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Comparison of Forecasts and Actuality
by

G.E.P. Box and G.C. Tiao
Uriversity of Wisconsin, Madison

1.  Introduction

In recent work, Box and Jenkins (1968, 1970), methods for building
stochastic and dynamic models were described and their application to fore-
casting was discussed. These methods were used by Tiao, Box and Hamming
(1973), to build a stochastic model for the monthly average atmospheric
ozone concentration at Azusa, California. The data consisted of 180 successive
values from January 1955 tc December 1970. The model was used to produce
forecasts (from the origin December 1970) for the next 24 months. The 24
forecasts are compared in Figure 1 with what actually happened. This
particular comparison is of interest because new automobile emissions standards
were introduced at the end of 1970. These measures might have reduced ozone
below levels expected if no new standards had been introduced. That such a
reduction occurred is certainly plausible since most of the data actually observed
fall below the forecasts made at the end of 1970. However it is of importance to
make a more precise analysis. The object of this paper is to do this and to show
how the methods we develop can be more generally useful and how they relate

to earlier work, Box and Tiao (1965, 1973) on "Intervention Analysis. "
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Forecasts made in December 1970 of Ozone concentration at
Azusa California using the model

(1-!3'2)zt = (1 +0.158)(1 -0.91812)at

New Standards

Introduced

Forecast
Origin

l Forecast (Model uses data
. X * prior to new standards)

« Actual (After new
standards introduced)
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Fiqure 1
2. A time series model for the ozone data.

Following notation and methodology used and more fully explained

in the references mentioned above we denote a time series (e.g., the monthly

ogone data) by the sequence ... Zy 1 Zgy 2y v - We also define a white
noise series ...a, ),3,,a,,,... asa sequerce of independently and nor-

mally distributed random shocks with mean zero and variance crz. Serially

dependert values z, of the time series are supposed to be generated from the

random shocks a, by a linear filter {ng operation



Zp =t By Nt (1

where the ¢, are fixed constants which typify the filter "memory". If

we define the back shift operator B such that

= ko .
Bat =) whence B a, =3,y

then (1) may be written

2
z, =(1+¢IB+¢ZB+...)a (2)

t

or

2
zt = \l.(B)at where (B) =1 + ¢lB + ¢ZB + ...

and B) is called the trangfer function of the filter.

Following ideas which originated with Yule (1927) and Yaglom (1955)
the transfer function js often parsimoniously parameterized in terms of a
difference equation. Iterative methods for building such a model,

when applied to the ozone data, resulted in a representation of the form
12, _ ., _ _a rl2
(1-B )zvt ="1(01 OIB)(I e?_B )at . (3)

Maximum likelihood estimates of the parameters were

A A ~n2
el = =0.15 (0.07), 02 = 0.91 (0.04), o~ =1.00
where the numbers in the brackets are the corresponding estimated standard

errors. This model was used to obtain the forecasts in Figure 1.



Thus, for the ozone data the fitted transfer function is

12
- {1+ 0,15B) (1 -0.91B
upy = ALt 0.158) (1-0.918%)

(4)

We can alternatively define 2z, as a linear function of previous observations

t
Zy_p Zpops v oo plus a random shock so that
z, = mz,_ Mz, 5 ...ty (5)
or
(1 -nB-nB%4+...)z = a
1 2 B t
or 2
w(B)zt = a, where n(B) =1 - nlB - nZB -...
Now using (2) and (5)
n(B) {B) = 1.

For the model in (3) the first 24 ¢ and m weights are given in Table 1.

3. Comparison of for ta ctualit

The following theory applies exactly if the model is precisely known
and approximately if the model parameters are estimated. Some discussion
of the approximation is given in the appendix.

The minimum mean square error forecast made at origin T of
Zp, g 1s denoted by 'z‘.r(l), where £ =1 2 ..., is called the lead time. It
is readily shown that the lead ({ forecast error eT(l) 2oy QT(I) is

given by
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-.0225
.0034
-.0005
.0001

Table 1
er(2)

-.35
.26
-.09

-1.33
-3.15
-2.55
-2.87
-1.20
-1.10

ATe
-.35

-1.14
-.49
-1.19
-2.87
-2.03
-2.47
-.80
-.88

o)
1.0000
.8500
.8725
8691
.8696
.8696
.8696
.8696
8696
.8696
8696
8696
7796
7931
.7910
7913
7913
7913
7913
.7913
,7913
7913
.7913
7913

28

.8500
.8725
. 9691
.8696
-.1304
.0196
-.0029
.0004
-.0001

1.9100
1.6235
1.6665
1.6600
1.6610
-.2491

.0374



erld = ap,p * YRryr to t VP (6)

From (5) it follows that (i) 4l < Zpy T QT(I) so that the random
shocks ... dp_yr 8 8pyy- - - ArE the one step forecast errors made at origins

. T=-2, T-1, T,...; (1) since these at's are independent, the variance

of the lead { forecast error is

_ 2 2 . 2
Var{ed(f} = (1 + ¢ + ...+ 4y yo". (7)
Now consider the forecasts made for lead times £ = 1,2,..., m and the
corresponding forecast errors g' = [eT(l). . o, e.r(m)]. Also, let

a' =|( A 41 dem ] . Then from (6) the transformation which converts

the random shocks 3 to the forecast errors e s

e = va (8)

where the m X m matrix ¢ and its inverse ;g—l = 1m  are:

.r_l i )
I t
Y1 1 -n 1
v 1S =
z . =il |~ 2 "
. ¥ = | .
. l ‘ l
| e g ¥ 1 i-nm_l vl -



That 1 is the inverse of ¢ 1is readily confirmed by successively equating
coefficients in the identity J(B)n(B) = 1.

Now the mXm covariance matrix for the vector ¢ is V = E(g e') :,gyaz.
It follows that if the original model is appropriate during the period
T+l ..., T+m, then Q =_g',\[l,g is distrit uted as XZ with m degrees of
freedom, where v =z g/«z . If, on the other hand, the model differs from
that previously experienced then we may expect the eT(l)‘s to be inflated.

Now rather than compute Q from the e.r(l)'s it is easier tc employ the

identity
- -1 - 1ot 2 _ ' 2
Q-eV e=¢erme/c" =a%2/0" (9)
whence
2 G 2
_ a2\
Q=90 "} ar,q (10)
£=1

is the standardized sum of squares of the one step aheud forecast errors,
Ar, o OTemt Thus, as we suggested in our joint paper with Hamming
(1973), an overall test of the appropriatene ;s of the model could be achieved
by referring Q toa xz table with m degrees of freedom. Further, this is
equivalent to the appropriate test applied to all the lead { forecast errors

e.r(l), £=1...,m



Since in practice o? is estimated from n data values to which, say,

N
p parameters have been fitted, a closer approximation would refer Q/m, where
A 2" o
ok :1 STery

when n {s large this refinement would make little difference to the result

to an F table with m and n-p degrees of freedom. However,

which is in any case approximate.

For the ozone data we find that 6 = 36. 01 which is close to the 5%
value of x2 with 24 degrees of freedom and suggests that the deviations

from the model are real.

C_mm:;nt.&_g_f_xf

The test based on Q is an overall test having, like all such tests,

(i) the advantage that it is unnecessary to be specific about the nature
of the feared discrepancy,

(ii) the disadvantage that the test lacks sensitivity (or power) when
compared with a specified test which assumes that we have guessed correctly
about what to be afraid of.

We now illustrate how, where appropriate, the Q statistic may be

analyzed into components which correspond with specific alternatives.

4. Changed in model defined in terms of the zt's

One way in which model changes may be defined is in terms of changes in
the zt's. Suppose that a change at time T has resulted in an additional

component in the zt's which at time T+ is of the form

By *r tBX, k< m. (1)



For example,

(1) if k =1 with Xy = ,Lt=1 ..., m, the model allows for a
possible change in level of ﬁl :

(i) if k = 2 with X1p= 1, X5, = 4, t=1 ..., m the model
allows for a possible change in level of ﬁl and a change in

slope of ﬂz :

(iii) alternatively, x), X,, etc. could be genuine exogenous variables

which have previously had no effect onthe system.

In general, the errars @ may contain a deterministic component Xg where
£ =(By...,B ) and X is the m X k matrix {xji}, B=L..., ke 4=k ;.
We may then write

e = XB *te (12)

where ¢ has mean zero and covariance matrix Y.

Now after premultiplying (12) by m we have

ne =3nXB +tne

or

2 =X£+¢ (13)

where X =nX, and g = m¢ 1s normally distributed with E(g) = 0

*y

and E(ge') =L, o2, The least squares estimate of § |is ﬁ = (&'Z)-li(jg

and the model yields the following analysis of variance table.

m).
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Source Sum of Squares D.F.
A e .« A
Added component £ X'XB k
A . A
Residual (@-XB) (a-X8) m-k

(1) A natural but somewhat naive hypothesis is that the intervention
at the end of 1970 will simply change the level of ozone z, and hence the

level of the eT(l)'s. To test this hypothesis, we consider the model
eq(h = By + ¢, (14)

or, by setting x,, = 1, for £ =1,...,24, equivalentlyex(H=p;x,+ ¢,

which transforms to

apyg = Pyx)pt oy (15)

with
X, =1 1=1
-1
X,=1-) . =224
j=l1
The values for eT(l), Aryy and kll are given in Table 1. Using these values
we have
- : W2 L
B - zixuap,, /E%%, = =0.9035 . (16)

The corresponding analysis of variance table is



Source Sum of Squares D.F. Mean Square
Level change 13.70 1 13,70
Residual 22. 32 23 .97

52 166 1.00

from which it appears that the hypothesis of no change in leve! is in fact
discredited by the data.

(i1) A slightly more sophisticated analysis might take account of the
following facts:

(a) Ozone levels are highly seasonal and are at their highest in the
"summer" months June-October. It is only during this period that the new
emission standard would be expected to make much difference.

(b) The number of cars fitted with devices required by the new standards
would be roughly twice as high in the second year as in the first.

To take account of these facts, let us define, in addition to X| g as given in
(15), a column vector X, with 24 elements such that X,y =1, for 1=6,7,8,9,10;
Xyg = 2, for t = 18,19, 20, 21,22; and Xyp= 0 elsewhere.

The model eT(l) = ByX)y + Box,, + ¢, now transforms to

arpg = By Xy + Byxyy t oy (17)

where ;‘21 are given in the last column of Table 1. The corresponding

analysis of variance table is



Source Sum of Squares D.F. Mean Square
x2 alone 17. 01 (1 17.01
Due to \'
19.52 2
X) &%, | Extra due to X, 2.51 1 2,51
Residual 16. 50 22 0.75
42 166 1.00

which suggests that the model eT(z) = ‘32’(2! + ¢ P is sufficient to explain

the data.

5. Changes in the parameters of a time series model

As an alternative we may desire to entertain the possibility that at

some time T one or more of the parameters of a time series model has

changed. Let us assume that a time series model

¢ (B)z, = 6 (B)a,, (18)

where ¢ (B)=1-¢; B-... - ¢ P and 6,8) =1-6B-... -0

B9
po o

q
has been identified, fitted, and checked from data obtained prior to time T
and is being used to make forecasts after time T. Let A, T+ be the value

of the shock at time T+!f corputed ..om forecasts made for the model (18).

Then ao’ T+1° °o, T4 ao, T+m MY be computed from

$(B)

%, 142 % 5B ZT4er 171

m. (19)

L b |



Now suppose that at time T+! the parameters may have changed from
values (¢,,8) = (¢, -, ¢p°, 8100+ eqo) to values
&’rgn) * (¢l’ R | ¢p’ el, R eq)'

By linearly expanding By = —%P-B)— Zryd with respect to (¢ , 8) at

(¢ g 8 o) and rearranging we have approximately

q

P
3, T+t = él (=01) Wyg * 121 (8,-8,0) Wipapye* 2r4p  (20)

da da
R & J | = Tt
where Wiy = 3¢1 wj!— aej .
(*0,,9,0 9 Qo’fgo)

This has the same form of a linear model and so allows u: to proceed as before.
Example

The derivatives may be calculated from the changes that occur in the
a T“'s when small changes are made in the parameters. Thus, suppose
we wish to entertain the possibility that the discrepancies in the forecasts of
Figure | are produced by changes in the parameters 9l and 92 at time T+1

(January, 1971) in the model (3), then we can calculate derivatives in the
da

manner illustrated in Table 2 where -x,, = -w,, = — I+t ;
31 12 801
da .
-5 S o I & ] =
Xgg =Wy, = 26, , and 8 = (elo,ezo) .
Lo

Alternatively, they may be computed recursively as described in Box

and Jenkins (1970, p. 235).
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Value of parameters

e R )

A14 ot £9) A1y
-.3510 -.3600 -.3900
. 3092 .3069 .3525
-.1403 -.1369 -.1001
.2182 .2164 .3327
-2.5730 -2.5706 -2.7117
.2011 .1750 .2280
-.7554 -.7497 -.7907
-1.0340 -1.0423 -.9798
-.7945 -.8037 -.7792
-.9471 -.9538 -.8983
-.1611 -.1697 -.1281
-1.0779 -1.0783 -1.1282
-.7711 -.7819 -.8106
.0491 .0429 .0921
1.1072 1.1086 1.1428
2134 .2243 .3209
-1.1437 -1.1431 -1.2970
-.4967 -.5082 -.4700
-1.1854 -1.1888 -1.2255
-2.8662 -2.8776 -2.8267
-2.0342 -2.0613 -2.0281
-2.4652 -2.4818 -2.4298
-.8061 -.8285 -.7773
-.8820 -.8869 -.9390

=l

Table 2

3L

row 1-row 2

.9000
.2300
-.3400
.1800
-.2400
2,6100
-.5700
.8300
.9200
.6700
.8600
.0400
1.0800
.6200
-.1400
1.0900
-.0600
1.1500
.3400
1.1400
2.7100
1.6600
2.2400
.4900

e

42

row 1-row 3

3.90
-4.33
-4.02

-11.45
13.87
-2.69

3.53
-5.42
-1.53
-4.88
-3.30

5.03

3.95
-4.30
-3.56

-10.75
15.33
-2.67

4.01
-3.95

-.61
-3.54
-2.88

5.70

Residuals after
fitting by iterated
least squares

.195
-0176
.023

.088
-2.368
1.134
-1.419
-.529
-.627
-.244
-.381
-.578
-.358
-.131
1.222
-.451
-.096
-.619
-.743
-2.481
=772
-1.759
.218
-.412
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Fitting the equation

3o, T+2 = (8170 X3 HO,=0, ) x4y + g, (z)
by least squares, first estimates of the adjustments to 61 and 02 are as
follows:

- % 8, - 95

-63 (.18) -. 07 (. 03)

vielding adjusted values for (61, 02) of (-.78, .84) as compared with the

previously estimated values of (-.15, .91). The analysis of variance is

as follows:
Source Sum of Squares D.F. Mean Square
Change in parameter: 14.75 2 7.37
Residual 21.24 22 0. 97
32 166 1. 00

The analysis suggests that {f we exclude the previously considered poss.vilities
in which a model change was associated with the level or slope of the zT“'s and
allow instead only the possibility that the parameters have changed, then we
find what appears to be a significant alteration particularly for 91.

This analysis must be treated with some caution because the a.r“'s

are in fact non-linear functions of the parameters 6l and 62 and the
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applicability of the linear analysis supposes that the linear approximation
(21) is adequate over what has turned out to be a rather substantial adjust-
ment for 91. However, iterated least squares yields final values for

(el, 02), the parameters after January 1970, of (-.58, .67) again indicating a

substantial change.

The right hand column of Table 2 shows the residuals after the iterated least
squares calculation. These strongly suggest that the trend has not been

fully allowed fcr by the parameter adjustment, leading us to perform an

analysis in which s‘?.l’ 5‘31 and ;‘41 are all included. The results are as

follows:

Source Sum of Squares D.F. Mean Square

Due to x, 17. 01 1 17.01

Extra due to possible

change in parameters 4.04 2 2.02
Residual 14. 91 21 7
(o 166 1. 00

We are finally led to the conclusion, therefore, that the data
may be fully accounted for on the simple and realistic hypothesis that the
emissions from the new car engines resulted in the cumulative production
of less ozone in the summer months, with no detectable <hange in the values

of the stochastic parameters el and 02.
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6. Relation with i{ntervention analysis

In our earlier work, (1965, 1973), methods were described for
estimating the effect of an "intervention" at a known point in a time series.

For example, in Los Angeles County in early 1960 events occurred
(which may jointly be called the intervention) which might have been ex-
pected to reduce the level of ozone in Downtown Los Angeles. One
expected effect was a change in level of the pollutant ozone. In our joint paper
with Hamming (1973), a time series model was built for data from 1955 to
1970 which adequately allowed for a possible step change at the start of 1960.
The size of the step and its standard error were estimated and it was possible
to show that a substantial reduction in the pollutant almost certainly did occur
at this time.

This situation differed from that discussed here in that the parameters
of the time series model were estimated from substantial quantities of data
available after, as well as before, the intervention.

However, these earlier methods could perfectly well be applied to
examples like the present one and the results will be essentially similar if
the period after the intervention is short. We believe the present procedure
is worth separate consideration because of its simplicity and intuitive appeal.
It is very natural to learn about a system by comparing a set of forecasts made

at some point of possible change with actuality.



Appendix

Effect of Parameter Estimation Errors

In this paper we make the approximation that the model parameters

may be treated as if they were exactly known, when in fact they must be
estimated from a preliminary time series. (In the example considered
preliminary time series consists of 180 data values at Azusa from January
1956 to December 1970. )

Some idea of the effect of the approximation in the special case of
an auto-regressive prozess may be obtained as follows. Suppose 31, ey gp

are estimated values based on n preliminary observations and d»l, <bz, Ceey ¢p

are the true values of an autoregressive process a, = ¢=(B)zt.

where ®(B) =(1- B~ ... - ¢pep).
Now if the St's are estimated shocks such that
A _ - A r _ Val p _ A
a, = (1 d:lB ¢pB )zt = <,b(B)zt
then
oP-l
A alfazB+...+opB
S ¥ 31
1-<,blB - ... -¢pB

A
where ai=¢i-¢i’ i=1...,p.

A

It follows that, conditional on Q’l’ Ceey ¢p,
VAYARA A

E@;1e),...,%)

ol

= |+ & where 6 iz the coefficient of

(@) + ... +apo-l) (@) +... +a'pB-(p-l))

-1
$,(B) &,(B )

B° in the expansion of



that is
6= g Lve
where
a'= (al’ ,“’p’ ’
Yo Y . Yp-1
Y, Yo Yy
b
Lly) = .
Yo VY
S T B

&, -
and o yj = cov(zt, zt_,).
21 A . 2
Thus, z(st|¢l,...,¢p) =(1+ ¢'T(y)g) o
Using the results in Box and Jenkins (1970, p. 241), we find that to
order n-l,

=14p/n.

Thus, there will be an inflation factor in the value of xz produced by

sampling errors in the ¢'s but this w:1l be small if n is large compared

with p.
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