
AD-A023 588

SECURE COMPUTER SYSTEM: UNIFIED EXPOSITIO4 AND
MULTICS INTERPRETATION

Mitre Corporation

I I I

Prepared for:

Electronic Systems Division

March 1976

DISTRIBUTED BY:

Nationl Technical mIoufut Swie
U. S. DEPARTMENT OF COMMERCE

12 100

I ESD-TR-.75-3()S MTR-2997 Rev. 1

SECURE COMPUTER STBTEM:
UNIFIED EXPOSITION AND MULTICS INTERPRETATION

MARCH 1976

-_Prop" for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEM3 COMM4AND

UNITED STATES AIR FORCE
Hanacom Air Force Base, Bedford, Mmieachuaetts

Project No. 522B
Prepared by

o THE MITRE CORPORATION
dstrgbutbo fi Io hs'Bedford, Massachusettsditibo Contract No. F19628-76-C-0001

11PROoNcED my
NATIONAL TECHNICAL

INFORMATION SERVICE
U. S. DEPARTMENT UF COMMERCE

SPINGFIELD, VA. 22111

_J1

UNCL&SUFED.
SECURITY CLASSI¢ICATIO OP THIS PAGE (Ma DOi* Iwu0

REPO DOCUMENTATION PAGE wrgCO 09, 0 m
if RE PORT MUNUMIr ' ,OVT A ¢IX" O" 0. IL AINI tPtIN¥-11 CATALOG N~Re "

ESD-TR-75-306
9. TITLE ('a'd SIA10e) 6. TYPE oFr REPRo T PERIOD COVERED

SECURE CCMPUTEJ1 SYSTEM: UNIFIED EXPOSI-
TION AND MUITICS IITERPRETATICN a. Pe6PORING ORt. %tpofwr wums

MTR-2997 Rev. 1
1. AU THOR(&) S. CONTRACT ORS 6RAMN wU-NUsF)

D.E. Bell
L. J. La Padula F19628-75-C-0001

PERFORMING ORGANIZATION NAME AND ADODRe S0S PaONMm " .UR14T. POJ ET, TAS

The MITRE Corporation A A&WORK UNI PCT, TAS

Box 208
Bedford, MA 01730 Project No. 522B

11, C0NTROLLIN OFFICE MNAMIE ANO AOORESS It. REPORT DATG
Deputy for Command and Management Systems MARCH 1976
Electronic Systems Division, AFSC II. Nu0RSE OF PAGES

Hanscom Air Force Ease, Bedford, MA 01731 ___1

14. ONI •RiNG AGENCY NAOf .& AOORESS(Qi different how CetIrnr Offile.) IS. SECURtI Y CLASS. (*I thei spoof)

UNCLASSIFIED
"ISOa. L DEC ICATICNOWNIGRADING

1S. OISTRIUUTION STATEMENT (of tlhi Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (o, eAo abustrt entered tn jEocAk ,I •ifeirent Iram Rwpot)

14. SUPPLEMEN'ARY NOT VS

This report supersedes ESD-TR-75-306 dated January 1976.

IS. KEY WORDS (Continuea. n reverse side It neaesawand idnetify byc tweeknuber)

ASTER ISK-PROPEIRTY SECURITY
MATHEMATICAL MODEL TRUSTED SUBJECT
SECURE COMPUTER SYSTEM

90. ABSTRACT (Centinue an rover@e aid# It necoeaw7and gd&,•b'y block nb mb,)

A unified narrative exposition of the ESD/MITRE computer security mrodel Is
presented. A suggestive interpretation of the model in the context of MultIcs and
a discussion of several other important topics (such as communications paths,
nabotage and Integrity) conclude the report. A full, formal pi-esentation of the
model "s included in the Appendix.

DO , I 1473 ao•rIo OF I, o V S5 IS OBSOLETE I UNCLASSIFIED
SEC-URIT CLASSIFICATION OF THIS PAGE (When Dato .ntered)

-I,, ./

By c0" other dole are used for any purposes other

the fact that the government mra have forrmsn
olkawfong, othe catOvnsn wotherb d ots i s not oI

reda••ed fy rnisor ntoany oy othueond the s any

or corporation,. or conveying any r•ihts or pr

mnsion to manufacture, use, or ell any patonted

onvention that may in any ejy be related thereto,

SOo not return this copy. Retain or destroy.

I

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

R R- SCHELL, Major, USAF WILLIAM R. MtRICE .iLt, USA!'
T nques Engineering Division Techniques Engineering Division

FOR THE COMMANDER

qS4 4 LEK ._EREqKA, Colotiel, USAF
Chief, Techniques Engineering Division
Information Systems Technology
Applicationr Office
Deputy for Comsand and Management P tens

ILi

ACKNOW LE DGEM ENT

Project 522B was performed by The MITRE Corporation under
sponsorship of the Electronic Systems Division, Air Force Systems
Command, Hanscom Air force Base, Bedford, Massachusetts.

i*
rI

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I INTRODUCTION 5

SECTION II DESCRIPTION OF THE MODEL 9

DESCRIPTIVE CAPABILITY 9
GENERAL MECHANISMS 19
SPECIFIC SOLUTIONS 23

SECTION III MORPHISM FROM MULTICS TO MODEL 30

INTRODUCTION 30
ELEMENTS OF A SECURE ,JLTICS 34

State Elements .34
Subjec s and Objects 38
Attribute Elements 39

SECURITY PROPERTIES IN A SECURE MULTICS 40
RULES OF OPERATION FOR A SECIuRE MULTICS 47get-read 49

,Qt-wri te 51
e at-execute 52get- read-'wr te 53

release-read/execute/write E,1
qT v-eread/execute/wr 'te 55
resc nd- read /execu-tewrite 57
create-obiect 513
-elete--obect-group 59

c ange-subJ ect-current-securit y-level 61
ch nge-obi ect-secur ty-1evel 6;!

SECTION IV FURTHER CONSIDERATIONS 64

IITRODUCTION 64,
TRUSTED SUBJECTS 64
EXTRA-MODEL SECURITY PROPERTIES 67

Communication Paths 67
Sabotage and Integrity 70

APPENDIX 75

REFERENCES 127

3

P, k,9 pa WA

LIST OF ILLUSTRATIONS

Figure NuWer

1 Subjects Accessing Objects io
2 The De•ired Obj ict Structure 12
3 An Access Mlatrix 13
4 Information Flow Showing the Need for *-Property 17
5 Deadlock 21
6 The Correspondence of M Columns to ACLs 26
7 The "Creation" of a Segment in Multics 27
8 The Need for Compatibility 2e
9 Multics Hierarchy Equivalent 37
10 The Interpretation of Links 38
"11 The ss-Prjperty in Multics 41
12a The *-Property for Mlultics read 44
12b The *-Property for Multics write (only) 44
12c The *-Prope ty for 4ultics read-write 45
12d The *-Property for Multics execute 45
13 The ds-Property in Multics 46
14 Commnicatlon Using Real-Time Intervals 67
15 An Example of a One-Pit Message 68
16 The Transmission of the Bit-String 10110 69
17 Another One-Bilt Message 69
18 The Subtree Affected by Sabotage of Sensitive-

Directory 73
Al Ilustration of io 82

LIST OF TABLES

Table Number

1 Elements of the M4odel 76

4

SECTION I

INTRODUCTION

For the past several years ESD has been involved in various

projects relating to secure computer systems desiqn and operation.

One of the continuing efforts, started in 1972 at MITRE, has been

secure computer system modeling. The effort initially produced a

mathematical frauework and a model [1, 2] and subsequently developed

refinements and extensions to the model (3] which reflected a

cnmputer system architecture similar to that of M4ultics [4]. Recently

a large effort has been proceeding to produce - design for a secure

Multics based on the mathematical mode' given in [1, 2, 3].

Any attempt to use the model, whose documentation existed in

three separate reports until this document was produced, would have

been hampered by the lack of a single, consistent reference. Another

problem for designers is the difficulty of relating the abstract

entities of the model to the real entities of the f1ultic- system.

These two problewn are solved by this document.

All signifiant material to date on the mathematical model has

ben collected in one place in thr Appendi% of this report. A

number of minor changes have been incorporated, most of then

notational or stylistic, in order to provide a uniform, consistent,

and easy-to-read reference. A sub%tantive difference between the

model of the Appendix and that of the references [2, 3) is the set

of rules: the specific rules presented in Appendix have been adapted

to the evolving Multics security kernel design.

5

Because the model is by nature abstract and. therefore, not

understandable joi one easy reading. Section II gives a prose

description of the model.

In order to relate ti.e mathematical model to the Multics

design, Section III exhibits correspondences from Multics and

security kernel entities to model entities.

Section IV discusses further corsiderations--toics which lie

outside the scope of the current model but which are important issues

for security kernel desigr.

As background for the remainder of this document, we briefly

establish a general framework of related efforts in the rest of this

section.

Work on secure computer systems, in one aspect or another, has

been reported fairly continuously since the mid 1960s. Three periods

are di' cernible: early history, transitional history, and current

events.

The work by Weissmann [5] on the ADEPT-50 system stands out in

the early history period. Not only was a fairly formal structuring

of solution to a security problem provided, but ADEPT-50 was actually

built and operated. In this Parly pe'iod the work of Lampson [6]

is mcst representdtive c>' attempts to attack security problems

rigorously through ai formal medium of expression. In Lampson's

work, the problem of access control is formulated very abstractly

for the first tint', using the concepts of "subjects," "object," and
"access matrix." The early period, which ended in 1972, understandably

did not provide a co-plete and demonstrable mathematical formulation

of a solution.

6

L i - ---

The transitional period (1972 - 1974) is characterized by

markedly increased interest in computer security issues as

evidenced I, the Anderson panel [7]. One of the principal results

of this na,,ie was the characterization of a soluLK.. + the problem

of secure computlnq (using the conceot of a "reference monitor")

together with the reasoned dictum that comprehensive and rigorous

modeling is intrirIc to a solution to the problem. This period also

saw the deveiopment of the first demonstrated mathematical models

[P, 2, 13) as well as ancillary mathematical results which characterized

the nature of the correctness proof demotstration [2, F]. A second

modeling effort, also spon!oreu by the Ejectrontc Systems Division

of +he United States Air Force and performed at Case-WeAern

Reserve University, was also undertaken in this period (9]. In

this model, the flow of information between repositories %As

investigated, initially in a static environment (that is, one in

which neither creation nor dcletlon of aoents or rpnnsitnries ic

allowed) and subsequently in a dynAmic environment. "'any other

papers appeared durinq this period. An implementation of a system

based in i. mithematical model was carried out at MITPRE by

W. L. Schiller [10]. An extension and refinement of the f;rst

,odel was developed [3] to tailor the model to the exigencies of

a proposed Multics implementation of the model; i0cluded in this

extension was a concept promulgated at Lash.-Western Reserve

concerning compatibility between the I 4ultics directory structure

and the classification3 of the individual files. A great number of

other computer security issues were investigated and characterized

[11, 12, 13, 14, 15] during this time.

Current work succeeding the work reported above is a project

sponsored by ESD and ARPA. In this project, the Air rorce, the

MITRE Corporation, and Honeywell are working cr,,,peratively

7

-avow

to develop a design for a security kernel for the Honeywell Multics

(HIs level 68) computer system. Other significant effort.i include work

At UCLA (16], and the Stanford Research Institute [17).

This report summarizes, both narratively and fomally, the

particular version of the mathematical model that is relevant to

the developrient of a .Multics security kernel. The report not

only presents the model in convenient and readable form, but a'so

explicitly relates the model to the emeroinq Multics kernel desiqn

to help bridge the gap between the mathematical nvtions of the model

and their counterparts in the M'ultics security kernel.

8

SECTION II

DESCRIPTION OF THE M¶ODEL

The model can be viewed as having three major facets--a

descriptive capability (the elements), general mechanisms (the

limiting theorems), and specific solutions (the rules). In this

section, we shall discuss these three facets narratively, make

explicit the inclusions and exclusions of meaning (that is,

interpretations) that can be correctly associated with the model

itself rather tnan with its interpretation in any given context.

A summary of the model is included in the Appendix; however

reference to the Appendix should not ne necessary for complete

understandinq of this section.

DESCRIPTIVE CAPABILITY

The modes has the ability to represent abstractly the elements

of computer systems and of security that are relevant to a treatment

of classified information stored in a computer system. IThe essentiil

problem is to control access of active ent ties to a set of passive

(that is, protected) entities, based on some security policy. Active

entities are called subjects (denoted S. individually and S
1

collectively); passive entities are called objects (denoted 0. and

0). No restriction is made regarding entities that may be both

subjects and objects: a given interpretation of the model could have

no subject/objects, some subject/objects, or all subjects could be

objects. It is mewely required that, when an entity's active

(respectively, passive) role is being considered, that entity be

constrained by the mrlel's treatment of subjects (respectively,

objects).

t Nott that the model is in no way restticted to a computer system

(although that is the topic here). It has also been applied to
physical and procedural security controls.

9

r01)

I

0

Figure 1. Subjects Accessing Objects

As in computer systems, access in the model can assume

different modes. The modes of access in the miodel are called

access attributes (denoted x and A). The access attributes are.
abstracted from actual access modes in computer systeis.

The two effects that an access can have on an object are the

extraction of information ("observing" the object) and the
insertion of information ("altering" the object). There are thus
four general types of access imaginable:

"• no observation and no alteration;
"* observation, but no alteration;
"* alteration, but no observation; and
"• both observation and alteration.

An access at'-ibute for each of these possibilities is included in

the model:

10

* ~ ~ ~ ~ ~ ~ 7 e aces(etezosrainn1'itrto)

. r access (nihrobservation wt no'l alteration);

* access (alteration with no observation); and

*w access (both observation and alteration).

The symbols e, r, a, and w are derived from the generalized

access modes execute, read, apnd and write, and in fact, the

underlined words are used interchangeably with the shorter letter

symbols, The meaning of any access attribute, however, is not at
call constrained by an actual access mode with the same name. tRather

each actual access mode must be analyzed and paired with the access

attribute which matches its own access characteristics. The only

intrinsic semantics that pertain to every interpretation of the

model access attributes are those listed in the preceding paragraph.

It is now possible to begin a description of a system state in

the model. The state will be PXorpepd as a set of four values, each

referred to as a component.

The first component of a system state is the current access set,

denoted b. A current access by a subject to an object is represented

by a triple:

(subject, object, access-attribute).

This triple means that "subject" has current "~access-attribute"
access to "object" in the state. The current access set b is a
set of such triples representing all current accesses.

The next element of a system state within the model concerns a

structure imposed on the i'ojects. What we stipulate is that a

tNote that this abstract notion o'O "execute" access is not what is
typically implemented (enforced) by computer hardware since the
results of the execution reflect the contents and thus constitute
"observation" of the executed element.

11

~'1

:)arent-child relation be maintained which allows only directed,

rooted trees and isolated points as shown:

ROOT-i ROOT-2

Figure 2. The Desired Object Structure

This particular structure is desired in order to take advantage of

the implicit control conventions of and the wealth of experience

with logical data objects structured in this way. The construct used

is called a hierarchy (denoted H and H); a hierarchy specifies the

proqeny of each object so that structures of the type mentioned are

the only possibilities.

The next state component which we consider involves access

permission. Access permission is included in the model in an access

matrixt fl.

tNotice that 1i is a matrix only in the model's conceptual

sphere: any interpretation of M which records all the necessary

information is acceptable.

12

"\bjects.

sublects

"r.The component

It ,I.

Figure 3. An Access Matrix

The component Mij records the modes in which subject . is

permitted to access object 0.. Thus the entries of M are subsets3

of the set A of access attributes.

It ,
The last component of a system state is a level function, the

embodiment of security classificatiors in the model. In a

military or governmental environment, people and documents can

receive two types of formal security designations: one is

classification or clearance (unclassified, confidential, secret,

and top secret are usual) and the other is formal category (such as

Nuclear, NATO, and Cryptr). A total security designation is a pair:

(classification, set of categories).

Such a pair we call a "security level." A necessary condition for

an individual's possession of a document is that his s~curity level

must dominate the security level of the document. One level

dominateis another:

13

(class 1, category-set 1) dominates (-lass 2, category-set 2)

if and only Jf

class I is treater than or equal to class 2 and

category-set 1 includes catego-y-set 2 as a subset.

This rather complicated requirement is abbreviated in this discussion

by using abstract security levels (denott'd 1.u and L) and a dominance

ordering * (read "dominates") which is required to be a partial

ordering.t

The c assification of subjects and objects assigns to each subject

and to each object a security level. The (maximum) security level of
a subject Si is denoted "fs(Si" in the formal development in the
Appendix. but for the purposes of this section will be denoted

"level(Si)." Similarly, the security level of an object 0 is

denoted formally and informally as f0 (Oj) and level(Oj). One
further assignment to subjects identifies the current security

level of the subject. The current level allows a subject to operate

at less than its maximum security level, a feature that is very

important under some of the security constraints to be devEloped

later. The currert security lcvel of a subject Si ic denoted

fc(Si) and current-level(Si); it is required that level(Si) dominate

current-level(Si).I

tThat the relation o must be a partial ordering requires only that

1) Lu dominates Lu for every level Lu; 2) Lu dominates L. And

L. dominates Lw, then Lu dominates Lw; and 3) if Lu and Lw

dominate each other, then they are the same.

ttln particular, the current security level makes feasible the

requirement that high-level information not be put into low-level objects.

14

A triple of security level assignrent functions (fs9 fC, f.) or

(level(.), level(.), cur-ent-level(.)) is called a level function
end is denoted f(or, collectively, F).

A state of the model is a 4-tuple of the form:

(current access set, access permission matrix, level

function, hierarchy).

The model notation for a state is (b, M, f, H).

We refer to inputs to the system as requests (Rk and R) and
outputs as decisions (Dm and D). The system is all sequences of

(request, decision, state) triples with some initial state (zO)

which satisfy a relatlo;. Wi on successive states.

The system defined in this way can be used in two ways--analysis
and synthesis. The use of the model for analysis involves:

1. the specification of R and D for the system

being analyzed, and

2. the determination of W.

The operation of the system of concern can then be addressed by

examining the relation W which characterizes the system as a
model. The use made of the model in the security kernel design

work is synthesis: the job involves first the specification of

system characteristics that we desire to be maintained, and then
the definition of a relation W that is sufficient to the task.
The definition of an appropriate relatior, W is the topic of

SPECIFIC SOLUTIONS; we conclude this discussion with an exposition

15

of the system characteristics that we desire to be maintained.

These characteristics we speak of -ollectively as "security."

The first aspect of security which we consider is the simple

security property (ss-property hereafter). The ss-property is

satisfied if every "observe" access triple (subject, object, attri-

bute) in the current access set b has the property that level (subject)

dominates level (object). 'lore concisely, the ss-property stipulates

that if (subject, objec , observe-attribute) is a current access,

then level (subject) dominates level (object).

The ss-property is the strict interpretation of the current

security regulations for documents, with one modification. In a

document system, "access" refers to physical possession which

implies the ability to extract information. Where there is the

possibility of access without observation, as in this model, access

does not necessarily imply the ability to extract information.

Hence, the security regulati'ns for documents were applied in the

model only tn attributes that entail observation (viz. w and r).

The ss-property was considered to be the whole of security in

our early efforts at modeling [1]. A brief look at the expected
interpretation of the model will show that this property is indeed
only a "simple" statement of the problem.

The expected interpretation of the model anticipates

protection of information containers rather than of the information

itself. Hence a malicious program (an interpretation of a subject)

might pass classfied information along by putting it into an

inforniation container labeled at a lower level than the information

itself.

16

i• high level object-1

flow
of
information

low level object-2

Figure 4: Information Flow Showing the Need for *-Property

Thus, another security property, called the *-property+ (for historical

reasons), is added to the ss-property in the specification of

"security." The *-property is satisfied if:

in any state, if a subject has

simultaneous "observe" access to object-1 and "alter"

access to object-2, then levl (object-l) is dominated

by level (object-2).

This definition clearly disallows the Oituation pictured (Figure 4).

Under this restriction, however, the levels of all objects accessed

by a given subject are neatiy ordered:

level (a-accessed-object) domindtes level (w-accessed-object);

level (w-accessed-object-1) equals level (w-accessed-object-2); and

level (w-accessed-object) dominates level (r_-accessed-object).

tread "star-property." 17

17J

Thus the definition of *-property is now refined in terms of

current-level (subject):

ii any state, a current access (sub.ljct, object, attribute)

implies.

level (object) dominates current-level (subject) if

attribute is a;

level (object) equals current-level (subject) if

attribute is w; and

level (object) is dominated by current-level (object)

if attribute is r.

There are two important conmments to be made about the *-property.

First, it does not apply to trusted subjects: a trusted subject is

one guaranteed not to consummate a security-breacninq intormation

transfer even if it is possible. Second, it is important to

remember that both ss-property and *.-property are to be enforced.

Neither property by itself ensures the "security" we desire.

There is one further aspect of security that we address: the

problem is called discretionary security and it is also based on

current military/governmental policy (known as "need-to-know"). The

enforcement of classification/clearance matching is mandated by executive

order, directive and regulation: an individual may not exercise his

own judgment to violate this standarn. Similarly, the enforcement of

categories (also called formal need-to-know compartments) is mandatory.

These two restrictions make up nondiscretionary security policy and are

SThe topic of trusted subjects is treated at more length in

Section IV.

18

eibodied in the model as the ss-property and *-property. Di~cretionary

security policy allows an individual to extend to another individual

access to a document based on his own discretion, constrained by non-

discretionary security policy: that is, discretionary security policy

allows ati individual to extend access to a document to anyone that is

allowed by non-discretionary security to view the document.

This exact property is included in the model in the discretionary
security property (ds-property). A state satisfies the ds-property

provided every current access is permitted by the current access

permission matrix M. More specifi-4ly, the ds-property, requires

that:

if (subject-i, ob.lect-j, attribute-x) is a current access

(is in b), then attribute-x is re:orded in the

(subject-i, object-J) - component of M (I_ is in Mi).

The term "discretionarv" security is appropriate in the context of

the specific solutions of this rodel since tke capdoility to alter

P1 (the permissio:i rtructure) i-, i:'cluded in tha model.

Nnte that re.itr;ctio. s of the concept of security will not

require reproof ofi tOe properties al,.eady established because

additional restrictions can .r.l. reduce the set of reachabie states.

The notion of "security" v'•: purposefuilly made extensible in this

way to allow for later refinements of the concept of security. t

GENERAL MECHANISMS

This dis'ussion of the general mechanisms of the model is

tripartite. First, the "inductive nature" of security within the

tSome discussion of other security-related topics which might be

included in later definitions of security is given in Section IV.

19

model is established. Then a general construct--the rule--for the

modular specification of system capabilities is defined. Finally.

the relation of rule' properties to system properties is established.

The first general result in the model is the basic security

theorem (Corollary Al in the Appendix). This theorem states that

security (as defined) can be guaranteed systemically when each

alteration to the current state does not itself cause a breach of

security. Thuis security can be guaranteed systemically if, whenever

(subject, object, attribute) -is added to the current access set b,

then:

I. level(subject) dominates level(object) if

attribute involves observation (to assure the

ss-property);

2. current-level(subject) and level(object) have

an appropriate dominance relation (to assure the
*-.property); and

3. attribute is contained in the (subject, object)

component of the access permission matrix 11

(to assure the ds-property).

We say that the basic security theorem establishes the "inductive

nature'" of security in that it shows that the preservation of

security from one state to the next guarantees total system

security.

The importance of this result should not be underestimated.

Other problems of seemingly comparable difficulty are not of an

inductive niture. The problems of data- and resource-sharing, for

example, are not inductive. In fact, the most trivial example of

deadlock (Figure 5) can arise in any nontrivial sharing system that

20

subject -

Figure 5. Deadlock

decides immediately to grant or deny a request for access.

Resolution of this problem requires knowledge of future possibilities,
queues of requests, and prrcess priorities , .. T r-rui.,

therefore, that security (as defined in the moeel) is inductive
establishes the relat 4 ve simplicity of maintaining security: the

minimum check that the proposed new state is "secure" is both

necessary and sufficient for full maintenance of security.

The second step if constructing general mechanisms within the

model is a direct consequence of the basic security theorem. Since

the systemic problems of security can be dealt with one state

transition at a time, a general framework for isolating single

transitions was devised. This framework relies on the "rule," a

function for specifying a decision (an output) and a next-state for

every state and every request (an input):

(request, current-state) rule 0(decision, next-state).

21

The idoa is to analyze each class of requests seotrately In a rule

designed to handle that irticular class. To provide clarity, no

two rules (in a given system) are allowed t, specify non-trivial

changes for a given (request, current-state) pair; total system
"response" to the pair (request, current-state) is then defined ds

the response of the rule written to handle the request. This frame-

work allows different approaches to a given class of requests to be

worked out independently in different rules. A final set of rules

to specify a desired system could be chosen to reflect idiosyncratic

needs; the only restriction is that rules with overlapping

responsibility cannot he used together. This approach gives the

model a modular flexibility which cri be of great use in tailoring

the model to a particular application, as illustrated by Section III.

The last develoomenc which is classed a general development

centers on the relation nf njle nrnne4rtes to system propertICs. t

has been shown that the entire system specified by a set of rules

satisfies all three security properties--the ss-property, the
*-property, and the ds-property- -prov ded each rLle itself

introduces no exception to these properties. Moreover, the

requisite demonstration that a rule preserves security can in most

cases be reduced to the direct consideration of the small number

of state alterations involved in the given state transition (Corollary

A3 in the Appendix).

In summary, the general mechanisms of the model:

"* bound the scope of investigat*on to single transitions of state;

"* provide the ability to investigate desired features of the

system independently of one another using the rule framework;

and

22

reduce the systemic problem to very restricted rule-based

problems of the preservation of security properties over

one transition.

SPECIFIC SOLUTIONS

The rules presented in this document represent one specific

solution to the requirement for a "secure" computer system. This

particular solution is in no sense unique, but ..as been specifically

tailored for use with a "ultics-based information system design. For

this use, the solution has to satisfy two requirements: the

provision of generally useful functions and appropriate accommodations

to the effects of the Multics design on an implemcntatlon of this

model.

A number of n-enera functions can be suggested for any computer-

based information system. With reference to the model described

earlier, the functions can be grouped in four classes:

"* functions to alter current access (the set b);

"* functions to alter the level functions (the values

level(subject), level(object), and current-level (subject));

"• functions to alter the current access permission structure

(the matrix M); and
"* functions to alter the object structure (the hierarchy H).

This list covers changes to each of the elements of a system state

in the model. Our particular solution includes the capability to

cause the following changes to the system state:

23

altering current access:

to get access (add a triple (subject, object,

attribute) to the current access set b), and

to release access (to remove an access triple from

the current access set b);

altering level functions:
* to change object level (to change the value of

"level(object) for some object), and

* to change current level (to change the value of
current-level (subject));

altering access permission:
. to give access permission (to Add an at'ribute to

some component of the access permission matrix M),

and
o tj rescind access permission (to delete an attribute

from some componert of the access permission matrix
M) ; and

altering the hierarchy:

. to create an object (to attach an object to the

current tree structure as a leaf), and
. to delete a group of objects (to detach from the

hierarchy an object and all other objects "beneath"

it in the hierarchy).

Section III presents a more Jetailed discussion of the particular

rules presented in this document.

These rules reflect several characteristics of the Multics

operating system. The main Multics characteristic that affects the

model is the hierarchical object structure which has been mentioned

previously. The principal reason for the inclusion of the

24

hierarchy in the model is the desire to disturb the Multics operating

system as little as possible while adding the capability to process

simultaneously information of varying security levels. The basic

Multics mechanisms for access control rely heavily on the object

structure: to retain that basic structure it is necessary to 4
investigate our restrictions on access control in the Multics settinq

of an object hierarchy--that is, in the setting of Multics control

structures.

The second Multics characteristic involves the physical

counterpart of the access permission matrix M. This structure (called

the Access Control List (ACL) in Multics), its location,, and its

manipulation have direct effects on the capability to get access, to

give access, and to rescind access in !4ultics. The Access

Control List in Multics is a list of "(process, ring bracket)" pairs I

(for our purposes here, the Multics analogue of subjects) allowed to

access a segment (that is, an object) and the modes of access allowed.

There is one Access Control List for every segment/object. Thus the

information cont'ain'ed'i 'the"Access Control List for object-j includes

the information contained in the j-th column of the access permission

matrix M in the model. The most important fact about the Multics

ACLs is that they are contained in a segment's parent directory (parent

object in the model) and are manipulated by manipulation of the object's

parent. Hence, "control" over an object (to extend access, to rescind

access, or to destroy the object althogether) is equivalent in Multics

to write permission to the object's parent. Moreover, since "creation"

of a segment in Multics is the insertion of a new entry (called a

"branch") in a directory segment, the "control" over creation is

equivalent to write or append access (that is, read/write or pure-write

access) to the directory segment that will be the parent of the created

segment (directory Z in Figure 7).

tThe entry into the ACL by process is actually indirect: a process
maps to a "user-id" (essentially a set of processes associated with
a particular user) which in turn maps to an ACL entry. To simplify
the exposition here, this indirect entry is represented directly.

25

Matrix 11

S ~ r e w a

S2

S3 r e

3i

is represented by

* ~ACL for 0.

process attributes ring brackets

I

S 3 r e

Figure 6. The Correspondence of Columns to ACLs

26

S~z

S • w. t-,.e segmente

S~ibeing

L 10 Icreated

Figure 7. The "Creation" of a jnt in Multics

These ?lultics characteristics are taken into account in the
model's rule where, for example, a request to give access to an object
is allowed only if (among other things) the requesting subject has
current w access to the parent of the object (implying that the usual
Multics operation of extending access can be carried out).

27

Runclassified *

0 1s

02 ~unclassifiedJ

Figure 8. The Need for Compatibility

28

The way access to an object is carried out in Multics is the

final cdaracteristic reflected in the model. A user request to

access a segment causes the user's surrogate (his process) to access

every object in the hierarchy in the path from the root directory

(the object O0 in the model) to the segment of iterest. This

fact implies that in the situation shown in Fiqure 8, an unclassified

subject would have to observe the secret object 01 in order to

access the unclassified object 02: an unclassified subject cannot

observe the ,iecret object ')1 because of the ss-property. Moreover,

the *-property combined with the requirement to "write" in 0., in

order to "create" object 02 make any situation similar to that in

Figure 8 useless. Hence', it is required in the rules of the nodel

that the security level of an object dominate the security level of

it!; parent.t The rules to allow creation of objects and to cause

changes in an object's security level reflect this requirement, which

is termed "compatibility."tt'

The rules of this document provide a particular specification

for a secure computer system that supplies a full complement of

information processing capabilities while matching the special

raquirements of the Ilultics operating system environment.

+Remember that if the two levels are the same, this requirement is met.

The concept termed "compatibility" here was initially proposed and

investigated at Case Western Reserve University [9].

29

.

SECTTON III

MORPHISM FROM •tJLTICS TO MODEL

INTRODUCT ON

The discussion of the correspondence of the t4ultics security

kernel design to the mathematical modelt will be phrased in terms

of a "morphism;" this stance is taken because of the verification
strategy that has been proposed for the Multics kernel design (19].

A morphism is a mapping from one syst=m to another which

preserves one or more operations of the system. This concept can

be stated mathematically in concise form. Exposition of the

concept is better achieved by example. Suppose [I, +, -] is the

following algebraic systen:

I is the set of integers from 0 to 9.

+ is the ordinary arithmetic sum operator except addition is

to be done modulo 10; that is, ordinary sum equal to

10 becomes 0, 1H1 becomes 1, 12 becomes 2, and so

forth.

* is the ordinary arithmetic product operator except

multiplication is to be done moduo 10.

Suppose [A, @, (D] is the following algebraic system:

A is the set of letters a, b, c, d, e.

(D is a binary operator defined as follows:

tThe term "model" refers specifically to the model presented in the

Appendix.

30

a G±ý any letter in A that letter c 0C = e

bGa b c d =a

b(b c cGe b

b C c "d d 0 d = b

b &d e dGe c

bGe a e e =d

which can be shown in table form:

Sa b Ic Id el
a a b c d e

bbcdea

c c d e a b

d d e a b c

e e a bcd

a binary operator defined by:

', a b c d e

d a a a a a
; -a b c dl le

c ace b d
d a d -b e c

(a e d c b

Now define the mapping M from the system [I, +, .] to the system

[A, 0,0 as follows:

31

0 -- a
1 .-- b

2 -- c
3 -- d
4 -- e
5 - a
6 -- b
7 c
7 -4-. d

9 --- e

M is then a morphism from [1, .] to [A,C)',&j] since it "preserves"
the operations of + and .. This means that the value of the
expressions i + J and i * j in the system [I, +, ,] have corresponding
values in [A, (±,C:J under the mapping M which is the same as the value
obtained by (+- ing and cOlng the elements in [A, "),] which
correspond under M to i and j in [I, +, .]. Symbolically we
can express this as follows:

M (i + j) - M ti)G-M (J) and M (i .j) = Mi (i) a.M (j).

By inspecting the previous definitions we can verify, for example,
that:

M(O + 3) = M(4) - e and
M(l) (+ M(3) = b(4 b = e so
M(l + 3) = M(l)(C M(3),

Similarly,

32

M(7 • 3) - M(7) G) M(3) since

'I(7 . 3) - M(l) - b and

11(7) 0 M(3) - c G d - b.

The "preservation" property of M can be shown diagrammatically:

I " I - +

JMxM x M

A x A -

I I--....---- I

AlA 0 PA

These diagrams are said to be "commutative." In each, one can get

from I x I to A by two paths; each path leads to the same

place, that is, given two elements in I (an ordered pair in I I)

the same element in A is arrived at by both paths.

The math model of a secure system is like the system [A, 6),]1.

Corresponding to the set A is a set of elements of the model. The

analogy is most enlightening if we consider elements in A to

correspond to states in the model. Corresponding to the operators

f and CG) is a set ot eleven rules. The Multics system we shall

discuss is like the system [I, +, -]. Corresponding to the set I

is a set of elements of the system; again, consider the latter to be

33

I

states of the system. Corresponding to the ,perators + and - is a

set of algorithms. Now, just as we established a morphism from

[I, +, .J to [A, S. 0], we wish to establish a morphism from
Multics to the model. In other words, given a set of algorithms

for "secure" operation, which correspond to rules of the model, we

wish to establish a mapping from the elements of Multics to the

elements of the model in such a way that the algorithms (operations)

are preserved. For each algorithm we wish to be able to specify a

commutative diagram; for example:

algorithm 3

v rii1• 3 '

In this document the mapping M is partially specified. The algorithms

then are to be so specified as to be able to show that M preserves

operations; this specification is outside the scope of this report.

In the remainder of this section we identify the flements of

Multics and then show a preliminary correspondence of the identified

elements to the elements of the model. It remains for future effort

to show that the correspondence is a morphism.

ELEMENTS OF A SECURE MI'LTICS

State Elements

Corresponding to a state (b, M, f, H) in the model is a set

of information structures in Multics. The following correspondences

have been identified:

34

6

segment descriptor words - -b

access control lists > M

information in directory segments

and special proces;s security >f

level tables

branches "H.

An element (Si. Oj, x) in b ind~icates that subject Si has current

access to object 0 in access mode x. In Multics the same

information is contained in a descriptor segment base register (DSBR),

a temporary pointer register (TPR), and a segment descriptor word (SDW).

An address field in the DSBR is a pointer to the head of the descriptor

segment for the process (subject) that is currently runninq on the

processor to which the DSBR belongs. The TPn qives an offset, in the

descriptor segment, to the SOW associated with the segment (object)

to which the process has access. In the SDW is a field which indicates

access permission (namely, read, execute, or write). When a process

is ready or waiting (not running) the information in the DSBR and TPR

is saved in the active segment table.

In case the object referred to in a triple of the forn (SiOjx)

is something other than a segment, say a socket , correspondences

like those shown abuve must pertain.

An entry aij- {r, w) in M indicates that subject S1 has

read and write permission with respect to object 0i. Suppose o1

is a data segment. In Multics this information is kept in an

access control list. An access cowitrol list has the following form:

±The Multics described in this report is derived from Organick's The
Multcs System (4). Multics, as an evolving system, currently may not
7it this description, but at this writing, the variations were of little
importance to the discussion.

The term "socket" denotes a connection from a process to a physical
device for input or output operations.

35

user idtrmitificitionj

Ibracket

user identification

rvade o(access

rin. bracket

'K.. and so fortht

The access controlHist (CL) togethe~r with1 other indomnation (e.g.,
physical location) makes up a branch. A colleitlon of branches is
a directory segment. Corresponding to m then we htye:

-.brancbahet I',---

S

L, t

_j 0 Jringj bracket

\,and so forth.Currently, ring brackets are associated with segments rather than
ACL's; this presentation follows OrganCK.

36

The security level function f of the model has the three

components:

fs: maximum security level of subjects;

fc: current operating security level of subjects;
fo: security level of objects.

For example, fo(O*) - confidential means that 0 is classified

confidential. This information would be kept in a directory

segment in flultics, perhaps as an extension of a branch. Specific

inform-ation structures for representing fs and fc have not yet

been chosen at this writing; we postulate appropriate tables

at a high level of austraztion for establishinq correspondence to

the model.

The hierarchy H of the model is structured to reflect the

tree structure among segments realized by branches in Multics;
correspondence is quite straightforward. If 0i and 0. are

objects in the model and H(Oi) includes O, then 0i is the

parent of Oj; the Multics structural eq,iivalent of this situation

is shown in Figure 9.

directory segment

branch

branch

0 data segmert 0. directory
k ssegment

Figure 9. Multics ,ierarchy Equivalent

37

-7-77.

With respect to the model, the Multics link is considered a

shorthand for a symbolic pathname: therefore, it introduces no

additional structure.

ROOT

A B

i. nk

C E D

aLLr
Figure 10. The Interpretation of Links

From directovy A in Fiqure 10, the symbolic name "D" is
shorthand for ">B>D."

Subjects and Objects

A process-ring pair (process, ring) in Multics corresponds to a

subject in the model. Corresponding to objects in the model are, at

least, directory segments, data segments, certain I/O devices, certain

address spaces, and sockets.

38

Attribute Elements

The set A ={r, e, w, a} is used in the model for access mode

designation with the following meanings:

r-_-read; observe only
e--execute; neither observwtion nor alteration

w--write; observe and alter

a--append; alter only.

For data segments in Multics the usage attributes correspond as

follows:
Multics Model

read ;o r

execute . r,
read and write -- w

write - > a.

For directory segments the correspondences are:
Multics Model

status or

status and modify -- w.

append > a

search ;P e.

For other objects in Multics the access attributes have not yet

been specified sufficiently to permit exact correspondences to be

established at the time of this writing.

Corresponding to the set C = {CI, C2 , . .. , C q} of

classifications in the model is a set of classifications in Multics:

39

top r-ecret , C

secret . C2

confidential------> C3

unclassified - C4.

Corresponding to thc categories K = {Ki, K2, . ., Kd.} of the

model is a set of formal categories in Multics. The four

classifications above have been adopted for general use [5); the

formal categories used in any particular installation will vary.

For example, an installation might establish the correspondence:

NATO Kl

CRYPTO K2

NOFORN - K3.

For the present implementation, a maximum of 7 categories has been

adopted as the standard.

SECURITY PROPERTIES IN A SECURE MULTICS

With the Multicsimodel element correspondences as a foundation,

the examination of a secure Multics can proceeL' with an examination
of the properties of Multics which will be deemed "security"

properties. Among these properties are the Multics analogues of the
security properties in the model; the identification of other

security properties in Multics is also included here.

The first model property reflected in a secure Multics is the

sssp operty, or simple-security property. This property embodies the

military/governmental policy on disclosure, tailored tc a computer

environment. In the model, the ss-property requires that every current

access involving observation (an element (subject, object, observe-

attribute) in the current access set b) must imply that the level of

the subject dominates the level of the object observed

40

I .-

4.,

4-)

0) 1+- - c

C CL

r9-
t4'-

a) r-

1...

411

o CA
S..~4 0 0.-

[4J S.-0
toCLL

V))
I--

U) m

&A 4-) U)
a) I 4A

06 40

(UU
I-
S.- U

0L

0.6-

41

(level(subject) o level(obJect)). In Multics, an SDW in an active

segment's descriptor segment with the r indicatvr on indicates a

current observe for that process. (Recall that in Multics "read"

is the only observe access to data segments; "status" plays the

identical role for directory segments.) Thus, for an active process,

compliance with the ss-property means that the r (or s) indicator
is on only in those SU's where the level of the process dominates

the level of the segment described by the SDW (see Figure 11). For
an inactive process, compliance with the ss-property means that on

activation the currently stored process information would conform to
the requirements for an a.tive process.

In the model, the *-property places restrictions on current

access triples (subject, object, attribute) based o:, the value of

current-level(subject). Specifically,

. if attribute 4s read, current-level(subject) dominates level(object);I if attribute is apjend, current-level(subject) is dom!nated by

level(object);
. if attribute is write, current-level(subject) equals

level(object); and
• if attribute is execute, current-level(subject) and

level(object) have no required relation.

In Multics, the f-property can be phrased for active processes, the

requirement for inactive processes being, as for the ss-property,
that on activation the restrictions on active processes be satisfied.

For any SDW ot an active process's descriptor segment, the current-

level of the)rocess:

• must dominate the level of a segment having the r indicator

on and the w indicator off (respectively, the s indicator

42

U

on and the m indicator off) as shown for segment-1 in

Figure 12.a;

• must be dominated by the level of a segment having the r

indicator off and the w indicator on (respectively, the

s indicator off and the a indicator on) as shown for

segment-2 in Fig,,re 12.b;

- must equal the level of a segment having both the r and

w (respectively, s and m) indicators on (segment-3 in

Figure 12.c);

- must dominate the level of a segment having the e indicator

on ard the w indicator off (segment-4 in Figure 12.d).

kn the model, the ds-property requires that every current access

(a triple (subject, object, attribute) in the current access set b)
be permitted by the current access permission matrix M (attribute is

an element of the (i, j)-component of M). The exactly analogous

condition in Multics is required for the satisfaction of the

ds-property. For every SDW and every access indicator that is on

in the SDW, the branch in the segment's parent to the segment

described by the SDW has the same access indicator on. In Figure 13,

al = ON implies 01 = ON; a 2 = ON implies 82 = ON; and a3 = ON implies

83 = ON. Note that (al. 02 ' 03) = (ON, OFF, OFF) and

81, 82, 83) = (ON, ON, ON) satisfy the ds-property. Note that the
maximum access permitted need not be present in the SDW. As before, an

inactive process is iquired to be described dormantly so that on

activation the above condition holds true.

There are several other important security properties being

considered in the development of a secure Multics. Two important

correlative properties are sabotage and communication paths.
"Sabotage" in this context means the malicious alteration or

destruction of data, especially data related to the operation of

43

c 4
II

Uof
Vi

43 3C

En w 1-03 4 2

4.)LL t 41 '41
54L.)4 LL

-- 4- oa

U) ct 4 c

- -u- L.0

I.-I

cm.iiin
4) U

0.0

~$-
U 6

I 4J

41 a~

1- I

all,

4-b4-

L- -Iý E)

di 4-)

In 4-)
4J 4

S- 41 1-L1

r 4-LLLL

0- 4u 0

9--4 1 4) I-

d0 >- 9

4) 45

MINNO- --- ---

1 3

.-

U

46.-
4,

t---

s-,~

u'-

4-6

critical programs. The matter of communication paths centers on the
possibility of information transmission using observable system
characteristics and a prearranged code to semaphore critical

information to an undercleared subject/process. Neither of these
topics is directly addressed by the mathematical model, although both
can be satisfactorily resolved using the model as a paradigm;
discussion of these security properties is included in the section
FURTHER CONSIDERATIONS.

RULES OF OPERATION FOR A SECURE MULTICS

Kernel primitives for a secure Multics will be derived from
a higher level user specification and will serve to match the user
specification to the particulars of the Multics architecture. Current
planning is based on the desire to change the Multics architecture

as little as possible; this will account to a large extent for

radical differences in form between actual kernel primitives and

the rules of the model.

In the interests of exposition and better understanding, a set

of imaginary kernel primitives is presented here. Th~ey are essentially
a transliteration of the model rules using Multics terminology and

elements. In this exposition the get-access rules of the model are

translated into separate kernel functions, one for each of read,
write-o,!y write, execute attributes of the model. In Multics the

current operation is such that only one access function serves: when

a segment fault occurs (for example, as a result of a load or store),

an SOW is created, if possible and allowablewith all allowable bits
on (the r, e, and w indicators) which are on in th.c -Pr's ACL.

Another difference between the set of model rules and the projected

kernel primitives is that there wil" be neither a change-subject-

47

current-security-level nor a change-object-security-level kernel
primitive. Nevertheless, descriptions of these rules as well as the

other nine rules of the model will be given here.

For purposes of exposition each informally specifind kernel
function is given a name of the form kernel function i (kfi) v.ith
kfl corresponding the rule 1, kf2 corresponding to rule 2, and si
forth. Objects will be considered to be data segments; similar
operations would pertain for other objects.

48

kernel-fwrctton 1: get:read

Request has the elements:

(a) get-access

(b) process-id

(c) segment-id

(d) read

Process process-id requests that access to data segment

segment-id in usage mode read be enabled.

The following conditionm. are checked:

(M) the ACL (in the directory segment which is the parent of

segment-id unless segment-id - Root) lists process-id with

read usage (for segment-id).

(ii) the security level of process-id, as given in the

security level table, dominates the security level of

segment-id, as given in the branch extension in the

directory segment which is the parent of segment-id.

(iii) process-id is a trusted subject or the current security

level of process-id, as given in the current security

level table, dominates the security level of segment-id.

If conditions (i) - (iii) are met, then a segment descriptor

word (SDW) is added to the descriptor segnent of process-id. t The

tif the SDW already exists, then the followving actions are still

appropriate--essentially the appropriate access mode bit is turned on

in the existing SOW. This remark pertains in following rules also.

49

SOW has the read bit on, is pointed to by a temporary pointer register

(TPR). and points to segment-Id. The process-id receives an affirmative

response.

Otherwise process-id receives a negative response from the

kernel.

50

kernel function 2: get-write-only

Request has the elements:

(a) get-access

(b) process-Id

(c) segment-id

(d) write.

Process process-id requests that access to data segment

segmrtid in usage mode write be enabled.

Th. foilowing conditions are checked:

(i) the ACL in the directory sogment which iS the narent
of segment-id lists process-id with write usage.

(ii) process-id is a trusted subject or the security level

of segment-id dominates the current security level of

process-id.

If conditions (i) - (ii) are met, then a SDW is added to the
descriptor segment of process-id. The SDW has the write bit on, is

pointed to by the TPR, and points to segment-id. The process

process-id receives an affirmative response.

Otherwise process-id receives a negative response from the

kernel.

51

kernel function 3: siet-execute

From the viewpoint of usefulness (not security), this function is
appropriate only if the segment identified in the request for access is

a procedure segment.

Request has the elements:

(a) get-access

(b) process-id

(c) segment-id (procedure-id)
(d) execute

Process-id requests that execute access to procedure-id be
endbled.

An appeal to rule kfl is made with "execute" replacing "read"

in cond 4tion (i) and in the action description.

. . . . - - ~ ~ -• -

kernel-function 4: get-read-write

One of a number of possible forms for kf4 is shown here.

Request nas the elements:

(a) get-access
(b) process-id

(c) segment-id

(d) read and write

Process-id requests that read and write access to segment-id be

enabled.

Action of kf4:

(a) appeal to kfl

(b) if response from kfl is affirmative then appeal to

kf2; otherwise response is negative

(c) if response from kf2 is affirmative, then response

is affirmative; otherwise, response is negative.

53

-.-- '~A ________________________.E-; i.

kernel.function 5: release-read/execute/write

Request has the elements:

I (a) release-access

(b) process-id

(c) segment-id

(d) usage attribute

Process-id requests that read, execute, or write access to

segment-id be disabled.

The read, execute, or write bit in the SDW pointed to by TPR

is turned off. If no other access bits are on, then the SDW is

removed from the descriptor segment of process-id.

54

kernel-function 6: give-read/execute/write

Request has the elements:

(a) give-access

(b) requesting-process-id

(c) receiving-process-id
(d) segment-id

(e) usage-attribute (read, -. -cute, or write)

Requesting-process-id gives to receiving-process-id usage-

attribute access to segment-id.

The following conditions are checked:

(i) neither the parent of segment-id nor the segment

segment-id itself is the root of the directory

hierarchy and the SDW for the parent of segment-id

has the write indicator on.

(ii) the segment segment-id is the root object of the

directory hierarchy or is directly inferior to the

root and requesting-process-id is allowed to give

access permission to the segment in the

current state.

If either condition (i) or condition (ii) is met and segment-id

is not the root object, then an entry is added to the ACL in the

directory segment which is the parent of segment-id; this ACL lists

receiving-process-id with usage-attribute usage (to segment-id). If

condition (ii) is met and segment-id is the root, then permission

55

hmmm

for receiving-process-Id to access segment-id in usage-attribute

mode is recorded. Requesting-process-id receives an affirmative

"response.

Otherwise requesting-process-id receives a negative response.

56

56

kernel-function 6: give-read/execute/write

Request has the elements:

(a) -.,P- access

, ! requesting-process-id

(c) receiving-process-id

(d) segment-id

(e) usage-attribute (read, execute, or write)

Requestinr-process-td gives to receiving-process-id usagle-

attribute access to segment-id.

The following conditions are checked:

(0) neither the parent of segment-id nor the segment
segment-id itself is the root of the directory

hierarchy and the SDW for the parent of segment-id

has the write indicator on.

(ii) the segment segment-id is the root object of the

directory hierarchy or is directly inferior to the

root and requesting-process-id is allowed to give

access permission to the segment in the

current state.

If either condition (i) or condition (ii) is met and segment-id

is not the root object, then an entry is added to the ACL in the

directory segment which is the parent of segment-id; this ACL lists

receiving-process-id with usage-attribute usage (to segment-id). If

condition (ii) is met and segment-id is the root, then permission

55

for receiving-process-Id to access seomnt-id in usage-attribute

mode is recorded. Requesting-process-Id receives an affirmative

response.

Otherwise requesting-process-Id receives a negative response.

56

kernel-function 7: rescind-read/execute/write

Request has the elements:

(al rescind-access

(6) requesting-process-id

(c) receiving process-id

(d) segment-id

(e) usage-attribute

Requesting-process-id takes from receiving-process-id usage-

attribute access to segment-id.

The conditions checked are the same as the conditions of kf6

except, of course, "rescind" replaces "give" in condition (ii).

If either condition (i) or condition (ii) is met, then the usage-

attribute is removed from the receiving-process-id's ACL entry in the

directory segment which is the parent of segment-id; if no other

usage attributes are left in this entry, then the entry is deleted.

Requesting-process-id receives an affirmative response.

Otherwise a negative response is given.

57

kernel-function 8: create-obJect

Request has the elements:

(a) generate-leaf-segment

(b) process-id

(c) segment-id

(d) security-level (sec-level)

Process process-id requests that a segment be added to the

directory hierarchy directly below directory segment segment-id; the
added segment is requested to have level sec-level.

The following conditions are checked:

(i) the SDW in the descriptor segment corresponding to the
directory segment-id has the w bit turned on.

(ii) sec-level dominates the security level of segment-id,

which is recorded in the branch to segment-id, found
in its parent directory.

If conditions (i) - (ii) ara met, then a branch is created in
segment-id to the created segment, using a supplied name, say
new-segment; the level of new-segment is set to sec-level. The
process process-id receives an affirmative response.

Otherwise, process-id receives a negative response from the

kernel.

58

kernel functioti 9: delete-object-group

Request has the elements:

(a) process-id

(b) segment-id

Process-Id requests that segment-id be deleted (detached from

the directory hierarchy). This results in deletion of all segments

in the directory hierarchy which are inferior to segment-id.

The following condition is checked:

(i) same conditions as condition (i) of kf6.

If the condition is met, then the followine recursive algorithm

is invoked:

(i) set current-segment-id to segment-id.

(ii) if there are no branches in current-segment-id then

do the following:

(a) delete all SDWs which refer to current-segment-id.
(b) delete current-segment-id from the hierarchy.

(c) delete the branch of current-segment-id in

its parent directory segment.

(d) set current-segment-id to the segment-id of the

parent of the segment just deleted.

(e) if current-segment-id refers to the parent of

segment-id (the original segment-id), then

finished; else do action (ii).

59

otherwise, set current-segment id to the segment-id

given in any branch and do acLion (ii).

60

kernel-function 10: change-subJect-current-security-level

Request Khs the elements:

(a) process-id

(b) sec-level

Process process-id requests that its current security level be

changed to sec-l-vol.

The followin' r,3ndition: are checked:

(i) process-Id is listed in a table of trusted processes

or for every SOW for a segment in the descriptor

segment for process-id,

"* if the r indicator is on, sec-level dominates the

leve, of the segment, and

"* if the w indicator is on, sec-level is dominated

by tU, level of the segment.

(ii) the security level of process-id, given in the security

level table, dominates sec-level.

If conditions (0) - (ii) are met, then the current security

level of process-id in the current-security-level table, is changed

to sec-level. The process process-id receives an affirmative

response.

Otherwise, process-id receives a negative response from the

kernel.

61

kernel-function 11: rhange-object-securi ty-level

Request has the elements:

(a) revise-security-level

(b) process-id

(c) segment-id

(d) sec-level.

Process process-id requests that the security level of seqment-ld

be revised to th. value sec-level.

The following conditions are checked:

(i) prncess-id is a trusted process and the current security

level of process-id, recorded in the current security
level table, doreinates the security level of segment-id,
found in the branch to segment-id in segment-id's parent

directory,

(ii) for every SOW for a process and segmerit-id that has the

r indicator on, the current level of process in the

current-security-level table dominates sec-level.

62

(Mii) for every SOW for a process and segment-id that has the

w indicator on, sec-level dominates the current level

of Process.

(iv) the security-level field of every branch in segment-id

dominates sec-level and sec-level dominates the level of

the parent of segment-Id,

(v) procr3-i-d is allowed to change segment-id's security

level.

If conditions (i) - (v) are met, then the ,ecurity-level field

of the branch to segment-id found in the parent directory of segment-id

is changed to sec-level. The process process-id receives an

affirmative response.

Otherwise, process-id receives a negative response from the

kernel.

63

A

SECTION IV

FURTHER CONSIDERATIONS

INT RODUCTION

In this section we discuss topics that are related to the mathe-

matical model only indirectly. The first of these is the concept of

"trusted subjects": an attempt is made here to explicate the func-

tional characteristics of trusted subjects and the formal justifica-

tion required to make a subject "trusted." The other topics discussed

are problems that might admit modeling in an extension of the current

model but that have not been investigated in this way. These topics

are "conmmunication paths" (the indirect disclosure of sensitive in-

formation), "sabotage" (the deliberate alteration or destruction of

sensitive information), and "integrity" (a property addressing approved

modification of information).

The topics covered in this section become important in the

certification and implementation phases of the development of a secure

computer system. Moreover, resolutions of the problems have not been

devised as yet. WH'.ce, the discussion in this sectior 'till attempt

to identify the issues, making use of specific examples in a Multics

enviroinment in the exposition. The discussion will of necessity not

provide definitive answers- the intent is to formulate the questions.

TRUSTED SUBJECTS

Within the -nodel, trusted subjects are those subjects not

constrained by thie *-.property. Outside the model, a subject, to be

designated "trusted," must be shown nct to consunmmate the undesirable *
transfer of high level information that *-.property constraints pre-
vent untrusted suibjects from making. The demonstration t~iat a process

can be a "trusted" process is the concern of this discussion.

64

It is important to emphasize here that a "trusted subject" is

only required not to copy high-level information into a low-level
segment (object). It is also important to guarantee that the operation
of a trusted subject (procedure) cannot be used as a medium of clan-
destine communication. That is, trusted subjects are not involved in
communications paths, a topic we will discuss in a l.ater section. The

focus here is on "trustedness" - not copying information into in-

appropriate objects.

A sufficient (but not necessary) condition for declaring a

process trusted is that the process is conceptually equivalent to a

set of subprocedures each of which performs an operation constrained

by the *-property and ther. ciiooses a successor. For example, the simple

procedure:

P: DO WHILE A;

IF B THEN D: = E;

ELSE F: = G;
END;

H, = I;
END;

is conceptually equivalent to the subprocedures Pl, . . . P6 defined

and organized as shown:

PI DO WHILE A

P15

P2

SP3 D: E F: G P

P5 J-CONTINUE

P6 F-" I 6
H:65

If none of the subprocedures violates the *-property (using the minimal.
conceptual current access for each Pi), then P itself would not
violate the *-property, even if, say, A were top secret and H were
confidential.

Two remarks are in order. First, the division into subprocedurps
here is possibly overdone. If, for instance, D, E, and F are
secret, B is confidential, and G is unclassified, then
subprocedures P2, P3, P4 and P5 could be combined into a single
subprocedure P7. P could then be represented as follows:

Pl DO WHILE A

P7 IF B THEN D: = E;

ELSE F: = G;

P6 H:= I

Since P7 does not violate the *-property, P could be shown not
to violate *-property using this subdivision also. The merits of
subdivision to instruction level vs. subdivision only as needed can
be worked out to suit individual tastes; the result will be the same
in either case.

The second point to be made about this type of demonstration is
that the condition that the process be eui•olent to a number of
subprocedures obeying the *-property constraints is not necessary for
the establishment of Lrusted processes. In particular, if and when
a semantically correct "write-down" from a h'igh-level file to a
low-level file can be guaranteed, the process o'esponsible could be

66

demonstrated to be trusted. The latter situation leads directly to
the formiulary concept, which is treated at some length elsewhere [20].

EXTRA-MlODEL SECURITY PROPERTIES

Communication Paths

The first extra-model secur;ty property to be discussed is
communications paths. By this term is meant the indirect disclosure

of sensitive information, as opposed to the direct disclosure of

information which -is addressed by the security properties of the
model. Indirect disclosure can be effected by transmitting data
piecemeal using observable system characteristics as the code medium.

A large number of observable system characteristics can be

used to transmit informatilon, frequently a bit at a time. Possibly
the most difficult medium to rule out as a communication path is

real time: intervals of real time, delimited by prearranged

observable events and varied by using the system, can be used to
transmit information in bit strings (see Figure 14).

event event event event event event

interval 1 interval 2 interval 3 interval 4 interval 5 real-

1 0 1 0 1 time

Figure 14. Communication Using Real-Time Intervals

67

Examples of system uses to vary real-time intervals are computing-

to-IO ratios and paging rate. There is the possibility that

synchronous paths cannot be entirely eliminated from any system that

shares data. Examples of this type of communication can be found in

B. W. Lampson's discussion of system-performance information channels

[21] and Lipner's discussion of improvements (viz., lowering bandwidths

of paths) [23).

Indirect communication using nonsynchronocus paths remains a

very complicated problem. Since a nonsynchronous path must make

use of files, system variables, and the like to transmit a message,

close and careful consideration of every possible action in a system

will discover every nonsynchronous communication path. Within the

model, however, there is no guidance for this enumerative exercise.

In addition, the exercise itself can involve very subtle interactions
of a number of objects.t Two examples will be presented to demonstrate
the subtleties involved. Both examples i. volve the capability to

create and destroy objects.

Suppose in the first instance that secret-process can create

and destroy confidential segments whose existence can be detected by

confidential-process (see Figure 15).

secret-process

creates/destroys

Io dential-segment(seen or_ - onfidential-proces
not seen by

Figure 15. An Example of a One-Bit Message

tA description of a solution to this problem may be found in [22].

68

A string of such confidential segments could easily be used to

transmit a bit string to a confidential process, by destroying those

segments which correspond to zeroes in the bit string (Figure 16).

This situation is clearly unjesirable.

"C

I o

JE

I I _ II

10 l10

Figure 16. The Transmission of the Bit-String 10110

For the second example, suppose that confidential-process is

denied a request to destroy a confidential directory if there is a

secret:segmen ferior to it (see Figure 17).
confidential segment

______ ia-Docs destroy

secret segment
pocess

Figure 17. Another One-Bit Message

69

I

In this case, secret-process can alter the system's response to a

request to destroy the confidential segment by creating or de;troying
a subordinate secret segment. This situation too is undesirable.

Neither of these situations is possible in the secure Multics

design. The first example is disallowed by compatibility: to

destroy a segment one must read/write the segment's parent which, by

compatibility, has a level lower than or equal to that of the
segment itself. The second example is disallowed because the
destruction of objects specified by rule 9, delete-object-group,
does not prohibit a confidential process from destroying a secret

object inferior to the root object of the destroyed subtree.
However, the care with which creation and destruction algorithms

must be designed illustrates the complexities of enumerating the

full list of objects which can be used in nonsynchronous communications

paths.

Sabotage and Integrity

Sabotage, in this context, means undesired alteration or

destruction of information by the purposeful action of an agent;
integrity is a property determined by approved modification of

information. To clarify the meaninqs of the two terms "sabotage"

and "integrity" the intended meanings of the adjectives "undesired"

and "approved" must be explicated. An alteration or destruction of

information is undesirable if the intended and well-intentioned

users of the system deem it so; a modification is approved if these

same users consider the resulting semantic content of the modified

information to be correct. Hence, in the context of information

stored in a computer-based information system, sabotage and
integrity ire closely related-

70

An act of sabotage can have two principal effects: improper

functioning of the system and incorrect semantic content. An
integrity policy attempts to prevent acts of sabotage within the

infonaation system or to localize the etIfects to an acceptable

degree.

Work on a model or integrity policy implementation is proceeding

at MITRE [23]. A major problem is to specify an acceptable and
appropriate policy to govern the modificatiGn of data segments. We

consider hcre a simple model of integrity, leaving policy largely

unspecified, in order to further the expositioi of the problem.

Suppose that a set S of "integrity levels" is given: consider

as an example the set:

nonsensitive < sensitive < critical < very critical

The semantics of these terms is suggestive; the integrity policy is,

nevertheless, not specified by them since they are not formally

d,&fined. Suppose further that integrity level functions, analogous

to security level functions, are defined:

Is: (subjects)--------N{integrity levels) and

Io: {objects} ({integrity levels).

Is(subject) denotes the maximum integrity level of an object that

subject is allowed to modify; 10(object) denotes the minimum level
of any subject that is allowed to modify object.

Redefine a state v of the system by the inclusion of

I = (Is, Io)

71

v- (b, M, f, I, H).

We can define a simple-integrity-propertv (si-property), analogous to

the ss-property, as follows:

a state satisfies the si-property provided for every current

alter-access (subject, object, alter-attribute), the

integrity level of subject (Is(subject)) is greater than or

equal to the integrity level of object (Io(object)).

More formally, v = (b, M, f, I, H) satisfies the si-property

provided:

[(Si, j, x) in b and x in [w, a_]

implies Is(Si) 2t 1 (Oj)'

There is an alternative formulation of the si-property, as there is

for the ss-property:

the state v = (b, M, f, I, H) satisfies the si-property
provided every (Si, 0j, x) in b satisfies the simple-

integrity condition relative to I (SIC rel I); (Si, 0j. x)

in b satisfies SIC rel I provided (x w or x = a)jimplies that Is(Si) -> lo(Oj).

Given the above extension of the model, needed modifications

to the rules of operation are obvious; moreover, intuition indicates

that assuring the si-property systemically is inductive and can be

accomplished by demonstrating si-property preservation over one

state change (as is the case for secure state preservation). No

analogue to the *-property exists, since the problem of information

transfer within the realm of disclosure has no analogue in the

72

realm of sabotage. Finally, an inverse compatibility property for

the hierarchy seems attractive; this would dictate that the

integrity level of objects be monotone non-increasing on paths away

from the root. This latter property relates to "localizing" damaging

effects of sabotage action. AcLual sabotage of sensitive-directory

in Figure 18 indirectly sabotages inferior segments, which are

necessarily nonsensitive or sensitive under inverse compatibility;

the effect of sabotaging sensitive-directory by a sensitive process

running amok would not extend to its parent, critical-directory,

nor to unrelated segments such as critical-se.nwnt, sensitlve-segment,

and nonsensitive-seiment.

ROOT
(very critical)

i I I
sensitiv-emn -ritical-directorN

critical-segment sensitve- nonsensitive

Ctory

I sensitive- nonsensitive-
ieros iferior I

Figure 18. The Subtree Affected by Sabotage of Snr itive-Directory

731

APPENDIX

introduction

The formal mathematical model is presented in this Appendix.

No interpretation or explanation is offered, except as subsequently
noted. The intended interpretations and correspondences to Multics

architectural elements are givers in the body of this report. In

the section of this Appendix on rules, a natrative statement of each

rule is given In order to reduce the reader's inconvenience in
dealing with highly abstrart symbology and in order to provide a

natural language statement of intention by which errors or policy

misdirections in the formal statements may be more easily discovered.

Elenents

The elements of the mathematical model are presented in Table l.

Some items are not self-explanatory and they are explained here.

partial ordering relation o:

A relation R is a partial ordering relation if R is

reflexive, antisymmetric, and transitive.

Suppose that U is a set end R is a binary relation defined

on U, with elements of U denoted by small letters a, b, c, .

etc.

reflexive: R is reflexive if xRx for each x in U.

antisymmetric: R is antisymmetric if [xRy and yRx] implies

75 i"Mg pag k

x a y (x is Identically y) for each x and y in U.

(In other words, we have xlv and yRx (symmetry) only

in case x - y.)

transitive: R is transitive if [xRy and yRz] implies

xRz for each x and y and z in U.

L" wL1, L2 , Lp} where L - (Ci, K) and C is in

C and K is a subset of K. Define the relation) on L as

fol Iows:

(Lie L) c Li)o L (Ci, K)) (Cie K') iff

(i) Ci 2 C., and

(ii) K K.

Since both "?" and "J' are partial orderings, a straightforward

argument shows that ")" is also a partial ordering.

Suppose C z (S, C, U1, S > C U, and K = {Kit K2 . K131

and L1 I- (S, (Kl, K21}) L2 = (S, {K1f), L3 - (C, (Kl, K2)),

L4 ' (C,{K }), L5 = (S, {K2 , K3), L6.= (C, {K21), and L 7 (U, [KOI).

The partial ordering of these elements of L is illustrated as a

digraph in Figure Al. L

L2

17

Fiqure Al: Illustration of)o.

76

,I. -

LA u In

10 0 u
CD V 1-.- LI

*0

03)1 0 .. u ~ IV 0 0
#A in cm
0n 41 4- 401

01 41 . f C

CL v 41. 4.h 59 >
v.0 4A *wj 0 u I.- 4

InI
f" ILI

011

S.-

V) Cr E(A 16- 4) 4-J

LL 0

CJj (% "'% LI) C%j 9

An C0l 1 0

LA n 0CILI-0 .

71

4.)1

L4 -)

10 0 41 4

' KQ 0 u

Lo 10 0 C

II

c ID 49 LI 4.

' 4-) a) 4.. - 4J W 4

4J) a)I

4.) ~ ~ ~ ~ -- "DL ~ - ~) eS

4-) -)

U .0

'U L

000

Ln

'78

S -~

-r- 0 ~ 4-; 3

a) n 4 -)0

a)0) E 0 0)

w ~ S to s-~
0 u -0 0.

4- 44-.) 4--
EU EU 4--~

cc 41 1 4a 4.) 4
4.) d fA w W (EUW

(1) = U 0 3))
0) a)*- u c u r--- 0rI

4-) M - M S SEU S-. 10

0 0 0

F- x 4-

:_-) Z. . n 4) En _4.

EU ~ ~ ~ ~ ~ 1 4-)US. . 5. 0 ~- .

:DCA

VI Eni

EUt

r.

0) L

37

Rio x0IE

a -P-~

to 0 C C
4-) 0

4-' C in 4) .- 4.-

V) 4J004 '
10 4..) 0 >L a)

CA~
Ln 4- 0 S

- 0) 4 . ~4-)
* ~ 'D Uf 4-) - A

4M 4J C > S- (U

E U #A CA0) >4
0 C > i W)

4J C w- . 4-) >,4.J

0- dnO 4J .0 Sr ~.- 4J

i 4- 4- 4- nd

o1 0- 0 0 0C

'-4- in LI >4- 4-
di~~~~ 0-4' 0 C 0 4' +~d

4.) Cd4i - E4' C)i

mn0~~0di .0.-~i -

.0J 0I V) D
Mn 4- -4 L

-1 4- in i

C V

Ei 0

.0~- 4-C4-4
l 00 0 .

L, LA- E E
V, *4 - i0

- * *r- 80

IIA n 4.)--l

u A3 a) . 4-'0 f

0.CL4-3 0..CL

4) >t m~ Lw 0

Lu > to. 4 (D 4) 4. >) 0
= 1 0 -0 4- 0P JU L.0 0. 4-U J.4-) i. 0 Lo. j0d
Wn . 4-J C wn M 4-1 dC .'3 0 4-C) Md 4-.

$A - ~* I- 04- W 4J-

4Jn "- 0 4id 4) 0) I
V) u- 4-) 04A 0. - O. 4.) 4-.A 4A = -^

V) *r- r- L

0 .C4-11

0~~L C .)II In

c - # d CC 4-) 0

4 -) 00a))cý
Cu M- 4- . 0

C" R' 0 r_ t

tn u)Cd0
Cy a) > 0)4

0 ev I=n C) -

%L I.-. S 0 to-

Ci ~ ~ 4 4J c n~In *

= C r- *r- "U C 0

L&Jr to- i 4.) . - -
r o o..

V)
I~ '~ CJ.4)4) C W0 0 46) a

* C-'- C) 0) 4)81

.4A

oUa

4-AU

4J Q) 4)

4A 0)

C.) Ut) 4.)
4.U 0.u gn .

r_ >. (0 4- 4-
to ui 4)

4- 4-) 0) tA

0~ 0) 4-) 4
&A u to u

4-) 4- (A $

i-..~~4 4- 4)0 . ~

U) 0) S.- =i
W 0 0 .) 4-)

to 4.)--S 4.) U ~ U

C) 41 =
4. r- 4-)
4-04-

CA .0% I - - U

U) 0- to 4.) N
'a 4.)0 a

V) L. 49--4tc-'

rU 0) 4- 4 - C 4 .) N
U) 0 4.) *i1

U)J L4-) <. .0 4U)

I-J 3: -a i (0 5- : N~ 4.)

EU 0 51 D U 0 N fJ
4) 4-o C a) w~C

:1., 0 c EU cA C -,.
L tj a-4 to 4 *-4-~ 4-) c- 4

0 ~ 4 CL o) .4)4) .

04- CO r-4

- 82

Suppose [U, R] is a partially ordered system. An element
m in U is called a minimal element in U if mRx implies xRm
for each x in U; if m is unique it is called a minimum. For
[L,)o], as in the previous example, there are three minimal
elements, (U, KI), (U, K2), and (U, K3) and there is no minimum.
If K' = K U {*1, then (U,) is a minimum in [C x K',•].

the notation AB:

Suppose A and B are sets. The notation AB denotes the set
of all functions from B to A. Suppose A = {a, b) and B = {l, 21;

then AB consists of

f= {(l, a), (2, b)},

f2 = {(l, b), (2, a)},
f3 = {(l, a), (2, a)), and
f4 = {(l, b), (2, b)}.

r:rtesian product:

Suppose A and B are sets. The cartesian product of A and
B, denoted A x B, is defined by

A x B = {(a, b): a c A and b c B},

i.e., A x B is the set of all ordered pairs of the form (a, b)
where a is in A and b is in B. Suppose A = {a, b) and
B = {l, 2}. Then A x B = {(a, 1), (a, 2), (b, 1), (b, 2)}. Notice
that B x A = ((, a), (2, a), (1, b), (2, b)} # A x B. Notice
also that fl c B x A, f1 defined above.

83

the notation PX:

Suppose X is a set, say X { (a, b, c). PX means the set of

all subsets of X. In this case, Pv - {*, {a}, {b), {c), fa, b),

(a, c0, {b, c), {a, b, c)) where * denotes the empty set.

hierarchies:

Suppose H S (PO)] 0 where 0 - {01, 02, 039 049 05}. Restrict

membership in H by the conditions (1) and (2) (see Table 1, entry

for H). Define H c H as follows:

H = {(0l, {O0, 0), 102, *), (03 04, 05}), (04. *), (05, *)}.

H can be described also by a diagraph:
01

02 03

04 05

Condition (1) rules out a strurture such as

84

and condition (2) rules out a structure such as

If an element of H(imposes a forest structure on the objects with

exactly one tree, as in the example, we identify the root of the
tree by the notation OR' If H Is a tree structure then OR is

that object in 0 for which

H(OR) ' * and

OR iH(O) for any 0 c0.

If 0 is an object in 0 then O SO denotes that objert with
respect to H such that Oj c H(Os(j);. in other words 0O) is
"superior" to 0. by H.

System

Suppose that WC R x D x V x V. The system

£ (R, D, W, z 0) C X x Y x Z is defined by

(x, y, z) c £(R, D, W, z0) iff

(xt Yts' zt, Zt-l) C W for each t in T,
where z is an initial state of the system, usually

of the form (4, M, f, H).

Properties

We define properties in terms of the members of a state sequence.
We then say that the system has a specified property if each state of

85

IMP

every state sequence of the system has the property. The following

notation is defined.

b(S: x, . ., z) { (0: (S, O, x) 0 b or

(S,0, ,) c b or

(s, 0, z) e b)

simple-security

A state v - (b, M, f, H) satisfies the simple-security property

(ss-property) 1ff

S e S-> [(o b (S: r,)) -w) (f (S) fo(O))0 .

It is convenient also to define:

(S, 0, x) £ b satisfies the simple security condition relAtive

to f (ssc rel f) iff

(1) x = e or a, or

(ii) x= ro• w and f s(S) fo (0).

Then it is easily shown that a state v - (b, M, f, H) satisfies

ss-property iff each (S, 0, x) c b satisfies SSC rel f.

*-property

Suppose S' is a subset of S. A state v = (b, N, f, H)

satisfies the *-property relative to S' iff

86

I (0 E b(S: a)) -*(f (0) 0 f (S))

S C S'- (0 c b(S: w)) (f (0) a f CS))
(0 c b(S: _ (f c(S))o f0(0)).

An immediate consequence is: if v satisfies *-property rel S'

and S S S' then

[OD c b(S: a) and Ok c b(S: r)]->fo0 ()x fo(Ok).

discretionary-security

A state v = (b, M, f, H) satisfies the discretionary-security

property (ds-property) iff

(Si, Oj, x) c b -> xc Mij.

secure system

A state v is a secure state iff v satisfies the ss-property

and *-property rel S' and ds-property. A state sequence z is

a secure state sequence iff z is a secure state for each t i T.

Call (x, y, z) e £(P, D, W, zo) an appearance of the system.

(x, y, z) E6 (R, Do W, z0) is a secure appearance iff z is a

secure sequence. F; tally, £(R, D, W, z) is a secure system iff

every appearance of L(R. D, W, z) is a secure appearance. Similar
definitions pertain for the notions.

(i) the system .'(R, D, W, z) satisfies the ss-property,
0i

(ii) the system setisfies *.,property rel S', and

(iii) the system satisfies the ds-property.

87

| I ' w t I " "l • i • . • •.,] a'- • em J m•..n- . . -

Definition of Rule

A rule is a function o: R x V -D 0 x V. A rule therefore

associates with each request-state pair (input) a decision-state

pair (output).

A rule p is secure-state-preserving iff v* is a secure

state whenever p (Rk, v) - (Dm, v*) and v is a secure state.

Similar definitions pertain for the notions

(M) p is ss-property-preserving,

(ii) p is *-property-preserving, and

(iii) p is ds-property-preserving.

Suppose w = fýl* P2 " Ps is a set of rules. The

relation W(w) is defined by

(Rk, Dm, v*, v) C W(w) iff Dm # ? and
(Dm, v*) =Pp (RkV v) for a unique i, 1:5 i : s.

Theorems

(RI, Di, v*, v) e R x D x V x V is an action of I(R, D, W, z1)

iff there is an appearance (x, y, z) of Z(R, D, W, z) and some

t e T such that (Ri., D., v*, v) = (xt, Yt' zt, Zt-l).

theorem Al:

,(R, D, W, Z) satisfies the ss-property for any initial
0

state zo which satisfies ss-property iff W satisfies the following

88

conditions for each action (R,. Dj, (b*. M*. f*, H*). (b, M. f, H)):

(I) each (S, 0, x) e b*-b satisfies the simple security

condition relative to f* (SSC rel f*);

(ii) each (S, 0. x).e b which does not satisfy SSC rel f*

is not in b*.

argument:

Suppose z0 - (b. M. f, H) is an initial state which satisfies

ss-property. Pick (x y, z) e X(R. D, W. z) and write

zt. (bt)N (t). ft) H(t)) for each t t T.

Z., satisfies ss-property

(x1. yle Z1 9 z0) is in W. In order to show that z satisfies

ss-property we need to show that each (S. 0, x) in b()satisfies

SSC rel f(l).

Notice that b(1) . jb(1) - b(O))u(b(O) n b(1)) and

(b(1) , (0)) n n b 0)) - 9. Suppose (S. 0. _j is in b(l)
Then it: (S. 0, x) 0. is in (b(1 f b-0))

Suppose), 0, x) is In (b(1) - b(0)). Then (S. 0, x) satisfies

SSC rel fl) according to (I). Suppose (S, 0, x) is in

(b(O) n V''). Then (S, 0, x) satisfies SSC rel f(l) according

to (ii), Therefore z1 satisfies ss-properlty.

89

4

i~f _t1 satisfies ss-property, then z. satisfies ss-ropee

The argument given for "z1 satisfies ss-property" applies with

"t-l" substituted for "0" and "t" substituted for "".

By induction, z satisfies ss-property so that the aepearance

(x, y, z) satisfies ss-property. (x, y, z) being arbitrary,

£(R, D, W, z0) satisfies the ss-property.

Suppose Z(R, 0, W, z.) atisfies the ss-property for any

initial state z, which satisfies ss-property.

Argue by contradiction. Contradiction yields the proposition j
"there is some action (xt, . ' ztY Z,-) such that either

(iii) some (S, 0, x) in b(t) - h(t-1) does not
(t)satisfy SSC rel f or

(S v) some (S, 0, x) in b(tfl) which dces not
satisfy SSC rel f~t is in b+'t), i.e., is

i n b(t-l 1 (b(t). "

Suppose (iii). Then there is• ome (S, n, x-) in b(t) which

does not satisfy SSC rel f(t). 1ýupp¢,se (iv). Then thare is some

(S, 0, X_) in b~t which does nrv~ satis~y ý,Sr tel f~t ThevvforeI

Zt does not satisfy ss-propertty, x, v, z) does not satisfy
ss-property, and so f'(R, D, W, zO does not satis+fy ss-propertyo

which contradicts initial assuinltion of the arglument.

90!

The argument is complete.

theorem A2: E(R, D, , z 0) satisfies the *-property relative to

SI'c k for any initial state z0 which satisfies *-property relative

to S' lft W satisfies the following conditions for each action

(Ri, Div (b*, r¶*, f*, H*), (b, M, f, H)):

(i) for each S f .V,

(a) 0 e (b* - l)(S:a) -> f*(O) f *(S) and

(b) 0 f (b* - b)(S:!,) - f f*(0) - fc*(S), and

(c) 0 f (b* - b)(S:r) -> fc*(S) f fo

(ii) for each S f S',

(a') 0 i b(S:a) and f 0*(0:0 fc*(S)] ->

0 i b*(S,a), and

(b') [0 t b(S:w) iind f 0 *(O) 0 fc*(S)] ->

0 o b*(S.vi), and

(CW) O i b(S:r) and f (S *(*) >
L C 0

0 f t*(S:r).

l ~arg ument:

Suppose z0 = (b, M, f, :) is an initial state which satisies

*-property rel S'. Pick (x, y, z) in 2.(R, D, I, z.) and %rite

z = (b(t), tl(t), f(t). .(t)) for each t t T.
9I

91

;_ satisfies *-property rel_ S'

(x r yI 1 Zl 0 Zo) is in W. In order to show that z

satisfies *-property rel S' we need to show that:

1 0 c b()(S:a)-> f (1)(0) o f (1) (S)

(lii) S C S'w, 0 c b(l)(S:w)a-, f°(1)(0) = fc ()(S)

0 £ b(l)(s:r)m-, f°(l)(S))0 fc(1)(0)_ - C 0"

Suppose (S, 0, x) c b(I), S V., x c fa, w, r). Then either

(S, 0, x) is in (b(l) - b(0)) or (S, 0, x) is in (b(I f) b(O)).

Suppose (S, 0, x) is in (b(1) - b(O)). Then (iii) is satisfied

accoroing to (i). Suppose (S, 0, x) is in b(1)n h(0). Then (iii)

is satisfied according to (ii). Therefore z satisfies *-property
,.e! C'.

if 1 Isatisfies *-property rel S', then zb satisfies

*-property rel S.

The argument given for "I' satisfies *-property rel

applies with "t-l" substituted for "0" and "t" substituted for

Cy induction, z satisfies *-property rel S' so ttat the

appearance (x, y, z) satisfies *-property rel S'. (x, y, z)

being arbitrary, E(R, D, W, z0) satisfies *-property relative to

S'

Suppose E(R, U, W, z.) satisfies *-property relative to S'

for any initial state z0 which satisfies *-property rel S'.

92

Argue by contradiction. Contradiction yields the proposition

"there is some action (xt, Yt' ztt zt-i) such that either

(iv) 0I) is false or

Wv 01I) is false."

Suppose (iv). Then there is some S c S' such that (a) is false or

(b) is false or (c) is false. Then z does not satisfy *-property

tel S'. Suppose (v). Then there is some S c S' such that 'a') is

false or b)l is false or (c') is false. Then zt does not satisfy

*-property tel S'. This leads to "(x, y, z) does not sa.isfy

*-property rel S' and so E(R, D, W, z0) does not satisfy

*-property rel S,", which contradicts initial assumption of the
argumer, t.

The argument is complete.

theorem A3: E(R, D, V4, z0) satisfies the ds-property iff z0

satisfies the ds-property and W satisfies the following condition

for each action (RI, Dj, (b*, M*, f*, H*), (b, M, f, H)):

(i) (Sa, 0al x) c b* - b-> x 6 Ma* a; and

(ii) (Sa, 0,, x) c b and x i Ma (Sa, 0a, x) 1 b*.

If (Sa' 0,, x) c h(l) 0), x c Ma, (1)a, by (I). Suppose

(Sa, 0a,, x) c bl) n b(0). If x J Ma, a t -a

contrary to our supposition. Thus x £ M (1)a,

93

(S, o, x) b() - (b(1) - b(°)) u (b(1)n b(°)), x c M and
as Oa 9 a,a an

z satisfies the ds-property.

(-•)

Suppose E(R, D, W, zO) satisfies the ds-property.

Argue by contradiction. Contradiction yields the proposItion

"there is an initial state z0 satisfying the ds-property and

there is same action (xt.Yt' zt, zt_,) such that there

is some (Sa 0a 1) 0 b(t such that x i M(t) .
a a-' , a'

Therefore zt does not satisfy ds-property, (x, y, z) does not

satisfy ds-property, and so E(R, D, W, z0) does not satisfy

ds-property, which contradicts the initial assumption of the

argument.

The argument is complete.

corollry Al: E(R, 0, W, zO) is a secure system Iff z0 is a

secure stat,2 and W satisfies the conditions ot tý,-rems Al, A2,

and A3 for each action.

theorem A4: Suppose w is a set of ss-property-preserving rules

and z is an initial state which satisfies ss-property. Then

£(R, D, W (w), z0) satisfies ss-property.

argument

Suppose Z(R, D, W (W), zO) does not satisfy ss-property.

94

Then there is (x, y, z) in r(R, D, W (w), zo) which does not

satisfy ss-property. Suppose t ir the least elerient of T such

that -t does not satisfy ss-property. Since z0 satisfies

ss-property, t > 0. By choice of t, z satisfies ss-property

and z t-1 zt. By definition of .(R, D, W (w), zO),

(xtV Yt' zt9 zt-1) c W (w). By the definition of W (w), there is

some rule P c w such that P(xt' zt-1) = (Yt' zt). Since zt.1

satisfies ss-property and p(xt' zt-1) = (Yt' zt) and p is

ss-property-preservtng, Kt satisfies ss-property. The contradiction

shows that E(R, D, W (w), z0) satisfies ss-property.

The argument is cc~aplete.

theorem A5: Suppose w is a set of *-property preserving rules

and z0 is an initial state which satisfies *-property. Then

}.(R, u, W (M), z0) satisfies *-property.

argument: The argument is that of theorem A4 with the substitution

of *-property for ss-property.

theorem A6: Suppose w is a set of ds-property preserving rules

and z0 is an initial state which satisfies ds-i "operty. Then

E(R, D, W (w), zo) satisfies ds-property.

corollary A2: Suppose w is a set of secure-state-preserving

rules and z0 is an initial state which is a secure state. Then

E(R, D, W (w), zO) is a secure system.

theoren' A7: Suppose v (b, M, f, H) is a state which satisfies

ss-property, (S, 0, x) g b, b* = b u {(S, 0, x)}, and

v*= (b*, M, f, H). Then v* satisfies ss-property iff

95

(1) (x_ eorx_- a) or
(ri) (x ror x - w) and fs(S) x f 0 (O).

argument

Suppose v* (b*, M, f) H) satisfies ss-property. Then
0 c b* (S:r, w)->f (S)) , (0) by definition. Therefore (t) ors 0
(ii) holds since x £ {e, w, r, a).

(a-)

Suppose (i). Then v* satisfies ss-property since v does.

Suppose (ii). Then for any S E S we have
0 E b* (S:r, w_) ->fs (S) f o(O) since v satisfies ss-property.
Therefore v* satisfies ss-property.

theorem A8: Suppose v - (b, M, f, H) is a state which satisfies
*-property rel S'c S, S E S', (S, 0, x) j b,

b* - b vf(S. 0, x)), and v* - (b*, M, f, H).

v* satisfies *-property' iff

(i) if x a, then fo(O))f c(S);

(ii) if xI w_, then fc(S) - fo(S); and
(iii) if x r, then fc (S) 0 fo(O).

t "rel S" is understood.

96

argument:

(-m) Suppose v* satisfies *-property. The definition of *-property
applied to S. 0 and (S, 0, x) yields conditions (1). (i1), and
(iii) directly.

Suppose conditions (i) - (iii) hold. Let (Sit Oj, y)E b*
with SI c S'. If (Si, 0 y) c b, the *-progerty conditionshold for f by the assumption that v satisfies *-property. If

(Si , y) y b, (Sit Oj, Y) - (S, 0, x) and the *-.propevp ,

conditions hold by the initial assumption of conditions (i) - (iii).

Hence v* satisfies *-property as desired.

theorem A9: Suppose v - (b, M, f, H) is a state which satisfies
ds-property, (Si, 01, x) 0 b, b* - b u((Si, 0, x)}, and
v* a (b*, 11, f, H). Then v* satisfies ds-property iff x c M i.

argument:

(->) Suppose v* satisfies ds-property. Then x E M11j by
definition.

(->) Suppose X E Mij. iOhen, since (Si, Oj, x) c b*, the

proposition ((S1, Oj x_) e b*.> xc Mij) is true; therefore,

v* satisfies ds-property.

corollary A3: Suppose v - (b, MI. f, H) is a secure stete,

(Si 0Oj, x) j b, b* = b u{(Si, Oj, x)}, and v* - (b*, fl, f, H).

Then v* is a secure state iff

(i) Si C ST and the conditions of theorems A7 and A9

are met, or

97

(ii) S1 c S' and the conditions of theorem A7, An, and

A9 are met.

theorem AMO: Let p be a rule and o(Rk, v - (Dm. v*). where

v - (b, M, f, H) and v* (b*, M, f*o H*).

(1) If b*'C b and f* - f, then p is ss-property-preservlng.

(ii) If b*C b and f* - f, then p is *-property-preserving.

(Mii) If b*C-b and Mij* :,11 for all i and J, then p

is ds-property-preserving.

(iv) If b*C b, f*- f, and M. :)M for all I and J,

then p is secure-state-preserving.

argument:

(1) If v satisfies the ss.property, then (S. 0, x) c b*

with x - w or r implies (S. 0, x) c b so that

fs (S) X f0 (0) by assumption. Hence fs* (S) 3 fo* (0)

since f* - f. Thus v* satisfies ss-property and p
is ss-property-preservtng.

(ii) and (iii) are proved in ways exactly analogous to

the proof of (i). Implications (i), (ii), and

(iii) prove implication (iv).

98

Rules

notation

The symbol "'Y will be used in expressions of the form "A%-,B"

to mean "proposition A except as modified by proposition B".

Some examples follow. Suppose f is a function from the set

(A, B, CQ to the set (0, 1, 3) defined by:

f(A) - 1 or (A, 1) c f,

f(B) 0 or (B, 0) c f,

f(C) • 3 or (C, 3) c f.

Theii fN(C, 1) or f*f(C) - 1 means

f(A)- 1,
fiB) -O

f(C) * 1.

Suppose r1 is a matrix. Then tiNMij ÷-a "ieans the matrix
obtained f.-om M by replacing the (i)th element by a.

MNMIj U {x) means the matrix obtained from M by adding the

elemenL x to the (I, j)th set entry. Similarly, the notation

ffo 0 fo U (ONEW(H)' Lu) [see Pule 8] means the function obtained

from f by replacing f0 by f0 plus the ordered pair

(ONEW(H). Lu) [(0 =ONEw(H) Lu The notation NEW(H) denotes

a selection function with respect to the hierarchy H which

specifies an arbitrary inactive object index.

definitions of rules

The definitions of Rules 1 to 11 are given in the following

99

pages. These rules preserve compatibility and asswue the presence

of trusted subjects.

I

100

L..

0I

Au

Volo

mwaIl

0 0

N - L

AM

LnI ~tT

-01

Ci 0
101t

CC

H 9of

1019

F
--

I----

I

0

I.
o

I- Li
Lii 01-

*0

.0

- ('J .d,

0 -

CI..

.� �.I

-I

*1�
c'.J n-

V
C CI. -

a.

a L�
�,I ci u�I

Li - -�

� 0"
o 0

a .. i ..-

.4, � S
'.1 U -

Li 0. .uI
* 4-.

C, iii .. C,

� � -; *1)g
U' L -�

a.
(X4- 0 a.

N *�. �

� .2
('.4
a. a.

'�-�---� L

.4.
(*'4 -.a. '. *4� .i .. - Vo Li L 4)
('.4 C .- - .4 -a. GD - C.-
04 j C. _

4: i� :� �I

102

44,

I-L.*0
u L.

c o)

?L & 1 11
, c' '.

103

AII

a7

I,-'
4 -

C3u

idi

CIL.

o I,-i

of or

"10.-

In.., 'l i

i --

2 I-

St 4

lOCl

(1)

.u Ln

E
0

0.1 4-
0

.01

4.)

w u
,X1 u-

CL m:

to e

0.1 -
0 0

,a) cIU~ L

0) 0:

a:. CC
Ne oI .

LALAI
0:~ 4-: re4) *.-

4- -E*

OL .

105

-C)-

A
-A I-

0- CD

00

C) r A
LL4-

0 w~ [I ix
A 4-.

C) C L D

F-I- -Lkc-
-. -e CD4

E 4
oCL0 r

%A~~i
0LAG
4-(0 iX

C) C

v;- W;- '<0

C-) .. * I- I

> > '

1, V Ii4-

V) rl 0re..

ix 4)

4-j C. 4-)0

010

g~ g~ LdA.A - -

n A

uj -
!7 X1

A >

X11

LI ILI

:•l +.-)-

IA 0 0

LwI 4.)

XA A

0 r-) 0

w. 31 cx C)

C "0 CCi "C) oW *Iý-
0 CDw E

-P..,-
.- 0 v v

LA r~rE >u

*t W -he a

wC &.A- I-p L,%

I.) I-A SE

CL w) .QoL

107 -

U(u II- <E

4A a) 0)
C ~ IC

o. w

107

4--

0 .0

c~ 01)~ a,

fa C)

-I r3 A

.0 4-4 0

_j -x 0-

4J C

4-,r

o d) LIsLI)m

fa a, 2

o 4-

Cc~ 0
In L.-

o ()0 GO

4-. 0
.r0 4- 0oo 4.

4- (1 aE 4U
00
CC 4.)-

108

C)

to i

U..

CD

V 5

L 00

c LU.4

w 4. 0

fa:
@34 . -4-.

ti. IA -9- 4 - 4"It I= i 1
4. V 0 C. of -

4) LO 0

Co =1 > > 0) --w C.,. a-,,)

LW ... !S
44-

it 0

u~ SS.C
.00

f-V

.J7L

41

C>~ -J

-C , 4.

-; a. -

c44. 4)

4- 0 0it'4 -

0 . 0 L-0

L.~ 0 O

CL Z5-
-a U) 4)'-1 i
I c 2ý

- U a.110

'4--

A%

- 4

Nu

4 -- 1

C)' -4

N -L) 0 r_)I.

Eu .1) Euc

- C) 4-0

Lk: 4- U. Eu

a) a -a

4- L" o- i-i L-i a.E
d) C/r 0=JE

J3 F'* N - 0.
I, -r-¶ LA ,

.00 Li--- *)-
4- 4-. > 4-E

u- : 4- 4- Eui 4

(1)

4- it LI

r L-/ 13-

-IL W UE
K) CD A I-

-~ 16- C)J l -

Li 0 ViEu

"-r7

3o

° w

r

~z L.J 97 C

6ck

"112

o 4
4. . C

I

descriptions of rules

rule 1: get-read

Request is of the form (g, S, 1 , rO).

Subject S1 requests access to object 0 in read-only mode
(_r).

If request is not of the proper form, then response is ? with
no state change.

Otherwise, the following conditions are check.1:

(i) S has current access permission to 0. in

read-only mode.

(ii) the security level of S t dominates the security

level of 0j.

(iii) Si is a trusted subject or the current security

level of St dominates the security level cf 0J.

If condidtons (i) - (iii) are met, then the response is yes

and the state changes by adding an eni / in the current access list

indicating that S. has read-only access to 0.

Otherwise the response is no with no state change.

113

rule 2: get-apend

Pequest is of the fom (g, Si, Oj, a).

Subject S1 requests acce.ss to object 0 in append mode (a).
ij

If request is not of .he proper form, then response is ?

with no state change.

Otherwise the following conditions ire checked:

(i) Si has ,urrent access permisFion to 0 in
i ~1 1

append mode.

(ii) S is a trusted subject or the security levl

of 0. dominates the ciirrent security level of

If cond.itinns (i) - (ii) are me+, ther, the response is yes and

the state clianges by aading an entry to the current access list
indicating 'hdt "i has append access to O.

Otherwise the re,,onse is no with no stdte change.

rule 3: get-exec6tt

RLquest is of the form (g, Si, 0j. e).

Subject S, requests access to object 0. in execute mode

(e).

114

If request is not of P, ,,ýr form, tthi the response is ?

with no state change.

Otherwise the following condition is checked:

(I S1 has current access permission to 0 in executeiS
mode.

If condit on (i) is met, then the response is yes and the

state changes by adding an entry to the current access list

indicating that St has execute access to 0(.

Otherwise the response is no with no state change.

rule 4: get-write

Request is of the form (g, St, OJ, 9_

Subject S, requests access to object 0 in write mode (w)

If request is not of the proper form, then the response i s ?

with no state change.

Otherwise the following conditions are checked:

(M) S has current access permission to i in write

mode.

(0i) the security level of Si dominates the security

level of 0Y

115

(tii) St is a trusted subject or the current security

level of S1 equals the security level of nJ.

If conditions (1) - (iii) are met, then the response is yj

and the state changes by adding an entry to the current access list

indicating that S1 has write access to 0J.

Otherwise the response is no with no state change.

rule S: release-read/execute/write/append

Request is of the form (r, Si, Oj, x).

"oubjcct € signals the release of access tn obiect 0, in
J

access mode x.

If reqtest is not of the proper form, then the response is ?

with no state change.

Otherwise the response is yes and the state changes by

removing an entry from the current access list indicating that Si

no longer has access to 0 iin mode x.

rule 6: give-read/execute/write/append

Request is of the form (S,, 9, St, Oj, x),

116

Subject S, gives to subject S1 access permission to 0

in mode x.

If request is not of the proper form, then response is ? with

no state change.

Otherwise the following condition is checked:

(M) object 0 is not the root object of the hierarchy

and subject S, has current access in write mode to

O s immediately superior object (0 O)) in the

hierarchy

or

0j is the root object and S is allowed to give

access permission to the root object in the

current state.

If condition (t) is met, then the response is yes and the

state is changed by adding access permission for S i to 0 in mode

x to the access permission matrix.

Otherwise the response is no with no state change.

rule 7: rescind-read/ewecute/write/append

Request is of the form (SV, r, Si. Op x).

Subject SX rescinds subject Si's access permission to 0

in mode x.

117

If request is not of the proper form, then response is w ith

no state change.

Otherwise the following condition is checked:

(M) object 01 is not the riot object of the

hierarchy and subject S has current access

in write mode to 0's immediately superior

object (Os(j)) in the hierarchy.

or

Oj is not the root object and S is allowed to

rescind access permission to the root object in the

current state.

If condition (i) is met, then response is yes and the state

changes as follows:

(I) removal of an entry from the current access list

indicating that Si no longer has access to 0

in mode x.

(ti) removal of access perm'ssion for Si to 0 in

mode x from the access permission matrix.

Otherwise the response is no with no state change.

rule 8: create-object

Request is of the form (g, Sti Oji LU).

118

Subject Si generates an object. Si requests creation

(i.e., attachment) of an object, denoted 0NEW(H), having security
level Lu, directly below object 0. in the hierarchy

H (ONEW(H) E H(O.)).

If request is not of the proper form, then response is ? with
no state change.

Otherwise the following conditions are checked:

Mi) Si has current access to 0. in write or append

mode.

(ii) the security level Lu dominates the security level

of 0..3

If conditions (i) - (ii) are met, then response is yes and the

state changes as follows:

(i) the security level function is updated by adding the

ordered pair (0NEW(H)' Lu) (i.e., the security level

of 0NEW(H) is rerorded as Lu).

(ii) the object 0NEW(H) is added to the hierarchy such

that 0NEW(H) is directly below Oj(ONEW(H) £ H(Oj)).

Otherwise response is no with no state change.

rule 9: delete-object-group

Request ýs of the form (Si, 0.).

119

Subject S1 requests that object 0 be deleted (detached from

the hiera-,chy). This results in deletion of all objects in the

hierarchy which are inferion to 0..

If request is not uf the proper form, then response is ? with

no state change.

Otherwise the following condition is checked:

(i) Si has current write access to the object

immediately superior to O0j (Osj)) and Oj

is not the root object.

If condition (i) is met, then response is yes and the state

changes as follows:

(i) all entries in the current access list giving subjects

access to 0. or any object inferior to 0. in any
mode are removed from the current access list.

(ii) all entries in the access permission matrix giving

subjects access permission to 0. or any object

inferior to 0j in any mode are removed from the
access permission matrix.

(iii) O0 and all objects inferior to O are removed

from the hierarchy.

Otherwise response is no with no state change.

120

II
Ij

I

rule 10: change-subject-current-security-level

Request is of the form (St, Lu).

Subject Si requests that its current security level be

changed to L

If request is not of the proper form, then response is ? with

no state change.

Otherwise the following conditions are checked:

(1) Si is a trusted subject or if Si's security level

were changed to Lu. then the resulting state

would satisfy *-property.

(ii) the security level of Si dominates Lu

If conditions (i) - (ii) are met, then response is yes and the
state changes by changing the current security level of Si to L.

Otherwise response is no with no state change.

rule 11: change-object-security-level

Request is of the form (r, SI OP Lu)

Subject Si requests that the security level of object 0 be

changed to Lu.

If request is not of the proper form, then response is ? with

no state change.

121

Otherwise the following conditions are checked:

(i) S I is a trusted subject and the current security level

of S1 dominates the security level of 0

or

the current security level of S1 dominates Lu and

L dominates the security level of 0.

(ii) if any subject S has current access to 0. in

read or write mode, then the current security level

of S dominates Lu.

(iii) if Oj's security level were changed to Lu, then

the resulting state would satisfy *-property.

(iv) if O.'s security level were changed to Lu3 then

compatibility would be preserved in the hierarchy.

(v) Si is allowed to change Oj's security level.

If conditions (i) - (.v) are met then response is yes and the

state changes by changing the secu , level of O to Lu.

Otherwise response is no with no state change.

proofs

rule 1

Suppose v satisfies ss-property, *-property rel S', and

122

ds-property and Rk c R. RI(Rk, v) - (Dm, v*) with:

(i) v*-v or

(ii) v* - (b U (Sit Oj, r. Hi. f, H)

If (I), then v* satisfies ss-property, *-property, .d ds-property

since v does.

Suppose (ii). If (SI, 9j, r) c b, then v*- v. Suppose

(Sit %, Dr) b. Then, since fs(Sl) D fo(O) azcordlng to R1, v*

satisfies ss-property by theorem A7 and, since

f C(Sj) x fo(O) if SI c S' according to R1, v* satisfies
*-property rel S' by theorem A8 and, since r c M according

to Rl, v* satisfies ds-property by theorem A9.

Therefore RI is secure-state-preserving by corollary A3.

rule 2

Suppose v satisfies ss-property, *-property rel S', and

ds-property and Rk r R. R2 (Rk, v) - (Dm, v*) with

(i) v*=v or

(ii) v* - (bu(SI, Oj, a), t f, H)

Suppose (ii). If (Si, Oj, a) c b, then v* v. Suppose

(Sit Ot, a) d b. Then v* satisfies ss-property by theorem A7

and, since fi(O f (S l) if S, c S' according to R2,, v*

e atisfies *-property rel S' by theorem A8 and, since a c Mtj

123

according to R2, v* satisfies ds-property by theorem A9.

Therefore R2 is secure-state-preserving by corollary A3.

rule 3

Suppose v is a secure state and Rk e R.

Suppose v* = (b U (Sit O, e), M1, f, H) and (Si, Oj, a) i b.

lhen v* satisfies ss-property by theorem A7 and v* satisfies
*-property rel V by theorem A8 and, since e E Mij according to

R3, v* satisfies ds-property by theorem A9.

Therefore R3 is secure-state-preserving by corollary A3.

rule 4

Suppose v is a secure state and Rk c R.

Suppose v* = (b u (Si, 0j, j.), 11, f, H) and (Si, Oj, :) • b.

Then, since fs(SO) 0 fo(O) c.cording to R4, v* satisfies ss-property by

theorem A7 and, since f (S.) = fo(0.) if Si E S', v* satisfies
*-property rel S' Ly theorem A8 and, since w M.ij according to

R4, v* satisfies ds-property by theorem A9.

Therefore R4 is secure-state-preserving by corollary A3.

rule 5

Suppose v is a secure state.

124

According to R5 b* C b, M* M, and f* f f. Therefore

v* is a secure state and R5 is secure-state-preserving by

theorem AIO (iv).

rule 6

Suppose v is a secure state.

According to R6 b* * b and F1* = m U {x}. Therefor3 v* is

a secure state and P6 is secure-state-preserving by theorem AlO

(iv).

rule 7

Suppose v is a secure state.

According to R7 v* = v or v* = (b - (Si, 0., x, MN0itj - {x}, f, H).

If the latter then it is still the case that (S a, 0 , x) c b x c Mab
r7 is ss-property-preserving and *-property-preserving by theorem

A1O (i) and (iv). Therefore v* is a secure state and R7 is

secure-state-preserving.

rule 8

Suppose v is a secure state.

According to R8 b* = b and M* M M. Since (SX, ONEW(H), x) £ b

for any S• in S and x in A, v* is a secure state and R8

is secure-state-preserving.

125

rule 9

Suppose v is a secure state.

According to R9 if (Say 0a, b*, then xc Maa, so v*
is a secure state. Therefore R9 is secure-state-preserving.

rule 10

Suppose v is a secure state.

According to RIO if f* # f then f* f-.fff(Si)<- Lu and
"*10 (Rk, v) is true so v* is a secitre sLdte. Therefore RIO is

secure-state-preservi ng.

rule 11

Suppose v is a secure state.

According to RlI if f* f f then f* fl.fo(O) Lu and

11 (Rk, v) is true so v is a secure state. Therefore RlI is

secure-state-preserving.

126

REFERENCES

1. D. Elliott Bell and Leonard J. La Padula, "Secure Computer
Systems: Mathematical Foundations," ESD-TR-73-278, Vol. I.
AD 770 768, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, Massachusetts, November 1973.

2. Leonard J. La Padula and D. Elliott Bell, "Secure Computer
Systems: A Mathematical Model," ESD-TR-73-278, Vol. II,
AD 771 543, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, Massachusetts, November 1973.

3. D. Elliott Bell, "Secure Computer Systems: A Refinement of the
Mathematical Model," ESD-TR-73-278, Vol. III, AD 780 528,
Electronic Systems Division, Air Force Systems Command, Hanscom
AFB, Bedford, Massachusetts, April 1974.

4. Elliott I. Organick, The Multics Systems, The M!T Press,
Cambridge, Massachusetts, 1972.

5. Clark Weissman, "Security Controls in the ADEPT-50 Time-
Sharing System," AFIPS Conf. Proc. 35, FJCC 1969, 119-133.

6. B.W. Lampson, "Dynaic protection structures," AFIPS Conf. Proc.
35, FJCC 1960, 21-38.

7. J&.ds P. Ande son, "Computer Security Technology Planning Study,"
ESD-TR-73-51, Vol. 1, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, October
1972.

8. D. Elliott Bell and Leonard J. La Padula, "Secure Computer
Systems: Mathematical Foundations and Model," M74-244, The
MITRE Corporation, Bedford, Massachusetts, October 1974.

9. K.G. Walter et al., "Primitive Models for Computer Security,"
ESD-TR-74-11,,ETectronic Systems Division (MCIT), Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, January 1974.

10. W. Lee Schiller, "Design of a Security Kernel for the PDP-ll/45,"
ESD-TR-73-294, AD 772 808, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, December
1973.

127

7

11. Leroy A. Smith, "Architectures for Secure Computing System.l,"
ESD-TR-75-51, AD A009 221, Electronic Systems Division. Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts. April 1975.

12. Steven B. Lipner, "A Minicomputer Security Control System,"
MTP-I171, The MITRE Corporation, Bedford, Massachusetts,
February 1974.

13. Roger R. Schell, Peter J. Downey, and Gerald J. Popek,
"Preliminary Notes on the Design nf Secure Military Computer
Systems," MCI-73-1, Electronic Systems Division, Hanscom AFB,
Bedford, Massachusetts, January 1973.

14. R. Bisby, II and Gerald J. Popek, "Encapsulation: An Approach
to Operating System Security," USC/Information Sciences Institute,
Marina del Ray, California, October 1973.

15. D.K. Hslao, E.J. Kerr, and E.J. McCauley, III, "A Model for
Data Secure Systems (Part I)," Computer & Information Science
Researc~h Center, OSU-CICRC-TR-73-8, Ohio State University,
February 1974.

16. Gerald J. Popek and Charles S. Kline, "Verifiable Protection
Systems," Proceedings, 1975 International Conference on Reliable
Software, Los Angeles, April 20-23, 1975.

17. Peter G. Neumann et al., "On the Design of a Provably Secure
Operating System,prp-esented at the Tnternational Workshop
on Protection in Operating Systems, IRIA, August 1974.

18. Leonard J. La Padula and D. Elliott Bell, "Harmonious Cooperation
of Processes Operating on a Common Set of Data, ESD-TR-72-147,
Vol. Ill, AD 757 904, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, December
1972.

19. D. Elliott Bell and Edmund L. Burke, "A Software Validation
Technique for Certification: The Methodology," ESD-TR-75-54,
AD A009 849, Electronic Systems Division, Air Force Systems Command,
Hanscom AFB, Bedford, Massachusetts, April 1975.

20. Daniel F. Stork, "Downgrading in a Secure Multilevel Computer
System: The Formulary Concept," ESD-TR-75-62, AD AOII 696,
Electronic Systems Division, Air Force Systems Command, Hanscom
AFB, Bedford, Massachusetts, May 1975.

128
II1

21. B.W. Lampson, "A Noto on the Confinement Problem,"
Communications ACM 16 (1973). 613-615.

22. Jonathan K. Millen, "Security Kernel Validation in Practice,"
ESD-TR-75-54, Vol. II, Electronic Systems Division, Air Force
Systems Command, Hdnscom AFB. Bedford, Massachusetts,
June 1975.

23. Steven B. Lipner, "A Comment on the Confinement Problem,"
MTP-167, The MITRE Corporation, Bedford, Massachusetts,
November, 1975.

1

! 129

