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1.  INTRODUCTION 

In recent times the problem of electromagnetic radiation 
scattering by aerosols has become quite important because of the 
widespread use of optical wavelength sources in various applications. 
An extensive theory has been developed over the years for the analysis 
of this phenomenon and it has been applied and discussed in a number of 
papers and texts. The core of this theory is the exact solution to the 
problem of scattering of a plane wave of arbitrary wavelength by a 
single spherical particle of arbitrary size and index of refraction. 
This solution was first published by Mie1 in 1908 and has been reworked 
in several modern treatments.2 

Since the details of the scattering problem are not of major 
interest here, it is sufficient to state that Mie's analysis shows that 
the field far from the sphere can be completely described in terms of 
two "amplitude functions," S^ and S2» given by 

Sl(9,x,m) = £ n|^i)  [an(x,m) TTn(e) + bn(x,m) Tn(e)] 

n=l 

00 

S8(9,x,m)= £ r|f±i) [an(x,m) Tn(e) +bn(x,m) TTn(9)] 

n=l 

where we have used the notation of Van de Hulst. These results apply 

to a sphere of radius r and index of refraction m Cwhich may be 

complex) embedded in a transparent medium of real refractive index n 

and having the same magnetic permeability as the sphere. The incident 

radiation is a plane wave of wavelength X (in the transparent medium). 

The variables in the above expressions are defined in terms of these 

fundamental parameters: 

x = 2nr/\, the Mie size parameter 

m = m /n . 
o' o 

lG. Mie, Ann.  Physik,  30_ (1908),   377. 
2ff. Van de Hulst,  Light Scattering by Small Particles,  John Wiley and 

Sons   (1962). 



The quantity 9 is the  scattering  angle,  and  the  "angular 

coefficents" IT  and T  are defined  in   terms of the Legendre 
n       n 

polynomials, 

dP (cos e) 
nn(e) =  dcose    ' 

an (e) 
T (9) = cos 9 TT (e) - sin: n 

n dcosG 

The first few expressions for these functions are 

n^e) = 1     T1(e) = cose 

^(e) = 3cos9     T (9) = 3cos29 

The quantities a and b are known as the "Mie coefficients" and are 
n     n 

the main  topic of this report.  They will be defined in detail in 

section 2.   These quantities  are  important because  a  number of 

parameters that are important in scattering studies can be expressed in 

terms of the a  and b .  For example, the particle's scattering cross 
n      n 

section is 

Qext (x'm) ="| I (2n+1) Re (an + bn), 
n=l 

or, as shown in Van de Hulst, 

%xt = \   Re Cs(o)], 
x 

where S(0) = Sj (0,x,m) = S2(0,x,m). 

2H.   Van de Hulst,  Light Scattering by Small  Particles, John Wiley and 
Sons   (1962). 



Other scattering functions exist that involve a + b , |a | + b  , 
n   n   n     n 

or various other linear combinations. Additional quantities that are of 

great importance involve more complicated combinations arising from 

terms like |S|2. 

It should also be pointed out that the amplitude functions are 
related to two orthogonal electric field components in the transverse 
plane of the scattered field. The reference plane for these components 
is called the scattering plane and is defined by the propagation vectors 
of the incident and scattered waves. Because of this correspondence, 
the polarization state of the scattered field can be determined from the 
amplitude functions and the incident field. For example, the scattered 
light is linearly polarized when Sj or S2 is zero regardless of the 
nature of the incident light. If the incident field is linearly 
polarized, the scattered field is generally elliptically polarized since 
Sj and S2 generally differ in phase. In the special case where Sj is 
the negative of S2, polarization is preserved (i.e., the polarization 
state of the scattered light is the same as that of the incident). 

When one considers the more practical case of an aerosol composed of 
many spherical particles, the Mie coefficients retain their importance 
because the scattering properties of the conglomerate are determined by 
those of the individual particles. For example, in a fog containing N 
particles per unit volume with n(r) dr particles with radii between r 
and r + dr per unit volume, the extinction coefficient, a, is given by 

%xt  ^ n(r) nrS dr 

where Q    (x) is,  of course, a function of r because of the definition 
ext 

of the Mie size parameter. This extinction coefficient describes the 

decrease in the intensity of the propagating wave over a path 

length I  through Bouguer's law, 

IU 
10 

= e -ai. 

In view of the above discussion  it  is  obvious  that once  the 

character of an aerosol is known  (by  specifying n(r) and m) one needs 

the  capability of numerically  computing  the  a  and b and many 
n       n 



(sometimes complicated) functions of these parameters. These 

computations must be performed at each of the wavelengths and scattering 

angles where one wishes to investigate the scattering. 

Generally, the complexity of the scattering functions requires the 

computations to be carried out by an automated procedure. This is 

especially true for the Mie coefficients themselves because they involve 

(as we shall see in section 2) the Ricatti-Bessel functions of complex 

argument and their derivatives. 

Unfortunately, the evaluation of these functions in certain ranges 

of n or mx creates many programming difficulties or computational 

inaccuracies.  In addition, there are many cases where the available 

tabulated values of the required mathematical functions are in a form 

that makes reliable manual checking of the computer results difficult or 

impossible.  Therefore, one would like to know the properties of the a 
n 

and b  to have some idea, at least (or more accurate information, if 
n 

possible), of what to expect from the computations. The results 

discussed in this report address this need to some extent and may also 

offer a means to reduce computation time. 

The properties of the Mie coefficients have been studied and some 
useful results are presented by Van de Hulst. In this report the 
asymptotic properties of these functions are considered. That is, the 
behavior when one of the parameters x or n is much larger than the other 
will be examined. The case where x >> n has been treated recently by 
Chylek3 and at an earlier time by Stratton.1* Their results, which 
include scattering by large spheres and can also apply to some 
perplexing questions3 that arise in scattering theory, will be discussed 
and somewhat expanded. For n >> x, the discussion in this report will 
be detailed. The latter parameter range deserves our attention since 
one is usually required to compute the Mie coeffients to values of n 
significantly greater than x to achieve a reasonable computational 
accuracy in any of the scattering functions.  This parameter range, 

2tf. Van de Hulst, Light Scattering by Small Particles, John Wiley and 
Sons   (1962) . 

3P. Chylek, Large-Sphere Limits of the Mie-scattering functions, J. 
Opt.   Soc.  Am.,   63_,   6   (June 1973),   699. 

**J. Stratton, Electromagnetic Theory, McGraw Hill Book Company 
(1941) . 



especially if x is large, is a difficult one computationally; hence, a 
knowledge of the coefficient's properties could be most helpful. This 
range also includes the elementary one of Rayleigh scattering. 

The remainder of this report contains the derivation and analysis of 
the desired asymptotic formulas. The accuracy and range applicability 
of these expressions are also discussed and some points of special 
interest are treated in detail. 

2.  THE CASE OF n » x 

2.1 Calculations and Some Basic Properties 

The Mie coefficients discussed in the previous section are 
given by 

tn(x)^(mx)-m^(x)^n(mx) 
an(x,m) = ?n(x)t'(i«)-m* (mx)r(x) 

(1) 
'n'  Tn  '  Tnx  '*n 

and 

m\lf (x)Wmx)-A (mxW'(x) 

VX'm) " m§T1(x)t'(ax)-* (mxWx) 
(2) 

=nx  nN    n"  ''n% 

where ty  (x) and £ (x) are the Ricatti-Bessel functions and the prime 
n       n 

denotes the first derivative of the function with respect to its 

argument. The Ricatti-Bessel functions can be expressed in terms of 

more well-known functions by 

tfn(x) = xjn(x) 

and 

Sn(x) = xh£
2) (x) = x [jn(x)-iyn(x)] 



where j (x), y (x) and h^2^(x) are the spherical Bessel functions of the 
n     n       n 

first, second,  and third kind, respectively.  The last function is also 

known as the Hankel function of the second kind. 

The first property to be demonstrated is that the a and b approach 
n     n 

zero for sufficiently large values of n.  An examination of any of a 

number of the properties of the forward scattered field shows that this 

statement must be true, because they involve summations  to n = °° of an 

increasing function of n multiplied by a + b , or the real part of that 
n   n 

sum, or the sum of the magnitudes, etc.  The physically objectionable 

situation where these summations increase without bound results if the 

a and b do not vanish.  A more rigorous proof of this property can be 
n      n 
obtained with the aid of the asymptotic expansions of the spherical 

Bessel functions. 

The forms that are of most use at this point are obtained from the 
ascending series representation of these functions. When conditions are 
such that the first terms of these series are accurate representations 
of the functions themselves, 

i (Z) «z7(2n+l)j: (3) n 

and 

yn(Z) ^-(2n-l)::/z
n+1 (4) 

where KM signifies the product K •(K-2) • (K-4)   *3'1, for K an odd 
integer. 

Equation (3) is accurate when 

izl2 

2(2n+3) < < 1 (5) 

10 



and equation (4) requires 

2(2n-l) 
< < 1. (6) 

These conditions give a more refined definition of the asymptotic 
region that was discussed previously (i.e./ the region where n >> x and 
n >>|m|x), and they will be used again in discussing the accuracy of our 
results. 

The use of equations (3) and (4) gives 

^n(x) ^xn+1/(2n+i):: (7) 

and 

c t   \ x"*1       i(2n-l):; 
?n(x)~(2n+l):: 

+  K     n ' 
(8) 

When these approximations* are used in definitions (1) and (2) the 
results are 

n ~ 1 - iA 
(9) 

and 

n ~ 1 + iB (10) 

where 

..-,2 .   ,       N      C 2n+l "\    f(2n-l)::i    { n+nm +1 >* 
An(x'm) <-n^l )        2n7l C  2~T ) 

m -1 
(11) 

Bn(x,m).r(2n-i)::f   (^W)   [i 2n+l 

2/ 2 ,\ x (m -1) 
(12) 

*The calculation of b    requires  the use of the next higher order term 

(in x/n)   in     the    series    expansion of j   (x)   and  y (x)   as  the first  term 

gives b    = 0  to first order, n 

11 



In view of conditions (5) and (6) it is clear that whenever the 
parameters are such that our approximations are valid it will also be 
true that the bracketed factor in equation (12) will be dominated by the 
second term. Thus, 

B (x m) ~ -r(2n+l)::f (2n+3) 
Vx'm; m     ,  2 ,v  2n+3 

(m2-l) 

(13) 

From equations (11)  and  (13) it should be clear that in the 

asymptotic case the functions A and B  increase in magnitude with 
n    n 

increasing n; and hence we conclude that for any value of x the a and 
n 

b tend toward zero for n sufficiently large.  This behavior of A  and 
n n 

B  may not be obvious from equations (11) and (13), but can easily be 

verified by considering the ratio of consecutive terms. For example, 

An+1  (2n+l)2 (2n+2) (n+1) rn+(n+l)m2+2 "I 
An  *   2        (2n+l) (n+2) Ln+nm*+l    J ' 

Where n is large (i.e., n >> 1) this expression can be reduced to 

n+1 

n 
- Mf) (14) 

which demonstrates the point clearly. 

This increasing trend of  |A | and |B | allows us to deduce an 

additional property of the Mie coefficients. For n sufficiently large, 

lAJ > > 1 

and 

W > > 1 

12 



so, for the case of real m (a lossless sphere), equations (9)  and  (10) 

may be approximated by 

1+i A 

n        A2 

n 

n 1         i 

A           n n 

1-i 
b    w —=" 

n    < 

B n 1        i 

n        n 

(15) 

(16) 

Thus, the Mie coefficients possess the property 

Re(a) «" [(I (a)]2 (17) n      m n 

Re(bn) M [(Im(bn)f (18) 

under the stated conditions. 

The accuracy of these approximations and their range applicability 
will be discussed later on. We shall first apply the approximations to 
several special cases. 

2.2 Rayleigh Scattering 

Let us now attempt to apply our results to the special case of 

Rayleigh scattering.  In this situation x << 1 and so n >>|m|x for n as 

small as unity. Furthermore, because of relation (14)  the a  + b 
n     n 

decrease very rapidly with increasing n. Thus, it is not necessary to 

consider n greater than one or two. Prom equations (15) and (16), 

including equations (11) and (13), 

Im ax * (2/3) x
J (^ m2+2 J  , Re &1 <*  (im a^ (19) 

13 



2 
Im a « (1/I5)x5 T S-lL.1 , Re a « (Im a )2        (20) 

* L 2m +3 

An,2 
>! «*  g "*/ , Re bx« (lmb1)". Im b, « X K"1) , Re b, w (Im b, )2 . (21) 

From these results it follows that the amplitude functions are 

3 / m -1 S^e) « i x3 ( 
m2+2 

(22) 

2 

s9(e) « i x
3 ( 2Lzi) cos e <23> 

when terms of order greater than x3 are neglected. This is the dominant 

form of the scattering, and is perfectly symmetric with the light 

scattered at right angles (6 = ir/2, 3ir/2) and in the backward © = ir) 

and forward (6 = 0) directions being linearly polarized. 

If one includes the x^ terms the result is 

2  ,N    , „  _ 2 

~ + T. [—1. 
_   .   v       .     3  / m2-r\ /. 2 Tm2+2      1 An2+2 N"| "I s^e) m i x   ( -g-J (i + x   \-w + 5 HHJcos ei      (24] 

m +1 ^m +3 ' 

2 o 2 n +2      m H 

u    30        2m1+3 

„   ,   v       ,  _3 / m2-l\   f .        2 r m2+2      m2+2    / cos2e\~| 1 S2(fi) « 1 X^ ( -g-J {COS 9 + X  L -gg- + -5- ( -£—jj }.  (25) 

These expressions* can be used to determine the requirements for the 
scattering to deviate from the ideal Rayleigh case.  This deviation 

*There should actually be a small correction term added to the 
bracketed multiplier of x2 in equations (24) and (25). This is 
necessary because one should include corrections from higher-order terms 
in the series expansion of the spherical Bessel functions to a} when 
considering S to terms in x5 . The additional term is 
0.6(m2  -   2)/mz  +2. 

14 



obviously occurs when the neglected terms in x5 begin to become 
significant. Note that when this occurs the right angle scattering is 
no longer composed of a single component, as 

S1(n/2) i x- mf-1 
m2+2 

and 

m +2 ^ cim +3 

= i x£    r(m^-l) M-]- 
Thus, the first deviation from Rayleigh scattering at right angles 

takes the form of an additional light component polarized in the 
direction normal to that of the dominant scatter. 

Since the intensity of the light components is proportional to 
|s/k|2(k is the propagation constant), the cross-polarized light at ir/2 
or 3ir/2 is x1* smaller than the dominant scatter and thus has a 
A-8 instead of the well-known A-1* wavelength dependence of Rayleigh 
scattering.  Note that at 8 = i we have 

S1(TT) = - S2(TT) 

from either equations (22) and (23) or (24) and (25). This relation can 
easily be shown to be exact from the definitions of S^ and S2. The 
consequence of this property is that the light scattered at IT radians 
has the same polarization as the incident radiation. 

2.3 Scattering by Perfectly Conducting Spheres 

For a perfectly conducting material the imaginary part of m is 
infinite. Thus, the results of the previous sections cannot be expected 
to apply since they require n>>|m|x. However, notice that if m is 
considered large, but finite, equation (11) becomes independent of m. 
That is, 

V*.»> - (*£) (^f^) - 
x 

15 



and this result can certainly be made valid by selecting n large enough. 
(That is, n >> |m|x.) We shall find that this result is valid when m is 
actually infinite and n finite. 

In attempting to apply the above procedure to the expression 

for B we encounter some difficulty.  When equation (13) is investigated 
n 

we find that B cannot be simplified in any way and is still 

m-dependent. This can be seen by rewriting equation (13) as the product 

of two factors, 

r t(san)::f\ r gm-3      1 
Bn - - 1 "SSI    t L x2(m2_1}  1  • 

the first of which is independent of m and the second of which is always 

greater than unity no matter how large we make m. This occurs because n 

must be selected large enough for equation (13) to be valid, as 

expressed by equation (5). This approach therefore yields no 

information. 

The desired results can be obtained by returning to the 

ins of a and 
n 

expressions shows that 

definitions of a and b ,  equations (1) and (2).  Examination of these 
n      n 

. ,   v   f (x) (28) 
b (x.oo) = Tnv ' 

5 (x) bnv ' 

For' n >> x equations (3) and (4) can be employed to obtain 

an(x,co) « i ^ (2n+l) nr(2n-l);:]
2 (29) 

n+1    2n+l 
x 

fAs in  the    general    case,    n » x    is    only    a    rough    indicator    of 
validity.     The more accurate requirement is 2 (2n +  3)/x2  »    1. 

16 



b (x,») M     - -s (30) 
n        1 + i(2n+l) [(2n-l):if 

2n+l 
x 

Note that equation (29) is consistent with (26).  These results 
indicate that for m = » the coefficients still possess the property 

Re(a ) = I2(a ) v n    nr n 

(31) 

and also that 

Re(b ) = ^(a ) v n    nr n 

a -. b* (32) 
n   n 

for large n (i.e., for (n+l)/n •*• 1) 

One should not be surprised that the results derived for finite 
values of m, equations (11) and (13), cannot be extended to conducting 
spheres, equations (29) and (30). After all, there are basic 
differences in the physical scattering mechanisms: when m is infinite 
there is no penetration of the field into the sphere; in addition, 
surface currents exist. These differences can be most easily 
demonstrated for small spheres. When m is finite, x can always be 
selected small enough for the previously derived Rayleigh equations to 
apply. When m is infinite, scattering of this type is not observed, no 
matter how small x is made. Consider equations (29) and (30) for small 
values of x. Again, we need only consider aj and bj for the dominant 
form of the scattering. These are 

a^r^s--1^ ,331 
2xJ 

bl- l.il --1 f <34' x 

17 



and so the amplitude functions are 

3 

s2(e) = i x3 (cos e - i) 

This result is not at all similar to that for Rayleigh scattering. 

In fact, the intensity of the backward C8 = IT) scattered light 
is nine times that of the forward (9=0) scattered light. In the 
Rayleigh case these intensities are equal. (If one considers the 
higher-order terms in equations (22) and (23) it can be seen that the 
forward scattering exceeds the backward.) It has been shown by 
Van de Hulst2 that these differences in small particle scattering are 
due to the presence of electric dipole (due to surface charge) and 
magnetic dipole (due to the surface currents) radiation from the 
conducting sphere, as compared to only electric dipole radiation (due to 
the induced volume polarization) for lossless spheres. 

2.4 Accuracy of the Approximation 

At this point we would like to investigate the accuracy of the 
approximations and the conditions under which they apply. 

The simplest starting point is the case of m infinite, since 

exact and relatively simple expressions for a and b  are available 
n      n 

here.  With the definitions of \b    and 5  in equations (27)  and  (28) we 
n n 

obtain 
tn(*)       (xjn    M)' 

a
n 

= FTXT 
=;: (2), xv, (35) 

^nv (xhn
v   '(x))' 

and 

(36) 
I'M '- 

1 
n 

H.   Van de Hulst,  Light Scattering by Small  Particles,  John Wiley and 
Sons   (1962). 

18 



Tables I and II contain values of the imaginary parts of a (x) 

and b (x) over a range of x's for various values of n computed from both 

the approximation formulas, equations (29) and (30), and from the exact 

relations given above. Equation (36) can be evaluated with the aid of 

the extensive tables of spherical Bessel functions given by Abramowitz 

and Stegum5 and the National Bureau of Standards.6* 

5M. Abramowitz and L. Stegum, Handbook of Mathematical Functions, 
National Bureau of Standards Applied Mathematics Series, 55, Sixth 
Printing  (November 1967). 

^National Bureau of Standards Mathematical Tables Project, Tables of 
Spherical Bessel Functions, Vols I and II, Columbia University Press 
(1947) . 

*The tables of    ref    6 give  1   (x)   for values of x from zero  to 25   (in 
n 

steps of 0.1)   for n    from    zero    to    14.     These tables also give j     (x), 
-n 

which can be used to compute y   (x)  by means of the relation   (ref 5) 

yn(x)  = (-Dn+l1n+lM 

The tables of ref 5 give j   (x)  and y   (x)  for values of x from zero to 10 
n n 

(in steps of 0.1) for n from zero to 10, for x from zero to 25 (in steps 

of 0.5) for n of 20 and 21, and for n from zero to 20, 30, 40, 50, and 

100 for x of 1,   2,   5,  10,   50,  and 100. 

19 



TABLE  I.     VALUES  OF   Im(an),   m =  °° 

X n n/x 2(2n+3) 

x2 

Im(an) 

(actual) 

Im(an) 

(approx) 

Relative 

error.* E 

0.1 

1 

1 

1 

5 

5 

10 

10 

1 

2 

5 

10 

10 

50 

20 

50 

10 

2 

5 

10 

2 

5 

2 

5 

1000 

14 

26 

46 

1.84 

8.24 

0.86 

2.06 

6.67 x 10~4 

3.04 x 10~2 

1.12 x 10~7 

-19 1.17 x 10 " 

1.21 x lO-5 

4.18 x 10"89 

1.84 x 10"9 

-59 5.02 x 10 

6.65 x 10~4 

3.33 x 10~2 

1.22 x 10~7 

-19 
1.22 x 10 

5.83 x 10"5 

5.36 x 10"89 

2.50 x 10~8 

1.36 x 10"58 

3 x 10-3 

9.5 x 10"2 

8.9 x 10'2 

4.2 x 10~2 

3.82 

2.8 x 10_1 

12.6 

1.71 

*c   =    (\actual   value - approximate value \) \actual   value] 
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TABLE II.  VALUES OF Im(bn) , m = °° 

2(2n+3) Im(bn) Im(bn) Relative 
X n n/x x2 (actual) (approx) I error, E 

0.1 1 10 1000 -3.31 x 10~4 -3.33 x 10~4 6 x 10~3 

1 2 2 14 -1.72 x 10~2 -2.22 x 10~2 2.9 x 10_1 

1 5 5 26 -9.26 x 10-8 -1.02 x lO-7 10'1 

1 10 10 46 -1.06 x 10-19 -19 -1.11 x 10 4.7 x 10"2 

5 10 2 1.84 -1.53 x 10~5 -5.30 x 10~5 2.46 

5 50 10 8.24 -4.10 x 10~89 -5.26 x 10"89 2.8 x 10_1 

10 20 2 0.86 -1.91 x 10"9 -2.38 x 10"3 11.5 

10 50 5 2.06 
-59 

-4.93 x 10 D* -1.33 x 10"58 1.70 

The evaluation of equation (35)  is a more difficult task 
because one must use 

f(x) = xj'(x) + j (x) 

and 

with 

?;(x) = (xj;(x) + Jn(x)) - i (xy^(x) + yn(x)) 

nf (x) 
f(x) = — f _(x) 

where f (x) is j (x) or y (x). 
n       n       n 
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Examination of the tables shows a strong relationship between 

the percentage error and the parameter 2(2n+3)/x2. In all the tabulated 

ranges of x, the error decreases as that parameter, increases. This 

decrease appears to be more rapid in the case of b , b\Sfc the accuracy 
•i1 

itself appears better for a for a given value of 2(2n+3)/x2.  Of 
n 

course,  as n becomes large the accuracy of a approaches that for b , 
n n 

since they become conjugates of each other. 

We have shown only the  imaginary parts of a and b in the 
n     n 

table; obviously the relative error in the real part is greater than e. 

Because of relation (31), the relative error in the real part of a and 
n 

b , Si  is given by 
n 

6 = c(2-e) . (37) 

The approximation errors can be seen to be very small for the 
case of small x. As x becomes larger the value of n must be increased 
to validate the formulas, but a value of 2(2n+3)/x2 as small as about 25 
makes the approximation useful. 

When m is finite the full relations (1)  and  (2)  must be 

employed to compute the actual values of a and b .  Consider first the 

case where m is real. Since we are primarily concerned with Mie 

scattering in clouds or fog, the obvious choice for a typical value of m 

is that of  liquid  water  at a typical operational wavelength. 

Fortunately, a real value of about 1.33 is sufficiently accurate for our 

purpose for all visible and infrared wavelengths up to about 1 or 2 y . 

The exact and approximate values of a and b for this index are shown 
n     n 

in tables III and IV for several values of x and n.  Again, a strong 

relationship exists between the accuracy of the approximation and the 
2 2 parameter 2(2n+3)/m x . These tables are not as extensive as I and II 

because  of the difficulties in computing the values, but it is clear 

that the case of real finite m does not behave differently from the case 
2 2 

of conducting spheres, i.e., for 2(2n+3)/m x sufficiently large the 
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approximate formulas are accurate enough to be useful.  In this case, 

however, a value of about 10 may be acceptable for this parameter.  This 

point is verified in tables V and VI, which also give the actual and 

approximate values of the coefficients for a real value of m.  The 

tables show errors of only about 7 and 3 percent in a  and b  for n       n 
2(2n+3)/m2x2 as low as 6.5. (An oddity in table V is that of a for 

n=2. The error here is smaller than expected and is inconsistent with 

the behavior in all other tables.) 

TABLE III, VALUES OF Im(an), m = 1.3: 

X n n/x 
2 (2n+3) 

2 2 m x 

Im(an) 

(actual) 

Im(an) 

(approx) 

Relative 

error, E 

0.1 1 10 565 1.36 x 10~4 1.36 x 10~4 0.00 

1 2 2 7.9 7.10 x 10~3 7.84 x 10~3 1.00 x 10_1 

1 5 5 14.7 2.95 x 10~8 3.16 x 10"8 7.10 x 10~2 

5 10 2 1 5.43 x 10"6 1.56 x 10"5 1.87 

TABLE IV.  VALUES OF Im(bn), m = 1.33 

2 (2n+3) 
2 2 m x 

lm(bn) Im(bn) Relative 
X n n/x (actual) (approx) error, e 

0.1 1 10 565 1.71 x 10~7 1.71 x 10"7 0.00 

1 2 2 7.9 4.54 x lO-4 4.88 x 10-4 7.50 x 10"2 

1 5 5 14.7 5.17 x 10'10 5.47 x 10~10 5.80 x 10-2 

5 10 2 1 8.38 x 10"7 2.11 x 10"6 1.50 
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TABLE V.  VALUES OF Im(an), m = 2 

X n n/x 
2(2n+3) 

2 2 
m x 

Im(an) 

(actual) 

Im(an) 

(approx) 

Relative 

error, e 

0.1 

1 

1 

5 

1 

2 

5 

10 

10 

2 

5 

2 

250 

3.5 

6.5 

0.46 

3.34 x 10~4 

1.75 x 10~2 

6.61 x 10~8 

1.31 x 10-5 

3.33 x 10~4 

1.82 x 10-2 

7.05 x 10"8 

3.43 x 10"5 

3.0 x 10-3 

3.4 x 10"2 

6.7 x 10~2 

1.6 

TABLE VI.  VALUES OF Im(bn), m = 2 

X n n/x 
2(2n+3) 

2 2 
m x 

Im(bn) Im(bn) Relative 

(actual) (approx) error, e 

0.1 1 10 250 6.68 x 10~7 6.67 x 10"7 1.5 x 10~3 

1 2 2 3.5 2.01 x 10~3 2.67 x 10~3 3.3 x 10-1 

1 5 5 6.5 2.08 x 10~9 2.14 x 10~9 2.9 x 10~2 

5 10 2 0.46 4.75 x 10 8.23 x 10"6 7.3 x 10-1 

Finally, where m is complex,  equations (15) and (16) do not 

apply and (9) and  (8)  must be employed.   For liquid water drops a 
7 8 

complex index is applicable at longer wavelengths,   such as the 

particularly important 10.6pm and 4y m regions.  Deirmendjian and 

'D. Deirmendjian, Electromagnetic      Scattering      on      Spherical 
Polydispersions, American Elsevier Publishing Company     (1969). 

8F. S. Harris, Calculated Mie Scattering Properties in the Visible 
and Infrared of Measured Los Angeles Aerosol Size Distribution, Applied 
Optics,  11   (November 1972),  2697. 
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Harris8 give the real part of m a value in the range of 1.2 to 1.5 in 

this longer wavelength region, and an imaginary part ranging from a low 

value of 0.006 to an upper limit of 0.094. Since the computations for 

complex m are quite tedious, we shall only consider some typical values 

of m and only some important values of x. The most important of these 

values are arrived at by considering the typical mean particle radius in 

a cloud to be 3 ym, which implies an x of about 5 at 4 y m (with 

m = 1.33 - i.06) and of about 2 at 10.6 vim (with m = 1.33 - i.10).  The 

exact and approximate results are shown in tables VII and VIII. These 

tables indicate that, as when m is real, a value of about 10 or greater 

for the parameter 2(2n+3)/(|m | x2) makes the approximations quite 

acceptable. When m is complex, however, the relationship between the 

fractional error in the real (6) and imaginary (e) parts of a and b is 

not as obvious as in the case of real m. 

In summary, we have seen that the accuracy of the approximate 
formulas is controlled by the value of the parameter K, where 

2(2n+3) m finite 
• 2 2 

|m x 

(38a) 

K = 

2&f± m infinite , (38b) 

The formulas are quite accurate  (about 5 to 10 percent or less error) 

for K as small as 10 (25 for m =°°).  This kind of accuracy is certainly 

good enough for a check of computed data points and for analysis of the 

asymptotic behavior of various scattering parameters.  This level is 

not,  however, good enough for numerical calculation of scattering 

parameters that involve sums over n of functions of a and b .  Of 
n     n 

8F. S. Harris, Calculated Mie Scattering Properties in the Visible 
and Infrared of Measured Los Angeles Aerosol Size Distribution, Applied 
Optics,  11_ (November 1972),  2697. 
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TABLE VII.  VALUES OF an FOR COMPLEX m 

X n m 
2 (2n+3) o~/ = \   exact) Re(an) ,      . 

" (approx) 
T ,  . (exact) 
Im(an>(approx) e 6 

1 2 1.33 
-.06i 

7.9 1.23   ln-3 
1.30 x 10 

7.10   ln-3 
7.89 X 10 0.11 0.06 

2 6 II 4.2 2'16 x 10'7 

2.73 X iU 
1,39 x 10"6 

1.80 
0.29 0.26 

5 10 II 1.0 0.871   lr,-6 
2.37  x 10 

0.545   ln-5 
1.58  X 10 

1.7 1.9 

0.1 1 1.33 
-O.Oli 

562 3.75   n.-5 
3.75 x 10 

1.37   ..-4 
1.37 X 10 

0 0 

1 2 II 7.9 2-01 x 10"3 

2.13 X iU 
7.13   1r,-3 
7.90 X 10 0.06 0.11 

1 5 II 14.6 7"58 x 10'9 

8.10 X 1U 
2.98   ..-8 
3.21 X 10 

0.07 0.08 

5 10 II 1.0 L-45 x 10'6 

4.90 X 
0.549   ..-5 
2.59  X 10 

2.4 3.7 

course, the accuracy can be improved without limit at the expense of 

increasing n, but (except for small x)  this step may render the whole 

approximation useless because the (accurate) values of a and b may be 
n     n 

so small that the nth and higher terms in the summation contribute 

nothing to the total summation. 

Before moving to the case of x >> n, we should point out an 

apparent paradox in our results. According to equation (38a), larger 

and larger values of n are required to validate the approximation as m 

increases. However, when m becomes infinite equation (38b) indicates 

that a smaller value of n is suddenly acceptable. This apparent 

inconsistency is easily resolved when one considers the fact that 

equations (27) and (28) are not only valid for infinite m, but also 
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TABLE VIII.  VALUES OF bn FOR COMPLEX m 

X n m 
2(2n+3) 

l |2 2 |m| x 

Re(bn) 
(exact) 
(approx) 

T ,,  . (exact) 
Im(bn),      . n (approx) 

E 6 

2 6 1. 33 
-.06i 

4.2 1.60 
1.91 

x 10"8 7.44   1A-8 
9.21 X 10 0. 19 0.24 

5 10 II 1 1.91 
4. 39 

x 10~7 0.830     -6 
2.11  X iU 

1.5 1. 3 

0.1 1 1.33 
x.li 

562 5.91 
5.91 

x 10~8 1.69   ,„-7 
1.69 X 10 

c 0 

1 2 » 7.9 1.63 
1.69 

-4 
x 10 4-46 X 10~4 

4.82 
0.08 0.04 

1 5 " 14.6 1.81 
1. 89 

,.-10 x 10 5.10     -10 
5.40 X iU 

0.06 0.05 

5 10 » 1 3.18 
7.29 

x 10~7 °-815 x 10'6 

2.08  x XU 1.6 1. 3 

apply  for finite but sufficiently large values.  Though it  is 

impossible, or at least very difficult, to estimate the value of m 

required for this  to occur,  examination of the general expressions a 
n 

and b  clearly verifies the correctness of this  statement.  The n 
implication is that as m increases a gradual  transition in the 

requirements on n occurs.  This transition transforms the requirements 

defined by equation (38a) into those of (38b) while the forms of a and 
n 

b  given in equations (27) and (28) become valid  (even though m is 
n 

finite). 

Thus, it is clear that when m is much smaller than some 
unspecified value the minimum required n is given by equation (38a) and 
when m is much larger than this value the requirement is given by 
equation (38b). Fortunately, we need not be concerned with 
"intermediate" values of m where neither equation (38a) nor (38b) 
applies. In situations of practical interest where m is finite, its 
magnitude is so small that equations (27) and (28) cannot possibly be 
valid and hence equation (38a) applies. Also, the most interesting case 
involving a large index is that of m infinite and therefore 
equation (38b) applies. 
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3.  THE CASE OF x >> n 

3.1 Calculations and Some Basic Properties 

Let us now turn our attention to the case of mx » n. This 
region was treated by Chylek3 as the limiting one for very large spheres 
(large x), but the results here require only that mx be large compared 
to n. Results similar to those of Chylek were obtained by Stratton4 in 
an earlier work. 

The approach taken here will be somewhat different than that 
used in the previous papers, as we start with the asymptotic form of the 
Bessel functions ,** 

sin (Z - m 
Jn(Z) -  Z  (39) 

yn(z) m    -C0S <Z - T> (40) 

for | Z |>>n.     These expressions give 

tn(Z) - sin (Z  - f) 

fn(Z) « sin (Z - |!) + i cos   (Z  _ m) 

•;(Z) - cos  (Z - f) 

S;(Z) M cos (Z - f) - i sin (Z - at) . 

3P. Chylek, Large-Sphere Limits of the Mie-scattering functions, J. 
Opt.  Soc.  Am.,   63_,   6   (June 1973),   699. 

UJ. Stratton, Electromagnetic Theory, McGraw Hill Book Company 
(1941) . 
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Examination of these expressions and equations (1) and (2) 
reveals some useful properties of the Mie coefficients. First, we 
notice that a change in the index n of two steps in the above 
expressions simply results in a change of sign on the right side. That 
is, 

*n+2(Z) m sin (Z - JSjplS) = . sin (z - f) « -fjz), 

and, 

t;+2(z) - -t;(z) 

Wz> - -^z> 

Since the expressions for a and b  involve only the product of 
n     n 

various pair combinations of the functions  y , f', £ , £', we see that 
n  n ^n ^n 

the sign changes introduced by an index shift of two steps cancel, hence 

an+2(x,m) w an(x,m) (41) 

bn+2^x'm^ * bn(x>m) • (42) 

Next, we see that an index shift of one step in equations (39) 

and (40) transforms w and r  into their derivatives.  That is, 
n    sn 

•n+1(Z) M sin (Z - fi££). _cos (z - f) ~ - t-(z) 

and similarly, 

I _(Z) « ?'(Z) 
'n+lx    bnv ' • 

29 



and 

that 

In the same way one can also determine that 

WZ) * *n<Z> 

?n+1(z) - ?n(z)  . 

When these relations are used in equations (1)  and (2) we find 

a ,(x,m) « b (x,m) (43) 
n+lv ' '   nv ' ' 

and 

b n(x,m) ~ a (x.m) . (44) 
n+lv ' '        nv ' ' 

The results of equations (41),  (42),  (43),  and  (44) can be 
summarized as follows for Imlx » n, 

a (m,x) *» b (m,x) «= a_(m,x) « b, (m,x) <« ... (45) 

b (m,x) «s a2(m,x) « b_(m,x) «a a, (m,x) «* ... (46) 

The results obtained so far are valid for any value of m 
(including infinity), but to proceed further we shall consider real, 
complex, and infinite values separately. 

3.2 Perfectly Conducting Spheres (m = °°) 

Here we may use the approximations in equations (27)  and  (28) 
to obtain 

cos m ., 2icp 
a =     wn  = 1+e  n 

cos m -i sin ©     2 
^n      n 

sin cp         1-e ^n 
bn =     ^n  =  

sin 9 +1 cos co 
n      n 
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where <J> is equal to xrnr/2.  With the aid of these expressions and some 

simple trigonometric identities one can obtain the following results: 

ajx) • aJxikrr) ir n* 
k = 0,1,2. 

b (x) = b (xlkir) n n~ 

(47) 

b (x) = a (x±§I) = a ... (x) } 
nx '   nv 2 '        n±k^ ' 

a (x) = b (x±^) = b .. (x) nv '        sr     2 '        n±kv ' 

k = 1,3,5, (48) 

a (x) + b (x) = 1 + Oi (49) 

|an(x) - bn(x)|= 1 (50) 

|an(x)|
2
+|bn(x)|

2 = 1 

-X -X- 
a b  = i sin 0 cos <h    = -a b 
n n        *n    ^n   n n 

(51) 

(52) 

Additional relationships can also be constructed by using 
equations (45) and (46) in the above expressions. Furthermore, the 
coefficients can be expressed as 

a = cos cp + i sin cp cos cp 
n       n        n    ^n 

(53) 

b    = sin    cp    - i sin cp    cos cp n n n n 
(54) 

from which one can easily determine the relations between their various 
parts.  For example, 

Re [an(x + n/U)] = § -  Im |>n(x)] (55) 

and 

Im [a (x + TTA) = Re [a (x)] - \ 
111 XI 

(56) 
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Also,  by  rewriting  equation (53)   (or  the  above  exponential 
representation of a ) as 

an = (i + | cos 2$n) + i i sin 2$Q 

we see that 

K4I = h (57) 

Similarly, 

|bn--|| = |. (58) 

These last results are useful for checking numerical results, 
and it has been shown by Van de Hulst that they are exact expressions 
for any value of x, provided that m is real. We shall see later that 
equations (57) and (58) are also special cases of the general result for 
complex m in the large x approximation. 

One can estimate the requirement on the ratio of x to n for our 

results to be accurate by examining some particular examples.  Figures 1 

and 2 are plots of Re la.    + b ) and Im (a    + b ) versus x for various 
\ n   n/      \ n   n/ 

values of n. If we set some arbitrary criteria for judging the accuracy 

of equation (49), say 

|1 - Re(a + b )| <.  lO-2 (59) v n   n' ' 

and 

|lm(a + b )l s 10"2 (60) 
n   n 

then a minimum acceptable value of x can be determined for each n. 

Examination of the figures indicates that the above criteria are met for 

all x > x where x is approximately given by 

x = 2(n+l) (6D O    \   / • 

2H. Van de Hulst,  Light Scattering by Small Particles, John Wiley and 
Sons   (1962) . 
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0.91 
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Figure 1.  Real (a + b ) versus x for m - °° 
n   n 
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0.040 y 
Im (a4 + b4) 

0.030 

0.020 

0.010 

-0.010 — 

-0.020 — 

-0.030^ 

-0.040 

Figure  2.     Imaginary   (a    + b  )   versus x  for m = 
n        n 
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This result can be used as a guide to the applicability of all 

our results concerning the linear combinations of the a and b and of 
n     n 

their parts.  This estimate is similar to one made by Chylek3 (x    = 2n+ll 

in connection with the accuracy of the relations between the a  and b 
n       n 

themselves [(45) and (46)].  However,  it appears that equation (61) is 

not sufficiently large for the applicability of these equations.  For x 

greater than the x given above,  the real and imaginary parts of these 
o 

functions are different for each n. This phase shift can cause gross 

differences in the quantities that are supposedly equal by equations 

(45) and (46). As x increases, this phase shift decreases slowly until 

at some sufficiently large value equations (45) and (46) apply to within 

a required tolerance up to some maximum n. 

3.3  Sphere with Real, Finite Index of Refraction 

For real values of m, equations (39)  and  (40)  can be used to 
obtain 

-cos x sin mx + m sin x cos mx a
1 =  

sin mx (i sin x - cos x) + m cos mx (sin x + i cos x) 

cos mx sin x - m cos x sin mx  
1 ~ m sin mx (i sin x - cos x) + cos mx (sin x + i cos x) 

These may be rewritten as 

f^ (m,x) +if  (m,x) f  (m,x) 
a. =  — r  (62) 
1 f3(m,x) 

g±  (m,x) +ig1 (m,x) gg (m,x) 
b = r  (63) 1 g-,(n,x) 

3P. Chylek,  Large-Sphere Limits of  the Mie-scattering functions,     J 
Opt.  Soc.  Am.,  63,   6   (June  1973),   699. 
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where 

f = sin mx cos x - m cos mx sin x 

fp = sin mx sin x + m cos mx cos x 

2     2   2 
f.. = sin mx + m cos mx 

g. = m sin mx cos x - cos mx sin x 

gp = m sin mx sin x + cos mx cos x 

2,2       2 
g„ «» m sin mx + cos mx . 

Examination of these expressions seems to indicate that no 

further simplifications can be made, nor can one detect any special 

properties of a  or b or their various linear combinations.  This last 
n     n 

observation, that quantities like (a + b ) or |a|2+|b|2,  etc., do 
\ n    n/     n     n 

not approach a limiting value for large x, is itself significant and is 
3 

illustrated graphically by Chylek. 

3.4 Sphere with Complex Index 

For complex values of m one may substitute m • u + iv into 
equations (62) and (63) and use the expressions 

sin [(u + iv)x] • sin ux cosh vx + i sinh vx cosh ux 

and 

cos [ (u + iv)x] » cos ux cosh vx - i sin ux sinh vx 

to determine a and b..   This operation is  simplified when the 
approximations 

3P. Chylek, Large-Sphere Limits of the Mie-scattering functions,    J. 
Opt.  Soc.  Am.,  63_,  6   (June 1973),  699. 
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vx 
v > 0 

2 5 

sinh vx 

-vx 
=V- , v < 0 

and 

elv|x 
cosh vx % 

2 

are employed.  This is a valid procedure if 

e ' ' > > 1 . 

With these approximations, one finds that after a good deal of 
manipulation, 

a.    + b ea 1 + Oi (64) 

|ai|2+ IbJ^Kl. |^|
2) (65) 

1 1   l1   'm+11 

1
 I   Iv,    i l ~ i im~i| la. - *( * |bn - i| «* lr=rl (67) 

*      u    Re(m) 
Re(alV - |m+l|

2  |m+l|
2 ' (68) 

Though derived for n=l these results of course apply for any value of n 
because of relations (45) and (46). Note that if the imaginary part of 
m is allowed to approach °°, equations (65), (66), (67) and (68) reduce 
to our previous results for a perfectly conducting sphere, 
equations (50), (51), (52) and (57). 
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It should also be pointed out that for given values of x and n 

these asymptotic forms are more accurate for larger values of v, i.e., 

im(m), because of our approximations for the hyperbolic functions. 

Alternatively, one can say that the asymptotic limit is approached more 

rapidly (lower value of x) for a given value of n at larger values of v. 

This point can be seen quite clearly in figure 3 by examining 

the plots of Re (a.-^ + b^ for two values of v, -0.06 and -0.1; the latter 

value settles to the asymptotic value at a lower value of x. If we 

apply our previous criteria, equation (59), for determining a value of x 

where the limit is reached, that is 

|1 - Re {a1 + \i  )]   <  10-2 

for all x > x , we find by examination of the figure that 
o 

x ~ 21 for v = -0.1 
o 

x ~ 35 for v = 0.06 
o 

Note that both these values fit the relation 

x - 1-1 (69) 
o   i v1 

quite well.  The form of this expression is not surprising when we 
consider the previously established requirement of 

e ' '  > > 1. 

Apparently, a value of e2 is sufficiently greater than unity for our 
criteria to be met. 
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Re (a, + b,). m = 1.33 - i 0.06 

I  y Re (a4 + b4), m= 1.33-i 0.06 

l/ 

Figure 3.  Real (a + b ) versus x for complex m. 
n   n 
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The values of x given by equation (69) in these examples are 

much greater than those given by equation (61) for the conducting 

sphere. This occurs because the v dependence of the approximations 

dominates at the low v considered so far (as compared to the basic 

requirement that m|x|>>n). As v increases, we can expect the value of 

x required for accuracy to decrease to the limiting value established in 

the case of infinite conductivity (v = »). Thus, at a given value of x 

greater than 2/v, the limit in n for our results to apply is probably 

set by equation (61) (with a modification for finite m), 

2(n + 1) x > -y-| L   • 
!m| 

Since the minimum x required is 2/v, we have 

n <M _! . (70) 

To verify this result the data should be plotted for higher 
values of n, values greater than given by equation (70), in figure 3. 
This has not been done, but an examination of some data seems to 
indicate that equation (70) may be overly generous in n by a factor of 
about 2. 

4.  CONCLUSION 

The desired asymptotic forms of the Mie coefficients have been 
derived and discussed. The accuracy of our approximations and their 
ranges of applicability have also been investigated. These results can 
be of great value in verifying computer calculations and could possibly 
be employed to simplify programs and reduce computation time. In 
addition, the results are a necessity for analytical investigations of 
scattering by spheres whenever the parameters are in the asymptotic 
regions. This last point has been illustrated by our detailed 
discussions of several cases of particular importance. 
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