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i f Notation
.
. ’ 8 n®® polynomial constent for the velocity profile (Chapter k)
E ) Boo speed of sound (Chapter 5)
i . A cross-sectional area of a shock tube
F bn nbh polynomial constant for the enthalpy profile (Chapter -4t)
| B magnetic field intensity
E» ! Bn nt’h constant used in Eq. 4.39b
‘ cn nth polynomial constant for the degree of ionizatbtion profile
(Chapter k)
E - c ratio pi/p b
C, n"® constant used.in Eq. 4.39¢
5 C, defined by Eq. 5.2b
; “ | Cp specific heat at consbtant pressure
: c¥* defined by Eq. 3.31
E Ce skin friction coefficient defined by Eq. 5.18
k D am ambipolar diffusion coefficient
] e electron charge .
E electric field intensity
; £ velociby ratio defined by Eq. 4.22
[ £1 velocity ratio defined in Section 4.8
?’ 3 F ptB integral form defined by Eg. 4.23 (n =1, 2 or 3)
{ 5 g total enthalpy ratio defined by Eq. 4.22
E ) G,ji defined by Eq. 4.2
- G(x) defined by Eq. 5.3
h enthalpy (specific)
H enthalpy (total)
I ionization energy
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r




4

T T TR

YT

PETEIY

—y

i T

Cv——r

e e o i e oo e T

‘

Pij
Pr

. . =, T T R WA i ot
= SRS S o S AR ARSI e [P

an integral defined by Eq. U.hk
Boltzman constant

production rate used in Chapter 3
equilibrium constant of the production rate
thermal conductivity

constant defined by Eq. 4.23
characteristic length

Lewis number

mass

Mach number

particle number density

pressure

pressure tensor

Prandtl number

collision cross-section

uw/ue

gas consbtant

Schmidt number

excitational cross-section constant
time

temperature

particle velocity in the x-direction
particle velocity in the y-direction
drift velocity

mass production rate

direction parallel to the shock-tube wall

direction normal to the shock-tube wall

PPN

ratio of the degree of ionization defined by Eq.k.22
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3 | 3] boundary layer thickness
: ) € . internal energy
‘
| A defined by Eq. 4.27
? 1] viscosity
: v collisional frequency
p density
" coordinate defined by Eq. 4.20
Ny coordinate defined by Eq. 4.62v
l & coordinate defined by Eq. 4.20
& coordinate defined by Eq. 4.62b
Fc Ji'o) potential betweén the wall and the plasme
>E, Subscripts
a atom
i Ar argon
A;' argon ion
e electron (Chapter 3) :
e boundary layer edge (Chapters L4 and 5)
f ionization or forward reactior (Chapter 3)
' * H hydrogen
Ht hydrogen ion
) i ion
I ionizabion
r reconmvination or backward reaction
s sheath region (Chapter U)
s shock (Chapter 3)
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1. INTRODUCTIfN

The. structure of a strong shock wave in an icnizing gas, and the
associgbed nohequilibrium boundary layer flow behind such a shock, have
recelved considerable attention during the past decade, Research into shock
structure has determined how elastic)and inelastic collisions among atoms,
ions and electrons can influence the ionization process. Shock-structure
measurements present an opportunity for an indirect determination of
excitation (or fonization) cross-sgctions for heavy gas particles.

An understanding of boundary-layer flows. in a partially ionized
gas 1s helpful in designing a suecessful reentry into ‘the Earth's atmosphere
abt supersonic and hypersonic conditions. If the term boundary layer cen be
applied to any region of a continuum flow within which the (bransport of mass,
momentum and energy by diffusive mechanisms is important, then the boundary
layer of an ionizing gas can be seei 'to be geherally more complex than that
normally encountered in a non-ionized aerodynamic type of flow. The presence
of ions and electrons introduces new transport mechanisms in the boundary
layer. Additionally, the magnitude of the various. transport. properties of
8 partislly-ionized gas can be markedly different from a perfect ;gas. Even
today, after many years of research, bourndary lsyer flows of a partially-’
ionized gas are not fully understood, experimentally or theoretically, .

Experiments were recently conducted at UTIAS, using a hypervelocity
shock tube. These experiments provided unighe and reliable data. (inber-
ferometric) on both the structure of a strong shuck wave in argon and on the
shock-induced, nonequilibrium boundary-layer fldws in ionized argon, in
order to compare with the analyses. )

In Chapter 2 the 'general equations of motion for a partially
ionized gas have been reviewed briefly. A simple model for studying initial
ionization and relaxation processes behind strong shock waves in an argon
flow is given in Chapter 3. The excitation (or ionization) cross-section
constant for argon atom-atom collisions can be and is determined from a
comparison of thenretical end experimental results. The constant determined
herein is more relisble than the value obtaihed by Kelly (Ref. 12), which
has been widely accepted for previous theoretical calculations: The im-
purity effect of hydrogen molecules on shock structure in argon is also
determined and discussed, and the theoretical and experimental resulbs are

compared..

The laminar, nonstationary, shdch tube-wall boundary layer behind
a normal shock wave, and the quasi-steady flat-plate boundary layer in
partially ionized argon, are both considered. in Chapter 4. The method of
solution was based on the Karman-Pohlhausen integral method. The integral
and similarity solubtions are compared and the results discussed., Theoreti-
cal callculations for nonequilibrium, frozen and equilibrium flows are

compared with UTIAS experimental data.

In Chapter 5 the cold-wall similarity method of Sullivan is
adopbed and extended, in order to treat the irderaction of a laminar
boundary layer with a corner-expansion wave in a partially ionized super-
sonic argon flow, The flow was assumed to be frogzen both before and
after the corner expansion. Actually, this assumption is not valid, as
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deduced from experimental results (see Chapter 5). However, the assumption
greatly simplifies the calculations, and it provides a rough estimation of
the variations of pressure, density, temperature and Mach number as a
function of burning angle at the edge of the boundary layer. The validiby
of this oversimplified model is discussed.

In the last chapter discussions are given on the significence of
the theoretical models.

2. GENERAL EQUATIONS OF MOTION

2.1 Introduction

The general formulation of the gasdynamic conservation equations
for individual species in a nonequilibrium partially ionized gas mixture
has been reviewed by Appleton and Bray (Ref. 1). The conservabtion equations
for the electrons and the overall conservation equations were developed for
& three-component plasma consisting of neutral atoms, singly ionized ions
and electrons. In this formulation the main assumption is that each of the
three components has a Maxwellian velocity distribution. Also, the electrons
can have a temperature that is different from the heavy particles and they
can drift relative to them.

The nonequilibrium electron temperabure is of interest in gasdynamic
problems involving ionized gases, nemely, ionization and relaxation processes
in shock waves and in expansion flows in rarefaction waves, nozzles (Ref. 2)
and abt corners. Nonequilibrium phenomena of electron {or ion) mass production
are also of interest in shock structure, boundary layer and expansion-wave
(Ref. 3) problems. Recently, Igra (Ref. L) reviewed briefly the relevant
formulations and 'atomic processes, especially the three-body recombination
process. The latber was studied in some detail.

In this chapter the basic equations are presented for a nonequilibrium
laminar boundary-layer flow induced behind a normal shock wave on. the shock-
tube wall or over a sharp leading edge flat plate. The basic equations for
an ionized argon plasma flow are based on the general formulation (Ref. 1)
of the conservation equations.

2.2 General Equabtions of Motion for an Ionized Gas

An ionized monatomic gas or plasme is considered which consists of

a mixture of abtoms, singly ionized ions and electrons. For each épecies the

croscopic balance equations canibe expressed (Ref. 1) by using the plasma
croscopic properties, as shown below,

gg [n <o >] + a—zj [n, < ¢, vsj >} = () (2.1)

The quantity < ¢s > is the average of the property ¢S, n is the number density
of species s, I(¢s) is ‘the source term of property ¢S, and Vs is the total




velocity of a particle of species s. The source term expresses the change
in < ¢g > as a result of both external influences (i.e., electric, magnetic
and gravitational fields) and internal influénces (i.e., chemical reactions,
heat conduction, diffusion and viscosity).

In this anelysis, for a mixbture of atoms, ions and electrons, it
will be assuméd that each species has a Maxwellian velocity distribution
with an eppropriate temperature.

The equations for mass-production rate, momentum and energy for
‘the electron gas are given belowg

Mo, D1,y .le (2.2)
ot Sid e Y 1 = m '
op . s '
-a-;-% =-n e[E" + (ue ¥ B)™]

+n me(vea + Vei) (ui - uei) (2.3)

J€ o

e, 9, + 3 2 'j—-——pe' -——dne Iy +
ot ij [(ee pe)ue )= Ye ij TRl Q‘rad
+ 2n iﬂ-‘?(v fv B KT -1) +Em (- wi)) (2.4)
e ma esa ei’*2 e 2 a e

The subscripts e, a, and i denote electron, atom and ion, respect-
ively; u and ue are the velocities of the heavy pérticles (atoms .and ions)
and electrons, respectively; we is the rate of creation (or disappearance)
of electrons; my and me are the masses of the heavy particles (mass of an
atom is approximately equal to that of an ion) and electrons, respectively;

e is the electron charge; E and B are ‘the electric and magnetic fields,
respectively; € is ‘the inbernal energy; Veg and Veji are the respective
. collisional frequencies between electrons and atoms and between electrons and
ions; Qrag is the radiation source term; T and T, are the respective tempera-
tures of heavy particles and electrons; pe is the partial (hydrostatic)
pressure of electrons; and Iy is the net energy gained by the electrons per
event of the three-body recombinabtion process.

The equations of continuity, momentum and energy for the whole
plasms are obtained by summing the corresponding equations for all the plasma
constituents. The following definitions and relationships are used.
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P =%
€ = § € where s equals e, a and i
e =% e

s s
€ =3[n kT +(n +n) kT

2t e e a e

=2
€e+p=35 [ne kT o+ (na + ne) k T]
P = (ne + na) k(T + « Te) (2.5)
e

[04 =

ng * ng
e ~ ma(na + ne)

The degree of ionization of the plasma is denoted by the symbol C.

The equatiohns of motion for the entire plasms are then writien as

follows:
de ) J
X
i Op,. . ' .
Du” _ Tij _ i - i vl i
P'E 5;3— *(n; - n) e[E" + (Wx B)"] +n_ el(d- ) x B] (2.7)
by, g [(F- %) x‘a’]i.i+ (u - o] B
PDE T DE T 7 M oLM - W) X Bl W A mg elut - W,
P2 (e, ) (o -l ra, - T (2.8)
BXJ e e e rad dt
where, Pij is the pressure tensor defined as
P. . 5= pﬁ. . T.’. - (2‘9)

1d 1d i3

and Tij is the viscous stress tensor, which contributes to the plasma dissipa-
tion. "Hy in Eq, 2.8 is defined by ’

Hy: (T + Te). (2.10)

a

Sl:ﬁ‘

5
2

1}

j




We should note that if the viscous effects can be neglected (i.e., Tij = 0),
then Eqs, 2.8 and 2.9 reduce to the equations given by Appleton and Bray
(Ref. 1). Additionally, the pertinent. set of equations for other simpler
problems can be obtained from the general equations - Egs. 2.2 to 2.8.

2.3 Equations for a One-Dimensional Inviscid Flow of an Ionized Gas

For studies of shock structure and expansion nvzzle flows, the
variation of dynamic and thermodynamic quantities in the direction normal
: to the flow direction are normally small compared with those in the flow
3 ' direction. Hence these problems can be treated as one-dimensional.

? Actually, the flow for the shock-structure problem is nonstationary.
However, a nonstationary flow can be readily reduced to a steady flow. Leb
(x, ¥) be a coordinate system fixed with respect to the wall, and let (u, v)
be velocities parallel to (X, ¥). The flow is unsteady in this (x, y)-
coordinate system. Let (x, y) represent another coordinate system which
moves with the same speed as the shock wave, and let the velocities parallel
to the x- and y-coordinates be denoted by u and v respectively. In this
4 coordinate system the flow is steady. The transformation relating the two
coordinate systems is given below.

[

Y

™
1}
"
1
mg
ot

<
I
]

(2.11)

ot
'I
<
1
=

<1
L
<

The velocity of the wall, uy, equals the negative value of the shock velocity,
Us. Under this transformation, ncnstationary flows for shock structure and
boundary layers behind a moving shock can be conveniently treated as quasi-
steady flows (see Fig. 1). ‘

) For ‘treating the shock-structure_problem two assumptions are made:

S (1) no electric or maghetic fields exist (E = B = 0), (2) ug = u. Note

that the magnitude of the electric field can be predicted by the following

i expression. '

! . i 1 ape

By~ — —3

n e a 1
e X

which "is negligible for the present study. In -a similar fashion the magnetic
v field can be shown to be even less important. Due to the very small electron
mass, the effects of diffusion (ug # u) are small and can be neglected. The
3 preceding two assumptions, which can be justified for many types of nonequilib-
rium shock~-structure problems, have been widely accepted by previous researchers.

FPor the present shock-structure study, the translational transition
A region of the shock front has been neglected, since its thickness is negligibly
small compared with that of the following relaxation egion. It should be

‘ - - — e




noted that if the translational transition region of the shock front is
considered, gradients in the flow varisbles are large and the effects of

viscosity [% (1 %‘—;)], and heat conduction, ['6_;: (lca a—x)] and [% (Ke g%—c)],
mast be included.

For a steady one-dimensional and inviscid flow of a singly ionized

gas, Egs. 2.2 to 2.8 reduce to the following expressions.
3 ! Conservabion of electron mass:
dn
4
; & (nw =g (2.12)
b
g'_(é.n kT 11)-"—‘31‘1 f—ns(‘v +V)k(T—T)
& dx ‘2 e e en ea ei e
‘ d'ne G_Te dne
AL R L (2.13)
Conservation of total mass:
! : 4
o 2 = 2.14
3= (pud)=0 (2.14)
. Total momentum:
du dp
% P u ax = - ax (2015)
, Conservation of energy:
{ . dn
; iy dp _ .8

] The Boltzmann constant is denoted by k, A is the shock-tube cross-sectional
ares or expansion nozzle cross-section, I denobes the ionization energy of

N L the atom, and

2
E ] \V\_\\I

k
p'nT‘(T +aTe)’

B P =

; a

| H = (€ +1)/p, (2.17)
; | ¢ =3[n kT +(a +n) kTl

| 2 e e a e

These basic equations contain five dependent variables: ne(x),
ng(x), T(x), Te(x) and u(x). Any numerical sg}lution will depend on the model

, . . e
adopted to describe the atomic processes for - and Q’raxl'

in the case of the shock-structure problem, if the cross-sectional
| area of the shock tube is sufficiently large, then the effects of the wall
b boundary layer on reducing the totel area will be negligibly smell. Therefore,
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A in Eg. 2.1% can be taken to be constant. The effect of the wall boundary
layer can be included simply by assuming the variation of the crossw=séctional
area outside the boundary layer is a given function of distance (x). Let

Ao be the initial area at distance x equal to zero, then

Ax) = AbF(x) (2.18)

where F(x) can be calculated by using boundsry-layer theory.

The basic difference between shock-structure and expansion nozzle

problems is in the abtomic collision processes. For the shock-structure

problem the initial ionization processes due to atom-atom collisions are
dominant. By contrast, in the expansion-nozzle problem, the three-body
recombination process dominates in the entire relaxation region. The former
case provides an opportunity to determine the excitation..(or ionization)
cross-section for an atom-atom collision, and the labter case allows one to
determine the excitation cross-section for electron-atom collisions or the
recombination rate constant.

2.4 Equations for the Laminar Boundary Layer Flow Induced by a Strong Shock
Wave ’ B

For a btwo-dimensional problem, Egs. 2.2 to 2.8 contain fourteen
independent variables: ng, ng, Te, T, W, V, Vg, Ve, Ex. Ey, Ez, By, By and
B;. Because of the complexity of the equabtions, no numerical solutions
appear to exist. The less general two-di ensigna;>inviscid plasma flow with
the assumptions, T = Tg, Ug = U, Ve =V, E = B = 0 vnd Qpgq =0 has been
solved by many researchers. For example, Glass and Wekano (Ref. 3) deal
with the problem of a corner-expansion flow.

The occurrence of an gppreciable degree of ionization in a gas
flow inbtroduces some feabures that are markedly different from those normally
encountered in a perfect-gas flow or in a flow with chemical dissociation,
primarily because of the presence of ions and electrons. The reasons are
given as follows:

1. The extremely low mass of the electron yields a species possessing a
thermal conductivity that can be much higher than that of any obther
species present in the mixture,

2. The collisional energy-transfer process between electrons and heavy
particles is relatively slow and gives rise to the possible situabion
in which the electrons may have a temperature different from that of
the heavy species.

The detailed analysis of an appreciably ionized gas is necessarily complex.

In general, it is well known that three rather distinct regions
exist near the surface of a plasme flow:

1. Away from the wall the gas is dquasi-neutral, the ion diffusion velocity
is small, and the behaviour of the gas in this region is described by
continuum equations.




2. DNear the surface but not adjacent to it the gas remains quasi-neutral,
but the ion diffusion velocity is comparable to the ion sound velocity
and the usual equations are not valid (the region will be referped to
as the "transition region".

3. Adjacent to the surface of the wall a space charge sheath exlsts within
the gas which is no longer quas1 -neutral. .

A maaor difficulby exists in :onnection with the latter two régions, because
it is necessary to solve ‘the Boltzmanh equation for each species. In Fig. 2
the flow regimes near a cold surface arid the order of ‘thickness of each .
regime are indicabed. ;

In the case of a partially ionized gas, a sheath formed next to the
wall is thin compared to thie boundary layer thickness., Hence, bthe ionized
gas in the boundary layer should be electrically neutral and bthe concept of
anbipolar diffusion can be adopted (described- in Section 4.3).. :

The present section is specifically concerned with:.the basic
equations for a nonequilibrium boundery-layer development on the cold wall
surface. The basic assumptions are: (1) steady flow, (2) laminar flow
(3) no conbtinuum radiation losses, (4) all species have the same mass
motion velocity, (5) free-stream conditions are constant along the flow
direction, (6) no electric or magnetic fields exist; (7) T = To. Note that
when the boundary layer is inside the relaxation zone, assumption (7). may
be invalid. Under these assumptions, the basic equations for the boundary
layer flow are given below (Ref. 47).

Continuiby equation:

2 ow) + % (o) = 0 (2.19)
Momentum equabtion:
pug-‘.up %; dp+§§<u§§> (2.20)

Energy equetions
OH OH _ 9 o o uE" ' .
pu x= + oV o5 % % + 1 S5\ 7 (2.21)
Conservation of species:
e X _d : B ”
pu 3% + PV 8& = gy'_ - pi Vi] + 'Wi (2.2{.).
In these expressions, the respective symbols p, H, qe, ags Vi, Pi and Wy
denote viscosiby, stagnation enthalpy, conductive heab flux, diffusive

energy flux, ion diffusion velocity normal to the wall, ion density, and
net production rate of ions.

For an electrically neutral, singly ionized, monatomic gas consisting
of atoms, ions and electrons, all at the same temperature, the equilibrium-
thermodynamic relations and the equation of state for the mixture are given
below.
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5 u?
H ERT(1+a)+aI+-é— (2.24)

where, I denotes the ionizaticn energy. Note, the enthalpy due to excitabional
effects- is neglected.

The conductive heat flux (q,) is given as follows:

oT

T

=_:£[§§-%§<%2>-(x+gm)%] (2.25)
°p

vhere EP is the "frozen" specific heat at constant pressure and defined below.
s =2
¢, =5 R (1 +0a) (2.26)

R is the gas constant for the atom and k is the thermal conductivity for the
mixture if no chemical reactions took place.

The diffusive energy flux for ambipolar diffusxon (qd) is given by
the following expressioni
_ 5 o O
=-eD [T+3r1] g (2.27)

9 2

where Dgy is the ambipolar diffusion coefficient.

The diffusive mass flux of ions (pj Vi) for ambipolar diffusion by
ion-electron pairs is governed by Fick's law, as given below.

X
Py Vi =-p Dams'& . (2.28)
By introducing the Prandtl and Lewis numbers defined by
. "
P = —-——E ,
TR (2.29)
PD_c .
Ly = —p

the ion :(or electron) concentration and energy conservation equations tske
the following form:

X o d [ ke .
pu&-i-pvsb—r:&[p?—ja;] +W..l. ) {2.30)
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r

In general the Prandtl and Lewis numbers are functions of the gas temperature
(T) and degree of ionization (@), as shown in Section 4.,2. This bemperature
and degree of ionization dependence couples Egs. 2.19 and 2.20 to Egs. 2.30
and 2.31, making it difficult to obtain a solution.

3. SHOCK STRUCTURE AND INITTAL IONIZATION PROCESSES

3.1 I.croduction

Experimental and theoretical investigations of ionization rates and
relaxstion processes behind strong shock waves moving in monabomic gases can
be found in Refs. 5 to 15, It is now well established that when a strong
shock wave raises the temperature of atoms from & low temperature (aboub 300°K)
to a high temperature (over 10,000°K), the initial ionization is due to atom-
atom collisions. The rate of ionization is controlled by the rate of excitation
from the ground state to the first excited level. Ultimately when the number
of electrons becomes sufficiently large, electron-atom and ion-electron-electron
collisions dominate the excitation, ionization and recombination processes (see
Eq. 3.1), and the rate of ionization is controlled by the rate of energy trans-
fer between the heavy particles and the electrons. The radiative processes ’
will be importent (Ref. 5) for a low electron number density (e.g., at T =
3200°K and ng <1 2 cm_a). Treatments of relaxation phenomena in radiating
argon-plasma flows can be found in Refs. 6, 7, 8 and 9. For specific éonditions
of a shock Mach number of 15 and an initial pressure of 1 torr, Kamimoto et al
(Ref. 9) have shown that the effect of radiation on the relaxation profiles is
negligible. Oettinger and Bershader (Ref. 6) have shown that the effect of
radiation is negligibly small only until the end of the relaxation zone.
Thereafter radiative emission becomes appreciable.

In general, the excitation cross-section for atom-atom collisions
is well known. The shock tube presents an opportunity. for indirect measure-
ments to be made of the excitation (or ionization) cross-section of heavy gas
particles. Recently, Harwell and Jahn (Ref. 10) have employed a transverse
microwave probe to determine the cross-section constant of proportionality,
Sk , as equal to 7 x 10" 1% cm®/ev, for argon inelastic atom-atom colli-
sions. Morgan and Morrison (Ref. 1l) have made a theoretical reassessment
of the ionization mechenism and referred to earlier experimental measurements.
They showed that a best fit curve to the ionizabion relaxation time measure-
ments of Petschek and Byron (Ref. 5) was obtained by reducing Harwell and
Jahn's value (Ref. 10) for $%, . by & factor of ten. Kelly (Ref. 12) has
reduced the inpuri§¥ level for his experiments and obtained a value for .
Skr-ar Of 1.2 x 10719 £ 15% em®/eV, which has been widely accepted by meny
researchers (Refs. 2, 7, 10 and 13) for their theoretical calculations.
However, we must point out that there are two important effects which must

.
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be considered in regard to Kelly's experiments: (1) the range of theé shock
Mach number was between 7 and 10, which is too low, and (2) the relatively
small cross-sectional area of the shock tube (5¢m x 5Scm) makes the wall
‘boundary layer effect important (i.e., dA/dx # 0). On the other hand,
McLaren and Hobson (Ref. 1l) have used double electrosbatlc grobes to
measure the ionization rates and they obtaired & value for Spr_py Of

2.5 x 10 cm“/eV, which is lower than the value suggested by Morgan and
Morrison (Ref. 11). Although many experiments have been made with argon

to determine bthe initial ionizabion processes, the excitation cross-section
for argon atom-atom collisions has not been determined with great accuracy.

An experimental investigation (Ref. 15) of the initial ionizaticn
processes in a strong shock wave in argen and in a mixture of argon and
hydrogen (0.4% by partial pressure) was made recently in the UTIAS k4-in
X T-in hypervelocity shock tube. This invesbtigation provided the most
relisble data for determining SXr-aAr. Considerable care was taken to
reduce the impurity levels to approximately 10"% torr. Therefore abt en
initial pressure of about 5 torr for the present experiments the impurity
level was about 20 parts per million or less. The large cross-sectional
area made the effect of the wall boundary layer negligible during the
experiments., The purpose of the present chapter is bo propose a simple;
theoretical model from which the excitation cross-section consbtant of
proportionality for argon atom-atom collisions can be determined from the
experimental results (Ref. 15). The effect of the small hydrogen impurity
in the argon test gas on the ionization rate is calculated, compared with
experimental work (Ref. 15) and discussed.

In the present study the transition through the translational
shock front is neglected since its thickness is negligibly small compared
with that of the relaxabtion region. In the translation trans1b10n<feglo

in the flow varisbles are large and the effects of v1sc051ty =
Ky g_@ ] [ < e 5% /I must be considered.

However, as only the relaxation region is con51dered, where bthe gradients
are small (see Figs. 6 and T), the viscous and heat conduction dissipative
processes can be neglected. Then the only important processes in the flow
are the collisional processes.

and heat conduction [ g—

3.2 Collisional Ionization Rates

Petscliek and Byron (Ref. 5) and Harwell and Jahn (Ref. 10) have
shown that excitablion from the ground sbtate to the first-excited state is
rate controlling for the overall ifonizsbion process. This btwo-step process
is based on the fact that the cross-section for excitation from the ground
state is greaber than that for ionization from the ground state. This
familiar two-step collisional ionization model is adopted herein. Of course,
the multi-step collisional radiative ionization models of Hollenbach and
Salpeter (Ref. 16), Kamimoto et al (Ref. 9) and Bates et al (Ref. 17) are
the most accurate. However, many unknowns are contained in those models
and some simplifying assumptions ore required before actual calculations
can be made. For example, there are three unknowns in the ladder-climbing
model of Hollenbach and Salpeter, where transitions to neighbouring levels
are only allowed. Kamimoto et al have shown bthat the resalts for argon
atom and electron number densities as calculated by a two-step model are

11
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nearly the same as those calculated using a multi-step model, except that
the relaxation time based on the mulbi-step niodel was somewhat longer.

The collisional-ionization kinetics of singly ionized argon are
postulated to take place according to the following equations:

Ar + X = A% + X (3.1a)

A% +X @ Af+texX (3.1b)
ke

Ar +X ké A"I'" +e+X (3.1¢)
r

The two-step model is represented by Egs. 3.la and 3.1b for the overall
reaction path given by Eq. 3.lcj X denotes either the argon atom (Ar) or an
electron (e). :

For this collision process one can express the electron-production
rates (f,)g and (fig)e in terms of recombination rates and equilibrium constants
(Ref. 13), as illustrated belows:

2 2
(ﬁe)a kfa ng - kra n, Be

kg (Tg) 1y [Kgq (T,) ny - nZ] (3.2)

k n -k n3
fe na e re e

(3,),

ke (Te) ner[Keq (Te) n, - ni] (3.3)

The electron-production rate due to atom-atom collisions is denoted by (M) 5
and ‘that due to atom-electron collisions is denoted by (ig)e, and the
subscripts a and e denote atoms and electrons, respectively. The two equi-
librium constants are defined by the following expressions:

K (T ) ni e (Ta)

eq 8 -n—L-i-(E—y (3-1}&)

a,eq " a

eq ‘e ne,eq Te

(3.kp)

The calculations of k.5 and k,, require a knowledge of the depend-
ence of the inelastic-collision cross-section for the first-excited level
(0% ) and on the kinetic energy (éx). A reasonably good approximation is
given below:
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o¥% = S% - €¥%) wi > €% .
¥ = 8% (e, ~ &) with e > e (3.5)

where Sﬁx is the constant of proportionality of the first-excitation collision
cross-section between atom &, and particle x,and €5 is 'the excitation energy

of the first level.

By applying Eq. 3.5, kpe and kye can be expressed (as in Refs. 11
and 13) in terms of Sg, for argon atoms as shown below:

T, - T* 6
_ Y- T* I m
ko(T,) = 1835 x 107" s¥ | <Ta. * 2) exp < T ) s (3.6)

[e]

k (T) =1.843 x 107°° sx Zio I o (3.7)
re' e’ | Ar-e Te exp Te ) T .

T* and Ty are the firsb-excitation and ionization temperatures respectively
for an argon atom, and S* is in units of cm®/eV. (lNote that kpg in Eq. 3.6
has now been divided by a factor of 2 to avoid counting like-like cdllisions

twice.)

A schematic diagram of the collision processes from the Rankine-
Hugoniot translational shock front through the relaxation region appears in
Fig. 3. The boundary layer formation in this region is also indicated.
Radiation losses give rise to a somewhat nonuniform equilibrium flow. It
is important to take this loss into account during the calculation of the

physical properties of the flow.

3.3 Governing Equations

The theoretical approach to solving the shock structure is
similar to that described in Ref. 13, except the correct equations. given
in Section 2.3 are used. Nofte that the conservation equations of electron
energy descrived in Refl. 13 are only an approximetion for Eq, 2.%3, The
governing equations are obtained from Egs. 2.12 to 2,16, as given below:

L (n) = g = 5 (3.8
I e T T T ¢
ar mo\ V. +V, or (n)

e _ _e ea ei edu 2 'ee. 3
ar-2<ma>———~u T-%) - 3w, (k2T 69

pu = Pyuy (3.10)
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p+pu® =py +opruy (3.11)

R(T + OT,) + ORT (3.12)

L

l.2=2g
gtz ¥ =gR+

The subscript. 1 refers to the state of the gas in front of the translabtional
shock front, Veg and Vei denote the elastic collision frequencies for the
pairs electron-atom and electron-ion respectively, which can be expressed
in terms cof the elastic-cqllision cross-sections Ggé and Ue i> s shown below:

8kT %
_ (1-a)p e el
' Vea = m m Tea (3.138)
a e
8kT %
y = <_.£>2 o<t (3.13b)
el ma 'Hme el

The degree of ionization (@) is defined by Eg. 2.5.

From the fact that ny = n (¢/c), Eqs. 3.2 and 3.3 yield the following
expressions ¥

o (1) 1
o'ta(T)‘ = (1 - Q) [%— ]21:1,&('1) [ T ;ea 57 (L~ 0) - o? J (3.1ke)

a(z,) = a(%;)z k o(T.) [f‘ﬂ—f’%—y (1 - ) - a? ] (3.1h4Y)

i

The conservation of electron mass, Eq. 3.8, hecomes

L= (G +d)/u (3.15)

. .
where Qg and e denote production rates due to atom-atom and abom-electron
collisions, respeciively.

The equilibrium value of the degree of ionizabtion, aéq(T), can be
(otained from the following equation (Ref. 3):

o2 o 3/2
e . I|L exp( -
- o P [ T ] TI/T) (3.16)

The characteristic density for ionization py is defined by Eq. 2. 24 of Ref. 3
{see Table 1 of this report).

*Note that Eqs. 15 and 16 or Ref. 13 are incorrect.
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The value of du/dx which appears in Eq. 3.9 is obtained easily from
Egs. 3.10 to 3.12, and it is given below,

1
dn . 627 [ < 1 >2 96aTIJ’ida
Lol 2 9(1-= ) + 2= | = (3.17)
dx SM;’.[‘;L Mi 5M§T dx

3.4 Model Calculations and Coxgga.r:.son with Experimental Results for Pure
Argon

For the present calculations the same collisional cross-section
employed by Petschek and Bzron (Ref. 5) with SAr e equdl to 7.0 x 10~ 18 cmz/ev
was used. The values of Ogy have been taken from Refs. 11 and 13. The initial
conditions employed for the calculations for a shock wave in pure argon are
summarized in Table 2, which coincide with those used in the "experiméntal work
in the UTIAS b-in x 7-in hypervelocity shock tube (Refs. 15 and 18).

The first-order differential equations (Egs. 3.9 and 3.15) were
solved by using a standard Runge-Kutta method (sée Appendix A). The initial
condition for @ was taken as ®(0) =~ O, The initial value of the electron
temperature is somewhat anbiguous. Three values of the inibtial electron
temperature are given as follows:

1. Te(O) T2 (= 300°K),

L}

2. Te(O) ?(0), and

3. local steady-state value,

However, it should be noted that these different initial values would not
affect the values of the other physical quantities, as the initial number
density of the electrons is very small, or @ is epproximately zero.

For a strong shock wave moving in pure argon (Case I of Table 2),
predicted and experimental variations of the degree of ionization (&) with
distance (x) through the relaxabion region are shovn in Fig. 4. The degree
of ionization initially increases rather slowly from zero at ‘the shock
front (x = 0) and evenbually rises rapidly to its equilibrium value (O =
0&_158) The dashed line corresponds to a solution using the value of
Sap-ap €qual to 0.6 x 10712 cm®/eV. It can be seen that this predicted
variation for @ has the same features as displayed by the experimental data
(Ref. 15), but the predlcted relaxation length (or time) is significantly
shorter. It would be even Worse for la,rger values of Spp.pye In addition,
a nunber of calculations with different SAr Ap Values showed that the
relaxation 1ength increased with decreasing values of SAr . The continuous
line in Flg » corresponding to a solution with a lower S7,. . value of
3.5 x 10 20 em?/eV, which is in good agreement with the experimental data.
Hence, from such a compa.r:.son the excitational cross-section constant for

gon atom-atom collisions (SAr—Ar) has been determined to be 3.5 x 10~
/eV. This newly determined value is used for the remainder of the
calculatlon‘s.
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The predicted and weasured variation of density through the relaxation
region is shown in Fig. 5. 'The predicted and measured densiby profiles are in
good agreement adding further verificabtion to the acceptance of the new value

for SAr Are

The atom-temperature (T) and electron-temperature (Tg) variations
through the relaxation zone ‘are displayed in Fig., 6. Although three different
initial electron temperatures were selected, the electron-temperature profile
is affected by this choice only in the small initial part of the relaxabion
region, as shown in the figure,

The flow velocity and pressure variations in the relaxation region
are given in Fig. 7, and in Fig. 8 the variations of electron number density
(ne) and ionization production rates are shown. It can be seen that the
ionizabtion production rate due to atom-atom collisions (aa) is very large in
the initial stege of the ionization process as compared with that due to
atom-electron collisions (@), and the collision procegs is controlled by
atom-atom collisions. The ionization production rate e increases very S
rapidly as the number of electrons increase. After ae exceeds Oy, then Oy
quickly decreases and the collision process is controlled by atom-electron
collisions. Eventually ae reaches a meximum and then falls off repidly, and
the collision process is controlled by three-body recombination (electron-
electron-ion) and radiation processes.

Additional predicted and measured results (Ref. 15) for the density 3
and degree of ionization variations through the relaxation zone are given in
Fig. 9. These results for Case II, Table 2, are not too different from those
of Case I, and the predicted and measured data are in fai. agreement.

For Case IIT, Table 2, for which the shock strength and degree of
ionization are both less, the predicted and measured degree of ionization
profiles for the relaxation region are compared in Fig. 10, The sgreement is
not as good as for Cases I and II. This disagreement, however, is most
likely due to inaccurate experimental measuremeans. Brimelow (Ref. 15) has
mentioned that it was difficult to obtain accurate data from interferograms
that exhibit small fringe shifts, as is the case when the degree of ionization
is small. However, it should be noted that the analysis predicts the correct
relaxation length.,

t should be pointed out that the analysis overpredicts the relexa-
tion lengths as measured by Oettinger and Bershader (Ref. 6). The initial
conditions for both Brimelow's work (Ref. 15) and Oettinger and Bershader
(Ref. 6) were the same. However, the measured relaxation lengths of Oebtinger
and Bershader were shorter. The reason for the different lengths is not clear.
The shock tube used by Oettinger and Berchader had a smaller cross-section and
its impurity level is nobt known.

In some of the interferometric results of Brimelow (Ref. 15), it
was found that the degree of iohization was larger near the shock-tube wall
than at the centre of the freestream, and relaxation lengths were shorter
near the wall. At the present time it is difficult bto explain this phenomenon.
It may be possible that a two-dimensional model incorporating the viscous
effect and impact phenomena between ions (or electrons) and a solid surface
would be required to explain the above-mentioned phenomenon, or perhaps
impurity gradients (e.g., water molecules) closer to the wall may account for
it.
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3.5 Effects of Hydrogen Impuribty on the Ionization Processes

The effects of impurities in the test gas on the structure of shock
waves was studied initially by Morgan and Morrison (Ref. I1). In this section,
the effects of a small addition of hydrogen (impurity) to the argon test gas
on the shock wave structure is considered in some dedail.

The initial ionizabion of hydrogen in a strong shock wave has been
studied by Belozerov and Measures (Ref. 19). From a comparison of theoretical
and experimental results they have determined Sﬁ_ﬂ to be 3.57 x 10718 en?/ev,
which is about 1/15 that of the corresponding cross-section for electron-atom
excitation collisions where Sf_. equals 5.1 x 10717 cm®/eV. They showed that
the electron temperature is nearly identical to the atom temperature every-
where in the relaxabtion region except for a very small region near the shock
front (x ~ 0). This result is quite different from a similar solubion for an
argon test gas (see Section 3.4t). The reasons are as follows: first, the
mass of the hydrogen atom is 1/40 that of the argon atom, and second, there
is no Ramsaver effect (Ref. 19) for the electron-hydrogen atom elastic colli-
sions. The latter effect reduces the cross-section for elastic electron-argon
atom collisions.

Chang (Ref. 20) has shown thab for certain shock velocities it is
DPossible to consider the different relaxation processes (e.g., treanslation,
vibration, dissociation, and ionization) independently for hydrogen molecules.
For the present work we can assume that ionization of the hydrogen molecules
behind a strong shock starts effectively after dissociation is complete.
Also, the relaxabion length for the dissociation process is very small
compared with ionization, With these assunptions there appears to be no
difference between hydroger and monatomic argon in the theoretical description
of the ionization process. The only difference in the ionizabtion processes
between pure hydrogen and argon is that the initial conditions for hydrogen
will correspond to those for a fully dissociated gas behind the shock front.
These required conditions have been given by Belozerov and Measures (Ref. 19).
For the present case (Case IV of Table 2), since we will consider only a
small amount of hydrogen impurity (0.4% by pressure) in the argon test gas,
the assumption is made that the initial conditions for hydrogen and argon are
identical.

The following reactions are considered for the colligional ionization
processes.

(8) A +A % IR
(v) A ve === A +tete
(e) AvH = A;'+e+H
(a) H +A, = HY + e +A,
(e) H+H =—= H +e+H
(£) H +e =—= H'+e+e

17




v

1
; Processes (a) and (b) for pure argon have been discussed previously in Section

] The production rates due to atom-atom collisions (&, ¢, d, and e)

E‘ and atom-electron collisions (b and f) can be expressed as follows:

L

| (5 )Ar-Ar o A0-Ar () n2 - - KA () By 02 a (3.198)
g | (ﬁe)ir-e - kﬁ-e (Te) na,Ar ne,Ar B kﬁz-e(Te) n:ea,A:t‘ (3.190)
? :, , ()5 = B0 H () By ar Mo - et (1) B, 5 s Ar (3.19¢)
i (ﬁe)}e{,—Ar - kg;Ar () na,H na.,»Ar - klx{';.Ar (T) ne‘.,Ar nz,H (3.194)
j : (h)y " =¥g (D) ng - ORAE (3:19)
| ' ‘<ﬁa)g—e = k}fi;e (T.) Do, H Mo B~ ki‘{;e (%) 'nE:H (3.199)

B g (g ) A

.

where it should be noted ‘that (n )

The forward rate coefficients k‘%a between atoms A and B and k%ee

3 hetween atom A and an electron can be written in terms of the exciteabional
cross-section constants S} _p -and Sf_o as shown below (Ref. 11):

. k2B (1) = sy §3<Tg—m—§ Jl/e(kT)3/2<~+l>°@<_T*> (3.20)

] ; fa A-B | T \\m, my
, m, +m 1/2 3/2 -T%
A-e _ 32 e ;
L L3 (T)—Sz_ = <m — >] (k‘l‘e) <——-+l>exp< > (3.21)
- A e
These rates must be divided by two for like-like collisions to avoid a double
1 count.
The forward and recombinabion rates are related to the equilibrium -
constanbs as indicated below:
j el (T)/I’A "B (3.22) :
; ra, ;
]
‘ A-e A-e -e
Kre = ¥ge (Te)/Kgq (Te> (3.23)

{o s
[ PPN . . - e i e i !
-l . _ . P o .. Y




R A e e
s - YTy

" The equilibrium constants are defined below:

! 2
-Ar B r eql ")
ng (1) =H:-:_A:iiﬁ‘7 (3.24)

,
.
f

Y

&

i3

<

y
b
| Ar
. -H _ _Ar- )
Koy (D) = Kee (1) ;
[ ;
a -Ar _ H-H
= 182(1 () = x‘;q (3.26)
E 2
‘ Hpy - oo (3.21)
, eq n T ) N
a,H,eq >
1 s - N ar,eqtTe)
. i K-8 (my) - _SaATeq e (3.28)
, eq e n ()
a,Ar,eq‘ e
‘ n (1)

f e (1) =‘—:-4—-‘L(—7e Hyeq e (3.29)
eq e na.,H,eq Te

H
The definition of the degree of ionization for the mixture is as
followss
n +n
e,Ar , e, H (3.30)
ne,Ar * ne,H * na,,Ar * na.,H

Qo =

If we define a ratio C¥ as shown below, E

2n +n
3 o* = Ene’H - na:H (3.31)
‘ N e,AI‘ a,AI‘

’ . then @ can be expressed in terms of C¥ as followss

o o
_ Ar H
’ a = R4, ) * (TH) (3.32)

1+ (1+aH5 1 +‘c*(1+aAr)

where aAr and ocH are defined below,

i
| 19 ;




idd |13

o

P et = et i
A

. TR

e,Ar
[04 = 2 (3'33)
Ar ne,Ar * na,Ar
ne H N
aH = -n—-—:-:-r (3-3 )
e, a,H

For the present calculations the excitation collision cross-section for atomic
hydrogen by electron impact is given by,

ok _=5.1x10""7 (10.2 - B)en® (3.35)

and

* = 1072 g%
S% = 7.0 x 2072 s%

as obtained by Belozerov and Measures &Ref. 19) from a comparison of btheoretical
and experimental results. SX,_y and Sf_p, are still unknowns for the present
work., However, the method used by Kelly (Ref. 12) in his treatment of the
argon-xenon case by assuming SXr-H = er-Ar and Sg_py = Sﬁ_H is adopted herein.
This assumption would be invelid for a high impurity level of H due to the small
mass ratio between H and Ar. However, it can be accepted for the present work
as the impurity level in the test gas (argon) is small.

Calculations were made for Case IV of Table 2 for the relaxation
zone behind a strong shock moving in argon with a small amount of hydrogen
(0.4% by pressure). The resulting density and degree of ionization variations
through the relaxation zone are given in Fig. 11, along with the experimental
data (Ref. 15). The agreement between the predicted and measured results is
good, confirming the choice of the theoretical model., From a comparison of the
results of Figs. 9 and 11, it is readily seen that the total relaxation length
of the pure argon shock transition is substantially reduced by a factor of
four through the addition of the 0.4% hydrogen impurity, This result is quite
different from the argon-xenon mixtures used by Kelly (Ref. 12). Kelly showed
that the addition of 0.1% and 0.48% xenon to the test gas argon did not sub-
stantially change the relaxation length from that for pure argon. The reason
is that the excitational cross-section for pure xenon is smaller than that for
pure argon. In addition, the mass of atomic hyd-ogen is markedly smaller than
that of the argon atom. These two characteristics of the hydrogen impurity in
the argon test gas give rise to a significant reduction of the relaxation length
or time.

3.6 Discussion
The following conclusions can be made from the present calculations
and their comparison with the experimental results for the relaxation processes

occurring behind a strong shock wave moving in pure argon or argon with a small
hydrogen impuritys '
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1. The initial process of ionization behind a strong shock moving in pure
argon is due bto atom-atom collisions. As the number of electrons
increases sufficiently, the process is controlled by atom-electron
collisio?s, and subsequently by three-body recombination (ion-electron-
electxon).

2. The new value of the excitational cross-section constant for argon-argon
atom collisions, Sk, ap = 3.5 x 10727 cm®/eV, as determined from a
comparison of predicted and measured data, is smaller than the value of
1.2 x 10713 cng/ev determined by Kelly (Ref. 10) and slighbtly larger
than the value 2.5 x 10 20 cnP/eV given by McLaren and Hobson (Ref. 14).

3. Owing to the low mass of the hydrogen atom and the large excitabtional
cross-sectioh between hydrogen abtom-atom and hydrogen atom-electron
collisions, the impurity effect of hydrogen in the argon test gas is
to markedly reduce the relaxation length or time of the ionization
processes behind the shock wave, even when the impuriby level of
hydrogen is as luw us 0.4%.

4, The effects of radiation losses and of the well boundary layer are
problems for further study.

4. LAMINAR BOUNDARY-LAYER FLOW OF PARTIALLY IONIZED ARGON BEHIND A STRONG
SHOCK WAVE N

4.1 Introduction

The nonlinear partial differential equabtions for most boundary-layer
problems are difficult to solve. As a result, many researchers have resorted
to using simplifying similarity transformations. In the similarity approach
the system of partial differential equations is reduced to a system of ordinary
differential equations, which can usually be solved by standard integration
techniques. These so-called similarity solutions aré, however, limited to
certain types of flows. For this reason, and because of the mathematical
difficulties encountered in obtaining exact solutions for general boundary
layer cases, approximate method-~ have also teen developed.

One approximebe method of inberest for this work is based on Karman's
momentum integral, which has been ext :ded by Pohlhausen. This approecch is
now known as the Karmen-Poh:“:gusen invegral method. For such integral methods
certain assumptions are made as to thz form of the unknown functions, which
reduces the problem to solving a set of ordinary differential equabtions. By
satisfying appropriate boundary conditions at the wall, the velocity prcfile
normal to the wall through the boundar; layer is reduced to a function of
only one independent varisble. ILibby and Morduchow (Refs. 21 and 22) have
extended the Karman-Pohlhausen method to a sixth-degree velocity profile and
a seventh-degree stagnation-enthalpy profile. Chung and Anderson (Refs. 23,
2h) have successfully applied this method to the boundary layer flow of a
dissociated gas over a flat plate. Another method developed by Dorodnitsyn
(Ref. 25) has been applied by Pallone (Ref. 26) to solve a mess-btransfer
problem, and also applied by Lo (Ref. 27) to solve a corner-flow problem,

This latbter method combines the Dorodnitsyn integration scheme and Karman-
Pohlhausen inbtegral method. Note also that this approach was used by Pallone,
Moore and Erdos (Ref. 28) in solving the boundary layer equations for dissoci-
‘tion and ionizing air in a nonequilibrium flow.
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Another powerful method of solving the boundary layer equabtions is
the finite-difference approach. Blottner (Ref. 29) has applied this numerical

method in solving nonequilibrium leminar boundary layer flows of an ionized
gas. Kendall and Bartlett (Ref. 30) have combined the finite-difference

approach and matrix-inversion techniques (so-called integral-matrix method)
‘to obtain a nonsimilar solution of a multicomponent laminar boundary layer.

The laminer boundary layer behind a shock wave moving in a perfect
gas has been studied quite extensively (Refs. 31 to 34). The correct boundary
layer equations were used in Ref, 32, Values of skin friction and heat trans-

fer coefficients were obtained. However, velocity and temperature profiles
through the boundary layer were not given, Mirels (Refs. 33 and 34) solved
the laminar and turbulent boundary layer equations for the flow behind a
shock wave, The most extensive calculations for laminar boundary layers
behind a strong shock wave for a dissociabting gas cam be found in Refs. 35

to 37. Knoos (Ref. 38) studied the Rayleigh and shock-tube end-well boundary

layers for partially ionized argon., In his analysis, the basic assumption
is that of thermochemical equilibrium, Fay and Kemp (Ref. 39) considered

the heat transfer to a shock-tube end wall from an ionized monatomic gas for

both frozen and equilibrium flows.

For the steady laminar boundaery layer in a partially ionized gas,

many researchers (Refs. 40 to 42) have studied the effects of a nonegquilibrium
electron temperature., Back (Ref. 43) solved this problem based on a similarity-
solution approach for a frozen low-speed flow. The effects of high temperature

on transport properties and nonequilibrium flow remain unsolved.

For the present theoretical work the boundary layer is assumed bto

be

leminar. WNote also that the boundary layers in ‘the actual experiments (Refs.

15 and 18) are assumed to be laminar.

4.2 Transport Properties of Partially-TIonized Argon

The kinetic theory of gases provides a means of estimating the

transport coefficients of a partially-ionized gas. In this section, transport

properties of partially-ionized argon gas are considered, as based on the
mixture rule of Fay and Kemp (Ref. 39).

For the mixturé of atoms, ions and electrons the thermal conductivity

(k) cen be calculated by means of the approximate mixture rules

¢ =3 93

J Z.:xiG..

i Ji
. _[ om, Jl/2 Qs
i T} m4m, .
ji ul 5 Q'JJ

(k.1)

(4.2)

The respective symbols ki and x4 are the thermgl conductivity and mole fraction

of the pure component j, and Q'ji
a collision pair j and i.

is the effective hard-sphere cross-section for
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The thermsl conducbi;;ities of argon aboms (KAr) and of a completely
singly-ionized gas (kg) are given by the following approximate expressions:

. ) ‘ Koo = 5.8 x 1.0"? T3/u cal/em sec’K (4.3)
k_ =44 x 1078 T_5/2 Jin A cal/em sec®k (b.b)
A

S

The ratio of the Debye. distance to the impact parameter (for 90° deflection) is
denoted by A, which: ¢ given by the following relations

A=1.2h x 10* 13/2/nel/2

where,T is in °K and ne in cm 2,

The thermal conductivities for the electron ‘gas (ke) and argon ions
(kar™) can be related to (kg) ss shown belows

K, = (1 +AB) Ky (4.5)
m_ q1/2
KAr+ = [?ni: J (1 +42) g _ (4.6)

From Egs. 4.1 to 4.6 the thermsl conductivity (k) for partially ionized argon
is given below: '

: m K Q -1 Q. -1
K=K [1+~/§ I R 1;‘] +nAr[1+'_E}. .l_‘.xa:l (4.7)
S "ar "ar %ae, %a 1-

The viscosity of partially ionized argon can be calculated from simple
kinetic theory, and it is given below:

Loaoo e 3’
’ 1-0 Q
o 2.8,
L*1e g Q
_ sl , O ii
. _ 5T Tap JAr s, 1-0 Qa,a 4.8
p’ = ‘3_2- Q Q ( . )
aa 1+ X &
‘ G q_
where \
_— [ 8KT ]1/2
Ar T mAr

is the mean thermal speed of the argon atoms. The electrons make no contribution
to the viscosity because of their extremely low mass.
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The ambipolar diffusion coefficient Dy, is defined in terms of the
atom-ion diffusion coefficient Dy,

Da.m = T Dai (4.9)

From kinetic theory Dgi is related to the ratio of the drive velocity Vg and the
electric fieid E (Ref. 30),

Vg KTy

Des =" F "5 (k.10)

The ion temperature T, may be teken as that for vwhich the mean thermal speed

8kTI ]1/2

equals the drift velocity, V4 = [ .
Ar

m
effective hard-sphere collision momenbtum-exchange cross-sections for argon
atom-atom collisions (Qg,), ahd for argon ion-atom-collisions (Qg;) can be
expressed as functions of the gas temperature (Refs. 18 and 19),

’ -0026
~ I ' 2
Qaa =17 < 104) R

Q. ~ 1. 016 ¢

81 88,

. From experimental data, the

(4.11)

The effective hard-sphere argon ion-ion collision cross-section Q;; is quite
large ( ~ 102 to 10* A®); for example, see Fig. 7 of Ref. 38.

Finson and Kemp (Ref. 4l4) have assumed that the pure ion viscosity
can be obtained from the ion's thermal conductivity by using monatomic perfect-
gas relations, and they developed an expression for the Prandtl number,

K

Pr=2 2 (140) (4 +8) (k.12)
where Ks m_ 1/2
o () ()
A= Q = ArK m_ \1L/2
a+(1-ot)—8£(1+~/§)7cf'—-<f-—>'
Qaa. Ar Ar
and
B =

l1-C
Q_.
(1 +0a) +ot<-9‘—1->
s

2L
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The degree of ionizabtion for an argon plasma with freestream and
surface conditions given in Telle 2 is plotted in Fig. 12 as a function of gas
temperature (T) for an equilibrium flow, Predictions for the Prandtl number
(Pr), Lewis number (Le) and the density-viscosity product ratio (C = o1/ O b s

. where, "e" denotes the boundary layer edge), all obtained from the preceding
equations, are shown in Fig. 13. These results for argon were specifically
based on the initial conditions summarized in Table 3, and the temperature
range of 300 to lh,OOO°K covers the surface wall to freestream temperature
range for the boundary layer. At the wall where T is approximately 300°K,

Pr, Le and C are equal to 2/3, O.44 and I, respectively. At the other end of
the ‘temperature range (14,000°K and higher) the gas is significantly ionized,
and these quantities become small. For a completely ionized gas (T > 20,000°K)

i

f the thermsl conductivity is due almost entirely to electrons, and the electrical

: | conductivity is strongly dependent on temperature. For these reasons the Prandtl
3 ; and Lewis numbers are very small at high temperatures. Note that for a completely
3 1 ionized gas or plasma, the viscosity given by Eq. 4.8 may be related to the elec-
B tron thermal conductivity given by Eq. 4.5 (take the limit as ng =0)., Then,

1

3

3

m \1/2
’ Pr ~ <:—£‘)
. m
a

and the Prandtl number is of the order of 1/100 for a completely ionized plasme.

4.3 Kerman-Pohlhausen Integrel Method

Since the original work of Karman and Pohlhausen, their momentum-
‘ integral method for solving boundary-layer problems has been studied and
1 ‘ used by many researchers. Libby, Morduchow and Bloom (Ref. 45) and Morduchow
(Ref. 22) have made a critical study of the integral method for a compressible
laminar boundary layer for a perfect gas. Chung and Anderson (Ref. 2U) have
7 applied this method to the boundary layer over a flat plate for a dissociating
3 gas. The basic principle of the integral method is to reduce the set of non-
] linear partial differential equations for the boundary layer to a set of ordinary
Vo differential equations. Additionally, the profile through the boundary layer for
each flow or dynamic variable is represented by a polynomial equation of appro-
priate degree,

In this section, the integral method is formulated in a general

4 fashion for a steady, two-dimensional laminar, compressible, boundary-layer

s flow of a reacting-gas mixture. The freestream flow outside the boundary
layer is assumed to be in equilibrium. It is also assumed that the electron
and atom temperatures are equal in the boundary layer, or there is one charac-
teristic temperature, T. If the wall velocity is zero, we have the usual
boundary layer behind a moving shock wave, we let the wall velocity be equal
to the negative value of the shock velocity ur attach the coordinate system
to the shock front, as a matter of mathematical convenience. By taking the
x-axis along the wall surface and the y-axis perpendicular to the wall, the
boundary-layer equations for a partially-ionized-argon flow of either type
o are given by Eqs. 2.19, 2.20, 2,30 and 2.3L,

e b o | addc b

< The boundary conditions for the boundary-layer flow behind a
moving shock wave are listed below,
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Wall swface (y = 0)

l u = u
; W
|
| v=20 (4.13)
! H = H
! W
L a =«
b : W
: ’ Boundary-layer edge (y = 0)
‘ u = u
| e
’, H = H (4.14)
] e
3 : . Qa = O
1 e

1 Note that the boundary conditions for a steady flow over a flat-plate are the

: same as those above, except at the wall (y = 0) the condition u = U, is re-
‘ placed by u = 0,

By using the boundary condition given in Egs. 4.13 for v, the equation

of conbtinuity (Eq. 2.19) can be inbegrated with respect to y to yield the
following expression:

g
K pv=-f Aow) gy (4.15)

[e}

il

By taking into account that Hg and ¢ are assumed constant, integrations or the

boundary-layer equations with respect to y fromy = 0 to y = & result in the
following expressions:

du_ O dp

1 dxfpu(u--u)dy+-d—x—- pudy=-6€x—e-—ywl.-a§ (4.16)
o

L g}, ou(H -~ H)dy--[%r-%l;+;% ;r%—y{ S (Le - 1)(1+3 RT)-F](l&N)

o}
g jj pula - a_)dy = - sc yL f b ay (1.18)

The Schmidt number (Se) is given below,

L - Pr/Le (4.19)

am

l Sc:

] We now apply the following transformation,
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£ = x/L
4,20
L Y, (4.20)
n=z e ,
5 Y% e
where, L is a suitable characteristic length and
. 0 '
5 = f L a4y . (4.21)
Pe
o
Under this transformation, y = 0 and y = 8 correspond to 4 = 0 and 1 =
respectively. By introducing the following dimensionless variables,
f = u/ue
g = H/H (4.22)
7 = Ot/o:e
and ‘the following notation,
1
Fa =f £(1 - £)an
(o)
Fo= [ 21 g (1.23)

o)

Fa =flf(l - Z)dn

0’

the following set of first-order ord:.na.ry dif ferential equations are obtained
from Eqs. 4,16 'bo 4,18, . ' .

du ' '
N &, 1 d?\ A e of
T 5 F1 d§ u T (1 .- M) F;_ -Py -81)=R [5-7-]. JW | (k.2k4)

p an, .

dFp 1 A 2 1 9 :

N2tz Pt T (1-11)F2-R[-1;-5 E%]w
+R[ @ l)oz(1+ RT) 3, (h.zs)

—— e_ P S ———— S— v *
e o
aFa 1. a, A B o _= |1 % [

7\-(-1-E—+-2~'F T E;Tc'l-Me)Fs=R[§;§.1w-aeue\£Bdn (4.26)
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In the above expressions the following conditions were used:

o) oo
Re =
| T e
% . (4.27)
i | R = Re, LA
2
PR L
1
j Py =f £2 dy
) 0
ip
e
S1 = — d
1 5 M
()
i
E‘ Equations 4.24 to 4.26 are the basic integral-differential equation~ for the
] o houndary-layer flow. Approximate solutions to these equations can be obtained ,
' by assuming f, g and & are functions of only n , which sabisfy certain conditions i

atn =0 and § = 1. These boundary conditions will be discussed later.

The general solution, based on the previous integral-differential

1 equations, can be obtained for the special case of a flow without a pressure
gradient. For this special case the simplified integral-differential equations
for the flow over a flat plate are given below,

| "B aing-| ] (1.28)
. w

' S RN TR -
§
7\9;.F_?.+.1:F a_z L9 o Le=d (I'*'%RT)O‘eaZ (4.29) ;
&E 22 PE% Pr H on ) ‘
r e w .
dFa 1. d\_=[1 A v o
7\a§—-+-§F2-a—§-—R[-S—E'a?]']W--a—e-Ge —F;dn (,4'30)
[s)

The boundary conditions for velocity, enthalpy and degree of ionization
are given below:

For =0 f =r= uw/ue
g =g, (4.31a) g
oz »
5 K N Z
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! This last relation will be developed subsequently.

For =1 £ =1 g =1 Z =1
b |
L . £ =0 g =0 7' =0
E (4.31pb)
frv =0 gn =0 g4t =0
;; i frit =0 glll__.o

whére, the prime denotes differentiation with respect to n. The edge of the

: sheath is now the boundary condition for the boundary layer. Consequently, K, !
3 ; the catalytic efficiency coefficient, is determined as follows: The wall is !
at a floating potential. The momentum equation, Eq. 4.32a, can be obtained
(Ref. 41) from Langmuir-probe theory, if the electrons have a Maxwellian
velocity distribution,

WIEARITY

1 =
Flo <v > 15 exp <kTs > -my e v, =0 (4.32a)

where
8kr_ \1/2
. . < Ve > = (7’FM:->

/ KT 1/2
()

A

end &P is the potential between the wall and plasma, e denotes the electronic

4 charge and s denotes the sheath edge. The second relation (Eq. 4.32b) is
Y obtained from the continuity of mass flow of ions at the outer edge of the ‘
sheath. ;
o I '
= . b
psDam,s<3§ s = Ps % Yy (4.32b)
The final relation (Eq. 4.32c) is obtained (Refs. 41 and 42) from the continuity
S X of electron-energy flux through the outer edge of the sheath,
<y >

[ e S%r - PG Vg By ] = (T + ebd) n, T e <1%‘2> (4.32¢)
S S

where, LR is the thermal conductivity of electrons, Vge is the drift veloci%y
" of electrons, and he is the enthalpy of electrons.

As already mentioned in Section 2.h4, the sheath is very thin compared
with the boundary-layer thickness for the present problem, and the boundary
conditions are taken to be those at the wall. From the above equations for the
sheath, z'(x,0) can be related to z(x,0) and K are given by (Refs. L4l and k2),
1 Sc Vi

K= ———
uooew(ﬁ/L)

(4.33)

; where, 6 = T_/T .
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The dimensionless velocity, total enthalpy and the degree of ionization,

defined by Eqs. 4.22, can be approximated by the following polynomial equations
for their profiles,

6

2(,8) =) e (8) 7 (h.34)
n=0
7

g(1,8) =) By (8) 7 (4.35)
=0
p)

an,8) =) e (6) 1 (4.36)
n=0

Morduchow (Ref. 22) has shown that sixth and seventh degree polynomial equations
for the velocity and enthalpy profiles, respectively, appear to be the mosb
promising approximation. Chung and .Anderson (Ref. 24) have assumed a fifth-
degree polynomial for the profile of the degree of dissociation in a reacting
dissociative gas, and found this approximation to be reasoneble, as did others.

The other supplementary boundary conditions for ap, by and ¢, can be
found by estimating Egs. 2.20, 2.30 and 2.31 -and their derivatives with respect
to coordinate y. The following supplementary boundary conditions for a boundary-
layer flow wibthout a pressure gradient and at 1 = 0 (or y = 0) yield,

T

-Cg_‘ffjw =0 (4.37a)
- ~W
5 [ 2
[ ¢ ¢ .¢C . (I +5x0o, 5, u 1 o \2
—E‘-Sﬁ-i*';r;(be'l)————}-{g————e" aﬁ_j.w:-?:-_C(ﬁ)(sﬁ JW (’4.37(.‘)
cC 3 . ¢ (T + % ka)O‘e oz 1 ué 1 3 \21'
_'ﬁ}'aﬁ'*ﬁ(l'e—l)——_lfe——_ BH_W=--1¥5_C<l-f’;><aﬁ>JW(h.37d)
[9_52 ’=;L.|._ LA SJ (4 .37e)
Seon | R ud. P | )

where, C = pu/peue and the prime denotes differentiation with respect to 7.
Equations 4.31 and 4.37 produce seven, seven, and five boundary conditions for
8ns bp and cn, respectively.
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\ An esti ate of the effect of C varying a ross the boundary layer was
studied by Back and Witte (Ref. 46) from the stagr. .cion-point heat-transfer

i predictions for a high-temperature un-ionized gas. Lees (Ref. 47) has set
PyHy = Pele in the heat transfer calculation. This epproximation might be
reasonable for an accelerated ionized gas flow over a highly cooled wall. For
simplicity, we adopt the method of Lees by assuming that C is constant.

ikt
[

ST T

. . From the given boundary conditions, ay, by and cp are listed below,

] H

i X a:rEl

) H

¥ e
ag = 2(1 - r)

3

[ ; a2=0

i 2 = 0

< )

x a4 = -5(1 - r)
1 }
3 ! as:?,(l_r)

. ' ag = -2(1 - r)

3 bO = gW 5
] 2 . 2
, S e R RO LIE

a, (1 + Z R ) 9% 1

2 b3=6—(Le-l)-—~——z——-—_a.qa‘w

g bs = 35(1 - bo) - 20by - 10bz - hbs

; bg = -84(1 - b ) + 45by + 20bz + 6bs

b, = 70(1 - b.) - 36by = 150z - lbs

e e

b, = -20(1 - b ,) + 10by + bby + bs
Cl'—'K.‘\/——'C )

R IO

ca = 10(1 - co) - 6cy - 3c2

E |- cq = -15(1 - co) + 8¢y + 3cz

cs=6(1 - c)) - 3a - ca

| N




The remsining two unknowns cg and by can be obtained by solving Egs. 4.29 and

4.30.
By using the above results, the following relations can be obtained,
_ 985 + 227 ‘
Fi = (1 - r) 5555 * T557 r(l - r) (4.39a)
f2 = By - By by - B2 b2 - Bz ba (4.39p)
Fa =Co - C1cy - Cz c2 (4.39c)
where, 1
Bo = 352 (1-b0) (1L -1r) +§r(l-bo)
821
Bi=imops (L-%) +3gr
151 £y
B = 3605 (-1 +-r2
Bz = ?2%%6 (l - I‘) +'§§—O'

Co = H (L-c¢) (1-1) *’% (1 - co)

2
Cl=1319—5(l r) + 35
_ b7 :
Ca——'6—39o(l-r)+~6-5

Substitution of Fy into Eq. 14.28 yields the following expression for A ,

aA
F =M (4.10)
A, = 2oL (4.41)

Fa
where a3 = 2(1 - r).

The solution for A can be obtained from Eq. 4.40 by using the initial
conditions A = 0 at £ = O, as shown below,

A= Nk (b4.42)

This solution implies that the boundary layer thickness is proportional to the
square root of & (or x).

The boundary layer displacement thickness 0%, which is defined by the

followihg expression,
[ ou
=[-8 | (4.43)
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can be related to A as follows:

2.
g% = ML g
Rez

(o]

where, J is defined by the expression,

p »
J=f [Bs-g_]dn (4.4b)
(o) e

When Egs. 4.38 to 4.40 are used in conjunction with Egs., 4.29 and
4.30, the following expressions for bi(t) and co(t) are obtained,

b 1 R 1 1
S R L A |
5
I+5RT )a
db db (
- Bpt —'3—2' Bz —g—s' '—-—7\— (Le - 1) 'He Ci (4 .k45)

[E(l+r)+ClK'~/ :lg—g— [%(l+r)+%cll{'\/7\°§

R 1 deg , LA Lo
+'§ETOK'\/7\O§':|CO=%(1+I‘)--éCgCg—ng-a%g m 5 an (4.56)

The derivatives of bz, bz and co with respect to £ are found from Egs. 4.38.

The 1nitial conditions for Eqs. 4.45 and 4.46 are: by is finite and
co =1 at £ = 0, These conditions will be discussed later for the equilibrium,
frozen and noneguilibrium flows.

The solutions for the velocity, total enthalpy and degree of ioniza-
tion profiles can be obtained from Egs. 4.34, 4.35 and L4.38 and from the results
of Egs. b4.45 and 4.46,

The use of the inbtegral method to obtain a solution for the laminar
boundary layer equations is widely accepted in aserodynemics. Generally,
Solutions are determined by integrabing the appropriate equations in two
ways: first, in the direction normel to the wall, using assumed polynomial
distributions; and, second, in the flow direction, where new dependeat vari-
ables arise as a result of the first integration. Such a method, has proved
to be of considerable value in assessing skin-friction and heab-transfer
effects. However, such methods are of limited usefulness, since they give
no indicabtion of the defailed nature of the flow,

It can be seen from Egs. 4.24 to 4.26 thab the solubtions are independ-
ent of the variations of the Prandtl and Lewis numbers inside the boundary
layer, and they are dependent only on these nunmbers evaluated at the wall. As
a result, the successful method of Pallone (Ref. 26), who included the Dorod-
nitsyn (Ref. 25) integration scheme with the Karman-Pohlhausen approach was used.

33




The method is formulated as follows. The viscous domain from the body surface
to the ouber edge of the boundary layer is divided inbto N curvilinear strips.
i The boundary layer equations can then be integrabed along a coordinate normal
to the body from the surface to the boundary of each strip. The essential
difference between the Karmen-Pohlhausen and Dorodnitsyn integral methods is
that, in the former, the partial differential equations are satisfied only

on the average over the entire boundary-layer thickness and in the latter the
partial differential equations are satisfied on the average over each strip of
the boundary layer. Note that for the laminar boundary-layer rlow of a non-
equilibrium ionized gas, the use of the Dorodnitsyn integration scheme makes
the calculations very complicated.

3
A

L4 Equilibrium Flow of Partially-Ionized Argon

The Rayleigh and shock-tube wall boundery layers for an equilibrium
flow of ionized argon were studied quite extensively by Knoos (Ref. 38). He
concluded that, for a freestream temperature of 12,000°K or greater and &
freestream pressure of the order of 1 atm, the equilibrium assumption is
typically correct for the region of the boundary layer where T > 11,000°K, but
breaks down for T < 9,000°K, at times of the order of 10 psec for a Rayleigh
boundery layer, and at a distance (x) of sbout 5 cm for the shock-tube boundary
layer., Hence, near the freestream edge of the boundary layer the flow is in
equilibrium, and near the wall surface the flow is in nonequilibrium.

In the case of ionizabtion equilibrium the degree of ionization (@)
is normally considered as a function of temperature (T) and pressure (p),
while the pressure is melated o ¢, T and densibty p by the equabion of state
(Eq. 2.23). The equation for o for an equilibrium boundary layer is given
below (Eq. 3.16), and is called the Saha equation (Ref. 3),

a= l. P _ <;§ >5/2 T1/T) 1J-l/2 (4.47)

RDITI

TErPRC e

Note that pp = 150.27 gm/cm3 and T = 182,850°K for argon (Table 3).;

T.\2
) o 5.1
Cp_'éR(l+a)+§(l'O‘2)R<'2'+'g:_> (4.48)

The basic equations for an equilibrium boundary layer flow of partially
| ionized argon are given by Egs. 2,19, 2.20 and 2.21, where O is related to T
| through the Saha equation (Eq. 4.47). Thus, 00/Qy can be related to OT/dy.

1. o _ 0 3t .
i : Eg_—sﬁa—y- (’4.’49) .
< 1 The supplementery boundary conditions given by Egs. 4.37c and 4.37d are now .
E- | given as follows:
3 ' b 2
3 ). u
4 9_. ! .C_. 1‘ = __6_ __l__ 2

: ‘ L 7 & *Pr (Le - 1) B g J =~ He [ c (.l 57 > ay J (k.50a)
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[ﬁg -P;(ue-l)ﬁg]w—-ﬁ-g[0<l-ﬁ>afL (4.50b)
Y e V¥ 1 -1
B=[1 t3 <1+e> ot(l-a)J (k.50¢)
€ = g RT/I (4.504)

The variations of € and 8 with T are shown in Fig. 14, For a wall temperature
of 300°K € and B are approximately zero. Also, B, =~ 0 and B =~ 0. If Pr, Le
and C are assumed constant abt the wall surface, Eq. 4.50a reduces to,

u2
22 (Pr-1) (1-1r)3
T (4.52)

and Eq. 4.50b becomes,

bz 20 (k.52)

The differential equation Tor by (Eq. 4.45) can be expressed as shown
below,

o “

The initial conditionc for by is that by must be finite at £ = 0., Equation
4.53 then yields 'the following solution,

'.)_l = % BO - % Bzbe

br = - (4.5Y4)
1 R
3B+ Prxo

In Refs. 22, 23 and 24 it was shown that in an equilibrium boundary
layer a similar solution can exist, as the solution for f, g and O are
independent of £§. However, if C is not assumed constant, then a similar
solution does not exist in the general case,

4.5 Frozen Flow of Partially-Ionized Argon

In the case of a frozen flow of partially-ionized argon it is assumed
that ¢ remains constant. Then, the temperature derivative of & (i.e., 20/2T) is
zero., The specific heat at constant pressure for a frozen flow is given by,

5
¢, =3 R(1+0) (4.55)
If the degree of ionization is constant, there is no net production of ions or

atoms and & is zero. Hence, the electron conservation of energy equation (Eq.
2.30) reduces to,
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Note that although ¢ is a constant with temperature T, it varies with distance
X and y. -

The differential equations for ba(&) and c,(&) (Egs. 4.45 and b4.46)
now reduce to, | : ’

dbs 1, R _1 1
BE T +['2"Bl +I=?X;J.bl =% 8o~ 73 Bebe

5 \
\ = (I +2 RT o
1 U
- 5 Babs - Ba %g?'- - 1:_57\; (Le - 1) 12{e LA (4.57)

a
[%(1+r)+elKJko§'J§a-§3+[%(1+r)+-:2L-CK~/7\0§‘

+'§§x; K.\,"X;g_']co=%(1+r) (4.58)

Equation 4.38 for cp is given by reduced expression,
ca =C (4.59)

The degree of ionization for the frozen boundary-layer flow can be
found using Eq. 4.58 and 4.36. The initial condition required is that co = 1
at € = 0, since the degree of ionization has its freestream value at the leading
edge (£ = 0). After the degree of ionization ¢ has been:found, by can be ob-
tained from Eq. L4.57 by using the initial condition that ba should be finite

at £ =0, ] 2
- I +%RT o
1 1 1 dba R ( 2 we
5B, - 3 Babz - 5 Babs - Ba g - gy (Te - 1) ——; °
bJ_ = - - ° -
1 R
"2' By + Prxo (’4.60)

One can see from Eq., 4.58 that the degree of ionization is dependent on &, and
therefore the profile for the degree of ionization in the frozen boundary layer
is not similar, that is, a similar solution does not exist. The profile of the
total enthalpy (g) is still a function of § and it is also not similar, in
contrast to the equilibrium results. However, the velocity distribution for
the frozen boundary layer is similar in the present work. If the value C was
not assumed to be constant, then a nonsimilar velocity profile would also
exist.

4.6 Nonequilibrium Flow of Partislly-Ionized Argon

In the nonequilibrium boundary layer the mass-production rate for
electrons (or ions) is not zero, but it is a function of temperature and
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density. In order to solve Egs. 4.45 and 4.46, the term ¢/p must be evaluated.
The collisional ionization rates for a partially-ionized argon flow have been
discussed in Chapter 3. The relationship between Q/p and the reaction rate
dx/at given by Eq. 3.1b is,

=Q +a, (4.61)

i€,
1l
218

where da and ée are the atom-catalyzed and electron-cabalyzed reaction rates,
respectively, as described in Chapter 3.

In the present theory it is assumed that the electron and atom tempera-
bures are equal in the boundary layer, or one temperaturc exists. Consequently,
Qg and de are functions only of this gas temperature., The gas temperature in
the boundary layer is expected to be less than 16,000°K for a freestieam tempera-
ture (Tm) of 13,000°K. For this temperature range the significant contribution
to the mass-production rate Q/p is due %o ion-electron-electron recombinaticn,
and the contributions due to atom-atom and atom-electron collisions should be
small,

The initial conditions imposed for by and c, at &€ = O are the same as
for the case of a frozen boundary-layer flow. Thus, by is given by Eq. 4.60
and ¢4 = 1,

4.7 Comparison of Theoretical and Experimental Results

4.7.1 Shock-Tube Side-Wall Boundary Layer

For the case of a laminar boundary layer indiiced behind a moving shock
wave, the boundary conditions for the freestream flow and the wall are listed
in Table 4. These initial conditions used for the boundary layer calculations
correspond to the experimental conditions for Brimelow's experiments (Ref'. 15),
facilitating the comparison of theoretical and experimental results. Note that
appropriate constants for argon used in the calcu.ations are listed in Table L,

The predicted equilibrium, frozen and nonequilibrium density (Pg/P) and
degree of ionization (@) profiles for an essumed laminar boundary layer behind
a shock wave are shown in Fig. 15. The initial conditions are for Case I,

Table 4. The experimental. results from Ref. 15 for 3.75 cm behind the wave are
also shown. The three predicted density profiles are very similar, and they are
in good agreement with the experimental data. For the three predicted degree

of ionization profiles, the equilibrium profile differs markedly from the very
similer frozen and nonequilibrium profiles, which are in good agreement with the
experimental data.

For the ejuilibrium boundary layer the degree of ionization attains
its equilibrium value instantaneously at the local temperature and pressure.
Since ‘the wall temperature is very low O equals zero at the wall (y = 0).
However, it can be shown by using Eq. 4.47 that (20/dy)y is almost zero, or
(dy/Xt)y is almost infinite. Consequently, the equilibrium solution for the
degree of ionization differs markedly near the wall from the frozen and non-
equilibrium solubtions. Note fthat at the freestream edge of the boundary layer
the equilibrium solution for the degree of ionization is in good agreement with
the experimental results, as expected. This behaviour is in agreement with the
conclusions of Kndods (Ref. 38).
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For the frozen solution, the ionizabion reaction does not occur and
the degree of ionization is controlled by diffusion. It is also affected by
the surface recombinabion catalycity, as described in Section 4.3. From the
initial conditions for ¢y, the degree of ionizabtion profile at x = O should
be constant, as a(y) = 0. For x greater than zero the profile changes due to
diffusion. As x increases from zero the value of ¢y, decreases from ¢, and
approaches zero as x tends to infinibty. The degree of ionization at the
edge of the sheath layer is not zero. It can be determined by using Egs.

4,33 and b4.31a for z'(0). In Fig. 15, the degree of ionization at the edge
of the thin sheath layer is seen to be very small, bubt it is nonzero.

The nonequilibrium solution for the degree of ionization is vexry
similar to the frozen solution. The reason for this behaviour is that the
gas temperature within the boundary layer is below 15,000°K and the mass
production rate of electrons therefore has & minor effect on the degree of
ionization.

For Case II of Tables 2 and L4, the predicted equilibrium, frozen and
nonequilibrium solutions for the density and degree of ionizabion profiles are
shown in Figs. 16 and 17, along with the sxperimental results. The same
comments made for the previous case apply to these results. Additionally, by
comparing theoretical and experimental resulbts it can be seen that near the
edge of the boundary layer the flow is in quasi-equilibrium duvue to radiation
losses that become increasingly important with distance (20 em). Nonequilib-
Lium effects are important near the wall region.

For Case III of Tables 2 and Y4, the equilibrium, frozen and nonequi-
librium solutions for the density and degree of ionization profiles are shown
in Figs. 18 and 19. For this weaker shock wave and lower ionization case,
the predicted and measured results are in good agreement. At 12 cm and
lower temperatures radiation does not appear to be too significant.

For the case of a steady boundary layer in a partially-ionized-gas
flow over a flat plate, the integral method described in Section 4.3 can be
applied by setting r equal to zero. The significant difference between this
quasi-steady boundary layer and the boundary layer behind a shock wave is in
the velocity profile., In the latter case the velocity of the wall equals
Zero,

4.7.2 Quasi-Steady Flat-Plate Boundary Layer

The freestream and wall conditions assumed for the steady tamihéic .
boundary layer over a flat plate in ‘the UTIAS hypersonic shock tube are
summarized in Table 3.

For the case of an equilibrium boundary layer, the predicted degree
of ionizabion and temperature profiles as a function of n,(nB is defined in
Section 4.8) for two particular Prandtl numbers of 1 and 0.7 are showm in
Fig. 20. It can be readily seen that the effect of the Prandtl number (in
the energy equation) on the degree of ionization and temperature is significant.

Equilibrium and frozen solutions for the temperature and degree of

ionization profiles for a flat-plate boundary layer are compared in Fig. 21,
and the associated density profiles are compared in Fig. 22, For both
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solutions the Prandtl and Lewis nurbers were set equal to unity. The equilibrium
and frozen solutions exhibit sizeasble differences. Note that the frozen solutions
displayed in both Fig. 21 and 22 were calculated for the case when x approaches
infinity, or when O = 0. Then, an exact numerical solubtion can be obtained
easily by using the similarity assumption.

For a flab-plate boundary layer having the boundary conditions given
in Table 3, equilibrium, frozen and nonequilibrium solutions Tor the density
profile are compared in Fig. 23a, and those for the degree of ionization
profile are given in Fig. 23b. For these calculations the Prandtl number,
Lewis number and the densiby-viscosity product, C, were tesen as 0,67, 0.y
and 1.0, respectively. The three prcdicted profiles for the density are all
similar, but their agreement with Whisten's experimental data (Ref. 18) is not
good. DNote that the minimum value of the density is at the edge of the boundary
layer for the predicted profile, while it occurs at y equal to 0.7 mm in the
experimental profile. This disagreement is presently being investigated.

The predicted profiles for the degree of ionization are quite different
(Fig. 23b). Also, a signiiicant discrepancy exists between the theoretical and
experimental results. The overshoot of the degree of ionization beyond its
freestream value is not understood at present, Some of the disagreement between
the predicted and experimental results could be due to errors in the integral
method. As described in Section 4.3, the presentv Kaman-Pohlhausen integral

method uses flow quentities that are averaged over the entire boundary layer
thickness.

4.8 Comparison of Integral Method and Exact Numerical Calculations

Similar solutions and exact numerical calculations were made for
identical boundary-layer problems for comparison purposes. By an exact
solution it is meant that the Blasius-type solution is obtained by using the
Howarth transformation (Ref. 48) specified below.

X
ng=k[\ £, by My ax (4.623)
(o]
u y-
woEe | ew (4.620)
B
(o]

The subscript B refers to the Blasius type of variable. In order to distinguish
between the notation of the dimensionless velocity in this section and in Section
4.3, we define

For a steady laminar boundary layer of a partially-ionized gas, Back
(Ref. 47) has discussed the similarity solution approach for a low-speed flow.
The basic equations for the boundary layer (Egs. 2.19, 2.20, 2.30 and 2.31)
can be transformed to yield the following expressions.
1

£11 £11 I pe 12 = (h 63)
C £y + fB Bt |5 - (fB) =0 .
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The prim: denctes differentiation with respect bo nB.

The flow over a flat plate is considered, with Pr, Le and C held constant
E " for simplicity. For the equilibrium case the ion concentration gradient is ex-

pressed in terms of the enthalpy gradient. The basic equations (Egs. 4.63 and
4 ,64) reduce to,

11 1t = .
C g+ £ 01 = 0 (14.66)
|
i | u2 1
| Pr ) B He Pr BB
!
3 t
é} f The symbol B is defined by Eq. 4,50c. The boundary conditions for the equili-

brium, similar boundary-layer equabtions are as follows:

fB(o) = fﬁ(o) =0

fé("l) “las ] —-®
(4.68)
. X g(0) = &y b

Lot
~

g(n) —lasn=-w

For the case of a frozen boundary-leyer flow, Egs. U4.63 to 4.65 take
the following forms,

¢ fé" + foé' =0 (4.69)
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The boundary conditions are as given in Egs. 4.68 with the following additional
ones,

z(0) = constant ]
(k.72)

z(n) 2las o

In order to compere results of both the integral method and the exact
similar solutions, a common coordinate must be used. From Eq. 4.21 we have

‘the following expressions
- PN Py
v=8[ b (4.73)

()
Define n* as the common coordinate,

Peo Yo

y=NAN fn‘ e dn (L.7h)

¥ =
1 X o

On ‘the other hand, n* can be related to nB by,

0
n* =2 L[ﬂb 53 ang (4.75)
e
From Egs, 4.74 and 4.75 the relations between the derivatives ‘e,
% _ 1 p ¥ _[1'p X .76
on¥ N k; Pe on N 2 pe Bﬁ; ( )

where, ¢ represents an arbitrary parameter.

For a steady boundery layer over a flat plate with the freestream
and wall conditions as given in Table 2, the exact nmumerical profiles of
velocity, enthalpy, degree of ionization and temperature are displayed in
Fig. 24, The corresponding density profile is shown in Fig. 25. Also, the
effects of a different Prandtl number on the density are illustrated in this
figure., The exact numerical temperature profile has also been plotted in
Fig., 26, where it is compared with the integral method profile. The results
obtained by the two different methods are in excellent agreement.

For an equilibrium boundary-layer flow over a flat plate, exact numeri-
cal and integral method resulbts for the degree of ioniz:tion and temperature
protiles were computed. These results are shown in Fig. 27, and it can be
seen that both sets are in excellent agreement.
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The comparison of the exact numerical and integral method results
S 1 serves the particular purpose in showing the accuracy of using polynomial
S expressiong in the integral method. From the comparisons shown in Figs., 26

) and 27, it can be concluded that the present integral method is in good

! agreement with the exact numerical one. 3

o e e S

i , 4,9 Discussion

| The integral method has been used to study both the laminar wall
| , boundary layer induced by e moving shock wave and the quasi-steady flat-plate
' ‘ laminar boundary .ayer. The following concluding remarks can be made.

1, The integral method is in good agreement with experimental data for
' the laminar wall boindary layer behind a shock wave. Near the edge of the

| boundary .ayer the flow is expected to be in equilibrium, and near the wall,

! the flow is expected to be in a nonequilibrium or in a frozen state.
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' 2. The fif'th, sixth and seventh order polynomial equations for the
degree of ionizatiosn, velocity and enthalpy profiles, respectively, are
sufficiently accurate for the present method.

ety e

et s 3 A m o i e e ANk A a4t st

VOO
- o 2

>

3. A comparison between some predicted and experimental results for the
quasi-steady flat-plate boundary layer indicates that there are discrepancies.
Part of the disagreement may be due to the fact that actual variations of
Prandtl number, Lewis nunber and the density viscosity product were n

included in the analysis. A more satisfactory method might be to combine

3 2he Karm?n-Pohlhausen integral method and .ne Dorodnitsyn ir.tegration scheme

8 Ref. 25 .

o It is possible that the analysis and experiment may agree for the ;
side-wall boundary layer where radiation effects close *o the shock front 9
are not yet significant. However, in the case of the flat plate quasi-steady ~
boundary layer, where measurements are made far from the shock front (20-30 cm), y
radiation losse; are important. For example, at shock Mach numbers of aboub ;
17, the froc-otream ionization has dropped from 16% to 5%. It will therefore -
be necessary, as a first step, to include the new initial conditions in the

numerical analysis. As a second step, it appears that the boundary layer

equations woul-. have to be solved by including the effects of the radiation

terms. Ultirately, a finite-difference scheme would have to be developed

that would permit the inclusion of variable Prandtl and Lewis numbers through
¢ the boundary layer. Perhaps, when these major modifications are made in the

: analysis, better agreement with the interferometric results might be expected.

G *2

S

= ?F TARTITTY
t

v

Nevertheless, when one looks at the resulbs obtained by Brimelow o
(Ref. 15) for the side-wall boundary layer it is clear that the agreement of ’
experiment with analysis is as good close (3.75 cm) to the shock front Mg X~ 17)
as for large distances (20 cm). This points to some basic differences between
tne two sets of dabta and the snalyses. This problem is being investigated.

5. INTERACTION OF A LAMINAR JOUNDARY-LAYER FLOW AND A CORNER-EXPANSION WAVE
IN PARTIALL) -IONIZED ARGON

5.1 Introduction

For an ideal and inviscid flow at supersonic speed, the flow around
& sharp corner takes place through a stationary expansion wave. Such a flow
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is completely described by the well-known Prendtl-Meyer relations (Rer. 49).
The steady, inviscid flow of a partially-ionized gas around a sharp, convex
corner is much more complex to describe analytically, and it has been studied
in detail by Glass and Takano (Ref. 3). For a real gas flow a boundary layer
is produced on the wall surface. Ibs presence can lead to a considerable
modification of the results predicted by inviscid flow theory near the surface.
The interaction of a laminar supersonic or hypersonic boundary layer with a
steady corner-expansion wave for a partially-ionized gas is an important
problem for aerospace control surfaces -and entry into planetary atmospheres.
This problem is still not well understood both theoretically and experiment-
ally.

The interaction of a laminar boundary layer and a corner-expansion
wave for a perfect gas has been investigated extensively (Refs. 27, 50 and 51).
A comprehensive solution to this problem has been given by Lo (Ref. 27) w.o
used Dorodnitsyn's integral method to solve the Navier-Stokes equations. To
solve the same problem Sullivan (Ref. 51) suggested a simpler approach called
the cold-wall similarity method. This method predicts successfully the major
features of the flow at the edg. of the boundary layer. The main advantages
of Sullivan's method are that the calculations are simple to perform and the
results are in good agreement with Lo's for the pressure distribuvion and
boundary-layer thickness. Additionally, the results of Sullivan's analysis
are in good agreement with experimental data (Ref. 52).

For an inviscid flow, Glass and Tekano (Ref. 3) made a detailed
study of nonequilibrium, frozen and equilibrium expansion flows of ionized
argon around a sharp corner. The numerical calculation procedure was based
on the method of characteristics, and it is similar to that for dissociating
oxygen (Ref. 53). Furthermore, Glass and Igra (Refs. 54, 55) showed that
the experimental results substantiate the analysis of G.ass and Takano for
a nonequilibrium supersonic corner-expansion flow of partially ionized argon.

In this chapter, Sullivan's method is applied bto solve the inter-
action of a laminar boundary layer and a corner-expansion wave for a partially-
ionized gas. For simplicity the assumption of a frozen flow in the boundary
layer is made from the onset. A complete solution for the corner-expansion
problcm would be based on the coupled solutions for inviscid flow (Ref. 3)
and the Navier-Stokes equations, which mekes the analysis complex.

5.2 Cold-Wall Similarity Method for a Supersonic Ionized Argon Flow

The assumptions of hypersonic flow and a simple expansion wave used
in Sullivan's analysis (Ref. 51) are removed, in order to apply the cold-wall
similarity method to the case of a supersonic flow.

The boundary layer displacement thickness 0%, defined by Eq. 4.43,
can be expressed as,

[ ra ]

(5.1)
R, Pe/Pe
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The coordinate ng is given by Eq. 4.62b. A function G(x) is defined as,
Cp T
G(x) = —— (5.3)

The basic relationship between 8% and pg/v,, is,

P, 1/2
X [ — dx
% = 555 / ;W—R w3/2 (x) [ fp” J (5.4)
w

D/Pg

Equation 5.1 can be written in an alternate way in terms of the freestream

variables M , P, and B 1/2
[L[lP dz]

N 2 G(x)
o% = X % (5.5)
&w 5 Z P
where D
P =__q
P
Re
2 = e
MOO COO
cu X
Rex,&:; = ™

a, =~ 7¥RT_ (1 +q_)
Note that z is proportional to x, and *hat % equals 5/3 for the frozen flow.

From the céld-wall similarity assumption, G is independent of x, bubt
it is of constant value. Differentiating Eq. 5.5 with respect to z, then,

N3 3
M =2§f __@._7*9_. l\/R l—-g_
5 »° 2R p2

(5.6)

Ly




TRy

A

2° = z/x
P* = d¥/dz
P =1,/D,

=
1]

[ra

For a frozen flow O is constant and the following relations are
applicable,

v

7*
7%-1
Te
P = [—— J (5'8)
Lo
re 210D (5.9)
To 2+ (7*-1)M2
1
P 7¥-1
e Te
-p—o; <-.1§ (5.30)
(04
= =1 (5.11)
aoo

The rate of growth of the boundary layer di:placement thickness
immediately downstream of the corner is,

aox | _ ab* _
[ax-Jd" [&—]c"%-% (.12)

Note that ¢4, is the corner turning angle. The rate of growth of the boundary-
layer displacement thickness downstream of the corner can be related to the
defiection angle v(P).

5
%;f = o - ¥(P) (5.13)
v(P) = v(u) - v(1) ' (5.14)

The Prandtl-Meyer function for a frozen flow V(M) is given below.
../ >+l T e

“tan ™ N M2 - 1 (5.15)
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Substitubing Eq. 5.13 into Eq. 5.6 leads to the following equations for the
boundary-layer and expansion-wave interaction problem,

NR M
2B T i (o - v | (5.16)
% =P (5.37)

Solutions to these two ordinary differential equabions using a Runge-Kutta
technigue gives the pressure distribubion pe/pm. The initial conditions for
P and R are obtained from the values immediately upstream of the corner

(x = x¢); that is, P = 1 and R = R, (see Fig. 28). Note that the equation for
the skin friction is,

Cp, = L2 E0) ;3’3”(0 = (5.18)
. R

5.3 Model Calculations

The freestream and wall conditions for the following calculations of
a laminar boundary layer interacting with an expansion wave are given in
Table 2. Note that x, (Fig. 28) has been set at 13.5 cm. The value of G
(Eq. 5.3) is obtained by solving Egs. 4.69 to 4.7l (see Appendix A), giving
G = 0.274(12).

Calculated results of pressure, temperature and densiby distribution
at the edge of the boundery layer as a function of distance are shown in
Figs. 29 to 31, respectively. In each case the resulbts for four different
turning angles of 5, 10, 15 and 20 degrees are presented. Similar resulbs
for Mach number, boundary layer, displacement thickness and skin friction
are given in Figs. 32, 33 and 34, respectively. It can be seen that as the
turning angle for the corner increases, the surface pressure, temperature,
density, and skin friction decrease, whereas the displacement thickness and
Mach number increase.

Some experimenbtal data on the inbteraction of a boundary layer and
a corner-expansion wave are given in Ref. 18. Profiles for the degree of
ionization and density have been measured. As in the flat-plate quasi-steady
toundary layer (Figs. 23a, b), the post-corner boundary-layer profiles of these
quantities are in disagreement with the present analysis. In this case as
well, the reasons are being investigated.

5.4 Discussion

The cold-wall similarity method can be used to predict the flow
quantities at the boundary layer edge downsbtream of the corner. It is
believed thet these predictions are quite reliable. However, it is doubtful
that the method can predict accurately the heat-transfer end skin-friction
coefficients, owing to the assumption of similariby. For the cold-wall
similarity method £"(0) is assumed constant downstream of the corner. Actually,
£"(0) is a function of d(p./p,)/dx. Near the corner this distance derivative
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of pressure is a maximum and dec.eases to zero only as x increases to infinity.
Since the skin-friction coefficient is proportional to £"(0), the predicted
coefficient is therefore only as accurate as the underlying assumption, which
is believed to be inaccurate., Similarly, the heat-transfer coefficient would

» not be predicted accurately.

1 | A new method, based on an iterative procedure, is suggested below.
1. Calculate pe/pm and d(pe/pm)/dx by the cold-wall similarity method.

A 2. Calculate due/dx from the results of step 1.

3. Substitute du,/dx into Egs. 4.63 to 4.65 and solve them.

Lk, From the new results for fé, g and g' calculate G(x).

5. By using the cold-wall similarity method recalculate pe/pm and d(pe/pu)/dx.

6. Repeat steps 2, 3, 4, 5 and 6 until the resulting error is sabisfactorily
small.

This new method should enable the flow quantities at the boundary-layer edge

L and on the wall surface to be predicted as accurately as with the finite

> i difference method. Similarly, the velocity, enthalpy, and degree of ionization
1 | profiles for the boundary layer downstream of the corner would be predicted

| accurately. However, the advantage is that the new method should provide a
means of predicting accurately the heat-transfer and skin-friction coefficients.

s

3 A complete solution for the flow field around a corner can be obtained
1 by combining the boundary-layer solution described in Chapter 4 with the solution
of Glass and Takeno (Ref, 3) for the expansion wave. However, the difficulty of
: defining a common coordinate for both parts of the flow field - viscous and

1 inviscid - would first have to be overcome.

6. CONCLUSIONS

;] dis

A study was made of shock-wave structure, laminar boundary layers in
nonequilibrium flows of partially-ionized argon induced by a shock wave on
shock tube side walls and over a flat plate, and of the interaction of a
laminar boundary layer with a corner-expansion wave.

A new value of the ionizabional cross-section constant for argon
atom-atom collisions, was determined as, Sk, p, = 3.5 x 1072° cm®/eV, by
comparing results from a theoretical two-step collision mod.l with experimental
data of shock sbructure and its relaxation processes. It wus confirmed that
the ionization rate is controlled by abtom-atom collisions initially and then
by the more efficient electron-atom collisions, When the electron number
density increases to a certain level, the electron-production rate due to
atom and electron collisions drops quickly and the process reaches equilibrium,
Owing to the extremely low mass of a hydrogen atom and the large excitabtional
cross-sections for hydrogen atom-atom and electron-atom collisions, even a low
level of hydrogen impurity can reduce the tobal relaxation length of the shock
wave in argon.

——

b7

e




TP BT

The integral method of Karman and Pohlhausen was gpplied to study
the shock-induced laminar wall boundary leyer and the quasi-steady flat-plate
laminar boundary layer in an ionized argou flow. Equilibrium, frozen and
nonequilibrium solutions were obtained, compared with each other, and with
available experimental resulbts. The experimental dave show that the flow
near the edge of the shock-induced hundary layer on a wgll is in equilibrium
but in the wall region the flow is in nonequilibrium. This conclusion is in
agreement with Knoos' results.

For the quasi-steady boundary-layer flow over & flat plate, there
is disagreement between the analytical and experimental results. It is notb
understood why the analysis should agree with the wall boundary layer experi-
mental data and not with the flabt-plate data. Th.s discrepancy may be due
to the error in using the integral method for the analysis. The solutions
based on the integral method are independent of variabtions of the transport
properties with gas temperature and degree of ionization, which is a serious
deficiency of the present analysis. The present method also suffers from
the fact that the results are averaged over the entire boundary layer,
rather than reflecting repidly varying local properties. However, if these
were the reasons then they should be applicable to both boundary layers.
This is not the case. Perhaps the major difficulty arises from radiation
losses as discussed at the end of Section 4.9,

The cold-wall similarity method developed by Sullivan was
extended and applied to the interaction of a laminar boundary layer and a
corner-expansion flow for partislly-ionized argon. The entire flow was
assumed frozen both upstream and downstream of the corner., The hypersonic
flow and simple expansion-wave assumptions were removed for the present case
of supersonic flow. The cold-wall similarity method predicts the pressure,
temperature and Mach number at the edge of the boundary layer, and the dis-
placément thickness, but breaks down for predicting flow profiles inside
the boundary layer. To overcome this difficulty a new method of solution
was proposed. Available post-corner, boundary-layer experimental dabta are
also in disagreement with bthe present analysis. The reasons why disagreements
occur in the case of the quasi-steady boundary layers on a flabt plate and
after a corner-expansion interaction are presently under study, as discussed
at the end of Section 4.9.
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TABLE 1

NUMERICAY, CONSTANTS USED IN THE CALCULATLONS

UNIVERSAL CONSTANTS

Boltzrann constant
Avogadro constant
Mass of an electron (me)

Partition function for electrons

CONSTANTS FOR ARGON
Molecular weight of an argon atom (mAr)

Gas constant (RAr = k/mAr)
Partition function for atoms
Partition function for ions
Ionization temperature (Ty)

First excitabtional temperature (T¥)

Characteristic density of ionization
(p1)

CONSTANTS FOR HYDROGEN

Molecular weight of a hydrogen molecule
( mHa)

Mol?cular weight of a hydrogen atom
)

Gas constant for a hydrogen atom (Ry)

Partition function for atoms
Partition function for ions
Ionization temperature (T)

First excitational temperature (T¥)

16 erg/°K

1.3803 x 10°
6.023 x 1023 per mole
9,1066 x 10'28 g

2

39.944 g/mole

0.20813 x 107 erg/g°K
1

6

182,850°K

135,000°K

150,27 g/cm3

2,016 g/mole

1.008 g/mole

8.3135 x 107 erg/g°K
,

1

157,000°K

118,380°K

i oner e ¢ mart T T TR S e Ao S A et S




TABLE 2

INITTAT, CONDITIONS FOR A STRONG SHOCK WAVE

MOVING IN A QUIESCENT GAS

e - P—

} Case Gas Pl( torr) M, T].( °K)
i I pure argon 5:6 : 16.5 298.7
, ; IT pure argon 5.12 16.53 26.6
| IIT pure argon 5.09 13.59 296.7
Iv argon + 0.4% hydrogen 5.17 16.68 | 297.4
{ ‘ (by pressure) '

TABLE 3

FREESTREAM AND WALL CONDITIONS FOR A LAMINAR BOUNDARY LAYER

OVER A FLAT PLATE IN PURE ARGON

‘ u, 4778 m/sec

; , M, 2.k

1 P, 2238.h4 torr

s T, 13,393°K
T, 298.2°K

4 M 16.98

I
{
3
i
|
! b'e 13.5 cm
|
1
|
1
f

aulacinia 8
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TABLE 4

FREESTREAM AND WALL CONDITIONS FOR A LAMINAR BOUNDARY LAYER

BEHIND A STRONG SHOCK WAVE IN PURE ARGON

u MS LT Y Ml P, T Tw X
Case |{(m/sec) (m/sec) |(m/sec) (torr) | (°K) (°K) (cm)
T 5303 | 16.53 |4614.6 | 6884 | 2.4 2231 | 13,221 {297.9 | 3.75
II 5303 16.53 | 4614.6 | 688.4 2.4 2231 | 13,221 {297.9 20
1II 4369 | 13.59 |3650.8 | 517.7 | 1.9 1331 | 11,758 | 299 12
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APPENDIX A: METHOD OF SOLVING BOUNDARY~LAYFR EQUATIONS :

The partial differential equations describing the boundary layer for
each problem encountered in this study have been transformed byrmathematical
techniques into ordinary differential equations. Among the vast number of
numerical methods available for solving boundary-value problems of ordinary
differential equations the Runge-Kutta method is probably used most fregquently.
Standarc Runge-Kutta computer programs are available and are quite easy to
utilize,

. The ordinary differential equations of Section 4.8 (Eqs. 4.66 end 4,67)
for the equilibrium flow problem can be expressed in terms of five firgt-order
ordinary differential equations with three initial conditions: fg(0) = O,
£3(0) = 0, g(0) = g, and two boundary conditions: fz(®) = 1, g(w§ = 1. TFor
the frozen and nonequilibrium flow cases, the basic equations (Eqs. 4.69 to
4,71) can be written as seven first-order ordinary differential equations
with four initial conditions: f£p(0) = 0, £5(0) = 0, g(0) = g, and either
z(0) = ccastant or z'(0) = constant, aad three boundary conditions: fj(®) = 1,
g(®) = 1 and z(w) = 1, A procedure is now given for finding the other initial
conditions, £3(0), g'(0) and z'(0) (or z(0)), for the frozen and nonequilibrium
cases. A similar procedure can be uged for the equilibrium-flow case.

For ‘he calculations we assume the initial conditions,
f"(O)
3
g'(0)

z'(0) or E(0) = o

a

b (A1)

and define the following equations,

Fa(a,b,e) = 1 - £1()
Fe(a,b,c) = 1 - g(«) (42)
Pa(a,b,c) = 1 - z(x)
The solutions to thase equations
Fa(a,b,c) = 0
Fe(a,b,c) = 0 (£3)

Fa(a,b,c) = 0

can often be found by a simple procedure known as the Newton-Raphson method.
The recurrence relation can be derived from the Taylor series expansion for

£(xx)
£(x,) = £(x) + (x, - x) £'(x,) + ... (43)

where, f represents Fy, Fp, Fa and x for a,b,c.

Al




From Eq. A3, an iterative sequence can now be obtained as follows:

where,

T s ba/A
by =0y - &/A
11 7 G A/t

L]

c

OF oF oFy
- ®
1 1
oF oF OF
= = &
i i i
oF an BFa
8 35; 33::
oFy OF
SACHLILN) 3, =
R
F(ay,b;,50) %’Ta g%g
1 1
Fa(eysb; 5c;) gi—? %ﬁ‘f
1
OF OF
BEJ; F1(8;5B;5¢,) EEi
oF oF
B'Ef Fe(a,,b;5¢;) ac—:
%%? Fa(ay,b;5¢;) %ﬂf

%gl Fi(ai’bi’ci)

o/
P.m} "zj

o

OF OF

Féf Bﬁf Fa(a;5b; 5¢;)

oFa OFs

%, 3, Fa(a, 5, 5¢;)
A2

(a%)

(45)

(46)

(A7)

(A8)




where, h is some appropriate step size. Similarly, the other partial derivatives

e pakidey -:‘551@‘ Al SO ¥

and the partial derivatives OFy/da; can be approximated by

%E: = 'Z'QLE [ F;_(a.i + h’bi’ci) - F:.(a.i - h,bi,c,._) J (89)

can be evaluated.

The above procedure is iterative, since an initial approximation a = ag,
b = bg, ¢ = ¢, to the root of Eq, A3 has to be made, and a sequence of approxima-
tions &44y, bj4 and cy4; are generated as the true root is approached.

The initial conditions (Eq. Al) used in the calculations of the exact
similar solutions of Section 4.8 have been checked, and they agree with the
values given in Refs. 23, 2k and 63.

srS e i Wi A 2 Lev it B

o
7
“
4
:
i

¢ - o , o
B P AT I S VR Py



S
v

*Ado> ® 31nbas noA §i ‘G\|L [ OF PIE> Siy} uINIBY "paW]| 3@ ypodas siy3 jo saidod ajqe|ivAy
+paSEMONTP ST TOUIIM POPUSIAS TUY JO KITPITEA UL °“AOT} USZOLy oTuaoszedns ¥ J03

SAWA TOTSURAX-7PUICO B YITA J9AW, AIVDUNOQ IPUTMT ¥ JO UOTIOVIIUT U3 04 A1dd2 03 POPUOIXD SBM URATITNS
30 poysamt A3FFELTETS TIRA-PIOd UL » yafey Azepuncq Apeess-ysemb o3eTd~2eTy Y3 207 WIWP TeyuexRiIadca U3
q3tn 9s189 j0u PP U3 Ing ‘avhey Axeyp G TI®A P PUT-YCOUS Y3 JOJ BIVP esustIadxa Syl YITA AURITIVID®
| P 9q 03 TUMOJ I POYI TRIBIjUY oYy U0 DISEQ FITNIL PIIWNOTYO Syr -siInsax IBudsmTIIdxXa JUTIFIND
, 2wos YI3A POIvdIOO DU PIUTRIQO IIIM SUOIINTOS MOTZ EMIIQITTNbaUOY puUe mTIqITTnbe ‘uszody oYl K013
, wofiye pazyuoy e JOj Jakel AJIVPUNOQ JRUTRN] aqe{d-3913 /Pesas-Isendb Sy3 pue SYTem 3qn3-XdOus 9yl Uo EEY 4
£IVPUNOQ JEUTIRY AIRUO TIRATUCU PIPUT HDOUS AU ya0q Apn3s 03 STSATRUE JUJ UT Pasn sea poqidw rafojuy
uy  *3oAMA YOOGS 1RIUNAIAAXD Y3 PUIZTLIQRIS U3 1A UOTIDBUUSD "1f poammbax saa 300533 STYI JO Apn3s

v afual UOIITXVISI TvI03 Y} IdMPIX Arpayaex ted S3vanday usPosphy oyy sw €paSS1OSYP PUB PIITNTRAD
SBA FIMIONT4S IIBA-YOOUS Uo s8I 1593 uoBxe auy uy A3yandmy ueRoIpAy O JUrOT® [(TEIS B JO SIV33R

YL “EIWP IINIONIIS=NI0US Tesjusaysadxas P T80YL2I09YY JO vOSTIeMICs B OIT A/ W2 op-01 X $°¢ 0q

07 PAUTHIIFAP SUA SUCTFTTIOD WOFV-wOLT UOBIW Y3 JOF IUNISUOD UOFIDIS-J50ID (uotauzivor J0) UGTILITOXD
oyl *sos5002ad TWUOESEI10d oYy Jo (Ipow da3s-oml U UO PISE] daaA ©a§5320Jd UOTITITIAT Tls UOTIVZTUOT
Sy ‘aM3IONAIF XOOUS Y3 SUTWISZIP €3 JIpIO UL PRI JSUOS OSTB SYA MOTJ UoF uwdxd-13uI00 B LIA Joiel
- ATepimoq IR S3 JO UOTIVBVALIUT Jqusnbosqns ayy *i3e1E IVII B J2A0 DUV STIVA 2QnI-¥DOLS Y [IGIE-YN 1
HOOYS 443 PUIYRG PIONpuy szafel AIvpunoq JRUTW] U3 U 10839 PIZTUOT L1TeTased Jo MOYy mmIAQITTboucH 43
P UOBIE rUT TUTAOW IAPA HOOUS TWRIOU PUOIIS ¥ JO IMIIMNIIS IW SQTIDSIP 03 OpWR SBA Apnys [edFIATIUR UV

@61 *oN jaodey SVIIN ‘II *g K ‘nvT I

spotqskt A3 TITTRTS Pue T8a893ul  °  SUOTROIS-$SOIO UOTSITTIO) L ST wmyIgrymbo
-noN 9 A139@OIR3I2UL G SMOTF BQNF ID0US 'k SUOT30RIIIUT DUV SMOTJ UOYSUMAXS -IIULOD
uoSre pPezTUOY ‘£ SIake( AIwpunoq UotJ® PITTUCI g OJNIONI3S NOOUS UoBIw pIzyuol T

saandy1y ft £91Qe3 # saed ng s ‘M ‘nyT

- T MOL4 NODHY (PZINOI NY NI JAVM MOOHS TVWMON V X8 QEONQMI SEAXVI
% FEVONNOE NYIGHYT WATNELIINDINON NV SHNIONHIS HOOHS JO SISRTVNY XV

0quwa0g JO A31SIATUN S2TPN3S 20vdsSoudy JOF 3INIFISUL

96T “ON JHOJd3d SVIIN

“4do> ® aiinbas NoA 41 ‘S| | () @1 PIEd Sy vingay PINWY e yi0das siyy jo saidod ajqejieay
“pasSNOSTP ST JOUIHW PIPUIIND dU3 JO AITPITBA 2L 407y UZOoXd oTuOSIAdMS ¥ J0F
oAv.A UOTSUREXD-JPUXCD © YITM J2ARV] ALVpUI0q JRUPmR] % jO oy oeIquy ays 03 ATdde 03 TOTUIIXD Fta ULAILINS
JO PORIA A3 FIBLIUFS [TeA-PIO0 YL saatey Atemimog Apvujs-ysend aterd-1Byy 9yl IO Wawy TertiemiIadNg i
YItA 93a8e q0u TIP MYy anq ‘xedel AXepidq TIBA PRONPUT-: J0YS d43 I03 BIBP eanssTIedxe BYY TRITH UM
UT 9q O3 PUNOS II9R POWIN [BIMRIUT P17 WO PISVQ ST DI PIIVINDTED auZ  °"sIqnsad TrueuTIada LWL A
2J0S U3 IA POINGICO YUR POJIRIQe DI34 SUOTINTOS ACTE Wh.JJQYTmMbauOu pue myaqirrebe ‘uozoly ©il  teold
UOFIV PAZIUCL U 203 XdAR] AJBFiUMOQ JRUTWRY oquid-qely sYeas-isunb 2y PUB STITA AQII-HI0NS dva 10 a. My
Arepunoq Joupaw] AJBUOIIVISUOU POSAPUT HdOUS DI HIOQ fpngs 03 STSATBUE OU IT VAT SPA POTINL ¥ -t
Uy -SIABA ¥OOUS 19IUTIIOAXD ay) SUIZITIQARIT VA & UETIOIUMOD UT Pol bd. £ . 128532 F
Y aruUsl UOIIEXWIDA 197037 Y3 OOnpRI ATpayIEs uwd sayandiy valopdl, @4 ST CPITSOSTR oW
SUm SMMYONIS SABM-YDOUS U0 CvJ 3597 UORI® OU3 Uy Ayanéat uaJoxplty JO . GO0 TIVES ¥ X
I *BIVP JININIIS-NOOYS 1¥IUARTIAAXD PUB TRIY’ DI0BHI JO UOSRIBd T ¥ w Ty AR/SED 6201 M 67 o
09 PIUTIVISIFP SOK SUCTSITIOD WOFV-WOIL UCHIR Iy3 JOJ JUBISUOD UOTIOIE-S50ID fro3amzIlioy 26) UOTIUITING
9yl -sassdooxd YRUOTSITICY 3wy Jo 1apom dojs-oml U UO Paseq aaam $35500040 UOTITXLTAL PIF LOTATZTUOT
Yy “DIMIZNILS NOOLT dYI SUTWIIIDP OF JOINIO U PII TUCD OSY STA A0 LOTSUBANA-32UIOD B Ui 10iuY
Arepurog Jeurmdey O JO UOTIDWIIUT juantIsqns Iyl szqe(d A%TJ ® J240 PUR STTUA OQnY-HIOUS Ot uO DT
Fooys Y3 PURYSQ PaIdnpil SI3ARY AIBpUMOG JRUTIN] 3Y3 UY tofre pazyuoy Arteaaed Jo AOTj myIqiItrboucu Tyl
PUR LOBIR 04U 2UTA0@ dATA HOO'(S [waIOU fUOX3S ¥ JO DMMIINIAFS JYF IQTIOSIP O3 SpYa SuAm Aengs 1RataLuis wy

v

£61 *oN qxodey SYIIN °1I *s "M ‘n1T °I

spoyjot AIJJRTTHTE pUv TRIBIIUI ‘@ SUOFIIVS-SSOXD UOFSITIOH "L 51013 wMtIqTImLe

-uoN *g AI33WOIBFIAUT S SMOLY QN3 IDOUS  “f  SUOTIOVINUY P SMOT} uogsULdXe - IWLOD
uoBIe PIZIUCY ‘£ §594AeT Arepunog uofge pIzTUOY 2 AMIdNAYS yooys ucfixe pasyuol T
saanfY3 #f EEY CLZ IR saged 1§ g *4 ‘ar

MOTd NODUY GFZINOI NV NI IAVM NOOHS TVAHON V 28 CEOACHY SUIAVI
AUVONNOE HYNIWYT RAINEITIGOENON NV JHNIONHIS NOOHS J40 SICNIVNY IV

oqu0a0L Jo A3ISIaATun ‘sIaTPNIS a2oedsoxay JOF SIngyISUL

£61 *ON I¥Od=Y SVILN

-Ado> ® 211nbas nok §t ‘S| ] (] O3 PAEO SIYY LINIBY PAWY| ale Modai siy; jo sa1dod ajqefieAy
“pasIMOSTP ST POIER PITUAIXI Y3 JO AITPYTWA UL “AOTg WZ0I3 otuosxadns w 03

AWA TOTIUREXS-TIUIOD ¥ YITA IIAVT AIPPINI0Q JPUTHE] ® JO UOFIIVINUT Iy 03 £1dde o3 PIpUIIXP SBA UNATIINS
30 pPouIM AIFTETIWES TIGA-PLOd v§L AWy AIwpmoq Apecis-fswnb 2397d-39TF SU3 JO0F ¥IWP TRIUSTIICEXD U
@A saxfv jou PP A3 Inq ¢ 2981 Arepunoq TI®A PAoNPU-*OOUS Y3 J0F WINP eiuanyIadxe Y UITA FUFISIXT®
Ty 2q 01 PMOZ 2IIA POUIF TEXFIIUT Y3 UO PITEQ FITRIAL PITVTNOTED UL sgqrngax Teuamygadxs BUTISIXD
owos Y3 P Pasedico PUS DIUTVIQO XM SUOYINTOS AOTZ TMILQTITNbIUCU PUE BMTIQTTINDS ‘UZOIF YL MO
wodIe pIzTUO} Ue J03 I3LE] Asepunoq Ieuymey oqetd-1813 /peass-Frend Y3 pue STYERA 3qn3-HOOUS 43I uo I3AWY
AIepUnoq JRUTIUY ATEUOTIWISUOU PIONPUT YdouE A3 IO} Apn3s 03 SISATUUR Y3 UT POSU SBRA poyIM TeIB03UT

uy  *9aAwA XOous 1wiusayiadxa sy3 BUIZFIIAUIS YI1A UOIFIIUUOD U paxnbax sem 399339 Syuz Jo Apnis

Vv *y8ua] uoIIWMTIX 19303 Y3 IdnPaI Atpoxawa wwd A3yTJnday uaBoxpAY Y3 S¢ ‘PITINISIP PUR PIIWNTVAR

TRA 3JNIONIZE FAUA-XOOUS UO S8 38597 uU0Bre Iy) UY A3pandiay usHoapAy Jo jumows T{euws v JO S3V0319

Ul ‘e3P 2INIMIIS-HO0YS TeiusmTIadxe pum TedIIdIoN} JO uostIedod ¢ woxy >u\Nﬂo 02-01 X 4°€ oq

07 PIUTEINISD FE2 SUOTSTIIOO WO3W~20T8 UOBIW Y3 JOJ JUVISUOD WOY3IIIS-650ID (uoy3w2TUOT I0) UCTIIITOXD

syl *s9999001d TWUOTSTIIOP U3 JO T2pow G333-OA3 ® L0 PIFWQ L34 $9852902d UOT4UXVTAI PUR UOTIVITUOT

sy ‘2390438 XOOUS H(Y JURISISP O3 JIPIO UL  “PIISFIFUOD OSTY SUA AOTJ UOTSURAXD-IBUIOD B YITA X3A®Y
ATepumoq JYUPNE] IR JO UOT}OeIIUT JUINDISQNS UL *3791d VTS ¥ 2940 PUS STTUA IGN3-YOOUS Y} U0 IAeA
X00Ys Y7 PUFYIQ PITNPUT $asKel AIwpunoq Iwaiwel 43 Uy UOBIV DIZTUOT Arretared Jo mo[) matIqELMboucu A
Pue BOBIE 03UT BUTAOW IABA AOOUS TwuIOU Buoajs ¥ JO AMIONIIS YT IQTIISIP 03 Ipwa SeA Apnias T2a13AToue uy

g61 oK q30day SVIIN °II “s *M ‘arl 1

spo39a AQTI(TATS Puv TeLBo3u] °Q SUOTIDIE-$30JO UOTSITIOD °L SAOTI M FIQTID

-oog 9 AJ39W0IayIuUI " SAOTS QNI XWOUS i JUOTIDEINUT DU SAOTJ UOTsURdXd-I9UI00
woSTe pPIzTUOY °f SIAfET AIwpunogq woBre PIZIUOT °2 AINIONIIT XOOUS woBxw PIZTUOT T
333 HE 91qQ3 1 safed 4 g *m ‘arl

AT NODHY @ZINOI MV SO FAVM HOOHS TWRION V A€ CIONANI SUIRVI

FUVARNOD TOTHYT HATESYTINDENON QXY IMNINYLS AIOHS S0 SISATVHY NV

09U0I0% JO AJTSIFATU ‘S9TPn3s aowdsolay Jo3 DINITISUL

6T 0% JHOJ3Y SVIIN

*Ado> @ azinbas nok ji ‘SYLLM ©3 Ped siyy uinjay “pajiwy ale ypodas siyy 40 saidod ajqejieay
*PISSOSTY ST POUINT PIPUIIXD SUI JO AITPITVA UL *poY3 UIZOXJ OFuosIddns v I03

A UOTSURAXI-TIIUIOD 8 KITA J9A8T ATODPINOG JRUPIST ¥ JO UCTIVVINUT ayy 03 A(dde 03 POTUIIXD SBA WRATTIING
30 poyzsm A31IWLyuTs TIeA-PLod AL - apfel Arepumog Apeoys-isend 2a3uTd-30Ty Y3 JOF VIRP TRIUNI] wdxe sy
T +3X8% 30U TIP AYI g € zpAw] ATSPIRIOQ 1184 PARONDUL-IDOLS Y3 J03 »qUp TRIUORTIIEND '3 HITA AUXIIIPE
up 9q 03 PUNOJ I3 POYIa@ TRIFIIUT Wyy U0 PIsEq SATM 21 PORINOTRD YL “SITASA TejusutIodxa MICISIND
A0S YITA peredzoo puw PIUTEINO LA SUOTNTOS AO1J tMIXQTTmbauou puw TMTIQITINDD ‘uozoxy YL TAold
woBxe PIZTUO] UR J03 J3AR] Axepimog JUUTURY 09e1d-991J /TPaIS-Tsenb 2Y3 Puw STTBA SQNY-¥pOYS 43 Vo FEYNA
ATepunoq JOUWY ATSUGT3IRISUOU PIONPUT APOYS AU Y30Q Apn3s 07 STSATBUv Y3 U POSn FuA pouIdd 1eadaiuy

uy ‘soaeA xd0us 1musapIadxo o3 PUTZFIIQ0IS UITA UOTFOSUUOD UT PIIINLOL SEM 3ID93JD ST 30 Apnas

¥ Cujfual uo13eNvIax (¥I03 A3 201pox ATpoddwd ued £a3andmy uafoIpAY 9%1 ST €Y CINOSTP PUR PramIEAD

sem 9N ONIS IAWAM-}OOUS U &35 3997 UoSae Y3 UY Aqyandy Uzl 0apAy Jo quotre [iwes v 3O $900339

oyy "®1¥Pp 2IN3NIS-¥OOUS Tejusmzsadxs puw [VIYLOIONY JO UOSFIWNIOd T WOXJ AD/Fud §z-01 ¥ 5°€ AQ

03 PAURIIAISD SEA SUOTSTTI0 WO3V-@IIW UOBIR du3 J03 AURSUOD UOTIDIS-F50I0 (UOFAVTFUOT JO) UOTI"RTIAD

ayl -sasssooxd 1eUOYSITION 2Y3 JO Tapow ds45-0A7 ¥ UO DASYQ 910m §35S0004d HOTITKVTM PUR uoIIVIIUOT

a3 ‘amaona3s FPOYS Y3 FWEISVP 03 JIPIO UY +PAISY JSUOD OSTE SEA AOTJ UVTSUBLXD-IOUIOD ¥ w3n anfey
Axepunoq JUUNY ayy JO UOTIOWIAIUY Juenbasqns AUl cz4e1d 1917 ¥ JOAQ PUR STTBA PANJ-3OO'(S Y3 U0 d1Tn
A20YS Y3 PUTYq pIdnpuy saafe] Axvpunoq JEUTANY au3 Uy rofixe pozyuoy ALTe .Jed Jo KO(J wWMrIQITMbouou 832
pue wBIe oquy FUTACK SABA YOOUS 1ewIot Buol3s ¢ JO IMMindys Ay BQTADSIP 03 IPEI SEA Apnss TedTIATIRR Uy

61 *on 3a0day SVIIn 'II *s *M ‘nei I

spouzoe KITIRTFR)S pue TeaFaul ¢ SUOFIDIT-SSOII WOTSITTON "L SAOTJ WMT«QIIynda

-goj ‘o Axjewesazaequ] g sAO1l 3o0ug °f SUOTIDCIILUY PU SAOTY uoyctredxo - (2UI0D
uoBIw PeTIu0) °f €Xakey Axvpumoq ot J' PIZTUOT 2 DIMLONAIS NDXOUS uolxe pszivol "1
saanfLy 4f sa1qe3 # saged yg g *i ‘nyl

MOTd NODYY @EZINOY NV NI FAYM NOOHS TR0 V A€ CIONANT SHIAVI

AUVANNCE UVHINVT RNINEITINDANON @V JUATONMIS FOOHS &0 SISATVEY BV

o3uwor0y Jo K3TSISATUN ‘$PTPNIS aoudsozay 203 InqIasul

6T °ON INOJ3¥ SVIIN

. =~

WL SRS, ¥

7 T

et TR et P LT AT GABRA S

.

e 3 b s i w0 LR E5 o R 0  L Sy e e g v S el .
b wh oy tede R o G ok S & st e e b e 2 B dod dnatpnih



A
e

PR

%, ; "Ado> @ aanbai nok 41 ‘Sl | M 03 Paed sip winey ‘PajWy| a1e jodas sup jo sadod 3|qejieay ‘Ado> v asinbas nok # ‘SWYLLN ©3 pied siy3 uingay ‘PoRwY sue wodas siy3 jo saidod ajqejeay
o ! “POEINOSTP ST POUIAT PIPULIXI 2UT JO AJFPTIVA YL °MOLS USZOXY u«douuonbn ® J03 *PISIMOSTY ST POUIFU PIPUAIXD ny3 JO ATFPTIRA YL °*AOTF uU9ZOJy Otuosizadns v JOf
IR m 2AWA UOTFUNND-IOUI0D ¥ YITA I9AeY AIVDPUNOQ JVULTS] ¥ JO UOTIORII;IUT a3 03 Ardde o) pOpuIIX? Sem URATITNS A8 TOTSUNAXI-ISUIOD ¥ YITH JIAWL AIWpUioq LeuImR] ¥ JO UOTISRIIUL oyz 03 ATdde 0F POPUDIXY SEA URATITS
ol JO POYIam AJTINTIWTS TIBR-PIOD UL * Jakel Axwpmoq Apes-tsemb a3w(d-937) a3 J0J wiwp Teauemyladis agy JO PO AIJIVIITES [TBA~PIOD SYL ~IdAWT AIvpunog Apeuis-jsend sjvrd-1e(l ouz JOJ ¥IP (Tiusmypladya ayz
.KM & QitA 33189 0u PIP AUy Inq “reAvl AIwpunog TvA PROMPUT-YIOUS Y3 203 VIEWP (LIuaarsodid 3y YITA 1uaresI3e | UITA 99J89% 0U PYP AUy Inq 19487 Atepunog 11vA PAONPUT-IOOLS IYI JOJ WIVP (RIUDITIMEXD 241 YITM U TN
nT U} 9q 03 PUNOJZ II9A POYIFW TeIFIUT Y3 WO PIseq 3TN PIIPTNOTED YL °SIINSAT THUITIodxs Suyysyxa UF 9q 07 PUMOJ SJIR POYIIW TVIDIYIT Iy WO Paseq TSI PIFRINOTED D4 “SITNSII [LIUNTTLAND JUTIHING
3 FWOS YITA PIIRAZOO PUR PIUTEIQ0 IIIX SUCIINICS AOTY TMIIQTITboUoU puw mmyIqrimba ‘uszoay ayl “aoil amos YITA poawdmoo TUR PR ITRIQ0 BIIN SUOLFATOS AOTF WUYJQFTTRDOUCU TR TMIAQITMLe ‘usROIF ouY  *mOtl
by uoBae PIZIVOY UE 03 x38Wl AIWpNoQ JVURMRY 938(d-qULS /PRIS-ISUND Y3 PUB STTVA QNI -XIOUS Y3 U0 JaKeL UOPIW PIZIUOL UR JOJ I3ARY Auwpumoq Jeupmey ovid-4elJ /YPe9Is-Tsunb ayq puv STIPA DQRT-XNO00JS aUz uo JafvY
N Arepunog JRINTY] ATRUOIIRISUCU PINKPUYT H0US A3 4{I0Q APnys 07 SISATWUS 3YyJ UT PISN SVA POyl ToaBojuy Arepunoq Jeumwey LIWUOTIVISUCU PIJNPUY Y2OUS '3 410Q Apn3s 0F STSATRUR JUT U POSn STM POJIXE (U IN~LuT
uy  °89ABA Ooyus tvuaryIadxa oy BUTATTIGIS U3 A UOTIIAUUOD UT paaynbax sea 900333 SIYI Jo Apn3s Uy  SIA®A XO0US wIVLI1Iodxy ayy SUTZITICULS UL M UOTIOAUMOD LI palmbda Swu 100318 SUpy o Ay s
v ¥ *YISUIL UOTITXVIL TUI0) YT IONPII ATPINIe ued L3 3IndHy UsHoIpAY Suj SV CPISSADSYP pU PIITNMTRAD ¥ "HIFUST UOTICXVIDA 1¥3I07 I JONPAX ATPANIR UBD AitaadRy ualoap{y 23 5% PeSsnastp pue p AQ
s . SEA 2MIINLYS WARA-RIOUS U0 £8P 3593 woBxe Yy GT LI TMMEIT weFoupdy JO junmowe TERS ¥ JO 5300339 SFUA 3MJONIYS JARM-YIOUS UD UM 9535 UORIY 943 UT ATIndEY waJoaphAy JO MO TITRS ¥ JO S ]
= AL MWD JinFoIJS-XO0Ys TeIUMMTIAEXS PUR TEI{IIOM JO UOSTINENCO % (10OIF >..\qu 02-0T X §°€ oq SYL  TVIVP AINGINAFS-HIOUS TeIusmTIadxa puv TUOILOJ0NI JO UOSTINEIOd B wox) .G\!.o oz-0t X q
3, 03 POUTDIIIIP SUA SUOTSITIOD WOIP-LOTT LOSIY 51 JOF 2URISUOD UOYIORS-55010 (UOTINZIUOT .6v UOTILVL TOXD 03 PIUWIIIIP SSA SUOTSTIION WOIR-WOLE UOHIW Y3 JOJ JULISUOD HOTFORS-SSOID A:o«ﬁu?g o) uorugr PESON
o 1  *2os3000ad TWOOTSTTI09 2Y1 JO T3pow d3jsS-OA7 ¥ UO DPOSE] 3JaM 52$5adoxd UOTIBNUTAI PUZ UOTIVZRIOT Yy -sassadoxd IWHOTSTIIN Y1 Jo [apow da9§-0M7 ® UO PISEQ AIIN $3552001d UOTIUXLIAT PUE UOTINZTIUOT
5 9Y3 ‘amIonIIs YOOUS Y3 SURWIIFIP 07 JANIO UI  °PIIITTSUOD OSTR SBA AOTJ UOTSURAXD-JOUIOD ® Y3 1A J9ABT M3 ‘3INIONIIE XO0YS Y3 OUTTIVNGIP O3 JBTMO UI  *PIIST [HUOD OSTR STA AOTJ UOTSURINA-IAUIOD ¥ y3ta 1oduy
3 AIOPImoq ISUe] It JO UCTIWIITUT jusnbasqns oyl *ijeyd 193 ¥ J9A0 PUB STIVA QY -XI0US Iyl Uo SAvX Lrepuroq TPuUTINl 213 JO UOTITELlUT Jusndasqns YL  *iIvid 1BYJ ¥ II3\0 PUE STIUM AGN3-HIOYS Y2 U0 dATA

AOOYS Y} PUIYIQ PIONPUT SIIANY AINPANOG JPURe] Y3 UY 1081% PITTUOT A1TeTared JOo mOYJ wmiIqITmbsuou 3133 AS0YS YT PUYIQ PIDNPUT SIIAV] AIVEUNOQ JSRURY W3 UT 105I% PazTuoy Arrsrired Jo moT) amjaqyitTibouou syu3
PUw wdre 03U} FUTAOE IJABA HOOUS [WUIOU BUOIIS ® JO 2IMIINIFS Y3 SQIIOSIP 03 SpWu swa Apn2s [vomrkieue uy PUT LOBI® OJUY PULAOK DABR YOOUS (PTJIOU HUOIIS ® JO SINJINIYS IYY SQTIOSIP OF IPYT S¥A APRIS TROTIATULT uy

661 *oN 13045y SVIIn “II ‘S *m ‘ay1 I 61 *cN 330day SV *1X BRI T B §
FpoyIam A3 TISTTUES PUN (RIBIUI ¢ SUOTIOS-8S0I0 WOTSTITOL °L  SMOTS WTmEIQUinbo SPOYROM AJTIVYMTS PUN TRJSAIUT  *¢  SUOTIVAS-SSOID UOYSYYTOL °L 59073 wmraqrymbe
“UON "9 AIJMMOIIJISUL °G INOTF QN3 IDONQ ‘4 SUOFIIUINIUL PUY SHOTI UOTSURdXD-I13U10D “GON "9 A.)3WOXIIIIUT  °¢ SAOTI IQNY YOOUS “f  SUCTIORLIMUT PUY SAOTS UoTsuudxd-19uI00
uoBre pIzIuol £ $IAWY AIYPUnoq UOES® MIZRIOT 2  DMIONAFS HoOUS woBxe pazyuoy T UCRYe PIZTUOT € SIAAWT AsvpUnoq UOEJR PIZTUOT 2  SMISNIIS NOOUS UCHI® pazUol T
»«& sam213 nf $91q%3 sded ng *S *M ‘Tl saamBYy ¢ 3ITqwNY safed n¢g s 4 ‘nel
&5 MOT4 NOOUY (RZINOI NV NI JAVM MOOHS TVWHON V X8 @O(QNI SHIAVI MOTJ NOOUV QEZINOX NV NI 3AYM NOOHS IVWHON ¥V A€ @ONG SHIAVI
Ww« XYVQUNOE HYNIWY'T RATHEITINOANON ONV THNLONHIS JOOKHS 40 SISATVNY NV % ZYVAOLN0E YVNINYT RAIYELTINDINON ANV THNIONYIS HOOHS 30 SKSNIVNY N¥
b 03U0201 JO AJTSIFATU ‘saypn3s 9ovdcoldy JOF 9NJFISUT — 03U030T, JO AIYSIFATUA €S2TpnyS 20vds01dy 303 2aMyFISUL
3.
i 96T “ON JHOLT SVIIN 6T "ON IuOdEY SYIIN
ar
£ +Adod v asinbas nok § ‘SYLLN ©3 pIe> sy} winjay ‘pajiu) ase yodas siypy jo saidod 3 _ Rlieay | *Adod @ aunbas nok § ‘SVYLLN C3 pie> sy uingdy “pajiwy ase podas siyy §0 sa1dod a|qepesy
;' “PISINDSTY T TOUIAW PIPUIIXD SUS JO AITPTTRA YL “AOTS UI201F ugu s » J0F *PaBINOSYP ST POIST PIPUIIXI TYJ JO AITPITBA YL °*AOTJ UIZoxy dTuossadns v JOF
.« JAwA TOTIUWAXS-I9UI0D * YITA J2AW] AIVPUNOQ JWUPEEY ¥ JO UOT}OUINIUY ayy o3 Aydde o3 DIpUalNe SBA UBATIINS SAUA DOTITRdXD-IILIOD ¥ YITA JPAR] AIFPUNOQ JVLRT ¥ JO UCTIORIUT Iy 03 ATdde 0F PIPUIIXD SEA URATITNS
Z 30 PoUIdm AJTIN[TATS [(RA-PTOD Yl Il Arvimoq Apedys-3smb 93wid-quys ays IoJ wiep Trvjusayzedxs ays 30 poyIsm A3 yIelyuTe .:!1300 ouyy *Jafey Argpumoq ApeMs-yswnb a3eTd-1%1) Y3 03 vIwp THuaarzadxs sus
2 WA 93288 20U DIP AU N 1AW AIepunoq TTeA PRONPUT-YO0US U3 S0F $ID TRIUMWEIAAXD DY UITA QUABIIBR {1y 528y q0u PID AU 30Q JRAT AIWDUNOQ TTSA DIONPUT-YOOGS SUI FuF $IUD TRIUGRIIAAXD 943 YILN [UKTIOIPE
m Uy 3q 03 PUNOJ 2IeA POYIIM TUIFISUT Y3 Uo PILWQ $3TNEOI PIJPTNOTED YL ~s$3nSax Teuaafadxe FupisTxs LI 9Q 07 PUNOJ 2I9A POUISW TEXBIIUT 2Y1 UO POS¥q S3TN!8I PIIRTROTYD JuYL *SITNSIL TEIUTTIodXd MUTISTXD
i) oWCS YITA PIIRdSO PUR PIUTRIQO XM SUOTINTOS AOTF EMTIQTTTMbIUCK pre wmyIqXTinba ‘uszoay syl *mot1J JWOS YITA PIIRdECO PUY DOUTEIQC IIOM SUOTANTOS A0S EMIJQTTTMDAUSU PUw EMIIQITINDS ‘UdZol; ol a0l
% GodIe PIZTUOY U 10J I3AW] AIVpunoq Jeutwe] 7eTd-3vTY /VEIIS-TeEnd Sy PUR STTVA AqNI-AOUS I3 UO JaARY uoBIv PIZIUOY UE J03 JaAR] AIWDPUNOC Jwummy Or(d-3RYJ /TRIIS-ESEND Y3 PUT STTEA HQNIHOOYS Y3 \O JakeY
b Azepunoq TeuyEe] AIRUOIIWIIUCT PIONPUT XOOUS 3 Y30q Lpn3s 03 SISA{WUR Y3 UY POSN SRA poyIow TRIBouT Arepunoq Jeurey LIPUOTIVISUCU DPFoNPUT ¥00US Y3 Y10Q APNYS 0% SISL{"uv Y3 UT POSH $BA Porladw 18adoquy
o Uy “9AWA Xooys [wjuswiIsdxs oyl SUFZITIREIS U3LA UOTIOAUUCD UT TIImbax sea 309339 STU3 Jo Apmis Uy  "SSABA YOOus (RUKaTID & YL FUTZLTIQVIS Y3 A UOTIDAUOD uf PoIInhod S$BA 3D933d STY: 10 Apnas
Wu, V CRIBU9] UOIWRTSI (%307 9Y PonPal ATpINtea uwd A3 jamday USFOIPAY Iu3 ¥¥ ‘PISIMOSTR PUB PATWNTUAD ¥ *UJFUSY UOTILNVIOX 18303 OY INPax ALpIATeq LD A3yandimy uoFoIpAY 943 ST ‘PACTNOISTR PUR PUIMTTAD
Z S¥A 3INIINLIL IABA-AOUS Uo §UI 3823 UOBIR Y3 U AJTINGUY ULHOIPAY JO JUNCLE TTWRS ¥ JO $390539 SUA SIM7ONIYS FAWA-XDOUS 1O SUF 1597 uodre oyy uy Aypanday ueloxpdy JOo HUmou® TTVES v JO £190)550
e 941 *¥3$P IINIONIIS-YOOYS THIUNATIAAXD PUB TEOTIVI0YY JO UOSTIRATOD ¥ WOIT AI/JI0 .01 X 5°€ 3q AU, "WIEP 2INIONIIS-NOOYS " WUAWTISAXS PUV TEITL0I00YY JO UOSEINdROd T WOIF AR/ AN 5-01 ¥ 7€ AQ
4 07 PAUPLIIIIP FEA SUOTSITIOD WO WOV UOBI® IY] JOJ JUPFSUOD UOFIDIS-$S0I0 (UOTIVZTWOT I0) UOTINFTOXD 03 PRIPMIAISD TEA SUCTSTTIOL @o* w-w0q® UONIV DY) JOJ JUTISUOD UOTJIIS -SSOID ?o«»:.nﬂmo« I0) UOTYTRTIND
ww, a4y *sassadoad [WIOYSITION 3YI JO T9pow dajs-OAl W UO PIFRq I32A $258300xd UOYIUXVYII PUR UOYIRZTUOT ayl #asssdoad (WUOTSIUION oY 3o Tapowm d59S-OM3 ¥ U0 PISRQ JI3M <3550003d UOTITXVTAI PUR UOTIBTROT
2 Y2 “2.MIMNIYE XOOUS YT IUTWINIP 0F JIPIO U  *PILITISUCO OFTV SBA KOTJ UOTSIRAXI-ISUIOD ¥ YIFA JoLel Y1 ‘BIMIONIIS ADOYS Y3 SLWIIFUP O3 IPPIO UI  *PAIITFSUOD OSTR SUA ROTS UOTSURAAD-IJUIOD ® yIwn aohe]
s ATeWpunoq JeUmT 3y3 JO UOYIOEIIJUT Jusnbasqns YL  *3381d 994 B JIA0 PUY STIVA QN -NOOUS IYF UO IAWA Axepumoq Joume 3y JO UOTIOWISNLUF juanbosqus ayy *i3eld 1wYZ ¥ JOA0 PUR STIUA DQUI-HI0S IYZ Un DaTA
i Xo0US Y3 PUTYSQ PIINpUF $2aAwl AIWpUnoq JeumMe] dy3 UY UoBXY PIZTUOT A1Terized JO mOTJ WMIIQFTMbsUou 3y NP0YS YT PUTUSQ DPIVAPUT SIVAT AIWPUNOQ JRUTAW] Y3 UT Lofre paziuct ATTetiqed 3O A0 {3 = JIQTIInboucu gt

Pus woBre 03U Fupsom IAWA YO04S TwALoU BUoIys ¥ JO IMIMIIE U IQTIIEIP 03 IPUR FUA APNIS TVOTIATUUR UV PUE UOBIV OFUT FUIAGE HARA YOOYS TWIIOU BUOIIT ¥ JO JMMIINIIS SUI 9QTIOHSOP 03 IPTI TRA Apn3s TedrATue Uy

1 ! 861 ‘of qxodey SVIIn “II ‘S M ‘nr1 I g61 *of 3x0day SYIIn 11 °S "R ‘ny1 1
W«WM , woyIam AJTIOTTMTS PUR TELBQUT P  SUOTIDIS-PFOID UOTSTITO) °L SAOTF wmTIQITTNDI SPOUSW AJFICTIMTS PUR TeXZAUL  *¢  IUOTIOIS-SSOID WOTSITI0N "L SAOTI vmT4qrimba
S ~toN ‘9 AI33mOXAZINUI  *S  $MOLI QNG AOOUS °f  SUOTIDNIIUT DUV SAOTS UOFSUWXD-I2Uur0d WO g AXJIWOIVJINUI 5 SMOLI MY XDOYS  “f SUOFITLIO.UT PUV ST UOTLURAXD - (IUWIOD
Mwi ; uodrs pIZYUOY °E  3I3Ae] Arepinog TOBIE PIZTUWOI  *Z  AIMIONILS YOOUS uoFaw pIztUor T woBTe PIZTUOT °: SIA [ AIepumoq UOiJe PIZTUOY 2 DIMdnT [IOUS wolxw poZIUNY 1
W 22MIT3 4E so1qey ¢ safed 1S °s °4 *av1 saamIyz 4f sarqw x satred 15 *s 1 ‘nv1
de o BOTd HOSHY QRZINOI RV NI SAVM JNOUHS TWHION V 1€ Q0N $1XVI KOTd NOOYY GEZINOT MV NI FAVR NOOHS ‘TVHUOM V X€ GRONGNI SHEAYI
S RMVONNOE HVIINVT HATRAITINDANON QNV FHNIONULS XDOHS 20 SISKTYHY SV % XUVANNOS HVKINVI KNTEETTINGENON QMY ARNIMNYIS HOOHS 5O SISKIVRY NY
03WI0L JO AJYsLoATuy ‘saTpn3s eowdsorsy Joj ongiysur 0qWoroL Jo AgsIeatun ‘saipnas aovdsoIay JOF ITNYTASUT

Q6T ‘oM I¥0d3N SVIIN T _"ON_INOd3¥ SVIIA




