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ABSTRACT 

We consider a scatterer which consists of a right circular 

semi-infinite conducting cylinder capped by a conducting hemi- 

sphere of the same radius as the cylinder. We take the positive 

z axis as the axis of the cylinder.  Plane polarized electromag- 

netic waves whose direction of propation is the positive z axis 

and which come from negative infinity on the z axis are incident 

upon the scatterer. We require the differential cross section 

in the long wavelength limit.  The cross section is obtained 

through the use of an approximate surface current. 

It is found that the cross section varies as the inverse 

square of the wavelength instead of the inverse fourth power as 

in Rayleigh scattering. 
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I.   INTRODUCTION AND SUMMARY 

Let us consider a scatterer which consists of a semi-infinite 

right conducting cylinder to which there is attached a conducting 

hemisphere of tl?  same radius at the end of the cylinder.  The 

entire scatterer is thus smooth and everywhere convex. 

Let us denote the radius of the cylinder and hemisphere by 

a. We choose a system of coordinates such that the positive 

z-axis coincides with the axis of the cylinder and such that the 

plane z=0 terminates the cylinder.  The hemisphere is below the 

z=0 plane which also terminates the hemisphere from above.  We 

wish to obtain the differential scattering cross section in the 

long wavelength limit.  We consider a monochromatic eloctro- 

magnetic wave whose wave number is k (= |^), which is polarized 

U the x direction, and which approaches the scatterer from the 

neWtive z-direction as the incident wave. 

^The scattering problem which-we^eae differs from the usual 

long wavelength limit scattering problem—called the %ayleigh 

scattering problem'^in an essential aspect.  In the present paper 

w^-^b^U ^oasider the ciiiii Mn Im wavelength X is large compared 

to the radius a, that is ka is small compared to unity.  Of course, 

since the cylinder is semi-infinite, X is small compared to tha 

length of the scatterer.  In Rayleigh Latterini, by contrast, all 

linear dimensions of the scatterer arelsmall compared to th-, wave- 

length#(see e.g. ref. 1).  It can be shLn for ^l'3igh «c^tt^lng 
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that the scattering cross sectioft varies as k .  In fact for a 

sphere the echo area Ae is given by 

A = 9TTa6k4 
e 

2V2k4  , (1.1) 

where a and V are the radius and volume of the sphere.  For smooth 

scatterers which vary not too much from a sphere in shape we may 

expect the approximate formula of (1.1) to hold.  Exact results 

depend upon the possibility of solving certain potential problems 

exactly. 

In the problem which we have set up we cannot use the tech- 

niques for Rayleigh scattering directly because of the infinite 

dimension.  Since we cannot solve the exact electromagnetic 

problem, we use an approximate technique which is based upon the 

possibility of writing the scattering amplitude, from which the 

differential cross section is calculated, as an integral over the 

surface current.  Since the current appears in an integral which 

extends over a surface of infinite extent, we assume that local 

errors in the current distribution will not affect the scattering 

amplitude very much, at least for order-of-magnitude calculations. 

We then make "reasonable" assumptions for the surface current 

distribution.  For the hemisphere portion of the scatterer we 

, 
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assume the same current distribution (in the long wavelength 

limit) as for the illuminated side of a sphere of the same radius, 

if the sphere were the scatterer.  For the cylindrical portion 

of the scatterer we solve in the long wavelength limit an electro- 

magnetic problem which we believe to hold over most of the cylinder, 

We then calculate the current on the cylinder, assuming that it 

is continuous at the junction of the cylinder and hemisphere. 

It turns out that for back scattering the surface current on 

the cylinder makes no contribution.  The result is identical to 

that obtained for a spherical scatterer if one ignores the current 

on the unilluminated side. 

We shall now give our results.  From our choice of coordinate 

system it is seen that the origin of coordinates coincides with 

the center of the sphere from which the hemisphere portion of the 

scatterer is taken.  Let r be the vector drawn from the origin to 

the observer.  Let the polar coordinates of r be given by (r.^cp) 

and the cartesian coordinates be given by (x,y,z) so that 

x = r cos cp sin 9 , 

y = r sin cp sin 9 , 

z = r cos 9 

(1.2) 

Let a(9,cp) be the differential scattering cross section. 

Then 

I cr(9,cp)sin 9d9dcp 

i 



. I 

is the (time-averaged) energy scattered through the differential 

surface angle sin 9 dedcp in a direction specified by e,cp where 

I is the (time-averaged) incident energy per unit area.  Our 
o 

result is 

Q   o    o    p 2  2      2 
CT(Q)Cp)  = £^ a   (ka)   {cos cp[cos  9- TTA(9)  sin  9]     + sin tp},     (1.3) 

where  the function A(9)   is given  by 

TT 
A(3)   =1     ,       0  <: 9   < ^ 

=  0 
TT ^  9   s: TT 

(1.3a) 

The echo area A  is defined by e 

A  = 4TTCT(TT,CP) . (1.4) 

Thus for our scatterer we havt 

9   2,, .2 Ae = j^ Tra (ka)   , (1.5) 

which is the principal result of the present paper. The result 

(1.5) is of course quite different than the Rayleigh scattering 

result (1.1). 

L -- 
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II.  THE SCATTERING FORMALISM IN TERMS OF SURFACE CURRENTS 

For a perfectly conducting scatterer it can be shown (refer- 

ence 2) that the electric field is given by 

E(r) = EinC(r) + iiup. f r(r,r' ) J(r' )dS' (2.1) 

in terms of rationalized MKS units with the time factor taken as 

e-i(Dt     (2.1) r is the field point, Einc is the incident 

electric field which we take to have the form 

^inc, N   „ „ikz. E   (r) = E e  i (2.2) 

where i . i , i are the unit vectors along the x,y,z coordinates 
~x' ~y' ~z 

respectively, the integral is taken over the surface S of the 

scatterer with r' being a point on the surface of the scatterer, 

J(r) is the surface current and r is a matrix Green's function 

whose components are 

1 a    j^  exp [ ik 1 r-r' | ] 
(2.3) 

We take e and n to have their free space values 

The magnetic field H is given by 

H =. - ~ v X E (2.4) 

i 
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The incident magnetic field is 

HinC(r) =^eikz i. (2.5) 

where 

Ti = U/e] 
1/2 (2.6) 

If we define I  to be the incident (time-averaged) energy 

flux we have 

I_ ./T[EinC t^X 

E2 

in 
(2.7) 

On using the notation ESC(r) for the scattered field we have 

(if J dies down rapidly enough) 

ikr 

fc<£) - -« ^r r x r x f J(r')exp[-ik(f.r')]dS' ,  (2.8) 

ÖC is obtained 

from (2.4) on replacing E by if".  The differential scattering 

cross section a(9,cp) is obtained from the expression 

where f1 is the unit vector in the direction of r. U 

RC„ ITSC* 

cr(e,cp) = /s- 
[E^x H0^].r 2 

(2.9) 

..■•r^-^ A,,,.»:.-   „„;■.*    '-   »u**-  ■■  ;——--. 
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In using (2.8) and (2,9) to evaluate the cross sectior, l'c it 

convenient to split the integral which occur? in (2.8) into two 

parts:  an integral over the spherical cap ano an integral over 

the semi-infinite cylinder.  Hence we shall define the vectors 

I, and I^ by 

I. = r x r x    .Kr') exp[-ik(r.r') ]dS' j    (2.8a) 

where S1 is the surface of the spherical cap and S2 is the surface 

of the cylinder. 

III. EVALUATION OF THE COHIRIBUTION OF THE SPHERICAL CAP. 

We shall now evaluate I,. 

From Reference 3 we obtain the following expression for the 

surface currents on a perfectly conducting sphere which is illum- 

inated by the incident wave (2.2): 

E 
J. = 

o cos 
9   ri ka 

n =i 

n-1 
cp V i   (2n (2n+l) 

1' 
sin 0 P   (cos 9) 

- (1) - i 
(ka) 

P^(cos 9) 

sin 0 Hn
U^ (ka) 

E 

9 
_o sin 9 Y i^ 
n  ka   /, ■n 

.n-l 
(2n+l) 
nCn+1) 

n=l sin 

Pn(cos 9) 

fi 
- i 

n (ka) 

sin 9 P  (cos 9) 

Hn
U)(ka) 

(3.1) 

i 
■ 



In (3.1) a is the radius of the sphere as usual while J and 

Jp are the components of the surface current vector in terms of 

polar coordinates.  The prime indicates that the derivative of 

the function is to be used.  The function H^ (x) is defined by 

fin
(1)(x)=Xhn^(x) (3.2) 

where hn 
1 is  the usual spherical Bessel function. We should 

also note that we have taken the complex conjugate of the currents 

-iuut given in reference 3 because we are using the time factor e" 
iüut instead of e 

We now take ka to be much l.ss that 1.  For small x we note 

that 

Hn
(1)(x) . -i (2n)l 

2nn;xn 
(3.3) 

H ^ n (x) - i — <2n)- 
2n(n-lTu5+r 

(3.4) 

Thus for very small ka (3.1) gives us the following expressions 

for the components of the surface current 

T      3  o 
J9 " - 2 ~ COS ^P  » 

3 Eo Jcp ^ ^ 7f sin ^ cos e 
(3.5) 

8 
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In accordance with our disc-ssion in the In production we 

shall us© the current (3.5) in the expression for 1^. 

To evaluate the integral I, we use JCr') which appears in 

(2.8a) in the form 

J^') - J^cp') 9' + J (9' ,cp')Ä' , (3.6) 

where 9' and $' are unit vectors on the spherical cap at the 

point given by r' in the directions given by the polar angles. 

It will be useful to introduce a fixed set of orthogonal unit 

vectors determined by the position of the observer r.  We shall 

denote this set by r, 9, S.  In terms of this set of fixed 

vectors we have 

9- = [sin 9 cos 9' cos^' - cp) - sin 9' cos 9] £ 

+ [cos 9 cos 9' cos(cp' - cp) + sin 9' sin 9] % 

+   [cos 9' sin(cp' - cp) ] £  , 

£'   =  [-sin  9 sin(cpf   - 9) ]  £, 

+   [-cos  9  sin(cp'   - cp) ]  £ 

+   [cos   (cp'   -  cp) ]   ^ (3.7) 

.   :■;,:':-■£„(■''in r'      -i'\ * --: - "'■    ■   ■I.II.I.-I.-| —— 



where the unprimed angles are th polar angles associated with 

r and the primed angles are associated with r'. 

We now use (3.7) in (3.6) and substitute the result into 

(2.8a).  In addition, we replace the exponential by unity, since 

ka is small.  The integration is now easily carried out and we 

obtain 
E 

!     = .£E _o a  [9 cos  9  cos  cp - cp sin cpj. 
~1  ^  n    ~ ~ 

(3.8) 

IV.  THE EVALUATION OF THE CONTRIBUTION ON THE CYLINDER 

We now wish to evaluate 1^.  We shall need the surface 

current on the cylindrical portion of the scatterer.  We shall 

obtain this current by solving an approximate boundary value 

problem for E and H for the cylindrical portion.  The surface 

cureent will then be given by 

J = n x H 
f^j /-s^      r>*s 

(4.1) 

where n is the normal to the surface of the cylinder and H is 

evaluated at the surface.  It will turn out that the surface 

current, as evaluated in this manner, will contain two arbitrary 

constants which arise from the fact that we have not completely 

specified the solution of the boundary value problem.  Thes-^ 

constants are obtained by the requirement that the surface current 

be continuous at the junction of the spherical cap and the cylinder 

10 
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We shall use the techniques of Reference 3 (Chapter 5) to 

obtain general solutions of Maxwell's Equations with cylind^ cal 

symmetry.  We shall than put increasingly severe requirements on 

these solutions so that they are "reasonable" solutions from a 

physical point of view in the sense that at a distance from the 

Junction of the spherical cap to the cylinder that they are waves 

propagating in essentially the positive z direction along a thin 

wire.  In order to make it easier to refer to Reference 3 we 

shall use as a time factor eluJ as in Reference 3 for the time 

being instead of e~ ^ as in Reference 2 and in the previous 

sections of this report. 

In accordance with Reference 3 we introduce two scalar poten- 

tial functions iluCr), f0(r), each of which satisfies the Helmholtz 

equation 

(V2 + k2)^ = 0 . (4.2) 

Every electromagnetic field E(r), H(r) can be split up as 

E(r) = E(1)(r) + E(2)(r), 
^*     *ss /-^ ("»^ ^w <"v/ 

H(r) = H(1)(r) + H(2)(r) (4.3) 

such that the components of the vectors E  , H^1^ in cylindrical 

coordinates are given by 

11 
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E (1) i_ s h 
uue 9p9z 

H (1)   1 
a^- 

P ö«P 

(1) 
cp 

i ö h 
uuep "äcpSz" 

(1) 
9 

d1lr1 

E. (1) z 
i_ ( a 
uue 9z 

^ + k ) ^ ,  Hz 

(2) 1 ^2 

(i) o 

H (2) 
2 

[i)\i,  dpdz 

E (2) 
9 

^2 
ap 

H (2) _ 
9 u) p,p 9cpöz 

^<2) - o H (2) 
HZ 

- — ( ^-rr + k2 ) ^ 

(4.4) 

The fields E'  , H^1' are the transverse (to the z-axis) magnetic 

fields, while the fields E^\ H( ^ are the transverse electric 

fields. 

The most general solution for the potentials in terms of 

cylinderical coordinates is 

00 

^(^p,?)   = ^    J dß  Cn
(i)   eißz cos ncp Jn[ (k2-ß2)1/2p] 

n=0 

12 



■   ■    ■ 

y    f dß Dn
(i)   eißz sin ncp Jn[ (k - 

2  „2vl/2 
0   ) Pi 

n=l 

(i^i     ißz 
+    I    J «  ^n11'   e cos ncp 

n=0 

^[(^-s2)172»] 

2   D2xl/2 
+    y    J dß  rn

(i)   elßZ sin ncp NjO^-ßV'   p]   .     (4.5) 

n=l 

In (4.5) the coefficients Cn
(i), Dn

(i), En
(l) and rn

(l) are 

functions of ß.  For the moment we do not give the range of 

integration for the variable ß.  The functions Jn and Nn are the 

usual Bessel functions. 

Let E (r,e,cp) and H (r,e,9) be the radial components of E 

and H as expressed in terms of the usual spherical coordinates. 

Using the techniques of Cnapter 6 of Reference 3 one can show 

that for TT s e s S the cp-dependence of Er and Hr is identical to 

that for E and H for the scattering of the plane wave (2.2) 

and (2.5) by a sphere.  In particular, for 
TT we have 

E = G(r) cos cp , 

Hr = H(r) sin 9 , 

where H(r) and G(r) are functions of the radius only. 

13 
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We shall require that at z=0. the components Eä and H ' P     P 
obtained from (4.3) and (4.4) equal the components Er and Hr 

given by the equation on the preceding page.  This condition is 

a necessary condition for the solution of Maxwell's equations 

for the problem.  We find that all the coefficients in (4.5) 

must vanish except E1
(1), C1

(1), D1  , and F^1'.  Our expres- 

sions for the potentials thus simplify considerably.  On renaming 

the non-vanishing coefficients we obtain the following expressions 

for the potentials: 

^ = cos cp Jdß eißz (A^ß) J1[(k
2-ß2)1/2p] 

+ B1 (0) N1[(k
2-ß2)1/2p]} 

t2 = sin cp Jdp eißz [A2(ß) J^ (k2-ß2) 1/2p] 

+ B2 (ß) N1[(k
2-ß2)1/2p]} (4.6) 

Expressions (4.6) for the potentials still provide rigorous 

and very general solutions of Maxwell's Equations for the cylin- 

drical part of the scatterer.  We shall now make further special- 

izations which lead to reasonable fields E and H for z > 0.  First 

of all, in order to preclude fields which increase or decrease 

exponentially with p—these fields being incompatible with a 

solution for a scattering problem—we restrict ß to v e real values 

14 
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-k < ß < 4 k  . (4.7) 

Secondly, because we expect the electromagnetic waves to move 

such that their propagation vector has a positive z-component, 

we exclude positive values of ß.  Hence 

-k < ß < 0 (4.7a) 

We shall now use the conditions that the tangential component 

of E and the normal component of H be zero on the surface of the 

cylinder.  Thus 

Ez(z,a,cp) = 0 , 

H (z,a,cp) = 0 , 

Ecp(z,a,cp) - 0 , (4.8) 

for z > 0. 

On using (4.3), (4.4) and (4.6) the first of Equations (4.8) 

yields 

.0 

-k 
J  dß (k2-ß2)eißz {A1(ß)J1[(k

2-B2)1/2aJ + 

+ B1(ß)N1[(k
2-ß2)1/2a]} = 0 (4.9) 

for z > 0.  Similarly the second of Equations (4.8) gives 

15 
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J  dß ß(k2-ß2)1/2[A2(0)J1'[(k
2-ß2)1/2a] 

.r^2_02,l/2t + B2(0)N1'[(k^-ß^)
x/^a]} = 0 (4.10) 

for z > 0.  In (4.10) the prime means that a derivative is taken 

with respect to the argument.  Equations (4.9) and (4.10) are 

satisfied if 

A
1(ß) 

2 D2xl/2 ^[(k'-ßV a] 

J^-ßV^a] 

A2(ß) 

BjTßT 

^'[(k^ß2)17^] 

^'[(k^-ß2)1^] 
(4.11) 

It is readily shown that the third of Equations (4.8) is also 

satisfied if Equations (4.11) hold. 

We shall now use the fact that ka is small to simplify (4.11) 

We shall also use the fact that for calculations of surface 

current we need consider only in (4.6) only values of p near the 

surface of the cylinder so that kp is also small. 

Then since for small x 

J-^x) ^5    , 

16 
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N, (x)   ^ - ^ 5 
1                            TT   X » 

V(x) "^ 
N   .(x)   ^i^ 

TT    X 
» (4.12) 

we have for small ka and kp 

^ = | ( ^ . 1 ) cos cp f i dß eißz (k2^2)-1^^^) , 
.0 

-k 

,  = _ 2 ( P  + 1 ) sin rp I"0  dp eiß
z (k2-ß2)-1/2B2(ß) . (4.13) 

2    ^  a2  p        -k 

We must now make some assumptions about the coefficients 

B (6).  It seems reasonable to assume that the potentials (4.13) 
i 

should yield electromagnetic fields which are smooth bundles of 

plane wave solutiuns.  That is, it seems reasonable that no 

value of ß should be too highly preferred. 
2  2 —1/2 

Hence we shall assume that the functions Bi(ß)(k -ß ) 

are smooth functions of ß in the domain of integration and in 

fact we shall assume for convenience that these functions are 

constant.  We can then carry out the integration over ß in the 

integrals.  We obtain 

17 
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^ = D, ( -^ - i ) cos cp 1 - e ■ikz 

■ ■ .^i 

*2 = D2^ "T" + - ) Sin ^ 
1 - e 

-ikz 
(4.14) 

where D, and D0 are constants. 1     z 

We shall now calculate the components of the surface currents 

on the cylinder. We shall use the requirement that the current 

(3.5) on the hemispherical cap must equal the current on the 

cylinder at the junction of the cap with the cylinder.  From 

J = n x H where n and H are the normal to the surface of the 
,>,  ~  ~      ~    ~ 

cylinder and the magnetic field at the surface of the cylinder 

respectively, we have for the components of the surface current 

J = -II  > cp    z 

J  = H    , z   cp 
(4.15) 

where the components of H are obtained from ^ ^2 through (4.3), 

(4.4).  Thus 

j = sin .p 1_ ( ^ + k
2H2 (4.16) 

cp      Y u)^   ^ * 

From our requirement on the continuity of the current we require 

j of Equations (3.5) equal J of (4.16) when 9 = J or, equivalently, 
cp 9 

18 
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when z - 0. We see from (3.5) that J = 0 at the junction of the 
9 

spherical cap with the cylinder.  Hence 

D2 = 0 

from which It follows that 

to = 0 

(4.17) 

(4.18) 

From (4.15), (4.3), (4.4), (4.14) and (4.18) 

Jz ^ " aF p = a 

T  -Ikz 
^       l-e - D1 cos cp  (4.19) 

In (4.19) we have absorbed a factor of (2/a ) Into Dj^ 

We shall now require that JQ of (3.5) equal -Jz of (4.19) 

when e = J and z = 0. We find for V^  the result 

D - 1 3 ^° Dl   * ^ Fin 
(4.20) 

Thus we have found the surface current on the cylinder.  We 

now summarize our result for the current taking, however, the 

complex conjugate so that we will now work with the time factor 

e-lujt as in the evaiuation of I, . 

19 
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kz 

E ,    ikz 
j = .i 3 _o 1 
z    2 n 

J = 0 . 
9 

(4.21) 

We shall now evaluate Ig.  In (2.8a) we use 

J(r') J (z')! z   ~z 

J (z,)[^ cos 9 
Z       OJ 

- e sin e] (4.22) 

where the unit vector r and 9 are the same as those of the pre- 

vious sections and J (z) is given by the first of Equations 

(4.21).  It is easily seen that 

r x r x J^') = sin 9 ^(z') 9 . (4.23) 

Also 

r'-r = a sin 9 cos(cp - cp') + z' cos 9 (4.24) 
t*j        rw 

where 9' and z' are the cylindrical coordinates on the surface 

of the cylinder contained in r' 

Thus 

o E «2TT ika 
!  = _i 4 ° sin 9 a 9    dcp' cos cp' e    sin 9 cos^-cp') X 
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r  .  -ikz    . 1 - e 
dz e    cos 9   

,J0 

ikz 
(4.25) 

Let us first consider the integral over cp'.  Because of the 

smallness of ka we expand the exponent in powers of ka.  The 

O'th power yields nothing when integrated.  Hence we must use 

the first power to evaluate our integral to the lowest non-van- 

ishing order.  For small ka we then obtain 

.2TT -ika 
I   dcp' cos cp' e J""'"' sin 0 cos(cp-cp') a- -irrka sin 0 cos cp 

(4.26) 

To evaluate the second integral in (4.25) ac  use the theorem 

I 
iaz   ibz 

e   - e 
dz = 0 ,  if the sign of a equals the sign of b 

= -rri sgn b, if the sign of a is the negative 

of the sign of b.        (4.27) 

We thus obtain as our answer for Ig ti;e following expression 

E 
£2 = ej- | (ua)2 -2 sin2 9 cos cp A(0)} (4.28) 

where A(e) is defined by (1.3a).  It is clear that for back 

scattering, i.e. for IT > 0 > TJ-, the current on the cylinder gives 

no contribution. 
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Having evaluated I, and 1^  we can carry out the procedure 

üutlinev! in Section 2 to obtain the cross section which we 

desire. 
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