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ABSTRACT

Previous investigations of wing-wake rcl-up have qqsured

the wake to be a vort-x sheet of zero thickness. This immediately

leads to the conclusion that, as soon as the process starts, a

soiral of near axisymmetric form, with an infinite number of turns,

forms at the edge, as predicted by the work of Kaden, which must

apply to the early stages of roll-up for any sheet of zero thick-

ness. In addition, most investigators, starting with Westwater,

have replaced the continuous vortex sheet by discrete vortex lines.

In this report, the aforementioned unrealistic features are

removed by assuming that the wake cross-section has a finite thick-

ness and some plausible shape. A two-dimensional method, analogous

to that of Westwater, is developed, assuming that the wake cross-

section contains vorticity in an otherwise irrotational field. The

wake is divided into triangular elements and the vorticity in these

is determined by assuming a linear transverse velocity profile in

the wake and that the initial, unrolled wake moves downwards as

determined by the wing spanwise loading through ordinary wing-wake

theory. Euler time-step integration is then used to calculate the

wake development under its own induced velocity field, ignoring

viscous dissipation.
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Three examples of the initial stages of roll-up, for elliptic wakes

of thickness ratios .04, .05 and .06, are calculated. A finite spiral

structure is observed to develop and, within the range covered, the

thickness only seems to affect the number of turns in the spiral, other

parameters seeming to be almost unaffected.

Plans for continuation of the work are discussed.

-- .
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LIST OF S*'4BOLS

A wake cross-section at any station x.

A' initial wake cross-section at x 0.

AR aspect ratio of wing.

a side of triangular element, opposite corner A, divided by s.

b side of triangular element, opposite corner B, divided by s.

C boundary of cross-section A.

C' boundary of cross-section A'.

CL wing lift coefficient.

H c side of triangular element, opposite corner C, divided by s.

K AKn =n An

M total number of triangular elements in wake cross-section.

N number of different values of n

n number denoting a typical triangular element.

P perimeter of S.

rA = k - l/s

rB - I/s.

r=C  k C I/s.

S closed region with constant vorticity distribution.

s wing semi-span.

t dimensionless time. See Equation (4).

U free stream velocity.

V element influence function. See Equation (14).
n

v velocity component in the y direction.

*
v non-dimensional form of v. See Equation (3).



-V -

W element influence function. See Equation (15).

w velocity component in the z direction.

w non-dimensional form of w. See Equation (3).

w- w1  is the usual downwash calculated in the Treffz plane

for an unrolled wake.

x streamwise coordinate.

y spanwise coordinate positive to the right.

y =y/s.

z third coordinate of the right-handed set x, y, z.

z = Z/s.

a= arg( -A)

B = arg (B - )

aC = arg C -

= arg( -B)
B

aA  = arg A B

6 C  = arg (C Y

y = arg( -C)

YA = arg (A 1C

YB = arg (C - C

AA narea of ntn triangular element.n

* 2
AA AA /s

!n = ns

At* dimensionless time step in numerical integration.

Av contribution to v from nth triangular element.
n
wcontribution to w from nth triangular element.

n
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[I thickness ratio of elliptic wake cross-section.

=y + iz.

A at corner A of nth element.

B at corner B of nth element.

C at corner C of nth element.

Ccs y

=tan 1(dz /dy )C "

O(z,y,z) vorticity distribution within A

(t ,y ,z )non-dimensional form of . See Equation (5).

constant value of in nth triangle.
*

n non-dimensional form of n

s constant value of E inside S.

W(y) vorticity distribution within A'.

* *w(y ) non-dimensional form of w. See Equation (5).



1. INTRODUCTION

Many investigators have studied the rolling-up of the vortex wake

behind a wing of finite span. The earliest step in this study was the

(i)
work of Kaden who found an analytical solution for the rolling-up

with time of a semi-infinite, straight, two-dimensional vortex sheet.

This solution must represent the situation very close to the edges of

a finite-span vortex sheet of zero thickness, in two or three dimensions,

during the initial stage of the rolling-up process. An important result

following from Kaden's work is that, from the very onset of rolling-up,

due to the infinite velocity at the sheet edge, a spiral of near-axi-

symmetric form, with an infinite number of turns, is established at the

edge. This is a consequence of the assumption of zero thickness for the

sheet.

Westwater (2 ) considered a finite-span, zero-thickness wake result-

ing from an elliptically-loaded wing and assumed that the roll-up could

be treated as a two-dimensional time-dependent process, where the con-

figurations at successive stages in time represent successively further

downstream sections of the wake,as fixed by the forward speed of the

wing multiplied by the time. This approach is evidently suitable for

wakes which roll up relatively slowly far behind the wing, such as are

found with high-aspect-ratio, unswept wings. Westwater further simplified

his calculations by replacing the contir.:ious vortex sheet by a row of

(3)
infinite line vortices. Clements and Maull have recently used this

technique for non-elliptic span-loadings. Westwater's method is subject
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to certain numerical difficulties which have been the subject of a

number of investigations. A particularly careful recent review and study

(4)
of this matter is due to Moore , who develops a method for overcoming

the problem.

The line-vortex method has been extended to cover three-dimensional

effects, such as those of bound vorticity and the finite origin and stream-

wise curvature of the Lrailing vortices, by the use of the vortex-lattice

procedure (5'6'7'8'9 ). This leads to results applicable to low-aspect-

ratio and swept wings.

The present work is an attempt to remove the unrealistic features

of the earlier models, namely zero wake thickness and vorticity concentra-

ted on lines,by assuming that the wake vorticity is contained in a layer

of finite thickness with some plausible cross-sectional shape. The wake

flow is assumed to be two-dimensional and the rolling- up is studied via

the time-dependent development of this model, exactly as in Westwater's

work, so that we deal with a slow rolling-up taking place far behind the

wing, once more. The introduction of vorticity distributed continuously

throughout the wake cross-section enables us to obtain a more acceptable

picture of the initial rolling up phase than the infinite spiral of

Kaden.

Having selected an appropriate wake cross-section its area is divided

into triangular elements within each of which the vorticity is assumed

constant, and for which simple expressions giving the velocity field have

been derived (see Section 3). The strength of the vorticity within each

A'



3

triangle is determined using two assumptions:

(1) The vorticity is constant through the wake thickness. This

corresponds to an assumption that the transverse velocity

profile within the wake is linear.

(2) The periphery of the wake is moving downwards with a

velocity determined by spanwise position and wing spanwise

loading, exactly as in ordinary wing-wake theory.

Assumption (1) can evidently be removed at the cost of increasing

the number of triangular elements used.

Once the triangle strengths are found, the network of points

defining the wake is allowed to distort with time under its self-induced

velocity field, using Euler integration. During this process viscous

dissipation is neglected, so that the vorticity inside each triangle

remains constant, as will its area (due to continuity), even though

the shape changes.

Examples of the initial roll-up phase have been calculated fo'.

three wakes .,f different thicknesses and elliptic cross-sections,

subjected to uniform downwash (corresponding to elliptic spanwise loading).

Details and results are given in Sections 5 and 6, and plans for future

work in Section 7.

- ----------- --------------
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2. THE MATHEMATICAL MODEL

The mathematical model of the wake and the notation are illustrated

in Fig. 1.

The unrolled wake cross-section A', whose boundary is denoted by

C', stretches between y = - s and y = + s in the plane x = C. kt

subsequent stations x =x, the boundary is denoted by C and the wake has a

rolled up form of cross section A with vorticity distribution (x,y,z) de-

termined by the original configuration of the wake cross-section, the

original vorticity distribution within it, C(O,y,z), and the elapsed

time x/U. It is assumed that

(O,y,z) = w (y) / (1)

corresponding to a linear variation with z of the velocity, v, within

the initial wake section, if the wake is assumed thin.

We define dimensionless coordinates

* y * z
y = - ; z = -(2)s S

and since a typical velocity of the flow in the wake cross-sectional
2UCL

plane is T-A )we also define dimensionless velocity components, time

and vorlicity by

* iAR.v *
V ;UC (3)
2UCL 2UCL

, 2CL X
= ,C X(4)t .AR.s(4

* * * * * * A EIT.AR.s

(~y) = 2UC ; (t ,y ,z ) 2UC (5)



We assume tihat w or W is determined by the boundary conditions:

(a) w cosA - v sinX = w- (y )cosA (6)±

on C'

where (dz /dy )C = tani, and

\V '2 *2 *2 *2

(b)+w 0 as y +z - (7)

-w T (y) is the non-dimensionalised downwash distribution in the

Treffz plane as calculated from the usual unrolled thin-wake theor-;.

For example, wi = - 1 for elliptic spanwise load distribution. It

is readily shown that, in che general form, W is dependent on the
t±

form of the spanwise loading and y only (c.f. reference 3).

It now follows that for a given initial wake cross-section and
* *

spanwise loading, the velocities v and w of a given fluid

particle are functions of t only, so that the subsequent non-

dimensional coordinates of the particles constituting the rolled wake

are functions of t only, determined by the differential equations

* dz
Sv ;(8)

dt dt

The equations (8) are integrated numerically step by step, starting

from the initial configuration, using Euler integration.

It remains to determine the velocity field (v , w ) due to the
*distribution E within C.
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3. THE VELOCITY FIELD

At any value of x, the two-dimensional velocity field, (v, w),

is determined by integraring the effects of point vortices of strengths

.(x,y,z)dy dz over the area of the wake cross-section, A.

To facilitate the nuerical calculations, A is divided into a

finite number of small triangular elements within each of which the

value of is assumed constant. We now find expressions for Av
n

and Aw due to a typical element of this kind for oints outside itsn

boundary, or approaching the boundary in a limiting sense. This enables

us to calculate v and w for the assemblage of triangles at all

the node points of the triangular mesh, including internal nodes of

A, since such points may be regarded as being inside infinitesimal cavities

excluded from all the adjacent triangles, and we calculate, in effect, the

principal value of the velocity integral - which is precisely the required

definition of this integral inside the vorticity distribution.

The velocity field outside any area S containing a constant

vorticity distribution, Ps #may be written
-iE s dYldZl

v i= ---, y + iz - Y 1iz (9)

Using Green's theorem, this may be converted to a line integral around

P, the perimeter of S:

v - iw =-- s  Zn( - yl - izl)dy1  (10)

P
where y+ iz.

"4"" % s " N - - .. . . . . . . . . . . . . . . . .. ,,.. . . ,
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If (10) is applied to a typical triangle of A ,of area LA

vorticity distribution strength Z n and vertices defined by A A B"

c(Fig. 2), we obtain

n = -n AA A £n( - A) +

AV -B i - +n n ~ C-A B-AA

+ ) (_B) Zn(r- B)+( _C (_ £n( - }

(rC-B H;A-BA BBCrC)Y C

(11)

n and A are both invariant with the motion for an infinitesimal
n n

triangle in incompressible flow, the product n nAAn  being the circulation

around the element.

2*
If we now write s 2A = AA then

2USCL * = 2 UsCL

n n rAR nAn 71AR (1

and if (see Fig. 2)

;-A = srAe ; B = sre ; -C sre
AB-BA Bei C

BA= B C-A = sbeiaC

C- sae iBC AB selA(13)r =-C =Asae = sceiaA

A-C = sbeYA 
B-C= saeYB

we obtain from (11)

K * n r
AVn = -{c[sin(a-C-aB)nrA + ccos (a-C -aB)] -

+ rB-[sin(O-C -a )nrB + acos(B-C -B )] +
ca C A BC A

r+ [sin(-yA-YB)ZnrC + ycos(y-yA-YB) ]}

K *
- K V (y ,z ) (14)

n n
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K r
= -- ccos(a-a C Znr -sin(a-C a

n bc CB A C-B
rBcos (-C- A ) £nr B - Ssin(8-c -B )] +ca ~A B C A
rC

+ C-(cos(Y-Y A-Y ) £nr - ysin(y-yA-y )]}ab A B C AYB

K n W n(y *z )

Hence we have the approximations

* It,
* 'U Z KV(y ,z) (16)

n=l

M* N * *w 7, K W (y ,z )(17)

n=l
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4. THE NU1..ICAL PROCEDURE

Because of the spanwise symmetry of the initial cross-section,

A', and the assumption (1), the M values of K are dependent on
n

a smaller number of values of n , say N. The boundary condition

(6) is now applied at N suitable node points on the initial boundary

A' (excluding the tip points), using the expressions (16) and (17),

with unknown coefficients, K = n An ,thus yielding N linear
*

equations for the n and hence the K . The equations (16) andn n

(17) may now be used to evaluate v and w at all values of t

once the dimensionless coordinates of the triangles are known. These

are found step by step by numerical integration of the equations (8)

forward in time t , starting with the known initial set of triangles

within A'. The development of the wake roll-up is thus calculated

step by step. The y coordinate of the "centroid" of vorticity of

one half of the wake is calculated at each step. This should remain

(10)constant and provides an accuracy check.
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5. THE WAKE OF ELLIPTIC CROSS-SECTION SUBJECT TO UNIFORM DOWNUASH

In this case the eauation of C' is

* *2
Z E1 -y (18)

and

WI = (19)

Also

tan A Ey (20)
1-*2

The cross-section A' is divided into triangular elements as

shown in Figure 3. It was found necessary to concentrate the triangles

near the tips. This was done as follows. Firstly a basic set of

spanwise stations was established by using an even number of equal

divisions of the eccentric angle coordinate

= ccs- y (21)

across the span. Next, the segment at the tip ;,as further subdivided

into two equal e intervals and all resulting divisions were then

again subdivided into two for a specified number of the segments,

starting from the tips and moving inboard. Using the horizontal dia-

meter of the ellipse as another division line, triangles may then be

filled in as shown in Figure 3. n is taken as constant over the

four triangles lying between any two vertical lines (at the tip - over

two triangles) and the same value is taken for the symmetrically

placed group on the other half wake. In the illustration, the span-

wise subdivision is 8 + 2 + 6, the number of triangles is 60 and the

number of different values of Cn is 8. The points for applying the



boundary condition are shown circled.

An analytic solution exists for the downward moving elliptic

cylinder, which corresponds to the flow at t 0. The flow

calculated by the present methcd at t 0 was compared t' his for

the three cases considered, namely, c .04, .05 and .06. In all

these cases, a subdivision of 40 -r 2 + 8 spanwise gave results for

surface velocity, total amount of vorticity in one half wake and

spanwise position of centroid, which were considered to compare

adequately with the theoretical values and this distribution of

points was also found to be just adequate for describing the spiral

structure of the core up to the time reached in the calculation of

the roll-up. During the roll-up, the centroid position spanwise

remained constant to a high degree of accuracy for the range covered

(change not mire than 1 part in 780). The total times covered were

t .0128, .0160 and .0192 for the thickness ratios .04, .05 and .06,

respectively.

The appearance of the tip region is shown fox various stages of

this initial roll-up in Figures 4,5, and 6 for e = .04, .05 and .06,

respectively and in Figure 7 one example of a complete half-wake is

shown. It should be noted that to clarify the inner detail of the

spiral, the vertical scale has been exaggerated in these figures and

this vertical scale is not uniform throughout all the pictures. The

results are discussed in the next Section.

..........
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6. DISCUSSION AND RESULTS

The time step, At , used in the numerical integration was found

to be a critical parameter in the calculation, whereas the results

were not very sensitive to spanwise divisions, provided sufficient were

present near the tip to ensure enough points, at close enough spacings,

to describe the spiral structure. After some experiment, it was found

that the 40 - 2 + 8 subdivision gave results as good as those from

larger numbers of cells, although the need for further points near the

tip does not become evident at later stages in the spiral development.

As regards At , if this is taken very small, chaotic moticn of the

points can develop after a large number of small steps have been taken

during the initial short period of high distortion rate of the wake

tip. This effect, which is not so critical later on in tne calculation,

appears to be due to accumulated errors resulting from neglect of the

distortions of the triangular elements at each step, distortions which

makes them increasingly curvilinear in reality. On the other hand, too

large a At leads to incorrect wake shapes which are not substantiated

on reduction of the time step. There seems to be an optimum At for

each thickness ratio which avoids chaotic motion and for which the wake

shape is relatively invariant with modest changes of this time step.

Another difficulty which occurred was overlap of triangular elements

(an event formally violating the equation of continuity of the motion).

This occurred either near the beginning of the roll-up, when the spiral

tip, turning inwards, occasionally crossed onto the main body of the

- - -' ,
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wake, or, later on, within the turns of the spiral. In the former case

a cure could be effected by slightly decreasing At , and in the latter

case more points should be incorporated near the tip. However, it was

found impossible to increase the number of points sufficiently to com-

pletely remove overlap within the spiral during the later stages when

the spiral coils stretch and wind up tightly. This is evidently a

difficulty inherent in the use of straight-sided elements to represent

a stretching spiral structure. It was found, however, that the shape

of smooth spiral curves drawn through the node points was not greatly

affected by the increase of points to avoid overlap, so it was con-

cluded that the true, smooth spiral shape was still given fairly

accurately by the node points even when a small amount of overlap

occurred, provided that the pattern fornmed a logical extension of

previous non-overlapping cases and that there was consistency between

neighbouring lines of the coilthat is between the original center-line,

which is shown dotted in the drawings, and the outer boundaries.

Using this approach, we are able to follow th, up to one and three-

quarter turns of the spiral, which occur in the present examples.

An analysis of the results shows that, for the range of thickness

ratios covered, for the elliptic cross-sectioned wake:

(1) Thickness has little effect on the amount of vorticity within

*

the core at a given t (Figure 8).

(2) Thickness has almost no effect on the size of the core at a

*
given t (Figure 9).
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(3) Except in the very initial stages of roll-up, the core

is of an approximately elliptic shape with height/wijth

ratio about 0.8 for all three thickness ratios studied

(Figure 10).

(4) The number of turns of the spiral within the core at
*

a given t increases with reduction of e, except

for very small values of t when the spiral is, in

any case, ill-defined (Figure 11). About one and three-

quarter turns are observed for the e = .04 case at

t = .0128 and for the c = .05 case at t = .0160,

and for the e = .06 case at t = .0192, just over

one and a half turns.

(5) An interesting result observed in all three cases is

that the original tip point of the unrolled wake does

not become the tip point of the spiral; instead it

recedes back along the outer edge of the coil. This

appears to be true also for subsequent tip points of the

spiral - these do not remain at the tip but are dragged

back along the outer edge of the spiral in their turn

and their place is taken by other points which were

originally more inboard along the upper edge of the

unrolled wake.
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7. FUTURE WORK

It is hoped to extend the present work into the more complete

stages of the rolling-up and also to deal with different wake cross-

sections and spanwise loadings.

For the later stages of the roll-up it would appear almost

impossible to follow the spiral right into the center of the core

and it is quite likely that considerable overlapping of elements

may then occur there. Provided, however, that the outer winds of

the spiral remain orderly and consistent, this need not trouble

us, since what matters is the presence of the correct amount of

vorticity in the core region, its precise location having little

effect on the outer spiral. In effect we will be employing,

automatically the "condensing" procedure of Moore (4 ) wherebye the

central part of the spiral is replaced by a point vortex.

Accuracy may, possibly, be improved by the use of curvilinear

triangular elements instead of straight sided ones and also by use

of a more sophisticated numerical integration method, such as the

Runge-Kutta method.
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