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Comparison of Forecasts and Actuality 

by 

G. E. P. Box  and  G.C. Tiao 
University of Wisconsin,  Madison 

1.       Introduction 

In recent work, Box  and Jenkins (1968, 1970),  methods for building 

stochastic and dynamic models were described and their application to fore- 

casting was discussed.   These methods were used by Tiao, Box and Hamming 

(1973), to build a stochastic model for the monthly average atmospheric 

ozone concentration at Azusa, California.   The data consisted of 180 successive 

values from January 1956 to December 1970.   The model was used to produce 

forecasts (from the origin December 1970) for the next 24 months.   The 24 

forecasts are compared in Figure 1   with what actually happened.   This 

particular comparison is of interest because new automobile emissions standards 

were introduced at the end of 1970.   These measures might have reduced ozone 

below levels expected if no new standards had been introduced.   That such a 

reduction occurred is certainly plausible since most of the data actually observed 

fall below the forecasts made at the end of 1970.   However it is of Importance to 

make a more precise analysis.   The object of this paper is to do this and to show 

how the methods we develop can be more generally useful and how they relate 

to earlier work, Box and Tiao (1965,  1973) on "Intervention Analysis. " 

•• 
\ 
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1 

2 - 

Forecasts made In December 1^70 of Ozone concentration at 

Azusa California using the model 

(1-B12)zt = (1 + 0.15B)(1 - 0.91B1'?)at 

New Standards 
Introduced 
Forecast 
Origin       x 

Forecast (Model uses data 
** prior to new standards) 

♦ Actual  (After new 
standards introduced) 

1971 1972 

024        6        8      K)      12       14     16      18      20     22      2* 

FORCAST   LEAD   TIME <f -^ 

Figure 1 

2.       A time series model for the ozone data. 

Following notation and methodology used and more fully explained 

In the references mentioned above we denote a time series (e. g., the monthly 

oKone data) by the sequence   , . . z^, zt, zt+.. . , .   We also define a white 

noise   series   .. . a^ ,, at, at+i- • •    as a sequer.ee of Independently and nor- 

mally distributed random   shocks     with mean zero and variance  <r  ,    Serially 

dependent values   z. of the time series are supposed to be generated from the 

random shocks   at by a linear fllterlna operation 
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Zt = at +   *l*t-l   +   Vt-2 + •• (1> 

where  the ^.  are fixed constants which typify the filter "memory".    If 

we define the back shift operator  B   such that 

Bat = a.  , whence  B at = a.. 

then (1)   may be written 

or 

zt =(1 + ^B +   4>2B2+ ...)at (2) 

2 
zt =   »WB)at    where   ^B)  = 1 +   ^B +   ^B + .. . 

and    4<B)    is called the transfer  function    of the filter. 

Following ideas which originated with Yule (1927) and Yaglom (ISSS) 

the transfer function is often parsimoniously parameterized in terms of a 

difference equation.   Iterative methods for building such  a model, 

when   applied to the ozone data,  resulted in a representation of the form 

(1-B12)7t  = (1   - GjBMl - e2B12)at   . (3) 

Maximum likelihood estimates of the parameters were 

Gj  =  -0.15     (0.07).       02  =  0.91   (0.04),      a2  =   1.00 

where  the numbers In the brackets are the corresponding estimated   standard 

errors.    This model was used to obtain the forecasts In Figure   1. 
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Thus, for the ozone data the fitted transfer function is 

^B)   =    (14 Q-15B) (1 -0.91B12) (4) 

1 -B12 

We can alternatively define  z    as a linear function of previous observations 

zt ,,  zt_2»  • • • Plus a ran(*orn shock so that 

or 

or 

2t =  ^t-l + '2*1-2 + • • ■   + at (^ 

(1 - TT.B - IT2B    + . .,) zt =   at 

IT(B)Z    = at where   MB)  = 1 - w B - "2^" ~ •• • 

Now using   (2)   and   (5) 

w(B)^B)  = 1. 

For the model in (3)   the first 24   ^ and w weights are given in Table 1. 

3.       Comparison of forecast and actuality 

The following theory applies exactly if the model is precisely known 

and approximately if the model parameters are estimated. Some discussion 

of the approximation is given in the appendix. 

The minimum mean square error forecast made at origin   T   of 

zT+^    is denoted by   zT{i), where   i = I, 2, . . . , is called the lead time.    It 

is readily shown that the lead    I    forecast error  e~.(t) = z« ^ - zjf)   is 

given by 



Table   1 

l ♦l ■** 
eT(Ä) aT+£ »U *21 

1 15 .15 -.35 -.35 1.0000 0 

2 0 -.0225 .26 .31 .8500 

3 .0034 -.09 -.14 .8725 

4 -.0005 .20 .22 .8691 

5 .0001 -2.54 -2.57 .8696 

6 0 -.18 .21 .8696 

7 • -.73 -.76 .8696 .8500 

8 • -1.15 -1.04 .8696 .8725 

9 • -.95 -.79 .8696 .9691 

10 • -1.07 -.95 .8696 .8696 

11              C 0 -.30 -.16 .8696 -.1304 

12            .1 D9 .09 -1.10 -1.08 .8696 .0196 

13            .( )135 .1230 -.96 -.77 .7796 -.0029 

14             C -.0185 -.04 .05 .7931 .0004 

15 .0028 1.11 1.11 .7910 -.0001 

16 -.0004 .40 .22 .7913 0 

17 .0001 -1.34 -1.14 .7913 0 

18 0 -.68 -.49 .7913 1.9100 

19 -1.33 -1.19 .7913 1.6235 

20 -3.15 -2.87 .7913 1.6665 

21 -2.55 -2.03 .7913 1  6600 

22 -2.87 -2.47 .7913 1.6610 

23 -1.20 -.80 .7913 -.2491 

24             0 0 -1.10 -.88 .7913 .0374 
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eT(i)  = aT+i+   VT+I-1 +-- +  VlaT+l (6) 

From (5)   it follows that (i)   aT+.  = z«..   -«-.(1)   so that   the random 

shocks . . . a__.,aT, aT.|. • • are the one step forecast errors made  at origins 

. . .  T-2, T-l, T,.,.;   (11)     since these  a's are Independent, the variance 

of the lead   t    forecast error Is 

Var{eT(l)} =    (1 +   O^f + ... + ^.{i^ (7) 

Now consider the forecasts made for lead times   I = 1,2 m and the 

corresponding forecast errors  £ = [eT(l).  ..   , e,Jm)l .    Also,  let 

$J   = [ a-r.i. • • • . a<r4.    1 •    Then from (6) the transformation which converts 

the random shocks  j^    to the forecast errors ^    is 

vb  a (H) 

where  the m x m   matrix   jjj  and its   inverse   jjj •1 
fi    are: 

1 

1 

4», 

I    m-l L 
4». m-2 

1 

4», 

I   1 

"l ' 

m-l      m-2 

I 
■TT 
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That   £    is the Inverse of £    is readily confirmed by successively equating 

coefficients in the identity  «MB)ir(B) ■ 1. 

New the   mXni covariance matrix for the vector & i* X * Et€.^') -JkJt'0  ■ 

It follows that if the original model is appropriate  during the period 

T + 1,  ..., T+m, then  0 =£'£   £    is distributed as x     with  m   degrees of 

freedom, where   V     *£&/*        K»  on the other hand,  the   model differs from 

that previously experienced then we may expect the e-,(<)'s   to be inflated. 

Now rather than compute   0   from the   e.JiVs it is easier to employ the 

identity 

whence 
m 

0   =  ^'2 ^   a^! (10) 
1=1 

Is the standardized sum of squares of the one step ahead forecast errors, 

aT+l' ' ' '' aT+m*    ^lus' as we suggested In our joint paper with Hamming 

(1973), an overall test of the appropriatene ;s of the model could be achieved 

by referring   Q  to a   x    table with   m   degrees of freedom.    Further, this is 

equivalent to the appropriate test applied to all the lead   t forecast errors 

eT(i),    i = 1 m. 
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Since   in practice <r      is estimated from   n  data values to which,  say, 

p  parameters have been fitted, a closer approximation would refer Q/m, where 
^      ._2   m     2 
0 r '       2   aT #,   to an  F table with m and n-p degrees of freedom.    However, 

/=1     A+' 
when  n   is   large this refinement would make little difference to the result 

which is In any case approximate. 

For the ozone data we find tMt Q = 36. 01   which is close to the   5% 

value  of  x   with 24 degrees of freedom and suggests  that the deviations 

from the   model are real. 

Components of  x 

The test based on  0   is an overall test having,  like all such tests. 

(i)    the advantage that it is unnecessary to be specific about the nature 

of the feared discrepancy, 

(ii)    the disadvantage that the test lacks sensitivity (or power)   when 

compared with a specified test which assumes   that we have guessed correctly 

about what to be afraid of. 

We now illustrate how, where appropriate, the   0   statistic may be 

analyzed   into components which correspond with specific alternatives. 

4.   Changed in model defined in terms of the   z 's 

One way in which model changes may be defined is in terms of changes in 

the    zt's.    Suppose that a change at time  T   has resulted in an additional 

component    in the  z.'s  which at time  T+/  is of the form 

ßlxU + •   •   ^ Vk/      ' k <   m . (11) 
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For example, 

(I)    If  k = I with  Xw = 1, i = 1,  ...,  m, the model allows for a 

possible change in level of  ß. ; 

(11)   if  k = 2  with  x,| = 1, x2l = i,    i = 1,  ...,  m, the model 

allows for a possible change in level of  ß,   and a change in 

slope of  ß2 j 

(ill)    alternatively,   x,, x-, etc.   could be genuine exogenous variables 

which have previously had no effect on the system. 

In general, the errors ^   may contain a deterministic component %£ where 

£ = (Pp • • •» Pfc)   and ^ is the  m x k matrix {x.^}, (J = 1,... ,k;   i = 1,  . . ., m). 

We may  then write 

A   =  Ä£ +^ (12) 

where x< *ias mean 2ero and covarlance matrix ^. 

Now after premultiplying (12)   by  j^   we have 

■n e     =   TT X 0   + jr e 

or 

A    =i<£+^ (13) 

where   ^   = ^rrJC ,   and  ^ = ^^     is normally distributed with  E(^) = £ 

and    E^^,') =/Lrn
(r •   The least squares estimate of ji,   is Ji = (i$,'iy~ A'A 

and the model yields the following analysis of variance table. 

« 

\ 

\ 
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Source Sum of Squares D. F. 

Added component 

Residual 

k 

m-k 

Exam Die 

(i)    A natural but somewhat naive hypothesis is that the intervention 

at the end of   1970  will simply change the level of  ozone   z.   and hence the 

level of the eT(i)'s. To test this hypothesis,   we consider the model 

eT(i)  = ßi + ^ (14) 

or,  by setting   x.^ = 1, for   i = 1,.. ., 2 4,    equivaIentlyeT(i)= ß.x.^ + t^ 

which transforms to 

with 

aT+i = ^lxli+ al (l5) 

x^ = 1,       1=1 
i-1 

The values for    eT(i),    a»  -  and   x.. are given in Table 1.       Using these values 

we have 

?,  -      zkliaT+i/Sx2^ - -0.9035 . (16) 

The corresponding analysis of variance table is 
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Source Sum of Squares        D. F. Mean Square 

Level change 13.70 1 13.70 

Residual 22. 32 23 .97 

o-2 166 1.00 

from  which it appears that the hypothesis of no change in level is in fact 

discredited   by the data. 

(11)    A slightly more sophisticated analysis might take account of the 

following facts: 

(a) Ozone levels are highly seasonal and are at their highest in the 

"summer" months   June-October.    It is only during this period that the new 

emission standard would be expected to make much difference. 

(b) The number of cars fitted with devices required by the new standards 

would be roughly twice as high in the second year as in the first. 

To take account of these facts,  let us define,  in addition to  x. . as given in 

(15),     a column vector  jc-   with 24   elements such that x2l = 1, for  I = 6, 7, 8, 9, 10; 

x2| = 2, for i = 18,19, 20, 21, 22;   and x?| = 0   elsewhere. 

The model e^i) = PiX.. + P?*?» + i i     now transforms to 

aT+i = ßlXli + P2X2I + ai (l7) 

where  x,« are given in the last column of Table 1.    The corresponding 

analysis of variance table is 

\ 
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Source                            Sum of Squares D.F. Mean Square 

Due  to 

x1&x2 
- 

x2    alone                           f 17. 01 

19.52     ] 
i Extra due to x.                    1   2, 51 

Residual                                 16.50 

f 1 
i 

2     S. 
i 1 

22 

17.01 

2. 51 

075 

*2 166 1.00 

which suggests that the model e (i) =   ß2x2- + t -    is sufficient to explain 

the data. 

5.    Changes in the parameters of a time series model 

As an alternative we may desire to entertain the possibility that at 

some time T one or more of the parameters of a time series model has 

changed.    Let us assume that a time series model 

*0(B)zt    =    eo(B)at, (18) 

where  <t>0(B) = I - <t>loB - ...  - t^b*    and   Q^) = 1 - 6^8 - ...  - G^B* . 

has been identified,  fitted, and checked from data obtained prior to time  T 

and is being used to make forecasts after time   T.    Let   a    ~,+l be the value 

of the shock at time   T+i corputed T.om forecasts made for the model (18). 

Then  a0 T+1, a0 T+2, . . ., a0 T+rn   may be computed from 

»o(B) 

"o.T+i "    0O(B)   zT+i .   ' -- 1, m. (19) 
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Now suppose that at time  T+l  the parameters may have changed from 

values  ^.^ = (<|>l0, • • •, ^ eio,... , eqo)  to values 

(t,V = (*!, • • ■, V Qp • • •, eq)- 

By linearly expanding  aT+| =    Q^T ZT+| with respect to (^, Q) at 

^ .,,9  ) and rearranging we have approximately 

'o, T+i * ^ <V*io) wii+ A (VV w(P+j)i+ •T+I-     
(20, 

where 
aa 

"wli =     8*, 
T-t-i 9a, 

-w T+i 

*Xo'~o 
Jl 89. 

ito'^O^ 

This has the same form of a linear model and so allows u.-. to proceed as before. 

Example 

The derivatives may be calculated from the changes  that occur in the 

a f.s's  when small changes are made in the parameters.   Thus,    suppose 

we wish to entertain the possibility that the discrepancies in the forecasts of 

Figure  1 are produced by changes in the parameters   9. and 9. at time T+l 

(January, 1971)  in the model (3),  then we can calculate derivatives in the 
9a, 

manner illustrated in Table 2 where  -x-^ — - w,^ =      30 
T+i 

1 

da 
- x4i  - -w2i 

T+i 
39. 

^ 

.  and^o^W 
Ao 

Alternatively, they may be computed recursively as described in Box 

and Jenkins (1979, p. 235). 

\ 
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ft 

Value of parameters 
Table   2 

(6,. e2) (6,, e2) (e1, e2) Residuals after 
(-.15,  .91) (-.14, .91) (-.15, .92) . m row 1-row 2    3   . row 1-row 3 fitting by iterated 

aT+Jl aT+Ä aT+£                      •01                           •01 leaSt squares 

1          -.3510 -.3600 -.3900                .9000                        3.90                          .195 

2 .3092 .3069 .3525 .2300 -4.33 -.176 

3 -.1403 -.1369 -.1001 -.3400 -4.02 .023 

4 .2182 .2164 .3327 .1800 -11.45 .088 

5 -2.5730 -2.5706 -2.7117 -.2400 13.87 -2.368 

6 .2011 .1750 .2280 2.6100 -2.69 1.134 

7 -.7554 -.7497 -.7907 -.5700 3.53 -1.419 

8 -1.0340 -1.0423 -.9798 .8300 -5.42 -.529 

9 -.7945 -.8037 -.7792 .9200 -1.53 -.627 

10 -.9471 -.9538 -.8983 .6700 -4.88 -.244 

11 -.1611 -.1697 -.1281 .8600 -3.30 -.381 

12 -1.0779 -1.0783 -1.1282 .0400 5.03 -.578 

13 -.7711 -.7819 -.8106 1.0800 3.95 -.358 

14 .0491 .0429 .0921 .6200 -4.30 -.131 

15 1.1072 1.1086 1.1428 -.1400 -3.56 1.222 

16 .2134 .2243 .3209 -1.0900 -10.75 -.451 

17 -1.1437 -1.1431 -1.2970 -.0600 15.33 -.096 

18 -.4967 -.5082 -.4700 1.1500 -2.67 -.619 

19 -1.1854 -1.1888 -1.2255 .3400 4.01 -.743 

20 -2.8662 -2.8776 -2.8267 1.1400 -3.95 -2.481 

21 -2.0342 -2.0613 -2.0281 2.7100 -.61 -.772 

22 -2.4652 -2.4818 -2.4298 1.6600 -3.54 -1.759 

23 -.8061 -.8285 -.7773 2.2400 -2.88 .218 

24 -.8820 -.8869 -.9390 .4900 5.70 -.412 
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Fitting the equation 

ao,T+i = (ereio)x3i+(e2-e2o)x4i + aT+i 
(2l) 

by least squares,  first estimates of the adjustments to   6.   and   o    are as 

follows: 

1        lo 2 2o 

-63 (.18) -.07 (.03) 

yielding adjusted values for  (0i, ^   0^  t"-7^»   • 8^)   as compared with the 

previously estimated values of  (-.15,  .91).   The analysis of variance  is 

as follows: 

Source Sum of Squares D. F. Mean Square 

Change in parameters 

Residual 

14,75 

21. 24 

2 

22 

7,37 

0. 97 

^ 166 1. 00 

The analysis suggests that if we exclude the previously considered poss.üilities 

in which a model change was associated with the level or slope of the ZT.+/'S and 

allow instead only the posoibility that the parameters have changed, then we 

find what  appears to be a significant alteration particularly for  9.. 

This analysis must be treated with some caution because the-  dT+/
s 

are in fact non-linear functions of the parameters   6,   and 6     and the 
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appllcablllty of the linear analysis supposes that the linear approximation 

(21) is adequate over what has turned out to be a rather substantial adjust- 

ment    for  6..   However,  iterated least squares yields final values for 

(6., e_), the parameters after January 1970, of (-, 58,  . 67)   again indicating a 

substantial change. 

The right hand column of Table 2 shows the residuals after the iterated least 

squares calculation.   These strongly suggest that the trend  has not been 

fully allowed for by the parameter adjustment,  leading  us to perform an 

analysis in which x2|, x-. and x*. are all   included.   The results are as 

follows: 

Source Sum of Squares D. F. Mean Square 

Due to x. 17.01 1 17.01 

Extra due to possible 
change in parameters 4.04 2 2.02 

Residual 14.91 21 .71 

ff2 166 1.00 

We  are finally led to the conclusion, therefore, that the data 

may be fully accounted for on the simple and realistic hypothesis that the 

emissions from the new car engines resulted In the cumulative production 

of less ozone In the summer months, with no detectable   change in the values 

of the stochastic parameters   6. and   e . 
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6,     Relation with intervention analysts 

In our earlier work,  (1965,   197 3),  methods were described for 

estimating the effect of an "intervention" at a known point in a time series. 

For example,  in Los Angeles County in early 1^60 events occurred 

(which may Jointly be called the intervention)  which might have been ex- 

pected to reduce the level of ozone in Downtown Los Angeles.    One 

expected effect was a change in level of the pollutant ozone.    In our joint paper 

with Hamming (197 3),   a time series model was built for data from 1955 to 

1970 which adequately allowed for a possible step change at the start of I960. 

The size of the step and its standard error were estimated and it was possible 

to show that a substantial reduction in the pollutant almost certainly did occur 

at this time. 

This situation differed from that discussed here in that the parameters 

of the time series model were estimated from substantial quantities of data 

available after, as well as before, the intervention. 

However, these earlier methods could perfectly well be applied to 

examples like the present one and the results will be essentially similar if 

the period after the intervention is short.   We believe the present   procedure 

is worth separate consideration because of its simplicity and intuitive appeal. 

It is very natural to learn about a system by comparing a set of forecasts made 

at some point of possible change with actuality. 
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Appendlx 

Effect of Parameter Estimation Errors 

In this paper we make the approximation that the model parameters 

may be treated as if they were exactly known, when In fact they must be 

estimated from a preliminary time series.   'In the example considered 

preliminary time series consists of 180 data values at Azusa from January 

1956 to December 1970.) 

Some idea of the effect of the approximation in the special case of 

an auto-regressive process may be obtained as follows.    Suppose   *.,...,* 

are estimated values based on    n   preliminary observations    and   *., *_,...,* 

are the true values of an   autoregressive process   a    = c{i(B)z . 

where  <«B) = (1 - ^B - ,. .  - 4> Bp). 

Now if the  a.'s   are estimated shocks such that 

at = (1- JjB- ...   -* Bp)zt  = 6(B)zt 

then 

a. + u-B + . . .  + a  BP~ 
A 1 Z p  

i,t=a,■ 1-*,B-   ..  -*B>- "*-' 
* P 

where      «i * ^ " ^i    i = 1, • • •, P- 
A A 

It follows that, conditional on   4».,  .. ., <|> . 

«S.2!?, V 
 k = K—   =    1+6  where 6 is the coefficient of 

0 (0l + . . .+« 3P_1)  (a1 + ...   +0   B-(p-l)) 
B     in the expansion    of —* K j "    , 

(j)p(B) yB"1) 



that is 

where 

r(v) 
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6 = A'Hy)& 

9L' = K %) . 

'P-I 

Yn- P-l 

and   «r^v.  = cov(2t, zt ,) . 

Thus,    «a^l^, ...,$p) = (l + Ä'r(Y)^)<r2   . 

Using the results     in Box and Jenkins  (1970, p. 241), we find that to 

order  n   , 

E(St)
2 

= 1 + p/n . 

Thus, there will be an inflation factor in the value of   x     produced   by 

sampling errors in the   4>'s  but this w 11 be small if  n   is   large compared 

with   p. 
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