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Summary

Recent activity on several topics in propagation through atmospheric
turbulence is described in this report. The statistics of target or receiver
irradiance, conditioned on a prior measurement of the instantaneous value,
are considered under conditions of moderately strong fluctuations, and it is
found experimentally that such scintillations are not described by a bivariate
log normal distribution. Hence as turbulence effects become stronger, predic-
tions of the state of the turbulent channel at a given time delay following a
reference measurement will be subject to more uncertainty. However, even
though the exact joint distribution is not analytically knownm, approximate
predictions based on the bivariate log normal are quite useful. Such predic-
tions can comprise a basis for operating a system in which a low-power laser
beam is used to determine a favorable time interval for firing a high-power
beam in turbulence.

A study of computer simulation techniques is described which has the
gc = of making possible realistic models of propagation paths for the short-
term, time-dependent statistics of scintillation, including the effects of
localized or intermittent strength of turbulence. It is concluded that the
random medium must be more completely described than in conventional simula-
tion approaches, and that this may be accomplished through an empirical trans-
formation of a gaussian distribution to a distribution which realistically
describes the highly non-gaussian behavior of refractive-index fluctuations.
An expression is given which accomplishes this goal, and an approach for
including intermittency is described. ‘

The important future topic on this program will be the experimental and
analytical determination of scintillations from laser-illuminated diffuse
and general targets. A preliminary analysis of scintillations from a diffuse

target is given, which is valid in the near field of the target illumination

area.
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I. Introduction

This report describes recent activity on several topics in propagation
through atmospheric turbulence. In Section II we discuss additional aspects
of conditional fading statistics to supplement the treatment in an earlier
report. In Section III we briefly describe work on the useful simulation
of short-term scintillation and turbulence intermittency phenomena on a
computer. An expanded treatment of the limiting behavior of the second
moment of irradiance is given in Section IV. Finally, in Section V we
present a preliminary analysis and discussion of scintillations from diffuse
and general sources, which will comprise the primary topic for future
experimental and analytical work on a follow-on program.

In addition to the work reported here, we have continued experiments on
target irradiance behavior as a function of wander-cancellation-tracking
and transmitter and turbulence parameters. In particular, this work has
been extended to 10.6 microns. Data reduction and interpretation is being
completed and a special report on this topic will be issued. We are also
conducting long-path, strong-turbulence scintillation experiments with very
small receiver apertures and wide bandwidths; this work, sponsored by the
National Science Foundation, builds upon earlier efforts on the present

program and will be reported later.
II. Further Results on Conditional Fading Statistics

In the preceding report on this programl, we discussed the conditional
statistics of scintillation or target irradiance fading at a time 1 fol-
lowing the comparison of the instantaneous level with an arbitrary thresh-
old. An approach was giveun which is readily implemented if the log irra-
diance fluctuations have a two-point or joint normal distribution, and
which can be numerically extended to a general distribution.

It was fourd empirically that the bivariate normal distribution is
accurate for weak irradiance fluctuations, and that the analytical treat-
ment of the conditional statistics is successful in predicting experimental

results. However, it was mentioned that under conditions of stronger
1. J. R, Kerr, et al, "Prnpagation of Multiwaveiength Laser Radiation
Through Atmospheric Turbulence', RADC Technical Report, April 1975.
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fluctuations, a significant departure from bivariate normelity occurs.
The purpose of this secticu 2 to elaborate on the latter voint.

We confine ourselves to strengths of fluctuations below t%i2 level of
"saturated scintillations",2 which will be treated later. It will in fact
be shown that significant departure from bivariate normality occurs for
moderate, unsaturated fluctuations.

We have measured the conditional distributions of the log irradiance
fluctuaticns from a point source over a range of turbulence levels (Table 1).
For each experimental run, distributions were calculated for a number of
values of threshold (zo) and time interval T, using 400,000 data points
sampled at one millisecond intervals. Autocorrelation functions were

also determined as in Figure 6 of Ref. 1.

TABLE 1. FPARAMETERS FOR EXPERIMENTAL DATA ON CONLITIONAL FADING DISTRIBUTIONS
OVER A 1.6 km PATH

Mean Wind Speed Log Amplitude Optical

Run (meters/sec) Variance cxil Wavelength (u)

1 9 0.0015 10.6
2 3.5 0.010 10.6
3 9 0.076 0.488
4 1.5 0.14 10.6
5 1 0.307 10.6

As discussed in Ref. 1, the conditional probability distributions for
Run #1 were essentially log normal for most values of threshold and time
delay, and the observed mean and variance vs. Tt for these distributions
eagreed with the analyt:cal predictions based on this assumption.

Now let us consider a case of stronge: scintillation, Run #4. Again
the cunditional distributions appeared qualitatively (log) normal, as sup-

ported by the skewness and kurtosis parameters shown in Table 2,

2. R. S. Lawrence and J. W. Strohbehn, Proc, IEEE 58, Oct. 1970, 1523-
1545,

i
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CABLE 2. SKEWNESS i, &D KURTOSIS (K) OF Pr [x(c + T)/x(£) = 5] FOR
RUN #4, WHERE yx IS THE LOG AMPLITUDE, AND 0§ 18 ITS VARIANCE
(=0.14) .
i S
| = t(ms) 2 4 8 16
Z X
s
j ~-0.92 9x10 4 ‘ 0.075 0.193 0.13 £
g -0.04 0.013 0,085 0,055 0,107 |
- 1.07 0.048 0,074 0.048 0.06
2.03 ~2.6x107> _6.6x10"> _3,6x10"> 0.013
c
K
|
l -0-92 3-06 3.8] 2.1. 4.04
~0.04 3,27 3.59 3.69 3.39
1.07 3.4 3.19 3,02 3.2
2.03 2.96 2.78 2.68 2.95

rved variances and those predicted from the

However, a comparison of obse
i{in fact, the rms

tion (Table 3) shows large deviations;
and predicted normalized variances is 132,
similar calculation for all runs, and
2 5 0.1) for this sample

also clear that

gaussian assuLp
error between the observed

1n Table 4 we show the resui:s of s

it is seen that the stronger-fluctuation cases (oX

ghow significant deviationz from joint normality. It is
predictions such as those in Table 3 are quite sensitive to departures

from joint normality.

A detailed error analysis confirms the no
r-fluctuation runs. This analysis shows E

served variances are within the

n~-gaussian behavior of the

joint distributions in the stronge

that in the weak-fluctuation case the ob

allowed statistical error of that predicted by joint normality, while in

,,_5_




the strong-fluctuation case, the deviations are outside this limit--

especially for larzge values of 20.

A similar analysis of saturated log irradiance signals will be carried
t out in the future, including data from the long-path experiments mentioned
X in Section I.

TABLE 3. COMPALISON OF PREDICTED AND OBSERVED MEAN OF P(x(t + t)/x(t) = R.o)

g
X
l )
;9 1 (ms) 2 4 8 16
X
- .92 Pred. - .856 - .761 - .544 - .215
K Obs. - .869 - .77 - .547 - .20
' - .04 Pred. .037 .033 .024 .0094
Obs. 4x10™3 .033 .051 .01
1.07 Pred. .995 .885 .632 .250
Obs. 1.00 .896 .626 .248
| 2.03 Pred. 1.89 1.67 1.19 .475
Obs. 1.87 1.54 .962 .314
, COMPARISON OF PREDICTEL AND OBSERVED VARIANCE OF P(x(t + t)/x(t) = 2,)
g 2
1 L
c_o t(ms) 2 4 8 16
X
- .92 Pred. .134 .32 .651 .945
N Obs. .101 .14 .679 .94
- .04 Pred. .034 .32 .651 945
Obs. .088 .255 .615 .96
1.07 Pred. 134 .32 .651 .945
Obs. .19 .47 .80 1.00
' 2.03 Pred. .134 .32 .651 .945
Obs. .268 .603 .95 .99

! TABLE 4. RMS ERROR BETWEEN OBSERVED AND PREDICTED NORMALIZED VARIANCES
! OF THE CONDITIONAL LOG IRRADIANCE DISTRIBUTIONS ‘.‘

Run OXZ . RMS Error
1 0.0015 0.04
2 0.010 0.037
K} 0.070 0.027 "
! 4 0.14 0.13 :
5 0.307 0.11 |
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III. Computer Simulation for Short-Term Scintillation Statistics and
Turbulence Intermittency

o=

b A. Introduction

The goal of this study is to devise computer simulation techniques
i which will make it possible to realistically model propagation paths for the
short-term, time-dependent statistics of scintillation, including the effects
of localized or intermittent strength of turbulence. This technique comple-
ments the analytical description of short-term effects given in preceding
reports.”’
Obviously the most ambitious approach is to model the complete
refractive index field over the path, with a differential or integral formu-
lation of the propagation mechanism which yields the detailed complex field
behavior vs. time and space. Iteration is often utilized to correctly
include the multiple scattering regime. There are two primary difficulties
with this approach:
1. Computation requirements are prohihitive.

' 2. The refractive field, having nongaussian statistics,

is not readily modelled in detail.
Let us consider concrete examples. Over a limited pathlenéth,

perturbation analysis yields the following form for the complex phase with

an elementary source:

T, CJ
o(x,v,L) = J. dz'ji[ dx'dy' g{x-x',y—y',L-z')sl(x',y',z')
o -00

L
U¢(de,de,L)= J- dz' Gq(‘,L-z') Ue(de,de,z')

[o}

(1)

where El is the (stochastic) dielectric perturbation, and the second

3. J. R. Kerr, et al, "Propagation of Multiwavelength Laser Radiation
Through Atmospheric Turbulence', RADC Technical Report, November 1974.
4, V.I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propaga-~
i tion, available from National Technical Information Service (#TT-68-~50464)
1971.

-7- j
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expression is simply the Fourier-Stieljes form of the first. In principle,

€. could be modelled in detail in three dimensions and with time evolution;

tie statistics of ¢ would then t . determined from a number of such realiza-
tione, 1.e., a limited ensemble. Analytically, the solution is usually con-
fined to a statistical quantity such as an autocorrelation function, which
involves partial Fourier transforms and Kolmogorov spectra, so that the
detailed knowledge of the dielectric or optical field for a particular case

is not involved.
B. Use of Short-Path Phase Function

To model the system represented by Eq. (1), we must generate
realizations of the three-dimensional dielectric rield sl(x',y',z'). How-
ever, this random varjable is markedly nongaussian,3 and therefore unsuitable
for conventional simulation techniques. The approach generally useds’6 is to
derive a much simpler expression like Eq. (1), for the real phase only, as

follows. Let U be the complex amplitude, and write
U(xyy,z) = er(x’y’z)W(x.y.Z) (2)

where T is the real phase and is assumed to have the short-path solution

z + Az
o

I = %3 J dz el(x,y,z) , (3)

When U from Eq. (2) is put back into the wave equation, it is found that

w satisfies

8, T 2 r] i}
[iZk e + e ny e w=20 p (4)

It is then assumed that a sufficient number of independent € regions are

contained in the integral (3) to render T a gaussian random variable, and

5. J. Herrman and J. C. Bradley, Numerical Calculation of Light Propagation,
Lincoln Laboratory Rept. LTP-10, July 1971,

6. W. P. Brown, Jr., High Energy Laser Propagation, Midterm Technical Report,
Contract N00014-73-C-0460, Hughes Research Laboratories, September 1973,

-8-
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the modelling is limited to T(x,y) realizations with independent (uncor-
related) iterations for each pathlength increment (Az). Although Eq. (3)
is valid only over very limited path!~ngths, the "return to the differential
equation"” (4) at every Az jteration lcads to results which are valid for
arbitrary pathlengths nd which therefore include the saturation of scintil-
1ations.2

Finally, the generation of particular F(x,y,zo) realizations with the
required transverse correlation function is accompliched through the follow-
Ing principle: a multidimensional gaussian random variable f(x) may be
generated by convolving a gaussian white noise function h(E) with a2 leter-

ministic- function e(E) having the desired autocorrelation for f:

£(r) = e(x) * h(p) (5) f
In practice, one usually employs the spectral form of this expression:

£(p) = I g B AE e NE (6)

-00

where E(E) is the spatial power spectrum desired for f(E)' In practice,

the problem is discretized, so that H represents a grid of gaussian random

numbers; E(E) is the familiar Kolmogorov spectrum2 and F(xn,yn) has the

usual transverse phase structure function for propagation through turbulence.
Finally, the above approach may be extended to time dependent behavior

by invoking the frozen-in turbulence or Taylor hypothesisz’4 and having the

randouly-generated grid move with the postulated wind vector.
C. Possible Extensions of the Above Technique

The detailed nature of the € field is dropped out of the above
technique by integrating over short, discrete paths and assuming that the
result is gaussian and uncorrelated in adiacent z-segments, even thovgh the
integrand is nongaussian. For Az much longer than the outer scale of
turbulencez’4 but short enough for Eq. {2) to be valid, this should certainly

give accurate statistical results over a reasonable ensemble of U realizations.

-9- 4
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In our study of short-term statistics, including turbulence
intermittency, we have been interested in the detailed statistics of the
turbulence field and in the detailed time behavior of the scintilla. g
irradiance, including joint distributions and conditional statistics as in
Section II. Such details are obviously lost by integrating over pathlength
segments before generating a realization.

In order to extend the above or any other coding technique to
include the detailed € statistics, we suggest the use of a versatile
"Johnson" tr?nsformation7 which we have found can adequately represent the
nongaussian variable € in terms of a gaussian variable ¢

T
g. = C, sinh —— (7)

1 1 02
where C1 and 02 are determined by the first two momemts of €y This
technique simply comprises an empirical £it of the probability distribution
of a nongaussian process to the gaussian distribution, obviously with the
loss of independent information on higher moments. The autocorrelation
or spectrum (E) of M must be calculated from the known (isotropic) form

for €y-
We thus write the generating expression for T, from Eqs. (3),

(5), and (7), as

z + Az ©
o
_ ik 1 Y3 'dn! ' ' '
r(x,y) = = dz C1 sinh A dx'dy'dz' h(x-x',y-y',z-z')
2

-00

o
ce(x',y',z") (8)

The segments Az should now be much less than the outer scale, in order
to preserve maximum detail. This is also true of the transverse discretizing

or grid scale. The transformed refractive field may again be translated

7. G. F. Hahn and S. F. Shapiro, Statistical Models in Engineering, Wilev,
New York, ]967.

=10-
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with the wind, in order to determine time behavior.

In principle, this technique may permit the determination of the
detailed statistics of scintillation, including two-point or conditional
behavior, higher moments (degree of fit to a log normal), autscorrelation
functions, integral scales, and averaging time effrcts on spread in measured
quantities such as log amplitude variance. However, it is clear that the
required computer time may be prohibitive, This is currently under inves-
tigation for a two-dimensional representation (x,z).

A second extension of the technique described in Sec, III-B is
to postulate large-scale random variations of turbulence strength (envelope
of the €1 fluctuations), representing intermittency of turbulence. The
nature of such variations has been discussed in Ref, 3, The John:son trans-
formation and attendant detail is not required frr the basic resulis of
interest, and in fact, as discussed in Ref. 3, the intermittency is only
manifested in higher moments of € which are lost in the empirical trans-

formation process,
IV. Asymptotic Expansion of the Second Moment of Irradiance

Using physical ressoning, we have argued in recent reports that the
normaiized variance of irradiance (012) should approach unity at large values
of transmitter diameter (D) over coherence length (po), where o, is deter-
mined over the reciprocal (target-to-transmitter) path through turbulence.
This was shown directly from the analytic expression for the fourth moment
of amplitude in Ref. 3.

Efforts have continued to numerically or analytically derive further
details of the curve of 012 vs. (D/po), in order to complement the phgnomeno—
logical treatment which successfully predicts the essential features. The
same problem has been treated by Banakh, et al,9 using certain approximstions
and a Monte Carlo technique, with results which are highly useful but which
have certain limitations as discussed in Ref. 8.

The purpose of this section is to extend the asymptotic analysis of
Ref. 3, using an inverse expansion of (D/po). We begin with the integral

8. J. R. Kerr, et al, "Propagation of Multiwavelength Laser Radiation Through
Atmospheric Turbulence", RADC Technical Report, May 1974.
9. V. A. Banakh, et al, J. Opt. Soc. Am. 64, 516-518, April 1974.
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8
expression for the fourth amplitude moment (second moment of irradiance):

2 2 2 2

4 py +p, tpo, +p
<12> - L. ]]]s d-9-1d-9-2d—°-3d££| exp < - L 2 3 4

(2m1y% p2/2
VLT 5/3 5/3
' exp B (p—o) 5 573 [I.Q.]_"ﬂzl + Iﬂ3_£6|
5/3 5/3 5/3 5/3
+legme, |+ lepegl - lege,l - leg-e, 9

We let x, =

X = 2p and B = (D/po) 5/3, and rewrite (9) as

2
2 ( kD ) 20 nB B e id }
<I%> S j!js dx, dx,dx.dx, exp {— 2(x] + x; + x5 + X))

5/3 5/3 5/3
i |£2-§3| b liz_?.‘_{.! - |£1_’_‘3| (10)

For large B the integrand is significantly different from zero only
near the points X, =x, and X, =X, Consequently, one should be able to
obtain approximations to the integral by considering contributions from near
these two points. We note further that the integrand is symmetric with
respect to interchange of %, and X, which meansmthat we need only to calcu-
late the contributions to the integral from X =x, and multiply this result
by two.

The following changes of variable simplify the calculation. Let

219=
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LRl T .9
¥
£ T4
£=3.(.2 -53 (11) [
b - so that x,-x, = rtstt; x,-x, = s+t; and X,"Xy = rit. These substitutions
transform the integral to
k 4
2 kD2 2 2
<I"> = 7L dedEﬁng exp {- 8x2 + 8x2t coset - 4t
- 2r2 - 232 - 4x.r cosd + 4x.8 cosd ~ 4st cos(8 -0 )
2 r 2 s s t
. exp{- Br5/3 -885/3 _ Bt5/3 _ BI£+.§_+E_I5/3 . BI£+E_|5/3
I
+ B|s+t|5/3} (12)

where X, has been taken to be the polar axis and er, es, and Gt are the

angles between x, and r,s,t respectively.

We note that for B>>1 the major contribution to the integral comes from
near the points r = 0, s = 0. This corresponds to the points x, = 52,
Xy = x,.The factor exp ge>/3 - B|£j§f£|5/3 + B|£f£|5/3 + f3|s+t:|5/3 } is
bounded and does not extend the effective range of the r and s integra-

tions. This effective range is 0(8-3/5). On the other hand the t inte-

gration is not so restricted since the above factor approaches unity as

t + = for finitezr and s. The range of the t integration is 0(1) due to
the factor e_at . l
We will now exploit the narrow range of the rand s integrations by

—Br5/3 d 33-855/3

expanding the integrand,apart from the factors re an , In a

Taylor series about r = s = 0, Since |

13- %
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%
E,'
3
:
3
;

5/3
I Proge e =%I‘ (3n_+1) B ) (13)
()

This will result in an expansion in inverse powers of B. We thus write

4
2
<1%> = (%) jj dx,dt  exp {- 8x§ + 8x,t cosé - ln:z} Q(x,,t)
(14)
where
Q(l‘.st) =I§ drds exp(-Br5/3—855/3) exp {-2r2-232—4x2r cosu_
+ 4x,8 cosb_ - 4st cos(es-et)} exp (-gf(r,s,t)) (15)
and
f(r,s,t)= t5/3 + |uist+ |5/3 - |£+1:_i5/3 - |§+£|5/3

Now expanding f(r,s,t) in a Taylor's series about r = s = 0, we have ™

2 2
of of 2°f
f(l‘,S,t)’ f(0,0,t) +r E a_s + ;—! _2.
r=s=0 r=s=0 or 'r=s8=0
2 2 o2
2rs 3 f s 9
+  m— — + — . . (16)
1
2! 9rds a0 s! aszlr =

We then note the following equalities:

£(0,s,t)= £(r,0,t) =0
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WL o B o
, oE r=s=0 BB r=s=0
‘ { 3 azfl
1 "“ ———2— =———2— =0
E ! or 'r=s=0 98 |r=s=0
| 2
3°f 5 -1/3 1
YTy, 3 t (cos(er-es) -3 cos(er et)cos(es-et))
r=8=0
33f 33f
= ~ U ¥ g
or” 'r=s=( 98 'r=s=(
33f - = L0 t-4/3 0s(® -8 )cos(6 -8 ) -~ é-t-4/3 0s(6 -0 )
2 ‘ 9 cost¥L ™ r s 9 €08t ™%
| or 9s 'r=s=0
| +-%% t_4/3 cosz(er—et)cos(es-et)
' and
3
| 9 f - _1o _-4/3 y 5 ~4/3 _
5 9 t cos(es-—et)cos(er SS) Eis t cos(er et)
ord s'r=g=0
35 -4/3 2
+.27 t cos (9S ec)cos(er-et) (17)
Therefore
-1 .5 -1/3 g | ) 2 o . -
exp(-Bff(r,s,t)) =1 3 Brst (cos(er-es) 3 cos(er et) cos(eS et))
8 =2 —4/3[___1_Q 5 - =
\ 3!Br st 9 cos(er et) cos(er es) 9 cos(es et)
35 2
+ 57 €Os (er—et) cos(es—et)]
i
a 2-4/3[_1_9 E) =
i - 3 8rs’t 3 cos(es et) cos(er—es) ol cos (8 et)
£
£ + 32 0200 - m ]_
27 C€OS (9s et) cos(er et) . e

'
|
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1 25 222 -2/3 1 )
+ 71 9 B r st [cos(er-es) 3 cos(er et)
2
—cos(es-et)]

1/5 6 6 6 -4/3 1 o
Z'(i) [cos(er-es) -3 cos(er et)
4
-cos(es-et)]
+.’L(_5_)6666-2 [ (e_e)_l R
e\3 Brst cos Sl 3 cos oo
6
-cos(es-et)]
+ ... (18)

Although (18) does not include all terms up to O(rﬁsﬁ), those neglected
either contribute zero under the der and des integrations (see below) or
result in"terms of lower order in B. The last term listed is proportional
to t:“2 and hence the t integration of this term diverges. This is because
our expansion emphasizes the region near t = 0, The contribution of this

-18/5

term turns out to be 0(B ) so that there is .o point in including higher

order” terms,
As mentioned above, the der amd des integrations drive many terms in the
expansion to zero, namely all those which are periodic with period 2w.

-14/5

Keeping only those terms which are non-zero and of 0(R8 ) and greater:

211' 211‘ © a
Q(§2’£) = Zf derj degj drrI dss exp(-6r5/3-855/3)
o o o (e}
i1+l (_5.)2 52 2 2{2/3 (-6 ) - a cos(f_-0 )
2 \3 U [COS r s 3 b

. cos(es-et)]2

-16-




4
1 (5Y " bbb ~4/3T 1 )
+ 4 (3) B'rst l.cos(er es) 3 cos(er et)

. cos(()s—et)]4 }

+ 0(6"18/5) (19)

The factor 2 appears since we are considering only cuentributions to < T >
= = = +g+t=
from near x, = X, (r = 0) and not from x, = X, (r+s+t=0).

Performing the angle integrations gives

o0 -] 2
Qx,, L) 'ZI drr[ dss exp(-gr> 3-gs>/) {fsnz » 2
(o] [o]
L1 ()" gh2223 122 L (3) " ghatahy /3
2 \3 BT e 1446 " 41 \3 Brst
+ 01875

2 2
SgHd : (%) r2(%) g12/5 _1_%"_ r2(%) g14/5,-2/3

2
121 2 (5 r2(18Y ,-16/5 -4/3 -18/5
t 1728 " (3) (,) B t + 0(B ) (20)

Since to this order Q(3c_2,£) is independent of x, and d6 , we may make the

substitution v = 23;_2—5_ so that

2

e 2 2
v —sz 1¢x2tcoset + t

P |
and d§2 4 dv = 4 vdvdé (21)

resulting in

=1 7=




21; 2 o ®

00
j’ det “‘ dttj devj dv v exp(-2v2—2t2)
)

[o}

A

-
N

v

]
P
~—
=

Q
Q

- G (52 »t)

o0

2
m

(ZwL A dt t exp(-2t2) Q(EQ'E)

O S

-] 2 |
= (Ek%f) % s dt t exp(-2t2) {8"2 (%) I‘Z(.g.) 8-12/5
()

2 -
+£3€_ rz(%) g"14/5,72/3 | i%s 2 ( ) 2(%)816/5

c"‘/3 ‘}+ 0(8-18/5)

2 J <3)4
(2nL) { ( ) rz(%) B 12/5‘”'1'92'"2"5“# r(%)

1/3

AR) N5 Tt ) () )

-18/5

+ 0(R

8_16/5} y -

The mean irradiance is

2
2 py +p 5/3
. 1 2 D
df . = dp,dp, exp < - exp {-(—
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. , _ ,5/3
7E £y By

a4
B - EE_) PSP e - 5/3
£ (21:1. Jdildi °xp (2%, ~2%)~B|x; -, | }

i 4
| W | 2 2 5/3
- (_EQ_) dx, | dr exp(-4x,-4x,r cos6-2r")exp(-Br ") (23)
27L

& [

i As above, we let v = 2x, + r, giving

2
, 2
<I > = (%) %j dr exp(-r -Br5/3)
2 o
- (%) gij' dr r exp(-Br5/3) {1-r2+§—!4-- - }
(o]
B w2 3 L6\ .-6/5 -12/5
- () F 2 r()) -0t il

The second central moment of irradiance normalized to the mean irra-
diance is then

2 2 ~2/3 2
Bt | B, SRR -1+ 2 A (%) rz(lsz-)a(g)

TS M ) (3) R) 1Y)

. 8-4/5 - 0(8-6/5)

= 1+3.132872/5 4 9.41487%/5 4 0(g70/5y (25)

-19-
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We may thus write

1) 012 =1 +3.1328727° (26a)

(2) 012 -1+ 3.1328725 & 9.41487%/0 (26b)

2
as the one~ and two-term asymptotic approximation to UI . The one-term

approximatlon agrees exactly with the result obtaincd by a different method

by Gochelashvily.10

1) 012 and (2)012 are tabulated for a range of values of £ in
Table 5, along with D/po and Ds used by the Russian investigators. Cr.rves
are shown vs. VB; in Figure 1, along with the result from Ref. 8. We note
that our result, which should be accurate for large ] (DS), does not agree
well with the Monte-Carlo (M-C) integration f.r /5; > 20. We surmise there-
fore that our results represent a useful modit..ation at large DS.

The M-C calculation should be more accurate at small DS or B, and it
agrees with the one-term expansion for 8 < JB; < 20. However, the two-
term expansion appears to fit the data somewhat better.

Two final points can be made. First, the structure function (mr5/3) is
valid only for path lengths (L) such that Lc<<L<<Li’ where Lc is the propa-
gation distance at which the near field decays to e_1 of its value at the
apertuce and Li is the propagation iistance at whizh the czherezce length
js of the order of the inner scale. For exampie, if 20 Ny 1 mm and
D~ 10 cm, we have D/po = 100, B = 2150, and Jﬁ; = 66. ihe above analysis
is then valid for B<<2150, while for £>>2150 the structure function is pro-
portional to r2 and the resulting new integral can be evaluated by the same

method used above.

10. Prokhorov, A.M., et al, Proc. IEEE 63, 790-811, May 1975.
11. Lutomirski, R.F. and Yura, H.T., J. Opt. Soc. Am. 61, 482-487, April

1971.
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; TABLE 5. TABULATION OF NORMALIZED VARIANCE OF IRRADIANCE FOR ONE- AND TWO-
1 TERM EXPANSIONS

g D/p, B g=HHe Wa,? (2o,
' 4 3.48 8 0.435 2.63 4.147
- 6 5.66 18 0.3147 1.986 2.918
; 8 8.00 32 0.250 1.783 2.371
? 10 10.45 50 0.2091 1.655 2.067
. 12 13.01 72 0.1807 1.566 1.874
- 16 15.66 98 0.1598 1.500 1.741
: 16 18.38 128 0.1436 1.450 1.644
| 18 21.17 162 0.1307 1.409 1.570
i 20 24.02 200 0.1201 1.376 1.512
i 22 26.93 242 0.1113 1.349 1.465
24 29.90 288 0.1038 1.325 1.427
| 26 32.91 338 0.09737 1.305 1 394
28 35.97 392 0.09177 1.287 1.367
30 39.08 450 0.08684 1.272 1.343
32 42.22 512 0.08247 1.258 1.322
34 45.41 578 0.07856 1.246 1.304
36 48.63 648 0.07505 1.235 1.288
38 51.89 722 0.07188 1.225 1.274
40 55.19 800 0.06899 1.216 1.261
780 1949.4 304200 0.00641 1.020 1.020
Note: B=(D/p )5/3 =1p
° 2§
DS=1.09SCn2k2L(D)5/3
] J
g} -21-
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Figure 1. Comparison of one- and two-term expansions with experimental and Monte-Carlo
results from Ref. 9.
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The second point is that the reason our asymptotic series breaks down

after the second term is that expanding quantities like |£ft|5/3 as t5/3times

The effective range of

-3/5

a series in powers of r/t is valid only if r<<t.
the r integration is 0(B 3/5) which means that if t>>8
gence caused by the factors

of l as t - 0 by cutting off the integration at e.g. t=8 -3/5 . This intro-

6/5), so that terms up to B 415 should be acceptable.

, the expansions

are valid. Presumably we could avoid the diver

duces an error of 0(B

The t = 0 region corresponds to the region where X, N ox , i.e., where the

two maxima of the integrand coincide. It is not possible to handle the

integration accurately in this case, and as B gets smaller this error

becomes more significant.

V. Scintillations from Diffuse and General Sources-—-A Preliminary Analysis

and Discussion

The major new area of investigation on this program is that of turbu-

lence effects on radiation from diffuse and partially coherent sources, with

particular attention to laser-illuminated targets and the performance of

coherent-.optical adaptive (COAT) systems. This represents a natural exten-

sion of the recent work done on focused wander-tracking transmitters. The

experimental effort will involve the determination of scintillation statistics

from diffuse targets (speckles) and glints, including infrared wavelengths of

primary interest.
The purpose of this section is to present a preliminary analysis for
the case of a diffuse target, coherently illuminated, with the point of

observation in the near field of the target i1lumination. This treatment

includes the effects of turbulence between the illuminator and target and

Ceneralizations of the illuminator and

will be reported in the

on the return path to the observer.

target characteristics and geometry are underway and
future.
A. Mean Irradiance at Receiver

target, and receiver configuration is shown in Figure 2.

laser illuminator.

The source,
The present analysis is confined to the case of a TEMO0

The source and target are assumed to be much smaller than the path length ;

(L), and the 2istance between the receiver and source is greater than the

-23-
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source size and much smaller than the path length. These geometric condi-
tions confine the problem to small angles and ensures that the outgoing and
returning radiation experience independent turbulence regions; the latter
limitation is chought to be inessential owing to the diffuse target charac-
teristics and will be relaxed in subsequent work.

We write the source amplitude distribution as

2

r ikr
U ()= U exp (’ - & -~ TOoF ) 27)
(o}

where a and F are the characteristics beam radius and focal length,

respectively. The field at the target is written from the extended Huygens-
12,13

Fresnel principle as
ikL 2
- ke ik(p-r)
v 27ilL f Up () exp [_Z—L__ ¥ wl(ﬂ’f-)] dr (28)

where wl describes the effects of the inhomogeneous medium on the propaga-

tion of a spherical wave. Combining (27) and (28), we have

2
44 BC
‘ keik L+ oL ]UO
u(p) = 2711 exp =

In particular, this applies to the special cases of a focused (L=F) colli~-

mated (F - «) beam respectivel .
The field at the receiver is written by reapplying the Huygens-Fresnel

principle to the field at the target:

12. Lutomirski, R.F. and Yura, %.T., Applied Optics 10 1652-1658, July 1971,
13. Yura, H., Applied Optics 11, 1399-1406, June 1972,
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ik[L + Lz]
2L

Un)= ke 271l J-U'(g) exp [% (92-213_-9_) + wz(p_,g)] dp (30)

where U'(p) 1s the field soluticn after the reflection from the target,
and wz represents the turbulence effect from the target to the receiver.

The mean intensity at the receiver is then

2
@ = @l - (7)) [f s, wepuiey
ik [, 2 2
© exp [Z_L ((pl - p3) - 2p° (31-9_2))]

< exp I:wz(p_,gl) + w?_*(p_,g?_)] > (31)

Through the assumption of a diffuse target, the reflected beam suffers

a random phase delay from point-to-point over the target, and we write

V' (g U (py)> = <I(py)> 8(py-p,) (32) J

Using this in Eq. (31), the mean intensity becomes

b e

2
1®> = (3i7) Idﬂl U 1% <[, py) + 2] (33)

E
i
o

where the mean expcnential term is unity from considerations of energy con-

servation.13
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The resultant mean intensity at the receiver is then simply

2
<I(p)> -(-2—:?) I dp <lu(£)|2> (34)

To complete the solution, we use Eq, (29) with Eq. (34). We note

2
that the structure function™ gives us

- _E_) I
(5
<exp [4; @ary) + ¥ *(0,x)]> = e (35)
For the focused beam, we then have (r = lgl-zzl):

2 2
r1+r2

2 5/3
o]

20
o
(36)

Carrying out the integration indicated in (34), involving the Fourier-Bessel
integral, we have finally

2
2 o
1 k 2 o
<I(R)> = 5 (f) g 2 (37)

(o}

The result for the collimated beam is identical, and in fact could be

deduced for an arbitrary beam focus (Eq. 27) through conservation of energy:

k 2 2
<I(p)> = (m) j dr_<|u(x)|“>

-27-
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® 2
2 -r’/a
k 2 o
( 21rL) 2n Uo J re dr
(o)
2
2 a
1 k 2 o
= 2r (L) s = (38)

Thus the mean irradiance at the receiver (i1luminator) plane is uniform and

independent of turbulence level.
B. Covariance and Variance of Irradiance at Receiver

The correlation function of the irradian<:e at the receiver is

BI(P:1_’92) = <I(p_1)’i(p_2)> = <U(P_1)U*(p_1)U(_p_2)U*(p_2)> (39)

We now point out that the statistics of the incoherent reflection from a
diffuse object are gaussian, from the Central Limit Theorem, with a phase
which is uncorrelated with amplitude and uniformly distributed from 0 to 2m.
In the near field of the target illumination, we may expect the gaussian
nature of this field to apply after perturbation by turbulence. A determina-
tion of the exact conditions necessary for this assumption to hold, and the
generalization of the solution to cases where it does not, will be reported

in future work. The gaussian assumption yields

=]
]

<U(p, )U* (p_1)><U (p_z)U* (p_2)> + <U(p,)U* (p_2)><U*(p_1)U(p_2)>

(40)

1t

<I(21)><I(22)> + |F(21,22)l2

-28-
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where T 1s the mutual coherence function at the receiver, It follows

that the covariance of intensity given by
2
Cr(pysp,) = Bp(pyspy) = <I(p))><I(py)> = [T (py,py)l (41)

The mutual coherence function at the receiver can be described from

the extended Huygens-Fresnel formula.13

2
k *
T(2yRy) = (7oL ) ”dﬂldﬂz < U(p))U(p,) > exp {1k[R,(p),p,)

where R1(91’21)’ R2(92’22) are the distances from p, to p, and p, to p,
respectively.

By the Fresnel approximation

P2-p2+\02-02 Py.247P,.P
n P17P)TP17Py  B1.217Ry.0H
Ry (25+29) - Ry(2y5p)) 2L - L (43)

Finally, from equations (43) and (44):

2 [ ik(p3-p3)

k
T(pyp,y) = ('271:) exp ———ZL‘---—] sjdg_ldg_z <U(p,)U*(p,)>

2
P1=P5 Py .217Py.By
. exp {ik( 12L2 - lL 2 >}<exp [‘1’2(21,_&1)""1)2*(22,22)]>

(44)

-~29-
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Since the wave is incoherent after refl ction from the diffuse target,
the coherence function at that plane can be represen“ed by the Dirac delta

function:

<U(_o_1)U*(_o_2)> = <I(p_l)>6(21-p_2) (45)

Using this in Eq. (44), T'(p,,p,) can be simplified:
BysBy

) B P “‘(pi'pg) ik
P(eyupy) = (7g) exe [T]sdﬂ <Hp)> exp {' T (1’-1'22)'9-}
_(_P_)S/3
pO
. e (46)

In the absence of turbulence, this equation is entirely identical to the

Van Cittert-Zernike theorem of coherence theory,14 which is identical to a

result obtained by Goodman for the mutual coherence function of a pulsed
15

optical radar.

To complete the solution, we utilize the mean intensity at the target
for-the focussed case, Eqs. (34) and (36):

: - rL2 _ (_r_)
2 ” 4 i
<I(E.)>f = (%) |U0|2 0% j r dr Jo (-Epr)e "o ° (47)

(o}

5/3

We thus have:

1l4. Born, M. and Wolf, E., Principles of Optics, Pergamon Press, N,Y., 1975.
15. Goodman, J.W., Proc. IEEE 53, 1688-1700, Nov. , 1965.
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e - (2) () 1,7 % e | rers, (B9
(o)
2 ( L \5/3
) 4o 2 ;: 5/3
e o[- Eo2-(2) ]
[ik(pi-pg)]
"exp | 7oL
2 oo
O I Imwo(%prwo(%op)
[o]
2 5/3
'4:2 -(E—o) (o) (pl Pz)
. (48)

where p = |21-22|. From the Fourier-Bessel integral formula,

> 2
rIoJo(% rp) 35 (%pp) dp = (-]ﬁ) 8 (r-p) (49)

[o)

Eq. (48) can then be simplified:
_P" ol (P") (pl pz)
. 2 . a02 4“0
T(RysRy) = 27 (£) lv1” = e

2 5/3
b "'P'i & @ (fg) (Pl p2
(50)

= <I(p)> e
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Finally, the normalized covariance function of irradiance for the

focussed case can thus be written:

2a 2

o
CIN (p_)f = e (51)

2 5/3
)
o]

and the normalized variance is

0.2 =1, (52)

For the collimated case, the same variance is obtained, and the covariance

is

2

5/3 2 ko,
“(B) -2 [(B) (@) ]
C; () = e ° ° (53)
N

In general, the normalized irradiance variance for an incoherent wave is
known to be unity. The probability distribution for the irradiance 1is the
expoaential distribution, and for the amplitude it fits the Rayleigh dis-
tribution.

The covariance scale lengths, for the focussed case (Eq. 51), are ~o
and G although the present analysis is clearly applicable only when the
o term dominates (p°>ao). For the collimated case, the dominating scale is

0 e (<a°). These terms represent the "speckle" sizes for focussed and

kao
collimated beams respectively.
These results may be readily extended to power spectra and receiver

aperture-smoothing analyses, which will be given in a future report.
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