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^ DESCRIPTIVE STATISTICS FOR MONPARA/ETR^C KODELS III.    DISPERSION; 

By P.  J. /Bick'-il «nd E.  L./Lehmann 

ABoTI^ACT; -Measures of dispersion are defined as functionais 

satisfying certain cquivariance and order conditions.    Attention 

is restricted to syinraetric distributions.    Different measures are 
00 ( 
^ä • compared in terms of asymptotic relative efficiency, i.e., the 

j^« ( inverse ratio of their standardized variances. The efficiency of a 

^*  trimmed to the untrimmed standard deviation turns out not to have 

CM ' 
jm^  .   a positive lower bound even over the family of Tukey models. 

Positive lower bounds for the efficiency (over the family of all 

symmetric distributions for which the measures are defined) exist 

if the trimmed standard deviations are replaced by pth power 

deviations. However, these latter measures are no longer robust, 

although for p < 2 they are more robust than the standard 

deviation. The results of the paper suggest that a positive bound 

to the efficiency may be incompatible with robustness but that 

trimmed standard deviations and pth power deviations for p => 1 

or 1.5 are quite satisfactory in practice. 

X 
Key words and phrases. Dispersicni., estimation, standardized 

asymptotic variance, asymptotic efficiency, Tukey model, standard 

deviation, trimmed standard deviation, pth power deviation, sub- 

stitution of an estimate of location, scaling a positive distributioa 
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1.  I^anurer. of dl?»ncrr.lon 

In analogy v/ith the definition of a measure of location, we 

shall define a measure of dispersion to be a functional (defined 

ovnr a sufficiently large family of distributions) which satisfies 

certain invariance conditions and which in addition has the property 

of assigning a larger value to G than to F if G is more 

dispersed than F.  In the present paper we shall consider the 

problem for symmetric distributions and assume that X is a 

random variable whose distribution F is symmetric about |a.  It 

then seems natural to interpret dispersion in terms of the distance 

of X from \ii     that is, in terms of the magnitude of  |X-n.|, 

and to consider Y as more dispersed about v than X about \i  if 

(!.])  |Y-v| is stochastically larger than |X-IJL|. 

(This is essentially the ,,peakcdness"-ordering introduced by Z. W. 

Birnbaum (19^8) .) 

Iiote that 

(a) any symmetric random variable is more dispersed than a 

constant; 

(b) aX is more dispersed than X if a > 1. 

If F and G are symmetric about 0 vith densities f and g, 

a simple sufficient conditiu.a for (1.1) with (j, = v = 0 

V* t.::pect to take up th^- asyiometric case in a subsequent paper. 

D D ( 
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(1.2) g(x)/f(x)  is increasing for x > 0. 

If F and G are symmetric about zero, and G is more dis- 

persed than F, and if 

(1.3) Hfl(x) = 0G(x) + (l-e)F(x), 

then H0 is more dispersed than F for any 0 < 0 < 1. As an 

illustration, note that a standard normal distribution contaminated 

with another normal distribution with zero mean and variance > 1 

(Tukey model) is more dispersed than the uncontaminated standard 

normal distribution. 

An important class of examples is provided by the following 

result, which is a generalization of a lemma of Birnbaum (19^). 

Theorem 1. Let X., Y.  (i=l,2) be independent with distribu- 

tions F., G., (i=l,2) which are symmetric about zero, and suppose 

that 

(i) Y. is more dispersed than X. for i=l,2 

and 

(ii)     F,    and    Gp    have unimodal densities and possibly some 

probability mass at zero. 

Then   Y.  + Y      is more dispersed than   Z,  + X . 

Proof.    Consider the probability 

P(|X1 +X21  < c)   = 2 J0
0 [F^x+c) .F1(r.-c)]dF2(x). 

/0^ ** 
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The unimodality of F,  implies that the integrand on the right-hand 

side is a decreasing function of x. From the fact that (F0, GJ 

satisfies (1.1), it then follows that this last integral is decreased 

when Fp is replaced by G?.  Thus, 

PdX^Xgl ä c) ä 2 /QLF^X+C) -F^X-C) ]dG2(x) 

= 2/Q[G2(X+C) -G^x^JdF^x). 

Repeating the argument (this time using the unimodality of G?) , we 

arrive at the desired result.  Birnbaum has shown that Theorem 1 no 

longer holds when assumption (ii) is dropped. 

Consider now a functional i(F)  [also denoted by i (X) when 

X is a random variable with distribution F] defined over a 

sufficiently large class of distributions which is closed under 

changes of location and scale. \\Te shall require t  to be nonnega- 

tive and to satisfy 

(1.4) i(aX) » Ni(X) for a > 0 

and 

(1.5) T(X+b) = •t(X)  for all b. 

It follovjs from (1.5) and the symmetry of F that 

(1.6) t(-X) = i(X) 

so that (1.4) holds for all a ^ 0. 

From (1.4) and (1.5) it is easily seen that 

(1.7) 'x(c) =0 for any constant c. 

L^MndMM^ljii^aa^^^r^j^^ii^m^^ tmummmmm^tOiä 
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For by (1.4) , we have i(0) = -1(2x0) - 2i{0)    and hence t [0)   =0, 

and by (1.5), i{c)  **  T(0). The converse, that i (X) » 0 requires 

X to be a constant with probability 1, will In general not hold. 

An example is provided by the trimmed standard deviation defined in 

Section 3 below. 
i 

A nonnegative functional %    satisfying {IA)   and (1.5) will be 

called a measure of dispersion if it satisfies in addition 

(1.9) t(F) ä t(G) whenever G is more dispersed than F. 

Note that if T(F)  is a measure of dispersion, so is k't(F)  for 

any k > 0. 

A large and important class of dispersion measures is provided 

by the functionals 

(1.10) *(F) - (JJCF;
1
^]

7
 dA(t)}1/7 

where    F    is assumed to be symmetric about    (JL,    F^    denotes the 

distribution of    JX - iij,    A    is any probability distribution on 

(0,1)     and    7    any positive number. 

That  (1.10)   satisfies  {IA)   and (1.5)   is easily checked;  that 

it satisfies  (1.9)   follows from the fact that    F^  (t)   ä Q^  (t)     for 

all    t    when   G#    is stochastically larger than   F#. 

A special case of (1.10)   is  the standard deviation (SD)   of    F 

defined as 

(1.11) SD(F)   -   [j(X-n)2dF(x)]1/2 

timtmmimm.■..w,-^^^.^.,..—,...,„ „ - mmmmmmmmm 
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This Is easily seen to be given by (1.10) with 7=2 and A the 

uniform distribution on (0,1). The following three important classes 

of measures, all special cases of (1.10) provide the alternatives to 

the standard deviation with which we shall be concerned. 

2 
(i) A generalization 1   (F; p)  of the standard deviation 

is the pth power deviation obtained by replacing 7 by p in 

(1.10) and letting A be the uniform distribution on (0,1). 

(ii) The doubly trimmed standard deviation T(F; a, ß) is 

given by (1.10) with 7 • 2 and A the uniform distribution on 

(a, 1 - ß) . The most important example of this is^the case a = 0. 

(iii) The ath quantile is obtained from (1.10) by letting 

A assign probability 1 to the point a. The resulting measure 

is independent of 7. 

The standard deviation is of course a member of both (i) and 

(ii). The ath quantile is the limit of the doubly trimmed 

standard deviation as ß-* a. 

2.  Estimation 

A most important aspect in comparing two measures of scale 

T.(F)  and t.(F) is the accuracy with which they can be estimated. 

Unfortunately, it is no longer possible to compare these accuracies 

directly in terms of the asymptotic variances of the estimators. 

This is clearly seen by considering the case 1    ■ ct, where c 

is any positive constant. If T-  is a possible measure of scale 

and its estimator is 0        one would be equally happy to use 1 

i^w^tMiiMj..^..^s^.a,^^ rftii^iiaMaiiMiiiiMa^^ - -'  
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and estimate It by Ö = cd, ; of course the asymptotic variance 

does not remain the same but gets multiplied by c .  For this roasoü 

a natural measure of accuracy of an estimator of T(F)  with 

2 2 asymptotic variance v (F)  is not v (F)  itself but the scale 

invariant standardized asymptotic variance (already proposed by 

Daniell (1920)) 

(2.1) v2(F)/'r2(F). 

The asymptotic efficiency    e    .     of    ö       (estimating    t )     to    6 

(estimating %.)    will then be defined as 

(2.2) 
Vi(F)     v2(F) 

2'1 ^(F)     i2(F) 

If Vn. (T. - tj)  is asymptotically normally distributed for 

1=1,2 as the number n. of observations tends to infinity, the 

usual argument shows that the asymptotic efficiency (2,2) is the 

limiting ratio of the numbers of observations required by the two 

estimators to achieve the same standardized variance. 

That the above definitions are reasonable can be seen from 

another point of view. The logarithm of ö is an estimator of the 

location parameter log 't(F). Suppose that the distribution of 

Vn (6 - t)  tends to the normal distribution with zero mean and 

variance v . Then the distribution of Vn (log ö - log i)     tends 

2  2 to the normal distribution with mean zero and variance v /T (F) ; 

2  2 
that is, v /T (F)  is the asymptotic variance of the location 

tstimate log Ö, 
,L^^^ito^^VA^^.^^.^fivl^^a^»,^ ;,;.■■■ ;^,^ ■'■'■  .~..^».-^^^^.....1-.-^.i.;-...Jws.^;..>....:,.. --^- -'-•^-^--—--■-■■ Hi 
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When studying the estimators of functionals such as those 

defined in Section 1, it is convenient first to consider F re- 

stricted to distributions which are symmetric about a known point [i. 

On the other hand, in order even to define the estimators of i 

v;e wish to study, it is necessary to extend i    to asymmetric 

distributions.  In all the examples to be considered here, there 

is a natural extension of t to asymmetric distributions. Given 

this extension, we define as estimator of 'v(F)  the functional T 

evaluated at the empirical distribution function F of X,, • • • ,X . 

In what follows, we shall assume without loss of generality that the 

known value \i    of the center of symmetry of F is p. = 0. 
measure of scale is the standar 

The point of view in the present paper will be that the standarc 

deviation i(F; 0, 0) which (since M- = 0) is estimated by 

(2.3) 
/ n 

= / 2 Xwn . 
V i=i 1 

I 

This estimator is well known to be very unsatisfactory because of 

its extreme sensitivitt to outlying observations. We shall there- 

fore look at the other functionals under consideration as competiturt 

of t,  and hence shall be interested principally in comparing their 

behavior with that of Ö . Unfortunately, we are only able to make 

these comparisons asymptotically. For ZXt/n, it is of course 

—  2     2 
obvious from the central limit theorem that */n[lXJn - a ]     is 

2 
asymptotically normal with zero mean and variance Var(X )  provicsl 

*.:^Mn)*M*w..^,r jenjnB aatftilafaüüaiBafliMdi «iiaMaiia*»itimaaa^^>M^M»^ m^jiaiaüüiiiüfc ..«.-r^-...,. .■....: .■<l,l, „.^^.ijj 
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?      2 
the later variance is finite. Here a~ =  E(X )  denotes the 

variance of X. 

It follows that Vn(o - o)  is asymptotically normal with wean 

zero and variance Var(X^)Ma". Thus the standardized variance is 

(2.M 
Vl(F)  Var(X2)   1 

if(F)    4a4 
'ml. i 

•- a 

In the next sections we shall obtain the corresponding expansion 

for the estimators of some other functionals, and then study the 

efficiencies (2.2). 

3.  The doubly trimmed standard deviation 

To replace the standard deviation as a measure of scale, we 

shall seek among the measures discussed in Section 1 one which would 

be more robust but which still can be estimated fairly efficiently. 

Encouraged by the results of BLII, we shall begin this search by 

studying the Trimmed standard deviations. 

As before, let the random variables X. be independently 

distributed according to a distribution F, which is symmetric with 

p 
respect to the origin. Let Y = X  and denote the distribution 

p 
of Y by G.  We can then write i   (F; a, ß) (with a, ß « 1/2) as 

(3.1) ^(F; «, ß) = —^z Ja      G-l{t)dt  = Ju
l-ß  ydG(y) 

y a 

where u  is the ath percentile of G. a 

Consider now the estimator. 

(3. T2(F.  a,   ß)   de-f-   ?2(a.   ß). 

 -■ " — — -   ■--■-      -^ ■•  -|    I    IMIIILLLlL IBMal<aMMiiatigMMBMilaMi tmg ^..^^^.^....^u 
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This is obtained by trimming off the 100 a<f0    observations with 

the smallest absolute values and the 100 ß^ observations with tha 

largest absolute values and then computing the standard deviation of 
A2 

the remaining observations.  In termo of the Y's, T  is a doubly 

trimmed mean.  Its expectation is given by (3.1) and its asymptotic 

variance is (see for example BL II (1975)) 

(3.3) 

where 

(3.4) 

and 

'    (l-ot-ß)   a 

L-^/11
1"ß[y-c(a,ß)]2dG(y) 

,2 
+ a[ua - c(a^) ] - + ß[u   - c(a,ß) ] 

2 

u 1-ß 

a 
C(a.ß) = /u 

P ydG(y) + aua + ßu^ 

f 
I 

(3.5) ut »C'V) o ^F"
1
 t_±lj . 

(This formula holds if u , u..   are uniquely defined and G is 

continuous r.t u , u..   (see Stigler (1973)). 

To get an idea of the behavior of such procedures with respect 

to the untrimraed standard deviation we consider some representative 

cases namely the (singly) trimmed standard deviations with j 

fj = .1, .2, u = 0. The following tables computed by Winston Chow 

and W. Carmichael show the efficiencies (2.2) of these estimators wich 

respect to the standard deviation for the following three classes of 

distributions. 

^.^.aa,^*i*^.,jf***a.A,.ii...±^.....f*.,...^*i.  ....-^.^„i^ia.,-: . . c......^.., ijiaiimjü „.,.^..^,...„,..„^,.,.„....J,..^.,^„,.„,:.„.ja^Ju,^.:............—gmi  ^ 
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(a) t-distributions with 5,  6,  7,  8,  9,   10,  25, 50 degrees 

of  freedom. 

(b) Symmetric beta distributions with densities. 

(3.6) f(x) = [B(r,r) r1^ - t2)*'1, 

for r - |, 2, 4, 6, 8, 10, 20, 30. 

'i-l 

(c) Tukey normal gross error distributions, i.e., 

(3.7)        F(x) = (l-e)*(x) + £$(|), 

for e = .025, .075, .10, .20, .40, .50 and A = 2, 4, 6. 

These models were selected as representing a range of long and 

short tailed distril utions and for ease of computation. 

The figures  suggest that,  on the whole,   for heavy-tailed 

distributions both trimmed    SD's    are better than the untrimmed SD 

and that for the ranges considered    ß =  .1    is preferable to    p= .2. 

For light-tailed distributions such as the Beta-distribution,   the 

untrimmed SD does best,    ß = .1    does better than    ß =  .2,     and 

ß = .1    performs reasonably well. 

f        5 6 7 8 9 10      25     50        « 

ß = .1      2.35    1.56    1.29    1.16    1.08    1.03    .85    .81    .78 

ß =  .2      2.11    1.36    1.11      .99      .92      .87    .69    .66    .63 

Table 3.1:    Asymptotic efficiency of a-trimmed with respect 

to untrimmed SD:    t-distribution with    f 

degrees of freedom ■i 

r^t*iiiW,*M-Ali^ltaMiite^^ ^,^^^^.^^.,^^..^..,.>m..>».^^ 
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ß = .1 

ß = .2 

12 

.5  l.o 2.0 ^.o 6.0 8.0 lo.o  o.o 30.0  » 

1.30 .86 .72 .70 .71 .72  .73  .75  .76 .78 

.83 .57 .52 .54 .55 .57  .57  .60  .61 .63 

Table 3.2: Asymptotic efficiency of a-trimmcd with respect 

to untriramed SD: Beta distribution with density (3.^ 

P = . 1 P = .2 

2 k 6 2 4 6 

0 .78 .78 .78 ,63 .63 .63 

.025 .98 3.97 10.04 .80 3.27 8.36 

.075 1.19 4.01 6.48 .99 3.57 6.03 

.10 1.23 3.48 4.79 1.03 3.27 4.93 

.20 jl.21 1.46 .76 1.05 2.04 2.26 

Ao .96 .63 .50 .87 .68 .38 

.50 1  .87 .63 .55 .79 .52 .36 

Table 3.3: Asymptotic efficiency of a-trimmed with respect to 

untriramed SD: Tulcey model (3.7) 

A surprising feature of Table 3.3 are the extremely high effi- 

ciency values for small e > 0 and large i.    These seem to arise 

in ca^es where there is enough trimming to insure with very high 

probability that only a small proportion of the gross errors is 

retained in the trimmed sample. The standardized variance of the 

untrimmcd SD then rises very sharply with i    while that of the 

trimmed SD is affected only little as i    gets large. The curious 

^^^^^^.^^^ 
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"dip" which occurs in the neighborhood of e - ß    is predicted by 

the asymptotic theory of the next section. 

k.       Nonexistence of a lower bound 

The numerical results of the preceding section are encouraging 

and raise the hope that, as in the case of the trimmed means as 

measures of location, the efficiencies of the trimmed to the un- 

trimmed SD have a positive lower bound.  Unfortunately, this turns 

out not to be the case even if attention is restricted to unimodal 

distributions. In fact, even within the class of Tukey models (3.7) , 

the efficiencies can take on arbitrarily small values. 

Theorem 2. Let e(ß; e, A) denote the asymptotic efficiency 

A 
of the trimmed standard deviation    1(0,  ß)    relative to the 

untriTied standard deviation,  in the Tukey model  (3.7) .    Then 

(4.1) lim    e(ß; ß, A)   » 0. 

The proof of this result is based on the  following two lanraas. 

Le""?a 1.    For the Tukey model  (3.7) ,  the standardized asyinp^otic 

variance of the SD 

(4.2) 2 ,„2, J 

is bounded above uniformly in A for any fixed e. 

Proof. For the model (3.7), the standardized variance (3.9) 

becomes 

\[(1 - e) + exY  / 

. .»-m :,:*^^,.^^^.*^^^i^l^,:..,i*.,^,M^ii..*Ki.^.. L.K^^J.^j^jg^^i^y^l^ 
— "■'■ 
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Since this is continuous in X we need only consider its 

behavior as X -»• «» when it is clearly bounded. 

Lemma 2. If e = ß in (3.7) and if u1_ * u^J     is given by 

(3.5) then as a function of X, 

n^l ^ 2 log S    as X -► 
i-fi 

00 

Proof. Let 

*w = Ä • 
Then x(X)  satisfies, 

(4.3) (l-ß)$(x) +ß4.(f) = 1 - § . 

First note that as X -»• «» we must have, 

(4.4) 

and 

X(X) -♦ «> 

(*.5) A 

For if (4.4)   does not hold there exists a sequence    X      such that, 

*(V   -   C   <   oo. 

."hen. 

(i-ß)^(x)) +ß^Hr/' 
V    n / 

-. (l-ß)cl.(c)   +| <  1  - a 

and this contradicts (4.3).  Similarly if (4.4) holds but (4.5) is 

i 
violated we could find a sequence [X j  such that, 

-..u.».^.^^.^.^... .^-UJ—^■,....- ...... .. ..^^..^^..u.....;.:.. ■--; .»^mmi 
- - ■ ■  mm* 
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lira (l-ß)*(x(^J)   + ßo' 
n n' > 1 - ?, 

V n 

and we would again have a contradiction. 

Now,  by (3.12)   and (3.13) , 

(4.6) 

and 

i - WA)] -^-^ [i + °(in 

*(^)   .i = l^i  [1+0(1)]   . 

Substituting (4.6) and (4.7) in (4.3), cancelling, and then taking 

logs we obtain, 

2 
(ii.8) "X ^   -  log x(A) = log x(^) - log T^+log i?ß+o(l) 

By (4.4) 

log x(A) - o{*{-K)) 

and we conclude that 

(4.8) x^)(l + o(l)) = 2 log A 

which was to be proved. 

Proof of Theorem 2. 

that, 

0.9) 

while 

D 
In view of Lemma 1 we only need to show 

vo,p-*" 

^aMM-fliiiriMMMii.^i.M^MiMi^ «■■MMM^MM* 
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(4.10) T   (F;  0,  ß)   = 0(1)    as    A-*«. 

To shew (4,9)  we calculate, 

(1-P)T
2

(F;0,   ß)   =   (l-ß)/!,^   x2cp(x)dx +f /^^^(T)^ 

^  (1-P) +2ßA2/J^/A y2cp(y)dy 

. (1.ß) +^flim. 
and the result follows.    This argument and Lemma 2 show that 

(4.11) C(0, ß)  =  (l.ß)i(F; 0, ß)   +ßu1_ß-ßu1_ß 

where C{at  ß)  is given by (3.4). 

Finally, from (4.11) 

vo,ß = ß(ui-ß - c^ P))2-ß(1-ß)2ui.ß 

which tends to », and (4.9) and the theorem follow. D 
Remark 1. The same arguments show that the result of Theorem 2 

P A 2 A 
continues to hold if x (F; 0, ß)  is replaced by i (F; a, ß) 

for any a < 1 - ß,  and if as before e = ß. 

Remark 2. In addition to predicting that the efficiency of the 

ß-trimmed SD to the SD tends to 0 as i -+ » for e = ß the 

asymptotic theory also gives a positive limit for e ^ ß. Roughly 

speaking, for e > ß the behavior is governed by the contaminant 

while for e < ß it is governed by the main portion.  Clearly 

Table 3.3 reflects this only very crudely.  For the values of i 

i —..—■—■— - ■■■- - - - ■ ■ —i i —■ ^.*—^m   t^MMHHl 
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we hava given,the efficiency at e = ß remains quite large. However, 

further numerical calculations for extremely large values of -i     (of 

the order of 50 and above) confirm the asymptotic theory although 

convergeiice is slow.  It is seen from the tables that small efficiancy 

values do appear for smaller values of i    and e > p. These pre- 

sumably reflect small positive limits which are approached more 

rapidly than the asymptotic value for e = p. 

Remark 3. An interesting limiting case of the doubly trimmed 

standard deviations arises as both a and ß tend to 1/2. The 

limiting functional is naturally taken to be, 

(4.12) (F; i k   = VG"1^), 
2' 2 

the median of the distribution of  lX-n,| which, since X is 

symmetric about \it    coincides with 

F'1^) - F"1^), 

A 1 1 the interquartile range of F, The estimator •x(F; -, —)  has 

asymptotic standardized variance, 

(^•13) 
I6x2f2(x) 

where F(x) » 3/4. 

Again for the Tukey model with e ■ .5 the asymptotic effi- 

ciency of this estimator relative to the SD tends to zero as 7\ -*• », 

Numerical values of the efficiency similar to those shown in Table 3.3 

,-j,,.a.iä.a^ia.i...„,..<>..a-...„--,l... jB^fH,,),!^-...^....^..^. 
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for a = 0,  ß = .1 and .2 are given in Table 4.1 computed by 

Winston Chow. 

0 1   •37 .37 .37 

.1 :   .62 
1 

2.05 3.16 

.2 
1 
: .65 1.43 1.78 

.3 I  .61 1.01 1.11 

A ; •56 
1 

.73 .70 

.5 
1  ^1 .52 .43 

All 
Table 4.1. Asymptotic efficiency of i(F; - —) 

£■  2 

with respect to the SD for the 

Tukey model (3.7). 

They are clearly much less satisfactory than the corresponding 

values for a ■ .1. In particular, the low values at the uncontami 

nated normal make this measure unsuitable. 

The result of Theorem 2 is rather disappointing, particularly 

since it is in such contrast to the general (asymmetric) location 

case. One may ask whether a positive lower bound can be obtained 

if the trimmed SD is replaced by a measure of the form (1.10) with 

7=2 but more general A. An essentially negative answer (if 

attention is restricted to robust measures) is provided by the 

following generalization of Theorem 2. 

—,—,—...-. „—.-. .......  ..  ., _ ..„.^^.^^guiuiiiii^ mm^ maamtmm 
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Theorem 3. Suppose that i(F)  is given by (1.10) where the 

weight function A has a density A  which vanishes outside 

[a, 1 - ß ] with 0<a<l-ß<l and is bounded away from 0 

2 A 

inside. Then the relative efficiency of i  (F)  relative to the 

standard deviation tends to 0 as A -♦ « in the Tukey model (3.7) 

with e = ß. 

For the proof we require the following lemma. 

2       2 
Lemma 3. If t, and t  are two functionals of the form (1.10) 

with  7=2 and weight functions A,, A   and if the A. have 

t 
densities A.  satisfying 

(4.14) 0 ^ a ä A^tj/A^t) ^ A < o, , 

then the efficiency of the estimator of i      to  that of T.  satisfies 

(4.15) e2jl(F) ^ a2/A2 . 

Proof. Condition (4.14) clearly implies that t (F) = af1(F) 

for all F. On the other hand, it follows from Theorem 3 of BL II 

2      2 2 
that vp(F) ~ A v, (F), and the conclusion follows. 

/- 
The theorem now follows on taking t, and i      as T(F; a, ß) 

and the SD respectively and applying Remark 1 following Theorem 2. 

3.  The pth power deviations 

Although we have not found a measure of dispersion which is 

robust in the sense of BL (I,II) and whose efficiency relative to 

the SD has a positive lower bound, it is possible to find measures 

which are more robust (in the sense of BL II) than the SD and which 

.....^■i,....,;.!,;.,....-.-..^..,«-,^.^... -■^■■■-■■-•1ri,litiriiiiiil|l-1lt(iigjtl--<iia^iiail|t mmmm 
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achieve such a lower bound.  In fact, restrict attention to distri- 

butions with finite pth moment and consider the pth absolute 

power deviation 

(5.1) ^ = (E:K-.I)1/P 

(p) 

for 1 = p = 2,  and the associated estimator 

(5^) 6(p) = (hiXi-^P)1/P. 

where from now on we shall assume  wlog that p, = 0. 

Below we shall obtain lower bounds for the efficiency of (5.2) 

relative to the SD for the family JQ    of all symmetric distributions 

This bound can be improved if we restrict attention to the family 

J^    of symmetric unimodal distributions and improved still further 

for the family J      of scale mixtures of normal distributions with 

a common mean. 

Theorem 4. Let e(F; p, q)  denote the efficiency of the pth 

relative to the qth absolute power deviation where 1 ^ p < q. 

Then 

for i = 0 

(5.3) 

2, 2 

mf   .(F!p, <,) ^Efa^aüV   ' 
JA 2 2q + l IP+i y 

or i 

q2 ;CT rFTF for i ■= 2 

^iAAMMmdlttohW  i m'        "-'^^rlvifitfi^itet1 ,ma.,i''Vi.Tiii«iinhi.ifa^miri —'^"'"^•""—-"■—■" 
.^^...„^...^^vi^^.^. .^MMMMMMM. mmm 
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Before px'ovlng these results, let us note that for p ^ 1, q -- 2 

we obtain for the efficiency of the absolute deviation to the stand«: 

deviation the values 

? = .250 

Ho = •337 

for  i = 0 

for i = 1 

— = .477 
7T 

for i = 2 

These bounds are rather low and can be improved (at the cost 

of some robustness) by taking a larger value of p. For example, 

if p = 1.5,  the values are 

.563  for i » 0 

.648  for i = 1 

.851  for 1 « 2 

The proof of all three parts of the theorem hinge on the follow- 

ing lemma, which is equivalent to the case i = 0. 

Lemma 4.  Let V be any nonnegative random variable ana 

(5.4) 

Then,   if    1 = et = ß. 

(5.5) 

[i    « E(Va)   <  «. 

[i 2a  <  f~2f3 

^ ^c a        ^ß 

with equality if and only if    V    is a positive constant with 

probability    1 

L>v^,w«mw.M«ahiii^M»a«^.ijt,«,,^.A^   '"-''•'•'-'"'"■'■-'••-tiiiiBlfllllMiilililliHltlilMiMii IMHMMMttMMMHHMtti .««MMMa^h 
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Proof. To see this, note that log p.  is a convex function 

of a [see  for example Loeve (19.55), p. 156)). From this it follovs 

easily that 

log ^OQ-l0g |i 2a > 
log [xa   - log u a 

'Aß-a) ß - a 

and hence that LL-^/LU, = U-^_/u  as was to be proved. 

Proof of part (i) of Theorem 4.  By the central limit theorem 

we find easily that if the required moments exist, we have 

(5.6) e(F; p, q) - Eil/ill 
n2UF.2h 

2q 
- 1 

EX 
2p 

E2|X|P 
- 1 

)) q -E-|xr  //   , , 

The result then follows immediately from the lemma. 

Proof of parts (ii) and (iii) of Theorem h.    Note first that 

both of these families are of the following type: 

(5.7)    7 -  er: X ~ F, X = ZW, Z is fixed and W is 

independent of Z and varies freely}. 

In case (ii) this is achieved by taking Z to be the uniform dis- 

tribution on  (-1, 1)  (see Feller (1966), p. 155). Incase (iii) 

we just take Z to be a standard normal variable. To complete the 

proof we need the following lemma. 

Lemma 5.  Let J    be as in (5.7) with Z symmetric about 0. 

Let 

(5.8) 

Then for 1 « p < q, 

v » E Z 
lO. 

ilii .., i ,...„.,,.. ■.„....■.JJ-...::..„....,    ..::,. „>,t,. ....>...^  ^-^..'.|,|  ,■:.: ^-^■,J..^ ......„.-;.-■.■.■ ^.^ 
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p.^ iafJe(F;  p, q)   "4^77 
q     vq     2p 

Proof.     Let 

^ " E2|W1Ü 

Then from (5.6)   and  (5.7) 

2  (vn /v2)   w    -  1 2  (v0 /v2)   p  -fl/vO 

q     (v_ /v. )  w    -  1       q    (v0 /v )   -(1/w ^ n     v   2p    jj'     p n     v   2p    p;      \       p' 

whore    p = w /w      and where   X = ZW    has distribution    F.    Keeping p       q    P F 

v;      fixed,  this  is minimized by taking for    p    its minimum value 

2 '2 which is    1    by Lemma 4.     Since by Lemma 4,    v„ /v    = Vw /v   .we rou 
'   2q q   2p p * 

obtain a lower bound for the efficiency by letting w -+ ». To shew 

that this lower bound is sharp we need to exhibit a sequence of 

distributions for W such that p -* 1 and w -> ». Take, 

(5.10) 

Then. 

U = 1 with probability TT 

= a with probability 1 - TT. 

w„ 
TT + (l-7r)a 2p 

(TT + (l-TT)a1) P^2  * 

As    a 

w 7   -♦■ •=    and    p —► 1  . 
p 1 - TT- ' 

Now letting   TT ->■ 1    we can extract the requisite sequence of distri- 

butions.     Tb?- Irvprn,". follov^s. [] 

'•■ "-■— .^.^.^— ■mm iiiaiigiigjgiiiiMigiiiii KM||ada|i||H|||a||Hi|||tf|tt|MMH^^ 
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The theorem now follows from the standard formulas for tho 

absolute moments of uniform end standard normal variables.   [I 

Romark. Note that for case (lil) for the trlmru.-d stanaard 

deviations, an extremal sequence is provided by an appropriate 

sequence of Tukey models.  In fact, the distributions defined by 

(5.10) are of this type. 

As we have noted, the lower bound tc the efficiency of the 

mean deviation is rather low even for J .  However, as we fouu; 

fo-r trimmed standard deviations, in reasonable situations the 

bound is very conservative. Here are some numerical results for 

the pth power deviation for p = 1, 1.5 and a selection of thf 

distributions given in Tables 3.1-3.3. 

f 5 10 25 50 00 

p = 1 2.35 1.12 .9^ .91 .88 

p - 1.5   I 1.88    1.12    1.01      .99      .97 

Table 5.1.     Asymptotic efficiency of    pth    power 

deviations with respect to standard 

deviation, 

t —distribution with    f degrees of freedom. 

.5     1.0     2.0 8 10       20       30 

p = 1 .53    .60    .63    .75    .78    .80    .81    .84    .85    .88 

p = 1.5      .76    .30    .85    .89    .92    .93    .9^    .96    .97    .97 

'i'rtl/iw 5.2.    Asymptotic efficiency of    pth    power deviation 

with respict to SD. 

Beta distribution with density (3.6) 



f 
: 
i 

p =  1 p - 1.5 

2 4 6 2 4          6 

o .88 .88 .88 .97 .97      .97 

.025 1.06 3.08 5.18 1.10 1.99    2.33 

.075 1.22 2.53 2.66 1.18 1.61    1.51 

.10 1.25 2.21 2.14 1.19 1.48    1.35 

.20 1.24 1.50 1.31 1.17 1.20     1.09 

.40 11.09 1.04  .92 | 1.08 1.02   .96 
1 

.50 .1.03  .95  .85 ! 1.05  .99  .94 

Table 5.3. Asymptotic efficiency of pth power 

deviation with respect to standard deviation. 

Tukey model (3.7). 

Qualitatively the behavior of these measures closely parallels 

that of the corresponding Tables 3.1-3.3.  For reasonable distri- 

butions the moan deviation particularly soems to do even better 

than the triirmod deviations. Of course, for sufficiently heavy 

tailed di&L-ributions, for example t-dietrtbutiono with sufficiently 

low clv^rees of freedom, it can break down badly. 

6.  Maesuring the scale of positive random variables 

The concepts and results developed so far, also apply to a 

somewhat different problem. Consider a random variable X with 

distribution F, which is known to be positive. Then one may 

be interested In scaling this distribution by defining a suitable 

meppure c    of its distance from zero. Of such a measure wc shall 

requires (in analogy with the earlier ay.ic^s for 1.) 

.-: jj JiUi^itf^^-W^A^;^:.. ^,1.,. yvi.U.y;^, ^^s:.*^,-^.*^ ^i^^u***^.^^^ ■ -- ■■■'-'-—■ aagjiiiiiiiii^^ 
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(6.1) 

and 

ü(aX)   « aa(X) for    a > 0 

(6.2) a(Y)   £ a(X)   if Y is stochastically larger then X. 

There is a simple correspondence between such measures and 

the earlier measures    i,     defined by 

(6.3) i(X)   = a(|X-n|) 

where p = \i      as before denotes the center of symmetry of X. 

Given a measure c     defined over positive random variables and 

satisfying (6.1) and (6.2) , let X be a symmetric variable whose 

center of symmetry is denoted by \x.    Then (6.3) defines a measure 

satisfying (1.4), (1.5) and (1.9).  Conversely, let i    be a 

measure of dispersion defined over symmetric random variables, 

and let Z be any positive random variable.  Extend Z to negative 

values so  that it is symmetric about 0  and denote the 

resulting random variable by X. Then |i = 0 and |X-p.| ■ |x| =Z. 

The measure o (Z)  defined through (6.3) satisfies (6.1) and (6.2). 

Ii,:-:aniples of scale measures a are provided by the median 

of a positive random variable X, by the first moment E(X) , by 

the square root of the second moment VE(X ) ,  or by trimmed 

versions of these latter measures. Using (6.3), it is a trivial 

matter to adapt the results of Sections 3 and 4 to comparisons of 

the estimator of V E(X£')  with its trimmed versions. This is, 

however, not quite appropriate since the scale measures of greatc?" 

...„^^».^i,.,,, x^  ■■'-• - I —----■-—-—'^-——-■^^^^' 
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Interest for positive random variables are those corresponding 

to E(X)  and its trimmed versions. 

We believe that the results of numerical and theoretical 

comparisons of the sample mean r.nd its trimmed competitors 

qualitatively will be quite similar to those obtained for the 

sample SD and its trimmed competitors, but we have not carried 

out this program. In addition to this, Theorem k  of Sectlcn 5 

reveals that the sample mean, which is the estimator of E(X) , 

has for p > 1 efficiency bounded from below with respect to 

estimators of  [E(XP) ] P for the families 

Jj = [All distribuLions on the positive axis with 

finite second moment) 

J" = {All members of J,   with monotone nonincreasing 

densities] 

7-3= (All members of Jp which are scale mixtures of 

half normal distributions}. 

7.  Unknown center of symmetry 

In estimating dispersion we have so far restricted attcntio;:. 

to symmetric distributions and have assumed the center of syraßetr-' 

to be known.  If the center |a. of symmetry is unknown. It ic 

tempting to estimate p. by a suitable estimate of location and 

to substitute this for (i in the estimator of i. The question 

natvrally arises what effect this has on the asymptotic dlstrib.- 

i-.iou and hen^e on the efficiency of the estiruator. For the 

■" -".^M«M-A^w,i.,,^i^.^.-^^ 
-■  HI 
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neasurefs of rlispereion consic'ered in this paper it turns out that 

under suitable regularity conditions the asymptotic distribution 

is unchanged by this substitution. We have not Investigated the 

small sample behavior of these procedures. 

The theorem below gives a simple sufficient condition for 

substitution of an estimate of location to work in this sense. 

We subsequently check that this condition is satisfied by trimmed 

standard deviations and pth power deviations among others. 

To formalize the process of substitution we appeal to the 

discussion of Section 6 in which we indicated that there is a 1-1 

correspondence between measures of dispersion t  for symmetric 

distributions and measures of scale a for positive random 

variables via (6.3). Let us start then with such a a    defined 

for nonnegative variables. For reasons similar to those given 

at the beginning of Section 2, we need to consider extensions 
namely 

of a to larger families of distributions,/to the family of all 

distributions F for which o(|X|)  is defined.  To avoid 

proliferation of notitlon we also call the extension a and 

definf it by, 

a(X) = a(|x|). 

For exrmple,   if    a   (X)   = /^ x dF    for nonnegative variables,   tl ru-; 

extension of    a~    is the second moment.     If    0(X)     is the ir,ed::.-,r1 

of th'3 distribution on    (0,  *>) ,    the extension is the tnediaa of 

the dip.trlbntlon of    lx|. 

1 1 

\ f 1   i 
3 
1 1 

l      i| 

I 

uto^^ttMfattf.^^ 
Mtoi 
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Let M(F) be a measure of loccition satisfying (1.1) ond (?...2^ 

of BL, II. Suppose also that X, , • • • ,X  are independently dis- 

A 
tributed each with distribution    F    and let    F    be the eirpirica.. 

c.d.f.    Define, 
A A 
H " H(F) 

as the usurl. estimator of \x{7)     and let 

F (x) - F(x + ii.) 

denote the c.d.f. of X - n,. Note that the empirical c.d.f. of 
A 

X-L - (x3"-,Xn-£ is then F. . 

If F is symmetric about \x    the measure of dispersion 

corresponding to a by (6.3) is, 

i(F)  = a(F^. 
A 

The estimator of    i    we have used for known    \i    is    a(F ). 
PL 

Failing thio knowledge we use    i    defined by. 

For example if 

^ =a(F). 

H(F)   = /lxdF(:c) 

a2(F)   - /" x2dG(x) 

where    G    ir, the c.d.f.   of     |X|     then, 

and    i    is the tample SD. 

I 

If 

,.a-:,.J.»1it.^.j,i^,m.;-,:.;a,^,aJ»1^....a,.aJ«.... ...„ .«^..^^.^..^^^^M^jia^Mata^^g^^^^ mmmmmmmmimmmmmmmmmm 
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^(F) 
l'k F *(^ 

af?)   = G'1^) 

L>. n 'i is the median of the absolute deviations froui the meuiau 

of the observations. 

Theorci-i 5. Suppose that the underlying distribution F 

is symmCzric about \i and suppoco without loss of generality 

that p. = 0.  Suppose further that, 

(7.1) 

(7.2) 

(7.3) 

a(F )     is differentiable in    \x    at    p. » 0. 
^ 

lini^^ lim supn P[A/n|n|  ?:- M] = 0. 

iimö|0  lim supn P[sup{'v/H|a(F^ -r(F^) -a(F) +a(F) 

1^1   < 6) ^ e]  = 0      for all    e > 0. 

Then. 

(7.M 
_   A A p 

'Vn(T -a(F)) -> 0, 

If we assume that T(F)  is positive and 

(7.5) a(F) -•t(F), 

then we can arrive at conclusion (7.^) even if throughout (7.3) 

we replace a by a  where p > 0. 

A — A 
Note; p. will satisfy (7.2) provided that Vn p has a 

limiting normal distribution. 

By Slutsky's theorem (7.4) implies that Vt^-t - a(F))  and 
_ A 

VruCnF)   - a(F))     have the sans limiting diGtrlbution.     Bu. sincü 

j?    is ayiv-fflatric about    0, 
,i,mmiui\im •MMMMMMMMI^ 
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and 

a(F)   = i(F) 

a(F)   = i(F), 

the estimate we would use if the center of symmetry of F were 

known.  Thus, {7A)   implies that Vn(T-'r(F)) and .7n(t (F) - i (F)) 

have the same limiting distribution. That is, if (7.^) holds 

substitution works. 

Proof. From (7.2) and (7.3), 

(7.6) Vn[J - a(F„)   - a(F)   + a(F) ] -* 0. 

A   p 
Since    p,-+0    by  (7.2    we can apply (7.1)   to conclude that 

(7.7) Vn (a(F.)   - a(F))   - J (|f (Fj 
l-L IV ^' H-O"'-» 

0. 

If F is symmetric about 0, it follows from (1.^) and (1.6) that 

öa 
o (7 )     is an even function of u. and hence that ^—(F ) V |1' ' 0|J.V [i' 

= 0. 
^..=-0 

Substituting in (7.7) and (7.6) completes the proof of (7.^). 

If now o is replaced by aP in (7.3) we can imitate the 

proof ot (7.^) exactly to conclude that, 

(7.8) 

But, 

7H(ap(F.)   - ap(F)) £ 0, 

./n(a-o(F))  = pap-1Vn(ap(F.)   - ap(F)) 

1 A /V 

vrh^-e    n - -t   and    a    lies beLv;een   O(FA)     and    a(F) .    By  (7.5) r        p M- 

and  (7.8) 

c ^ a(F)   > 0 

F.ua  (7.^)   follows, [] 

■MKMiHIMItMIMMMiMMMIiMiMM^ 
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r>-örr.nles 

(*■)     The    pth    powor deviations 

Define    T(H)   =  (/"w|x|
pdH(x)1/p    for all    H    such that 

/ |K|pdH(x) <oo. Then    T(F )     is the    pth    power deviation.    We shall 

cneck that  (7.3)  holds for    T
P

    under the condition 

(T-'T) /|x|2pdF(x)   < - . 

For    ^ < V,    we find 

E(^ (T
P
(FJ   - ^(FJ   - tp(FJ   -i-tP(FM)))

2 

\X' M-' 

- Var(|x1 - v|p - |X1 - M.|
P
) . 

If p > 1 this variance is bounded by, 

EdX^vp - IX^^I1')2 ä p2(v^)2 sup(E|X1-?.|2p-2: 

X e [,x, v]} = C(v-n)2 if [vl. |n| ^ M, 

where G is a constant depending on M. If p = 1, 

Var(|X1 - vi - [^ -  n|) 2 E[(V-M.)(2I[X <p] - 1) 

+ 2(v-X1)I 

In any event, 

[^X^v] 
I2 ^ C(v-n)2 if |v|, |n| ^ 1-i. 

E( Vn(TP(Fv) - ^(F^) - ^(F^ + tP(F^))2 ^ C(v - n) 2 

and an argument using Theorem 12.3, p. 95 in [3] completes th 

pioof. Since (7.9) implies (7.5) as well as the asymptotic no 

cf T(F) WC see that any measura [i satisfying (7.2), for in- 

stance the rr^.an, can be substituted without affecting the crymp 

beL'.'vlor cr "did  catimatorü. 

~mc' '•.tv 

tot. 

■tfL.^ -^Jli^i^l..,.,U. 1 ^,■■....■.,. ■:■; .^p.ai;;/^.,d..,^A.ikl ^,. ^,.. .■.. . ^Mi^AiMiMtä^tä**^^,-*^ 
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Suppose    a    is given by 

(7.TO) T(H)   =  t/JlH-^t)!7 dK{t)]l/y 

~ 1 vr'-orc.    A    is symmetric about    —. 

If    F    is syitiraetric about    p.,     and if we define    A(t)   = 

2A(^-5-)   - 1,     then    T{F )     is the measure defined in (1.10). 
u 

Suppose that 

(7.11)   \  places no mass outside an interval (-, l-—)J 

0 < a < 1/2 

(7.12)  F is differentiable with derivative f which is 

positive and continuous. 

We shall now show that (7.3) holds for iy   under these 

assumptions, so that we may safely substitute an estimate of 

location in the singly and doubly trimmed standard deviations. 

Here is a sketch proof. 

Let 

G(x, M.) = PUX^nl7 ^ x], 

and let G(x, (i) be the empirical c.d.f. of jX,-p j y, • •. , |X -p 

Define 

G(x) « G(x, 0) ,    G(x) =■-  G(x, 0) . 

-1 ^-1 Finally Ijt    G    (t,  p,) ,   G     (t,  p,)     be the corresponding 

inverses   (in   x) . 

33 
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Noto that 

'r(F(L)   =  2/J-a G_1(t,   u)dA(^)   -- /J-VV.  l-t)dA(t), 

A A 
ar.d  S7.aii3.ar acsertions hold for    F,  F  ,    etc. 

H' 
Then. 

(7.13) h7(F^) -T7(F) -t7^) +t7(F)l 

HiJ^CG'^t, n) -G-^t) -G-^t^) +G-1(tj)c:A(t) 

S sup( iG'^t,!!) - G'V) - G'^t.M,) +G"1(t) | : 

0 = t = 1 - a}. 

Therefore, we need only establish that 

(7.14)       i^ 6l0 lim sup P[sup{^n|G"1(t,|a) -G"1^) - G'1(t,n)+G"1(t)i: n 

0  ä  t ^ 1-a,   ln|   ^ 6}  >  e  ]   = 0. 

V.y a standard but tedious argument  (see [1]  and [8]) , we ccn 

show that  (7.1'+)   follows if,   for every    M 

(7.15)       Gvrp[|G'1(t,ii) -G"1(t,n)|:   0 ^ t 2 1 -a,   Ul   = M}^0 

and 

ÖG (7.16)       j(t,p.)   = ~Tr-(t,M.)   is ccntinuous on 

{(t,u): 0 S t äi..^   1^1  an) 

.ad if in addition 

(7.17)       liu^ lim supn p[SuP(vn|^)  ^(^ 

. i^Ll£&L|.   Ix!   ä G^fl-a)      lul  ^  A  > j(Gix), o) r |X|     0   [l a>' lixi     j - =  0, 

■^>.i. .■J..^-»,,^,M-^,.-- ^.-L.. , ,., - ^—, — .,.„_^MliMlMiiim[ mm 
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I'ow, (7.15) follovjs from the fact that for every M And M' 
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(7J.3) siip[!n(x, [i) -G{x,  p) |: r. ^ M',   |u|  ^ M} ^ 0. 

'i>.is asacrtto.i ic a consequence of the Glivenko-Cantelli theorem 
A 

and '.ha definition of    G,  G. 

Since 

j(t,   n)   =  ^  =   [f(C"1(t,n)   +nf + f(-G'1(t,M) +^1"X
3 

S(G     (tfM.),   n) 

assertion (7.16)   is immediate froin assumption.    Finally,   (7.17) 

follows  from  (7.16), the tightness of the empirical process 

lim,.A  lim sup    P[sup['Vn|F(x-Hi,) - F(x+ix) - F(x)   + F(x) |: 
o^i u n 

|n|  = 6,   |x|   «Ml   S e)  =0, 

f 
I 

r,nd the boundedness  (in probability)   of    sup   VnlG(x)   - G(x) \. 

Therefore,   (7.13)  holds for    t    defined by (7.10).    As before  (7.1) 

and  (7.5)   are usually obvious under our assumptions and we conclvd2 

that substitution of location estimates satisfying (7.2)   such as 

the median is legitimate. 

aMiiAa.Wa.^BM;.,'.iiv>,- .  ■ ; .. .^..m-.a... ....j,..,..^..,^^«....,...,.^,,;....,.. --"'»■^■"^^iifgitiiifaiiiiaiiiii 
-   -- -   ■ 
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