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ABSTRACT 

A theory based on the use of second-order moment equations 
is presented for transitional and turbulent boundary layer flows.    The 
technique yields accurate predictions for various fully turbulent boundary 
layers, including those affected by pressure gradients and surface rough- 
ness.    Although the model has yet to be adequately developed for treating 
transition induced by free-stream turbulence,  a method is presented that 
addresses wall-roughness dominated transition.    Using an idealized 
representation of distributed roughness elements,  the disturbances 
introduced by the elements are described by wake relations and are 
handled as distributed source or sink terms in the governing relations 
for mean momentum and fluctuating energy.    Representation of actual 
roughness distributions should be feasible in computations performed with 
this model.    The effects of roughness size and shape on transition are 
evaluated,  and transition is found to be most sensitive to the location of 
the peaks of the roughness elements.     Calculations performed to date 
compare satisfactorily with the transition measurements of Feindt-? on 
sand paper-roughened flat plates in low speed flow. 
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I.  INTRODUCTION 

Boundary layer transition and the ensuing turbulent heat transfer is 

an important consideration in the design of high performance reentry 

vehicle nosetips.    Transitional heat transfer can bring about complicated 

changes in nose shape,  with frequently undesirable aerodynamic vehicle 

performance.    This report describes the results of an effort to construct 

fundamental methods for predicting the development of nosetip boundary 

layers.    Such flows are obviously quite complex-compressibility,  entropy 

swallowing, pressure gradients, mass transfer,  and surface roughness 

are often important.   Our objectives include the prediction of transition 

as well as the subsequent increases in heating rate through the transitional 

and  turbulent zones. 

The technical approach for this study is based on solving the 

governing equations for various fluctuating intensities, derived by a 

technique often referred to as "second-order closure".    Recent years 

have seen considerable development of second-order closure methods for 

treating turbulent flows,  and the model presented here has been success- 

fully applied to a variety of flows including boundary layers,  wakes,  mixing 

layers,  etc.    However, the application to transition is rather new. 

Figure 1 is a schematic representation of the transition process, 

plotting the fluctuation intensity,  heat transfer rate or other such para- 

meter against Reynolds number.    The true behavior starts from a low 

level, amplifies,  and typically exhibits a mild overshoot before reaching 

fully-developed turbulent values.    Given the appropriate initial disturbances, 

linear stability theory should describe the initial stages of development 

accurately but would continue to show amplification without limit.    A 
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nonlinear stability theory (which has not been formulated for boundary 

layers) would include the dissipative effects that limit amplification but 

would probably not yield accurate answers in the final stages unless the 

theory accounted for the development of a continuous turbulent spectrum. 

A second-order turbulence model,  on the other hand,  should become 

increasingly valid as turbulent intensities build up.    And,  if the model 

contains the appropriate low Reynolds number terms, it may be useful at 

the earlier stages. 

The basic model development was described in a previous report, 

and will be summarized in the following section.    Results for smooth-wall 

boundary layers will be discussed briefly in the third sectio;..    However, 

the major emphasis of this effort has concerned the behavior of loundary 

layers over rough walls.    At low altitudes, nosetip boundary layers are 

usually so thin that surface roughness plays a dominant role.    The fourth 

section presents a model for the manner by which surface roughness 

introduces disturbances into a boundary layer, and the fifth section 

describes results for transition on rough walls. 

-3- 
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PRECEDING PÜOI.WUWUIJÜT FILMED 

II.    SECOND-ORDER CLOSURE MODEL 

The development of the model used in this study has been described 

in detail elsewhere,  '    and only the results shall be presented here.    Our 

treatment of closure draws upon aspects of various previous work,  most 
3 

notably Rotta's treatment of low Reynolds number effects   and the descrip- 
4 

tion by Hanjalic and Launder    of the triple fluctuation and pressure fluctua- 

tion terms.    Wherever possible,  closure approximations have been 

evaluated against basic laboratory experiments (e.g.  grid turbulence), 

the types of experiments being chosen to attempt to isolate individual terms. 

The formulation accounts for both mean and fluctuating velocity and 

temperature quantities.    The dependent velocity variables are the mean 

velocity vector U., the Reynolds stress tensor u. u., and the isotropic dissipa- 

tion rate 4); under the boundary layer approximation this set of variables 

reduces to U, V, u    ,  v c , w     ,  u v  , and v.    In practice it is convenient 

to replace u     , v * ,  w '  by the kinetic energy q    = (u z + v^ + w')/2 and 

two measures of the degree of anisotropy Sii = u     - 2/3 q  , S22 = v z - 

2/3 q2. 

For steady flow the governing equations include continuity: 

sir(0 ui>= ° (1) 
1 

the mean momentum equation: 

k   dxk ox       öy   lK dy dy 
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and, for the five second-order quantities: 

0 uk IT = *D uv a 
k 

7-'••0.15 -j0a-2--<q +V)J 

(3) 
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ATT     dSll 14      -ÖU     ^ <t> 
DUkTT-"IJpuvö7-cED —s 

K q 

a        dSU [8     2     2   „ 1 1   dU 
F7^-oT-Ppq    +33Sll + 33S22Jä7 

2 2    a 
*     dy 11 '3 V  ] 

(4) 

dS. 
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2 2 
&<P .- uv     d U ., d> . .   „      Vq öv uv     ö U „ A 

k q q (J>y 

+ 0 lc    d     |    q2v2   ö<t>| d ^      ,.,     u2   ÖU. 
dy    I       $>       oyj       öy       dy 2   ox 

(7) 

1.2 + 12.5 "/Re 0.288 + 6.6 TT/Re    + 35 TT2/Rex
2 

where C
E 

=  i + i2.5TT/Re; • co> TTTTTT^  
<*» (0.4 + 5 TT/ReA) 

and Re^ is the turbulent Reynolds number q A/v, with A being related to 

the dissipation rate by 

3 2 3 
<t>=   0.4^-+5TTV^-=0.43p(l +12. 5TT/ReA) (8) 

A 

It may be noted that, in the limit Re* *• •» Eq«.  (1) - (7) are some- 
4  5 

what similar to those derived by Launder et al. However,  low Reynolds 

number effects are also included here, in the molecular diffusion terms 

and in the Re^ dependence of the sink terms involving C_ and CA.    The 
2.2 

term 14. 8 p v q  /(<J> y ) is a "wall term",  required to obtain a well-behaved 

solution in the viscous sublayer, y -* 0 (a somewhat different but equivalent 

term was used in Ref.  1) 

* 5 Launder et al.    have recently proposed inclusion of additional wall terms 
that would contribute in the logarithmic region of a fully-turbulent boun- 
dary layer.    We have yet to evaluate such terms, although it appears that 
their overall effect may not be major.    Of more importance may be the 
viscous sublayer.    The present formulation guarantees that turbulent 
intensities decay sufficiently rapidly as y -» 0, but more accurate descrip- 
tions of the actual processes that occur in the sublayer may be possible. 
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For high speed flows it is also necessary to describe the tempera- 

ture or enthalpy field.    The mean temperature is required to determine 

density and the Reynolds heat flux v T    is of primary interest for heat 

transfer considerations.    To accomplish this we include as additional 

dependent variables the mean static enthalpy h, the mean-square fluctu- 

ating enthalpy h *, and the transverse and axial components of the Reynolds 

heat flux v   h    and u   h .    Required closure approximations have been 

carried out in a manner analogous to those leading to the velocity equations 

above» although the paucity of measurements of fluctuating temperatures 

has made it difficult to completely verify closure approximations against 

basic laboratory data.    The resulting enthalpy equations are: 

Dh      TT AR.       °    I     «u^x1      ö   /   dh\ 

(9) 

+ ü(T^)  + PO m 
dy/ 

Dh'2 ,        f    *    oh 
0— =-2pv   h     —   -C 

•    q 

4>   ~ Ö   /   q2v2  hh'A 
/Th2 + 0-40I7\pV—/ 

Id/    oh2 ) 
+   Pr   dy    y1    dy   / 

0 —7—— = - D v    -— - 0. 09835 o  u h    T— - C-   o~: v h 
Dt dy dy T^       2 

2     q 

(10) 

+ 0 «A 
d / alZ  *   vV\     1    a   /  avV\ 

•80 T7\p  *   d7 TF/ + P? *7 VTT/ 

(ii) 
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0£fiL =.o.3989 pvV   lü.p^|i.cToi  uV 
Dt öy dv T 2 

2     q 

d      /     q2v2    3Til'   \ 1 Ö     , du h 

(12) 

1.32 + 7.5 TT/Re 
where C 

A 
1 + 12.5 rr/Re \ 

1.165 + 12.5 TT/Re 
A 

1 + 12.5 TT/Re 'A 

It should be noted that terms involving fluctuating densities (p ) 

have been dropped in deriving Eqs.  (1) - (12).    This is generally permissible 

if the edge Mach number is below 4 or 5, as is usually the case for nosetip 

regions.    However,  if need be the dominant effects of density fluctuations 

can be included by defining a generalized Reynolds stress R.. = 0 u. u. /p = 
i    i i   i    i       ) J 

u. u.    +   0   u, u.   /p .    Once this is done the primary effect of density 
i    j l   j 

fluctuations is contained in a relatively unimportant diffusional term 
i    i ft 

involving p  v , which can be related to v T .    The resulting formulation 

yielded good comparisons    with the measurements of Horstman et al.    in 

a boundary layer at M    = 7. 

Boundary conditions to Eqs.  (1) - (12) are generally obvious: 

fluctuating quantities are zero at a solid wall or at the outer edge (if there 

is no free-stream turbulence).    For numerical solutions, the equations 

are first transformed to the standard streamfunction coordinate,  guaran- 

teeing continuity and eliminating the normal velocity V.    The transverse 

coordinate is also normalized by the  edge value of the stream function 
Q 

(following Patankar and Spaulding),     so that additional mesh points need 

not be carried in the free stream to allow for boundary layer growth.    For 

-9- 



many cases a uniform mesh in streamfu iction coordinates is inadequate, 

and this is usually handled by further transforming the streamfunction. 

For example, for fully turbulent boundary layers a linear mesh in 

logarithm of the streamfunction is used.    The finite-difference equations 

are solved with a block-tridiagonal Newton-Raphson or quasi-linearized 

technique. 

-10- 



III.   SMOOTH-WALL BOUNDARY LAYERS 

The formulation that has just been presented has been tested against 

quite a few fully turbulent flows.   Several of these were described 

previously,    and we shall not dwell on them here.   Boundary layer flows 

for which satisfactory comparisons with available measurements have been 

obtained include the basic low speed flat plate turbulent boundary layer, 9 

a "reiaminarising" boundary layer due to a favorable pressure gradient, 

flat plate boundary layers with heat transfer at both low speeds     and high 

speeds,    and boundary layers with blowing.       Data from both low speed 
14 15 and M = 2, 5     plane mixing layers, and M = 3 axisymmetric wakes, 

have also been satisfactorily reproduced. 

The major emphasis of the current effort has involved boundary 

layer transition.   One interesting aspect of our turbulence model is the fact 

that there is a minimum Reynolds number below which there cannot be a 

fully turbulent solution.   This results from the Reynolds number dependence 

of dissipation.   If the turbulent Reynolds number Re, is decreased below 
A 

about 40, the dissipation rate tends to increase (cf. Eq. 8) to such an 

extent that turbulence cannot be established.   This corresponds to a 

momentum thickness  Re    = 200 in low speed flow, close to the linear 

stability limit, but to substantially higher values of Re    at high Mach 

numbers.   This minimum Reynolds number can be closely related to 

transition in many high speed flows.   To compute this minimum transition 

Reynolds number we simply specified a high level of free stream turbulence 

(3%) as a boundary condition, although the same result has also been ob- 

tained by artifically eliminating boundary layer growth.   Figure 2 shows 

the distance Reynolds number at transition (defined as the location of 

-11- 
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minimum skin friction) versus edge Mach number«   Also included are the 

values obtained by Sheets     from shadowgraph observations of nearly sharp 

slender cones.   The computed trend is somewhat less pronounced than that 

observed by Sheets, although the actual cone boundary layers may be in- 

fluenced by entropy swallowing (the models had small but finite nose radii, 

whereas the calculations were performed for perfectly sharp cones)» 

Computations have also been performed in an attempt to investigate 

the role of free-stream turbulence on transition.   We considered low speed 

flat plate cases, and started the calculations as a laminar boundary layer 

at small Re*.   The free.stream turbulence was taken to be Isotropie, with 

a sufficiently large scale size or small dissipation rate that the free .stream 

turbulence should decay negligibly over the distances to be considered« 

If the outer boundary conditions are identified with the free-stream turbulence, 

we th^n have a straightforward procedure for determining the transition 

location.   However strong qualifications must be placed on the realism of 

this exercise.   In most wind tunnels the free.stream fluctuations are largely 

acoustic rather than vortical, whereas the present formulation accounts 

only for the latter type.   Also, wavelengths of free.stream turbulence are 

usually larger than the boundary layer thickness, violating an inherent 

assumption of all phenome no logical turbulence models.   It is not surprising 

then that computed transition is not in good agreement with wind tunnel 

results.     As Fig. 3 shows, the predicted transition is too soon except at 

the highest free.stream levels (where transition is dictated by the minimum 

Reynolds number considerations discussed above).   And, until the response 

of a boundary layer to large scale pressure fluctuations can be theoretically 

treated, we cannot be optimistic about the prospects for adequately explain- 

ing these wind tunnel results. 

* 1*« Wilcox     has recently obtained bette? agreement with such data, but his 
computations were apparently based upon extremely small, and non.realis- 
able, length scales for the free-stream fluctuations. 
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IV.    MODEL FOR ROUGH-WALL BOUNDARY LAYERS 

For actual reentry nosetips, transition it invariably the result of 

disturbances introduced by surface roughness elements.   It is a classical 

result from low speed tests that roughness will have a significant effect 

on transition and on the subsequent turbulent boundary if the "roughness 

Reynolds number" p Uk/y is greater than about 100. ^    Anderson and 
20 

Bartlett     have shown that this condition is usually exceeded on nosetips 

constructed of materials such as 3DQP and ATJ graphite.   Furthermore 

an extensive laboratory simulation has been carried out by Aerotherm/ 

Acurex Corporation under the PANT Program, and the experimental 

nosetip transition points have been correlated by Anderson18 in the form 

= 215 . 

The flow near an irregularly.shaped rough surface is undoubtedly 

quite complex» and one might envision several simplified models for this 

flow.   If the roughness elements are typically large compared to boundary 

layer thicknesses, the flow might be approximated as that over a wavy wall. 

If the roughness elements were primarily two-dimensional . a series of trip 
21 wires, as in the experiment of Antonia and Luxton      - the flow might be 

treated as cavity flows between the elements.   But for three «dimensional 

elements not taller than the boundary layer thickness, the most realistic 

model would appear to consider the wakes behind individual elements.   It 

will be assumed that the flow approaching an element is attached and 

aligned parallel to the wall, even after having flowed past many upstream 

elements. 

-15- 



Through their wakes,  roughness elements provide a distributed 

sink (due to drag) for mean momentum,  and distributed sources for fluctua- 

tion energy and dissipation rate.    To describe the distributed sources or 

sinks, we use a normal coordinate y whose origin is at the bottom of the 

elements.    We shall idealize the rough surface as being made up of identical 

elements  - all having the same height and shape, although the extension to 

a size distribution should be feasible.    The shape is to be specified, and we 

shall consider simple shapes such as cones and hemispheres.    Let k be 

the model roughness element height,  let D(y) be the diameter of the element 

at height y  (for  0 £ y  i k), and let the average center - to - center element 

spacing be   X.    We presume that the flow around an element at height y is 

approximately two-dimensional.    That is, the flow around an element at 

height y looks like the flow around an infinite cylinder with diameter equal 

to D(y).    This approximation will obviously be better for elements that are 

taller than they are wide,  however, our results will probably not prove to 

be particularly sensitive   to this two-dimensional approximation since 

disturbances are qualitatively similar in the near fields of two- and three- 

dimensional bodies. 

The form drag on roughness elements should represent a sink term 

for the mean momentum equation.   If CD is the drag coefficient, the drag 

at height y  (between y - 6 y/2 and y + 6 y/2) on a single element is 

-   jpU2CD D(y)6y 

To relate this to drag/unit volume, we note that there are  t~ ' elements per 
2 

unit surface area, so that the appropriate volume is   I   6y and the sink 

term for mean momentum is - 

-ipU2CDD/iE (13] 

-1Ä- 
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This term is to be included in the right side of the mean momentum 

equation,  Eq.   (2).    For the drag coefficient, we could specify Cn = 1, 

appropriate to infinite cylinders at local Reynolds numbers   UD/v above 

the Stokes flow regime.    However,  lower values such as   0. 5 are more 

appropriate for finite elements such as cones and hemispheres, and the 

use of such a value provides a first-order correction for three-dimensional 

effects. 

The fluctuations introduced by elements are more important for 

transition than is the mean drag.    Visualization experiments on the flow 

behind isolated three-dimensional elements show their wakes to be 
22 generally oscillatory and quite complex.    Mochizuki,       for example, 

showed that the wakes of isolated elements will actually be turbulent only 

at very high local Reynolds numbers,  and that they undergo a sequence of 

oscillatory modes at lower Reynolds numbers.    These modes include a 

horseshoe (streamwise) vortex, a "wing.tip" vortex shed off the top ot the 

element and various other oscillations,  but no evidence of a von Karman 

vortex street was seen.    At very low Reynolds numbers the wake is 

completely laminar and non-oscillatory.    This picture may be expected to 

be modified for   distributed roughness elements, and it would appear 

to be quite difficult to write down an a priori specification for the fluctua- 

tions behind distributed roughness elements with great precision.    However, 

these disturbances can be specified qualitatively,  and the sensitivity to 

quantitative details can be evaluated in retrospect.    Basically,   except 

at very low Reynolds numbers,  the velocity fluctuations behind an element 

should be proportional to the local flow velocity U 

u'   ~ Q    U (14) u 

where Q    is a fractional number of order   10"  .     The kinetic energy per 
U '2 

unit mass flux is   u    , and the mass flux is approximately  pUD • 6 y. 

-17- 



Thus the kinetic energy created per unit volume is 

(QQU)
2
 pUD6y/U26y)  =Q2pU3 D/l* (15) 

A low Reynolds number cutoff to this term was also considered.    Mochizuk.'s 

observations indicated no oscillations behind an isolated element for 
. 22 

Uk/v <  300. The presence of upstream elements would be expected 

to promote oscillations behind downstream elements,  and the appropriate 

cutoff might occur at a value an order of magnitude lower for distributed 

roughness elements.    However in practice any such cutoff is not critical. 

For very small roughness heights,   k/6 is small except near a leading edge 

and the local flow velocity U is sufficiently small that the fluctuation 

source term of Eq.  (15) is itself small.    Thus we have not considered this 

effect in any detail. 

In general, if fluctuations are created there should also be created 

a corresponding dissipation rate (<J>).   If the size or wavelength of the 

oscillations is  A, then the amount of dissipation/unit mass created is 
—T     2 v u c I A  .       The wavelength should be comparable to the diameter of the 

element, so that  A = Q.D with Q. = 0 (1).    Then, following the same 

arguments leading to Eq.  (15), the source term for the dissipation equation 

is* 

Q 
11 TT3 

-5- P   U 
V 

(i6; 
Q Dt 

In evaluating the role of this term in the calculations to be presented 

below, it was found that the term has no important effect on the development 

of fluctuations if Q    > 0.2.    However the term is given here for the sake 
A 

of completeness. 

Note that the two-dimensional approximation breaks down here at the 
top of an element where D-»0. In practice it is necessary to add a small 
fraction of the element height k onto  D in Eq.  (16). 

-18- 
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The distributed source or sink terms given by Eqs. (13), (15), 

and (16) are the only ones that need be considered«   If oscillations in the 

wake of an element are approximately isotropic, there should be no 

significant creation of the anisotropic components  u v , Sj, = u'2 -2/3q  , 

S_-=v'2-2/3q2.   And, except in the Stokes flow regime, heat transfer 

to an element should be small and there should be no distributed source 

or sink terms in the equations for the thermal variables. 

To our knovledge the model presented here is the first attempt to 

represent the disturbances introduced into a boundary layer by roughness 
23 17 elements.   Using the Saffman two.equation turbulence model,       Wilcox 

addressed the effect of roughness by making the wall boundary condition 

on their "pseudo-vorticity"  (analogous to $/q*) a function of wall rough- 

ness.   While reasonable results were obtained for rough-wall transition, 

this approach does not address the source of the disturbances and, in fact, 

the disturbances were introduced as free-stream turbulence.   In another 
24 study Merkle, Kubota and Ko     examined the effect of wall roughness on 

boundary layer stability.    They estimated the increased mixing behind rough. 

ness elements using a wake description somewhat similar to that used 

here.   This increased mixing alters the mean velocity profile and the 

stability characteristics;   they then used the e^ amplification ratio corre - 
25 iation     to relate amplification rate to transition location.   However, form 

drag on the elements was not included, and examination of our calculations 

indicates that form drag has a much greater effect on the mean velocity 

than does the increase in mixing (Reynolds stress) due to fluctuations 

introduced by the elements.   Also the e^ correlation is based largely on 

wind tunnel data where free-stream turbulence must play a role and the 

analy is of Merkle et al makes no attempt to define the initial disturbances 

from ;  rough surface. 
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To obtain some verification of the validity of the model presented 

here for the effect of distributed wall roughness,  calculations were 

performed for fully turbulent boundary layers.   It was possible to compare 

the results with the measurements of Schlichting in flows over walls covered 

with idealized roughness elements of the type considered in our model  - 
19 uniformly spaced spheres, hemispheres, cones, etc.       In performing 

these computations it was found that the primary effect of roughness is due 

to the form drag of the elements on the mean flow;   the source terms for 

kinetic energy and dissipation rate are negligible compared to the normal 

producticr and dissipation terms in this fully turbulent regime.   Three 

cases were considered, all at Ue k/v =  10 :   hemispheres with spacing I 

of 2. 5 and 5 base diameters and cones spaced 2, 5 base diameters apart. 

Table I compares the local skin friction coefficients measured by 
19 Schlichting 7 with the results of the computations.   Note that there is a 

slight overprediction, more pronounced in the case of hemispheres where 

a two-dimensional flow approximation is less likely to be valid.   Details 

of the flow were found to be in good agreement with known results, not 

surprisingly since the primary effect of wall roughness on a turbulent 

boundary layer is simply to increase the wall shear.   The mean velocity 
19 profile in the log region agreed satisfactorily with the well-known 

in (y/k ) behavior,    as shown in Fig. 4.   Peak turbulent intensities increase 

with rough wails, but apparently can be completely scaled with the friction 
26 velocity U    as has been observed in many flows. 

kg is the equivalent sand «grain roughness height, defined for a general 
rough surface such that the wall shear is identical to that on a surface 
covered by sand grains of size kg. 
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TABLE I 

SKIN FRICTION COEFFICIENTS FOR 
TURBULENT FLOW OVER ROUGH WALLS 

Schlichting Expt.       Drag Coefficient      Computed 
Case Cf x  103 in  Calculations       Cf x  103 

Smooth 

Spheres  £/d = 2.5 

- 2.35 

- 3.6 -3.0 

2.35 

3.7 0.5 

Spheres   Z/d  =5.0 ~ 2.35 0.5 2.8 

Cones   X/d =  2.5 ~ 3. 4 1.0 3.8 
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V.    TRANSITJON OVER ROUGH SURFACES 

We now turn to the important issue of transition on rough surfaces, 

the immediate goal being to explain the measurements of Feindt   ' on sand 

paper roughened flat plates in low speed flows.    It should be pointed out that 

the conclusions to be presented here apply to flat plates and not necessarily 

to blunt bodies.    The flat plate boundary layer has zero thickness at the 

leading edge and is therefore smaller than any finite roughness height.    On 

the other hand the boundary layer at the stagnation point of a blunt body has 

a nonzero thickness,  so that sufficiently small roughness elements will 

always be well within the boundary layer.    The present fiat plate computa- 

tions were initiated at a location very far upstream of transition,  generally 

where   k/6 =  1, with a Blasius velocity profile and no turbulent intensity. 

The numerical results show a rapid initial increase in boundary layer thick- 

ness due to form drag of the roughness elements, and a buildup of fluctuation 

energy as a result of the distributed source terms.    In all calculations to be 

presented here the free-stream intensity was set to zero,  and the transition 

location was defined as the station of minimum wall shear. 

In examining the sensitivity of the computed transition to the various 

inputs, it is clear that the dominant parameter is the height of the peaks uf 

the elements.    This height is not necessarily directly related to the 

equivalent sand grain size.    The sand grain size is a measure of drag,  which 

is weighted by the square of the local velocity,   U  (y).    On the other hand, 
3 

the strength of the source term for fluctuations varies as   U   (y).    Since 

U (y)   ~y (roughly),  the peaks of the elements are more important for transi- 

tion than for drag.    In terms of the idealized specifications used here for 

rough  surfaces,  there are various combinations that yield the same equivalent 

sand grain size but give very different behavior for transition.    For instance, 
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very tall and widely spaced elements could cause the same drag as 

shorter, more densely packed elements, but the taller elements produce 

a more rapid transition.    Furthermore,  cones would not be equivalent to 

hemispheres of the same height since there is little area near the apex of 

a cone.    This behavior is illustrated in Fig,  5, where we show the streamwise 

variation of turbulent kinetic energy within the boundary layer for four 

roughness models all having the same equivalent sand grain size (the 

element spacing is varied to achieve this).    The qualitative behavior of the 

kinetic energy will be discussed in detail shortly, but the transition location 

is seen to vary by a factor of three between short, closely-packed cones and 

tall, widely-spaced ones.    Upon examination of photomicrographs of cross- 
18 sectional slices of rough surfaces,        it was decided that cones are probably 

not an ideal representation of actual roughness elements, and that hemi- 

spheres are probably much more appropriate.    If spaced about two diameters 

apart, their height should be nearly equal to the equivalent sand grain height, 

and this type of roughness specification has been used for all calculations 

to be presented here.    It might be appropriate to attempt to simulate an 

actual roughness distribution more precisely in future studies. 

Figure 6 illustrates the development of the fluctuation energy as a 

function of distance and roughness Reynolds numbers.    The mature of the 

behavior is rather interesting.   At very small distances the boundary layer 

is thin, k/6 is appreciable, the elements encounter high local flow velocities, 

and the source term for kinetic energy (Eq.   15) is large.    However,  as the 

boundary layer grows downstream this source term becomes small and the 

fluctuation intensity decays by viscous dissipation and diffusion to the wall. 

Eventually,  at Re    «10    the boundary layer becomes sufficiently large 

(Re   i 200)  that the fluctuations can become amplified, leading to transition. 
9 

It is interesting to note that the primary effect of roughness occurs well 

upstream, and isolated upstream roughness elements might have an effect 

similar to distributed roughness. 
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Figure 6 also sheds some light on the sensitivity of a transition pre- 

diction to the details of the model.    Because the fluctuation  energy 

experiences changes of several orders of magnitude (particularly at lower 

values of Reu),   factor of two uncertainties in the source term (e.g.  in Q   ) 
u 

are not critical. Furthermore, examination of the computations shows that 

the source term for the dissipation rate has no effect on the computed tran- 

sition location as long as   A/D - Q     > 0.2.    And,  the form drag of the 
A 

elements does not have an important effect on the laminar boundary layer 

beyond the far upstream region where k/6 > 0. 5. 

The transition locations that result from the calculations of Fig. 6 
27 

are compared with the data of Feindt      in Fig. 7.    Two curves are shown, 

for k = k    and k = 0. 8 k  •    This 20% difference reflects the minimum un- 
s s 

certainty in our current ability to characterize the actual surface.   Agreement 

with Feindt's data is seen to be decent, although there appears to be some 

tendency to underpredict the transition distance at smaller roughness values. 

There the experiment was likely affected by free-stream turbulence, the 

data showing more scatter and almost exhibiting a double-valued character 
5 

(we omitted Feindt's data points showing transition at Re    =7x10   on a 
x 

smooth wall).    No attempt has been made to consider the combined effects 

of free-stream turbulence and roughness on transition. 

Figure 8 presents the same calculations, but now plotted in terms 

of displacement thickness at transition and compared with a wider range of 

data.      Since displacement thickness is proportional to the square root of 

distance,  this manner of presentation compresses the scales and the com- 

parison i« quite flattering. 

A limited number of calculations have been performed for cases 

with pressure gradients, and one case at low Re    i^   shown in Fig.   9. 

Comparable plots, in terms of momentum thickness rather than displace 
18 

ment thickness, are often used to correlate nosetip transition data. 
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Adverse pressure gradients are plotted to the left,  and they obviously 

promote more rapid transition.    The computed trend is somewhat less 

than that indicated by Feindt, although it should be noted that his results 

are presented only in curve-fitted summary form and no data are avail- 

able for individual cases with pressure gradients. 
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VI.    SUMMARY 

A theory based on the use of second-order moment equations is 

presented for transitional and turbulent boundary layer flows.    The 

technique has yielded accurate predictions for various fully turbulent 

boundary layers, including those affected by pressure gradients and 

surface roughness.   Although the model has yet to be adequatelv developed 

for treating transition induced by free-stream turbulence, a method is 

presented that addresses wall-roughness dominated transition.    Using an 

idealized representation of distributed roughness elements, the distur- 

bances introduced by the elements are described by wake relations and 

are handled as distributed source or sink terms in the governing relations 

for mean momentum and fluctuating energy.   Calculations performed to 

date have been compared rather successfully with the transition measure- 
27 

ments of Feindt      on sand paper-roughened flat plates in low speed 

flow. 
The effects of roughness size and shape variations have been 

pointed out, and should be amenable to experimental verification. 

Representation of actual roughness distributions should be feasible in 

computations performed with this model.    Further work is required to 

determine the behavior of transition on blunt bodies, and in high speed 

flows where the combined effects of compressibility, heat transfer, and 

entropy swallowing occur.   Such efforts are currently underway, with 

the goal being the development of improved techniques for predicting 

transition on reentry body nosetips. 
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