
RADC-TR-76-49 ^ 
Technical Report 
March 1976 

PROPAGATION OF MULTIWAVELENGTII LASER RADIATION 
THROUGH ATMOSPHERIC TUR3ULENCE 

o; 
CO 

o 

Oregon Graduate Center 

Sponsored by 
Defense Advanced Research Projects Agency 

ARPA Order 1279 

Approved for public release; 
distribution unlimited- 

The views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the U. S. Government. 

Rome Air Development Center 
Air Force Systems Command 

Griffiss Air Force Base, New York 13441 

r>D D c 
APR 21 1976 

A 

^WPMWW 

L : :   ;. „  —^ 
-'' '- ^ ■ "<    .•^1:i^-&Mä^L j; 



,.   -        ..    ,111111 j     «^MpiMIMlMMIIilllHII^lM 

This report has been reviewed by the RADC Information Office (01) and 
is releasable to the National Technical Information Service (NTIS),  At NTIS 
it will be releasable to the general public including foreign nations. 

This report has been reviewed and is approved for publication. 

APPROVED: M^^ll^2^ 
JA^IES W. CUSACK 
^p/oject Engineer 

Ü 

-« :"5ri 

Do not return this copy.  Retain or destroy. 

L — 
teiMäTiiWiiifilliiiiiiiifiifrtt- ■ 



PROPAGATION OF MULTIWAVELENGTH LASER RADIATION 
THROUGH ATMOSPHERIC TURBULENCE 

J. Richard Kerr 
Richard A. Elliott 
J. Fred Holmes 

Myung Lee 
Philip A. Pincus 

Contractor:  Oregon Graduate Center 
Contract Kmber:  F30602-74-C-0082 
Effective Date of Contract:  1 December 1973 

Contract Expiration Date:   31 July 197b 
Amount of Contract:  $129,699.00 
Program Code Number:  5E20 
Period of work covered: Apr 75 - Jul /5 

Principal Investigator: 
Phone: 

Project Engineer: 
Phone: 

Dr. J. Richard Kerr 
503 645-1121 

James W. Cusack 
315 330-3145 

Approved for public release; 
distribution unlimited. 

This research was supported by the Defense Advanced 

Research Projects Agency of the Department f 
Defense and was monitored by James W. Cusack (OCSE), 

Griffiss AFB NY 13441. 

O; 



. 

ITfiirT.AggTFTF.n  LiBiiiinrini ■ i rui —  
SECURITY CLASS'FICATION OF THIS * KQ*. (IWMH DM* hnl.fd) 

"     IEPORT DOCUMENTATION PAGE 
|5! GOVT  ACCFSSION NO 

assai»^ " \jL.rl.  T»re »r rsmuiT" 
T.T.E^S^,,.) l  interimA$SU 

PROPAGATION OF ^LTIWAVELENGTH ^SER JADiATION     \  1 Apr# »75 - 
THROUGH_ATM0SPHERIC1URBULENCE T '      "  1    L^f^^m«**- 

J.  RichardAerr 4 )   Myung/iee    V»..^ 
Richard A./llliott.   L Philip k./lfincvs 
J.  Fred/lolmes. '  _ 
.nwPBWiniin ang^ijjiwn ■ mi !■■■■■■        """* 

RF/» D INSTRUCTIONS 
BEFOKE COMPLETING FORM 

3.    PF.rT»'FK,T'S CATA .00 NUMBER 

% jyrB ar Mmatß » FP 

31 Ju]# «75 
RepawfHMwq 

N/A 
S.    CONTRACT OR GRANT NUMBERr«) 

^ 

Oregon Graduate Center 
19600 N. W. Walker Road 
Beaverton OR 97005 

11.    CONTROLLING OFFICE NAME AND ADDRESS /7T\ 

Defense Advanced Research Projects Agency {JU 
1400 Wilson Blvd >—*- 
Arlington VA 22209 

(4.   • -^NITORING AGENCY NAME ft  ADDRESSfH d(Her«i( Iron, Conlrolllng Olllct) 

Rome Air Development Center (OCSE) 
Griffiss AFB NY 13441 

tä.ü&-/zn 
4PT» NUMBERS 

i ii   nr—m mmm 
Mar# #76 / 

33 

y/a790^Lf 

M.   SECURITY CLASS, (ol thl 

INCLASSIFIED  
"im     DECLASSIFICATION/OOWNGRADING 

SCHEDULE 
N/\   

16.    DISTRIBUTION STATEMENT (ol Ihlt Rtporl) 

Approved for public release; distribution unlimited. 

"17.    DISTRIBUTION STATEMENT (ol Ih. mb,t„cl .nl.r.<f In Block 30. II <UII„-M Iron, R,po,t) 

Same 

\ 

16.    SUPPLEMENTARY NOTES 

RADC Project Engineer: 
James W. Cusack (OCSE) 

Copies available in DDC 
19.   KEY WORDS rCondnu« on ronrt» ,1dm II ntcottmry mnd Idmntlly by Woe* numbor; 

Propagation 
Turbulence 
Atmospheric Optics 
Scintillation 

TJJvBSTRACT fCondnu. on f.vor.. «Id« 1/ nocMry mnd Idmntlly by block numhmr) 

Recent activity on several topics in propagation through atmospheric turbu- 
lence is described in this report. The statistics of target or receiver 
irradiance. conditioned on a prior measurement of the instantaneous value, 
are considered under conditions of moderately strong fluctuations, and it is 
found experimentally that such scintillations are not described by a bivariate 
log normal distribution.^ Hence as turbulence effects become stronger. Pre- 
dictions of the state ofjthe turbulent channel at a givtn time delay following 

DD FORM 
1 JAN 73 

1473        EDITION OF VNOV8S IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE flWion Dmlm Bntmrmd) 

S900 7? 

. . 
. ^„^....^^--v-...    .^-^-^--  :■;,.■■.:_:_.._. ^_^;^^:.i.^ 

ig^Mk MhU ■   ..::'.     ■    ■      •.■:..■•.■'■    .1       ;   -■   .::■■■     ■   ■■■.   -.V;-.:■■.■■ 



SBCURITV 

UNCLASSIFIED  
CLASSIFICATIOW OF THIS PAGEflW.«. O««« Enffd) 

Ä Lud1™ the biv.rl.te log not«.! .re quite m£X.    **^- 

.A power beam in turbulence. 

A study of computer simulation techniques is described which has the goal 

tency is described. 

THe portent ietere topic oe fj»;"^ «^ ^^^^^^0.0 eod 
««lytlMX detenüoetion of scln"i;a"°"'£"° Nations fro. e diffuse 
ää ir-s rr^ fir ^är t.rget u!-^^ 
area. 

<i 

\ 

I 
UNCLASSIFIED 

SECumTY CLASSIFlCAIlO^LlMIiTAfiiäft-Ul^Jtr.«.«''' 

: 

.„-■>...^JJ1a......<.^.^J^Ljj.MJ„—. ,..., ,. ._..,. , ■^j^V^..^, iCafca^fi^aAifcii., ....:..-•,■.-,-.^tü^M^M ^.^~. 



Summary 

Recent activity on several topics in propagation through atmospheric 

turbulence is described in this report.  The statistics of target or receiver 

irradiance, conditioned on a prior measurement of the instantaneous value, 

are considered under conditions of moderately strong fluctuations, and it is 

found experimentally that such scintillations are not described by a bivariate 

log normal distribution. Hence as turbulence effects become stronger, predic- 

tions of the state of the turbulent channel at a given time delay following a 

reference measurement will be subject to more uncertainty. However, even 

though the exact joint distribution is not analytically known, approximate 

predictions based on the bivariate log normal are quite useful.  Such predic- 

tions can comprise a basis for operating a system in which a low-power laser 

beam is used to determine a favorable time interval for firing a high-power 

beam in turbulence. 

A study of computer simulation techniques is described which has the 

gc  of making possible realistic models of propagation paths for the short- 

term, time-dependent statistics of scintillation, including the effects of 

localized or intermittent strength of turbulence.  It is concluded that the 

random medium must be more completely described than in conventional simula- 

tion approaches, and that this may be accomplished through an empirical trans- 

formation of a gaussian distribution to a distribution which realistically 

describes the highl|r non-gaussian behavior of refractive-index fluctuations. 

An expression is given which accomplishes this goal, and an approach for 

including intermittency is described. 

The important future topic on this program will be the experimental and 

analytical determination of scintillations from laser-illuminated diffuse 

and general targets.  A preliminary analysis of scintillations from a diffuse 

target is given, which is valid in the near field of the target illumination 

area. 
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I. Introduction 

This report describes recent activity on several topics In propagation 

through atmospheric turbulence.  In Section II we discuss additional aspects 

of conditional fading statistics to supplement the treatment In an earlier 

report.  In Section III we briefly describe work on the useful simulation 

of short-term scintillation and turbulence Intermlttency phenomena on a 

computer. An expanded treatment of the limiting behavior of the second 

moment of Irradlance Is given In Section IV.  Finally, In Section V we 

present a preliminary analysis and discussion of scintillations from diffuse 

and general sources, which will comprise the primary topic for future 

experimental and analytical work on a follow-on program. 

In addition to the work reported here, we have continued experiments on 

target irradlance behavior as a function of wander-cancellation-tracking 

and transmitter and turbulence parameters.  In particular, this work has 

been extended to 10.6 microns.  Data reduction and Interpretation is being 

completed and a special report on this topic will be issued. We are also 

conducting long-path, strong-turbulence scintillation experiments with very 

small receiver apertures and wide bandwidths; this work, sponsored by the 

National Science Foundation, builds upon earlier efforts on the present 

program and will be reported later. 

II. Further Results on Conditional Fading Statistics 

In the preceding report on this program , we discussed the conditional 

statistics of scintillation or target irradlance fading at a time T fol- 

lowing the comparison of the Instantaneous level with an arbitrary thresh- 

old. An approach wa.s given which is readily Implemented if the log irra- 

dlance fluctuations have a two-point or joint normal distribution, and 

which can be numerically extended to a general distribution. 

It was found empirically that the bivariate normal distribution is 

accurate for weak irradlance fluctuations, and that the analytical treat- 

ment of the conditional statistics is successful In predicting experimental 

results.  However, it was mentioned that under conditions of stronger 

1.  J, R. Kerr, et al, "Propagation of Multiwavelenfeth Laser Radiation 
Through Atmospheric Turbulence", RADC Technical Report, April 1975. 
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fluctuations, a significant departure from blvarlate normality occurs. 

The purpose of this section la to elaborate on the latter point. 

We confine ourselves to strengths of fluctuations below t'..a level of 

"saturated scintillations",2 which will be treated later.  It will In fact 

be shown that significant departure from blvarlate normality occurs for 

moderate, unsaturated fluctuations. 

We have measured the conditional distributions of the log Irradlance 

fluctuations from a point source over a range of turbulence levels (Table 1) 

For each experimental run, distributions were calculated for a number of 

values of threshold (^ and time Interval T, using 400.000 data points 

sampled at one millisecond Intervals. Autocorrelation functions were 

also determined as In Figure 6 of Ref. 1. 

TABLE 1, 

Run 

1 

2 

3 

4 

5 

PARAMETERS FOR EXPERIMENTAL DATA ON C0NDTTIONAL FADING DISTRIBUTIONS 
OVER A 1.6 km PATH 

Mean Wind Speed 
(meters/sec) 

9 

3.5 

9 

1,5 

1 

Log Amplitude 
Variance (a  2) 

0.0015 

0.010 

0.076 

0.14 

0.307 

Optical 
Wavelength (yi) 

10.6 

10.6 

0.488 

10.6 

10.6 

As discussed In Ref. 1, the conditional probability distributions for 

Run #1 were essentially log normal for most values of threshold and time 

delay, and the observed mean and variance vs.  T for these distributions 

agreed with the analytical predictions based on this assumption. 

Now let us consider a case of stronger scintillation. Run #4. Again 

the conditional distributions appeared qualitatively (log) normal, as sup- 

ported by the skewness and kurtosls parameters shown In Table 2. 

2*  1545' LaWrenCe and J' W' Strohbehn. Proc. IEEE 58, Oct. 1970, 1523- 
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TABLE 2.  SKEWNESS 
M  KURTOSIS (K) OF Pr Ix(t + O/xCt) |J FOR 

RUN #4, WHERE X IS THE LOG AMPLITUDE, AND 
(-0.14). 

2 IS ITS VARIANCE 

I 
-A  xdns) 
a 
X 

-0.92 

-0.04 

1.07 

2.03 

-4 
9x10 

0.013 

0.048 

-2.6x10 
-3 

0.075 

0.085 

0.074 

-6.6x10 
-3 

0.193 

0.055 

0.048 

-3.6x10 
-3 

16 

0.13 

0.107 

0.06 

0.013 

K 

-0.92 

-0.04 

1.07 

2.03 

3.06 

3.27 

3.4 

2.96 

3.81 

3.59 

3.19 

2.78 

2.4 

3.69 

3.02 

2.68 

4.04 

3.39 

3.2 

2.95 

Hovever a co^rl8on of observed variance, and thoae predicted fr*. the 

Z U aaant tlon (TaUe 3) ahowa Ur.e devlatlona; In fact the ^ 

error between the obaerved and predicted normaUzed variances Is 13%. 
error between .... ...ii„ calculation for all mns, and 
in Table « we show the »suit, of a similar calcn 

1. is seen that the stronger-finetnatlon cases (o > 0.1) for th -P 

b  siriflcsnt devlstlon. froB Joint no^allty. It is slso desr that 

^r:::; a» i. m Table 3 .„ ^ ^* - —•• 
"^rtlürrr'analvsls confix the non.gansslsn behavior of the 
j6ln   d sltlons in the stronger-flnctnatlon mns.    This a„alys s   h 

It in the weaK-flnct^tlon case the observed variances sre with       he 

uLed statistical error of that predicted by Joint normality, while In 

-5- 



thf strong-fluctuation case, the deviations are outside this limit— 

especially for large values of I  . 
o 

A similar analysis of saturated log Irradlance signals will be carried 

out In the future. Including data from the long-path experiments mentioned 

In Section I. 

TABLE 3. 

It 
— T(ms) 

X 

- .92 

- .04 

1.07 

2.C3 

COMPALISON OF PREDICTED AND OBSERVED MEAN OF P(x(t + T)/x(t) - ft ) 
^ o 

Pred. 
Obs. 
Pred. 
Obs. 
Pred. 
Obs. 
Pred. 
Obs. 

- .856 
- .869 

.037 
4xl0"3 

.995 
1.00 
1.89 
1.87 

- .761 
- .77 

.033 

.033 

.885 

.896 
1.67 
1.54 

8 

- .544 
- .547 

.024 

.051 

.632 

.626 
1.19 
.962 

16 

- .215 
- .20 

.0094 

.01 

.250 

.248 

.475 

.314 

COMPARISON OF PREDICTEL ^ND OBSERVED VARIANCE OF P(x(t + T)/x(t) 
a 2 o 

f   rta.) 
x 

2 4 8 16 

- .92 Pred. .134 .32 .651 .945 
Obs. .101 .?14 .679 .94 

- .04 Pred. .034 .32 .651 .945 
Obs. .088 .255 .615 .96 

1.07 Pred. .134 .32 .651 .945 
Obs. .19 .47 .80 1.00 

2.03 Pred. .134 .32 .651 .945 
Obs. .268 .603 .95 .99 

TABLE 4. RMS ERROR BETWEEN OBS ERVED AND PREDI :TED NORMALIZED VARIANrF.S 
OF THE CONDITIONAL LOG IRRADIANCE DISTRIBUTIONS 

Run 

1 
2 
3 
4 
5 

0.0015 
0.010 
0.070 
0.14 
0.307 

-6- 

RMS Error 

0.04 
0.037 
0.027 
0.13 
0.11 
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I 

III.  Computer Simulation for Short-Term Scintillation Statistics and 
Turbulence Intermlttency 

A.  Introduction 

The goal of this study Is to devise computer simulation techniques 

which will make It possible to realistically model propagation paths for the 

short-term, time-dependent statistics of scintillation, Including the effects 

of localized or intermittent strength of turbulence.  This technique comple- 

ments the analytical description of short-term effects given in preceding 

reports. 

Obviously the most ambitious approach is to model the complete 

refractive index field over the path, with a differential or integral formu- 

lation of the propagation mechanism which yields the detailed complex field 

behavior vs. time and space.  Iteration is often utilized to correctly 

include the multiple scattering regime.  There are two primary difficulties 

with this approach: 

1, Computation requirements are prohibitive. 

2. The refractive field, having nongaussian statistics, 

is not readily modelled in detail. 

Let us consider concrete examples. Over a limited pathlength, 

perturbation analysis yields the following form for the complex phase with 
4 

an elementary source: 

L 

*(x,y,L) =  I dz' ( 1  «^'dy'  a.'x-x'.y-y'^-z'^Cx'^'.z') 

o       -00 

L 

iMdK ,dK ,L)=  I dz' GOCL-z') U (dK ,dK .z') 
(|)  x  y     I        Vex  y (1) 

where e is tne  (stochastic) dielectric perturbation, and the second 

3. J. R. Kerr, et al, "Propagation of Multlwavelength Laser Radiation 
Through Atmospheric Turbulence", RADC Technical Report, November 1974. 

4. V.l. Tatarskil, The Effects of the Turbulent Atmosphere on Wave Propaga- 
tion, available from National Technical Information Service (#TT-68-50464) 
1971. 
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expression is simply the Fourler-Stleljes form of the first.  In principle, 

e. could be modelled In detail In three dimensions and with time evolution; 

the statistics of ♦ would then b . determined from a number of such reallza- 

tloFje, i.e., a limited ensemble. Analytically, the solution Is usually con- 

fined to a statistical quantity such as an autocorrelation function, which 

Involves partial Fourier transforms and Kolmogorov spectra, so that the 

detailed knowledge of the dielectric or optical field for a particular case 

is not involved. 

B. Use of Short-Path Phase Function 

To model the system represented by Eq. (1), we must generate 

realizations of the three-dimensional dielectrdi field e.(x'.y'.z'). How- 
3    1 

ever, this random variable is markedly nongaussian, and therefore unsuitable 

for conventional simulation techniques.  The approach generally used '  Is to 

derive a much simpler expression like Eq. (1), for the real phase only, as 

follows.  Let U be the complex amplitude, and write 

U(x,y,z) - er(x'y'z)w(x,y,z) (2) 

where T    is the real phase and is assumed to have the shurt-path solution 

Ik 
2 1 

z + &z 
o 

dz  t^(xtjtz) (3) 

When U from Eq. (2) is put back into the wave equation, it is found that 

w satisfies 

■l2k ^- + e~r 72  er 
3z       xy 

] w = 0 (A) 

It is then assumed that a sufficient number of independent e^. regions are 

contained In the integral (3) to render T    a gaussian random variable, and 

5. J. Herrman and J. C. Bradley, Numerical Calculation of Light Propagation, 
Lincoln Laboratory Rept. LTP-10, July 1971. 

6. W. P. Brown, Jr., High Energy Laser Propagation, Midterm Technical Report, 
Contract N00014-73-C-0460, Hughes Research Laboratories, September 1973. 
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the modelling is limited to r(x.y) realization with independent (uncor- 

related) iterations for each pathlength increment (Az). Although Eq. (3) 

is valid only over very limited pathWgths. the "return to the differential 

equation" (4) at every Az iteration leads to  results which are valid for 

arbitrary pathlengths nd which therefore include the saturation of scintil- 

2 
lations. 

Finally, the generation of particular r(x.y,zo) realizations with the 

required transverse correlation function is accomplished through the follow- 

ing principle:  a multidimensional gaussian random variable f(^) may be 

generated by convolving a gaussian white noise function h(^) with a ieter- 

ministic-function e^) having the desired autocorrelation for f: 

Hi)  - e(^) * h(£) 

In practice, one usually employs the 3pectral form of this expression; 

(5) 

f(*) i dl /EÖp  HOC) » \, ^ (6) 

where E(^) is the spatial power spectrum desired for f(^.  In practice, 

the problem is discretized, so that H represents^ grid of gaussian random 

numbers;  E(JC) is the familiar Kolmogorov spectrum and r(xn,yn) has the 

usual transverse phase structure function for propagation through turbulence. 

Finally, the above approach may be extended to time^dependent behavior 

by invoking the frozen-in turbulence or Taylor hypothesis ' and having the 

randomly-generated grid move with the postulated wind vector. 

C.  Possible Extensions of the Above Technique 

The detailed nature of the ^  field is dropped out of the above 

technique by integrating over short, discrete paths and assuming that the 

result is gaussian and uncorrelated in adjacent z-segments, even though the 

integrand is nongaussian. For Az much longer than the outer scale of 

turbulence2'4 but short enough for Eq. (2) to be valid, this should certainly 

give accurate statistical results over a reasonable ensemble of Ü realizations. 

-9- 
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I 

In our study of short-term statistics, Including turbulence 

Intermlttency. we have been Interested In the detailed statistics of the 

turbulence field and In the detailed time behavior of the sclntllli.. ig 

Irradlance, Including joint distributions and conditional statistics as in 

Section II.  Such details are obviously lost by integrating over pathlength 

segments before generating a realization. 

In order to extend the above or any other coding technique to 

Include the detailed ^    statistics, we suggest the use of a versatile 

"Johnson" tr?nsformatlon7 which we have found can adequately represent the 

nongaussian variable e1    in terms of a gausslan variable ry 

fli 

C- sinh (7) 

where C  and C are determined by the first two momemts of e^ 
1      2 

This 

technique simply comprises an empirical fit of the probability distribution 

of a nongaussian process to the gausslan distribution, obviously with the 

loss of independent information on higher moments.  The autocorrelation 

or spectrum (E) of n, must be calculated from the known (Isotropie) form 

for z.. 

We thus write the generating expression for T,  from Eqs. (3), 

(5), and (7), as 

r/   N   
ik 

r(x,y) - -y 

z  -r ÜZ / 

I   dz C1 sinh |^-     dx'dy'dz' 

\       -00 

O 

.y'.z') ) 

hCx-x^y-y'.z-z') 

(8) 

The segments Az should now be much less than the outer scale, in order 

to preserve maximum detail. This is also true of the transverse discretizing 

or grid scale.  The transformed refractive field may again be translated 

G. F. Hahn and S. F. Shapiro, Statistical Models in Engineering. Wilev, 

New York, ]967. 
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with the wind, In order to determine time behavior. 

In principle, this technique may permit the determination of the 

detailed statistics of scintillation, including two-point or conditional 

behavior, higher moments (degree of fit to a lo« normal), autacorrelation 

functions, integral scales, and averaging time effects on spread in measured 

quantities such as log amplitude variance.  However, it is clear that the 

required computer time may be prohibitive.  This is currently under inves- 

tigation for a two-dimensional representation (x,z). 

A second extension of the technique described in Sec, II1-B is 

to postulate large-scale random variations of turbulence strength (envelope 

of the e^    fluctuations), representing intermittency of turbulence.  The 

nature of such variations has been discussed in Ref. 3.  The Johnson trans- 

formation and attendant detail is not required ffr the basic results of 

interest, and in fact, as discussed in Ref. 3, the intermittency is only 

manifested in higher moments of E^  which are lost in the empirical trans- 

formation process. 

IV. Asymptotic Expansion of the Second Moment of Irradiance 

Using physical reasoning, we have argued in recent reports that the 

normalized variance of irradiance (a 2) should approach unity at large values 

of transmitter diameter (D) over coherence length (p ), where p is deter- 
o        o 

mined over the reciprocal (target-to-transmitter) path through turbulence. 

This was shown directly from the analytic expression for the fourth moment 

of amplitude in Ref. 3. 

Efforts have continued to numerically or analytically derive further 

details of the curve of a 2 vs. (D/p ), in order to complement the phenomeno- 

logical treatment which successfully predicts the essential features.  The 
a 

same problem has been treated by Banakh, et al, using certain approximations 

and a Monte Carlo technique, with results which are highly useful but which 

have certain limitations as discussed in Ref. 8. 

The purpose of this section is to extend the asymptotic analysis of 

Ref. 3, using an inverse expansion of (D/p ).  We begin with the integral 

8. J. R. Kerr, et al, "Propagation of Multiwavelength Laser Radiation Through 
Atmospheric Turbulence", RADC Technical Report, May 1974. 

9. V. A. Banakh, et al, J. Opt. Soc. Am. 64, 516-518, April 1974. 

•11- 
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expression for the fourth amplitude moment (second moment of Irradiance): 

<i2> " (i* III! d^d^ exp 

2 j  2^2. 2 
pl + p2  p3 + p4 

D2/2 

exp 
/ n v 5/3  .   r     5/3        5/3 

5/3        5/3        5/3        5/3] | 

We let x^ - p^ .D and ß - ^D/p j ' , and rewrite (9) as 

-2> - (|£) IHU^: gdx^ exp i- .^(xj^ + x 
2 ^ 2 J. 

2%\ 
2 + x3 + XA) f 

exp <- ß 

5/3 
+ I2L2-2L3I   " 1*2-54! 

5/3 

(10) 

For large fJ the Integrand is significantly different from zero only 

near the points x. = x. and x, = x^* Consequently, one should be able to 

obtain approximations to the integral by considering contributions from near 

these two points. We note further that the integrand is symmetric with 

respect to interchange of x« and x. which means that we need only to calcu- 

late the contributions to the integral from x. ■ x„ and multiply this result 

by two. 

The following changes of variable simplify the calculation. Let 

-12- 



L - *! - 2L2 

s = X3 " 2^ 

t = x2 - % (11) 

so that x.-x.   ■ r+s+t;  Xo'^A " Stk» and ^i'ia " S*i'    T11686 substitutions 

transform the Integral to 

<l2>    "   (S-f)      jjjj    ^tdsdrexp    {- 
2 2 

Sx- + Sx-t cose - 4t 

- 2r - 2s - 4x_r cose + 4x0s cose - 4st co»(0 -0 )\ z r    /     s s L 1 

• exp 

+ ß 

|- 3r 

|8+tl5/3} 

5/3 0 5/3  „5/3 5/3 -3s '  - 3t '  - 31r+s+tI   + ß|r+t 
|5/3 

(12) 

where x» has been taken to be the polar axis and 9 , 8 , and 6 are the 
—^ IT   S t 

angles between x- and .rt£»_t respectively. 

We note that for 3»1 the major contribution to the Integral comes from 

near the points r = 0, s = 0.  This corresponds to the points x. = x?' 

X3 - x^-T116 factor exp | 3t5/3 - ß|r+s+t|5/3 + ß|r+t|5/3 + ß|s+t|5/3 \    Is 

bounded and does not extend the effective range of the r and s integra- 
-3/5 tlons.  This effective range Is 0(3   ). On the other hand the t Inte- 

gration Is not so restricted since the above factor approaches unity as 

t -> » for finite r and s. The range of the t Integration Is 0(1) due to 
-At2 the factor e 

We will now exploit the narrow range of the rand s Integrations by 
-8r5/3      -3s5/3 

expanding the Integrand,apart from the factors re     and se     , In a 

Taylor series about r = s = 0,  Since 

-13- 
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o 

1 j  n -ßr dr r e 
5/3 fr (*&) a 

-3n+3 

(13) 

This will result In an expansion In Inverse powers of 3. We thus write 

<I2> (SL) d-2d^      exp {" 8x2 + 8x2t COset " 4t2}   Q(i2,-) 

JJ
 (U) 

where 

and 

Q(x2,t) =11 drds exp(-Br5/3-ßs5/3) exp |-2r2-2s2-4x2r cosür 

+ Ax-s cose - 4st cos(e -6^)1 exp (-ßf(r,s,t))       (15) 
2     s s  t J 

f(r,s,t)= t5/3 + i^s+t|5/3 - |r+ti5/3 - |s+t|5/3 

Now expanding f(r,s,t) in a Taylor's series about r " s = 0, we have 

f(r,s,t)- f(0,0,t) + r 

2rs 3 f 
2!  drds 

< 2  2. 

3r    n  
S 3s    «  2! * 2\ n 

2  2 

r=s=0       3s 'i   U 
(16) 

We then note the following equalities: 

f(0,8,t)= f(r,0,t) = 0 

-14- 



3f 
9r r=s=0 

Ml 
3s 

rsss=0 

a2f 
3r 

32f 

32f 

r-s=0      3s 
= 0 

3r3s 
r=s=0 

-    f t"1/3 (cos(9  -6c)  - \ c.os(e -Q)coa(Q -Qj) 
«J v rsJ rt st/ 

33f 33f 

3r" 

33f 

r=s-0 3s" r=s=C 

3r 38 r=8=0 
- - ^-  t~4/3 cos(er-et)cos(9r-ea) - | t'u/? co8(6g-et) 

f||  t"4/3 cos2(e -e4.)cos(e-et) 27 r    t s    t 

and 

33f 

3r32s 
= - ^   t"4/3 cos(es-et)co8(er-e8) - | r4/3 cos(6r-et) 

+1|-  t'4/3 co82(eg-ei;)coa(er-et) (17) 

Therefore 

exp(-ßf(r,8,t))  = l - | 0rst"1/3 fcosCe -e ) - i co8(e -e ) cos(e -e )) 
3 V rs3 rt s    t / 

- |!ßr28t"4/3[-y cos(er-et) cos(0r-e8) - | cos^-ej 

+ |y cos2(er-0t) cos(es-et)] 

3 2 -4/3  f 10 S 
- jjgrs t   /0 [--^ co8(es-et) co8(er-es) - | cos(er-et) 

+ 27 cos (es-et) co8(er-9t)] - •    •    • 

-15- 
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.1    25  .2 2 2^-2/3 f      ,»    . * + JJ Tß r s t       [cos(er-es) i cos(er-et) 

cos <8
8-

e
c

>] 

+ i (f )4B4/8
4
t-

4/3 [c»s(er-e8) 

i(f)6
6

6r6
8

6t-2    [=oS(er-es) 

3 coS(er-et) 

COS 

COS 

3 coS(er-et) 

(18) 

6 6 
Although (18) does not include all term:  up to 0(r s ), those neglected 

either contribute zero under the dfl and dB  Integrations (see below) or 
r      s 

result In "terms of lower order In ß.  The last term listed Is proportional 
-2 

to t  and hence the t Integration of this term diverges.  This Is because 

our expansion emphasizes thr, region near t = 0.  The contribution of this 
-18/5 

term turns out to be 0(6    ) so that there is ..o point In including higher 

order terms, 

As mentioned above, the d6 amd d9 integrations drive many terms in the 

expansion to zero, namely all those which are periodic with period 2ir. 
-14/5 

Keeping only those terms which are non-zero and of 0(6    ) and greater: 

2IT    2ir    «     " 

Q(x2,t) «21  d0r I  des f drr I dss exp(-ßr5/3-ß,«>5/3) 

| i +| (|)    62r2s2t"2/3 [cos(er-eg) - | cos(er-o(;) 

cos <vv]: 
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+ i (f) VrVr4'3 [co,(6r-V - i c<.s(er-et) 

• COS 

+ o(ß-
18/5) (19) 

The factor 2 appears sii^ce we are considering only cntrlbutioas to < T > 

from near x, - x?  ^r ' 0^ and not fr01D -1 = ^4 <I + £ + i. == 0^ • 
Performing the angle Integrations gives 

drrl  dss exp(-ßr5/3-ßs5/3) ^ 
2 nj; 

1   /5\2  .2 2 2-2/3  .   121    2      1    /5 \ 4  ,»,* ♦f-'/äl ■ y   (3)     6 r s t +14« "    • 41 iaj     8 t . t J 

+ o(S-18/5) 

-W) -14/5t-2/3 

+ i21_8 .2 (I)2  ,2^) 3-16/5^/3^^-18/^ (20) 

Since to this order Q(x2,t) is independent of Xg and det, we may make the 

substitution v ■ 2x -t so that 

2    2 2 v  = 4x9 - Ax-tcosS + t 

and dx2 r dv = r vdvde 4—4     v 
(21) 

resulting in 

■ 
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.2v GO 00 00 

T2              / kD   \       1 1    det   1    dtt 1    dev 1 dv 
O                       0                    O                   O 

• Q<2L2»^ 

2              2 

V 2TrL /         4 

00 

1     dt t exp(-2t2)  Q(x2,t) 

2/6\    „-12/5 (gi)     4   j   att^Wt2,  ^(l)2r2(f)6 

■ 

+ 1^      ,2^)   e-14/V2/3 + 121_^2   (S)2   P^^) 3-16/5 

• t-4/3}+o(ß-
18/5) 

.2  *  <   4 

©(4(1)   r2(!)^2/5^ 
,-2/3 4    ^2 

(!) 

2/12\      0-14/5     .   121       2"1/3    4    rt'l\   /5\2       r2/18 \ 

3-16/5U 0(3-18/5) (22) 

The mean irradiance Is 

< i > (SL)
2
 (j^i dp2 exp 

2 J. 
2 

Pl + P2 
2 

DZ/2 
exp -e) 5/3 
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• ^3  l%^l  "' 

lx2 I   dr    eKp(-4x2-4x2r co8e-2r2)exp(-ßr5':J)     (23) 

As above, we let v ■* 2x    + r,  giving 

■ 

< I   > 
\ 2TrL /       4   J dr exp(-r2-ßr5/3) 

2 00 
.2. 2 

(Ife)      f-f   dr.expC-B^I^^.      .      | 

(l£)     r f   r(i) r"5 - 0(B-^, (24) 

The second central moment of Irradlance normalized to the mean irra- 

dlance is then 

T2 2 
<I >    -    <I> 

<I> = -f ^ <|)  r
2(¥)-(f)2 

•    r"2(f)^2/5+iffs2-4/3^)(f)4    ^(f)   r-2(|) 

3-4/5 + 0(ß-6/5) 

1 + 3.132ß~2/5 + 9.414e"4/5 + 0(ß~6/5) (25) 
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We may thus write 

(1) Oj2    = 1 + 3.132ß 
■2/5 

(2) 0 2    - 1 + 3.1323"2/5 + 9.414ß"4/5 

(26a) 

(26b) 

2 
as the one- and two-term asymptotic approximation to af . The one-term 

approximation agrees exactly with the result obtaincJ by a different method 

by Gochelashvily. 

■ 

I 
(2) 2 

I 
a  and  v'/aT'" are tabulated for a range of values of P in 

Table 5, along with D/po and Dg used by the Russian investigators. Cnsres 

are shown vs. SI   in Figure 1, along with the result from P.ef. 9. We note 

that our result, which should be accurate for large 6 (Dg), does not apree 

well with the Monr.e-Carlo (M-C) integration f .r /D^ > 20. We surmise there- 

fore that our results represent a useful modit nation at large Dg. 

The M-C calculation should be more accurate at small Dg or ß, and it 

agrees with the one-term expansion for 8 < ^ < 20. However, the two- 

5/3, 
term expansion appears to fit the data somewhat better. 

Two final points can be made. First, the structure function (^r_"J) is 

valid only for path lengths (L) such that L,«!.«!^, where L, is the propa- 

gation distance at which the near field decays to e" of its value at the 

aperture and L. is the propagation distance at which the coherence length 

is of the order of the inner scale.11 For example, if fco ^ PO ^ 1 mm and 

D ^ 10 cm, we have D/po =100, ß = 2150, and /D^ = 66.  Ae above analysis 

is then valid for ß«2150, while for ^»2150 the structure function is pro- 

portional to r2 and the resulting new integral can be evaluated by the same 

method used above. 

10. Prokhorov, A.M., et al, Proc. IEEE 63, 790-811, May 1975. 
11. Lutomirski, R.F. and Yura, H.T., J. Opt. Soc. Am. 61, 482-487, April 

1971. 
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TABLE 5.  TABULATION OF NORMALIZED VARIANCE OF IRRADIANCE FOR ONE- AND TWO- 
TERM EXPANSIONS 

^ 
D/po 

4 3.48 

6 5.66 

8 8.00 

10 10.45 

12 13.01 

i4 15.66 

16 18.38 

18 21.17 

20 24.02 

22 26.93 

24 29.90 

26 32.91 

28 35.97 

30 39.08 

32 42.22 

34 45.41 

36 48.63 

38 51.89 

40 55.19 

780 1949.4 

8 

18 

32 

50 

72 

98 

128 

162 

200 

242 

288 

338 

392 

450 

512 

578 

648 

722 

800 

304200 

,-2/5 (Do, 

0.435 

0.3147 

0.250 

0.2091 

0.1807 

Ü.1598 

0.1436 

0.1307 

0.1201 

0.1113 

0.1038 

0.09737 

0.09177 

0.08684 

0.08247 

0.07856 

0.07505 

0.07188 

0.06899 

0.00641 

2.36"» 

1.986 

1.783 

1.655 

1.566 

1.500 

1.450 

1.409 

1.376 

1.349 

1.325 

1.305 

1.287 

1.272 

1.258 

1.246 

1.235 

1.225 

1.216 

1.020 

(2)0, 

4.147 

2.918 

2.3/1 

2.067 

1.874 

1.741 

1.644 

1.570 

1.512 

1.465 

1.427 

1 394 

1.367 

1.343 

1.322 

1.304 

1.288 

1.274 

1.261 

1.020 

Note:   ß=(D/po) 5/3 H 
D =1.095C 2k2L(D)5/3 

S n 
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Figure 1. Comparison of one- and two-term expansions with experimental and Monte-Carlo 

results from Ref. 9. 
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The second point is that the reason our asymptotic series^breaks^down 

after the second term is that expanding quantities like |r+t| 
as t  times 

a series in powers of r/t is valid only if r«t.  The effective range of 

r integration is 0(3"3/5) which means that if t»ß   . the expansions the 

are valid.  Presumably we could avoid the divergence caused^by the factors 

of - as t -^ 0 by cutting off the integration at e.g. t- ß"  • This intro- 

duces an error of (KfT675). so that terms up to fT4^ should be acceptable. 

The t - 0 region corresponds to the region where ^ ^ V 1-e" where the 

two maxima of the integrand coincide.  It is not possible to handle the 

integration accurately in this case, and as 3 gets smaller this error 

becomes more significant. 

V.  Scintillations from Diffuse and General Sources--A Preliminary Analysis 

and Discussion 

The major new area of investigation on this program is that of turbu- 

lence effects on radiation from diffuse and partially coherent sources, with 

particular attention to laser-illuminated targets and the performance of 

coherent optical adaptive (COAT) systems.  This represents a natural exten- 

sion of the recent work done on focused wander-tracking transmitters.  The 

experimental effort, will involve the determination of scintillation statistics 

from diffuse targets (speckles) and glints. Including Infrared wavelengths of 

primary Interest. 

The purpose of this section is to present a preliminary analysis for 

the case of a diffuse target, coherently Illuminated, with the point of 

observation in the near field of the target illumination.  This treatment 

Includes the effects of turbulence between the illuminator and target and 

on the return path to the observer. Generalizations of the illuminator and 

target characteristics and geometry are underway and will be reported in the 

future. 

A. Mean Irradlance at Receiver 

The source, target, and receiver configuration is shown in Figure 2. 

The present analysis is confined to the case of a TEM00 laser illuminator. 

The source and target are assumed to be much smaller than the path length 

(L), and the distance between the receiver and source is greater than the 

-23- 
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Figure 2.  Target-Illuminator Configuration 
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source size and much smaller than the path length. These geometric condi- 

tions confine the problem to small angles and ensures that the outgoing, and 

returning radiation experience independent turbulence regions; the latter 

limitation is thought to be inessential owing to the diffuse target charac- 

teristics and will be relaxed in subsequent work. 

We write the source amplitude distribution as 

U (r)- U exp o —   o (27) 

where a and F are the characteristics beam radius and focal length, 
o 

respectively. The field at the target is written from the extended Huygens- 
,    J , 12,13 Fresnel principle     as 

U(p) 
ke ikL 

2TrlL 
fuo(r) exp fi^pl2 + *!<£., 1) ] dr (28) 

L 

where i|) describes the effects of the inhomogeneous medium on the propaga- 

tion of a spherical wave.  Combining (27) and (28), we have 

kelk 
U(£) - **— 2 2TriL j***   I    2a2    + 2L    V      Y ) T L £ - 

o 

(29) 

In particular, this applies to the special cases of a focused (L-F) colli- 

mated (F ■*■ <*>)  beam respectively- 
The field at the receiver is written by reapplying the Huygens-Fresnel 

principle to the field at the target: 

12. Lutomirski, R.F. and Yura, II.T., Applied Optics 10, 1652-1658, July 1971. 
13. Yura, H., Applied Optics U, 1399-1406, June 1972. 
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Ü(i)- 
ke 

ikfL + £^1 
1   2LJ 

2TriL J U'(p)  exp [|^ (p2-2£-p) + ij;2(£,£)] dp    (30) 

where   U'OD  ts the field solution after the reflection from the target, 

and ^^  represents the turbulence effect from the target to the receiver. 

The mean intensity at the receiver is then 

9 

= !(£)> = <|U(£)|2> = (2^)  jj  dp^  <U'(£.1)Ü»A(£2); 

• ex'P [f ((p5 -^ - ^-(fir^))] 

< exp  n^(£,££> + '/'2*(£,P.2)1 > (31) 

Through the assumption of a diffuse target, the reflected beam suffers 

a random phase delay from point-to-point over the target, and we write 

<u,(Ll)u'*(p2)> = <I(p1)> Ö^-P^ (32) 

Using this in Eq. (31), the mean intensity becomes 

<I 
2 r 

(£)> =(2¥L)  I d^l ^"^i)!^ <exp[^2(£,p1) + ^C^^)]: (33) 

where the mean exponential term is unity from considerations of energy con- 
13 

servation. 
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The resultant mean Intensity at the receiver Is then simply 

<I ̂ -(ife)  j ^ <|ü(p) (34) 

To complete the solution, we use Eq, (29) with Eq. (34). We note 
2 

that the structure function gives us 

<exp [^(£,1^) + 'l'1*(p.,r2)]> = e 

■it) 
5/3 

(35) 

For the focused beam, we then have (r 5 |.r,-£,1): 

lü^|2>= (^Vjj ^L2^     - 
r2+r2 rl+r2 

2a2 

Ik rP-d.-r,)-^) 

(36) 

5/3 

Carrying out the Integration Indicated In (34), Involving the Fourler-Bessel 

Integral, we have finally 

^>-*(!) "0
2 f (37) 

The result for the colllmated beam Is Identical, and In fact could be 

deduced for an arbitrary beam focus (Eq. 27) through conservation of energy: 

:1^)>=(2fe) jdL<Nr) 
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(ife)2    2"°o2     I 
2. 2 

-r /a 
re dr 

A. r^2u2 ^ 
2ir      VL'       o 2 (38) 

Thus the mean Irradiance at the receiver (Illuminator) plane is uniform and 

independent of turbulence level. 

B.  Covariance and Variance of Irradiance at Receiver 

The correlation function of the irradiance at the receiver is 

BjdL-L.iV " <I(£1)i(£2)
> " <U(£1)U*(£1)U(£2)U*(£2)> 

(39) 

We now point out that the statistics of the incoherent reflection from a 

diffuse object are gaussian, from the Central Limit Theorem, with a phase 

which" is uncorrelated with amplitude and uniformly distributed from 0 to 2-n. 

In the near field of the target illumination, we may expect the gaussian 

nature of this field to apply after perturbation by turbulence.  A determina- 

tion of the exact conditions necessary for this assumption to hold, and the 

generalization of the solution to cases where it does not, will be reported 

in future work.  The gaussian assumption yields 

Bj = <U(£1)U*(£1)><U(£2)U*(£2)> + <U(£1)U*(£2)><U*(£1)U(£2)> 

= <i(£1)><i(£2)> + |r<£r22>r 
(40) 
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where T    is the mutual coherence function at the receiver.  It follows 

that the covarlance of intensity given by 

VJ»!.^) - BJCE^) - <i(£1)><i(£2)> - IrCz^)!       (4i) 

The mutual coheience function at the receiver can be described from 
13 

the extended Huygens-Fresnel formula. 

2 

r(£rE2) " (afe) Jj
1£-ld*2 < "(p^U^) > exp j ikp^p^^) 

- R2(P2,£2)] I < exp [^C^,^) + 'l'2*(£2»£2)]>        (42) 

where »,(£,.£,). R2(£2»£2) 
are the distances from £ to £ and O, to £2 

respectively. 

By the Fresnel approximation 

VV^L* - R2(^2^2) =  2L 

Finally, from equations (43) and (44) 

2    2^2    2 

(43) 

2       2^ 

r^i^ = (^L)
2
 

exp [^ri—J jjd%^2 <ü(Pi)u*(p 

i      ('I .  exp    S ik I — 

.)> 

2    2 v 
rp2   £i^r^2^ 
2L    " L > exp ['l'2(£1,£1)-N'2*(£2.£2)]> 

(44) 
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Since the wave is incoherent after refl ction from the diffuse target, 

the coherence function at that plane can be represen'-ed by the Dirac delta 

function: 

<U(p1)U*(p2)> = <I(P.1)><5(£1-£2) (45) 

Using this in Eq. (44), r(£ ,£ ) can be simplified: 

^SLVL2) = ilk)  exp L 
.m5/3 

2    2 lk(p^pp 
2L jjdp    <I(p)>  exp    |-^ C^-^-E} 

PQ7 

(46) 

In the absence of turbulence, this equation is entirely identical to the 
14 

Van Cittert-Zernike theorem of coherence theory,  which is identical to a 

result obtained by Goodman for the mutual coherence function of a pulsed 

optical radar. 

To complete the solution, we utilize the mean Intensity at the target 

for-the focussed case, Eqs. (34) and (36): 

5/3 

it) rL 
2      " 

cl(£)>f =      ^ -(r)   KJ2 YJ"   ^o ih) 
4a 

(47) 

We thus have: 

14. Born, M. and Wolf, E., Principles of Optics. Pergamon Press, N.Y., 1975. 
15. Goodman, J.W., Proc. IEEE 53, 1688-1700, Nov. , 1965, 
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■ 

r(P1,p2) 

2 <,0 

Aa %-(t) 
5/3 

5/3 

exp[^r;.-(^)     ] 

rik(p*-p*)i 
•exPL 2L J 

2IT 

2    "       -" 

(r)  K'2 ^J pdpJ rdr Jo (^ Jo (L pp) 
o o 

5/3 5/3 

Ao o o (A8) 

where p = \Zi~S.2 
. From the Fourier-Bessel integral formula. 

fpJ0(!»K(r*) d» "^)2 6(r-p) (A9) 

.. 

Eq.   (A8)  can then be simplified: 

2 Aa 
2 o    a 0 

1   /k\      i-   .2      o 

-4 - (H   + i W^) 
rfe.fe) - i (t)   I'oi   -r 

Aa 

2 „     5/3      ik / 2    2\ 

<I(p)> e 
(50) 

i 
'   I 
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Finally, the normalized covariance function of irradiance for the 

focussed case can thus be written: 

2     .  v 5/3 

2a o 
CI <£>£- e 

and the normalized variance is 

(51) 

(52) 

For the collimated case, the same variance is obtained, and the covariance 

is 

C  (£) - e 

5/3   _  .  2    ko   T 

(53) 

In general, the normalized irradiance variance for an incoherent wave is 

known to be unity.  The probability distribution for the irradiance is the 

exponential distribution, and for the amplitude it fits the Rayleigh dis- 

tribution. 

The covariance scale lengths, for the focussed case (Eq. 51), are ^a 

and p , although the present analysis is clearly applicable only when the 

a term dominates (p >o ).  For the collimated case, the dominating scale is 

^ r— (<a ).  These terms represent the "speckle" sizes for focussed and 
o 

collimated beams respectively. 

These results may be readily extended to power spectra and receiver 

aperture-smoothing analyses, which will be given in a future report. 
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