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Final Kepc n for AI'JÜR Gx-diit 

This research project covered the period 1 October 1973 - 30 September 

1975.  The fundamentdl probler addresücd was the discr.'ir.ination between earth- 

quakes and explosions.  At the outlet it became clear that data of high quality 

would be needed for a quantitative method of discrimination ^ased on the 

seismic source mechanism.  Consequently, a comparison w.i.i made among availabl«, 

digitally 'ecorded seismograph«.  Very preliminary rCMttJtl are prv .ented in 

Appendix A  It appears thai the ^RO instruments are .leiir.itely suj <. rior to t:.-- 

HGLP ir.struments although loth sutler from unexplained non-linearities.  Finite 

loop gain may be the explanation tor the SRO instrument.  At long periods th« 

fed-back LaCoste-Romerg gravin.eter is the best instrument testet. 

To retrieve the seismic ..ource mechanism from obs«r*»d ipectra one 

uses the concepts ot matched filtering it.d det. onvoiut ion.  before the beginnink- 

of this project it was known tnat the relationshii. letwen the seismic mown- 

tensor and observed spectra is a linear  one (Gilbert, 1971).  It was alio 

known, in principle, how to retrieve the moment tensor (Gilbert, 1973).  The 

basic ideas were refined ana used to retrieve the moment t«M«n of two, larg- 

deep earthquakes (Dziewonski and Gilbert, 197U; Gilbert and Dziewonski, 1975). 

The major drawback to the method was its requirement of a large, dense, global 

network of stations.  Clearly, ■ method for' a regional or local array was needed, 

Such a method was discovered as the projt-ct drew to a close and the theoretical 

basis for it is presented in Appendix B.  In theory, one needs only a single, 

horizontally polarized instrument or two, vertically polarized instruments. 

Numerical experiment:; with synthetic data indicate that as few as 5-10 verticals 

permit retrieval down to magnitude m = 6 .        \  
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A practicdl application of thU tiovel melhca  is presented in Appendix 

C where it is shown how one can use only  10 WWS5N stations  to retrieve the 

mechanism of a deep earthquake.     Digital data of sufficient  quality -tie 

instruments must be well calibrated - were simply not  available for explosions. 

Therefore,  a practical evaluation of ttiis methoc»  awaits  the  forthcoming SRO 

data which is expected to be  of very high quality   (however,  see Appendix A). 

Fundamental  to  the  application of  the  matched  filtering method  is  the 

facility to calculate  very accurate synthetic seisnogrms,  including the 

effects  of dissipation,   for a broad range of  frequencies  and wave  numbers. 

Among all known methods  the  classical procedure  of  summation of normal modes 

was  found to be  the  most  reliable.     To compute  the required normal node 

eigenf-equencies  and eigenfunctions  is not  a trivial  task,  even after 2Ü years 

of theoretical and numerical effort.     We  have  found  that   the  classical 

Rayleigh-Ritz procedure  is   the  cheapest  and moct  accurate.     All eigendata with 

periods between  HO  sec and  1  hour  -  «bout   5000  modes   -  can be  computed  for a 

few  thousand dollars.     The present  programs  are  designed  to produce  the  com- 

plete  spectrum for all periods  greater than 70 sec.     The  theoretical basis   for 

this variational calculation  is  given  in Appendix L. 

At periods  on  the order of a few  tens  of seconds  the  concept  of  .standing 

waves,  valuable  at   longer periods,   is better replaced by  the  concept  of 

traveling waves.     An exac^   theoretical  traveling wave  representation  is  pre- 

sented in Appendix L.     Such a representation  is very  desirable  for applying 

the matched filtering methods  to a regional or  local  network. 

In summary,   a novel method,  has .d or, matched  filtering,  has been found 

for retrieving the  seismic source mechanism, the moment  tensor, from a sparse 

network of instruments.     The moment tensor can be examined  for its deviatoric 
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(earthquake-like) anJ iaotropic (c'xplo3i(,n-like) compom'nis. Almost all 

earthquakes arc thought lo have a nearly completely deviatoric moment tensor, 

and almost all explouions to have an isoiropic one.  Thus, the unique partition 

of tv.c seismic moment tensor into it;, deviatoric and iLolropic parts provides 

a quantitative, unaml iguous method for discriminating t-etween MrthqtMkM and 

explosions.  The matched filtering method for retrieving the seismic moment 

tensor works.  It is new and it! limitations have not been explored.  Clearly, 

it is scientifically most desirable that the full potent;al of this method 

be assessed. 

______ 
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Appendix A 

We present some  preiimitidry comparisons amonp, instruments for 

the WWSSN, HGLP, ÜRO and IDA network:;.  The comparisons are incomplete 

yet adequate enough to show some of the features of the different systems. 

In Figure Ai we have four seismct'.rams of the Korean earthquake 

(n^ = 6.5) on SeptemLer 29, 197J.  The four instruments (all verticals) 

are;  the Goodkind-Prothero superconducting gravimeiei , the La Coste- 

Romberg gravimeter (the IDA instrument), the HGLP vertical and the WWSi'.N 

long-period vertical (recorded digitally).  The HGLP vertical is located I:. 

Albuquerque, N.M. and the other three at the Mftcn Plat tbservatory, Calir. 

The two gravimeters are Land-pass filtered to enhance (xlCO) the acceleration in 

the band 1 min-30 min.  The HGLP vertical has the standard "noise notch" 

filter and the WWSSN vertical has the standard response.  Rayleigh wave 

packets tnrough Re, are clearly visible on the two gravimeters. 

In Figure A2 we have the spectra for the first day after the 

earthquake from the seismograms in Figure Al (the WWSLN spectrum is 

from a hand-digitized record of the Albuquerque WWSSN instrument).  The 

filters on the two gravimeters are virtually identical in the pass band 

and so are the spectra of the two instruments.  The similarity between 

the two of the spectral peaks and troughs indicates a S/N ratio approaching 

50 db.  At low frequencies, near 10 cph, the WWSSN vertical has a 3/N 

ratio of at least 25 db, equal to, if not better than, the HGLP instrument. 

This comparison shows that a digitally recorded WWSSN vertical is at 

least marginally preferable to the "A" channel of the HGLP vert cal and 

that the two gravimeters are some 25 db better than either of the 
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other two instruments.  It is not clear whether the other two instruments 

respond to ground noise at lorg periods because the dynamic range of the 

recording system is taken by the large amplitude, short period motion. 

In the present configuration ground noise could be as much as 2S db below 

instrument noise at long periodu for toth »he MM and HGLF instruments. 

In Figure A3 we have spectra for the second day of the earthquake. 

The WWSGN spectrum has been omitted.  A glance at Figure Al shows that 

the ambient noise level is reached sore | hours after the earthquake 

for this instrument.  A number of long period fundamental ltd*! and high-Q 

overtones are clearly present in  the spectra of the two gravimeters and, 

to a lesser extent, in the HGLI' spectrum.  At 10 cph the spectral level 

has dropped IS db from day 1 to day 2 for the gravimeters and 30 db for 

the HGLP instrument.  This demonstratos the nonline<irity of the HGLP 

instrument.  Large amplitude, short period motions are non-linearly 

"aliased" to long periods.  As :he short period motions decay, and they 

dec.y more rapidly than the long period motions, the aliased long period 

motions also decay more rapidly than the true long period motions.  Thus, 

much of the long period spectral energy in the HGLP spectra in Figures 

A2 and A3 is non-linearly aliased short period spectral energy.  This 

intolerable situation makes the HGLP instrument unacceptable for long 

period studies. 

To improve the comparison of the HGLP and La Coste instruments 

at long periods we turn our attention to the boom channel, channel "B", 

of the HGLP instrument. 

In Figure AU we have the tide channel (flat in acceleration) of 

the La Coste gravimeter operating in Nafia, Peru and in Figure A5 the 

MMtaaa 
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"B" channel of the HGLP instrument at I.a Paz, Bolivia, both for the 

Solomon Islands earthquake, fi = 7.8, July 20, 1975.  Notice that the 

La Coste is recorded as an acceleration indicator and the HGLP as a 

displacement indicator, üO that the two records have tides that are cf 

opposite signs.  In both instruments the large tidal signal takes most 

of the dynamic range of the recording system, leaving a few tens of 

"least count" for this rather large event.  The desirability of band- 

pass filtering is obvious, and in figure At we show the La Ccste record 

amplified -100 in the band 1 min - JC min.  This amplification is done 

by active filters before  digitization so '.hat the earthquake has a few 

thousands of "least count", or about 70 db, dynamic range.  Spectra 

corresponding to Figures A5 and A6 are shown in Figures A7 and AB. 

Two spectra are presented in each figure, one for the '2k  hr period before 

the earthquake and the other for the first M hours after the earthquake, 

At long periods the La Coste gravimeter has a 5/N ratio for this event 

of about 50 db while the HGLP Z/U  ratio is nowhere more than 1. db.  The 

noise level must thus be at least 35 db abo-1 ground noise; some of this 

is presumably least-count noise, but nonlineirity in the sensor (fciding 

higher-frequency ground noise c:> lower frequencies) and noise in the 

instrument are also contributing. 

Data for the SRO instruments has only very recently become 

available.  Therefore, a detailed comparison of the SRO instrument with 

others is not now possible.  We have in Figure A9 the seismogram of the 

Solomon Islands event recorded on the f.RO vertical at Albuquerque. 

Although this instrument is fedback (electromagnetically) the output 



is filtered with d sharp rolioff at lon£ periods before digitisation. 

We have low passed the original record with a corner at 100 sec. to 

obtain Figure A9.  Spectra for the day before and for the first 2U hours 

of the earthquake are shown in figure MO.  The S/N ratio at long 

periods is UO to 50 du, about equivalent to the La Coste gravinet^r. 

The lack of structure in the earthquake spectrum for periods 

longer than about 300 sec is attributable to the unusually large Kayleigt. 

wave, Rl, for the main shock.  T!.ir signal r.-presents an instrumental 

problem; whether the active filters are saturated or there are difficulties 

in the gain rang'.r.p, Rl as recorded on the SR0 instrument appears to 

be anomalous.  Excising Rl from the seiamogram leads to the spectra 

shown in Figure All (the noise spectrum is the saiw.' as in Figure AiO). 

The spurious long-period noise disappears, and mo^; peaks can be seen 

out to U70 seconds.  Saturation is a problem with any seismographic 

instrument.  For the La Coste gravimeter Sdturdtion at Rl appears to te 

a problem at teleseismic distances for magnitudes M • 7J5 .  For the SR0 

instrument the problem of saturarl.^n is not yet well understood. 

At the longest periods at which modes are visible on the SRO 

spectrum, the S/N ratio is only 2b db, compared with u0 db for the 

La Coste.  Indeed, the S/N ratio for the SRO instrument begins to detericrate 

for periods longer than 300 seconds, whereas the La Coste response remains 

good out to 600 seconds.  As a result, the longest-period mode unequivocally 

visible on the SRC spectrum is  S   at 474 seconds; c;. the La Coste 

spectrum  S  is visible, at a period of 1140 seconds.  Another indication 

of the quality of the La Coste gravimeter is presented in Figure A12. 



We have  four sections of tha seismogrdtn (amplified »100  in the band 

1 min -  30 min)  for the Solomon  Inlands event  spaced roughly half a 

day apart.     The semi-diurnal tide  is evident   in this  figure.     The 

start  times of the records are  -8.5,  +16,  *7Bt and HU  hours with 

respect   to the origin  time  of  the earthquake.     Up to  2  days  after this 

M-7.8 event   there  is  still evidence  of the  free  oscilidticns  of  the 

Eavth. 

In conclusion,  it  appears  that   the La Coste-Romberg gravimeter 

is  the  instrument  of choice   for d sparse,   long-period network.     If 

Project   IDA,  or a similar project  also  using La Cost«   instruments,   is 

not  supported then seismologists  will  net   have  high-quality,   long-period, 

digital  data.     Obviously,  such data are  very desirable.     The  only   ^ther 

instrument   that might  post-ibly be  useful   for long-period seismology  is 

the SRO instrument  (Peterson, «t al ., USGS preprints, July-August   18?$), 

At present    little is known    alout  the noise    characteristics 

of the  SRO  instrument  at  very  long periods,  nor are  the  nonlinearitiob 

caused by  large  signals  well  understood.     It  thus  seems  that   the  fedback 

La Coste  is  the  only proven   low-noise vertical  seismometer at   very 

long periods. 

M^ 
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FIGURE CAPTIONC 

Appendix A 

Al.    ?«ismogrdms from the North Korean earthquake of SeptemLer 29, 1373, 

recorded on a La Coste graviir.eter and superconducting gravimeter , 

«nd standard Press-Ewing, at Piftcn Fiat OLservatcry, and ar HGLP 

«t Albuquerque. 

A2.    Spectra from the first 2u hours after the Worth Korean 

earthquake. 

A3.    Spectra from the second 2"* hours after tt.e North Korean 

earthquake. 

A4*.     Solomon Isldncs earthquakes of July 20 ar.,: 11, 157 5 recordec 

on the tide -.hanr.ei cf the La Coste pravimeter it T^ina, f-eru. 

AS.    The Solomon Islands earthquakes on the B Channel of the 

HGLP at La Paz, Bolivia. 

A6.    The Solomon Islands earthquakes on the flar.i La Coste gravir.ett: 

with the hand  .3 to 10 mKz anflified by 100. 

A7.    Power spectrum of the Solomon Islands earthquakes on the HJLP 

B channel.  Light UM is for 21* hours before the earthquake; heavy 

line is for 2'* hours after. 

A8.    Power spectrum from the NNA x 100 record. 

A9.    Solomon Islands earthquakes, rocorüed or. the SPC vertical at 

Albuquerque; datahaveheen digitally lopassed to remove frequencies 

«bove 10 mHz. 
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A10. Power  spectra of   the  seismogram  in A9.     (Lifiht  line  is spect 

of previous  2'* hours.) 

rum 

AH.   power spectrum cf signal in A9, tut with Rl excluded, 

A12.    Signal from xlOO output of NNA La Cost« at times before and 

after Solomon Islands earthquakes, to show rate of signal decay. 
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An Lnhdr.ced Deconvoiut ion Procedure  for    Retrieving 

the  Seismic Mcmer.t  Ter.  or  rro^ a  BpSTM  NetworK 

Freerar. GilLerT   =»:.:   R«y   luland 

Institute .t  Qaophytics ar.j Pl«iMt«ry Phy  lc 

Scripps lastitution    :   3c«MM}graphy 
University  ai   Cdiitcr:.:^,   .dr.  ilt^-: 

La Joild,  Caiifornid     92093 

Sunaiidry 

In th-.-ory,  d  single  borilOBtaily po^arizeu  seis-ometer  can le 

used  to find  the   six  inGepender.t  elements  of   the  seismic moment   tenser 

of a  turieü p^int   source,  proviceu  thdt   the   instrument   is  neither 

iongitudendlly i.or  transversely    -.oidrizej.     AIsc,   two vertically 

polarized  seismometers  can Le used,  provided  that   the epicenter does 

not   lie on the great  circle  through  the   two   instruments.     These results 

form  the  theoretical  Lasis  tor a  procedure  for retrieving the  source 

mechanism from a   sparse  seismegraphic  network. 
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Let the si>; independent elements of the seiemic moment rate 

spectium Le ff») ■ (fjU) tj*)f    Mrf suppose that  p ueismic 

spectra (records)    uU) --   (u^u.) UpCu.))1 have been observed. 

The relationship between u («•) ana f(«*) ts a linear on« (Gilbert, 1571, 

1973: Dziewonski ana Gilbert, 197«»; Gilbert and Dziewcr.ski, 1975, hereaft 

referercea as A) 

er 

u(w) = H(UJ) • f(u)) (1) 

The P x 6 matrix H.'.;  is a functional of the mechanical structure 

of the Earth and can be regaidea as the i.pectral t: aster Mtrix or 

system function that relates output ^(i,)  to input  !(«) .  Let the 

th T 

p— row of  HU)  be  h  (ui) . 
■        - P 

The  six-vector    ^''u-)    can be written as   the  run; of  normal 

modes   (M;   2.1.2'*,   2.1.28) 

Vw 
4-    -kp      K r.p (2) 

where A   specifies the excitation and amplitude or the k—■ mode for 

,v,  th the p— record , C is the resonance function of the k—mode, and 

th R  represents the effect of truncation and the response of the p 

instrument.  Each element of h (w) is the spectrum of a seismogram 

caused by a unit element of the moment rate tensor, a delta function 

in time.  The observed seismogram at the p— instrument is a linear 

©'/ 
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combination of   ehe six seismograms    h   (OJ)    and the six coefficients  in 
-P 

the linear combination are the six elemr .,s of fCw) . 

Suppose that our model of the Earth is good enough to permit 

us to ignore the difference between real and calculated h (w) .  Then 
-p 

we can seek to solve (1) for f_(w) . At low frequencies the spectral 

peaks in h^ui) are sufficiently well separated to cause spectral gaps, 

frequencies where there is little or no information »bout  f(üj) . 

However, it is generally believed that f(«)  is a  smooth function of 

w at low frequencies, so smooth that it can be taker, constant over 

a frequency Land embracing many modes.  Therefore, define sat J of 

discrete frequencies w. 

(3) 

Mj   ~   «M  <  «^ S   «j  ♦  fel      i   i   «   ij   ,   ij   ♦   1 Ij  ♦   I   -1 

and replace    f(uj)     by    fCw,)   .     There are  now     I   •  P    equations  for 

the six-vector    f 

u    = H . •   t(m.) — j     = J      —   J (4) 

and we  solve   (U)  by applying  the classical method of  least  squares 

(5) 

where  the  superscript    H     denotes  hermitean  transpose. 

In forming  (5) we cross-correlate    u       with each element of    h 
P -P 

u 
(multiply by h (w) ) .  This operation is conventionally termed rnatched 

filtering and is an operation to enhance the signal being sought.  The 

—- -  —- 
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result is summed over the frequencies in set J  to give (5).  In order 

to solve (5) for f we require that JT  have rank-6 . Thus  I • P> 6 

is a necessary condition. For a dense network, P >> 1 , I , the number 

of discrete frequencies in set J , can be small.  Alternatively if 

I * 6 it appears that we can have P = l and still maintain rank-6 

f0r iTj *  To exPlore this possibility we examine the eigenvalues of 

Jtf'j •  Without logs of generality we take R U) = 1 . 

Consider a single, vertically polarized accelenmeter.  In 

epicentral spherical coordinates th« location of the receiver is 

Cr , 6 , ♦) .  An inspection of (M, 2.1.30) shows that the six vector 

^kp in (2^ for vertical polarization (r-component) can be written 

A = (♦ • S) u(r) (6) 

where  * is a 6 x 4 matrix whese ncr.-zero el ements are 

♦ll = ^22 = ^32 = 1 ' t23 = ■f33 = cos2* ' •im = cos* 

♦ 5U = sin^) , ♦63 = 2 sin2^ 

(7) 

and  S is a u- vector with components (M; 2.1.30) 

., ■ «J «J. Sj ■ 4«;. s3 = ^ ,\, 8l (8) 

■MM   
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Substituting  (6)  into  (2) gives, 

h(r   » M> ■ •  •   P(r   , M)   l  P(r   t w)  a   V   s,   C, (u.)  U, (r) (9) 
k     -N      K k 

where Hr , u ) is a H-vector.  For ,)f      we have 

2fj = L' '£'  t 
where 

#■ J* r'(r , w.) PT(r , «.) 

(10) 

(11) 

and the asterisk denotes conplMC conjugate.  In (10) the U x U he";nitear; 

matrix # is limited to rank-1' and, therefore, so is J*" . Consequently, 

the 6x6 hermitean matrix .#'.  is singular, and, not surprisingly, the 
— u 

moment rate tensor cannot be retrieved from the spectrum of a single, 

vertically polarized acceleromel'v.  However, if  I , the number cf 

discrete frequencies in set J , is large enough  (I i U is necessary) 

then ^ can have rank-U.  We shall assume that .>» Ll rank-U. 

Consider two, vertically polarized accelerometers with coordinates 

(e1 » $.)  and (e? , ^2) .  In an obvious notation (10) becomes 

T T 
^J ' ~\   '  -1   •il+i2' -2   '  -  2 (12) 

If    $1   - $2  t^en   ^i   "    Li dn^   Hi)  becomes 

(13) 

making    J*'      singular.     Also,   if     1$ 'ol = ^ ' i l  and — 2    are t^e 

same except for the sign of column U.  If we change the sign of column U 

and row U of j?      we have (13) again. Therefore, if the epicenter lies 

M^M MMM ^■M icaM_^MB^aM1jMalia 
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on the great circle through the two vertical Instruments, ,y  is 
— J 

singular.  Included here is the special case 6=0, ir or 6 « 0 , « . 

By a proper choice of coordinates we can always have 

- ♦j = ♦j = ♦ in (12). Assuming that ^1 and &       both have rank-4 

we deal with the matrix • (#) • * T(^) +♦(_<,) . * T(-(j)) which 

has rank-6 unless <i = 0 , 7T/2 , TT ,  Therefore, if the epicenter 

does not lie on the great circle through the two instruments, .Jf      is 

non-singular and (5) can be solved for fU ). 
— J 

This result i^ important because it shows that a sparse global 

network of vertically polarized instruments can be used to retrieve 

the seismic moment rate tensor.  Buland and Gilbert (1976) have shown 

that using ten WWSSN stations leads to a satisfactory result for n  = 7 . 

To consider horizontally polarized instrument?- we must take into 

account toroidal as well as spheroidal modes.  We introduce the 6 x 2 

matrix f whose non-zero elements are 

f21 = ■T31 = sin2♦ • ir
bi --  -2cos2^ , yu2 = sin* , T 

52 ■ -cos*   (lu) 

and the 2-vector T (M; 2.1.31) 

T = e2 X2 
1   6 Al T = 2e1  X1 

2   e5 i (15) 

In terms of f and T . A  in (M; 2.1.28) for toroidal modes is 

_    - — 
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A *-8  cscO 3     (t^ •  T)W(r)  + $_ 3e   (f  • J.)  W(r) (16) 

and 

h^r   > w)= -3   *_ • X)   cscö   T+Ck(ui)Wk(i) mJf* •   Q esc e 

h^Cjl i») • f •   E   3e IkCk(<4,)Wk(r)  = I * i' 

(17) 

hj    and    h-    for spheroidal modes are 

h^r.uO   = ♦.'   3p D. = i •  D'  ;     gtr.*) «  £   ^ C^U) Vk(r) 

US) 

hg^ , w)   =  3     ♦. *  D_ esc  6  =  ♦_' * D. esc  6 

Thus the complete "synthetic seismograms" are 

h2(r ,u)) = flL • R U) , n2 = ♦•-*' , R2 = D'» 2 csc e 

h-j(r_, w) = ßo * R,(w) . 0, = ♦.' « I . R, = esc 6 D • Q/ 

(19) 

where the 6x6 matrices tu  and O, are functions only of $ and the 

6-vectors R2 and Rg are functions of r, 6 and ». For both JL and fi, 

the fifth column is proporf'onal to the third and the sixth to the fourth. 

Also, columns 1 and 2 of n„ are zero. Thus n„ has rank-*+ and 
^i —2 

n«    has rank-2.     When we    sum over set    J    to obtain 

Jff,    we use the 6x6 matrices 

■--■  „„„„m. |—^,1,,    —— 
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§*'    E   ^i)^)  ;ß.Y = 2  .3 (20) 

and we have   & 1-'*  o ■     We assume   '*? „     to have ra-..k-6.    Although 
~PY     -Yß — ßY 

this assumption will be supported for oi-bands that  include multiplets 

for several values of  l  ,.tf       approaches  singularity for large    £  . 

This is a result of     U D'||/||D_[!   = Qii)  for large    £   .    The sane is 

true for    Q_ .     This means that   Jf.       approaches rank-^* as an upper left 

HxU block, dfc^ approaches rank-2 ds a lower right 2x 2 block,and   ^3 

approaches rank-2 as an upper right Ux2 block.   Physically,  this 

decomposition  is a result  of  spheroidal modes dominating the ö-corcponent 

and of toroidal modes dominating the ^-component for large    I  . 

We now consider a single, horizontally polarized instrument 

oriented at an angle    a    with respect to the    e-vector.     In terms of 

(19) and (20)    .XT is 

1 2 T T 
•*j = cos a -2   ' &22   ' -2  + COSa sina^2   ''^23   '  ^3  + 

In general,.^    will be non-singular.    However,   if a = 0  ,  longitudenal 

polarization,    or Tr/2   ,  transverse polarization,   ,7tf    will be singular 

because    n    and n      are singular.    Also,    the matrices   ^        have 
_ — = BY 

i 

-——— - -      -—~——^-.—    1 ^n,   



-«xw** ■■tmiM" nmmzzr. 

B1 

rank-2 for 6 = 0 , IT .  This means that a source directly beneath 

the receiver or its antipode cannot be retrieved.  Otherwise, the 

moment rate tensor can be retrieved from a single,  horizontally 

polarized instrument.  As in the previous example, for two vertical 

instruments, it is necessary to sum over an w-band containing multiplets 

for several values of  t , in order that -j?   have full rank, and it is 

assumed that  f((D)  is nearly constant in each w_band.  This result 

remains true for large i    even though jj?   becomes singular.  Since 

fl&j becomes an upper left 4 x U block ^e can replace £0 t)y *. in 

(21).  SimiJarly, we can replace ^3 by ^ .  Let 

2        2 
A* = cos ajij»  + sin a,:tf33 + cosa sino (.f^3 + .rf^^) 

(22) 

W = * 9 "i1 

For large i    (21) becomes 

JIT = fi • ^ • n T 
rJ _  _  _ 

(2H) 

In (2H) we assume that  I , the number of discrete frequencies in set J , 

is large enough to make i#  have rank-5 .  Since det fl * 0 (actually 

det n = 8) we see that Jff.   has rank-6 .  Thus, even at short periods, 

the moment rate tensor can be retrieved from a single horizontal 

instrument unless a=0,n/2ore=G,n, 

In practice, a seismographic station has two horizontal instruments, 

in which case it is clear that the moment rate tensor can be retrieved. 

 -—- .•^a^tMBMaAi 
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Moreover, a standard installation, consisting, of one vertical and two 

horizontal instruments certainly enables the retrieval of the moment 

rate tensor. Here, the only exclusion is 3 = 0 , n . 

The foregoing examples demonstrate theoretically that, except 

in special circumstances, the moment rate tensor of a buried point 

source can be retrieved from the spectra of two  vertical accelerometers 

or from the spectrum of one  horizontal accelp.rometer.  From these 

theoretical results we can easily inter that a network  of a small 

number of inatruments can be ut.ed to retrieve source mechanisms on 

a routine basis.  The ability to achieve such retrievals makes possible 

some interesting research projects. 

The method presented here is an extension of the concept of 

matched filtering (see, for example, Robinson, 1967, pp. 259-264). 

The matched filters,  Mr , w) in (2), are the best linear filters 

in that they maximize the signal/noise ratio.  For Gaussian noise 

they are optimum. 

Although we have obtained h_(r , u) in (2) by summing 

normal mode multip.lets, it shoild be emphasized that the method of 

retrieval is independent of the procedure used to obtain h_(r , w) . 

Any procedure for generating synthetic seismograms can be used to 

obtain Mr , u) . Therefore, matched filtering for the seismic 

moment tensor can be done globally, regionally or locally, depending on 

the magnitude of the seismic source and the configuration of the 

network. 

——■  ■ - -   • - ——---^-^ 
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ABSTRACT 

By a process of matched filtering it is possible to deconvolve 

a small number of acceleration or strain records for the moment rate 

tensor of a seismic source.  Theoretically, one horizontal accelerometer 

(or strain meter) or two vertical accelerometers is sufficient.  Practically, 

five to ten records can be shown to suffice.  Specifically, the mechanism 

of the Colombian event of July 31, 197C can be retrieved from a sparse 

network of ten NHSSM vertical instruments. With currently available 

instrumentation it should be possible to discriminate unambiguously 

between an earthquake and an explosion larger than magnitude 6 at 

teleseismic distances.  Improved, digitally recorded networks can 

lead to a decrease in the threshold of discrimination. 

MMMM 
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We consider the MMBt rate tensor for a buried point source. 

The problem of retrieving the eienents of the moment rate tensor 

(Gilbert and Dziewonski, 1975, Section 2.3; hereafter referenced as M) 

has been discussed by Dziewonski and GilLert (1971»).  Their method, an 

extension of a suggestion of Gilbert (1973), depends en the orthogonality 

relations for the spherical harmonics, and implies a sense global array 

of receivers.  The paucity of first quality Icnf period instruments 

motivates a search for a method requiring only a sparse 

network. 

Following (M; 2.1.17), let the Fourier transform of the 

moment rate tensor, HU) , te written as the six-vector, fU) . 

Then the Fourier transform of the p— üisplacem-nt (or strain, etc.) 

record, due to fim)   , at the lÄ frequency, U (w.) , may be written 

as a sum of normal nodes (M; 2.1.2U, 2.1.28). 

Vui) = ? <>• is)ckS) Vwi) 
(1) 

Vfhere    ^kp    sPecifies the excitation and amplitude of the    k—   mode 
th 

at   the    p—    instrument;     Ck     is the r-jsonance function of the    k— 

S 
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normal mode; and R  is the instrument. r«spons« and truncation effect 
P 

at   the     p—    instrument.     Dt-tine matclu-d   filters 

h  (u.)  =   T]   A      c- C««)  s   (»t)     • (2) 

For     P    records we liave    P    equations  i:,  six uaknownsi   f«   ..... fa 1 b 

UCui.) = H(».) • fU.) (3) 

where the p— element cf U(u..)  is U (u..) and the  p— row 
—    i p     i r 

T 
of    HUJ     is    h  (u.^)   .     Clearly,   if     P 2  ö   we can solve   (3)  by 

least  squares  for    £_((-.)   ,   the moment  rate  tenser at  frequency 

point    M.   . 

Because cf ground and instrumental noise, ond splitting and 

uncertainties in Q structure, it is unlikely that  f(u,.)  will be well 

determined for a small number cf stations.  However, from MCFigures 6 and ~) 

we suspect that f  is a smooth function of frequency.  Therefore, define 

set J of discrete frequencies w.  ruch that w, -Sw^w. Sut, + 6u, n 1 J        1   J 

i = l,2,...,I, Assume that f(u».) = fU. ) = . . . = f(u»T) . 
— j   — 1 —i 

We now have P • I equations in six unknowns 

u  = H  • ru.) • (*♦) 

As I , the number of frequency points in set J , may be large 

there appears to be no reason that P cannot te unity. To explore 
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the limits of the method we have  examined   ehe eigenvalues  of  the  normal 

matrix 

where  the  superscript    "    means  hermitean  transpose.    A detailed 

analysis  is beyond  the scope cf  this  letter and will appear 

elsewhere.     The results will  be  stated without proof.    Two vertical 

accelercmeters  (not  lying on a  great  circle  through the epicenter)  or 

one  horizontal  accelerometer   (not  longitueinally ur transversely 

polarized) give full rank  to     JiJ   .     Practically,  synthetic  numerical 

experiments  indicate  that a minimum of  five  to ten stations  is 

satisfactory. 

For  large    P    we examine  the relationship letween the above method 

and   the method  described  in  (M:2.3).     For  simplicitv assume     P   (w)   =   1   . 
P 

* Multiplying equation (4) Ly K  (expiicity forming the normal equations) 

and expanding the sums 

C6) 

Rearrange  equation  (6) 

5^  [L V-i» V-i»] A
-P 

O) 

■--■ ^«^ ^a , „ 
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and define 

<J 
ik(v) E y* ck('i)) v ^W" ~ ? c*k(wi) v ^i^ (8) 

w -6a) 
J 

Using the orthogonality relation (M; 2,3.2) among modes (valid for 

a dense array) rewrite equation (7) as 

Equation (9) differs from M; 2.3.2-2.3.10 only in the definition of 

I(v) .  However, equation (8) shares with its counterpart (M; 2.3.7) 

the insensitivity to Q gained by integrating across the resonance 

function.  The fundamental difference between matched filtering 

(equation (6) ) and stacking (equation (9) and (M;2.3.S)) is that matched 

filtering includes all the cross terms among modes (does not depend 

on the orthogonality relation). 

The method presented here employs an extension of the concept 

of matched filtering (see, for example, Robinson, 1967, pp. 259-264). 

The matched filters, h (OK) , in (2), are the best linear filters 

in that they maximize the signal/noise ratio.  Intuitively, we remove 

noise and scattered energy from a record by forcing our prejudice on 

eoch record that it be a linear combination of six synthetic records. 

The data are then frequency averaged over set J (sum on i in equation 

(6) ) to reduce sensitivity to splitting and Q structure and to stabilize 

.#J . Spatial averaging (sum on p in equation (6) ) further stabilizes 

the system. Finally, the P records are deconvolved for fdu.) by 

inverting .Vf.  . 

-   - --■- 
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As an example of the method we have plotted (figure 1) the raw 

M   component derived by matched filtering from a ten record subset 

(vertical  first day data from stations GUA, JER, KIP, CHG, GIE, GDH, 

PTO, NAI, NAT, KBL) of the Colombian data set (M; Table 1) and M 

redrawi. from (M, Figure 6). The agreement is apparent and, considering 

the quality of WWSSN data at very long periods, acceptable.  Figure 1 

emphasizes the demand for quality data if  P is to be small. 

Given the i-variability of quality, long period, digital data, 

matched filtering provides a method for routinely and rapidly determining 

the complete long period source function of any event larger than about 

magnitude 6 at teleseismic distances. This should greatly facilitate 

studies of stress-release mechanisms.  Furthermore, the implications 

for seismic discrimination are promising. Having calculated the complete 

long period source function of an event, the discriirinatior between 

an earthquake and an explosion is entirely unambiguous. 

Although we have obtained h (w.)  by summing normal mode 
—p i   v 

multiplets, it should be emph -ized  that the method of retrieval 

is independent of the procedure used to obtain the matched filters. 

Any procedure for generating synthetic seismograms can be used. 

Therefore, matched .ciltering for the seismic moment tensor can be 

done globally, regionally or locally, depending on the magnitude of 

the seismic source and the configuration of the necwork. 

\ 
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CAPTION 

27 
Figure 1. The real and imaginary parts of M   in dyne-cm/10 

Triangles are redrawn from (M; Figure 6). Squares are calculated 

by matched filtering from 10 stations. 
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The Theoretical Basis for the Rapid and Accurate Computation 

of Normal Mode Eigenfrequencies and Eigenfunctions 

R. P. Buland and F. Gilbert 

NOTE:  Computational procedures have been developed for the 
CDC 7600 at the Lawrence Berkeley Laboratory of the University 
of California. 
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Introduction 

Recent progress in the application of normal n.ode theory in 

seismology has made it necessary to ce/elop a practical and accurate 

scheme for the computation of the high frequency elastic-.3-"'ävitationai 

free oscillations of a radially symmetric, non-rotating, self gravitating, 

perfectly elastic earth model.  The scheme developed is based on the 

classical variational approach and on recent advances in thp solution 

of the algebraic eigenvalue proLlem for large banded systems of the 

form (A - XB)u = 0 . 

Raleiglt-Rit^ Procedure 

By Raleigh's principle the eigenfunctions of an earth med«! 

are extremal solutions of the energy balance equaticn: 

u    S 0" (r)r dr 
0 

/ ^(r)ridr (1) 

where ut .f     is the kinetic energy density per unit volume as a function 

of radius,   I     the corresponding potential energy density,  u the 

angular frequency, and a the radius of the earth (Pekeris and Jarosch, 

1958, develop eq, 1 in terms of the radial scaian of an eigenfunction). 

Therefore, approximate eigenfunction? and eigenvalues may be computed 

from eq. 1 by a Raleigh-Ritz procedure.  Let ui represent the radial 

part of the eigenfunction s(r) as a linear combination of  N test 

functions C-(r) each satisfying the boundary conditions. 

imiMMM—f taam—ii 
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s(r) ~ s(r)  =   X]   b.C.Cr) 
i=l    1 1 

(2) 

substituting eq.   2   into eq.   1 results   in a matrix eigenvalue problem: 

A(a))b =  (w T-V)L = 0 (3) 

with the following properties: 

1) Each eigenvector t^ represents a projection cf eigen- 

function s onto the space spanned by the C.'s . 

2 
2) u  is an upper bound to th« ~ouared eigenfrequency 

associated with eigenfunction s . 

3) Fich sucessive eigenvector b represents a higher radial 

o-:ier (overtone) cf the same angular order. Each angular 

order is represented by a different matrix equation. 

U)  If thd error between s and the projection cf  s onto 

the r.'s is 0(a)  then the error between u   and the 

2 
squared eigenfrequency associatec with s is 0(a ) . 

Test Functions 

For computational speed it is desirable that the test functions 

be economical to compute, that the number of test functions, H , be as 

small as is consistent with an accurate representation of s , and that 

each test function overlap only a small number of other test functions, 

i.e.,the matrices T and V be banded (Courant, 19U3). Further, we 

M^MMi MMiMMriMlMM 
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demand that s be continuous and desire that 3 s(r) be continuous 
r 

also except at first order discontinuities, where the usual boundary 

conditions apply.  These requirements dictate the use of the basis 

functions for piecewise cubic Hermite interpolation as test functions 

(Birkhcff et al. ,   1966). 

Computational Philosophy 

In order not to discard any precision unnecessarily it has 

been found desirable to adhere rigidly to an all pervading philosophy. 

As is common practice our models are specified at discrete point:' of 

an unequally spaced grid: 

v : 0 = y1 < y2 < • • • < yM = a . 

Each of the model parameters-- p(r) ,  u(r) , or  X(r) --is defined 

to be the cubic spline interpolation of the parameter specified on 

grid v .  Similarly, the eigenfunctions are calculated on grid: 

n : 0 - x < x < •  • < x = a . 

Due to the choice of cest functions each eigenfunction must be 

defined as the Hermite cubic spline interpolation of the eigenfunction 

on grid TT . 

It has been found necessary to perform the integrals quite 

precisely.  Cur philosophy has been to sacrifice a little speed (since 

they need only te done once per model) and do the integrals exactly. 

Therefore, all integration has been performed interval by interval 

(x.-^xsx. , 1 ■ 2 , 3 t • • • ,N)by means of a low order 

MMMü^naB 
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Gauss-Legendre quadrature. The integrals are thus both rapidly computed 

and numerically stable as well as mathematically exact.  It has also been 

our philosophy to use no less than 6 nodes (12 degrees of freedc.-n per 

radial scalar) per radial wavelength at the highest frequency of interest 

(G. Frazier, personal communication). 

The Detailed Test Functions 

Define basis functions 

'2x3 - 3x2 + 1 

n0(x)  < 2x - 3x  + 1 

2x + x 

0 < x < 1 

-1 < x < 0 

otherwise 

0 < x < 1 

* (x) = < x + 2x' + x   -1 < x < 0 

0 otherwise 

(u) 

n  and |fl are simply designed to be piecewise cubic, continuously 

differentiable functions with pr-operties given in Table 1.  The test 

functions are then defined by: 

r\nl '—1    x. ' x s x. . 
\ i+l    i' 

(X - x.   \ 
 *   I       X.  ,  < X < X. xi - «trJ     I-* 

HiCx) 

♦.(x) = I™ '- 

otherwise 

(x - x;  \ 
x.tl - xj xi^Sxi+l 

lXi - Xi-l) ^ol^x1—)  «l-l ^ X * Xi 

otherwise 

(5) 

\ 

■^ • i—: m mail»» ■-'-■—■ 
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Representdticn of the Eigenfur.ct I 3ns 

Let us represent d toroidal free osc ill.itio» as: 

^5 

■   ( 
nij(L.t) = [-„v^ ^ v; <• • ♦>] 

nW,(r)  ~  £   [«^^.(r)   ♦ w(.2)^.(r)] 
i = l       '       1 1       ■l 

1    U)„t n e 

(6) 

Eq.   6  yields  a matrix  system with  2 degrees  of  freedcrr,  per  ncce  01 

2N x 2N    natrlces  with half bandwidth   M   .     Of course,  for  a model 

with zeio viscosity  in  the outer core,the model  n««d  only  include  t)H 

mantle for  this case. 

Let us represent  spheroi-.il  tree  cscillaticns as: 

n^(r.t)   =    [rnUa(r)Y^Ö . ,)   ♦  ^(rj^l . »)] „ « 

^O - ^ tu^Vr) -V2 V>] (7) 

Mr)  -   E   [v.(1)n.(r)   t v.(2V(r)l n i 
i=l 

COUpicd with the perturbation of the gravitational potential; 

\ r/^L.t) = [V*^»^] 
i w.t 
n i. 

.v^-ic^Vw/" ♦!<'>] 
(8) 

■ ■ -- --       ■ 
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Eq. 7 alone yields a matrix system with U degrees of freedom per node or 

UN x UN matrices with half bandwidth 8 .  Eq. 7 coupled with eq.8 yields 

a 6N x 6N matrix system with half tarawidth 12 , 

Boundary Ccnditicr.3 

Before the matrix eigenvalue prctlem in eq. 3 ;an yield vail- 

approximations tc the eigenfrequencies and eigenfuncticns of an earth 

model, all boundary conditions must Le satisfied.  Rather than introduce 

constraint equations with uncete:mined Lagrange BUltlpllcri (which 

increases the size of the matrices) wc- :;ave chosen exj-li:itly tc mate;. 

the boundary conditions by making linear combinations cf the rows and 

columns («nd reducing the rank) of the matrices.  Therefore, upon 

entrance into the eigenvalue procedure all boundary conditions are 

automatically and exactly satisfied. 

Findin/ the Eirer.vaiues and Eigenvectors 
•r  ■ . 

By using the Sturm count   (number of eigenvalues cf eq. 3 

larger than M ) and det LA(W)-I. all eigenvalues in a given frequency 

band may be quickly found to macr.ine precision ty bisection and linear 

interpolation (M.irtin ana Wilkinson, 1967; Peters and Wilkinscn, 1969). 

Even though each calculation cf the determinant and Sturm count of 

eq. 3 requires a new decomposition of the matrix A(u,) , it is possible 

to take advantage of the bandwidth of the system.  Without the 

small bandwidth Of A(tü)  the problem would be hopelessly expensive. 

Once the eigenvalue is known the eigenvector may be found by inverse 

iteration (Wilkinson, 1965, p 626-629). 

\ 
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If the half tandwidth is m , then the number of operationb needed 

to find each eigenvalue goes as Nm2 .   The amount of computation is 

independent cf  n, i,  m,    cr the radial turning point of  the mode. 

Discussicn 

The unusual feature of this method, that the amount of computa- 

tion is independent of the Md«, la du« to our •■xtrer.e conservatism. 

No advantage can ,be taken of the smoothness of low frequency modes or 

of the shallow ray equivalent turning point of the hi,,r. angular crue: , 

low radia. order rr.ar.tie rr.o-ies.  Cn the other :.ar.d, as the comfutätien 

has t.een Md« practical, tr.e luxury of such cor.se-vu 1ST. has done 

away with troutlescme special a-..:-..  Jore modes and It.neley modes 

are as easy to compute as any other types. 

Furthermore, this conservatism makes possible the scluticr. of 

the algebraic eigenvalue probl«B with  the followi:^ devantages: 

1) Highly accurate e igen: r-;..•.•:.-If. . 

2) Correct computation c; nearly coincident ti(*«nfr«qu«nci«s. 

3) All modes in a  frequency land are found. 

M No prior information about eigenfre^uencies cr eigenfunctions 

is required. 

The eigenvalue procedures routinely yield eigenvalues with 

a precision on the order of a part in 10  .  However, the accuracy 

of the eigenvalue U     D(h6) . r. ä MfK»^ - x.) , and the accuracy 

of the eigenfunct ion is 0(h3) (ilrkhoff, et al. ,   IM9). For our 

160 point grid •• , we evaluated the accuracy MparlcaUy by comparing 
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• igenfrequencies between the vdriation.i.l frogram and a differential 

equation program  (Alteriian,  Jarcsch and  Pekeris,   1953).     The differ- 

ential equation  prr^am was written with 10 decimal  place constants 

8 
and required a precision in the mtegriticn of cne part :n 10 

The eigenvalues were identical to a relative accuracy oi  no less 

7 
than cne part in 10  .  Since these methods are philosophically 

very different, and algcrithmically completely distinct, this "esult 

indicates to us that both  programs ate free ot errors. 

As a single example of the UM of these methods we present, 

in Figure 1, UM  C« » i) dlagr«» of spheroidd^. -odes (a. <  2IT,-.5 sec 

I  <  ISO) for model 1056B CGilbart ar. 1 : ziewonsk i , 1975). 

^. •^■MMMBBMHII^MtM^ia __^.   
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Caption 

Figure  1.     The  spheroiddl     (w , £)    diagram  for Model  1066B 

(w  <   .14 t.-c.   ||  t  150).     A  continuous line  joins 

the points for each fixed  value  of  the radial over- 

tone number. 
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Table 1 

iivim 1.1 i|ii<i«<p«-ii HI« .VU^IIII 

^    11 

X 

+1 

0 

-1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 
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Research Note 

The representation of seismic displacements in terms of traveling waves 

Freeman Gilbert 
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Summary 

The Poisson sum formula is used to transform the standing wave 

representation of seismic displacements in a radially stratified sphere 

into a traveling wave representation. The terms in the sum can be given 

a physical interpretation, via  the method of stationary phase, as classi- 

cal wave packets making successive traversals of the great circle through 

epicenter and receiver. The traveling wave representation forms the basis 

for the retrieval of structural parameters and source mechanisms from the 

spectra of traveling wave groups. 
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The representation of seismic displacements in terms of traveli ng waves 

1. The traveling wave represenlati on 

The representation  in  t«ma of normal modes used  by Gilbert and 

Dziewonski   (1975,  Sec.   2,  hereafter referenced as    M   )   is a  standing 

wave representation.     Ihe  sums over angular  order can easily be con- 

verted into  integrals cv^.r wavenumber    from which a  traveling wave 

representation can be obtained.    Such a representation  is desirable for 

the study of regional  structure,  for the  separation of traveling wave 

orbits and overtones,  and  for  the study of  the moment rate  tensor of 

regional events. 

Suppose    U(r,a))   is  one component  of  the displacement  spectrum 

fcr a particular radial       -rtone number,  n   ,  (M,  [2.1.24,25]) 

U( 

1) £=0 

r.u) = J]   a   (r,u))  C.Cu.) 

a^r.u)  = A^Cr)   •  fCu) 

and, for simplicity,  suppose that    A  (r)    depends only on    P (cos 9) 

a£(r,u)   =  h(i+J5,  r,    m)  P£(cos 6) 

2) hCi+H,  r,  M)   = H]l(r)   •  f(«) 

Al(r)   = HÄ(r)  P^^os 9> 

——' -^-"—  ^-    —^        ' 
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Then, 

3) U(r,u))  =   23   h(t+%)   P (cos 0) C.dü) 
1=0 

There are two steps to represent U(r,cü)  in terms of traveling 

waves. The Poisson sum formula (Titchmarsh, 1943, p. 60; Nussenzweig, 

1965, p. 27) is used to convert the sum in (3) into a series of integrals 

4) U(r.a-) - /dA £(-)k h(A) p   (cos 6) C(Xf») e-
i2knA 

0    k=-« 

and zero is added to (u) in a suggestive manner.  We use the Legendre 

function cf the second kind, QA_^(cos 9) , and rewrite the sum in (I») 

5)     U(r,u)) = J  dAh(A) ^ K (A,9) C(A,u,) 
0        s=l  S 

where 

s- odd; 

Rsa,9) 

6) 

s- even: 

(_)(s-l)/2 Fp^^co, |) cosr(s-l)iTA] 

♦ ^ QA_j8 (cos 9) sin[(s-l)nA] 1 

RS(A,9) = (-)S/2 FP^^COS 9) cos(sirA) 
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The term in (6) involving Q^cos 9) is zero for s=l, and the rest 

vanish in pairs (2,3), (4,5), etc., so that the terms in (5) involving 

Q,_^(cos 9) sum to zero. 

The reason for using (5) rather than (4) is that we can interpret 

RS(A,9) in (5) and (6) as representing the s-- passage, or orbit, of a 

traveling wave group.  This interpretation is clarified by using the 

pair of functions (Nussenzweig, 1965, p. 89; Robin, 1958, pp 237-210) 

7) Q![!42)(cos b) = k   [P^COS 6) ± i | QA_^(cos 9)1 

and rewriting (6) in the form 

s- odd: 

RSU.9) = (-^[Q^CCOS e)e-i(s-1^SQp)(cos 9)e
i(s-1H 

8) A *5 J 

s- even: 

i.U.f) = (-)S/2 [(^(cos 9)e-is,'A ♦ QJ^(COS 9)eis,lX] 

2.    A physical interpretation 

To understand the physical  interpretation of    R (X,9)   , as 
s 

representing the s— passage of a traveling wave «roup, we use the 

method of stationary phase ana the asymptotic appro\imations;, valid 

for Ac >> 1 and e s 9 < n - e , 

  — ■      -- -           - -- ■ - 
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9) Qj^2)(cos  9)   =  (2nA  sin 6)^ e+i<**-*/'0   (UQCA"
1
) ) 

Also we consider    f(w)  to be a constant in (1) and  (2).    The actual 

beiiavior of    f    can be recovered by convoJution in time or multiplica- 

tion in frequency.     In this case the temporal behavior    U(r,t)    corre- 

sponding to (5)   is     (M,(2.1.11)) 

10) U(r,t)   =    /   dXh(A)   £   R  (A,e)     LsUUH)  e~a(X)t  -ll   H(t) 
0 s=l     s "- J 

In (10) we consider the transient term which we write as 

")    U(r,t) =^p4, / dAhU) £ R (A,e) eiü)(A)t-a(X)t 

0        s=l s 

Let us consider    s- odd  in (8)-(ll)    and let    U(l'2)    denote 

the contribution to    U    according as we use    Q^'^Ccos 9)    in (9). 

Then the integrand for    UCl,2)    has phase    /1,2) 

12) ^(1'2)  = a,(x)t ♦ A[(S-1)TT + 9]   i n/u 

According to the method of stationary phase the dominant contributions 

to    U come from those values of    x    for which    d/^/dX = 0 or 

13) tdü)CA)/dX   =   (s-l)ff  t 8  =  A   2   0 
s 

m—mamm*mmmtmm—m~m*^—m* — 
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If we define a group velocity YS = As/t , in units, say, of 

radians/s., then (13) requires that 

U) du)(x)/dx = A /t = Y > 0 

in order that $    be stationary. For.toroidal modes the variational 

formulation (Meissner, 1926) shows that dliiix)/d\ ?   0 . Thus ^(1) has 

at least one stationary value for BOM YS . For spheroidal modes it 

is almost always true that AtOO/dA * 0 . Some contrary examples have 

been given by Gilbert (1967), 

The interpretation of A  in (13) is that it is the total 

distance traveled by the wave group. The •& „ave group has traveled 

a distance 6 from source to receiver plus an additional (s-l)/2 

great circles in time t at group speed YS . This is exactly the 

interpretation given to the classical surface waves G  , R , etc. 

Consequently, s corresponds exactly to the orbital index, 1,3,- 

for such a surface wave.  In addition, the s^- term in (11), through 

the factor (-) s":1 /2 in (8), is out of phase with the s ± 2nd term. 

This ^iustrates the polar phase shift (Brune, Nafe and Alsop, 1961). 

The s— wava group has passed two more poles than the s-2nd wave 

group, and has its phase advanced TT/2 twice. 

Proceeding in a similar manner for ^2^  in (12) we find the 

stationarity condition 

15)    du(A)/dX = -A /t = -Y SO 
s     's 

MMM ■MtaMMMMMM 
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This condition is never met for toroidal modes and only rarely for 

(2) spheroidal modes. Therefore, U    is of only minor importance, and 

is customarily neglected. 

However, in (11) we could have used exp(-iü)(A)t) in place 

(2) 
of    exp(iu)( A)t')   .    Then    U would have provided  the dominant con- 

tribution and    U would have been negligable.    That  is,  the dominant 

contribution to (11)  for    w>0    and    s- odd    is    l/1*^    according as 

the time behavior  is taken to he    expdioit)   . 

Considering    s- odd  in (8)-(11)  shows that    R (X,e)    represents 

the    s—    traveling wave group.    The group, of wavenumber    X    and 

frequency    ^(x)   , travels a total distance    &    , given by (13),   in 
s 

time t at group speed y     .    The important term in R (X,9) in (8) 
5 S 

has superscript (3,2) according as the time behavior is expdiwt) i 

ü)>0 . 

Let us nov; consider s- even in (8)-(ll), and let U ,2^ be 

the contribution to UCr,t) according as we use Q  '2'(cos 8) in (9). 

The integrand for ir1,2) will have phase (t)(1,2) 

16 )        ♦(1'2) = u.(x)t i x [sL-e] t 9/k 

(2) 
The phase    $ has the stationarity condition 

17) tdu)(X)/dX  =  STr-8   =  A  >0 

18) dw(X)/dX  =  A /t  =  Y    i   0 
s s 

 ■- -mm 
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It is clear that the s-- wave group travels the distance 2*-8 

from source to receiver plus an additional (s-2)/2 great circles in 

time t at group speed Y., . The successive values of s correspond 

exactly to the orbital index 2. <4, • • ..for such classical surface 

waves as G2 , R^ , etc. The polar phase shift between successive orbits 

is given by the factor (-)S/'2 in (8). 

A consideration of ♦(1  leads to (15) with A  given by (17), 

and U    is of only minor importance. The rfiles of l/1^ and l/2) 

are reversed if the integrand in (11) is replaced by its complex con- 

jugate. That is, the important term in Rs(A,6) in (8) has superscript 

(2,1) according as the time behavior is exp(tiwt) ; u)>0 

The foregoing discussion, based on the method of stationary 

phase and the work of Brune, Nafe and Alsop (1951), illustrates that 

(5) is the exact traveling wave representation of seismic spectra. 

The functions R^A ,6 )  in (8) represent traveling wave groups. 

3. ThR standard form 

At this point it is desirable to put (5) into a form similar 

to (2.1.24) and (2.1.25) of M . Using Legendre functions of the second 

kind 

19)    Qx
m^2)Ccos 6) = * [P^CCOS 6) | | 2 ^{e.. 6)] 

.m 
we introduce the functions R (A .9 ) 

s  • 

_ 
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s- odd: 

2C) 

s-  even, 

^(A.e) ■ (-) (s 
e)e-i(s.l)n>f  Q^)(cos9)   ti(.-l)r ] 

R"(X,e) 
s 

and we Gefine 

■   (-) 
s/2 k4 (cos  9)  e ♦ Qi   i    (cos ö)  e ] 

21) AM)   ■  (-);"(V2TT)15J(\2-!!.)-
1- 

(x'-vN*2^/*)"1 
•RJ(X,«) 

according as m = 0 , 1 , 2 .  The second and third terns in brar.es in 

(21) can be well approximated ty \'    and X"  , respectivelv, for  *>>1. 

We now define A^Ä.r)  in terms of (21) exactly as A  is defined 

in (2.1.30) and (2.1.31) of *    in terms cf x'JO) .  Note:  the sign 

of A36  in iCt.1.31) should le negative. 

Thus, we can write the traveling wave representation, generalizing 

(5), as 

22 
m «D 

)    U(r,u)) = JdA 2 *  (x»r) C(At«)i a U,r) = A (X,r) • fC«) 
Ml 

The traveling wave representation (22) forms the basis for the 

retrieval of structural parameters and source mechanisms from the fre- 

quency spectra of traveling wave groups.   It also forms the basis 
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for an investigation of body waves (Burridge, 1966; Ansell, 1973), 

where As(',,r)  is decomposed into a series of terms, each of which 

represents a generalized ray (Brune, IQe»*; Ben-Menahem, 1961+). 

U.  Transition to plane stratification 

The representation in terms of traveling waves for a plane 

stratified medium can be obtained from the foregoing expressions by a 

limiting process.  Let x = aO where a  is the radius of the sphere 

for which ve have the traveling wave representation.  Let x , the 

epicentral distance, be fixed.  Let A = ka , where k  is the (fixed) 

wave number on the surface.  Then the representation for a plane strati- 

fied medium is found as the limit as a-«» of the representation for a 

sphere.  We use the uniform asymptotic approximations of Szegö (1934) 

that permit us to replace (9) by (23) for large X 

23) ,(1,2) 
J_^2,(cos e) = ^(e/sin e)^ Hj'^'Ui) (itcu'M ;   e < n/2 

in terms of Hankcl functions. 

The terms for    s >  1     in  (5) represent wave groups that arrive 

at  successively  later  times. t     ,  Wi-ere    t       is the earliest group 

th 
arrival time for the s— group.  Since lim t = • , because each 

a-»*"      s 

group must travel a distance of at  least    na   , we shall consider only 

s = 1    in (5) 

2U) U(r,u)  =   /   dXh(A)  R1(A,e) C(A,u) 

^M"   11Ü »-~  ■ate»  lA HI n^ 
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Combining (23) and (8) gives 

25 
RjU.e) = Me/sin Q)h  I H^2)(xe) t H^^X«)] 

= (e/sin e)1* J (X6) 

The product XO in (25) is the same as kx 

26)   lyx.e) = (e/sin e)55 J0(kx) 

As 9 -► 0 (a-**)    (24) becomes 

00 

27)    LKr.oi) = a / dk h(ka) Jn(kx) C(k,u)) 
0 u 

A careful analysis of h , including the normalizing integral (M, (2.1.3)) 

shows that h is 0(a" ) so that lim of (27) ds finite. 
a-H» 

The presence of the cylindrical Bessel function in (27) in place 

of the spherical harmonic, the Legendre function, in (1) and (2), 

illustrates the transition from spherical stratification to plane 

stratification. 

-'"—--—-■-■J'*1—**——  -.^.-^^^i^^^—^..-.■JJ^-_^-.        .    _  ÜMMIItl^   
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