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ABSTRACT. ~Measures of dispersion are defined as functionals
satisfying certain equivarisnce and order conditions., Attentlon

is restricted to symmetric distributions. Different measures are

-—

compared in terms of asymptotic relative efficiency, i.e., the

e,

inverse ratio of their standardized variancas, The efficiency of a

o~

trimmed to the untrimmed standard devizstion turns out not to hawve

a positive lower bound even over the family of Tukey models,

Positive lower bounds for the efficiency (over the family of all
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symmetric distributions for which the measures are defined) exist
if the trimmed standard deviations are replaced by pth power
deviations. However, these latter measures are no longer robust,
although for p < 2 they are more robust than the standard
deviation, The results of the paper suggest that a positive bound
ile to the efficiency may be incompatible with robustncss but that
trimmed standard deviations and pth power deviations for p=1

or 1.5 are quite satisfactory in practicexh

:{\
5.5 Key words and phrases. Dispersion, estimatibn, standardized
; 8 asymptotic varisnce, asymptotic efficicncy, Tukey model, standard

deviation, trimmed standard deviation, pth power deviation, sub-

stitution of an estimate of location, scaling a positive distribution
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1. Mioanures of disnersion

In analogy with the defirition of a measture of location, we

, shall define a measure of dispersion to be a functional (defiacd
over a sufficiently large family of distributions) which satisfies
certain invariance conditions and which in addition has the property
of assigning a largervalue to G than to F 1if G 1is more
dispersed than F. In the present paper we shall considex the

{ problem for symmetric distributions* and assume that X 1is a

é' random variable wliose distribution F is symmetric about .. It

15 then scens natural to interpret dispersion in terms of the distance
of X from u, that is, in terms of the magnitude of |[X-u],

and to consider Y as more dispersed about v than X about u if

(L) ° |Y-v| is stochastically larger than |X-p|.
(This is esscntially the "peakedness'-ordering introduced by Z. W.
Birnbaum (1948).,)
liote that
(a) any symmetric random variable is more dispzrsed than a
constant;
(b) aX 1is more dispersed than X 1if a > 1.
If F and G ace symmetrlc about 9 vith densities f and g,

a simple sulficient conditiva for (1.1) with p=v =0

*
Wa wnpect to take up the asyametiic case in a subsequent paper.
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(L52) g(x)/£(x) 1s increasing for x > 0,
i, If F and G are symmetric about zero, and G 1is more dis-

persed than F, and if

(1.3) Hy(x) = 6G(x) + (1-6)F(x),

then H6 is more dispersed than F for any 0 < 6 < 1, As an
illustration, note that a standard normal distribution contaminated
with another normal distribution with zero mean and variance > 1
(Tukey model) is more dispersed than the uncontaminated standard
normal distribution.

An important class of examples is provided by ihe following
result, which is a generalization of a lemma of Birnbaum (1948).

Theorem 1. Let Xip Yy (1i=1,2) be independent with distribu-

tions F,, G, (1=1,2) which are symmetric about zero, and suppose
that

(1) Y, is more dispersed than X, for 1i=1,2
and

(11) F, and G, have unimodal densities and possibly some

probability mass at zero.

Then Y1 +-Y2 i3 more dispersed than Xl +-X2.

Proof. Consider the probability o

-

P(]X; +X,] <¢) =2 Jg [Fy(x4e) - Ty (n-c)JdF,(x).
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The unimodality of F, implies that the integrand on the right-hand

)

’
[

1
side is a decreasing function of x. From the fact that (F,, G

satisfies (1.1), it then follows that this last integral is decreased

when F2 is replaced by G2. Thus,
PRy +X,] 2 ¢) 2 2 [([F) (x4c) - Fy(x-c) ]G, (x)
= 2 [[6,(x+c) - Gy(x-c) JdF, ().,

Repeating the argument (this time using the unimodality of G2), we
arrive at the desired result. Birnbaum has shown that Theorem 1 no
longer holds when assumption (ii) is dropped.

Consider now a functional < (F) [also denoted by 1(X) when
X 1is a random variable with distribution F] defined over a
sufficiently large class of distributions which is closed under
changes of location and scale. We shall require 1 to be nonnega-

tive and to satisfy

(1.4) 1(aX) =laT(X) for a >0
and
(1.5) 1(X+b) = 1(X) for all b,

It follows from (1.5) and the symmetry of F that
(1.6) 1(-X) = 1(X)

so that (1.4) holds for all a # O,

From (1.4) and (1.5) it is easily seen that

(1.7) 1(c) = 0 for any constant c.




For by (1.4), we have 1(0) = 1(2X0) = 21(0) and hence 1(0) = 0,
and by (1.5), 1(c¢) = 1(0). The converse, that 7T(X) = O requires
X to be a constant with probability 1, will in general not hold.
An example is provided by the trimmed standard deviation defined in
Secti?n 3 below.

A nonnegative functional 1 satisfying (1.4) and (1.5) will be

called a measure of dispersion 1f it satisfies in addition

(1.9) 1(F) £ 1{G) whenever G 1is more dispersed than F,

Note that if 1(F) 1is a measure of dispersion, so is k1(F) for
any k > O,
A large and important class of dispersion measures is provided

by the functionals

(1.10) (F) = UiFst(e) )Y anen MY

where F 1is assumed to be symmetric about u, F, denotes the

distribution of |X - u|, A 1is any probability distribution on

(0,1) and vy any positive number.
That (1.10) satisfies (1l.4) and (1.5) is easily checked; that
it satisfies (1.9) follows from the fact that F,o(t) = G (t) for

all t when G, 1is stochastically larger than F,.
A special case of (1.10) is the standard deviation (SD) of F

defined as

(1.11) SD(F) = [J (x - u) 2dF(x) M2 .

N i b o i i g e
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This 1s easily seen to be given by (1.10) with y =2 and o the
uniform distribution on (0,1). The following three important classee
of measures, all special cases of (1.10) provide the alternatives to
the standard deviation with which we shall be concerned.

(i) A generalization 12(F; p) of the standard deviation

is the pth power deviation obtained by replacing y by p in

(1.10) and letting A be the uniform distribution on (0,1).

(11) The doubly trimmed standard deviation 1 (F; a, B) is
given by (1.10) with y =2 and A the uniform distribution on
(a, 1-p). The most important example of this is_the case a=0.

(ii1) The oth quantile is obtained from (1.10) by letting
A assign probability 1 to the point a. The resulting measure
is independent of .

The standard deviation is of course a member of both (i) and
(ii). The ath quantile is the limit of the doubly trimmed
standard deviation as B — a.

2. Estimation

A most important aspect in comparing two measures of scale
Ti(F) and Tj(F) is the accuracy with which they can be estimated,
Unfortunately, it is no longer possible to compare these accuracies
directly in terms of the asymptotic variances of the estimators.
This is clearly seen by considering the case T, = €Ty where c

is any positive constant, If 71 is a possible measure of scale

and its estimator is 61, one would be equally happy to use T,
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and estimate it by 62 = cél; of course the asymptotic variance
does not remain the same but gets multiplied by c2. For this rcasoa
a natural measure of accuracy of an estimator of 1(F) with
asymptotic variance v2(F) is not v2(F) itself but the scale

invariant standardized asymptotic variance (already proposed by

Daniell (1920))
(2.1) va(F) /<2(F).

The asymptotic efficiency e of 0_ (estimating 1t.) to ¢
2,1 2 2 1

(estimating 7)) will then be defined as

VE(F)  Vo(F)
(2'2) 62 l(F) = P) / > .
’ Tl(F) TQ(F)

If vn; (T;-7;) is asymptotically normally distributed for
i=1,2 as the number n, of observations tends to infinity, the
usual argument shows that the asymptotic efficiency (2.2) is the
limiting ratio of the numbers of observations required by the two
estimators to achieve the same standardized variance.

That the above definitions are reasonable can be seen from
another point of view, The logarithm of & 1is an estimator of the
location parameter 1log ©(F). Suppose that the distribution of
vn (8 -1) tends to the normal distribution with zero mean and
variance v-, Then the distribution of vn (log ¢ - log 1) tends
to the normal distribution with mean zero and variance v2/12(F);

that is, v2/12(F) is the asymptotic variance of the location

c¢stimate 1log 6.
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! When studying the estimators of fuactionals such as those i

defined in Section 1, it is convenient first to consider F re-

stricted to distributions which are symmetric about a known point .

On the other hand, in order even to define the estimators of =1
we wish to study, it is necessary to extend 1 to asymmetric

distributions. In all the examples to be considered here, there

is a natural extension of 1T to asymmetric distributions. Given

this extension, we define as estimator of 1(F) the functional =1
evaluated at the empirical distribution function F of Xl,---,xn.
In what follows, we shall assume without loss of generality that the ‘g
known value . of the center of symmetry of F is pu = O,

measure of scale is the standar
The point of view in the present paper will be that the standarc

R

deviation <t (F; 0, 0) which (since u = 0) 1is estimated by lj

. /'n 5 i
(2.3) oy =) E Kim - |

This estimator is well known to be very unsatisfactory because of

oo e A B s

its extreme sensitivitt to outlying observations. We shall there- E

fore look at the other functionals under consideration as competitur:

Ly
RS i

of T4 and hence shall be interested principally in comparing their

behavior with that of 61. Unfortunately, we are only able to make f&

)
these comparisons asymptotically. TFor inln, it is of course

obvious from the central limit theorem that fJE[in/n - 02] is

asymptotically normal with zero mean and variance Var(xz) proviceald
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[p)]
the later varilance is finite., Here o° = E(XE) denotes the

variance of X.

pRTT— anind

It follows that «/E(ol-o) is asymptotically normal with wean

zero and variance Var(xg)/402. Thus the standardized variance is

4 2 .

- | 1B yarx®) 1 et 1
(2.4) F— = = =%

{ 14 (F) bo o -

In the next sections we shall obtain the corresponding expansion

Gl o e

; for the estimators of some other functionals, and then study the

efficiencies (2.2).

bk e

3. The doubly trimmed standard deviation

To replace the standard deviation as a measure of scale, we
shall seek among the measures discussed in Section 1 one which would
be more robust but which still can be estimated fairly efficiently. ;
Encouraged by the results of BLII, we shall begin this search by

studying the Trimmed standard deviations.

- Secamg

As bcfore, let the random variables X, be independently ]

i
distributed according to a distribution F, which is symmetric with

respect to the origin, Let Y = X2 and denote the distribution

of ¥ bv G. We can then write 12(F; a, p) (with a, B 2 1/2) as

1-8
2 1 -1
(3.1) T(Fs 0, B) =15E fa ©

u
(t)dt = ful'B ydG(y)
a

vhere u is the ath percentile of G.

Consider now the estimator,

(3.2) 2, o, ) 9% 2, B). 4
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This is obtained by trimming off the 100 a% observations with
the smallest absolute values and the 100 B% observations with tho
largest absolute values and then computing the standard deviation of
the remaining observations. In terms of the Y's, ?2 is a doubly
trimmed mean. Its expectation is given by (3.1) and its asymptotic

variance is (see for example BL II (1975))

2 1 Y1-p 7
3.3 vi = — [y - c(a,B) 1°dG(y
(3.3) 2,8 " Tap? y - c(2,B) ]7d6(y)
+afu, - c(a,p) ]7 +pluy g - c(a,p) ]°

where

ul-ﬁ
(3.4) C(a,B) = fua ydG(y) +oau, +pu) g
and

-1 1 e+l 7
(3.5) u, = G “(t) = [F _—é—] .

(This formula holds if u are uniquely defined and G 1is

a? ul-ﬁ
continuous ot u , Y g (see Stigler (1973)).

To éet an idea of the behavior of such procedures with respcct
to the untrimmed standard deviation we consider some representative
cases namely the (singly) trimmed standard deviations with |
p=.1, .2, o =0, The following tables computed by Winston Chow

and W. Carmichael show theeificiencies (2.2) of these estimators with

respect to the standard deviation for the following three classes nf

distributions.

vy ma ot
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These models were selected as representing a range of long and

11

t - distributions with 5, 6, 7, 8, 9, 10, 25, 50 degrues

of freedom.
Symmetric beta distributions with densities,

£(x) = [B(r,n) ] (3 - )7L, Je] &

ol

for r = %,

Tukey normal gross error distributions, i.e.,

2, &, 6, 8, 10, 20, 30,

F(x) = (L-e)%(x) +ed(3),

for ¢ = .025, .075, .10, .20, .40, .50 and A

short tailed distrilutions and for ease of computation.

=2, 4

’

The figures suggest that, on the whole, for heavy-tailed

distributions both trimmed 8SD!'s are better than the untrimmed SD

6.

and that for the ranges considered B = .1 1is preferable to f=.2,

For light-tailed distributions such as the Beta-distribution, the

untrimmad SD does best, f = .1 does better than 8 =

B = .1 performs reasonably well,

e

Table 3.1:

f 5 6 7 8 9 10 25
.1 | 2.35 1.56 1.29 1,16 1,08 1.03 .85
2 f 2,11 1.36 1,11 .99 .92 .87 .69

to untrimmed SD: t-distribution with £

degrees of frecdom

.2,

50
.81
.66

Asymptotic efficiency of a-trimmed with

and

ee]

s 18
.63

respect

S A R 2 e
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rl.5 1,0 2,0 40 6,0 8.0 10,0 .0,0 30,0 =
gR=,1 11,30 .86 .72 .70 .71 .72 Nk 15 .76 .78
B o2 | 83 B 92 54 <55 .57 <57 60 Bl 63

Table 3.2: Asymptotic efficiency of a-trimmed with respect

to untrimmed SD: Beta distribution with density (3.7

0 .78 .78 .78 .63 .63 .63
025 | .98 3,97 10.04 .80 3.27 8.3%
075 |1.19 4,01 6,48 .99 3.57 6.03
.10 ;1,23 3.48  4.79 | 1.03 3.27 4.93
.20 [1,21 1,46 .76 1.05 2.04 2.26
L0 .96 .63 w50 87 .68 .38

.50 .87 .63 S5 <79 .52 .36
Table 3.3: Asymptotic efficiency of a-trimmed with respect to
untrimmed SD: Tukey model (3.7)

A surprising feature of Table 3.3 are the extremely high effi-
ciency values for small ¢ > O and large 1. These seem to arise
in cases where there is enough trimming to insure with very high
probability that only a small proportion of the gross errors is
retained in the trimmed sample. The standardized variance of the
untrimmed SD then rises very sharply with 1t while that of the

trimmed SD is affected only little as 1t gets large. The curious

o s LA 0 50 i n et S O it b 2 o me AR i S e s i A e AR R i S i
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"dip" which occurs in the neighborhood of e = p is predicted by
thz asymptotic theory of the next section.

4, Nonexistence of a lower bound

The numerical results of the preceding section are encouraging
and raise the hope that, as in the case of the trimmed means as
measures of location, the efficiencies of the trimmed to the un-
trimmed SD have a positive lower bound. Unfortunately, this turns
out not to be the case even if attention is restricted to unimodal
distributions. In fact, even within the class of Tukey models (3.7),
the efficiencies can take on arbitrarily small values,

Theorem 2, Let e(B; €, \) denote the asymptotic efficiency
of the trimmed standard deviation Q(O, B) relative to the

untri~med standard deviation, in the Tukey model (3.7). Then

(4.1) lim e(B; B, A) = 0.
A=bx

The proof of this result is based on the following two lemmas,

Le~ra 1. For the Tukey model (3.7), the standardized asympiotic

variance of the SD
1EE) ]
(2) b2, 2 ° 1_|
2 (X7)
is bounded above uniformly in A for any fixed e.

Proof., For the model (3.7), the standardized varience (3.9)

becomes

1/30(1 - &) +eA'] _ 3
[(1 - &) +er?)°
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Since this is continuous in A we nced only consider its

beliavior as A =+ o» when it is clearly bounded.

A)

-B is given by

Lemma 2, If € =8 in (3.7) and if Y _g " u£

(3.5) then as a function of A,

(A) :
ul_B~2log?\ as A= o,

Proof. Let

Then x()\) satisfies,

roi®

(4.3) (1-B)o(x) +pO() =1 -
First note that as A — o we must have,
(4.4) x()\) - 00

and

(4.5) x(M) o

A L3

For if (4.4) does not hold there exists a sequence A, such that,
X()\n) - C < 00,

‘hen,
x(Ay)
(1-B)o(x(r ) +rs¢>( ;‘)- (1-p)o(c) +E<1-a

n

and this contradicts (4.3). Similarly if (4.4) holds but (4.5) is

violated we could find a sequence [x;] such that,




&
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1 x(A)
Hm(l-aywxﬁnﬂ +$¢(— ?) >1 -3,

n
and we would again have a contradiction.

Now, by (3.12) and (3.13),

(4.6) 1 - o[x(A)] = ﬂ%%‘-)u [1 + o(1)]
and
(5.7) oM - 1 - 2XO) 13 4 0@y .

Substituting (4.6) and (4.7) in (4.3), cancelling, and then taking

logs we obtain,

2
(+.8) 'x27‘ - log x(A) = log x(A\) - log A +log T?g+°(1)-

By (4.4)
log x()) = o(x°(\))

and we conclude that
(4.8) x2(A) (1 + o(1)) = 2 log A

which was to be proved. []

Proof of Theorem 2, In view of Lemma 1 we only need to show

that,

2 :
(4,9) VO’B—ooo ‘ %

while i
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(4.10) 1%(F; 0, B) = 0(1) as M = .

To chcw (4.9) we calculate,

om0, o - 00 woas o f G oD

x(A)/N 2

£ (1-8) + 2907 fo y ¢(y) dy

. 3
289(0) x~ ()

n

and the result follows. This argument and Lemma 2 show that

(4,11) C(0, B) = (1-B)1(F; 0, B) -}-ﬁul_B ~ Bul-B

where C(a, B) 1is given by (3.4).
Finally, from (4.11)

2 2 2 2
Yo.B z B(ul_B - C(0, B))" ~B(1-8B) Y_p

which tends to », and (4.9) and the theorem follow, [

Remark 1. The same arguments show that the result of Thecrem 2
continues to hold if 12(6; 0, B) 1is replaced by Ie(ﬁ; a, B)
for any o <1 -, and if as before ¢ = B.

Remark 2, In addition to predicting that the efficiency of thc
B-trimmed SD to the SD tends to 0 as 1-+ o for € =8 the
asymptotic theory also gives a positive limit for e # B. Roughly
speaking, for e > B the behavior is governed by the contaminant

while for € < p it is governed by the main portion. Clearly

Table 3.3 reflects this only very crudely. For the values of 1

T

B B e o e " om o m

e R .
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I § we have gilven,the efficiency at e = B remains quite large. However,

P

further numerical calculations for extremely large values of « (of

the order of 50 and above) confirm the asymptotic theory although
1t convergence is slow., It is seen from the tables that small efficisency
values do appear for smaller values of 1 and € > f, These pre-

sumably reflect small positive limits which are approached more

rapidiy than the asymptotic value for ¢ = B,

Remark 3. An interesting limiting case of the doubly trimmed

standard deviations arises as both o and B tend to 1/2. The

limiting functional is naturally taken to be, 4

PSS

(4.12) W(F; 5, 3) = Vo),

the median of the distribution of |X-p| which, since X is

symmetric about y, coincides with

-1.3 -1,1
a4
the interquartile range of F. The estimator 1(F; 5 ) has

asymptotic standardized variance,

1 |
16x2f2(x) ;

(4.13)

where F(x) = 3/4,
Again for the Tukey model with € = .5 the asymptotic effi-

ciency of this estimator relative to the SD tends to zero as A — o, i 3

Numerical values of the efficiency similar to those shown in Table 5.3
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B=.1 and .2 are glven in Table 4,1 computed by

for a =0

Winston Chow,

A4 .56 .73 S0
5 !.s1 .52 L3

Table 4.1, Asymptotic efficiency of 1(%; %, é)

with respect to the SD for the

Tukey model (3.7).
They are clearly much less satisfactory than the corresponding
values for a = .1, In particular, the low values at the uncontami-
nated normal make this measure unsuitable.

The result of Theorem 2 is rather disappointing, particularly
since it is in such contrast to the general (asymmetric) location
case. Onec nay ask whether a positive lower bound can be obtained
if the trimmed SD is replaced by a measure of the form (1,10) with
v = 2 but more general A. An essentially negative aaswer (if
attention is restricted to robust measures) is provided by the

follcwing generalization of Theorem 2,
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Theorem 3. Suppose that 1(F) 1is given by (1.10) where the
weight function A has a density A" which vanishes outside
| [, 1-B] with 0 <a <1 -8< 1 and is bounded away from 0
inside, Then the relative efficiency of 72(%) relative to the
standard deviation tends to 0 as X\ —+ «» in the Tukey model (3.7)
with € = B,

For the proof we require the following lemma.

; Lemma 3, If 1? and Tg are two functionals of the form (1.10) 3
i €
. with v = 2 and veight functions A, A,, and if the A, have 1

1 ;
densities A, satisfying é
L < < ! ! =S
(4.14) 0% a3 A,(t)/ay(t) 3A<e,
3 then the efficiency of the estimator of 1, to that of <, satisfies i
(4.15) e, 1(F) = a’/A% .
’ i

%if Proot. Condition (4.14) clearly implies that 12(F) = a1y (F) i

- oe.

for all F. On the other hand, it follows from Theorem 3 of BL II
that vg(F) = Agvf(F), and the conclusion follows.
The theorem now follows on taking 1, and 1, as 1(%; a, B) ]

and the SD respectively and applying Remark 1 following Theorem 2.

5, The pth power deviations

Although we have not found a measure of dispersion which is

robust in the sense of BL (I,II) and whose efficiency relative to

the SD has a positive lower bound, it is possible to find measures

which ave more robust (in the sense of BL II) than the SD and which ! 3
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achieve such a lower bound., In fact, restrict attention to distri-
butions with finite pth moment and consider the pth absolute

power deviation

(5.1) 2y = € - up P

ey

for 1 2 p 2 2 and the associated cstimator

R

- u|Py /P

b

| i ) = a2y

where from now on we shall assume wlog that p = 0.

!
&;; Below we shall obtain lower bounds for the efficiency of (5.2)

relative to the SD for the family JO of all symmetric distributions.

This bound can be improved if we restrict attention to the family

J, of symmetric unimodal distributions and improved still further

1

for the family 32 of scale mixtures of normal distributions with

4 common mean.

Theorem 4, Let e(F; p, q) denote the efficiency of the pth

relative to the qth absolute power deviation where 1 & p < q. ?
.
Then :
1 , :
P /q for 1 =20 :
p2 2p+1 /a+l
(5.3) inﬁyi e(F; p, q) =J';§ —afri-<;:I for i=1 ;
2l f
2 r

B, Iats) (21) for i=2 :.;_
2,q+l, T(p+% |

q~ T (_"l_é_) (p+3
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Before proving these results, let us note that for p=1, q = 2

0]
0
[y
jad]
e
14
€
1

we obtain for the efficiency of the absclute deviation to th

deviation the values

1]-;- = ,250 fry 1 =0
27 _ . _
&L = 337 for i=1

1.5

2

= W77 for 1

“|

These bounds are rather low and can be improved (at the cost
of some robustness) by taking a larger value of p. For example,

if p=1.5, the values are

563 for i =0 1
648 for i=1 :
851 for i =2

The proof of all three parts of the theorem hinge on the follow- |

ing lemma, which is equivalent to the case i = 0. i

Lemma 4. Let V Dbe any nonnegative random variable and

(5.4) LLCL = E(Va) < oo,
Then, if 1 < a = B,

H Koo
(5.5) _%_ = _.2:)1_

Hey IJ-ﬁ

with equatiiy if and only 1f V 1is a positive constant with

probabilitv 1.




Proof. 171o sce this, note that log Ko is a convex function

of a (see for example Loeve (1955), p. 156)). Frouw this it foliows

easily that

log uge-log Mo N log hg - log e,
2(Bp -a) N B -a

znd heace ithat “23/“2 c “ﬂ1/W§ as was to be proved.

Proof of part (i) of Theorem 4., By the central limit theorem

we find easily that if the required moments exist, we have

2 ¢ inive (2D
% (Fs b g = B [/EPY ><
(5.6) e(F; p, q) i {\‘Eelxlq / " IXIP }

The result then follows immediately from the lcmma,

Proof of parts (ii) and (iii) of Theorem 4. Note first that

both of these families are of the following type:

(5.7) 7= {F: X ~F, X=2W, 2 1is fixed and W is
independent of Z and varies freely}.
In case (ii) this is achieved by taking Z to be the uniform dis-

tribution on (-1, 1) (see Feller (1966), p. 155). In case (iii)

we just take Z to be & standard normal variable. To complete the

proof we need the following lemma.

Lemma 5. Let J be as in (5.7) with Z symmetric about O.

Let

(5.8) v =E|z|% .

a

Then foxr 1 = p < a,

AT A o i A i B s T R AT R g e
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2
2 Vv, Vv
(0.5 inf_ e(F; p, ) = Lt A
J 2 2 ¥
qvq 2p

r poomtm—

2 R 7
vE) w_ -1 _ g (qu/vq) P '(1/“&9

q (v /v?) w_ -1 q (v2p/v§) -<l/wp)

where p = w}/wq and where X = ZW has distribution F. Keeping
b 1
wp fixed, this is minimized by taking for p its minimum value
; ; 2 2
which is 1 by Lemma 4. Since by Lemma 4, v,_. /v Z v, /vD, we rou
o Y > Vaq'Vq  Vap/Vp
obttain a lower bound for the efficiency by letting wp-» », To shcw

that this lower bound is sharp we need to exhibit a sequence .of

distributions for W such that p- 1 and W Take,

(5.10) W =1 with probability =

= a with probability 1 - m.

Then,
LT+ (l-ﬂ)a2p
P (1 4 (1-maP)®
As a— o
A _’].-TT- and p—»l .

Now letting w7 - 1 we can extract the requisite sequence of distri-

Luticus. Th2 lewme follows., D

oy, T
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The theorem now follows from the standard formulas for tho
absolute moments of uniform and standard normal variables. D

Remark, Note that for case (iii) for the trimn.1 stancard
deviations, an extremal sequence is provided by an appropriate
sequence of Tukey models. In fact, the distributions defined by
(5.10) are of this type.

As we have noted, the lower bound tc the efficiency of the
mean deviation is rather low even for J . However, as we fouru.
for trimmed standard deviations, in reasonable situations the
bound is very conservative, Here are some numerical results for
the pth power deviation for p = 1, 1.5 and a selection of the

distributions given in Tables 3.1-3.3,

f 5 10 25 50 oo

|
b =1 !2.35 1.12 .94 .91 .88

p=1.5 |1.88 1.12 1.01 .99 .97

Table 5.1, Asymptotic efficiency of pth power
deviations with respect to standard
deviation.

t —distribution with £ degrees of freedom.

e '.53 60 .63 .75 .78 .80 .81 .84 .85 .68

p=1215 |.76 .80 .85 .89 .92 .93 .9% .96 .97 .of

Yavle 5.2, Asymptotic efficiency of pth power deviation
with respact to SD.
Beta distribution with density (3.0)

TP A
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€
&, o Y6 . o2 y 6
1 !

o | .88 .88 .5 .97 .07 .97
025 11.06 3.08 5.18 | 1.10 1.99 2.33
075 1.22 2.53 2.66 | 1.18 1.61 1.51
10 |1.25 2,21 2.1% | 1.19 1.48 1.35
.20 [1.2% 1,50 1.31 | 1,17 1.20 1,09
4o 1.09 1.04 .92 1.8 1,02 .96
50 .1.03 .95 .85 | 1.05 .99 .ok

Table 5.3. Asymptotic efficiency of pth power
deviation with respect to standard deviation,

Tukey model (3.7).

Qualitatively the behavior of these measures closely parallelc
that of the corresponding Tables 3.1-3.3. For reasonable distri-
buticns the mean deviation particularly scems to do even better
than the trimmed deviations. Of course, for sufficiently heavy
tailed dicizibutions, for example t-dictributions with sufficicnely
low cegrees of freedom, it can break down badly.

6. Measuring the scale of positive randoam variables

The concepts and results developed so far, also apply to a
somewnat different problem. Consider a random variable X with
distribution F, which is known to be positive. Then once may
be interested in scaling this distribution by defining a suitable
measure ¢ of its distance from zero. Of such a mecasure we shall

requize (iu analogy with the earlier avicms for 1)

e e e st
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(6r 1y o(aX) = ac(¥) for a >0

and

o(X) if Y is stochastically larger then X,

ity

(6.2)  o(Y)

There is a simple correspondence between such measures and

the carlier measures 1, defined by

(6.3) T(X) = o([X-pl)

vhere | = up as before denotes the centar of-symmetry of X.
Given a measure ¢ defined over positive random variables and
satisfying (6.1) and (6.2), let X be a symmetric variable whose
center of symmetry is denoted by un. Then (6.3) defines a measure
satisfying (1.4), (1.5) and (1.9). Conversely, let 1 be a
measure of dispersion defined over symmetric random variables,

and let Z be any positive random variable. Extend Z to negative
values so that it is symmetric about O and denote the

resulting random variable by X. Then p = 0 and |X-u|=|X]|=2.

S "

The uweasure o(2) defined through (6.3) satisfies (6.1) and (6.2).
Ixamples of scale measures ¢ are provided by the median

of a positive random variable X, by the first moment E(X), by

the square root of the second moment AJE(Xa), or by trimmed

versions of these latter measures, Using (6.3), it is a trivial

5
AR ey

matter to adapt the results of Sections 3 and 4 to comparisons of g

ps

/ )
tiue estimator of # E(X®) with its trimmed versions. This is,

Bur
¥

e TR

o

however, not quite appropriate since the scale measures of greatcc:s i
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interest for positive random variables are those corresponding
ﬁ to E(X) and its trimmed versions,
We believe that the results of numerical and theoretical
comparisons of the sample mean &nd its trimmed competitors
d qualitatively will be quite similar to those obtained for the
| scmple SD and its trimmed competitors, but we have not carried

cut this program. 1In addition to this, Theorem 4 of Secticn 5

reveals that the sample mean, which is the estimator of E(X),
hes for p > 1 efficiency bounded from below with respect to
estimators of [E(Xp)jl/p for the families

5= (A1l distributions on the positive axis with

;1 finite second moment)

Jé= {All members of Jl with monotone nonincreasing

1 densities} i
aH 23= (A1l members of Jé which are scale mixtures of :

”‘ half normal distributions}. -

7. Unknown center of symmetry

In estimating dispersion we have so far restricted attentio

R e

to symmetric distributions and have assumed the center of symmers )
to be kncwn., If the center p of symmetry is unknown, it ic
ik tempting to estimate p by a suitable estimate of location and

& to substitute this for p in the estimator of 1. The questio.

ki3 patvrally arises what effect this has on the asymptotic distrib.-

iion and hence on the efficiency of the estimator., TIor the
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measures of dispersion considered in this paper it turns out that
under suitable regularity conditions the asymntotic distributicn
is unchanged by this substitution., We have not investigated the
small sample bchavior of these procedures.,

The theorem below gives a simple sufficient condition for
substitution of an estimate of location to work in this sense,.

We subsequently check that this condition is satisfied by trimmcd
standard deviations and pth power deviations among others.

To formalize the process of substitution we appeal to the
discussion of Section 6 in which we indicated that there is a 1-1
correspondence between measures of dispersion 1 for symmetric
distributions and measures of scale ¢ for positive random
variables via (6.3). Let us start then with such a o defined
for nonnegative variables. For reasons similar to those given
at the beginning of Section 2, we need to consider extensions

namely
of o to larger families of distributions,/to the family of al’
distributions F for which o(|X|) 4is defined. To avoid
proliferation of notation we also call the extension ¢ and
define it by,

o(X) = o(|x]).

For exemple, if 02(X) = fg x2dF for nonnegative variables, the

D
extension of ¢~ 1is the second moment. If o(X) is the medi wn

of th2 distwxibution on (0, =), the extension is the medicn of

the dietziburion of [X].
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Let p(IF) be a measure of location satisfying (1.1) ond (7..2)
of BIL II. Suppose also that Xl,---,}:n are independently dis-

tributed each with distribution F and let ﬁ be the erpirical.

c.d.f. Define,

A AN
L = u(F)

as the usucl estimator of u(F) and let
F“(x) = F(x + p)

denote the c,d.f. of X - p. Note that the empirical c.d.f., of
A

A A
Xl - U«, ,X.n - U.. iS then FQ .
If F is symmetric about u the measure of dispersion
corresponding to o by (6.3) is,
1(F) = o(F ).
(F) = o(F,)

A
The estimator of 1 we have used for known p is o(Fu).

Failing this knowledge we use 1 defined by,
For example if

o®(F) = fg x°dG(x)
where G is the c.d.f. of |X| then,

2

o2(F ) =2 2(X, - W)

TR

T 1is the sample €D,

If

i Ak ARk S e e e
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w(®) = FHD)

L

o

-1

a/T) =G (%)

thn 4 1is the median of the absolute deviations from the macdisi

oL the obsurvations.
Thenren 5, Suppose that the underlying distribution F

is symmetric ebout 1 and suppoce without loss of gencrality

that u = 0., Suppose further that,

(P=L) O(Fu) is differentiable in p at u = 0.
. . —\A _
(7.2) lim,  1lim sup_ P[~/n|u| 2 M] = 0.
— A
(7.3) limélo 1im sup_ P[sup{'\/nlc(ﬁu) -c'(Fu) - o(F) +0(F) |:

lu] 36} Ze)l =0 for all e > O,

Then,

(7.1 NT(T -0(F) 2o,

If we assume that 1(F) is positive and

) £,

1>

() o

then we can arrive at conclusion (7.4) even if throughout (7.3)

we replace o by o  where p > O.

Note: Q will satisfy (7.2) provided that ~/n G has a
limiting normal distribution.

Py Siutsky's theorem (7.4) implies that «/H(? - ¢(F)) aud
'/E(G(ﬁ) - 0(¥)) have the same limlting discribution. Bu. sincz

§ is gymmaetric cbout O,
- W TET LR TR A g R e Shi it a i e e M ) "
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0 (F) = ()
and
A A
o(F) = (F),
the estimate we would use if the ceater of symmetry of F were
knowri. Thus, (7.4) implies that n(%-1(F)) and.vu(t(F) - 1(¥))

have tha same limiting distribution. That is, if (7.4) holds
substitvtion works,

Proof. From (7.2) and (7.3),
(7.6) JR[s - o(F,) - o(F) +o(F) ]S o0.

A
Since u-g O by (7.2 we can apply (7.1) to conclude that

- o~ A do P
() '»/nl:(o(Fﬁ) - o(F)) - “{'BI (Fu)l =o}] - 0.
W
If F is symmetric about 0, it follows from (1.4) and (1.6) that
o(F7 ) 1is an even function of u, and hence that gg(F ){ =0,
K gl TRV

Substituting in (7.7) and (7.6) completes the proof of (7.4).

If now o 1is replaced by of in (7.3) we can imitate the

proof of (7.4) exactly to conclude that,

(7.5) ~/E(op(f‘ﬁ) - oPE) S o
But,
fJE(S-c(ﬁ)) = pﬁp-l'JE(Gp(ﬁﬁ) - Up(ﬁ))
wheve p = % and G lics beiween o(ﬁﬁ) and 0(§)- By (7.5)
and (7.8)
X o(T) » 0

cald (7.4) Lollows. I

A %
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Tvamnles

(1) The pth power deviations

Define t(H) = (J°_ |x|PdH(x)'/P for all H such that
[ % |PdH(x) <w, Then T(Fu) is the pth power deviation. We shall
check that (7.3) holds for 1P under the condition
(7.9) [1%|%PdF(x) < = .
For u <v, we find
B(~E (P(F) - P - P(E) +1P(R)))
= Var(lxl -v|P X, - ulPy .

If p > 1 this variance is bounded by,

2 2p-2,

5 2 2
E(1Xy - v - % -u|P)= 2 pS(v-n) sup(E[X; - 2]

2

Aelp, vID S C(v-p) S if v, lul N,

where C 1s a constant depending on M. If p =1

b

E[(v-u)(2I[X1<u] - 1)

A

Var(lxl - v - le - Hl)

A

+ 2(v - X;) Sov-w? if |v|, |ul &

2
I[u<X1<V]]

In any event,
j=t- a P Br 2 p p 2= o 2
E( Va(t(F,) - ©°(F) - 17 (F) +1°(F))) = C(v-u)
v 7 v U

end en argument using Theorem 12,3, p. 35 in [3] completes the
pzoof, Since (7.9) implies (7.5) as well as the asymptotic norme!‘ty
¢f 1(F) wc sce that any measura L satisfying (7.2), for ia-
stance the mean, can be substituted without affecting the coymptotic

bel.»ioxr of ¢ estimators,

ot e S St 0 il b S s
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f1i) (L) estimators

Suppose 1 1is given by
- 1,..-1 ~ ]
(7.30) w(i) = UL Y aige )t

whave A is symmetric about %.
If T 1is symmetric about p, and if we define A(t) =
EK(l%£ - 1, then T(Fu) is the measure defined in (1.10).
Suppose that

= l-'a_)’

(7.11) A places no mass outside an interval (5, >

0 <a < 1/2

(7T.12) F is differentiable with derivative f which is
positive and continuous.

We shall now show that (7.3) holds for 1’ under these
assumptions, so that we may safely substitute an estimate of
location in the singly and doubly trimmed standard deviations.

Here is a sketch proof.

Let

G(x, u) = P[|X, -u|” & x],
and let é(x, ) be the empirical c.d.f. of lxl-uly,---,lxn"ul?-
Define

G(x) = 6(x, 0),  G(x) = &(x, 0).

Tinally 1o G “(t, w), a-l(t, i) be the corresponding |

inverses (in x),

y RO
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Not~ that

1 ~ 14t .1416-1

o(F ) = of % 67 H(e, wd(EE = 110 e, wda(y),

A
axd efmilar acsertions hold for T, @u, cte:;

Tiah,

(7.13) |<Y(F )-Ty(ﬁ)-Ty(Fu)-+17(F)l

=

U@ e, w -7 - a7 +6TH (E)aA(e)

HA

sup( |61 (e,0) - 8718y -6 (e, +67H(E) [

Therefore, we need only establish that

(7.1%) Lain 510 lim supnP[sup[~/E|&-l(t,u)-a-l = W

02 t3l-q, ] 28)Ze)=o0.
Py a standard but tedious argument (see [1l] and [8]), we czon

show that (7.1%) follows if, for every M

(7.15)  oup( Ié'l(t,u) -G'l(t,u) [: 02 ¢t31-a, [0 EMS 50
and

a1
(7.16)  j(t,n) = —¢(t,n) 1is centinuous on

((t,w): 0 F ¢ §1¢-°‘-§, MRS
end 1if in addition

: 1 n .r — ‘n,'(xsu) i G(X,p)
(7.17) limélO lim sup P[}upt‘vnlj(c(x’ )

a(v -G(x .
- = -ll x| 8 ¢ 1<), [u| & } > ] - o.

(£) -G “(t,n) 46 (v):

R i S




How, (7.15) follows from the fact that for every M aud M

A . '

(7.33) sop{175(x, p) -G(x, ) |: = & M .

s h.LI = M]-—»O.

1his assoertion is a consequence >f the Glivenks-Cantelli theoren
3 . A
anc¢ ‘hz d2flnition of G, G.

Since

i(e, w) = L = 167 () +uP (67 (e, T

g(G “(t,un), u

assertion (7.16) is immedizte from assumption. Finally, (7.17)

follous from (7.16), the tightness of the empirical process

11.1':15L lim sup_ P[sup[rVEI%(x+u)-F(xﬁQ —%(x) + F(x)|:

0

lul 26, |x] =M} Z ¢} =0,

cnd the boundedness (in probability) of supx'Jﬁla(x) - G(x)

Therefore, (7.13) holds for 1 definad by (7.10). As before (7.1)
and (7.5) are usually obvious under our assumptions and we concluv:: )
that svbstitution of location estimates satisfying (7.2) such as

the median is legitimate.
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