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Final Repcrt for AFOSR Grant

This research project covered the period 1 October 1973 - 30 September

1975. The fundamental probler addressed was the discrimination between earth-
quakes and explosions. At the outset it became clear that data of high quality
would be needed for a quantitative method of discrimination based on the
seismic source mechanism. Consequently, a comparison was made amonug available,
digitally recorded seismographs. Very preliminary results are presented in
Appendix A. It appears that the SRO instruments are detinitely superior to the
HGLP instruments although both suffer from unexplained ron-linearities. Finite
loop gain may be the explanation tor the SKO instrument. At long periods the
fed-back LaCoste-Rorterg gravimeter is the best instrument tested.

To retrieve the seismic Lource mechanism from observed spectra one
uses the concepts of matched filtering and deconvolution. Before the beginning
of this project it was known tnat the relationship bLetween the seismic moment
tensor and observed spectra is a linear one (Gilbert, 1371). It was also
known, in principle, how to retrieve the moment tensol {Gilbert, 1973). The
basic ideas were refined and used to retrieve the moment tensors of two, large
deep earthquakes (Dziewonski and Gilbert, 1974; Gilbert and Dziewonski, 197%).
The major drawback to the method was its requirement of a large, dense, global
network of stations. Clearly, a method for a regiondl or lecal array was nceded.

Such a method was discovered as the project drew to a close and the theoretical

basis for it is presented in Appendix B. In theory, one needs only a single,
horizontally polarized instrument or two, vertically polariced instruments

3

Numerical experiments with synthetic data indicate that as few as 5-10 verticals

permit retrieval down to magnitude m = 6, \\}s
na no=
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A practical application of this novel methcd is presented in Appendix
C where it is shown how one can use only 10 WWSSN stations to retrieve the
mechanism of a deep earthquake. Digital data of sufficient quality - tie
instruments must be well calibrated - were simply not available for explosion;:
Therefore, a practical evaluation of this method awaits the forthcoming SRO
data which is expected to be of very high quality (however, see Appendix A).

Fundamental to the application of the matched filtering method is the
facility to calculate very accurate synthetic seismograms, including the
effects of dissipation, for a broad range of frequencies and wave numbers.
Among all known methods the classical procedure of summation of normal niodes
was found to be the most reliable. To compute the required normal mode
eigenfrequencies and eigenfunctions is not a trivial task, even after 20 years
of theoretical and numerical effort. We have found that the classical
Rayleigh-Ritz procedure is the cheapest and moct accurate. All eigendata witn
periods between 40 sec and 1 hour - about 5000 modes - can be computed for a
few thousand dollars. The present programs are designed to produce the com-
plete spectrum for all periods greater than 20 sec. The theoretical basis for
this variational calculation is given in Appendix D.

At periods on the order of a few tens of seconds the concept of standing
waves, valuable at longer periods, is better replaced by the concept of
traveling waves. An exact theoretical traveling wave representation is pre-

[
sented in Appendix E. Such a representation is very desirable for applying
the matched filtering methods to a regional or local network.

In summary, a novel method, bas:d on matched filtering, has been found

for retrieving the seismic source mechanism, the moment tensor from a sparse
g » ’

network of instruments. The moment tensor can be examined for its deviatoric
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(earthquake-like) and isotropic (explosicn-like) components. Almost all
earthquakes are thought to have a nearly completely deviatoric mement tensor,
and almost all explosions to have an isotropic cme. Thus, the unique partition

of th¢ seismic moment tensor into its deviatoric and isotropic parts provides

a quantitative, unambiguous method for discriminating between earthquahkes and

explosions. The matched filtering method for retrieving the seismic moment
tensor works. It is new and its limitations have not been explored. Clearly,
it is scientifically most desirable that the full potential of this method

be assessed.
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Appendix A

We present some preliminary comparisons among instruments for
the WWSSN, HGLP, SRO and IDA networks. The comparisons are incomplete
yet adequate enough to show some of the features of the different systems,
In Figure Al we have four seismograms of the Korean earthquake

(mb = 6.5) on September 29, 1973. The four instruments (all verticals)

are: the Goodkind-Prothero superconducting gravimeter, the La Coste-

Romberg gravimeter (thie IDA instrument), the HGLP vertical and the WWSSN
long-period vertical (recorded digitally). The KHGLP vertical is located ir
Albuquerque, N.M. and the other three at the Vificn Flat Cbservatory, Calis,

The two gravimeters are band-pass filtered to enhance (x100) the acceleration in

the band 1 min-30 min. The HGLP vertical has the standard "noise notch"

filter and the WWSSN vertical has the standard response, Rayleigh wave
packets tnrough RE are clearly visible on the two gravimeters.
In Figure A2 we have the spectra for the first day after the

earthquake from the seismograms in Figure Al (the WWSSH spectrum is

from a hand-digitized record of the Albuquerque WWSSN instrument). The
filters on the two gravimeters are virtually identical in the pass band
and so are the spectra of the two instruments. The similarity between
the two of the spectral peaks and troughs indicates a S/N ratio approaching
50 db. At low frequencies, near 10 cph, the WWSSN vertical has a 3/N
ratio of at least 25 db, equal to, if not better than, the HGLP instrument.

This comparison shows that a digitally recorded WWSSN vertical is at

least marginally preferable to the "A" channel of the HGLP vert.cal and

that the two gravimeters are some 25 db Letter than either of the




other two instruments. It is not clear whether the other two instruments
respond to ground noise at lorg periods because the dynamic range of the
recording system is taken by the large amplitude, short period motion.
In the present configuration ground noise could be as much as 25 db below
instrument noise at long periods for both the WWSSN and HGLF instruments.
In Figure A3 we have spectra for the second day of the earthquake.
The WWSSN spectrum has been omitted. A glance at Figure Al shows that
the ambient noise level is reached some ¢ hours after the earthquake
for this instrument. A number of long period fundamental modes and high-Q
overtones are clearly present in the cpectra of the two gravimeters and,
to a lesser extent, in the HGLP spectrum. At 10 cph the spectral level
has dropped 15 db from day 1 to day 2 for the gravimeters and 30 db for
the HGLP instrument. This demonstrates the nonlinearity of the HGLP
instrument. Large amplitude, short pericd motions are non-linearly
"aliased" to long periods. As the short period motions decay, and they
dec.y more rapidly than the long period motions, the aliased long period
motions also decay more rapidly than the true long period motions. Thus,
much of the long period spectral energy in the HGLP spectra in Figures
A2 and A3 is non-linearly aliased short period spectral energy. This
intolerable situatior. makes the HGLP instrument unacceptable for long
period studies.
To improve the comparison of the HGLP and La Coste instruments
at long periods we turn our attention to the boom channel, channel "B",
of the HGLP instrument.

In Figure A4 we have the tide channel (flat in acceleration) of

the La Coste gravimeter operating in Nafia, Peru and in Figure A5 the




"B" channel of the HGLP instrument at la Paz, Bolivia, both for the
Solomon Islands earthquake, 4 = 7.8, July 20, 1375. Notice that the

La Coste is recorded as an acceleration indicator and the HGLP as a
displacement indicator, so that the two records have tides that are ct
opposite signs. In both instruments the large tidal signal takes most
of the dynamic range of the recording system, leaving a few tens of
"least count" for this rather large event. The desirability of band-
pass filtering is obvious, and in Figure A6 we show the La Coste record

amplified <100 in the bard 1 min - 30 min. This anplification is done

by active filters bejcre digitization so -hat the earthqguake has a few
thousands of "least count", or about 70 db, dynamic renge. Spectra
corresponding to Figures A5 and A6 are shown in Figures A7 and AS.

Two spectra are presented in each figure,cne for the 24 hr period before

At long periods the La Coste gravimeter has a S/N ratio for this event
of about 50 db while the HGLP S/N ratio is nowhere more than 12 db. The
noise level must thus be at least 35 db abo'e ground noise; some of this
is presumably least-count noise, but nonlinewity in the sensor (folding
higher-frequency ground noise to lower frequencies) and noise in the
instrument are also contributing.

Data for the SRO instruments has only very recently become
available. Therefore, a detailed comparison of the SRO instrument with
others is not now possible. We have in Figure A9 the seismogram of the
Solomon Islands event recorded on the SRO vertical at Albuquerque.

Although this instrument is fedback (electromagnetically) the output
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the earthquake and the other for the first 24 hours after the earthquare.
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is filtered with a sharp rolloff at long periods before digitization.

We have low passed the original record with a corner at 100 sec. to
obtain Figure A9. Spectra for the day before and for the first 24 hours
of the earthquake are shown in Figure Al0. The S/N ratio at long
periods is 40 to 50 dv, about equivalent to the La Coste gravimeter.

The lack of structure in the earthquake spectrum for periods
longer than about 300 sec is attributable to the unusually large Rayleigh
wave, Rl, for the main shock. Tiiis signal r:presents an instrumental
problem; whether the active filters are saturated or there are difficulties
in the gain ranging, Rl as recorded on the SRO instrument appears to
be anomalous. Excising Rl from the seismogram leads to the spectra
shown in Figure All (the noise spectrum is the same as in Figure Al0).

The spurious long-period noise disappears, and mol~ peaks can be seen
out to 470 seconds. Saturation is a problem with any seismographic
instrument. For the La Coste gravimeter saturation at Rl appears to be
a problem at teleseismic distances for magnitudes M > 7% . For the SRO
instrument the problem of saturaticn is not yet well understood.

At the longest periods at which modes are visible on the SRO
spectrum, the S/N ratio is only 25 db, compared with 40 db for the
La Coste. Indeed, the S/N ratio for the SRO instrument begins to deteriorate
for periods longer than 300 seconds, whereas the La Coste response remains
good out to 600 seconds. As a result, the longest-period mode unequivocally

visible on the SRC spectrum is at 474 seconds; ci. the La Coste

0°13

spectrum oS5 is visible, at a period of 1130 seconds. Another indication

of the quality of the La Coste gravimeter is presented in Figure Al2.




We have four sections of tha seismogram (amplified x100 in the band
1 min - 30 min) for the Solomorn !slands event spaced roughly half a
day apart. The semi-diurnal tide is ev.dent in this figure. The
start times of the records are -8.5, +16, +28, and +41 hours with
respect to the origin time of the earthquake. Up to 2 days after this
M-7.8 event there is still evidence of the free oscillations of the
Eairth,

In conclusion, it appears that the La Coste-Romberg gravime:zer
is the instrument of choice for a sparse, long-period network. I[f
Project IDA, or a similar project also using La Coste instruments, is
not supported then seismologists will nct have high-quality, long-period,
digital data. Obviously, such data are very desirable. The only sther
instrument that might possibly be useful for long-period seismology is
the SRO instrument (Peterson, et al., USGS preprints, July-August 1537%).
At present little is known about the noise characteristics
of the SRO instrument at very long periods, nor are the nonlinearities

caused by large signals well understood. It thus seems that the fecdbach

La Coste is the only proven low-noise vertical seismometer at very

long periods.
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FIGURE CAPTIONS

Appendi» A

Al. Seismograms from the North Yorean earthquake of September 29, 137Z,
recorded on a La Coste gravimeter and superconducting gravimeter,
and standard Press-Ewing, at Pifion Flat Observatcry, ard ar HGLP

T

at Albuguerque.

A2. Spectra from the first 24 hours after the lorth Korean

earthquake.

Al. Spectra from the second 24 hours after the North ¥orean
earthquake.
AL, Solomon Islands earthquakes of July 20 and 21, 1575 recorded

on the tide ~hanrel cf the La Coste gravimeter z: lana, Peru.

AS. The Solcmon Islands earthquakes on the B Channel of the

HGLP at La Paz, Bolivia.

AE. The Solomon Islands earthquakes on the Nana La Coste gravimeter

with the band .3 to 10 mHz arplified by 100.

A7. Power spectrum of the Solcmon Islands earthquakes on the HGLP

B channel. Light line is for 2L hours tefore the earthquake; heavy

line is for 24 hours after.

A8, Power spectrum from the NNA x 100 record.

A9. Solomon Islands earthquakes, recorded on the SRO vertical at
Albuquerque; datahave been digitally lopassed to remove frequencies

above 10 mtiz.
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Al0, Power spectra of the seismogram in A9, (Light line is spectrum

of previous 24 hours.)

All, Power spectrum of signal in A9, but with R1 excluded,

Al12, Signal from x100 output of NMA La Coste at times before and

after Solomon Islands earthquakes, to show rate of signal decay.
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An Enhanced Deconvolution Procedure fcr Ketrieving

the Seismic Moment Tenscr from a Sparse MNetwork

Freeman Gilber: and Vay Bulan!

Institute cf Gecphvsics and Flanetars Fre

Scripps Instituticn o Oceancira

~ -

University of Califernia, San Uiegc

La Jolla, California 9203

In theory, a single herizontally polarized seisncmeler can te
used to find the six independent elements of tihe seismic moment tenscr
of a buried point source, provided that the instrument is neither
longitudenally nar transversely [olarized. Also, two vertically
polarized seismometers can be used, provided that the epicenter does
not lie on the great circle through the two instruments. These resul:s

form the thecretical basis for a procedure for retrieving the source

mechanism from a sparse seismographic network,
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Let the six independent elements of the seismic moment rate

spectrum Lte f(w) = (tl(w) s N s a0 on fs(w) f. and suppose that P seismic

spectra (records) ulw) = (ul(w) 5 9 & 55 uP(w))T have been observed,

The relationship between u (w) and f(w) is a linear one (Gilbert, 1571,

1973: Dziewonski and Gilbert, 197u4; Giltert and Dziewonski, 1975, nereafter

refererced ac o)

gu)=gun © flw) (1)

The P x 6 matrix Hlu) is a functional of the mechanical structure
of the Earth and can be regarded as the spectral t: nsfer matrix or
system function that relates output u(w) to input f(w) . Let the

pﬁh-row of H(w) be th(w)

The six-vector Ep(u) can be written as the sum of rormal

modes (M; 2.1.24, 2.1.28)

h = A C R Lo

-p(w) %; S k(w) kp“) (2)
where Akp specifies the excitation and amplitude of the kEE-mode for
the pEb-record, CK is the resonance function of the kED-mode, and

. th
&p represents the effect of truncation and the response of the p—

instrument. Each element of gp(w) is the spectrum of a seismogram
caused by a unit element of the moment rate tensor, a delta functicn

- . : th ., . :
in time. The observed seismcgram at the p— instrument is a linear

B-/
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combination of the six seismograms E1fw) and the six coefficients in
the linear combination are the six elemr ..s of {(w) .

Suppose that our model of the Earth is good enough to permit
us to ignore the difference between real and calculated ﬂp(w) . Then
we can seek to solve (1) for f(w) . At low frequencies the spectral
peaks in EI{w) are sufficiently well separated to cause spectral gaps,
frequencies where there is little or no information abcut flw) .
However, it is generally believed (hat f(w) 1is a smooth function of

w at low frequencies, so smooth that it can be taker constant over

a frequency band embracing many modes. Therefore, define set J of

discrete frequencies we

(3) :
wy - Sw S W, < wg t+ Sw ;1= iJ 5 iJ |, L iJ + 1 -1 f
and replace f(w) by fﬂwd) . There are now I « P equations for '
the six-vector f
= [} ('4) ‘
By® Ly Loy j
and we solve (4) by applying the classical method of least squares 1
oo u s fw) s T . (5)
=J -J =Jd ="J° =y =J =J

where the superscript H denotes hermitean transpose.
In forming (5) we cross-correlate up with each element of h
(multiply by Eg(w) ) . This operation is conventionally termed matched

filtering and is an operation to enhance the signal being sought. The
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result is summed over the frequencies in set J to give (5). 1In order
to solve (5) for f we require that ggh have rank-6 . Thus I « P2 §
is a necessary condition. For a dense network, P >> 1 , I , the number
of discrete frequencies in set J , can be small. Alternatively if

I2 6 it appears that we can have P = 1 and still maintain rank-6

for g?h - To explore this possibility we examine the eigenvalues of

K, . Without loss of generality we take i}(p(u.) =1

Consider a single, vertically polarized accelerometer. In

epicentral spherical coordinates the location of the receiver is

(r ,0,¢). An inspection of (M; 2.1.30) shows that the six vector
ékp in (2) for vertical polarization (r-component) can be written
A=(9 -5)ur) (6)

where ¢ 1is a 6 x 4 matrix whcse ncr-zero elements are
-

011 = 022 = 032 =1, 02 = -033 = cos2¢ , ®,, = cose¢
(7)
qu = sin¢ , 063 2 sin2¢
and S is a 4-vector with components (M; 2.1.30)
g . 5 =0 .2 o2 omad gl .
81"1’(1’Sz'ezxz’83'2‘2xz’su'2‘uxg (8)
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Substituting (6) into (2) gives,
Ae,w) =2« Pz, w52, w = ¥ s C () lr) (9)
- k

where E(z;, w)is a 4-vector. For ._IfJ we have

Xy =P (10)
where

P= Y P, u) P, u) (11)
= 4

and the asterisk denotes complex conjugate. In (10) the 4 x 4 hermitean
matrix g is limited to rank-4 and, therefore, so is :;)_'fJ . Consequently,
the 6 X 6 hermitean matrix .é(’J is singular, and, not surprisingly, the
moment rate tensor cannot be retrieved from the spectrum of a single,
vertically polarized accelercmetcr. However, if I , the number of

discrete frequencies in set J , is large enough (1 > 4 is necessary)

then .Z can have rank-4. We shall assume that 1_? is rank-4.

Consider two, vertically polarized accelerometers with coordirnates

(e1 5 ¢1) and (e2 5 ¢2) . In an obvious notation (10) becomes

" T T
EAT PN ST P PRSI (12)
] If ¢, = ¢, then :0;1 = __g;_zand (11) becomes
= ¢ (P +5P)-4>T (13)
=4J = =1 = 2 =

making .-_}VJ singular. Also, if lol - ozl =, i 1 and %2 are the

same except for the sign of column 4. If we change the sign of column 4

and row 4 of &, wve have (13) again. Therefcre, if the epicenter lies
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on the great circle through the two vertical nstruments, Q(J is

| singular. Included here is the special case 6, =0, mor 6, =0

By a proper choice of ccordinates we can always have

T

I - 02 = ¢1 = ¢ in (12). Assuming that .21 and .'_7”2 both have rank-u
we deal with the matrix & (6) = ¢ T(#) + ¢ (-6) * 0 T(-¢) which
1 has rank-6 unless ¢ = 0 , n/2 , n ., Therefore, if the epicenter

does not lie on the great circle through the two instruments, ._7t’J is

non-singular and (5) can be solved for gﬂwJ).

This result is important because it shows that a sparse global

! network of vertically polarized instruments can be used to retrieve

the seismic moment rate tensor. 'Buland and Gilbert (1976) have shown

b

To consider horizontally polarized instruments we must take into

[ ;i that using ten WWSSN stations leads to a satisfactory result for m,_ = 7

account toroidal as well as sphercidal modes. We introduce the 6 x 2
matrix Y whose ncn-zero elements are
EI Y = -y

21 a1 ° sin2¢ , ?61 = -2cos2¢ , wu2 = sin¢ , 152 = -cos¢ (14)

and the 2-vector T (M; 2.1.31)

-3
(]]
&)
>

N
-3
"
N
(&)
[
><
(WY

1 6 2 2 5 7% (15)

In terms of ¥ and T s A

in (M; 2.1.28) for toroidal modes is




A=-8 csc0a, (¥« THW(r) +§ 35 (¥ +T) W(r) (16)

¢
and

Eq(g y W)S —3¢\P= . g csc® Ikck(w)wk(r) =-i’ * Qcsco
(17)

halp »w) = ¥ 2)(: 39 [CK(WM(x) = ¥ = 9

22 and }_1_3 for spheroidal modes are

llq(?_,td):!—-- aegzg.g'; R(E’w):gékck(m)vk(r)
(18)
}le(g,u)=a¢é-gcsce=é-1_)_csce
Thus the complete "synthetic seismograms'" are
Boe o) =G “Rolw) , L, = 891", R, =® geae s
(19)
i ha(m,w) = 8 * Ry(w) , 8, =80 ¥, Ry =csco DO o

where the 6 x 6 matrices 32 and 9y are functions only of ¢ and the

6-vectors _R_2 and R, are functions of r, @ and w. For both gz and ga

the fifth column is proportional to the third and the sixth to the fourth.

Also, columns 1 and 2 of ., are zero. Thus . has rank-4 and

=2

&

has rank-2. When we sum over set J to obtain

3
“!J we use the 6 x 6 matrices




. 0 T . x
e, - , Rolw;) Rfwg)sB,v=2,3 (20)

3 1

and we have .RH =R . We assume R to have raux-6. Although
=W =vb =By

this assumption will be supported for w-bands that include multiplets

—
-

for several values of £ ,.# approaches singularity for large £ .
Y

This is a result of || g'“/“D_!! = 0(2) for large & . The same is

true for Q . This means that approaches rank-4 as an upper left

2
4 x4 block, 9R,, approaches rank-2 as a lower right 2x 2 block.and R
=33 ¥ =23

approaches rank-2 as an upper right 4 x2 block, Physically, this
decomposition is a result of sphercidal modes dominating the 6-component
and of toroidal modes dominating the ¢-component for large £ .

We now consider a single, horizontally polarized instrument

-~

oriented at an angle & with respect to the @-vector. In terms of

(19) and (20) X is

J
' % -coszu Q, . QT + cosa sina(Q,, * R, °* QT
‘=37 L& il T Tt
7 (21)
. 2 . T

In general,.#’. will be non-singular. However, if a = 0 , longitudenal

=J
polarization, or =/2 , transverse polarization, J_?J will be singular
because @, and Q. are singular. Also, the matrices R have
2 =




rank-2 for 6 = 0 ,n . This means that a source directly beneath

the receiver or its antipode cannot be retrieved. Otherwise, the

moment rate tensor can be retrieved from a sinmgle, horizontally
polarized instrument. As in the previous example, for two vertical
instruments, it is necessary to sum over an w-band containing multiplets
for several values of & , in order that -_‘ﬂ__"s have full rank, and it is
assumed that f(w) is nearly constant in ea;L w-band. This result
remains true for large & even though '2'.;'.5‘1
%2 becomes an upper left 4 x 4 block we can replace &2 by ¢ in

becomes singular. Since

(21). Similarly, we can replace 83 by Y . Let

. nw ,
E:t = cos “_'1_"22 + sin °'§33 + cosa sima (._-)534» ;:_/5’32)

= @ ‘{l_
For large & (21) becomes

a;,=&-$-&'r (24)

In (24) we assume that I , the number of discrete frequencies in set J ,
is large enough to make .g‘e have rank-6 . Since det Q # 0 (actually
det R = 8) we see that .}_VJ has rank-6 . Thus, even at short periods,

the moment rate tensor can be retrieved from a single horizontal

instrument unless a = 0 ,%/2o0r 6 =G , 7 ,

In practice, a seismographic station has two horizontal instruments,

in which case it is clear that the moment rate tensor can be retrieved.




Moreover, a standard installation, consisting of one vertical and two
horizontal instruments certainly enables the retrieval of the moment
rate tensor. Here, the only exclusion is 0 =0, n .

The foregoing examples demonstrate theoretically that, except
in special circumstances, the moment rate tensor of a buried point

source can be retrieved from the spectra of two vertical accelerometers

or from the spectrum of ome horizontal accelerometer. From these

theoretical results we can easily infer that a network of a small
number of instruments can be used to retrieve source mechanisms on
a routine basis. The ability to achiecve such retrievals makes possible
some interesting research projects.

The method presented here is an extension of the concept of
matched filtering (see, for example, Robinson, 1967, pp. 259-264).
The matched filters, Eﬂg s, w) in (2), are the Lest linear filters
in that they maximize the signal/noise ratio. For Gaussian noise
they are optimum.

Although we have obtained h(r , w) in (2) by summing
normal mode multiplets, it should be emphasized that the method of
retrieval is independent of the procedure used to obtain Qﬂa , W) .
Any procedure for generating synthetic seismograms can be used to
obtain Ejg » W) . Therefore, matched filtering for the seismic
moment tensor can be done globally, regionally or locally, depending on
the magnitude of the seismic source and the configuration of the

network.

LT TNy
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ABSTRACT

By a process of matched filtering it is possible to deconvolve
a small number of acceleration or strain records for the moment rate
tensor of a seismic source. Theoretically, one horizontal accelerometer
(or strain meter) or two vertical accelerometers is sufficient. Practically,
five to ten records can be shown to suffice. Specifically, the mechanism
of the Colombian event of July 31, 197C can be retrieved from a sparse
network of ten WWSSN vertical instruments. With currently available
instrumentation it should be possible to discriminate unambiguously
between an earthquake and an explosion larger than magnitude 6 at
teleseismic distances. Improved, digitally recorded networks can

lead to a decrease in the threshold of discrimination.
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We consider the moment rate tensor for a buried point source.
The problem of retrieving the elements of the mement rate tensor
(Gilbert and Dziewonski, 1975, Section 2.3; hereafter referenced as M)
has been discussed by Dziewonski and Gilbert (1974). Their method, an
extension of a suggestion of Gilbert (1973), depends on the orthogonality
relations for the sphericel harmonics, and implies a cdernse global array
of receivers. The paucity of first quality long pericd instruments
motivates a search for a method requiring only a sparse
network.,

Following (M; 2.1.17), let the Fourier transform of the
moment rate tensor, M(w) , be written as the six-vector, flw)
Then the Fourier transform of the pEE displacem:nt (or strain, etc.)
record, due to f(w) , at the ] frequency, Up(mi) » May be written

as a sum of normal nodes (M; 2.1.24, 2.1.28).

= T « £
Up(wi) = % ﬁkp L4 (wi) Ck(wi) Rp(wi) (1)
Where ﬁkp specifies the excitation and amplitude of the kEE- mode
at the pzh- instrument; Ck is the resonance function of the kEh
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normal mode ; and Rp is the instrument response and truncation effect

th . A .
at the p— instrument. Define matched filters

hp(ui) = Yy A

C.(w,) R (w,) . (2)
m p R 1" p i

+n

For P records we have P equations in six unknowns, fl I

N B 0 .
ngi, h(ui) g(ui) (3)
th . th
where the p-— element cf Q}wi) is Up(wi) and the p— row

g T 3
of ghui) is Ep(ui) . Clearly, if P2 € we can solve (3) by

least squares for gﬂui) » the mcoment rate tenscr at frequency

int w, .
po i

Because of ground and instrumental noise, and splitting and
uncertainties in Q structure, it is unlikely that i(ui) will be well
determined for a small number cf stations. However, from M(Figures 6 and 7)
we suspect that f is a smooth function of frequency. Therefore, define
set J of discrete frequencies w, such that w, - 6w S w, S w, + 6w ,

J i J

i=1,2,...,1. Assume that {ﬂwd) = flw)=.. .= gﬂul)

1

We now have P ¢+ I equations in six unknowns

% 0 4
Uy =By oo fluy) . ()

As 1 , the number of freguency points in set J , may be large

there appears to be no reason that P cannot be unity. To explore
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the limits of the method we have examined che eigenvalues of the normal
matrix
H* H
&L ()
;

where the superscript * means hermitean transpose. A detailed
analysis is beyond the scope cf this letter and will appear
elsewhere. The results will be stated without proof. Two vertical
accelercmeters (not lying on a great circle through the epicenter) or
one horizontal accelerometer (not longitucinally or transversely
polarized) give full rank to -#; . Practically, synthetic numerical
experiments indicate that a minimum of five to ten stations is
satisfactory.

For large P we examine the relationship between the above method

and the method described in (M;2.3). Ffor simplicity assume Rp(w) -
%
Multiplying equation (4) by EJ (explicity forming the normal equations)

and expanding the sums

%
[): A :k(wi)] U (w)
Lptk Y 4
(6)

¥ T . 9
= {1}; [; ;_\kp Ck(ui)] [>3: 5\_1.? Cj(ui)]} £lwg)
] Rearrange equation (6)

pz':’( [T <) Up(wi)] b

LD U

% T
z L) Cl(w, R A o f(w,)
{k'j [Z;: Cplwy) La(“’x)] [%: =p "JP]} =%
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and define

wJ+6w

I(v) 2 f C:(w) v (w)dw = ‘;[, c;':(wi) v ) .

wJ—Gw

Using the orthogonality relation (M; 2.3.2) among modes (valid for
a dense array) rewrite equation (7) as

z;k LU A= {Z

bk

Equation (9) differs from M; 2.3.2-2.3.10 only in the definition of
I(v) . However, equaticn (8) shares with its counterpart (M; 2.3.7)
the insensitivity to Q gained by integrating across the resonance
function. The fundamental difference between matched filtering
(equation (6) )and stacking (equation (9) and (M;2.3.8)) is that matched
filtering includes all the cross terms among modes (does not depend

on the orthogonality relation).

The method presented here employs an extension of the concept

of matched filtering (see, for example, Robinson, 1967, pp. 259-264),

The matched filters, -Ep(wi) , in (2), are the best linear filters

in that they maximize the signal/noise ratio. Intuitively, we remove

noise and scattered energy from a record by forcing our prejudice on
each record that it be a linear combination of six synthetic records.

The data are then frequency averaged over set J (sum on i in equation

(6) ) to reduce sensitivity to splitting and Q structure and to stabilize
¥, . Spatial averaging (sum on p in equation (6)) further stabilizes
the system. Finally, the P records are deconvolved for fﬂwJ) by

inverting .@G .
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As an example of the method we have plotted (figure 1) the raw

Mrr component derived by matched filtering from a ten record subset

(vertical firstday data from stations GUA, JER, KIP, CHG, GIE, GDH,

PTO, NAI, NAT, KBL) of the Colombian data set (M; Table 1) and Mrr

| redrawn from (M, Figure 6). The agreement is apparent and, considering

: the quality of WWSSN data at very long periods, acceptable. Figure 1

1

V emphasizes the demand for quality data if P is to be small.

L Given the @vailability of quality, long period, digital data,

E matched filtering provides a method for routinely and rapidly determining
the complete long period source function of any event larger than about

magnitude 6 at teleseismic distances. This should greatly facilitate

e e N e

studies of stress-release mechanisms. Furthermore, the implications

for seismic discrimination are promising. Having calculated the complete

long period source function of an event, the discririnationr between

an earthquake and an explosion is entirely unambiguous.

Although we have obtained Ep(wi) by summing normal mode
multiplets, it should be emph :irzed tﬁat the method of retrieval
is independent of the procedure used to obtain the matched filters.
Any procedure for generating synthetic seismograms can be used.
Therefore, matched “iltering for the seismic moment tensor can be

done globally, regionally or locally, depending on the magnitude of

the seismic source and the configuration of the network.
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CAPTION
: . . . 27
Figure 1. The real and imaginary parts of Mrr in dyne-ecm/10 .

Triangles are redrawn from (M; Figure 6). Squares are calculated

by matched filtering from 10 stations.
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The Theoretical Basis for the Rapid and Accurate Computation

of Normal Mode Eigenfrequencies and Eigenfunctions

! R, P, Buland and F. Gilbert

NOTE: Computational procedures have been developed for the
CDC 7600 at the Lawrence Berkeley Laboratory of the University
of California.
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Introduction

Recent progress in the application of normal node theory in
seismology has made it necessary to cevelop a practical end accurate
scheme for the computation of the nigh frequency elastic-gravitational
free oscillations of a radially symmetric, non-rotating, self gravitating,
perfectly elastic earth model. The scheme develcped is btased on the
classical variational approach and on recent advances in the solution
of the algebraic eigenvalue problem for large handed systems of the

form (A - AB)E %0 .

Raleigh-Ritz Procedure

By Raleigh's principle the eigenfuncticns of an earth mciel
=]

)
are extremal solutions of the energy balance ecuaticn:

a " a e
u° J & (r)rdr - f #(r)rfdr = 0 (1)
0 0

where w27 is the kinetic energy density per unit volume as a function
of radius, ¥” the corresponding potertial energy density, u <he
angular frequency, and a the radius of the earth (Pekeris and Jarosch,
1958, develop eq. 1 in terms of the radial scalar: of an eigenfunction).
Therefore, approximate eigenfunctions and eigenvalues may be computed
from eq. 1 by a Raleigh-Ritz prccedure. Let u: represent the radial
part of the eigenfunction s(r) as a linear combination of N test

functions ci(r) each satisfying (he boundary conditions.




N
s(r) ~8(r) = 2 b2 (r) (2)
i=1

substituting eq. 2 into eq. 1 results in a matrix eigenvalue problem:
2 &
A(w)b = (&"T-V)b = 0 (3)

with the following properties:

1) Each eigenvector b represents a projection cf eigen-
function s onto the space spanned by the ci's

2) m2 is an upper bound to the -mared eigenfrequency
associated with eigenfuﬁction s

3) Fach sucessive eigenvector b represents a higher radial
order (overtone) of the same angular order. Each angular
order is represented by a different matrix eguation.

4) If the error between s and the projection of s onto
the ti's is 0(a) then the error between w2 and the

squared eigenfrequency associatea with s is 0(a2)

Test Functions

For computational speed it is desirable that the test functicns
be economical to compute, that the number of test functions, N , be as
small as is consistent with an accurate representation of s , and that
each test function overlap cnly a small number of other test functiomns,

i.e.,the matrices T and V be banded (Courant, 1943). Further, we
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demand that s be continuous and desire that aPEIr) be continucus

also except at first order discontinuities, where the usual boundary

conditions apply. These requirements dictate the use of the basis

functions for piecewise cubic Hermite interpolation as test functicns

(Birkhoff et al., 1966).

Computational Philosophy

In order not to discard any precision unnecessarily it has
been found desirable to adhere rigidly to an all pervading phileosophy.
As is common practice our models are spec:fied at discrete peints of

an unequally spaced grid:

v:O:y1<y2<--.<yM:a.

Each of the model parameters-- p(r) , u(r) , or X(r) --is defined
to be the cubic spline interpolation of the parameter specified on

grid v . Similarly, the eigenfunctions are calculated on grid:

Due to the choice of vest functions each eigenfunction must be
defined as the Hermite cubic spline interpolaticn of the eigenfunction
on grid w .,

It has been found necessary to perform the integrals quite
precisely. OCur philcscphy has been to sacrifice a little speed (since
they need only be done once per model) and do the integrals exactly.
Therefore, all integration has been performed interval by interval

(x, g S XS X, i=2,3, -«  N) by means of a low order




Gauss-Legendre quadrature.

and numerically stable as well as mathematically exact.

The integrals are thus both rapidly computed

It has also been

our philosophy to use no less than 6 nodes (12 degrees of freedcm per

radial scalar) per radial wavelength at the highest frequency of interest

(G. Frazier, personal communication).

The Detailed Test Functions

Define basis functions

3 2

ffak - 3 =+ 1
no(x) z <—2x3 « W E 1

" 0

)3 - 2x% 4 x
wo(X) = < i e 2

" 0

M9

0 % € 1

a8

-1 £ x <0

otherwise

-1 s x <0

otherwise

differentiable functions with properties giver in Table 1.

functions are then defined by:

M ( X - X§ ) <
—_— x, £ % § K,
0 xi+1 - xi A i+41
(x) = X - X
i ) 4n PR — X. S X < X,
O\xi - Xi-1 i-1 i
\ 0 otherwise
X - Xj§
[ (%3 - %) ¥ ( ) X, £ X S X,
i+l 2§ O\x. SHEC i 1
i+l hat
R
= = ! 7 <
bl = (Xt %) Vo(x. -xL.—) Bieg 7 15
1 i-1
| 0 otherwise

(%)

and v, are simply designed to be piecewise cubic, continucusly

The test

+1

(5)




e
e Y s Y T i eprqs Y @, | WA

.’mf-.-[- .
. 3 s
Representaticn of the Eigenfunctions
Let us represent a toroidal free oscillation as:
m + .m inwr:t
nln(x;’t) z [—nwl(r) r x VIYE (e, o)] e
N (6)
W (r) ~ 2 [w“)n (r) + w(z)w )] .
nk s CO i i
i=1
Eq. 6 yields a matrix system with 2 degrees of freedcm cer ncce or
2N x 2N nmatrices with half lancwidth & . Of course, for a model
with zero viscosity in the outer core,the model need cnly include the
mantle for this case.
5 Let us represent spheroidal free oscillations as:
m Ym > A inuzt
= ~ B b
ngl(£~’t) = [rnUl(r) 2(6 2 $) ¢ r‘/l(r)lel(e 5 Q)] e
U, (r) ~ % [u (1) (r) +u (2, (r) (%)
n L . i i g vyted]
i=1
V.(r) ~ % [v (1)'\ (r) +v b2 (r)
n'g . i N i ve)
{ i=1
E
coupled with the perturbation ©f the gravitaticnal potential:
. M
1 w,t
m .- m . n L
. nyl(_r;,t) = [rnPl(r)Yl(O 4 4))] e
N (8)
~ (1) (2)
AP () i5_‘;1[pi () v )]
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Eq. 7 alone yields a matrix system with 4 degrees of freedom per ncde or

4N x 4N matrices with half bandwidth 8 . Eq. 7 coupled with eq.8 yiells

a 6N x 6N matrix system with half bariwidth 12 .

Boundary Conditions

Before the matrix eigenvalue prcilem in eq. 3 can yield valid
approximations to the eigenfrequencies ancd eigenfuncticns of an earth
model, all boundary conditions must be satisfied. Rather then introduce
constraint equations with undetermined Lagrange multipliers (which

increases the size of the matrices) we have chosen explici:ly to match

b

the becundary conditicns by making linear combinaticns of the rows and

columns (and reducing the rank) of the matrices. Therefore, upon

entrance into the eigenvalue procedure all boundary ccnditicns are

automatically and exactly satisfied.

By using the Sturm count (rumber of eigenvalues c

(£

€ 3

5.
larger than uz) and det [A(w)], all eigenvalues in a given frequency
band may te quickly found to maciine precision by bisecticn and linear
interpolation (Martin and Wilkinson, 1967; Peters and Wilkinscn, 1%8%).
Even though each calculation of the determinant and Sturm count of

eq. 3 requires a new decomposition of the matrix A(w) , it is possitle
to take advantage cof the bandwidth of the system. Without the

small bandwidth of A(w) the problem would bte hopelessly expensive.

Once the eigenvalue is xkncwn the eigenvector may be found by inverse

iteration (Wilkinson, 19€5, p 628-629).
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If the half bandwidth is m, then the number of operations needed

" . 2 . .
to find each eigenvalue goes as Nm“ . The amount of computation is

independent of n, 2, w, or the radial turning point <f the mcde.

Discussicn

The unusual feature cf this method, +hat the amoun® of ccmputa-
tion is independen: of the mode, s due to our »xireme conservatism.

No advantage can be taken of the smoothness of low

e

reguency mcdes o1
of the shallow ray eguivalent turning point cf the high angular order,

low radial crder mantle modes. Cn the other hand, as the computation

has been nmad

o
)
|
nr
(9]
-
Rt
[¢)
(4]
—

» the luxury of such conservatism has done
eway with troublescme special cases. Core modes and Ctoreley medes

are as easy TtO Compute as any cther types

Furthermere, this conservatiem makes possible the scluticn

.
O
e

the algebraic eigenvalue problen with the following acvantages:
1) Highly accurate eigenirejuencies,

2) Correct computation ot nearly coincident eijen:re uencies

S
-
e o

3) All modes in a frequency tand are found

4) No prior informaticn about eigenfrejuencies or eigenfuncticn

n ns
is required,

The eigenvalue procedures routinely yield eigenvalues with

. dowever, the accuracy

" : 11
4 precision cn the order of a part in 10
6

x.) , and the accuracy

s th igen. e 5 ¢ h 2 ™ . -
he eigernvalue HRT) 2)(()(1’1 i

: : : 3 o 5
of the eigenfunction is O(L”) (Birkhcff, et al., 19€9). For our

160 point grid * , we evaluated the accuracy emperically by comparing
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eigenfrequencies between the variational program and a differential
equation prcgram (Alterman, Jarcsch ind Pekeris, 1953). The differ-
ential equation program was written with 10 decimal place constants

. —_ . - : . 8
and required a precision in the integraticn of cne part in 10

-

The eigenvalues were identical to a relative acc.racy of no less

' : 1 : : ;
than one part in 10 . Since these methods are philosophically
very different, and algerithmically completely distinct, this vesult

indicates to us that both prcgrams are free of errcrs.

As a single example of the use of these methods we present,

in Figure 1, the (w, ) diagrim of spheroidai modes (w < 2m/45 sec—l,

£ £ 150) for mcdel 1066B (Gilbert an! l'ziewonski, 137%8),

e R i s b s bk o
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Caption

Figure 1. The spheroidai (w, &) diagram for Model 1066B
-1
(w = .14 s=c.”, 2 < 150). A continucus line joins

the points for each fixed value of the radial cver-

tone number.
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Summary

The Poisson sum formula is used to transform the standing wave

representation of seismic displacements in a radially stratified sphere

into a traveling wave representation. The terms in the sum can be given

a physical interpretation, via the method of stationary phase, as classi-
cal wave packets making successive traversals of the great circle through
epicenter and receiver. The traveling wave representation forms the basis

for the retrieval of structural parameters and source mechanisms from the

spectra of traveling wave groups.
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The representation of seismic displacements in terms of traveling waves

1. The traveling wave representation

The representation in terms of normal modes used by Gilbert and
Dziewonski (1975, Sec. 2, hereafter referenced as M ) is a standing
wave representation. ‘%The sums over angular order can easily be con-
verted into integrals cvar wavenumber from which a traveling wave
representation can be obtained. Such a representation is desirable for
the study of regional structure, for the separation of traveling wave
orbits and overtones, and for the study of the moment rate tensor of
regional events.

Suppose U(r,w) is one component of the displacement spectrum

fer a particular radjal ¢+ :rtone number, n , (M, [2.1.24,25])

Ulr,w) = 2: al(r,w) Cl(“)

1) 2=0

az(r,m) = Al(r) + f(w)
and, for simplicity, suppose that Al(r) depends only on Pl(cos 8)

ll(r,m) = h(2+d, r, w) Pl(cos 8)

2) h(2+s, r, w) = Hl(r) o f(w)

Al(r) F3 Hl(r) Pl(COS 8)




[ ]
Ulr,w) = 2: h( 2+%) Pl(cos B)Cl(w)
£=0
There are two steps to represent U(r,w) in terms of traveling
waves. The Poisson sum formula (Titchmersh, 19ug, p. 60; Nussenzweig,

1965, p. 27) is used to convert the sum in (3) into a series of invtegrals

4) Ulr.w) = fdA Z(_)k h(A) Py . (cos 8) C(A,0) o i2kmA
0 k==-e

and zero is added to (4) in a suggestive manner. We use the Legendre

function of the second kind, Qx_k(cos 8) , and rewrite the sum in (&)

5) U, = faam) Tk (3,0) cOr,u)
) s=1

= (.)(S'i)/2 [PA_%(cos 8) cosl(s-1)mA]

+ % QA_% (cos 8) sin[(s—l)“A]]

z (-)s/2 [Px_g(cos 8) cos(sm))

- %'QA-B (cos 8) sin(snk)]




E>3

The term in (6) involving Qx_g(cos 8) is zero for s=1, and the rest

vanish in pairs (2,3), (4,5), etc., so that the terms in (5) involving
Qx_k(cos 6) sum to zero.

The reason for using (S5) rather than (4) is that we can interpret
Rs(x,e) in (5) and (6) as representing the SEH passage, or orbit, of a
traveling wave group. This interpretation is clarified by using the
pair of functions (Nussenzweig, 1965, p. 89; Robin, 1958, pp. 237-240)

7) Qifgz)(cos b) = & [PA-E(COS 8) ¢ i %'Qx_g(°°5 e)]

and rewriting (6) in the form

s~ odd:

R (2,0) = (-)(S-M[Qii;)é(cos e)e—i(s-l)“)‘ + Qif&(cos e)ei(s'l)")‘]
8)
s- even:

R (1,6) = (_)8/2 [Q§3;(°°S 8)e iS™A Qii;(COS e)eisvk]

2. A physical interpretation

To understand the physical interpretation of Rs(x,e) ,y as
representing the sEh- passage of a traveling wave group, we use the

method of stationary phase and the asymptotic approximations, valid

for Xxe>>1and e 0 <7 - ¢ .
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i 9) Qiié”(cos 8) = (2nx sin 9)-;5 e;i(xe-"/“) (1+0(A-1))

Also we consider f(w) to be a constant in (1) and (2). The actual
behavior of f can be recovered by convolution in time or multiplica-
tion in frequency. In this case the temporal behavior U(r,t) corre-

sponding to (5) is (M,(2.1.11))

Z RS(X,B) [cos(m(k)t) e-a(k)t -1] H(t)

100 Ur,t) = f aan)
0 s=1

In (10) we consider the transient term which we write as

11) Ur,t) = e [ drn(r) R (3,0) Je()t-a()t
0 &=zl

Let us consider s- odd in (8)-(11) and let U(1’2) denote

the contribution to U according as we use Q(1’2)(cos 8) in (9).

A-X
Then the integrand for U(1’2) has phase ¢(1’2)

12) 0(1’2) = w(A)t + A[(s-l)n + 9] t n/u

According to the method of stationary phase the dominant contributions

to U(l) come from those values of ) for which d¢(1)/dx = 0 or

13) tdw(r)/dr = (s-1)n + 8 = 852 0

]

m
l
|
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If we define a group velocity o Aﬁ/t » in units, say, of

radians/s., then (13) requires that

14) dw(r)/da = b/t =y 2 0
in order that ¢(1) be stationary, For.toroidal modes the variational
formulation (Meissner, 1926) shows that dw(A)/dA > O , Thus 9(1) has

at least one stationary value for some Vg @ For spheroidal modes it
is almost always true that dw(A)/dA> 0 . Some contrary examples have
been given by Gilbert (1967),

The interpretation of A, in (13) is that it is the total
distance traveled by the wave group. The sib ave group has traveled
a distance 8 from source to receiver plus an additional (s-1)/2
great circles in time t at group speed Y5 o This is exactly the
interpretation given to the classical surface waves 61 5 R3 s etc,
Consequently, s corresponds exactly to the orbital index, 1, 3, - ey

for such a surface wave. 1In addition, the SEE term in (11), through

(-)(5-1)/2 in (8), is out of phase with the s ¢ i term.

the factor
This {’lustrates the polar phase shift (Brune, Nafe and Alsop, 1961).
The sg—1 wave group has passed two more poles than the s-2nd wave
gcup, and has its phase advanced %/2 twice.

Proceeding in a similar manner for 0(2) in (12) we find the

stationarity condition

15) dw(A)/dx = -a/t = -y 50
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This condition is never met for toroidal modes and only rarely for

5(2)

spheroidal modes. Therefore, is of only minor importance, and

is customarily neglected.

However, in (11) we could have used exp(-iw(A)t) in place

of exp(iw(A)t) . Then u2)

(1)

would have provided the dominant con-
tribution and U would have been negligable. That is, the dominant
contribution to (11) for w>0 and s- odd is U(1’2) according as
the time behavior is taken to be exp(tiuwt) .

Considering s- odd in (8)-(11) shcws that Rs(k,e) represents
the szh traveling wave group. The group, of wavenumber A and
frequency w(A) , travels a total distance g » given by (13), in

time t at group speed Y, -+ The important term in RS(A,G) in (8)

has superscript (1,2) according as the time behavior is exp(tiwt) ;

w>0 .
Let us now ccnsider s- even in (8)-(11), and let 0(1’2) be
\
the contribution to U(r,t) according as we use Qiiézl(cos 8) in (9).

The integrand for U(1’2) will have phase ¢(1’2)

16) ¢(1’2) = w)t £ A [sn-6] ¢ n/u

The phase 0(2) has the stationarity condition
17) tdw(d)/da = sr-8 = 48>0

or

18) dw(Ar)/da = As/t =y 2 0




Y > Tt S« W ewon

It is clear that the s-th wave group travels the distance 2n-0

from source to receiver plus an additional (s-2)/2 great circles in
time t at group speed Y - The successive values of s correspond
exactly to the orbital index 2, 4, . - *y for such classical surface
waves as G2 , Ru » etc. The polar phase shift between successive orbits
is given by the factor (_)5/2 in (8).

(1)

A consideration of ¢ leads to (15) with As given by (17),

1), @

and U(l) is of only minor importance. The réles of U
are reversed if the integrand in (11) is replaced by its complex con-
jugate. That is, the important term in RS(A,B) in (8) has superscript
(2,1) according as the time behavior is exp(tint) ; w>0 .

The foregoing discussioh, based on the method of stationary
phase and the work of Brune, Nafe and Alsop (1961), illustrates that

(5) is the exact traveling wave rerresentation of seismic spectra.

The functions RS(A,e) in (8) represent traveling wave groups.

3. The standard form

At this point it is desirable to put (5) into a form simjilar
to (2.1,2%) and (2.1.25) of M . Using Legendre functions of the second
kind

19) Q;"S;,z)(cos 8) = [Pr:-}’(cos 0) ¢+ i 2 (cos e)]

we introduce the functions RZ(X,Q)

e e i o W g e
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s- odd:

R’:(A.e) z (-)(3-”/2 [Qr;f_l}:(cos e)e’i(s-l)")‘f Qr;(_i)(cos 8) ei(s-l)”]
2C)

S$- even:

RZ‘(X,G) (-)8/2 [Qr;(_i)(cos 8) P m(1)(cos 9) eisﬂx]

and we define
1

()"(a72m) 2 (A2 k"1, 6)

21) x™(2,8)
S 3 aaly 2 o
(A %) *(a-9/m)" 2

according as m =0, 1, 2 . The second and third terms in braces in

-1 -2 :
and A » respectively, for A>>1.

(21) can be well approximated by A
We now define AS(A,r) in terms of (21) exactly as A is defined
in (2.1.30) and (2.1.31) of M in terms of X':(S) . Note: the sign

of Ay in M(2.1.31) should le negative.
Thus, we can write the traveling wave representation, generalizing

(5), as

22)  utr) = [ T oa Our) cOuw)i a,0r) = A () - £(w)
0 s=1

The traveling wave representation (22) forms the basis for the

retrieval of structural parameters and source mechanisms from the fre-

quency spectra of traveling wave groups. It also forms the basis

gt il T g e )
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for an investigation of body waves (Burridge, 1966; Ansell, 1973),
where As(k,r) is decomposed into a series of terms, each of which

represents a generalized ray (Brune, 1964; Ben-Menahem, 1964).
4. Transition to plane stratification

The representation in terms of traveling waves for a plane
stratified medium can be obtained from the foregoing expressions by a
limiting process. Let X = a®@ where a is the radius of the szhere
for which we have the traveling wave representation. Let x s the
epicentral distance, be fixed. Let )\ = ka , where k is the (fixed)
wave number on the surface. Then the representation for a plane strati-
fied medium is found as the lim}t as a+e of the representaticn for a
sphere. We use the uniform asymptotic approximations of Szegd (1934)
that permit us to replace (9) by (23) for large A

23) P (cos 0) = Ho/sin )% K2 (re) (1007 )5 0swr2

in terms of Hankel functions.

The terms for s > 1 in (5) represent wave groups that arrive
at successively later times, 3 ts s Wiere ts is the earliest group
arrival time for the s-t-B group. Since %iﬂ ts = » . because each

group must travel a distance of at least wma , we shall consider only

s =1 in (5)

) U, = f a0 R (,0) CO )
0

.hNIIIi.IIIlllllIllI-ll-u-lllllliujm-IIllI--u-u----u--l-I---u.-_uhb___A“mbwh.



el d AR . ey i T I AN 5 gy T, T B

/
Combining (23) and (8) gives

R;(1,8) = %(6/sin 6) [Hé”(xe) ¢ Hgi)(xe)]

25)

(8/sin )% 3o(20)

The product A8 in (25) is the same as kx

26) Ri(A,e) = (8/sin 9);5 Jo(kx)

As 6 +» 0 (a») (24) becomes

27)  Ur,0) = a f dk Wlka) Jo0x) C(k,w)
J

A careful analysis of h , including the normalizing integral (M, (2.1.3))
shows that h is O(a-i) so that éiﬂ of (27) .is finite.

The presence of the cylindrical Bessel function in (27) in place
of the spherical harmonic, the Legendre function, in (1) and (2),

illustrates the transition from spherical stratification to plane

stratification.
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