in
use semaphores an
ols which note wh
which are then wi
Toolü of this cl

copy is obtained
the Works Manager
ss the semaphore
user) then the ac
of copy access,

at the semaphore
Delete access i

to two classes: tools which
d tools which do not. In the first
en a user performs a file modifying
Hing to request the setting of a
ass may request that a semaphore be
of an NSW file. If this request is
presumes that the tool does not want

can be set. If it is already set (by
cess request is blocked. In all
the requester of a file is merely
is set (and by whom- project and
s always blocked by a set semaphore.

Whenever a tool of the first class (explicit semaphore
users) requests a file, it may also request the setting of the
semaphore. As noted above, inability to set a semaphore blocks
the access request. Subsequently, a tool of ohis class may
request the setting of the semaphore for a previously obtained
file. The semaphore may be read or unset at any time, either by
the tool or directly (via a WM command) by the user. If the
semaphore has been explicitly requested, then it may remain set
after the end of the use of the tool.

-20-

LI

T :

:;

;

u

n
•

D
n

□

.MUMM«!»'- IWWSMjE'JWJ'JICJI»!». ^"-TB jfc;;^^ ■ ^:^^; ,._^-

i. ..4

Foreman Specification March 31, 1976

Whenever a tool of the second class (non-semaphore user)
requests a file, the WM automatically tries to set the semaphore.
Failure to do so does not block the access; the user is merely
warned that the semaphore is already set. Again, the semaphore
may be read or unset at any time. The semaphore is automatically
unset when use of the tool is end 3d.

!

In all cases, a semaphore la unset whenever an NSW file is
replaced (or, obviously, deleted). Tie tool primitives to be
implemented for interfacing to the semaphore procedures of the WM
are listed below. See the Works Manager Procedures document for
details of the implementation within the WM.

SETSEMAPHURE (filespec, qhelp) -> result, NSW filename
UNSETSEMAPHURE (filespec, qhelp) -> result, NSW filename
PEADSEMAPHORE (filespec, qhelp) -> result, NSW filename

i
5.7 File Manipulation Primitives

A tool is provided with distinct sets of primitive
operations to individually manipulate the NSW global filespace
and the local workspace. An additional set of operations is
provided for moving file copies between the two spaces. In this
section, we introduce the major file manipulation primitives in
each of the three setö.

□
A tool is provided with primitives for deleting, renaming

and copying files within the global NSW namespace. The WM
implements procedures which actually perform the DELETEGLOBAL,
RENAMEGLOBAL and COPYGLOBAL operations within the global space,
so these primitives are merely a packaging operation for calls on
those procedures.

Two tool primitives (GET and PUT) are provided which are
normally used to relate the files spaces in an automatic fashion.
These provide for obtaining a local workspace copy of a global
space NSW file (GET), and for depositing a local workspace file
as a global space NS'w file (PUT).

To
primitiv
and OPEN
RENAHELO
Foreman,
primitiv
a local
cases wh
used to
that the
the file
workspac

support local wo
es for deleting,
and CLOSE prlmi

GAL, and CGPYLOC
and merely resu

e 13 used, with
workspace file,
ere one does not
signal the Forem
Foreman should

It is the int
e file for direc

rkspace file access,
renaming and copying

tive operations. DEL
AL are all implemente
It in changes to the
appropriate parameter
or to create a new wo
already exist. The

an that the file acce
assume responsibility
ent that OPEN should
t access and modifica

the Foreman provides
workspace files,

STELOCAL,
d totally within the
LND. The OPEN
s, to gain access to
rkspace file in
CLOSE primitive is
ss is complete, and
for that version of

prepare a local
tion by the tool,

-21-

i.iii»i'..i.it.?'»w'rfiiti'' •'" ■■ ■ •-■■<»■«- .^.--^

t-

Foreman Specification March 31, 1976

and generally to return to the tool a handle on the file for such
access. The type of handle, as well as the types of file data
manipulations which are permitted, are local host operating
system dependent, based on the file system which underlies the
workspace implementation. One aspect of the CLOSE primitive is
the invalidation of such a handle so that the Foreman can
maintain a consistent copy of the file (via the LND) for possible
introduction into the global file catalog. After executing a
CLOSE operation on a file, the file data is not accessible to the
tool unless It executes another OPEN.

As a general seen
the global space NSW f
OPEN provides for dire
actually accessed is a
copy of a global space
currently empty local
referenced local works
above. We assume that
data manipulation prim
ultimately CLOSES the
OPEN-CLOSE sequence so
These operations affec
versions of the origin
the tool decides that
should be placed into
Foreman to do so using
operations give the to
file system interactio
should often provide s
functions. As example
provides a GET which h
retrieved copy of the
space and if unsuccess
automatic PUTting of t
workspace file upon to
will be clearly noted

ario, a tool GETs a loc
ile it wishes to access
ct access to the file d
Iways a local workspace
file, or it may be a n

workspace file, or it m
pace file which was ori
the local host system

itives for local worksp
file and may subsequent
me number of times duri
t only local workspace
al file copy may be ere
some vest'.onis) of the
the global catalog, and
the PUT operation. Al

ol complete control ove
ns. Foreman implementat
implified means for per
s, we could consider a
as the option of automa
file, or an OPEN which
ful tries to GET a copy
he highest new version
ol termination. Any su
in the host specific to

al work ^ace copy of
The workspace

ata. The file
file. It may be a

ewly created,
ay be a previously
ginally one of the
provides the actual
ace files. The tool
ly repeat the
ng the tool session,
file images, and new
ated. Ultimately
workspace file
it instructs the

though these
r all phases of its
ions can and perhaps
forming common file
Foreman whioh
tlcally opening the
searches the local
of the file, or

of each different
ch local options
ol builders guide.

5.8 Specification of the File System Primitives

In specifying the parameters of the main file manipulation
primitives, there are many common arguments. Some are described
here as a general introduction to the primitive descriptions.

NSW-filename: The NSW-filename is the full identification of a
file in the NSW file system. This is generally a rather long
string of text. However, a user will never have to type in a
full filename. Instead, he will use either a "filespec" or an
"entry-name" (defined below) depending on the intended use of
the file. A full NSW-filename consists of two parts: the name
part and the attribute part, separated by a slash (/). The

.;

[

□

D
Q

f]

U
D
□

-22-

i_l

.„aiViii 7ilitffi.fr,-.-:—'■■**-- ■■.■—

Foreman Specification March 31, 1976

.
name part is a sequence of name components, separated by
periods (.). The attribute part is a list of attributes
separated by ^emi-colons (;). (For a more complete
description of NSW-filename and attributes, see the document
Works Manager Procedures.)

filespec: This is basically the supplied identifier for an NSW
filename. It is an abbreviated form of an NSW-filename, used
in contexts where the name of an existing file is required. A
filespec need contain only enough parts of the NSW-filename to
unambiguously denote the file. Unless changed by the tool, a
workspace file copy and all its derivative versions will be
referred to for the duration of the tool session by the
filespec. A filespec may also contain file attributes as part
of the name. (For a more complete description of filespec,
see the document Works Manager Procedures.)

entry-name: An entry-name is an abbreviated form of an
NSW-filename used in contexts where a new filename is to be
created. As described in Works Manager Procedures, the
contents of the user's enter scope is prefixed to the
entry-name by the WM when a file is delivered. Aside from
this abbreviation, however, the user (or tool) must specify
the entire name component of the file. (For a more complete
description of entry-name, see the document Works Manager
Procedures.)

version #
number
of the
either
co 32.
versio
lowest
number
along
defaul
access
When s
inform

: When
param
files
null
Spec

n, one
versi
is di

with e
ted ve
and c

earchi
ation

the 1
eter g
assoc
(defau
ial in
more

on of
fferen
ach pr
rsion
reates
ng the
is ign

ocal work
uides the
iated wit
It) or is
dicators
than the
a filespe
t for the
imitive d
numbers u
a new hi
global s

ored .

space is
selecti

h the fi
a decim

exist fo
current
c. The
various
escripti
se the h
ghest ve
pace, an

search
on of a
lespec.
al inte
r refer
highest
default
prirait

on. In
ighest
rsion f
y versi

eo , the
partic
Versi

ger in
encing
versio
value

ives an
genera

version
or file
on numb

version
ular instance
on number is
the range 1
the highest
n, and the
of version
d is given
1 though,
for file
deposit.

er

qhelp: This argument has three possible values and conveys to the
WM how the tool would like filename conflicts handled. It is
used in conjunction with the various file system primitives.
The possible values and their meanings are:

* qhelp=0 -> allow the user to supply help, through a help
call on his FE process

* qhelp=1 ->allow the tool tc provide help through a help call
back to the tool

-23-

Jtk

TTl^,

/

Foreman Specification March 31, 1976

* qhelp=r. -> do not provide any help but instead report a
failure on filename conflict, indicating this as the reason

The qhelp
the globa
files nee
defaultin
local spa
of differ
(although
permitted
static de
desires,
(each tim
by the Fo
tools.

parameter
1 NSW file
d not suppo
g provides
ce files.
ent workspa
different

) . The WM
fault of th
For these

e) from the
reman. Thi

applies on
space. Pr
rt these h
a form of
The Forema
ce fileü n
versions o
interactiv
e qhelp pa
tools, the
WM tables

s is espec

ly to c
imitive
elp not
automat
n must
amed wi
f the s
e tool
rameter
value

, regar
ially u

alls i
s deal
ions.
ic dis
not al
th the
ame fi
descri
, if t
of qhe
dless
seful

nvolving
ing with
Version

ambiguat
low the
same fi

le are o
ptor pro
he tool
Ip is ob
of the v
for enca

the WM and
workspace
number

ion fo r
existence
lespec
bviously
vides for a
builder so
tained
alue passed
psulated

qreplace: This argument is a boolean, and it indicates whether or
not a file being placed in the global space should force
replacement of an existing file of the same NSW name

deal with conflict.

success/failure code: An integer value representing the
success/failure code for ehe operation is always returned as a
result of each primitive. Each individual primitive has
associated with it a set of interpretations of these integers.
This code is always returned as a primitive result, but it
will not be explicitly shown as a return value in the
following primitive descriptions.

The description following each primitive operation reflects
the nature of the operation as seen by the tool. In this section
we limit ourselves to a description of the tool primitive (i.e.
what does the primitive do?) , leaving Implementation
considerations for the next section.

The tool has unrestricted access
its workspace. Once a copy of a globa
obtained, all references to the local
global space, however, is tightly cont
capabilities of the user and the tool
operation involving a global NSW file
checking by the WM before it can be ac
concern to the Foreman implementation,
of the access checks. The types of ch
only to completely describe the primit
The WM file system and its access cont
Works Manager Procedures document.

-24-

to all of the files within
1 space file has been
copy are permitted. The
rolled, based on the
he is using. Each
undergoes strict access
cepted. This is not of
since the WM provides all

ecks are mentioned here
ives that the tool uses,
rols are described in the

I
n

i
i
!

I

iii

■■--•"■■■; m

Foreman Specification March 31, 1976

5.8.1 Global NSW Filespace Primitives

1. DELETEGLOBAL (filespec, qhelp) -> NSW-filename

This is the pri
from the global
take place unti
unique file to
is blocked by a
indicated by qh
longer be acces
The actual full
to the tool aft

mitive a too
NSW file sp

1 the WM ver
which the us
set semapho

elp. Once a
sible for GE
NSW filenam

er a success

1 uses to delete an existing file
ace. Global space deletion cannot
ifies that filespec designates a
er has delete access. This access
re. Assistance is obtained as
file has been deleted, it will no

T, COPYGLOBAL, RENAMEGLOBAL, etc.
e of the deleted file is returned
ful DELETEGLOBAL operation.

2. RENAMEGLOBAL (filespec, entry-name, qhelp, qreplace) ->
src-NSW-filename, dst-NSW-filename

A tool uses this primitive t
global space NSW file. It r
another global space file,
designates a unique file to
Enter access is also require
name. The new file acquires
the old file. A set file se
Qhelp and qreplace are used
Both source and destination
inform the tool of the opera

o change the name of an existing
enames one global space file to be
The WM verifies that filespec
which the user has delete access,
d for generating the new file
any tool supplied attributes of

maphore block? a RENAME operation,
according to their definition.
NSW filenames are returned to
tion which actually took place.

3. COPYGLOBAL (filespec, entry-name, qhelp, qreplace) ->
src-NSW-filename, dst-NSW-filename

A tool uses this primitive to create a new g
v/hich is a copy ^f an existing global space
similar to RENAMEGLOBAL wi Ai the exception
both the source and destination files exist,
space copy, enter access is required as well
if copying to an already existing file name,
boolean which when true causes file replacem
default on collision of file names. Qreplac
means that either help must be obtained or t
fail. Both the source and destination full
actually used to complete the COPYGLOBAL are
information of the tool.

lobal NSW file
NSW file. It is
that on completion

For global
as delete access
Qreplace is a

ent to be the
e with value false
he operation must
NSW-filenames
returned for the

5.8.2 Primitives for File Movement Between Spaces

4. GET (filespec, input-attribute-code, qset, qhelp) ->
NSW-filename, new-filespec (only if changed), version #

-25-

*&£**.

« ■ *

Foreman Specification March 31 , 19'76

has

to
This

A tool uses this primitive to cause a copy of the global space
file denoted by filespec and having the attributes specified
by input-attribute-code to be moved into the tool workspace.
This working copy can then be manipulated by the tool using
workspace file access primitives. When GETting a copy of a
file obtained from the central catalog, the WM verifies that
the user has copy access to the file, and that the file
the input-attributes specified by the tool. If these
conditions are met, the WM initiates the proper actions
have a copy of the file moved into the tool workspace,
file movement may involve a network file transfer. When
calling for a file transfer, the WM also insures that any file
conversions which are necessary and possible are indeed
performed. File conversions are based on the current state of
the file and the intended use of the file by the tool^see The
File Package document) . Qset indicates whether or not the
tool desires to set the semaphore associated with the original
copy of the file. Note that in the event that the tooldoes
not choose to utilize semaphores (this is indicated in its
static tool descriptor) then the WM may automatically set the
semaphore regardless of the value of qset. Qhelo indicates
how the tool wishes to handle name ambiguity. The full
NSW-filename of the file actually copied into the workspace is
returned, as is any new filespec for this file (possibly
obtained via user help) . The version number of the workspace
copy is also returned for the information of the tool.
GETting a copy of a file for which the workspace already has
the matching filespec and NSW-filename causes a new highest
version to be created. GETting a copy of a file for which the
workspace already has a matching filespec with a different
NSW-filename will cause an error return to the tool.

5. PUT (filespec, version #, entry-name,
output-attribute-code, qreplace, qhelp) -> NSW-filename

A tool uses this primitive to place a copy of a workspace file
into the global NSW catalog. The file is identified by
filespec and version number. Entry-name is the full
NSW-filename (less any defaulted Entry scope) the tool wishes
the file to have. If not specified, entry-name defaults to
the name part of the full NS' -filename contained in the LND
entry for the filespec (this is usually the same name as the
one returned from the GET operation). If the LND has no
NSW-filename and entry-name is not specified, then the Foreman
returns failure to the tool. The WM requires that the user
have enter access in order to deliver new files into the
global space. The output-attribute-code is a tool dependent
code denoting an attribute which should be associated with the
file. The WM will convert these codes to textual attributes
which become part of the full NSW-filename. Qhelp guides the
WM in seeking help with filename conflicts, and qreplace

-26-

D
D

* *

•a w

a

;
1

D
Ö

I

"TSSLZ-

•J"

1
Foreman Specification March 31, 1976

indicates whether the tool desires that the current file
replace any file which may already exist with the same name.
The full NSW-filename of the file as it is put into the global
catalog is returned to the tool. A copy of the file also
remains in the workspace, and can be referenced
any workspace file manipulation primitive.

again using

5.8.3 Primitives for Workspace File Manipulation

6. OPEN (filespec, version #, new-file-flag,
old-file-only-flag, type-of-access) -> file-handle

The tool uses the OPEN primitive when it wants to actively
access file data in a workspace NSW file, or to create a new
workspace NSW file. A successful OPEN returns a handle for
the referenced file. The handle is intended to be used when
subsequent manipulations of the file data are requested. The
nature of the handle, as well as the primitive operations
available for the actual data manipulation are host dependent,
based on the existing host file system, and are beyond the
scope of this document. The handle is necessary since tools
use NSW syntax for dealing with NSW domain files, and for the
most part remain ignorant of the intermediate representation
of the file in the local host rile syntax. However, a Foreman
implementation is not forbidden from using the local host
syntax for the file as the handle returned from the OPEN,
although this is not recommended. The file handle is also
used to query the Foreman regarding any NSW information the
Foreman maintains about the file, including the full NSW
filename, known attributes, etc., should such a primitive be
implemented.

If th«.new-file flag is set, a new local workspace file is
created using filespec and version number (default is next
higher version). The only failure for creating new files,
other than failures due to the nature of the specific
workspace implementation, is when specifying a version number
of a filespec which already has such a version.

If the old-file-only flag is set, then success can be returned
only if an existing file adhering to the filespec.version
specification is found. If neither the new file flag nor the
old file flag is set, then a failure to find an existing
workspace file results instead in creating a new looal file
referenced by filespec.

The type-of-access parameter is optionally specified by the
tool to indicate more precisely the type of file access it
requires (e.g. read, write, read&write). The default for
type of-access is read & write. A Foreman may find the
type-of-access information useful in determining whether a

i

-27-

iaäsi,
,.„riT.|..1.,, ,—

r^itm

I ■

Foreman Specification March

file is being modified (and may need to be delivered
the global space), and in utilizing the structure ol
underlying file system.

The search for an existing file matching filespec is within
the local workspace only. Version number defaults to the
highest existing version (except for new file as outlined
above).

7. CLOSE (handle, output-attribute code, qdisp) ->

::

31, 1976 a
back into
the n

The tool uses
accessing the
should now as
qdisp the too
disposition o
a global NSW
by other NSW
until the end
instructs the
default value
end of th e se
handle fo r th
preceeded by

this primitive to indi
file denoted by handle

sume responsibility for
1 can guide the Foreman
f the file i.e. whether
file (qdisp=true) , ther
tools; or whether it ca
of the session or unti
Foreman to do otherwis
of qdisp is true, i.e.
ssion. Completion of t
e file, and further ace
another OPEN.

cate that it has completed
and that the system
it. In addition, using
as to the ultimate
it needs to be placed as

eby becoming referenceable
n remain a workspace file
1 such time as the tool
e (qdisp=false). The
deliver the file at the

he CLOSE invalidates the
ess to the file must be

The output attribute code is a tool dependent code denoting an
attribute(s) which should be associated with the file. When
the file is delivered to the global NSW space, the WM will
convert these codes to textual attributes which become part of
the full NSW filename.

8. DELETELOCAL (filespec, version #) -> version of deleted
file

This is the primitive a tool uses to delete an existing file
from its workspace. For DELETELOCAL only the workspace is
searched for the matching filespec. The default version
number is the lowest numbered version. Once a file has been
deleted, it will no longer be accessible with OPEN, PUT, etc.
The version number of the file actually deleted is returned to
the tool on a successful deletion.

9. RENAMELOCAL (from-filespec, from-version #, to-filespec,
to-version #) -> from-version #, to-version #

A tool uses this primitive to change the name of an existing
workspace file. It renames one workspace file to te another
workspace file. The new file acquires any tool supplied
attributes of the old file. For RENAMELOCAL, from--verslon #

:

k

r

.. »:

u
-28-

sS

Foreman Specification March 31 , 1976

defaults to the highest existing version and to-verslon #
defaults to a new highest version for the file. The version
number of the files actually operated on are returned to the
tool.

10. COPYLOCAL (frora-filespec, from version #, to-filespec,
to-verslon #) -> from-verslon #, to-version #

A tool uses this primitive to
which is a copy of an existing
"from" and "to" files exist in
completion. Note carefully t
copy of the file. It does not
data. In general, since the a
file remains unknown to the to
provided through COPY, accessl
primitive. The from-fllespec
but the to-filespec defaults t
from-fllespec. Default versio
higher version for from-versio
The version numbers of both th
returned to the tool.

create a new workspace file
workspace file. Both the
the workspace on successful

hat COPYLOCAL merely makes a
provide access to the file

ctual local host name of the
ol and no handle for it is
ng the file requires an OPEN
can not normally be defaulted,
o that selected for the
ns are highest version and next
n and to-version respectively,
e "from" and "to" files are

5.9 Other File Related Primitives

There are a few other file related primitives which are
thought to be needed but not necessarily for the current set of
tools In the initial configurations.

]

1

5.9.1 Global Space Primitives

11. WARRANT (filespec, attribute code) -> new NSW-filename

This primitive is used by a tool to ass
global space NSW file. (Recall, that at
assigned to an open file at the time it
when it is PUT into the global catalog,
the most prevalent means for assigning
The attribute code is a tool specific 1
attributes which become part of the fil
NSW-filename is returned to the tool, s
WARRANT may actually change the filenam
uniquely Identify an NSV file. Help is
only tools (i.e. not users) can assign
The warrant capability is not yet "-uppo
therefore need not now be supported by

ign attrlbu
tributes ca
is CLOSEd,
These are

attributes
ndlcator fo
e name. Th
ince the re
e. Filespe
not provid

attributes
rted by the
the Foreman

tes to a
n also be
and also
probably

to files).
r textual
e new full
suit of a
c must
ed , since
to a file.
WM and

[For completeness, we refer the reader to the previously
mentioned semaphore related operations, which are also global
space primitives.]

-29-

Foreman Specification March 31, 1976

5.9.2 Local Space Primitives

12. GETFILEDESCRIPTOR (local filespec or handle, version #,
data fields) -> data structure with specified items

(A primitive of this type is an optional implementation item).
This primitive is used to view the information associated with
a workspace file through its LND. Typical data fields will
include: full NSW-filenarne, file attributes, existing
versions, etc.

13. CHANGEFILEDESCRIPTOR (local filespec or handle, version #,
data structure with changed items) -> change outcome
indicators

(A primitive of this type is an optional implementation item).
This primitive is used to change the LND information
associated with local workspace files. Some LND information
may not be subject to change. The exact nature of the
information kept in the LND will be implementation dependent.

5.9.3 File Movement Into and Out Of the NSW System

The following four primitive
files into and out of NSW control
NSW filespace or the tool workspa
interfaces to Works Manager facil
READDEVICE and WRITEDEVICE are us
files into a tool workspace, and
files into non-NSW controlled spa
the same functions using the glob
operation. By non-NSW file space
oriented devices, but also physic
line printers, magnetic tape, etc
default locations for the various
tool might request that a particu
(WRITEDEVICE) to the LPT (linepri
indicate which lineprinter was lo
transfer. The details of using t
being worked out.

s are used essentially to move
led spaces, either the global
ce. The primitives serve as
ities of the same name,
ed to move copies of non-NSW
to move copies of workspace
ce. IMPORT and EXPORT perform
al NSW filespace as its base of
we mean not only space on file

al devices such as card readers,
A user profile guides the

physical devices. That is, a
lar file be written
nter). The user profile would
cal to the user, and perform the
he user profile are currently

14. EXPORT (filespec, external-name, password, qhelp) ->
NSW-filename

EXPORT copies a global space NSW file to a non-NSW
destination. EXPORT verifies COPY access and sends a copy of
the source file to the location designated by external-name.
An external-name is either an ARPANET pathname or a device
pathname. Password is a string which is used for gaining

D

U

..

n

ü

n

-30-

.1.. t

- ■*^i»'-7^»""''^"' [iiiii n miini - -

iSSNMw

I

Li

D
D
i:
i:

Foreman Specification March 31, 1976

access to the external directory, device, etc. The full
NoW-fllename of the file actually EXPORTED out of the NSW file
system is returned for the information of the tool.

15. IMPORT (external-name, password, entry-name, qhelp) ->
NSW-filename

IMPORT is the inverse of EXPORT, i.e. bringing a non-NSW file
into the global filespace.

16. READDEVICE (external, password, filespec, version #) ->
version #

READDEVICE is used by tools to input from sources outside the
NSW without making a global space file. The file is placed
directly in the tool workspace. Version # defaults to a new
highest version. The actual version number of the created
file is returned to the tool. When (if) the file is placed in
the global file space, it must be given a full NSW-filename.

17. WRITEDEVICE (filespec, version #, external-name, password)
-> version #

WRITEDEVICE is the inverse of READDEVICE i.e. copying a
workspace file directly to a source outside the NSW domain.
Version # defaults to the highest existing version. The
version number of the file actually transferred is returned to
the tool.

[Only IMPORT and EXPORT are available for tool invocation in
the current version of the WM.]

5... 1,Q Implementation of the File Primitives

The WM has procedures that can be
implement the global space file manipul
are procedures for deleting, renaming,
files. These procedures and their call
described in the Works Manager Procedur
procedure is invoked by sending a gener
to a Works Manager process. Every proc
reply which can be obtained using the R
primitive. Replies to multiple outstan
messages can be distinguished through t
transaction IDs. These IDs are generat
(Foreman) and are included in the messa
procedure call. The recipient of the m
includes the transaction ID of the call

invoked by the Foreman to
ation operations. There
and copying global space
/return sequences are
es document. Each
ically addressed message
edure call generates a
eceiveSpecific MSG
ding procedure call
he conventional use of
ed by the invoking process
ge specifying the
essage (a WM process)
in any reply that it

-31-

■ft. '• • '- ^«fa-—«—

^■\

Foreman Specification March 31, 1976

generates. The NSW message transmission conventi ms (see
Postel's note of 10 March 1976) also include indicators of
whether a message is a new request or a reply to a previous
request. This enables the Foreman to distinguish replies for its
WM requests (e.g. W$DELETE) from WM commands regarding the tool
(e.g. F$ST0PT00L) , since both types of messages are received
using the same ReceiveSpecific MSG primitive.

For GETting a local workspace copy of a global space file,
the Works Manager's W$0PEN procedure is invoked. The local host
syntax file name (of the new workspace file) which the WM returns
is used as part of the basis of a new LND entry reflecting the
NSW name given to the copy. For PUTting a file into the NSW
global space, the Foreman merely invokes the Works Manager's
W$DE JVER procedure regarding the local host file indicated by
the L,ND entry associated with the workspace filespec.

LND man
wj L I. us
tr ta be
merely
suffiöi
names a
entirel
the NSW
system.

r local workspace file delete, rename and copy the obvious
ipulations are performed. The local host operating system
ually provide help in actually deleting the files, should
desirable. If not, and also in the case of RENAMELOCAL,

changing the contents of the appropriate LND entry is
ent, since the tool does not deal with host syntax file
nyway. The OPEN and CLOSE primitives are implemented
y within the Foreman to perform the function of relating
file syntax and conventions to the underlying host file

The Foreman is
type of access a too
no NSW concept of fi
is based on getting
operations on the co
copies back in the g
copy (copy access) a
possibly delete acce
control. (However,
specific access type
for a particular hos
indicating the type
(i.e. the type-of-ac
Whether or not this
responsibility of th
not a file has been
for re-delivery into
be io marked within
decisions.

not expected to implement controls over the
1 has to workspace file copies since there is
le write access, append access, etc. The NSW
xerox copies of files, performing arbitrary
pies, and then trying to deposit the altered
lobal space. It is the act of obtaining a
nd the act of placing a new file (enter and
ss) in the system that require access
since the host file system may require more
information, the implementation of a Foreman

t may require additional parameters
of access a tool needs to the particular file
cess parameter of the OPEN primitive).
is included, at file CLOSE time, it is the
e Foreman to attempt to determine whether or
modified, and may therefore be a candidate
the global catalog. Modified files should

the LND as an aid in post-tool delivery

n
* I

D

:

■■

■J-

D

-32-

.-w Tilfcaa^^-

/

»*—»

■ ■

D
D

U

Foreman Specification

^•11 Extension of the File Name Syntax

March 31, 1976

In t
user's fl
this case
identlfyl
(Get JFN)
option, t
filename
have each
communica
communica
connectio
Foreman g
tool impl
consider

he impl
les, it
the Fo

ng file
system

he prog
string
tool g

tion fa
tion wi
n to th
ather t
ementat
such an

ementation of primitives which refer to a tool
is often useful to have the system itself (in

reman) gather from the user the strings for
s. An example of such a facility is the GTJFN
call in the TENEX operating system, where as an

ram can defer the actual accumulation of the
to the operating system. The alternative is to
ather its own filenames by using available
cllities. For tools that utilize direct channel
th the user, having the option of specifying the
e user instead of a filespec, and letting the
he filename string can lead to a much simplified
ion. It is recommended that Foreman impleraenters
interface to their file system primitives.

However, whether the Foreman or the tool gathers the filenames
the user is often the ultimate source of the parameters supplied
with the file system operations and as such, the NSW user must be
provided with a way to syntacticly specify the exact file on
which to operate. That is, the user level NSW file syntax must
at least include an option for specifying a particular version
from a set of workspace files. If a tool does not provide
separate user commands for operating on local and global files
then it may also be necessary to syntactically specify the space
to which a filespec refers. We think it important to present
these features uniformly to the user, independent of the
tool/Foreman he is currently using. In that regard, we are now
specifying a syntactic extension to the NSW filename, which can
be used by NSW tool users to explicitly specify a version of a
particular file. Further extensions delimiting the domain of a
filespec may also become appropriate. We emphasize, however
that these extensions are usable only within tools and Foremen
and have no meaning whatsoever at the WM command language level
A user must understand the local workspace concept and when it
applies to grasp the meaning of the syntactic extensions.

The synt
ead of t
is to be
characte
integer
a file,
number m
supporte
defined
extensio
extensio
operatic

actlc e
he NSW
delimi

r. Fol
between
By its
ust be
d at th
as nece
ns (cur
n) wl 11
n .

xtensio
filenam
ted at
lowing

1 and
very na
a works
e globa
ssary.
rently
take t

n consists
e syntax,
the beginni
the ";" can
32. This in
ture, a fil
pace file,
1 space lev
Filenames

a version n
he normal d

simply in adding a field to the
This optionally specified field
ng by a semi-colon (";")
currently only be a decimal

dicates a particular version of
e specified with a version
since version numbers are not
el. Other extensions will be
which do not include any
umber is the only possible
efault for the particular

-33-

kfet^..

Foreman Specification March 31, 1976

example:

WALDO.GEORGE.TXT;23
This file name selects version 23 (only) of WALDO.GEORGE.TXT in
the local workspace for use or creation depending on the context
in which it is used.

The determination of the version can be derived from either the
parameters associated with a call (i.e. version #) or explicitly
from the syntax of the filespec provided. Filespec syntax takes
precedence over tool parameters in the event of conflicts, since
we assume the user to be responsible for most syntax related
directives.

11

::

a
Dl

::

I

D

Q
I I

-34-

D
D
n

gte&. ■-r-'- " ——- HM«- nf " linmaiinri

LI
D

□

G

n

G

Foreman Specification March 31 , 1976

VI. Tool to Front End Comtriunlcation

The NSW user accesses the NSW system through a Front End
process. For those tools that require direct user involvement,
the Foreman and the Front End must cooperate to provide channels
for the communication. We are firmly committed to providing
tools with the ability to utilize MSG for both message type
communication and direct connections with the FE. The FE could
interpret and package user input and transport the pertinent data
to the tool in a network MSG message. The tool to FE
communication could be handled in an analogous fashion. Another
approach to tool/FE communication is through the use of direct
network connections. This would typically take the form of an
ARPANET telnet connection pair from the FE directly to the tool.
The decision as to which type of communication facility a tool
uses is left entirely to the tool builder. The extent and tyoe
of user interaction which the tool supports, as well as the
pocsibility of additional burden on the FE system must be weighed
in selecting a mode for tool communication. Using the techniques
outlined in the MSG document addition NSW Note #11 (and included
as Appendix 2 of this document) we will support tool
communication with the FE using direct (but controlled) tool
access to both the message and connection oriented MSG
facilities. A tool will be able to selectively use messages, or
sets of connections, or both, depending upon the tool
circumstances. Hov,'ever, again letting immediate necessity drive
our initial efforts, we find that ehe initial tools are not
written using a message type FE interface. Rather, they utilize
a terminal oriented interface, best served by a direct connection
from the tool to the FE (and hence the user). Because of this,
we temoorarily defer extensive details of the tool-FE message
interface. These details will be of primary concern immediately-
after the initial Formen implementations are complete. We do
require however, that the Foreman support direct FE to tool
connections as an immediate objective. This does not require any
of the modifications mentioned in Note #11, and hence is in line
with the short term implementation plan for all NSW components.

The Foreman initiall
FE process servicing its
request). Based on this
implement a CONNECTION-TO
To establish the (Telnet)
the tool, the Foreman sen
process. The message is
operations, and indicates
telnet. After sending th
issues its MSG Openconn p
If the Openconn succeeds,
returned to the tool as t
primitive. If the Openco
timeout and retry period.

y receive
tool (see
informati
-FE prirai
communic

ds an MSG
a request
that the

e request
rimitive
the hand

he respon
nn fails
then the

35-

d the MSG process name of the
description of F$BEGINT00L

on, the Foreman is required to
tive operation for its tool,
ation path between the FE and
message to the designated FE
to exchange MSG connection
connection should be of type

, the Foremr.n immediately
directed toward the FE process,
le for the connection(s) is
se to the CONNECTION-TO-FE
after a sufficiently long
Foreman reports failure to the

MajüiWii'"

Foreman Specification March 31, 1976

tool. The MSG message sent to the FE process requesting the
connection requires no acknowledgement. The completing of the
connection serves as a positive acknowledgement to the request.

In cases where the Foreman knows that the tool requires a
direct FE connection (e.g. encapsulated tool), the implementation
may be such that the Foreman acts to create the connection
without requiring the tool to request it. However it is
accomplished, the initial Foreman requirement is that each tool
be provided with a means of using a direct telnet connection to
its FE process. The exact nature of the FE support for tool
connections is detailed in the forthcoming document describing a
minimal Front End.

i
-36-

ill i ^Miiiir 'in-' ■ "• '■

U

n

i
D
D

Foreman Specification March 31, 1976

VII. Tool to Tool Invocation and Communication

7.1 Present State

The mechanisms for tools Invoking other tools or interacting
with other existing, background tools, and then for tool-tc-tool
communication certainly constitute a part of the abstract tool
environment. However, no tool from the set of initially
anticipated tools needs to use such facilities. Therefore, we
are postponing the precise description of the mechanisms provided
to tool builders for dynamically creating other NSW entities and
communicating/synchronizing with them. At this point however, a
rough sketch of the planned me hanisms and a possible
implementation strategy can be given. It must be emphasized that
much of the content of this section is still in the design stage,
and is presented here only to give a more complete picture of a
future direction. The emphasis placed on these areas is
dependent on the nature of the tools which will populate the NSW,
and on whether or not people are willing to customize their tools
for the NSW. To even allow the possibility of extensive
customization, we are presenting the concepts surrounding these
other aspects of the tool environment. It is difficult to judge
the impact of these extensions in the absence of tool candidates
which need to make use of them. However, we will pursue the
refinement of some of the tool-to-tool concepts so that as tools
emerge which require such facilities (as they surely will), we
will have a cohesive approach for handling them. Implementation
may await an expected use. To this end, we invite comments and
suggestions on these more complex uses of the NSW.

7.2 Emerging Tool-Tool Concepts

As in the file system ope
combination are responsible fo
communication aspects of the t
assist from MSG. A general ov
is that there is a variant of
procedure which can be invoked
create a new instance of anoth
use MSG facilities for sending
addressed messages, sending an
and taking down direct connect
conversants which includes any
ancillary features of MSG are
domain (e.g. Rescinding MSG pr
correspondent). The direct us
concepts outlined in Appendix
with primitives for locating s
implemented as tools, but whic
the initiating tool's job, as
creation. With proper verific

rations, the WM a
r the dynamic ere
ool virtual machi
erview of the sup
the Works Manager
via the Foreman

er tool. Each to
and receiving sp

d receiving alarm
ions, all to a se
tools it has sta

expected to be in
imitives, Resynch
e of MSG by tools
2. The tool will
ervice facilities
h do not dynamica
is the case with
ation, the tool c

nd the Foreman in
ation and
ne, with a large
ported facilities
•s W$RUNT00L
by a tool to
ol will be able to
ecifically
s, and setting up
lected list of
rted. Some of the
eluded in the tool
ronization with a
is based on the
also be provided
which are

lly become part of
tool-to-tool
an then engage in

n -37-

■ -'■^V- ■ ■:,

Foreman Specification March 31, 1976

message and/or connection oriented exchanges with the service
tools.

For dynamic tool creation as well as for trying to locate
and utilize a background service tool, we provide tool primitives
which are fielded by the Foreman. The WM implements procedures
whijh perform the access checking as well as establishing new
cciapononts where needed using MSG facilities, and returns the
p-jrtinent information to the initiating Foreman. The information
returned includes the MSG process address of the new tool. The
initiating Foreman then manipulates its tool's environment using
MSG primitives to allow message and/or connection type of
communication between the tools. The initiating tool can specify
thg MSG process name of a process in its family tree which is to
serve as the FE process to the new tool. The Foreman of the
newly created tool receives the address of the creating tool as
well as the process which is to serve as the tool FE (if any) and
adjusts its tool's environment to facilitate communication with
these processes. In addition, we envision providing primitives
with which the creating tool can control the progress of the new
tool and terminate it, in much the same fashion as the user can
control a tool through the WM command language.

One
the name
perceive
"communi
to get t
partners
adjust t
proceed
if two t
tool-too
importan
immediat
failures

e the tool
s of other
a Foreman

cation to
he WM to c
. If they
he MSG env
without fu
ools shoul
1 model st
t aspect o
e solution
cause bre

s are in communication, they can pass around
tool instances that they know about. We
call by which a tool can ask that

process xxx" be allowed. The Foreman would try
onsent to the pair as legitimate conversational
are, the appropriate Foremen are notified to
ironment for their tools, and communication can
rther Foreman intervention. How the WM decides
d be allowed to communicate is an aspect of the
ill undergoing investigation. Another very
f the tool-tool problem, which also has no
, is handling the situations in which system
aks in the process trees.

□

-

D

D

u

-38-

riihjK —^.

■ Li

U

r

u
ö
D

a

Foreman Specification

VIII. Tool Encapsulation

March 31, 1976

The initial TENEX approach to integrating tools into the NSW
was through an encapsulation technique. This approach has proven
very successful, and we, therefore, feel that each Foreman
implementation should consider a similar facility.

In general terms, NSW e
trapping and translation of
into calls meaningful in the
translation is done within t
encapsulation technique, we
exclusively for the local ho
environment, and with little
NSW tools. This is possible
many aspects, of the NSW sys
operating system. As an exam
a local system primitive to
could get control and transl
provides access to an NSW fi
tool" is somehow capable of
within the local host file m
example, this is often be ve
frequently allow the "system
user. In TENEX encapsulation
the tool and the operating s
With its intimate knowledge
and the NSW system structure
filename and ensures that th
local host facilities and fa
components (e.g. WNP , the Fo
file primitive in a ;iw cent

ncapsulation implies the automatic
local host operating system calls
NSW system. Any trapping and

he Foreman process. Using an
take programs which are written
st operating system execution
or no modification execute them as

only because of the similarity, in
tem to a conventional single host
pie, when an encapsulated tool issues
gain access to a file, the Foreman
ate the request into one which
le. This assumes that the "old style
handling the NSW filename syntax
anipulation primitives. In TENEX, for
ry easy since the tool will
" to gather the filename from the
, the Foreman is interposed between
ystem only for selected system calls,
of both the local system primitives
, the Foreman gathers the NSW
e tool utilizes NSW files. Using both
cilities supported by other NSW
reman "implements" the local host
ext.

Encapsulation cannot be d
algorithms. It requires an ext
operating system primitive ope
they can be made to relate aut
Thus each TBH approach to enca
different. As far as the othe
running an encapsulated tool i
which was written to function
and the WM is identical in the
non-integrated tQftl > with tMrr-
Foreman in the F$BEGINT00L mes
which requires encapsulation,
terras about certain aspects of

iscussed in terms of
ensive knowledge of t
rations, and a determ
omatically to the NSW
psulation will probab
r NSW components are
s no different from r
in the NSW. The behav
cases of the_irrteg_ra

eorcreptioh^that the WM
sage that it will be
We can, however, spe
encapsulation.

its
he local host
ination of how
environment.

ly be
concerned,
unning a tool
ior of the FE
ted and
notifies the

running a tool
ak in general

Encapsulation requires some mechanism with which the Foreman
can gain control after the tool executes certain operating system
functions, but before the operating system proceeds with the
local implementation of the operation. The TENEX JSYS trap
facility is an exemple of such a mechanism. It is entirely left

-39-

Foreman Specification March 31, 1976

to the encapsulation implementation to determine which system
calls need trapping and how to integrate these calls with NSW
facilities. For the most part, the tool initialization and
termination conditions, interactions with the file system, and
the communication with the tool user will all require careful
attention within the encapsulation component of the Foreman. In
some cases, mapping the local system operation into a comparable
NSW facility will be straightforward. An example is the terminal
interface which drives many tools. The Foreman can simply request
the creation of a direct FE connection of type Telnet, and
provide this "NSW connection" to the encapsulated tool. In other
areas, the Foreman has a wide range of possible implementation
strategies. An example of this type is the handling of file
delivery into the NSW file system. Since encapsulated tools are
not aware of the NSW file system, they cannot guide the Foreman
as to the disposition of the files. The Foreman must choose an
implementation strategy for delivering new and changed files to
the global NSW file space. This can be done as the files become
available (i.e., closed in most operating systems), or only at
the end of the tool session, or even anywhere in between. Each
encapsulation implementation selects the strategy most
appropriate for the anticipated needs of the tools for that host.

TENEX NSW encapsulation already exists for selected tools.
In general, the simpler a tool is, the more easily it can be
encapsulated. By simple, we mean the straightforward use of
common operating system facilities. Such facilities are apt to
have analogous mechanisms in the NSW, since the NSW caters to
many of the same aspects of the tool environment but with wider
domain. Depending upon the effort placed into translating system
calls, a Foreman will be capable of encapsulating an expanding
set of "old tools." However, let us emphasize that encapsulation
has limitations. There will always be local host programs which
cannot be NSW encapsulated. This is because the NSW system IS
different from the local host system, and substituted components
can be made to appear similar only to a certain degree. Tools
which utilize obscure features, or features peculiar to a
particular operating system are sure to be difficult or
impossible to encapsulate correctly. Very often this will mean
that certain features of a tool are not available when using the
tool encapsulated. If this is not satisfactory, or if other
problems prevent the tool from being encapsulated (e.g., the
local host does not have system facilities for building an
encapsulator) then the tool program must be modified to directly
call Foreman NSW primitives if it is to function as an NSW tool.
Let us also emphasize that for a tool to be most effective in the
NSW domain it should be coded using the NSW facilities directly.

We feel that for some TBHs encapsulation can have a high
payoff in establishing a large class of programs as NSW tools,
and should be actively explored. It is often undesirable to
recede existing programs, and it is in this area that

.:

LJ

i ,.

, 1

L

0

■

i..j

: i

-40-

i
1

Foreman Specification March 31, 1976

1

encapsulation has its maximum effect. Designing an encapsulator
is in many ways similar to designing a tool which directly
utilizes the NSW facilities. As such, much of the discussion in
the preceding sections of this document will be helpful. As a
note of interest, the form of the TENEX encapsulator for the
initial test NSW system has influenced the design of the Foreman
component, since in a way, the encapsulator was an integrated
tool. Some of the concepts embodied in the TENEX encapsulator are
discussed as part of Appendix 1, to serve as a model to other
encapsulator builders.

H

1:
D
D
Q
Ö

I
^

-41-

-TsLl.

Foreman Specification

IX. Batch Tools

focu
users
batch
diffe
time
etc .
inter
suppl
inter
it is
acces
tool
that
batch
speci
Forem

Until
ed on
are o
tools

rence
at whi
is obt
active
y info
active
runni

s. A
is run
nothin
tools
ficati
an is

the p
inter
n-lin
- to

betwe
ch in
ained
tool

rmati
tool

ng, a
ccess
, so
g in
with

on .
not r

resent se
active to
e while t
ols whose
en batch
formation

A user
at any t

on to a b
needs co

nd an act
control

a much le
this disc
all of t
We are m
equired .)

ction, this document ha
ols. Interactive tools
he tool is running. Th
users may not be on-li

and interactive tools,
about input/output fil
can supply information

ime while it is running
atch tool before it is
ntrolled access to NSW
ive Foreman supplies th
for batch tools can be
ss complex Foreman is n
ussion precludes buildi
he functions described
erely pointing out that

March 31, 1976

s primarily
are tools whose

ere are also
ne. The primary
therefore, is the
es, parameters,
to an

A user must
run. Thus, an
resources while
e controlled
done before the
eeded. (Note
ng a Foreman for
in this
such a oomplex

We shall sketch the features that are absolutely necessary
in a batch Foreman. Since batch tools in NSW will be handled by
the IP protocol for the immediate future, we defer details until
a later version of this specification.

In the current NSW model, execution of a batch jo
handled by the Works Manager Operator (WMO) process,
given (by the WM) tables which contain skeleton job co
language (JCL) and a mapping between dummy parameters
skeleton JCL and NSW files, real values, etc. The WMO
the job on a selected batch hosü by asking the WM to m
the File Package) all input files to that host. The s
is then edited to insert local file names (obtained as
of the file movement) and parameter values. The IP se
batch host is then given the JCL and told to run the j
the job has run to completion, the IP server informs t
which then moves (again via the FP) the result files i
file space. The minimum batch Foreman must support th
That is, it must have a WMO-invokable F$SUBMITJOB proc
it must invoke a WMO procedure W$J0BHALT. (In additio
support status probes.)

b is
The WMO is
ntrol
in the
prestages

ove (via
keleton JCL
a result

rver on the
ob. When
he WMO,
nto NSW
is model.
edure and
n, it must

A slightly more complex model requires that the batch
Foreman receive the tables now given to the WMO. The batch
Foreman would then be responsible for moving input files (either
prestaging or during execution) to the batch host, editing the
JCL, running the job, moving result files to NSW file space, and
informing the WM that the job was complete. We expect that many
batch hosts will prefer to control job execution more completely
in this later fashion.

a
A

u

-42-

»

;:

D

D

,. ÜMü a«Lr

/"%.

D
Foreman Specification March 31, 1976

Finally, some hosts may choose to implement a complete
Foreman. F$SUBMITJOB would then be F$BEGINT00L and file motion
would be handled dynamically. This last case is the least
explored of the possibilities although we expect that batch jobs
on interact;.ve hosts (TENEX, MULTICS) will be handled by this
mechanism.

The WM and WMO will support these several different kinds of
batch Foreman so that batch tools may be run on hosts as diverse
as Bi(700, 360/91, and TENEX.

r

t

-43-

I i

..iiti.»iirtliliilii

Foreman Specification

Appendix 1. Functional Summary

March 31, 1976

Thib appendix summarizes the externally invocable functions which
must be implemented by each Foreman, and proposes parameter value
conventions for the functions. Transmissions currently follow
the SRI conventions except where noted. That is, transmissions
are modified PCPB8 data structures of the form:

LIST (type, length, tid, parameter, args) .

This appendix will be modified from time to time, as needed.

-44-

LJ /

0 (

ii '

0

L

1 i

*

J

a
:: t

::
I

* ü^^Jä

m* ■r*

Foreman Appendix 1 April 14,1976

Functional Description and Transmission Formats

A. Functions implemented within each Foreman

(Note: Because of a phased implementation plan, and because all
functions may not be applicable to all host systems,
implementation may consist simply of replying with a rejection
message. In that sense, all functions must be implemented
(recognized) by all Foreman from the outset. The error code reply
value of 177777 (16 bit value) will be taken to mean
unimplemented function.)

All functions are invoked with a reply requested (i.e., using
TID) except where explicitly stated. Recall that the F$ prefix is
used as an expository aid in indicating a function implemented in
a Foreman. Where the string "n-" prefixes an element, it should
be read as the element repeated n times.

A.I F$BEGINT00L (program-name, tool-type, entvec, FE-addr,
cr-addr, filename-list)->result, qstart,

workspace-descriptor, tool-addr

I.

■.-

Program-name:
charstr: local host syntax completely specifying the program to

be run as NSW tool

tool-type:
index =1 -> encapsulated tool

=2 -> tool uses NSW calls, does not use MSG
=3 -> tool uses NSW calls & uses MSG

entvec :
index =0->do not start tool (illegal except in F$BEGINT00L)

=1->continue from point stopped (illegal in F$BEGINT00L)
=2->cold start entry point
=3->warm start entry point
=4->tcrmination routine entry point
=7->tool specific entry point

L
■

J

(Please note that the index value assignments for entvec
are changed from those indicated in the text of the
Foreman document.)

FE addr:
procaddr (new data type corresponding to MSG process address)

cr-addr:
procaddr

A1-1 ■ -?

,!.... I

■\..:-«fe»,.....«m,.a.. "—^
-•^■v.l'Tr^-.-^,^

Foreman Appendix 1 April 14,1976

filename-list:
list(n-filenames)

filename:
charstr: full local host syntax

result:
empty -> success
index -> error code (error codes to be defined)

qstart:
boolean = true -> program started

= false -> program not started

works pace-descriptor:
list (name, access-info)

narrK.-: charstr
access-info: charstr -> info used by File Package

to access workspace via name
empty -> access info not needed by File

Package

tool-aodr:
procaddr

A.2 F$STARTT00L (entvec) -> result

entvec: index (see above)
result: index (see above)

A.3 F$ST0PT00L (entvec) -> result

entvec: index (see above)
result: index (see above)

A.4 F$ENDT00L (reason, termtype, qmaintain)-> result,
accounting-list, qmaintained

reason:
index =1-> user request

=2-> WM decision
=3-> user disconnected

termtype
index =1-> no LND processing necessary

=2-> step thru LND directly with user
=3-> automatically deliver latest copy of changed files

qmaintain :
boolean = true -> maintain tool image if possible

= false -> don't maintain tool image (default)

accounting-list:
list (cost, n-list(type,amount))

A1-2

□
Ü

U

G

D

;:

n
n
D
n
J i

ifMtm ..!»>■. nil —

Foreman Appendix 1

cost

type:

April 14,1976

an integer reflecting the cost in cents of
running the tool.

an index indicating th. type of resource

accounted for
=1 -> CPU milliseconds
~-2 -> connect minutes
13 -> I/O operations
14 _> orimitive call:

=5 ->
pr:
core usage

" to be defined as needed
•,J;?e- each TBH will select th
i"0^'« ^asures it will provic

le types of

resource measures iu wxx. ^--ide)
amount: i^eger se3Sion utilization for the

To 1r:rpSontdrngSresource type (either in
,,«,-!4-c! nr in cenX/S; • resource units or xu

i,.

qmaintained:
boolean

aintained ~, VIOQ hpen maintdincw
= trUe -> tool image has been ffitintalned
5 false -> tool image has not (default)

I

1

I

i

I
D

0

B,

B.I

Alarms to be recognized by each Foreman

B.2

alarm code . 1 -> forthcoming tool ^-ination^re.uest^^
alarm response: ^^^^fJr FIENDTOOL request;

messages l00^t«L« are diaoarded all other messages are aib^d

— ""• M^-cL^^etSril^r^/stfra^a.les, to
reSP invoking process

statevariable I: f« jf^*1 State

index -.0 -_> ^^1, never started

„ 2 -> st0PP^ at termination code _ q _> running at termxua HAITME)
I I -s terminated (tool did HALiMM

statevariable2: NSW internal state
StateVindex = 0 -> running compietion of NSW

rnote'^the primitive name used
^to^ls need not be uniform
y „ «n TRHs However, tor

Ttafna feportsVwe atandardi.e

A1-3

N

■^ -^Mf,^--^— üifLi.-iü*,.»: ■ i -i...- *„

|

Foreman Appendix 1 April 14,1976

all tool functions by
equating each one with a code
indicating particular function
classes. It is this code
(non-zero) which indicates the
type of NSW function the tool
is executing) .
current local operating system
state

index = 0 -> running
= 1 -> I/O wait
= 2 -> dismissed

statevariable3:
D

:

statevariable4: current program counter
integer

NSW primitive functional classes:
1-> global file space manipulation
2-> local file space manipulation
3-> MSG communication
4-> tool invocation

B.3 alarm code : 11 -> accounting probe (name = ACCOUNT)
response: return accounting-list (defined earlier)

to invoking process

other alarms will be defined as needed

I

□
:;

D

A1-4
LJ

^ r -'^-Viiiiitf-iimi

J

•

Foreman Appendix 1

A rote on responses to alarm codes

April 1^1,1976

There is currently no convenient way to signify a response
to an alarm. Accordingly we are proposing the following addition
to the transmission conventions as outlined by Fostel.

the standard message transmission format is:
LIST (type, length, tid, parameter, args)

for a response to an alarm we specify that

type = 3 (definition of a new type)
length (same as before)
tid = alarm code (the id field contains the 16 bit

alarm code for type 3 messages)
parameter (same as for type 2 = acknowledgement)
args (same as for type 2)

In accordance with this format, a defined alarm code which has no
Foreman implementation should return an error reply value of

177777 (unimplemented function).
Recoipt of an undefined alarm code can simply be ignored.

LJ

[J

i
;

A1-5

.-*, ^j:^ **"■-

•
/*\

Foreman Appendix 1

C. TENEX Encapsulation

April U,1976

This section, which sketches selected aspects of the TENEX
NSW encapsulator, is included as a model for potential
encapsulator builders. Encapsulation provides the implementer
with large margins of flexibility, and each such implementer must
decide upon the nature of an encapsulator best suited for the
existing local host programs.

An NSW encapsulated TENEX tool is automatically set up with
a network virtual terminal (NVT) to the FE process as its primary
input and output device. The structure of the TENEX operating
system has allowed the encapsulator to be programmed as an
ordinary user process. With respect to the tool it is running,
the encapsulator can gain control when the tool executes selected
system calls, and in addition can read from and write to the same
NVT which was given to the tool.

■

:

When a TE
(us.-'.ng GTJFN o
program either
or file which
matters, in th
the program ha
from the NVT (
string paramet
user as the so
file name usin
by the NSW use
Filename refer
the LND for a
try to obtain
these cases, t
file represent
supplied filen
may refer to a
previously obt
may refer to a
the NSW (e.g. ,
such locally a
time. Using t
NSW and TENEX
the file is a
Access to a TE
determine a fi
and consult wi

NEX encapsu
peration) ,
provides a

can be read
is discussi
s specified
i.e., from
er of the s
urce of the
g the NVT.
r, we can b
ring to an
copy of tne
a copy from
he tool is
ing the NSW
ame string,
n NSW file
ained from
TENEX file
a document

ccessible f
his list, a
file name s
legally ref
NEX file ca
le name to
th the WM a

lated tool
the call i
filename
to obtain

on we will
that the

the user)
ystem call
file name
Since the

e certain
NSW file,
file, and
the globa

provided a
file copy
the compi

(in NSW sy
the user.
(in TENEX

ation file
iles to th
nd based o
yntax, the
erenceable
n be grant
be an NSW
s necessar

requests ac
s such that
string or in
the filenam
consider on

filename is
or is provid

If the ca
, the encaps
file name h

that it is a
As 'uch, we
failing to

1 v.'orkspace.
direct hand

In the ca
exity increa
ntax) whose
Alternative
syntax) who

). The WM p
e encapsulat
n its knowle
encapsulate
TENEX file

ed outright.
name then we
y to provide

cess to a file
in general the
dicates a device
e. To simplify
ly the cases where
to be obtained
ed as a text
11 indicates the
ulator reads the
as been supplied
n NSW syntax
can simply check

find one, we can
In either of

le for the TENEX
se of a parameter
ses. The filename
name was
ly, the filename
se use is outside
rovides a list of
or at tool startup
dge of both the
r determines if
or an NSW file.

Once .e
search the LND
file access.

For those cases where the program requests a "new" file (as
indicated by the TENEX system call parameters) it must de facto
be an NSW file, since encapsulated tools are not aware of the two
different file systems. In this case, an LND entry is created
and the encapsulated tool is given a handle on a TENEX file

A1-6

ttimm ■■" .;...,. UV. .ill i -i'"

u

Foreman Appendix 1 April 14,1976

representing the NSW file. TENEX also has the facility to create
temporary files, i.e., files which disappear on logout. We have
taken the position that tools can utilize temporary files
unimpaired, since by their very nature they would not be
candidates for being maintained in the central catalog.

Since the encapsule
NSW environment, they do
delivered to the WM and
indicates (in TENEX term
file, the encapsulator d
been modified. If it ha
possibly requiring deliv
time. We have taken the
interpreted locally wher
operations will only ere
files and access these c
delivered to the global
only selected files (e.g
copies). Version number
TENEX, with some assist
supports limited TENEX s
file name from the user.

ted too
not Indi

when. Th
s) that i
etermines
s, then t
ery to th
approach

e possibl
ate new 1
opies whe
space unt

, latest
ing and d
from the
tyle comm

■•e not reprogrammed for the
te which files need to be

us when an encapsulated tool
t has finished accessing an NSW
whether or not the file has

he file is marked in the LND as
e global space at a subsequent
that file references are always

e. That is, in general, file
ocal workspace copies of NSW
n they exist. No files are
il the tool terminates, and then
versions of changed original
efaulting are supported as in
LND. The TENEX encapsulator
and editing while accumulating a

D
D

D

n A1-7

jf^ßistmf^" '■ •W^(ä^P:^S°?B*i«!RSKw» - ■:■'■■ :^JMfa->.,...w^L,Jl ^Ji__

J/;

n
Foreman Specification

Appendix 2. Foreman Induced MSG Additions

March 31, 1976

The following pages reproduce an appendix to the original MSG
design document. The document was originally introduced under
the name NSW Note #11. Because of the relevancy to the subject
of this document, and because it was not included in the
originally distributed MSG report, we are including it as part of
the Foreman specification document.

D
::

n

D
D

l 1 i

-45-

t«Sfci

/-S

BBN NSW Working Note #11
January 27, 1976

The Impact of the Foreman Concept on MSG

i:

LJ

D

n
D
D
n

The needs of the Foreman component of the NSW have
motivated some proposed additions to the MSG facility. In
essence, a Foreman is a local-to-the-tool component of the NSW.
The Foreman provides an interface to the tool for the facilities
provided by the Works Mannger, and in addition helps to provide
the NSW environment in which the tool is run. This note
discusses one aspect of that environment, the communication
facilities made available to the tool.

To a first approximation, the message oriented
communication modes provided by MSG to the components that
create the NSW environment are also appropriate for tools to
communicate with other tools and with the user through a front
end process. However tools, especially those in the debugging
stage, cannot be allowed to function directly in the uncontrolled
MSG environment.

The interprocess communication (IPC) needs of a tool, along
with the IPC needs of the Foreman component imply the existence
of two logical communication streams. One set of messages is
destined for the Foreman, while the other stream is destined for
the tool itself. If the IPC needs of a tool can be satisfied
using direct connections only, then message traffic can be
dedicated to the Foreman implementation. If, on the other hand,
the tool must be provided with a message oriented IPC facility
which is supported by or derived from the MSG message passing
capability, then a multiplexing problem exists. In the following
we assume that it is indeed desirable to provide tools with a
message oriented communication facility for many of the same
reasons that such a facility was desirable for building the NSW
itself. We also assume, for obvious reasons, that such a
facility will indeed make use of similar MSG functions.
Therefore, we must address any problems this situation causes.

For th
there seem o
tool occupy
any event, t
the tool. Th
NSW virtual
Foreman and
required to
the ones int

e tool/Foreman complex in the current MSG context
nly two possibilities: either the Foreman and ttr,
a single M.^G process or they do not. [Note that in
he Foremar must maintain a special relationship to
at is, it is the Foreman that provides much of the
environment for the tool.] In the case where both the
the tool occupy the same MSG process, the Foreman is
receive all incoming messages in order to filter out
ended for the Foreman. This filtering would have to

A2-1

Li

^N

t ■■5

Foreman Impact on MSG 1/27/1976

be based on NSW addressing conventions transmitted as part of the
message data. Messages intended for the tool would be passed to
the tool by the Foreman using local operating system facilities
outside the scope of MSG. The major advantage of this approach
is that it is very convenient to apply the needed access controls
on the tool's use of the message facility. The Foreman
implemei ts for the tool a new abstract IPC facility which is
built upon the Foreman's use of MSG. The "new" IPC facility can
be customized for tool use if this is desirable. The major
disadvantage for the NSW stems from the fact that the IPC
facility we want to provide to the tools is indeed very similar
to that offered by MSG. We would like a somewhat restricted
version of MSG. Yet to achieve this, we must incur an extra
transfer of control between the MSG facility and the Foreman for
each incoming and outgoing message of the tool. In addition,
this may involve additional handling/copying of the messages and
duplicating some of the functions already performed by MSG (e.g.
setting up and queuing alarms, handling multiple operations).
Furthermore, the Foreman's use of the MSG facility may conflict
(interfere) with that of the tool (e.g. MSG queues only a single
alarm; also, message sequencing is on an entire MSG process
basis) . Such conflicts may force an otherwise unnecessary change
in the nature of the IPC facility available to tools.

An alternat
its tool are sepa
addresses would m
of Foreman messag
disadvantage of t
does not provide
of the message pa
the NSW applicati
like to be able t
the tool can comm
combination respo
conversants. In
from executing ce
related to the se

ive NSW desi
rate MSG pro
ean that MSG
es from thos
his approach
any way for
ssing facili
on is fairly
o limit the
unicate, and
nsible for c
addition, it
rtain MSG pr
nding and re

gn is one
cesses.
itself c

e of the
is that

the Forem
ty. The
well und

conversat
have the

hanges in
may be n
imitives
ceiving o

in which the
Their distinct
ould mediate t
tool. The isai
MSG, as curren
an to limit th
type of centre
erstood. That
ional partners
Works Manager
the set of le
ecessary to fo
which are not
f messages.

Foreman and
MSG

he separation
n
tly defined,
e tool's use
1 needed for
is, we would
with which
/Foreman
gal
rbid a tool
directly

In the following
MSG, which, if implemen
utilize the MSG IPC fac
specify limitations on
additions are in two ba
establish the ability o
new process which MSG w
presumably been created
the local host operatin
introduction is that th
and can issue MSG primi
additional MSG primitiv
to selectively manipula

sections we
ted, would a
ility while
how the faci
sic areas,
f an MSG pro
ill then sup
using whate

g system. Th
e new proces
tives. Seco
es which all
te an access

outline seve
How an NSW
allowing the
lity can be
First, we wo
cess to "int
port. Such
ver faciliti
e result of
s is given a
nd , we would
ow an introd
control mat

ral additi
tool to di
Foreman t

used. The
uld like t
reduce" to
a new proc
es are pro
a process
n MSG proc
provide

ucing MSG
rix which

ons to
rectly
o
MSG

o
MSG a

ess has
vided by

ess name

process
would be

I

D
n
D
□ I
.A

D
□

D

f]

A2-2

.i_l..

Foreman Impact on MSG» 1/27/1976

i associated with every introduced process. Such an access control
matrix would Indicate for each process the allowable objects of
each MSG primitive. [In general, the object of an MSG primitive
is an MSG process name.]

u

D

We view these additions to MSG as the cleanest, most
effective way to bring tools into the NSW environment while
providing them with a flexible message passing communication
facility.

Introducing New MSG Processes

dynami
the na
local
proces
d yvi am i
operat
proces
messag
(e.g.
sense)
Howeve
asynch
the si
implem

Many mod
c proces
ture of
host ope
s. In t
c proces
ing syst
ses must
e stream
a struct
sending

r, in ot
ronous o
ngle mes
ent its

ern day
s creat
an MSG
rating
his way
s creat
em. Ho
share

In s
ure whi
all me

her ins
peratio
sage st
own loc

opera
ion.
proces
system
MSG p

ion pr
wever ,
a sing
ome ca
ch has
ssages
tances
n of m
ream,
al dis

ting system
There has b
s , so that
sense) can

rograms can
imitives av
as current

le MSG addr
ses this is
one proces

, while ano
(e.g. tool

ultiple pro
and force e
patching.

s provide mechan
een no limitatio
multiple process
serve as a sing
continue to uti
ailable on the 1
ly constituted,
ess and hence a
exactly what is

s (in the local
ther does the re
/Foreman) the co
cesses would be
ach such MSG pro

isms for
n placed on
es ''in the
le MSG
lize any
ocal host
these MSG
single MSG
desired

system
ceiving).
ncurrent,
impeded by
cess to

As suggested above, one way to allow MSG itself to mediate
the message stream between concurrent but cooperating processes
is to assign each a separate MSG address. It may at first seem
attractive to add to MSG the notion of a general purpose "create
new process". Such a general facility is not necessary for
building the NSW. To be sure, such a general inter-host process
creation and manipulation mechanism is a goal we have in creating
the support environment for the tools themselves, but it need not
be implemented by MSG alone. The current discussion is concerned
with being able to more flexibly use within the MSG context
whatever local host operating system process creation facilities
are available. With that goal, there are a number of reasons for
refraining from defining a standard MSG "create process"
primitive. One is that in many cases the creating process needs
to maintain a special relationship between itself and the created
process to maintaiii a particular type of cooperation. This may
take the form of being able to directly manipulate certain
aspects of the created process, or perhaps results from sharing
parts of an address space. In any event, it would be difficult
to be able to represent all of the potential relationships from
all of the constituent systems, and even more difficult to
implement some of them. A second argument against a standard MSG
"create process" primitive is that it would have to be
accompanied by a suiteble way of describing the process that was

A2-3

«i.. !■■ -Tflfc« •»■■-., ^i^_.

Foreman Impact on MSG 1/27/1976

to be created. Typically this is handled in the context of a
file system, but there does not exist a unified MSG file store.
[Although a unified multi-host file system is part of the NSW
design, it is not realized at the MSG level.]

An alternative to a unified MSG "create process" primitive
is the approach which acknowledges the local nature of the
creation and specification of new processes, but allows the
creating process to "introduce" to MSG the created process. Any
special relationship between the processes, as well as the means
of specifying how to create the process is handled on a strictly
local host basis. It is presumably complete before the
introduction is made.

After introducing a new process to MSG, we will have
established two separate MSG addresses. The Foreman and tool can
have separate MSG message streams, with MSG mediating between
them. However, process introduction by itself does not solve all
of the problems raised by the NSW Foreman application.

Limiting the Use of MSG Facilities

Up unt
to avoid spe
processes.
another from
processes vi
determining
The concept
a natural pi
processes ov
control is a
we attempt t
which does n

il this
cifying
The MSG
a cont

a MSG m
for its
of "int
ace for
er othe
gain mo
o d e f i n
ot prec

point
any h
proce

rol st
essage
elf th
roduci
integ

r MSG
tivate
e the
lüde i

, the MSG d
ierarchy of
sses are la
andpoint.
s is unres
e validity
ng" another
rating a fo
processes.
d by the Fo
use of the
ts applicat

ocumen
contr

rgely
Commun
tricte
of any
proce

rm of
The i

reman
contro
ion in

tation
ol amon
indepen
ication
d, with
messag

ss into
control
ntroduc
applica
1 facil
other

has be
g the
dent o
betwe
each

e it r
MSG e
by se

tion o
tion.
ities
contex

en careful
MSG
f one
en
process
eceives.
stablishes
lected MSG
f any such
However,

in a way
ts.

As a result of proce
process is established as
The superior/inferior rel?
among MSG processes, as cc
through message communicat
process also causes the te
processes are permitted to
MSG facilities. This is a
control mechanism af.sociat
primitives. In general te
associating an access cont
and allowing superior proc
primitives) the contents o
Entries in the matrix repr
particular MSG primitive o
a primitive call from one

ss introduction, the introducing
the superior of the introduced process,
tionship represents a tight coupling
ntrasted to the loose coupling provided
ion. Termination of a superior MSG
rmination of its inferiors. Superior
regulate their inferior's use of the

ccomplished through the addition of a
ed with the execution of MSG
rms, the control consists of
rol matrix with each new MSG process,
esses to manipulate (through MSG
f the matrix for their inferiors,
esent permission to execute a
n a particular object, MSG will reject
of its processes if the access control

A2-4

::

D
D
D

1

v . ■ ■■ r-.™.MWf.

^\

i
I

i

Foreman Impact on MSG 1/27/1976

i]

matrix does not indicate that this (call, object) pair is
allowable. An object is usually an MSG process name. However,
some MSG primitives (e.g. Stopme) do not take objects as
arguments. In such cases, a single entry regulates the ability
to execute such a primitive.

It may be helpful to view an MSG process which has no MSG
superior (i.e. has not been "introduced" by another MSG process)
as having an unrestricted access control matrix. An MSG process
can only supply its inferiors with rights that it currently has.
Removal of a right from an immediate inferior causes removal of
that right from any MSG process further down the hierarchy.
Applying access control to the sending of messages (data) has the
beneficial side effect of reducing bandwidth consumption by
unauthorized messages. It also increases the confidence in the
validity of messages which are received.

MSG Primitives

The following is a set of primitives which, if added to
MSG, would allow the Foreman to function in the previously
discussed mode. (This is just a rough sketch of the primitives,
along with some possible implementation details) .

n

M

LI

1. Introduce New Process (pointer to process descriptor, pointer
to initial access control information, location of returned MSG
name, disposition)

This is the primitive which is used to introduce a new process
into MSG. In response to this primitive, MSG establishes an MSG
address for the introduced process. The generic component of the
generated name is always null, implying MSG has no knowledge of
the function performed by the process.
It also establishes the issuing MSG process as the superior of

the process, and initializes the access control matrix based on
the data passed in the parameter list. The new MSG name is
returned to the calling process.

process descriptor: local host operating system dependent
parameter for conveying to MSG the identity of the new process.
The exact nature of this parameter is dependent on the entity
which is discernable as a process on the local operating system.

access control information: list of pairs, where each pair is of
type (primitive, list of objects). Primitive denotes a particular
MSG primitive, and list of objects is a list of MSG process
names. Special designations exist for the classes of objects
"all" and "none". Individual process names include all defined
MSG process name fields, with the addition that each field may
optionally have the "all" designator.

A2-5

-■feft'/lBIWIIIMl »111 lii.I

Foreman Impact on MSG 1/27/1976

i'

2. Renounce Process (MSG process address, disposition)

This primitive is the inverse of proce
checks to see if the issuing process i
object process, and if so MSG causes t
process (including removing any knovle
MSG tables). This also forces immediat
outstanding MSG operations on behalf o
MSG processes introduced by the object
renounced. Note that this does not ha
the destruction (in the local operatin
constituted tne MSG process. It only
its existence.

ss introduction. MSG
s the superior of the
he removal of the object
dge of its existence from
e rejection of all
f the object process. Any
process are similarly

ve to necessarily result in
g system sense) of whatever
makes MSG itself unaware of

a
a

3. Update Control Table (MSG process name, add/delete indicator,
pointer to access control information, disposition)

This primitive is used to manipulate the access control
information associated with an inferior MSG process. MSG checks
to see if issuing MSG process is the superior of the object
process, and if so updates the access control matrix of the
object process according to the supplied parameters. In the case
of additions, the (primitive, object) pair specified must be
currently accessible to the issuing process in order for this
update to succeed. A deletion causes the same pair to be removed
from any inferiors of the object MSG process.

access control information: same as defined in the introduce
primitive.

add/delete: boolean which distinguishes adding entries from
removing them.

:1

•■■ ij

A2-6

, -f

;:

Unclassified

REPORT DOCUMENTATION PAGE

i"

■-

i- ■...»

a

=M^

SECURITY CLASSIFICATION OF THIS PACE (Whit Dal« Enltted)

i. OOVT ACCESSION NO.

roreman: Providing the Program
Execution Environment for the National
Software Works» „ -' i.'......_.. ..Iiri y--»™— ■ ■-»—~

ruriBf^

Richard E. ^Schantz
Robert E./Millstein

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt Beranek and Newman Inc.--
5 0 Moulton Street
Cambridge, Massachusetts 02138

READ INSTRUCTIONS
BEFORE COMPLETING FORM.

T'S CATALOG NUMBER

Qf ffEPQWT A PFRinn CfWFHEJ

Scientific i5y
6, PERFORMING ORG. REPORT NUMBER

CONTRACT OR GRANT NUMBERf«)

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects
Information Processing Techniques
1 4 tld wi 1 crm BIvd.. Arlington. VA

14. MONITORING AGENCY NAME I ADDRESSfff dffforwil Ifom ConltotUn»

Office of Naval Research
Code ONR-4 30D
800 N. Quinpy Street
Arlington, Virginia 22217

—WWW BATE

TMarc^lSTe
-WOWBEJ.yF PAUEi' 3

IS. SECURITY CLASS, (ol Ihlt roporl)

Unclassified

ISa. OECLASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATCMEIIT (ol thlm R»pot()

Distribution of this document is unlimited. It may be
released to the Clearinghouse, Department of jCommerce for
sale to the general public,

17. DISTRIBUTION STATEMENT (ol thl mbtltmcl mntmrtd

18. SUPPLEMENTARY NOTES , , _«w,
(a) This research supported by DARPA under ARPA Order No. 2901
(b) This report also published by Massachusetts Computer

Associates, Document No. CADD-7604-0111.

19. KEY WORDS fConrlnu* on raw«« «/if« II neciaimry and Idonllly by block number)

National Software Works
Computer Networks
Distributed Systems
Resource Sharing

Tool Bearing Host
Network Protocols
Network File System

DD

ABSTRACT fConKmie on raver» »Id» II naeaaaary an«f Idonllly by block numbor)

This report describes the function and operation of the
National Software Works (NSW) system component known as the
tool Foreman. A tool is a software development computer
program made available to users through the multi-computer NSW
system. The Foreman provides tools with their NSW execution
environment, and ensures the smooth operation of tools within
the NSW. Various aspects of the tool environment and the
Foreman interface wifti nth^r MPW Ryg+PTTi ornf'P.cQoc ai-o rioQr.T>TKoH

1 JAN*71 MW EDITION OF 1 NOV 8S IS OBSOLETE

