a)

AD-A023 463

FIELD DATA REDUCTION SOFTWARE FOR UNIVAC
AN/UYK-15 AND UNIVAC 1616 COMPUTERS:
DESCRIPTION AND USER'S MANUAL

Naval Surface Weapons Center
White Oak, Silver Spring, Maryland

19 November 1975

\

DISTRIBUTED BY:

N

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

)

119133 - 1

NSWC/WOL /TR 7568

@HM CAL
REPDR‘T

WHITE OAK LABORATORY

NSWC/WOL/TR 7568

FIELD DATA REDUCTION SOFTWARE FOR UNIVAC AN/UYK-15 AND UNIVAC 1616 COMPUTERS:

an)
Ne
<
o
CI DESCRIPTION OF USER'S MANUAL |
C:
T,
=N
~

BY
M.L. Warner «
E.G. Jacques 19 NOVEMBER 1975

NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
SILVER SPRING, MARYLAND 20910 |

@ Approved for public release; distribution unlimited

NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MARYLAND 20910

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

PARTMENT OF COMMERCE
s glERINGFIELD VA. 22181

LT TR R A ——— ——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NOJ

NSWC/WOL/TR 75-68

3. RECIPIENT'S CATALOG NUMBER

CFieyS Bata ‘Heduction Software for UNIVAC AN/UYK-
15 and UNIVAC 1616 Computers: Description and

S. TYPE OF REPORT & PERIOD COVERED

Final Report

User's Manual

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
M. L. Warner and E. G. Jacques

S CONTRACT OR GRANT NUMBER(s)

9 PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Surface Weapons Center
White Oak Laboratory

White Oak, Silver Spring, Maryland 20910

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

S4740/18723-4-301

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

19 November 1975

13. NUMBER OF PAGES

T MONITORING AGENCY NAME & ADDRESS(!!f df from C

ling Office)

18. SECURITY CLASS. (of this report)
Unclassified

Sa. %ck ASSIFICATION/ DOWNGRADING
HEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different frem Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side {{ necessary and identify by block number)

Data Reduction -
Data Handling
Data Handling Equipment
AN/UYK-15
yters

‘ 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)

is-used to gather and reduce a

This software package describes a system—that—is
large amount of field test data. The method used
single 9-track magnetic tape is first described.

engineers and scientists on the project.

to reduce the data onto a
Then a method is described

to transform the reduced data into data that can be easily used by the

DD 53N 1473

EDITION OF | NOV 65 1S OBSOLETE
S/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ("hen Data Entered)

mmm Tm——— g

-t

- - — i ..--‘

NSWC/WOL/TR 75-68

NSWC/WOL TR 75-68 19 November 1975

Field Data Reduction Software for UNIVAC AN/UYK-15 and UNIVAC 1616 Computers:
Description and User's Manual

This publication should be of interest to those persons who have large amounts

of field data to record and distribute to other people. This field data reduction
scheme is readily adaptable to any number of inputs in any configuration. The
software described herein was developed uncer the tigh Energy Laser Program at

the Naval Surface Weapons Center, White Oak Laboratory, for the UNIVAC AN/UYK-15,
and is upward compatib'e with the AN/UYK-20. This publication describes the
software as it is on 19 November 1975. Although no major changes are anticipated,
this software is being updated as need requires. A follow-on report that
incorporates the results of operational experience is planned.

This publication is intended to aid in the use and modification of this software.
Source code for this software may be acquired through the Naval Surface Weapons
Center, White Oak Laboratory, Code WA-12. This work was done under Task Number
S4740/18723-4-301.

ACCESSION for /
ms White S227ilr

(11 puif Sexter O
UNARROUACED o
JUSTIFICATION .ooonnecremncsmmeine

" I
SISTRIZUTION/AVAILPGILI i\ CODES

PRl AvAIL a3/ SPECIAL

,/;[‘.,,_

Fv—v-..-.«,,.. —

NSWC/WOL/TR 75-68

CONTENTS
Page
1.0 FORVOAUCTION - uuvs svssmanvnvesss sunm coinioo s s emmn ¥asemessse 1
2.0 Introduction for the Field Data Software................... 1
3.0 PREFDR Program Descriptioncceeniieenniinnnnnnnnns 6
4.0 FDR Program Descriptionceiiiiiniiiiiiieennnnn 10
5.0 User's Guide for PREFDRcccininiiiinniiieiennnnennnn 19
5.1 Program SEtuPccecconsscrscrccscccssascasscccsscssncse 19
5.2 Operator Commands/Inputs 5.8 Bhedrd B e TSRS OISR 19
6.0 User's Guide for FDRccccvecverccocncccccsansccccnes 21
6.1 Program SEtUPc.cccvvcccccvncccncnsasre secesssscenes 2
6.2 Operator Commands/Inputsceeenniiiennennnnnn. 22
6.3 Assembly Language Subroutines..................ooioinnn. 24
7.0 Introduction for User's Data Tape Sofiware 26
8.0 FETCH Program Descriptionooiiinniiiiiiannnnn, 27
8.1 User's Main Programcoceuueeenunenncnnnecannnnnns 27
8.2 FETCHI - The Initialization Subroutine 28
8.3 FETCHT - The Time and Value Update Routine 28
8.4 FETCHV - The Code Value Routineooinnion. 30
8.5 MTIPE and MTIOF - The Input/Output Control Routines 30
8.6 DFLOAT, BDLWRD, IFIELD, and LOGIC - General Utility
ROUBINIOS o oo coco o e e o006 5555 68765 66w s min's o nis seinie s nonsssssss 3N
8.7 PRINT1 and PRINT2 - The Optional Print Routines 34
9.0 User's Guide to FETCHc.iiriiiniennnrenencecrnnncnnenns 34
2
T — R —— W—

- ——— - ——

NSWC/WOL/TR 75-68
CONTENTS (Continued)

Page
9.1 Program SELUPceeeeeecsenranaannsnncanrcanaancans 34
9.2 Major Subroutine Callsceevveeinnnennrannnnnnns 36
9.3 Special Supporting Subroutine CalYS. . cuvssnvsnsniamwnns 37
9.4 General Use Routine CallS......ovevueencnnenennneennns 37
9.5 Optional Print Subroutine CallS ..sesnassnsniensemeesos 39
10.0 Program Flow Chartscceeeeeenvnnnnnnannnannenens 40

ILLUSTRATIONS

Figure Page
2.1 A Typical Hardware Configurationcoeenvnes 5
3.3 The FDR TAbl@S +vvvvvevneecnnennsnsseasssannansoasesans 8
3.2 Multiplexing Descriptorsc.ceeeinnnunneannnnnns 9
3.3 The Calibration Tablecveeureerieenennneeneenens n
4.1 The Data Structure for FBR......cocvereniennnnnnnennns 13
4.2 The Input Buffer Data Structurecoceennns 15
4.3 FQR_ﬂégnePic Iipe Format";;:....:;; 17
8.1 10$$ Parameter Packetceeiiiiiiiiiiiiiiiianns . 32
10.1 PREFDR Flow Chartccceeiiernneneenneccncacsacannns M
10.2 MTIO FIOoW Chartceecececesncecccccoasancccnsccncs 42
10.3 SCAN Flow ChHartcccoecsessocuccsosssccssansensse 43
10.4 FOR Flow Chartcceceieeecineececearcnsccnccacsnns a4
10.5 RTDS F1OW Chartceceocececscoceccorocssocsassoancs 45

3
== s ——— AT S

— —— R

—,

Figure

10.6

10,

7

10.8

10,
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10,
10.
10,
10.

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

NSWC/WOL/TR 75-68

CONTENTS (Continued)

ILLUSTRATIONS

IBR Flow Chartceveesranearrarssscinsassosnnnnes
PCMIO Flow Chart ,...ceeenenascracssnnssnsrsnsnsancans
CYCLE Flow Chartccceevnnnanaseresaseisancanannns
STRIP Flow Chartcecerasearrrrercanrannascnnneses
MONTOR Flow Chartcevevnvssraasssrsrnressneanccans
COMON Flow Chartiveeereennnnenssansssnnansnsnnnes
CONVRT Flow Chartcveeennssncnnrnsnnanrsns cavea
CLOCK Flow Charteeevevasrvsssaansseasatsasnannes
LOGIC Flow Chartcsocevrennnarsttnnsanannrssanannns
FETCHI Flow Chartceieesrarrnrnanarsnsesasannnces
FETCHT Flow Chartcecescerernssnerearsascaqannones
FETCHV Flow Chartcovvqeareranscannnanes svasnnas
IFIELD Flow Chartcevcvrnrrrvrssvcnnccarannorcnnes
MTIPE Flow Chartceieeevnsrnnrisnsrcssnsreacrenanes
DFLOAT Flow Chartceeeserannecccscncncarninsnnnns
DBLWRD Flow Chartccvensvsnnnsnsnsnsrorsanrencnces
MTIOF Flow Chartcecveenenosnnnanresaccnnnranecans
PRINT] Flow Chartevcveevsnennnersnrernenanananeas
PRINT2 Flow Chart P ST T

Page

46
47
48
50
51
52
53
54
55
556
57
58
59
60
61
62
63
64
65

-

U

Table
1.1
1.2
8.1

NSWC/WOL/TR 75-68

CONTENTS (Continued)

TABLES
FDR ROULINGS +vvvverrsnsossnsnosassasasssssasasanscosecs
FETCH ROULINGS ..vvevuevsrcnsosnesscsasassssnassscnnnccas
Working Code Value Table RS SR e e A
5

Page

—

NSWC/WOL/TR 75-68

1.0 INTRODUCTION

1.1 The data generated during the High Energy Laser (HEL) field test is reduced
to the User's data format by two major software packages. They are the Field
Data Reducer (FDR) package and the Fetch Package (FETCH). The FDR package is not
only responsible for the complex data handling instrumentation system, hut also
responsible for extracti and merging the field test data onto a single standarzZ
nine-track magnetic tape (Mag Tape). The Fetch package, using the tape generated
by the FDR, extracts the data requested by a project scientist (User). Then
using the User's specified format, transfers the data onto another magnetic tape.

1.2 Both FDR and FETCH are written in a modular format for greater ease in
programming anda debugging., Tables 1.1 and 1.2 are a listing of the routines and
subroutines used in the two packages. The FDR package is broken into two
independent programs - PREFDR, which sets up the tables that reflect the config-
uration of the instrumentation system, and FDR, which does the data processing.
FDR is itself broken into two major routines - RTDS, which sets up the data
structure to be used during processing and CYCLE, which does the actual processing
using subroutines to handle all discrete tasks which occur more than once, €.9.,
digital tape drive input and output (MTIO), program timing (CLOCK), program
monitoring (MONTOR). FETCH is similarly broken into major routines: initiali-
zation (FETCHI), time and value up date (FETCHT), and calibration of the data
(FETCHV). These routines make extensive use of the other subroutines listed in
Table 1.2.

2.0 Field Data Reducer (FDR) Software

2.1 The programs PREFDR and FDR are responsible for describing and handling
data from a complex instrumentation system that may have its configuration
changed from time to time. Initially, PREFDR allows the user to describe the
hardware configuration in tabular form. These tables are then saved for use by
FDR. The FDR program then uses the defined hardware configuration to extract
data from the input stream. The extracted dat= is tested for a change in value,

sorted, and merged with data previously extracted. The final processed data
stream is stored on a standarc computer magnetic tape.

2.2 Figure 2.1 describes a typical hardware configuration. As shown in the
figure the system is composed of three parts. The first part is the Pulse-Code
Modulation (PCM) instrumentation system, The last partin between is an

interface between the instrumentation and the computer system. Because of the
completeness of the interface, the computer can control the entire data reduction
process without operator assistance.

2.3 It is the purpose of the computer to generate a tape which can be used Dy
other programs for analysis reasons. The format of this data tape and the method
of implementation are the main topic of this document. The program should
represent the data as accurately as possible and yet minimize the amount of
storage necessary to represent that data. It is also desirable to minimize the
amount of time necessary to carry out the above process. Therefore, a program
which handles many types of data and stores these data on a minimum of tape in a
minimum amount of time is desired.

i |

PE———

NSWC/WOL/TR 75-68

TABLE 1.1
FDR ROUTINES

PREFDR (Preliminary setup for Field Data Reducer) - sets up tables reflecting the
instrumentation system
configuration

FDR (Field Data Reducer) - master program for data reduction

RTDS (Real Time Data Structure) - establishes the data structures used in FDR
IBR (Input Buffer Routine) - system loading label for IBI and 1BU

IBI (Input Buffer Initialization) - sets up buffer data structure

IBU (Input Buffer Update) - determin: which input data to process, checks its
status and attaches the time at which the date was
gathered to the data block

PCMIO (PCM input/output) - master routine for controlling the input data stream
CYCLE - does the real time processing of input data

STRIP - real time output of data onto the electrostatic printer instead of
magnetic tape

MONTOR - Monitors and displays program status and allows the operator to interact
with the FDR program

COMON (Common) - establishes a common storage area for linkage between FORTRAN
and ULTRA routines

CONVRT - converts from binary to decimal and decimal to binary for several coding
schemes (see 4.13.2)

CLOCK - real time clock control

LOGIC - supplies logic functions not available in the UYK-15 FORTRAN (see 4.13.4)
MTIO - real time magnetic tape input/output control routine

SCAN - assembly language routine which scans parameter strings

FUN (Find Unit) - retrieves the UNIT jdentification and characterization
information associated with a channel

FNID (Find IDENT) - retrieves the IDENT identification information associated
with a UNIT

FNCOD {Find CODE) - retrieves the data value for a particular CODE in an IDENT

WB - control routine for the Wide Band analog recorder

SM - control routine for the Switch Matrix

DC - routine to maintain the program Digital Clock and control the time code reader

[PT—— — e —————— e ——

NSWC/WOL/TR 75-68
Table 1.1 (cont'd)
S (synchronizer routine) - monitors and controls the bit and frame synchronizers

UNITP (Unit Processor) - returns a list of all IDENTS associated with the
specified UNIT

IDP (Ident Processor) - returns a data value for each CODE in an IDENT
MRGR (merger) - merges input data for output on a single magnetic tape
MIUN (Merge input unit)
MOUN (Merge output unit)

— ——— —

- .- - —————— —————

NSWC/WOL/TR 75-68

TABLE 1.2
FETCH SUBROUTINES

FETCHI (FETCH initialization) - reads the data description tables from the IDATA
tape

FETCHT (FETCH Time) - maintains the input data time

FETCHV (FETCH Value) - calibrates data values and outputs them in user's format
PRINT1 - routine for printing tables

PRINT2 - routine for printing user codes and hardware descriptions

MTIOF - magnetic tape input/output routine

MTIPE - checks for parity errors and controls data stream through MTIOF

DBLWRD - handles double word addition, subtraction, and storage

DFLOAT - changes a double word integer to floating point

IFIELD - removes and right justifies a specified bit field

NSWC/WOL/TR 75—-68

INCOMING DATA

i U
—

—— -

TIME
MUX MUX MUX CODE
1 2 H GENER-
ATOR
WIDE
RUN TIME BAND
ANALOG
POST -RUN TAPE
R -~
\\
-~ -~ j
|
SWITCH SWITCH | TIME
— DATA FLOW MATRIX 1 ———— MATRIX 2 1 CODE
7X2 7X2 ' | READER
= == == = = CONTROL | |
C |
T l | | I
(I |)
BIT BIT 1
SYNCHRONIZERJ= = = = = = gYNcunomzm Iy \
1]
|
INSTRUMENTATION ! | T : | |
FRAME | FRAME 1y |
SYNCHRONIZER jg == == =} == = «94 SYNCHRONIZER I |
1
I 1.
| 1
1 -
1 1
I L.
SYNCHRONIZER | ANALOG
INTERFACE TAPE STORE
CONTROLLER L — — _|conTRoLLER
e ——— g St b I
DATA HANDLING
CRT A 1
DISPLAY 8 DIsK
AN/UYK 15
COMPUTER
Y

MAG
TAPE

CARD
READER

PLOTTER

FIG. 2.1 A TYPICAL HARDWARE CONFIGURATION

10

ELECTROSTATIL
PRINTER

NSWC/WOL/TR 75-68

2.4 One further consideration is that since the nature of an instrumentation
system is to assist in diagnosis and documentation of a series of events, the
data requirements will certainly change as time passes. Therefore, tremendous
flexibility is needed in defining the data. The program should allow for
changes to be made in the incoming data without changes to the actual software
programs. With such a program, the users may easily change the characteristics
of the incoming data with full knowledge that these changes can be accounted for
by the software.

2.5 The data flow of the instrumentation/data hand1ing system will now be
described. Data from different types of sensors are multiplexed, digitized

and converted into a PCM format (MUX). The MUX data are then recorded on one

of 13 tracks of a wide-band (WB) akalog recorder. The 14th track has a time
code recorded on it from the Time Ccde Generator. The above events occur during
a test run. The WB analog tape recorder bandwidth is necessary to record the
widest of the MUX bandwidths. After the rur has been completed, the instrumenta-
tion system is able to begin reduction and storage of the recorded data. The
analog recorder can be played back at numerous speeds. The idea is to run the
analog recorder back as fast as possible without overloading the ccmputer. The
switch matrix routes any channel of data to one of two bit synchronizers. The
bit synchronizer will preprocess the WB information for use by the frame
synchronizer. The frame synchronizer then converts the PCM stream into data
words. This data is read into the computer, merged and reduced, then written

cn the digital tape for storage. This sequence continues until all the data

on one track of the WB is exhausted, thus completing one pass. As the data from
each pass is written on the digital tape, it is merged with data from all previous
passes. The above process is continued for each pass until data is exhausted.
The final pass tape, containing all of the data, may then be used for analysis
purposes.

2.6 The data format chosen to minimize tape usage was to record data changes
only when they occur. To protect a tape from a parity error and to allow
searching, an absolute data value is stored on tape at regular intervals. The
above recording methods will be referred to by the names CHANGE BLOCK (for the
data change) and FIXED BLOCK (for the absolute data).

2.7 To enhance execution time of the data formating process, all of the routines
involved in the real-time process were written in assembly language. Because
many data items are sampled by the same multiplexer, all of these data items have
the same characteristics. Thus by grouping data items, the execution time of the
program can be minimized, since they all have the same characteristics when
processed.

2.8 With the above ground rules, this repcrt will describe an implementation of
this data management and reduction scheme into a real-time program.

3.0 PREFDR Program Description
3.1 The instrumentation system, described in the Introduction to this manual,
by necessity, must be allowed to change without changing the software. To

accomplish this, a series of tables are used to describe the entire hardware
setup of the instrumentation system. By modifying these tables, one may reflect

11

NSWC/WOL/TR 75-68

a hardware change in the system. PREFDR allows a user to modify these tables
in as simple as possible a method. The program also checks for bounds on the
parameters and number of parameters fed in by the user. Once the user thinks
all of the tables have been set up properly, PREFDR checks 11nkage between
tables to assure that there are no deficiencies. PREFDR allows the user to
generate tables from scratch, modify existing tables, 1ist tables, and output
tables to a magnetic tape,

3.2 Figure 3.1 represents the tables needed to describe the hardware. The
first table, HEADER, contains the test number and ccmments on the test and test
conditions. The test number may have up to 20 aipha numeric characters. The
remaining 20 items will be numeric characters which may be used by the test
director to 1ist informative test conditions.

3.3 The other tables describe the data flow and characteristics. Data {tems
are called CODES; groups of CODES are called IDENTS; groups of IDENTS make up
UNITS; and a UNIT {s connected to a particular TRACK on the WB analog recorder;
and finally a TRACK is fed into a computer channel (CHAN). With this series of
tables, data can be described, grouped, and routed for input to the computer.

3.4 The channel table (CHTAB) contains a 1ist of analog recorder track numbers
(TRACK). This table defines the order in which the data should be extracted
from the analog tape. Two consecutive table entries of zero means no more TRACK
assignments.

3.5 The TRACK table (TRKTAB) defines which multiplexer (UNIT) 1s connected to a
particular analog tape track. A UNIT equal to zero terminates the table.

3.6 The unit table (UNTAB) contains a complete description of a particular unit,
i.e., multiplexer. This information includes a designation number (UNIT); the
number of frames sampled per second (RATE); the number of bits per word (BPW);
the number of words per frame (WPF); the number of least significant bits (LSB);
a 32 bit frame sync. pattern (FSP) (for less than 32 bits the pattern is right
justified and leading zeros inserted to £111 the storage location); the number
of significant bits in the FSP (BPFSP); and the alternate complement code word
(ACC). The ACC words high order bit (15) declares that the FSP will be comple-
mented every other frame if it is high (equals 1); otherwise no complement
operation will be performed on FSP. The low order three bits of the ACC word
(0-2) describe the format of the data from the analog recorder. A zero entry in
UNIT terminates the table.

3.7 The ident table (IDTAB) defines group designators for data. By grouping
data items that are similar in characteristics, 1.e., word size, sample rate,

it is hoped to minimize the size of the user's tape. The identifier (IDENT)
designation is defined in this table along with the UNIT it represents and a
special IDENT processor flag (IPROC). A zer: entry in IDTAB terminates the table.

3.8 The code table (CODTAB) defines the characteristics of the data items (CODE).
Information contained in the table is a code designator (CODE); an IDENT reference,
a super/sub multiplexing descriptor (SS) (see Figure 3.2), the word within the
data frame which represents the CODE (WORD); and a calibration pointer (CAL). If
SS 1s zero, multiplexing is performed. If SS is positive, the low order byte

12

CHTAB

CODTAB

CALTAB

IDENT

NSWCT/WOL/R 75—68

TRACK
CODE UNIT CHAN
:=:1
—— ‘ ANAL o
- | Mux NALDG >e COMPUTER
| comm———
) —:
CONTENTS TO BE DEFINED BY THE USER
CHAN [T yRACK
[}
(-]
TRACK [OrrT
o
UNIT RATE BPW WPF Ls8 FSP BPFSP ACC
o
IDENT UNIT IPROC
o
CODE IDENT ss WORD CAL
©
CAL [TENGINE- | SCALAR
ERING UNITS CHAN _ ORDER FOR TRACKS TO BE READ
UNITS TRACK _ ANALOG RECORDER TRACK
UNIT _ MULTIPLEXER REFERENCE
RATE _ FRAMES PER SECOND
WPF — WORDS PER FRAME
BPW — BITS PER WORD
LS8 _ LEAST SIGNIFICANT BIT
FSP _ FRAME SYNC PATTERN {2 WORDS)
BPFSP _ BITS PER FSP
ACC _ ALTERNATE COMPLIMENT CODE AND FORMAT
IDENT _ CODE GROUP IDENTIFIFR
IPROC _ IDENT PROCESSOR REFERENCE
CODE _ DATA ITEM REFERENCE
ss _ SUPER/SUB MULTIPLEX FLAG
WORD _ FRAME POSITION OF CODE
CAL _ CALIBRATION ARRAY POINTER
SCALAR _ SCALAR REPRESENTATION OF DATA

ENGINEERING - SCALAR'S EQUIVALENT UNITS

FIG. 3.1 THE FDR TABLES

13

16

23

24

1*

16

23

1

24

%
|

1

16

23

2

4

SUB-MUX
FRAME NUMBER

16

23

24

NSWCMWOL/TR 75-68

NORMAL DATA FRAME (EACH ITEM REPRESENTED ONCE)

SUPER-MULTIPLEXED DATA FRAME (SOME ITEMS REPRESENTED MORE THAN ONCE)

SS =-(2)

SUB-MULTIPL
SS =

. NOTE:

EXED DATA FRAME (SOME ITEMS REPRESENTED ONCE IN SEVERAL FRAMES)
2/10R 2

* SHOWS THE ITEM UNDER DISCUSSION

FIG. 3.2 MULTIPLEXING DESCRIPTORS

14

S —

NSWC/WOL/TR 75-68

describes which frame the code occurred in and the high order byte describes

the number of frames in a sub-multiplexed frame. If SS is negative, the absolute
value of SS is the number of super multiplexed samples in a frame. The first
zero entry in CODTAB terminates the table. If CAL is zero, the data is discrete;
otherwise, CAL is a pointer to CALTAB.

3.9 The calibration table (CALTAB) contains variable length 1ists of calibra-
tion cata. The end of a 1ist is detected by 2 decreasing scalar value (Figure
3.3). The lists are the digital representation (SCALAR) of analog values
(ENGINEERING) at a given point. Thus by using N entries of CALTAB, an N point
calibration can be performed on the data (Figure 3.3). By using linear interpola-
tion, a scalar number can be converted into a number of engineering units. The
engineering units may be volts, degrees, pressure, etc. Without a calibration
table, the digital representation of analog information may have no real-world
significance.

3.10 Operationally, the user has a choice of nine commands (see Section 5.2),
which may be typed into the keyboard. If PREFDR detects the proper number of
parameters and the correct ranges for each parameter, it accepts -that call and
modifies the tables appropriately. If an error is detected, PREFDR generates an
error message. There are calls which allow the user to exi{t the program, 1ist
the tables on the printer, and output the tables to a tape.

3.11 The programs necessary to load PREFDR 2re as follows:
PREFDR - Main FORTRAN routine which edits tables.
SCAN - Ultra routine which scans pzrameter strings.
4.0 FDR Program Description

4.1 FDR is the main data handling program for the instrumentation system. It is
composed of many routines and executes in two phases, whose main distinction is
the operational environment. The first phase is a process of setting up tables,
data structures, initialization, etc. This phase is not time critical and can

be written in FORTRAN. The second phase is the actual reai-time data handling
process. Because this process is time critical, it is written in assembly
language. Together these two phases take turns setting up the program properly
for a particular pass over the WB analog recorder, then extracting data from the
WB recorder for merging and storage.

4.2 The first phase may simply be described as bookkeeping. Common 1inkages
between assembly routine and FDR are first established. Program variables aie
next initialized. Then operator interaction begins via the keyboard. The
operator may select a time window on each track of data for playback. Next the
operator can select the number of on-1ine Bit/Frame synchronizer combinations.
The pass number can also be specified in cases where the operator wishes to
restart a partially completed run. Next the operator specifies the record and
playback speeds of the analog recorder. From this point the operator specifies
whether he wishes to strip out data, or store the data on Mag Tape. In the case
of storing the data, the FDR then proceeds setting up the run. If strip out is
desired, the operator must specify the time scale and range of the data to be
stripped out.

15

PP ———— -

B]

CALIBRATION
INDEX 1

2
3

10
1
12
13
14
15

16

17

18

19

21

23

24

NSWC/WOL/TR 75—-68
CALTAB
SCALAR ENGINEERING
VALUE VALUE
0 -100 l
2 POINT CALIBRATION
255 +100 }
0 -500
128 0 3POINT CALIBRATION
255 +500
(i} -100
10 0
100 +10
6 POINT CALIBRATION
150 +20
200 +30
255 +40
0 +50 :
100 +60
4 POINT CALIBRATION
200 +70
255 +75
0 0.05
200 0
400 +0.05
800 +1.0
1600 +2.0 9 POINT CALIBRATION
2000 +3.0
2500 +5.0
3000 +7.0
4095 +10.0

FIGURE 3.3 THE CALIBRATION TABLE

16

NSWC/WOL/TR 75-68

4.3 The first phase then continues by clearing the synchronizers, rewinding the
analog recorder, and rewinding both digital tape units. FDR assigns the input

and outout digital tape units for the particular pass. Figure 4.1 shows the
input/output configuration for various passes. If a termination flag is set,

the program returns to the operating system at this point after outputting the
unit number of the unit holding the user's tape to the operator. Otherwise the
FDR program assigns digital input and output units as 2 function of which pass

is in process. The output tape is now rewound for table processing. The tables
are read in from the input unit and output to the output unit. If an error occurs
it is displayed to the operator.

4.4 At this point FDR sets up a data structure describing the data flow for each
Rit/Frame synchronizer combination. This data structure will later allow the
eal-time routine to determine how to input a cata frame and reformat the data
and where to store the data. Now FDR also sets up the input buffers so that the
data for each Bit/Frame synchronizer combination may be read into core in a
continuous manner. A monitor program for system status check and display and
operator intervention is also initialized at this time. FDR then initializes

the strip-out routines if that option is requested. Up until this point FDR has
been doing general program initialization and computer peripheral setups. From
this point FDR begins to initialize instrumentation units.

4.5 FDR begins setting up the instrumentation units by setting up the Bit/Frame
Synchronizer combinations, setting.the switch matrix, then making sure the Time
Code Reader is in remote. Then a high-speed search is started on the analog
recorder for a time several seconds before the earliest time on the tracks to be
read. When this point has been reached, the time code reader's input filter is
set up for the proper bandwidth. Now the analog recorder is turned on for a read.
When the recorder has phase locked, the time code reader starts reading time.

When the reader has no errors, the Bit/Frame synchronizer combinations are checked
for sync. errors. If there are no sync. errors, read operations are commenced on
each Bit/Frame synchronizer combination.

4.6 FDR then calls the real-time data precessor {CYCLE and STRIP), which handles
data until the data on all input channels has been exhausted. Upon returning

from the real-time data processor, FDR checks the status of the process. If the
process was stopped because of a data merging backlog, a read on the recorder is
restarted and the real-time process is again started. If the program cannot keep
up with the incoming data (data bound) the entire process is restarted at the next
slower WB tape speed. Other statuses represent normal return or operator inter-
vention. The operator can terminate a pass early, he can abort the entire process
and restart from the beginning of FDR, or he can restart the latest pass.

4.7 The second phase of FDR involves the use of several assembly language sub-
routines. These routines shall be discussed individually. Their purposes are
for table formation/table lookup (RTDS), data base management (IBR), device
control (°CMIO), real-time data processing (CYCLE and STRIP), process monitor
(MONTO®,, and various utility functions (COMON, CONVRT, CLOCK, LOGIC and MTIO).

4.3 RTNS consists of a major routine and several subroutines used to manage the

formation and use of the data structure used during program execution. Using its
calling parameters - a frame sync. number, and a table pointer - RTDS will use the

17

NSWC/WOL/TR 7568

CHPNT (n + 1) 44*
K
IDPNT (n + 1)

4 '
COPNT (n +1) —
PVAL (10r 2)

LVAL (10r2)
CODE .
ss "
WORD .
CAL ¢
CDPNT (n)
IDENT .
IPROC .
IDMAX (2)
IDPNT (n)
RATE .
BPW .
WPF o
LS8 .
ESP (2) .
BPFSP .
AccC . |
TRACK A
CHPNT (n)

*SAME DEFINITION AS PREFDR TABLES

CHPNT
IDPNT
CDPNT
IDMAX
LVAL
PVAL

POINTER TO NEXT CHANNEL IN DATA STRUCTURE
POINTER TO NEXT IDENT IN DATA STRUCTURE
POINTER TO NEXT CODE IN DATA STRUCTURE
TIME OF NEXT COMPLETE UP-DATE OF IDENT
LAST VALUE OF CODE

PRESENT VALUE OF CODE

FIG. 4.1 THE DATA STRUCTURE FOR FDR

18

e r—— e e

————r

NSWC/WOL/TR 75-68

information contained in the tables generated by PREFDR to form a real-time data
structure. The data structure is built in such a way as to allow ease of use
once it is entered. Figure 4.1 is a simplistic representation of the data
structure. The synchronizer channel number of interest is found by linking n
(channel number) times through the channel pointers (CHPNT). If 2 zero is
encountered, no more channels are connected. Once 2 channel is located, the
next nine items encountered describe the multiplexer. After this is a series of
IDENT pointers. The next four items after the IDPNT describe the IDENT. The
CDPNT follows linking all of the codes associated with a particular IDENT.
Within RTDS are several routines which are used to scan the data structure.

The routines are:

a. FUN, which discloses the UNIT information associated with the channel
under consideration.

b. FNID, which discloses the IDENT information associated with the UNIT
under consideration, and

c. FNCOD, which discloses the CODE information associated with the IDENT.

when any of these routines returns a zero value, that particular information is
exahusted (i.e., a zero pointer). It may be noted that the data structure is
up-side-down (Figure 4.1). This is due to the core optimization routine that
assigns unused core as input buffers. RTDS also modifies the PREFDR Table
CODTAB by adding to the WORD column a high order byte which indicates the
position within an IDENT that that code represents.

4.9 The next set of routines involves data base management (IBR) of the input
buffers. Because the host computer has a very powerful 1/0 structure, adopting
a data structure (Figure 4.2) for the input buffers allows the computer channel
to fill a buffer, then automatically go to the next input buffer without program
intervention. As shown in Figure 4.2 a storage area of about 2000 words is
divided into a header and individual buffers. Each buffer contains one frame

of data from a frame synchronizer and is linked to the next buffer in succession
by a pointer so that the buffers form a continuous loop. The buffer header is a
small ten word table which allows IBR to keep track of happenings and point to
the input buffer area. The input buffer frame pointers allow the I/0 channel

to continuously run with no program intervention.

4.9.1 IBR consists of two routines: IBI and IBU. IBI sets up the input data
structure. IBU finds the next unprocessed input buffer, computes current
status, checks if the program is data bound, and checks for data termination.
IBU data decides which input buffer should be processed provided more than one
channel is connected to the computer.

4.10 The next necessary routine is for device control (PCMIO). This routine is

used to initialize and operate all non-standard devices connected to the host
computer. The devices controlled and their respective control routines (parentheses)
are the Wide Band Analog Recorder (WB), the switch matrix (SM), the digital clock

(time code reader) (DC), and the bit and frame synchronizers (S). If PCMIO
initiates operations on the above devices and the operation has not been completed
within one second, an error is output to the operator.

19

T L AT M ——" . ——

NSWC/WOL/TR 7568

RATE

LTIME (2)

BPNT

SIZE

NUMBER BUFFER HEADER

CiBA

PIBA

BSTATUS

TIME (2)

FN=0

DATA

STATUS

NFA
INPUT BUFFER

TIME (2)

FN=1

T ——

DATA

STATUS

NFA

RATE - MILLISEC/FRAME

LTIME - TIME OF LAST BUFFER PROCESSED
SPNT - POINTER TO BUFFER AREA

SIZE - NUMBER OF DATA WORDS

NUMBER - NUMBER OF LINKED INPUT BUFFERS
CUBA . CURRENT UNPROCESSED BUFFER ADDRESS
CIBA . CURRENT INPUT BUFFER ADDRESS
PIBA - PREVIOUS INPUT BUFFER ADDRESS
BSTATUS - INPUT BUFFER STATUS

TIME - TIME DATA READ

DATA - VALUES OF INFORMATION READ
STATUS . STATUS OF SYNCHRONIZERS

NFA - NEXT FRAME ADDRESS

FN FRAME NUMBER

FIG. 4.2 THE INPUT BUFFER DATA STRUCTURE

20

- S T T — e —

NSWC/WOL/TR 75-68

4.10.1 WB controls the analog recorder by sending a command to it then reading
jts status. If the command and status do not agree, the command is reinitiated
until it is complied with, then the status {s returned to the calling routine.

4.10.2 SM is controlled by giviny it the number of channels connected. SM

then calls FUN to determine what track is associated with a particular channel
and outputs the proper commands to achieve the desired configuration. No status
is returned to the user from SM.

4.10.3 DC has several modes of operation. DC can return an immediate time from
the clock. It can cause the time to be updated whenever the time changes. DC
will continue updating the time until another operation is initiated on its
channel. It can setup the time code Reader's input filter (This is necessary
when the playback speed of the WB is different from the record speed.). Finally
DC can master clear the contreller.

4.10.4 S, the final section of PCMIO, concerns the synchronizers. This section
can request status from the Bit/Frame synchronizer and master clear the controller.
This section can also write instructions to the bit and frame synchronizers by
making calls to FUN for the necessary information. Finally, a read operation

can be initiated on a channel. This causes a continuous read of data into the
computer input buffers described in IBR. This read operation can only be
terminated by executing another function on that channel. Otherwise the

channel will read as long as data is available and DC will continue the time
updating until another operation is initiated on its channel.

4.11 The routine responsible for the incoming real-time data is CYCLE, which
contains several subroutines which perform operations on the data (UNITP, IDP,
MRGR, MIUN, and MCUN). CYCLE together with a routine for displaying data on a
raster scan device (STRIP) perform the actual data handling functions. CYCLE
calls IBU for an unprocessed buffer and its status, checks the time of the buffer
against the time interval during which the data should be processed, checks
system status for operator or abnormal happenings, and checks the status of the
actual frame of data. If there is no data available MONTOR is called and a
system status is displayed. If data is available, CYCLE calls FUN with the
channel the data was retrieved from making 21l of the UNIT parameters available.
UNITP is then called and procer is to breakdown the data frame into IDENTS by
calling FNID. Once FNID is ce.led, the ident is processed using IDP. 1DP

then breaks the IDENT into CODE's using calls to FNCOD. IDP accumulates infor-
mation for each CODE in an IDENT. Then if the accumulated data block (one frame)
is to be stripped out, STRIP is called; otherwise, the data is given to a routine
which merges input data with the BLOCK and outputs the resulting cata (MRGR).

If the input data is exhausted and no strip out was being performed any data
remaining on the input unit is copied onto the output tape unit. MRGR operates
on the data blocks by comparing their respective times. The result is an output
stream of blocks with monotonically increasing times associated with them. MRGR
also decides whether a data BLOCK should bte represented as an actual value (fixed
block) or as a change from the previous value (change block). The fixed block
assures that if a parity error occurs, a full value of the data is available at
regular intervals. MRGR also generates a special time block containing the
absolute time of day. The resulting output tape format is described in Figure
4.3. The tape format is the same no matter how many passes are necessary to

21

—_———

THESE TABLES ARE DUPLICATED

FDR USER 'S MAGNE TIC
TAPE FORMAT

HEADER
RECORD 20/

FTEERCEEEEEEN!

CHYAB 200

B O 0P DR O SE

¥

RETAB 200

EEEFIEEEGEE@E!?

UNTAB 9N

EEEEEIEAEESE

IDTAB 3w

EEEEEEEEE!

=
-
-

CODTAB S=Q°

RN EEEEEES|

c

ALTAB 2P

—

———

AR ¥4

TIME

NEXT BU __IDENT S
TIME CHANGE
Ut

- —

»

i VALUE 2

IETERBRCITI,

VALUE 3

1 NEXT

BLOCK | IDENT S

TIME CHANGE

_
VALUE CHANGE 1DWORD

VALUE CHANGE 1DWORD

 EEEEEEIEEEEREN]

*CODTAB MODIFIED BY FDR wIGH ORDER BYTE ADDED TO WORD
TO DESCRIBE POSITION IN IDENT BLOCK

NUMBER OF UNMITS

NUMBER OF 1IDENTS

NUMBER OF CODES

NUMBE R OF CALIBRATION POINTS

MODE 0 (FIXED BLOCK) OUTPUT ABSCLUTE VALUES FOR ALL CODES

1 ICHANGE BLOCK) OUTPUT VALUE CHANGES /MUST BE - 10 8ITS)
2 (UP DATE BLOCK) OUTPUT ABSOLUTE VALUE FOR ONE CODE

1 NEXT BLOCK POINTER TO NEXT BLOCK IN RECORD

IDENT - 0 TIME UP DATE!
S HDENT DESCRIPTION)
MAJOR TIME EXACT TIME (2 WORDS! - OCCURS EVERY 500 MS OF DATA TIME

~< TIME CHANGE TIME CHANGE SINCE LAST MAJOR TIME

VALUE DATA ITEM INSCALAR UNMITS

VALUE CHANGE DEVIATION SINCE LAST SAMPLE
VALUE UPDATE SAME AS VALUE

IDWORD POSITION WITHIN IDENT BLOCK 15 BITS)
EOF END OF FiLE

FIG. 4.3 FDR MAGNETIC TAPE FORMAT

22

- - ———— -""—-1

NSWC/WOL/TR 75-68

generate the tape. As explained previously, the tables at the beginning of the
tape give a full description of the tape's meaning. Once the data is output, it
is not possible to distinguish what data came from which pass.

4.12 MONTOR is called by CYCLE when no data is ready for procezsing. MONTOR
allows the operator to interact with the process by pushing the BREAX button on
the CRT and entering a command (Section 6.2.2) which will be executed when CYCLE
runs out of input buffers ready for processing. The routine also displays
system parameters so the operator has information necessary for his interaction
decisfons. Since MONTOR will not stop the data processing tasks, it is not
critical operationally.

4.13 The various utility functions used by the routines previously described
include COMON, CONVRT, CLOCK, LOGIC, and MTIO.

4.13.1 COMON makes possible data linkages between FORTRAN and assembly language
routines.

4.13.2 CONVRT is composed of the four routines listed below:

a. BINTIM converts the digital clock's BCD formatted time into the computer's
binary format.

b. DECTIM converts the binary time into hours, minutes, seconds, and
milliseconds.

c. HTOMS converts the time in hours, minutes, seconds, into milliseconds.
d. BINBCD converts double precision binary to eight-digit BCD.
4.13.3 CLOCK is a routine which makes the host computer's real-time clock seem
like several programmable clocks for use by other FDR routines. This is
important for time critical functions, etc.

4.13.4 The LOGIC routine allows FORTRAN to call several functions of a logical
nature. The functions are:

a. IAND - logical and
b. IOR - logical or

c. IXOR - logical exclusive or

d. IALS - algebaric left shift

e. IARS - algebaric right shift (sign extension)
f. ILRS - logical right shift

g. ICLR - circular or end around shift

This routine 1s necessary because the host computer's FORTRAN has no internal
logic or shift functions.

23

et ——ar

NSWC/WOL/TR 75-68

4.13.5 MTIO is responsible for initiating all commands to the digital magnetic
tape drives and keeping track of the status of tape drive I/0 operations. After
fnitiating an operation to the requested magnetic tape unit, MTIO returns control
back to the user. This action decreases the time required to input and output
data to the tape units. Using the FORTRAN magnetic tape input/output routines
would make execution of FDR too slew-because after initiating an operation FORTRAN
does not return control to the user until the input/output units have completed
the operation.

5.0 User's Guide for PREFDR
5.1 Program Setup
5.1.1 FORTRAN Logical Unit Assignments

F1 - T1 or None - Input tape Unit

F2 - T2 - Output tape Unit

F3 - HP or KB - Listing Device

F4 - KB or CR - Command Input Device
F5 - KB or HP - Command Reply

5.1.2 Programs Required (Language)

Program (Language)
PREFDR (FORTRAN)
SCAN (ULTRA)

(FORTRAN LIBRARY)
5.2 Operator Commands/Inputs (see 5.2.1 for parameter definitions)

EXIT - Returns control to system
OUTPUT - Outputs tables to F2 and checks for bad 1inkage
LIST - Lists tables on F3

CHANNEL (CNUM, TRACK) - Tells what track on the analog tape recorder a
channel is assigned to

TRACK (TNUM, UMT)- Tells what track a multiplexer is assigned to

UNIT (UNUM, RATE, BPW, WPF, LSB, FSP (2 words), BPFSP, ACC, FORMAT) IDENT
(IDNM, UNIT, IPROC) - Lists the operational parameters of a unit (multiplexer)

24

e ——

NSWC/WOL/TR 75-68

CODE (CNUM, IDENT, SS, WORD, CAL) - Describes the code word's place in the

5.2.1 In the above:

CNUM is the channel number

data structure

CALIBRATION (CALNUM, EUMTS, SUITS) - Forms a calibration table by assigning

engineering units to scalar units

TRACK is the track to be connected to

TNUM is the track number

UNIT is the unit associated with track

UNUM is the unit number

RATE is the number of frames per second

BPW is the bits per word

WPF is the words per frame

LSB is the least significant bit

FSP is the frame sync pattern (11 digit octal number)

BPFSP is the bits per FSP

ACC is the alternate complement code

FORMAT is the code of the form of PCM
CODE PCM FORMAT

1

D O e w N

. 7

(B18-5)
(B1D-M)
(B18-1)
(RZ)

(NRZ-S)
(NRZ-M)
(NRZ-L)

INUM is the IDENT designator

25

NSWC/WOL/TR 75-68
IPROC is the IDENT processor flag designating special processing that must
be done on that IDENT
CNUM is the CODE designator
IDENT is the IDENT reference
SS is the type of multiplexing
0 - normal frame
+(A/B) - A frames per subframe; code in frame B
-(C) - C super-frames per frame
WORD is the word in the data frame
CAL is the calibration reference
CALNUM is the calibration index
EUNITS is the engineering units
SUNITS is the scalar units
6.0 User's Guide for FDR
6.1 Program Setup
6.1.1 FORTRAN Logical Unit Assignments
F1 - KB - Command Input Unit
F2 - KB - Command Output Unit
F3 - T1 - Input Tape Unit (At Pass 0)
F4 - T2 - Output Tape Unit (At Pass 0)
F5 - EQ - Equipment Unit
F6 - S1 - Synchronizer 1 Unit
F7 - S2 - Synchronizer 2 Unit
F8 - HP - Strip-Out Unit
6.1.2 Programs Needed
Program (Language)

FDR (FORTRAN)

76

; NSWC/MOL/TR 75-68

Program (Language)

cLOCK (ULTRA)
COMON (ULTRA)
CONVRT (ULTRA)
| CYCLE - (ULTRA)
| IBR (ULTRA)
LOGIC (ULTRA)
| MONTOR (ULTRA)
{ MTIO (ULTRA)
| PCMIO (ULTRA)
| RTDS (ULTRA)
STRIP (ULTRA)

FORTRAN LIBRARY
6.2 Operator Commands/ Inputs
6.2.1 Operator Inputs

The time window for each track is displayed on F2, The window may be changed by
using the input command
AA, B1, B2, B3, S1, S2, S3

where:
AA is the Track number
; B1-B3 are the begin time in hours, minutes, seconds
‘ S1-S3 are the stop time in hours, minutes, seconds
The other operator inputs are:
NUMBER OF SYNCHRONIZER CHANNELS = A
A =1 or 2 (number of synchronizer channels on line)
PASS NUMBER = B
B

0-13 (if restarting, at what pass)

27

NSWC/WOL/TR 75-68

RECORD SPEED = C
C = 7.5 thru 120. (speed of analog recorder)
PLAYBACK SPEED = C

STRIP-OUT = D

D = Yes (want strip-out)

D =No (want user's tape)
TIME SCALE = E

E = seconds/inch of strip-out paper
RANGE = F

F =

(i.e., data points only - no curve)
6.2.2 Operator Commands
ABORT - Abort pass and restart from beginning
TERMINATE - Stop this pass and go to next
RESTART - Restart this pass from the beginning

6.2.3 FDR System Status. System status is displayed in the scratch pad of the

CRT.
F4 = AA, F3 = BB, S1 = CC, S2 = DD, DB = EE, SYSTEM = FFFFFF

where:

AA is the number of parity errors on the digital tape drive designated F4

BB is the number of parity errors on the digital tape drive designated F3

CC is the number of sync. errors on synchronizer 1 (S1)
DD is the number of sync. errors on synchronizer 2 (s2)

EE is the number of data bound (DB) errors

FFFFFF is the discrete system status in octal code. The binary bits have the

following significance when high:
BIT-0 Wot used

BIT-1 Abort pass start all over

25

inches/axis (1-10) if F is negative, do not fill between data points

so—— N R 3 T A T e e g Ry

NSWC/WOL/TR 75-68

BIT-2 Terminate pass and go to next pass
BIT-3 Restart pass from beginning
BIT-4 CHANNEL table error
BIT-5 UNIT table error
BIT-6 IDENT table error
BIT-7 MTIO error
BIT-8 PCMIO error
BIT-9 Stop command for back-log on input tape
BIT-10 No data on synchronizer 1
BIT-11 No data on synchronizer 2
BIT-12 DB error, stop, slow down, and restart
BIT-13 Not used
BIT-14 Not used
BIT-15 Not used
6.3 Assembly Language Subroutines

NOTE: More specific information may be obtained through use of the program
listings.

CLOCK
CALL CLOCKI(0) - Initialize clocks
CALL CLOCKF(NUM) - Turn off clock num

CALL CLOCK(NUM, INT, INTR) - Turn on clock NUM, execute INTR (the
interupt sequence) in INT millisecond

COMON
CALL COMCN(NUM, FELEM) - Set entry NUM address of FELEM
CONVRT

CALL DECTIM(TIMI1, TIM2) - Convert time in milliseconds (TIM1) to time in
hours (TIM2)

CALL BINTIM(BCD, BIN) - Convert BCD time (BCD) to binary time (BIN)

29

| O PSR T ORI

NSWC/WOL/TR 75-68
CALL HTOMS(HRS, MS) - %:g;ert time in hours (HRS) to time in milliseconds
CALL BINBCD (BIN, BCD) - Convert binary number (BIN) to number (BCD)
CYCLE
CALL CYCLE (NFS, ITEM, ERROR) - Process NFS sync. channels between time
limits specified by the user and return
any errors (ERROR)
JLM UNIP - Process unit
JLM IDP - Process IDENT
JLM MRGR - Merge data
JLR RO, MIUN - Move data from input buffer
JLR RO, MOUN - Move data to output buffer
IBR
CALL IBI (FS, ERROR) - Set up input buffer for sync. FS
CALL IBU (NFS, FS, PARA} - Test NFS syncs. for first available frame (FS)
LOGIC
IAND (A, B) - A*B
IOR (A, B) -A +B
IXOR (A, B) - A@®DB

IALS (A, B) - A*(2**B)

IARS (A, B) - A/(2**B)

ILRS (A, B) - IARS with no sign extension

ICLS (A, B) - IALS with overflow inserted at LSB
MTIO

CALL MTIO (FUN, UN, FWA, SIZE) - Do MT operation FUN on UN
CALL MTIO (FUN = 8, UN, STATUS) - Get MT status
CALL XMTIO (FUN, UN, FWA, SIZE) - Execute ancd wait for MT FUN completion

30

NSWC/WOL/TR 75-68

PCMIO
CALL PCMIO (UNIT, FUN, LIST)
UNIT = 13 - Analog tape command (FUN)
UNIT = 14 - Switch matrix command (FUN)
UNIT = 15 - Digital clock command (FUN)
UNIT = 16 or 17 - Synchronizer command (FUN)
MONTOR
CALL MONTOR (FUN) - Monitor command (FUN)
CALL FORMAT - Encode
RTDS
CALL RTDS (FS, CTP, STATUS) - Create data structure
CALL FUN (FS, FUNA) - Unit parameters for FS
CALL FNID (FNIDA) - Ident parameters
CALL FNCOD (FCODA) - Code parameters
STRIP
CALL STRIP (FUN, PAREM) - Set up and strip-out data
SCAN
CALL SCAN (TYPE, MESS, CHARS, VALVE) - Extract next parameter

CALL I0 (FUN, UN, FWA, SIZE) - Execute and wait for magnetic tape
completion

6.4 FORTRAN Routines

PREFDR - Generate tables describing hardware

FDR - Initializes parameter for real-time data reduction
7.0 Introduction for User's Data Tape Software
7.1 FETCH, the user's data tape software package was written to free the user
from the tedious process of decoding and maraging the reduced data from the FDR
output tape (IDATA). Inadequate data due to a party error (PE). is automatically
intercepted and thrown out, and the user's working data is updated using the next

set of valid data. With the calls listed below, all the pertinent data from the
jnstrumentation and data handling tape put out by FDR (IDATA) are easily

31

FT“‘ A— el
P M QN TR T T

NSWC/WOL/TR 75-68

accessi 1 21 .
Figurelng'to the user. The general format of this data tape is shown in

7.2 The FETCH Software consists of three major subroutines:

a. FETCHI - The initialization routine reads the first 15 records in the
instrumentation and data handling data tape (IDATA). From this information, the
tables required by the FETCH programs are setup, and the beginning time on the
IDATA Tape is calculated. Also a test jdentification number i$ returned to the
user. Finally, the user's HEL codes are ordered and are put in the working code
value table.

b. FETCHT - The time update routine keeps the working code value table
current for the time change specified by the user,

c. FETCHV - The code value routine uses the calibration table to calculate
the code's value in engineering units from the scalar units of the IDATA.

7.3 There are two optional print routines. These subroutines need be part of
the FETCH package only if the user wants a copy of that particular print routine's
subject matter. The routines are:

a. PRINT1 - This routine will print any or all of the beginning tables
(Figure 1.1).

b. PRINT2 - This routine will print a list of the user's codes along with the
hardware description of the codes.

! 7.4 There are seven supportive programs:
a. MTIOF - Magnetic Tape Input/Output Routine

b. MTIPE - Controls MTIOF, checks for parity errors (PE) and adjusts the
data stream when a PE is sensed.

c. DBLWRD - Adds, subtracts, compliments and stores all double words (32 bits).
d. DFLOAT - Changes double word integer to floating point words.
e. IFIELD - Removes from a word and right justifies any bit field specified.
£. LOGIC - allows FORTRAN to call logical and shift functions.
7.5 The test identification number returned to the user via FETCHI should be
recorded on all the user's data. This number is a master reference number and

may be used, at some later data, to trace data to a specific test.

7.6 The remaining chapters will describe, in detail, the implementation of the
FETCH software.

8.0 FETCH Program Description
8.1 The User's Main Program

32

9

NSWC/WOL/TR 75-68

8.1.1 The FETCH subroutine package requires approximately 12,000 words of memory.
This total includes a one column 3750 word array in a common storage block named
ISTORE. This block of memory is used to store the tables and various data manage-
ment pointers required in the FETCH package. The two optional print routines
require 1570 and 550 words, respectively.,

8.2 FETCHI - The Initialization Subroutine

8.2.1 The initialization subroutine, ETCHI, reads in the code 1list provided by
the user, forms the various tables required by FETCH, returns a test identifica-
tion number and supplies an absolute starting time.

8.2.2 After rewinding the input IDATA type, the first seven records are read.
These records describe the physical setup of the hardware configuration for the
instrumentation system. If no PE occurred in the first seven records, the next
seven records are discarded, or if a PE occurred the next set of duplicate
tables are read into memory, Once the tables are in memory, columns one thru
five of the Working Code Value Table (Table 8.1) are setupusing the user's
code list and the first seven tables.

8.2.3 Next, the first record of good, i.e., contains no PE, block data (Figure
4.3) is read into the buffer, The time of the first code value on the IDATA tape
is calculated; returned to the users in hours, minutes, seconds and milliseconds
and stored for use by the other FETCH routines.

8.2.4 Finally, the test identification number, actually the first word in the
Test Information Table (the HEADER record of Figure 3.1) is returned to the user.

8.3 FETCHT - The Time and Value Update Routine

8.3.1 The time and value update subroutine, FETCHT, requires for a time change in
multiples of 10 microseconds as an input. Since the user's time increment may

not exactly correspond to the time changes on the IDATA tape, a corrected time
value, which corresponds to the actual tape time increment, is returned to the
user,

8.3.2 The FETCHT subroutine compares the time increment supplied by the user

with the time on the IDATA tape. A correction to the time movement is made for
each major time block (Figure 4.3) encountered. As the time is compared, the
routine continually updates the value of all the codes in the Working Code Value
Table (Table 8.1). When the time on the IDATA tape has been incremented equal

to or greater than the user's time increment the processing stops and the corrected
time is returned to the user,

8.3.3 Another form of time change may be used. If the user calls FETCHT with
the argument equal to minus one, the time change will be automatically set equal
to the time change required to read the next block of data (Figure 4.3). Then
all blocks with a time equal to this will be processed, and the value of the time
step will be returned to the user,

8.3.4 The buffer pointer is increased by this subroutine, When the pointer
r~yches the end of the buffer or the end of the data in the buffer, the buffer

33

NSWC/WOL/TR 75-68

Table 8.1

WORKING CODE VALUE TABLE

WORD** BITS CALIBRATION SCALAR VALUE*
IN PER TABLE (2 WORDS)

CODE IDENT IDENT/FRAME WORD INDEX .

1 1 1 1 10 12 000000 000167

2 1 2 2 10 6 177777 177611

3 1 3 3 10 3 000000 000011

4 3 3 4 10 3 000000 001011

8 3 1 5 18 12 000001 001201

9 3 2 6 12 6 000000 000056
10 3 4 17 0 000000 100000
51 4 1 8 8 16 177777 177773
364 2 1 9 14 101 000000 000000
*Octal Value
**pper and Lower ByTe

i.e. 11 corresponds to 257

34

e |

——r e — —

¥ NSWC/WOL/TR 75-68

pointer is reindexed and the control chain (MTIPE and MTIOF) for an IDATA tape to
be read into the FETCH buffer is activated. A minus one returned to the user
signifies that the end of the file has been encountered.

8.4 FETCHV - The Code Value Routine

8.4.1 For the code specified the code value subroutine, FETCHV, will, using the
calibration table, change the scalar units (columns 6 and 7 of Figure 2.1) to
engineering units. The value will be returned to the user as a floating point
value.

8.4.1.1 The scalar units are changed to engineering units by linear interpola-
tion using a n-point calibration table (Figure 3.3). Once the code is found in
the Working Code Value Table (Table 8.1), the calibration table reference column
will indicate the starting point in the calibration table. From this point the
scalar units of the calibration are compared to the scalar units of the code
value in the Working Code Value Table. When the calibration table value is less
than the code value, a linear interpolation is performed using the scalar and
engineering units which bracket the code value. The interpolation is performed
in floating point arithmetic and the value is returned as a floating point number.
If the bits per word of the Working Code Value Table indicates a double word
value, the same operation is performed, only double word values are used.

8.4.1.2 A zero value in the calibration table reference column indicates the
scalar value in the Working Code Value Table is the correct value, i.e., there
are no engineering units associated with this code value. The scalar value is
changeZ to a floating point number and returned as the code value.

8.4.2 If a minus one code is used the number of parity errors during the run will
be returned to the user,

8.5 MTIPE and MTIOF - The Input/Output Control Routines

8.5.1 The magnetic tape input parity error control is the MTIPE subroutine.
Every read command must go through MTIPE.

8.5.1.1 To indicate that the beginning tables are being read into memory, the
length of the buffer argument is negative. If a PE occurs a PE flag is returned
to the calling routine, FETCHI. The PE flag results in reading the second set
of tables into memory. If another PE occurs the program stops.

8.5.1.2 If a PE is detected in any block of data, MTIPE will discard all the
data in the buffer by requesting ano‘her read from the magnetic tape to the
buffer. A search for a major time block (Figure 4.3) is begun. When found,
the buffer pointer is indexed and the program sequence continues from the major
time block.

8.5.1.3 When an end of file (EOF) is sensed an EOF flag is returned to the user's
main program as the FETCH subroutines return control to the main program.

8.5.2 The magnetic tape input/output subroutine, MTIOF, controls the magnetic
tape units. MTIOF is capable of executing all the tape drive functions available

33

= - ———— — e ik ——

NSWC/WOL/TR 75-68

to the AN/UYK-15. The only functions used in the FETCH package are read and
rewind. The read call is similar to the FORTRAN READ statement, except no error
messages are outputted and the processing does not stop. Instead error flags are
sent to the calling programs. MTIOF is composed of two major subdivisions, which
are the execution of the calling command and evaluation of the status of the call.

8.5,2.1 The execution of the call is accomplished by storing the calling para-
meters into the I0$$ package (reference (2?3. The packet as used in the HEL
software (Figure 8.1a) has one difference from reference (a) in that the skip
count field is also used as a parity error control field, A typical parameter
storage for the FETCH package is shown in Figure 8.1b. Once the package is filled
10$$ is called and the packet is executed.

8.5.2.2 The status of the logical unit is checked before the packet is executed.
When this operation has been executed, the status of the operation is again
checked. If the status code indicates a PE, a minus two status flag is returned
via status and an EOF returns a minus one. A read operation will rettrn in
status the number of words read; otherwise, a successful operation other than a
read will return a status equal to zero.

8.6 DFLOAT, DBLWRD, IFIELD and LOGIC - General Utility Routines

8.6.1 DFLOAT (Double Float) takes a two word integer and floats it. The output
is a single precision floating point number (1 sign bit, 7 bit exponent and 24
bit fractional mantissa).

8.6.1.1 If the input is negative, it is complimented and a negative flag set.
Once a positive number is assured the high order Ygrd (bits 16 to 31) are
multiplied by 65,536. If there is a bit in the 2'° position of the lower order
word, it is eliminated and the DFLOAT value corrected accordingly. Finally, the
value of the lower order work is added to DFLOAT and, if there is a negative flag
the DFLOAT value is complimented.

8.6.2 The double word (32 bits) routine, DBLWRD, provides the various integer
double word functions listed below:

a. An add function, IDADD
b. A subtract function, IDSUB
c. twos compliment function, IDBAR
d. A double werd store function, IDSTOR
e. A time calculation function, ITMDIV
8.6.2.1 The only function not seif-explanitory is ITMDIV. This is a special

function used by FETCHI to convert the double word major time, which is in milli-
seconds, to hours, minutes, seconds and milliseconds.

(@) User's Handbook of UNIVAC 1616 Level 1 Support Software Manual

36

e

NSWC/WOL/TR 75-68

BIT POSITION

- e e -~ s it U W ’—‘1

ES&SET 15 0o 47 65 0BIT
1 STATUS CODE | | FUNCTION CODE
2 SKIP COUNT T USERS | LOGICAL
OR | CODE UNIT !
PARITY ERROR | |
CONTROL
3 BUFFER START ADDRESS é
4 ' BUFFER WORD COUNT ; a
~ LAST WORD READ ADDRESS ' |
{
(a) ’
PACKET BIT POSITION |
WORD 35 10k 48*] ___QBIT
1 r 0 or STATUS|[LISTED BELOW = READ _
2 [-31 =PECONTROL | 0 = 10$$ CALLJ 1 INPUT
3 IBUFF (1) | |
4 409%
5 . LAST WORD READ ADDRESS |
STATUS CODE
0-OPERATION COMPLETE i
1-PARAMETER PACKET ERROR i
2-END OF FILE |
3-BUSY |
P377-INPUT/OUTPUT IN PROCESS |
{
|

(b)

Figure 8.1 10$$ PARAMETER PACKET

37

NSWC/WOL/TR 75-68

3.6.2.2 Except for determining the storage address, the coding of the double
word package is straight forward, i.e., the function requested is determined,
the calling parameters are retrieved, the storage address and the return address
are calculated, the operation is performed, and, finally, the return sequence is
completed, At this time, a short background discussion is needed to show how a
double word answer is stored. The AN/UYK-15 FORTRAN complier uses a store
register 2 (R2) instruction to store the final answer returned by any function.
The following is one coding sequence used to call a function.

JLM FUNCTION Jump link memory to function called
N Number of parameters in the cail
Al Address
A2 of
the
Parameters
AN
S RM, AJ Store register M, an argument of this

program, in the next address (AJ).

L, RK, AK Load register K (used to modify the R2
storage address) with the value in
address, AK,which is the result of the I + 1
in the FORTRAN coding for the NUMB (I + 1)
storage address. The address of NUMB is
in AJ.

S R2, AJ, RK Store register 2 in address determined by
AJ modified by the value in register K.

In the above example all addresses AK and AT, are in the first address below the
store or load instruction. In the double word storage instructions a problem
arises because the sequence above will store only one register, and two register
storage is needed to store two words. DBLWRD determines the R2 storage address
(base address plus modifier) by searching the coding of the calling routine,
shown above. To do this DBLWRD separates the instructions from the addresses
and searches the instructions until a store register 2 instruction is found.

Then the modifier is determined and added to the base address, this address is
incremented by one and register 3, the lower order word (bits 15-0) of the double
word, is stored in this address. Register 2, the highest order word (bits 31-16)
of the double word, is stored by the compiler coding.

8.6.3 The bit field extractor, IFIELD, removes the bit field specified from the
word specified and right justifies it. This is accomplished by forming a right
justified mask of ones the length of the bit field. Then all the bits in the word
are shifted right until the bit field is right justified. Finally, the mask and
the modified word are ANDed together to form the answer.

38

NSWC/WOL/TR 75-68

8.6.4 The logic and shift function, LOGIC, is explained in paragraphs 4.13 and
6.3.

8.7 PRINT1 and PRINT2 - THE OPTIONAL PRINT ROUTINES

8.7.1 The beginning table print routine, PRINT1, is used to provide a hard copy
of the tables for the users. Any or all the tables may be printed. If no hard
copy is required, this subroutine is not coded into the computer. There are two
print controls. The first controls the table(s) to be printed. The second
controls the listing devices, the printer and the input terminal's CRT (cathode
ray tube). If the printer is selected each individual table is started at the
top of a page, and the printing continues until done. If the CRT is selected
the display is filled then the program pauses until the operator decides to
continue the table listing.

8.7.2 The Working Code Value Table may be printed using the PRINTZ subroutine.
Depending on the print code selected, the code value may be printed as a two
word integer, as a two word octal value, or as a floating point number. The
listing device may be either the printer or the CRT. The only difference is that
when the CRT is selected the program pauses at the end of the table. The table
is always started at the top of the page, Like PRINT1, this subroutine is
optional.

9.0 User's Guide to FETCH

9.1 Program Setup

9.1.1 Main Program Special Requirements - Dimension and assign to a blank common
area a 3750 word array called ISTORE, i.e., COMMON ISTORE (3750 words).

9.1.2 FORTRAN Logical Unit Assignments
F1 - HP (high speed printer) or KB (keyboard) - Error listing device
F2 - KB - Table listing device
F3 - HP - Table listing device

9.1.3 Programs Required (Language)

Program (Language)
FETCHI (FORTRAN)
FETCHT (FORTRAX)
FETCHV (FORTRAN)
IFIELD (FORTRAR)
MTIPE (FORTRAN)

39

Program
DEFLOAT
PRINT1
PRINT2
DBLWRD
MTIOF
LOGIC

NSWC/WOL/TR 75-68

(Language)

(FORTRAN)

(FORTRAN) - Optional
(FORTRAN) - Optional
(FORTRAN)

(FORTRAN)

(FORTRAN)

(FORTRAN LIBRARY)

40

NSWC/WOL/TR 75-68

9.2 Major Subroutine Calls

9.2.1 FETCHI (IDTEST, NUMB, LIST, INLTIM)

where:
IDTEST is the test ideriification number
NUMB is the number of items in the list
LIST is the list of code words

INLTIM is the initial time array (4) used to hold the hours (1), minutes (2),
seconds (3), and milliseconds (4).

9.2.1.1 This subroutine must be the first FETCH routine called. The test identi-
fication number is returned and should be recorded with all data used.

9.2.1.2 Error Messages

9.2.1.2.1 If a code, which is in the LIST, is not found on the input IGATA tape,
the error message is:

CODE XXXXXX NOi FOUND
where:
XXXXXX is the code identification number

The program pauses. If the user decides to continue the code, it will be ignored
and NUMB will be decreased by one.

9.2.1.2.2 If both sets of beginning tables have PE, the error message is:
STOP TABPE

Control is returned to the system.

9.2.2 FETCHT (DELTIM)

where:
DELTIM is the users increment of time in milliseconds.

The maximum value of DELTIM is 32767 milliseconds.

9.2.2.1 This subroutine will return a corrected DELTIM which corresponds to the
actual time incremented on the IDATA tape.

9.2.2.2 If DELTIM equals -1.0, the time increment will be equal to the time
between consecutive blocks on the data tape. If there are several blocks with
identical time, all will be processed. The exception to the above is when a
major time block is the next block to be processed. It will be processed and
then the next block's time will be used to calculate the time increment. In all
cases a corrected time increment will be returned to the user.

41

NSWC/WOL/TR 75-68

9.2.2.3 If a minus one (-1.0) is returned to the main program, the EOF has been
sensed. The user should check for the EOF in his program.
9.2.3 FETCHV (ICODE, VALUE)
where:

ICODE is the code where value is required

VALUE is the value in single precision float point format
9.2.3.1 [If ICODE was not in the legal LIST of FETCHI, a

STOP NOCODE
error message will result, and control will return to the system.

9.2.3.2 If ICODE equals -1, the number of PE will be returned via VALUE to the
user.

9.3 Special Supporting Subroutine Calls
9.3.1 MTIPE (IUNIT, NAME, IAMT)
where:
IUNIT is the magnetic tape input unit
NAME is the buffer's name
IAMT is the Tength of the buffer

If AMT is negative the beginning tables are being read; if positive, the block
data (Figure 3.3).

9.4 General Use Routine Calls
9.4.1 MTIOF (FUNCODE, IUNIT, NAME, IAMT, STATUS)
where:
FUNCODE is the function code, i.e.,

0-Read

1-Write

2-Initiatize

3-Pass Record Forward

4 -Pass Record Backwards

NSWC/WOL/TR 75-68

5-Pass File Forward
6-Finalize
7 -Rewind
IUNIT is the magnetic tape unit
NAME is the address of the storage location
IAMT is the length of the buffer to be read or written
STATUS is the status of the magnetic tape system, i.e.,
.EQ. 0 - Operation Complete
.GT. 0 - Number of words read
.EQ. -1 - End of File
.EQ. -2 - Parity Error
Other forms of the call are:
MTIOF (FUNCODE, IUNIT, NAME, IAMT)
MTIOF (FUNCODE, IUNIT, STATUS)
MTIOF (FUNCODE, IUNIT)
The last two calls cannot be used for a read or a write.
9.4.2 DFLOAT (NUMBER)
where:
NUMBER is the first word address of a double word integer.

This function changes the double length (32 bit) number to a single precision
(sign bit + 7 bit exponent + 24 bit mantissa) floating point number.

9.4.3 DBLWRD is a double word function package. The calling form is:
FUNCTION (N(I), M(J)) or FUNCTION (L(K))

where:
FUNCTION is the double word function, i.e.,
IDADD - add (N(I), N(I+1)) - (M(J), M(J+1))
IDSUB - subtract (N(I), N(I+1)) - (M(J+1))

43

NSWC/WOL/TR 75-68

IDBAR - twos compliment (L(K), L(K+1))
IDSTOR - STORE (L(K), L(K+1))

ITMDIV - Special time function (N(I), N(I+1))/(M(J), M(J+1)) Modulus two
storage total + remainder to (N(I), N(I+1)).

These functions must have a two word storage location specified, i.e., X(1) =
IDADD (N(I), M(J)) will have the answer stored in X(1) and X(2); however,
X(1) = IDSUB(IDADD(N(I), M(J)), (N(I)) will not work because IDADD (N(I), M(J))
has no specified storage location. The AN/UYK-15 FORTRAN compiler will not give
any error messages for the double word functions.
9.4.4 IFIELD (NAME, HBIT, LEIT)
where:

NAME is the address

HBIT is the high order bit of the bit field

LBIT is the low order bit of the bit field
This function removes from the word NAME the bit field beginning with and
including the highest order bit to and including the lowest order bit. The bit
field is also right justified.
9.4.5 LOGIC is a logic and shift function package discussed in paragraph 6.3.
9.5 Optional Print Subroutine Calls
9.5.1 PRINT1 (ITPCODE, ISORP)
where:

ITPCOD is the table print code, i.e.,

1 - Test Information Table

- Channel Table

Track Table

L w N
1

- Unit Table

5 - Code Group Identification Table
6 - Data Item Reference Table

7 - Calibration Table

8 - All the tables above

44

NSWC/WOL/TR 75-68

ISORP is the CRT(=g)or the printer(=1).If the CRT is selected, the subroutine
will PAUSE at the end of each page.

9.5.2 PRINT2 (IVALCT, ISORP)
where:
IVALCT is the code value format control, i.e,,
0 - Integer
1 - Floating point
2 - Octal
ISORP is the same as in 3.5.1.
This subroutine will print the Working Code Value Table which will include all
the codes listed in the FETCH1 call. If the keyboard is selected the subroutine
will PAUSE at the end of the table.
10.0 Program Flow Charts

10.1 Figures 10.1 - 10.24 are the flow charts for each program previously
discussed.

45

INITIALIZE
POINTERS
ZERO TABLES

NSWC/WOL/TR 75-68

CALIBRATION
1CNANNEL lmAcx lumt rozm looos 1
EXTRACT EXTRACT EXTRACT EXTRACT EXTRACT EXTRACT
MAND COMMAND COMMAND COMMAND COMMAND COMMAND
PARAMETERS| |PARAMETERS| |PARAMETERS| |PARAMETERS| |PARAMETERS PARAMETERS
AND TEST AND TEST AND TEST AND TEST AND TEST AND TEST
ADJUST ADJUST ADJUST ADJUST ADJUST ADJUST
LENGTHOF LENGTH OF LENGTH OF LENGTH OF LENGTH OF LENGTH OF
TABLE TABLE TABLE TABLE TABLE TABLE

MULTIPLE
PCM TRACK
REFERENCES,

DISPLAY
OPERATOR
COMMAND

46

FIG. 10.1 PREFDR FLOW CHART

S

e ———— L A — e e g ——

NO

NSWC/WOL/TR 75-68
MTIO XMTIO
INITIALIZE INITIALIZE
PARAMETERS PARAMETERS
YES
SET SYSTEM
ERROR FLAG
SAVE NEXT
PACKET
ROTATE THE 3
ENTRY PACKET
LISTS
INCREMENT
PARITY
ERROR
COUNT SET UP NEXT
PACKET

EOF
DETECTED
?

108s
(INITIATE

WAS
PACKET
FUNCTION
READ
?

YES

COMPUTE
NUMBER OF
WORDS READ

FIG. 10.2 MTIO FLOW CHART

47

-

NSWC/MWOL/TR 75—-68

LOAD TYPE
PARAMETER

NO YES

-

LOAD NEXT
CHARACTER

vEs

CONVERT
ASCHl
CHARACTER
TO A NUMBER

COMPUTE
TOTAL VALUE
OF ALL

NUMBERS

STORE SINGLE
PRECISION
NUMBER

STORE DOUBLE
PRECISION
NUMBER

EXIT

FIG. 10.3 SCAN FLOW CHART

A8

@

FORM 1088
PACKET FROM
10 PARAMETERS

NSWCWOL/TR 7568

ENTRY

INITIALIZE
cLoCx

LINKAGES PAR-
AMETERS LISTS

[wait fow row
TAPE TO STOP
CLOCK 1N
e REMOTE
RECORD
PLAYBACK COMPUTE TIME
10 STARY URN
READING OMITOR
p DaTA
7 REQUEST
INFORMATION _‘_
1F STRIP OUT SET UP DIGITAL
CLOCK FOR
IPS (MIGH SPEED)|
SE el
CLEAR SYNCHRONIZER l
REWIND PCM TAPE SET UPWB RE -
REWIND MAG TAPES ICORDE RFOR 200
IPS READ AND
WAIT UNITL UP
10 SPEED
TURN OF F ‘
CLOCK
YES
stop |
RECORDER |
INCREMENT SLOW DOWN
ASSIGN UNITS
assion oS PASS NUMBER ANALOG DRIVE
TAPES SET UP aL
CLOCK FOR

PLAYBACK OF |
DaTA

START PLAYBACK

OF WB RECORDER

AND WAIT UNTIL
L3

PHASE LOC!
START
READING
TimE
FOR
' GENERATE ADATA |
STRUCTURE FOR NO
EACH SYNC AND
TEST FOR ERRORS |
i ISTART READING
DATZ INTO
|mEmoRY
oureur.
ABLES 10!
ouTeuT

Nt S 8

GENERATE INPUT
BUFFERS FOR EACH
SYNC AND TEST
FOR ERRORS

FIG. 10.4 FDR FLOW CHART

PN
A

$_J

-

NSWCWOL/TR 75—-68
F
ATDS FNID
. INITIALIZE
PARAMETER
AND PARAMETERS
INITIALIZE
l YES
SENERATE PARAMETERS
ENTRY ‘Oﬂm FROM DATA
THE UNIT STRUCTURE
SET CODE BASES
YES| TERMINATE
"‘A‘Cll o DATA)
STRUCTURE l‘x" l
NO
Coal mDeny| S51ERROR
YES (304
T
NO| J
e paaselicns
iN!RV STRUCTURE
YES
Sean
4 = Unit SA&” Exir
UNIT?
YES
STORE THE REST
OF THE UNIT
PARAME TERS
INTO DATA
STRUCTURE

STRUCTURE

-

TERAMINATE
DATA
STRUCTURE

!

@

LOAD CODE
PARAMETERS
SEARCH)

ANY CODES SET ERROR |
FOUND FLAG
TERMINATE i
IDENT IN DATA e

| STRUCT URE

MOVE CODE
PARAME TERS
TO THE DATA |
STRUCTURE

FIG.10.5 RTDS FLOW CHART

50

LOAD PARAME vmsj

INITIALIZE
POINTERS TABLES
BUFFERS

COMPUTE] lexir
VARIABLES FOR {
STORAGE INTO Twt

SYNC TABLE 'STBL/

| Lk sTBL 10 THE |
| weuTBUFFER |

SET UP BLOCK anND
CLINK TONEXT

NSWCMWOL/TR 75-68

Bu

INITIALIZE
POINTERS
Time

|

. bMI~

ERROR SET SYSTEM |
DETECTED H

STaruseir

BLOCK TIME
_ICURRENT)
JCURRE

.

OiGITay
CLOCK Timi

coweuTe Tive |
SINCE LAST FRamE
SET FLAG IF T00
LARGE [

EXTRAPOLATE FOR
ESTIMATED TimE |

ACCUMULATE
PERTIN EN
INFORMA

L ABOUT lu" ER

COﬂR!C' STATUS
THE DELAY IN
;A'unmc CERTAIN

i

UPDATE STBL FOR
NEXT INPUT BUFFER
ON THE SYNC
CHANNEL

SET ERROR FLAG IN
SYSTEM STATUS

—eed

([[DIIH!E
N

I
SET NEW MIN vr:‘-’
INPUT

BUFFER ASBEST |

FIG. 10.6 IBR FLOW CHART

51

PASS INPUT
BUFFER
PARAMETERS

NSWCMWOL/TR 75-68

SET UP 1O

CALL
LOAD PARAMETERS
INITIALIZE
POINTERS

1088
(INITIATE
10 TO PCM
DEVICE)

SET SYSTEM
ERROR FLAG

L oo o e e - ———— — — ———— —— o

|

—_—

INTERRUPY
SET
INTERRUPT
LINKAGE

INTERRUPT
NO
INITIALIZE
RECORD’ INITIALIZE PARAMETERS

SET UP DRIVE
FORWARD
COMMAND ALSO

0 GENERATE FETCH LINKAGE
ANITIATE SWITCH MATRIX FOR DC TR
i COMMAND COMMAND 10 CHAINS

0

DELAY WHILE

RELAYS DROP IN 0 ';'é:::t
cLock)

10
INITIATE
SWITCH
MATRIX)

DELAY WHILE
RELAYS DROP IN

SET UP ARRAYS
FOR BIT SYNC
AND FRAME SYNC

NO GENERATE 0
Yes RETURN
sTatus

FIG.10.7 PCMIO FLOW CHART

52

INITIALIZE
LOAD
PARAMETERS

MOVE DATA
FROM INPUT
UNIT TO OUT
PUT UNIT

S—

| exir l

FIG. 10.8 (a)

NSWC/MWOL/TR 7568

UNITP

1DP
(PROCESS
1IDENT)

INITIALIZE

SET FLAG IF
LAST FRAME OF
MULTIPLEXED
FRAME

15
THIS
e HE CORRECT
SUB FRAME

YES

COMPUTE
ADDRESS OF
DATA VALUE

suB _~ DATA \\ NORMAL
FORMAT
SUPER
ADJUST ADDRESS

SET ERROR
FLAG

INTO DATA
STRUCTURE

53

CYCLE FLOW CHART

NSWCWOL/TR 75-68

MAGR MIUN MOUN
SET NO INPUT NO
FLAG IF FIRST 0
PASS
YES YES
YES INITIALIZE INITIALIZE
DO POINTERS POINTERS
NO

INITIALIZE OUTPUT
MT UNIT INITIALIZE/
FINALIZE INPUT
UNIT

YES

COMPUTE TIME
VALUE AND OUT,
PUT TO MT UNIT

MOVE ID TO
OUTPUT UNIT
MOVE 10
NEXT BLOCK
___.' IN BUFFER
. YES
D
NO
GENERATE A

|GENERATE A
VALUE CHANGE FIXED FORMAT
BLOCK FOR THE BLOCK FOR THE
GIVEN DATA DATA

SWITCH LINKAGE
TO GTHER BUFFER

GENERATE A
PREAMBLE FOR
THE DATA

LINKAGES

MOVE BLOCK
10 OUTPUTY
BUFFER

FIG. 10.8 (b) CYCLE FLOW CHART

54

NSWCWOL/TR 75—-68

STRIP
r TYPE
INITIALIZE YES
POINTERS
PARAMETERS NO
SET UP MESSAGE
WITH INITIAL
TIME OF STRIP
YES out
NO
STORE
PARAMETERS
INTO LIST
v
LOOK FOR | [SET miINmMAX :f:lgae:on
mINMAX | |RANGE FOR } SOLID LINE
VALUES IN ||NON-CALIBRATED L
CAL VALUES EXIT
b .—'
[
!
COMPUTE PARA-
METERS FOR
CONVERTING DATA
INTO MEANINGFUL
DISPLAY
L
] i__—} TIME
YO OUTPUT
SET UP MESSAGE .
TO DISPLA
MONIMUN VALUES YES
AND UNITS/INCH

FORRECNYES,| GENERATE
MARK TIC MARK
?

TIME
toR AXISNES | GENERATE
MARK AXIS MARK

ALTER MIN AND ?
MAX VALUES FOR 'NO
DATA USING NEW {
DATA VALUE
L Lo
YES CODES
o OCESSE
?
NO
COMPUTE PROPER
DOTS TO SET
FOR DATA VALUE
P

FIG. 10.9 STRIP FLOW CHART

55

e ————

NSWC/WOL/TR 75-68
MONTOR FORMAT
SET
NO. INTERRUPT INITIALIZE
FLAG FOR
cLoCck
YES

INITIALIZE

BUFFERS AND

POINTERS

SET UP CALL

PARAMETERS
TRANSFERED

BUFFER)

SET SYSTEM SET SYSTEM SET SYSTEM
STATUS STATUS STATUS
SET FLAG

]

FIG. 10.10 MONTOR FLOW CHART

56

N e s anandie L ETE Ll

L]

NSWCMWOL/TR 75—-68

LOAD
PARAMETERS

s

STORE PARAMETER
INTO COMON
TABLE

FIG. 10.11 COMON FLOW CHART

57

DECTIM

£

NSWCWOL/TR 75—-68

BINTIM

3

HTOMS

BINBCD

COMPUTE NUMBER EXTRACT MILLISEC LOAD BNARYS LOAD TIME
OF MILLISECONDS FROM BCD TIME A IN MILLISEC
MILLISEC
COMPUTE NUMBER COMPUTE TIME DIVIDE BY 10,000
OF sgooﬁos € BCDBIN IN MILLISEC (2-4 DIGIT NUMS)
COMPUTE NUMBER SAVE BIN MILLISEC
EXTRACT SEC BTOBCD
OF MINUTES FROM BCD TIME
L
COMPUTE NUMBER BCDB! SAVE MSD OF
OF HOURS ™ NUMBER
STORE TIME IN HRS SAVE BIN SECONDS
" EXTRACT MINUTES BTOBCD
MIN, SEC, MILLISEC FROM BCD TIME
80D DIGITS .
COMPUTE RETURN BCDBIN
LINKAGE

STORE BINARY
TIME VALUES

INIT

IALIZE FOR
4DIGITS

DIGIT

A
MULTIPLY RESULT
X10 AND ADD NEXT

FIG. 10.12 CON

58

INITIALIZE FOR
4DIGITS

!.__ ‘

DIVIDE RESULT BY
10 AND SAVE
REMAINDER
ASDIGIT

VRT FLOW CHART

FF

NSWCMWOL/TR 75—88
CLOCKI CLOCK F
CLEAR
POINTERS,,
ZERO TABLES
DISABLE DISABLE ‘T:‘L‘“" Of ¥
cLocx SLocK SPECIFIED
SWITCH INTERRUPT
FROM SYSTEM TO A 2
CLKINT | ExXiT l
SET UP AND,
NABLE
cLock

CLKINT

DISABLE
CLOCK
INITIALIZE
POINTER

’.—— i

COMPUTE
NEXT

TIME FOR
INTERRUPT

CLOCK

YES

SET UP ENTRIES

SPECIFIED

b

R S S Py

EXIT

‘59

IAND

NSWCWOL/TR 76-68

10R

ILRS

IXOR

LOAD
PARAMETERS

COMPUTE
RETURN
LINKAGE

!

EXECUTE
FUNCTION

FIG. 10.14

LOGIC FLOW CHART

60

IALS

ICLS

IARS

NSWC/WOL/TR 75—-68

CLEAR ITABLE
INITIALIZE OLDTIM

+

TRANSFER
LISTTO
COL 1 OF
ITABLE

$

INLISTIN
JABLES

REMOVE ITEMI(S)
FROM LIST &
DEC. NUMB

e

FILLIN ITABLE
COL 2-5 FROM
TABLES

CALCULATE
BEGINNING
TIME

$

INDEX BUFFER
POINTER

$

IDTEST = TEST
ID NUMBER

EXIT

NOTES:
ITABLE IS THE WORKING CODE VALUE TABLE
OLDTIM IS USED IN FETCHT AND IS THE IDATA
TIME BLOCK VALUE OF THE LAST BLOCK
PROCESSED.

FIG. 10.15 FETCHI FLOW CHART

61

NSWC/WOL/TR 75—-68

) =)
CALCULATE DELTA
o TIME & STORE NEW YES
MAJOR TIME, OLD
TIME - 0
ND ROW OF IDENT IN
NO TTABLE THAT CORRE
| s YES SET DELTIM = SPONDS TO THIS IDENT
DELTIM DELTA TIME +
* 30 TIME OF 1ST
VES BLOCK AFTER
MAIOR TIME

NO BLOCK I
SET DELTIM - CALCULATE DELTIM
NEXT BLOCK INCREMEN FIND ROW IN CODTAB
TIME IDATA ""f CORRESPONDING TO
DELTAP) I IDENT
- CORRECT THE
DELTA TAPE
T.ME
—(*)
€D
VES RECT
CALCULATE
CORRECTED
DELTIM
INCREASE
STORE PRESENT BUFFER POINTER SET MODE 2 DOUBLE
l DENT TIME ™| 10 NEXT WORD PARAMETERS |
BLOCK
SET OLDTIME «

TIME OF LAST
NT

PROCESSED

POINTER
b= GT BUFFER
FROM SIZE

SET MODE 2 SINGLE

WORD PARAMETER
SET MODE 1
SET POINTER TO
$IND IDENT WORD TOP OF BUFFER | PARANETCDS
T CORRESPONDS
TO A CODE WORD IN
ITABLE l
FIND IDENT
WORD COUNT
STORE DOUBLE
NO_~DOUBLE YES VALVE VALUE
STORE SINGLE
WORD VALVE WORD INCREMENT HAVE
’ IDENT POINTER ALL WORDS
IN THIS IDENT

LOCK BEEN
USED

HAS
ALL CODE
IN THIS
IDENT BEEN
UPDATED

MODE

MODE 2
DOUBLE WORD
ADD VALUE T
CODE IN IYAll.(

MODE & IS
VALUE ADOUBLE
WORD

NCll(l‘f.N' TO NEXT]
POENT WOR

MODE 2
SINGLE WORD

INCREMENT TO
NEXT IDENT WORD

STORE DOUBLE

ADSUST STORE SINGLE WORD VALUE IN
IDENT BLOCK WORD VALUE IN ITABLE CODE
POINTER ITABLE CODE & ADJ 1D POINTER

FIG. 10.16 FETCHT FLOW CHART

62

SET VALUE=TO
NUMBER OF PE

EXIT

FLOAT ITABLE CODE
VALUE SET = VALUE

NSWC/WOL/TR 75—-68

1S
ICODE IN
ITABLE

CALIBRATION
REFERENCE

INDEX CALTAB POINTER
FROM ITABLE CAL.
REFERENCE

FIND CORRECT ROW
IN CALTAB

!

FLOAT DOUBLE WORD
SCALAR AND
ENGINEERING UNITS
THAT BRACKET THE
CODE VALUE

EXIT 7O
SYSTEM

FIND CORRECT ROW
INCALTAB

$

FLOAT SCALAR AND
ENGINEERING UNITS
THAT BRACKET CODE
VALUES

FLOAT THE
CODE VALUE

+

INTERPOLATE TO
FIND VALUE ’

EXIT

FIG. 10.17 FETCHV FLOW CHART

63

NSWCWOL/TR 75-68

ENTER

CALCULATE THE NUMBER OF
PLACES TO SHIFT RIGHT (1)
AND TO SHIFT LEFT (J)

B

ALGEBRAICALLY RIGHT SHIFT
A ONE BIT WHICH IS ON THE
15th POSITION | PLACES

:

SHIFT THE ONE MASK
FORMED LEFT JPLACES

e

SHIFT NAME LEFT LBIT PLACES

:

IFIELD = THE MASK AND THE
MODIFIED NAME ANDED
TOGETHER

FIG. 10.18 IFIELD FLOW CHART

64

NSWC/MWOL/TR 75—-68

SET TABLE FLAG
AND COMPLIMENT
THE AMOUNT

COMPLIMENT
THE AMOUNT

SET PARITY

YES ERROR
COUNTER | Exiv

=1

TABLE
FLAG SET
>

FILL
BUFFER

INCREMENT
PARITY ERROR
COUNTER

PARITY
ERROR

INCREMENT
BUFFER
POINTER TO
NEXT BLOCK

SEARCH FOR NEXT
MAJOR TIME BLOCK
AND SET BUFFER
POINTER

FIG. 10.19 MYIPE FLOW CHART

MAJOR
TIME BLOCK
’

65

COMPLIMENT DOUBLE
WORD INTEGER & SET
NEGATIVE FLAG

REMOVE IT FROM LOW
ORDER WORD OF THE
DOUBLE WORD INTEGER

|

DFLOAT
=DFLOAT
+ 32768

COMPLIMENT DFLOAT

YES

NSWCWOL/TR 75—-68

DOUBLE

HIGH ORDER
WORD OF DOUBLE
WORD INTEGER
GTO

BIT15EQ 1

DFLOAT =BITS 31 TO
16 TIMES 65536

DFLOAT = DFLOAT +
LOW ORDER WORD
OF THE DOUBLE
WORD INTEGER

YES

NO

FIG. 10.20 DFLOAT FLOW CHART

66

FORD IN STORE
INST FOR TWC
OPERANDS

ENTER

PICK UP PARAMETERS,
SAVE USER'S
REGISTER COMPLETE
RETURN ADD

ONE
ARGUMENT
INCALL

LOAD IN STORE
INST FOR ONE
OPERAND

LOOK AT NEXT STORE|
INCREMENT AND

FORCES
L

LOAD IN CALLING
ADDRESS

+

JUMP TO OPERATION

NSWC/YOL/TR 75-68

RESTORE USER'S
REGISTERS

REQUESTED
;"
v v v 2 K
SPECIAL DOUBLE
I DOUBLE WORD DOUBLE WORD DOUBLE WORD
DOUBLE WORD ADD SUBTRACT CONFIRM STORE :‘:gggg'”s

v

FIND REGISTER
FORTRAN IS USED TO
MODIFY S R2 INST

+

CALCULATE STORAGE
ADDRESS +1

v

STORE LOW ORDER
WORD IN THIS

LOCATION

_.®

FIG. 10.21 DBLWRD FLOW CHART

67

SUBTRACT TO FIND
WHOLE NUMBER OF
AA +1/BB+1

v

WHOLE NUMBER=R2.
STORE REMAINDER
IN FIRST
PARAMETER
ADDRESS

NSWCMWOL/TR 7568

SAVE USERS
REGISTER

& LOAD IN USERS
PARAMETERS

+

MASK IN PARITY
ERROR CONTROL

LOAD IN STATUS
ADDRESS

AND SET
STATUS FLAG

COMPUTE
NUMBER OF
WORDS READ

+

STORE
PARAMETER

P INTO IOSSPACKET

'

STORE IN USER'S
STATUS ADDRESS

STATUS

STATUS
=1

? Y

FIG. 10.22 MTIOF FLOW CHART

68

COMPUTE RETURN
[ADDRESS AND
RESTOKE USEF'S
REGISTERS

NSWCWOL/TR 75—-68

A
DATA ITEM

NO
REF
JABLE
YES PAUSE

PRINT
HEADINGS

FIG. 10.23 PRINT1 FLOW CHART

69

REAL

NSWCMWOL/TR 75-68

PRINT WORKING
CODE VALUE
TABLE HEADING

DATA
A OCTAL

v

CALL FETCHV

v

PRINT ALL ROWS
OF TABLE WITH
CODE VALUE IN
REAL ENG. UNIT
FORMAT

REQUESTED

INTEGER

PRINT ALL ROWS PRINT ALL ROWS
OF TABLE WITH OF TABLE WITH
CODE VALUE IN CODE VALUE N
INTEGOR FORMAT OCTAL FORMAT

FIG. 10.24 PRINT 2 FLOW CHART

70

