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An analytical study was made to describe the str pture of a strong
normal shock wave moving into argo. and the nonequilibrium low of partially
ionized argon in the laminar bondary layers induced behin the shock wave
on the shock-tube walls and over a flat plate. The subseq nt interaction of
the laminar boundary layer with a borner-expansion flow wa also considered.

In order to determine the shock structure, the i nization and
relaxation processes were based on a two-step model of th/ collisional
processes. The excitation (or ionization) cross-secti mtnt for the
argon atom-atom collisions was\ determined to be 3.5 x 10 cr:ev from a
comparison of theoretical and experimental shock-structure de ;a.

The effects of a small amount of hydrogen impurity in the argon
test ,gas on shock-wave structure was evaluated and discussed, as the
hydrogen impurity can markedly reduce the total relaxation length. A study
of thid effect was required in connection with stabilizing the experimental
shock waves,

A, integral method was used in the analysis to study both the shock
induced nonstatiDnary laminar boundary layer on the shock-tube walls and the
Lquasi-steady flat-plate laminar boundary layer for an ionized argon flow.

'fhe frozen, equilibrium and nonequilibrium flow solutions were obtained andL compared with some existing experimental results. The leuated results
based on the integral method were found to be in dgreement with the epeti--

mental data for the shock-induced wall boundary layer, but they did not
agree with the experimental data for the flat-plate quasi-steady boundary
layer.

The cold-wall similarity method of Sullivan was extended to apply
to the interaction of a laminar boundazy layer with a corner-expansion
wave for a supersonic frozen flow. The validity of the extended method is
discussed.
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Notation

than  n polynomial constant for the velocity profile (Chapter 4)

speed of sound (Chapter 5)

A cross-sectional area of a shock tube
• thn  n polynomial constant for the enthalpy profile (Chapter-4)

B magnetic field intensity

thB nn constant used in Eq. 439b

cn n polynomial constant for the degree of ionization profile

(Chapter 4)

C ratio pJ/Pee

Cn  n th constant used.in Eq. 4 .39c

Co defined by Eq. 5.2b

Cp specific heat at constant pressure

C* defined by Eq. 3.31

Cf skin friction coefficient defined by Eq. 5.18

Dam ambipolar diffusion coefficient

e electron charge

E electric field intensity

f velocity ratio defined by Eq. 4.22

B velocity ratio defined in Section 4.8
F nth integral form defined by Eq.. 4.23 (n = 1, 2 or 3)

g total enthalpy ratio defined by Eq. 4.22

Gji defined by Eq. 4.2

G(x) defined by Eq. 5.3

h enthalpy (specific)

H enthalpy (total)

I ionization energy

[v



an integral defined by Eq. 4.44

k Boltzman constant

k production rate used in Chapter 3

K equilibrium constant of the production rateeq

K thermal conductivity

K constant defined by Eq. 4.23

L characteristic length

Le Lewis number

m mass

M Mach number

n particle number density

p pressure

Pij pressure tensor

Pr Prandtl number

Q collision cross-section

r W/uue

i R gas constant

Sc Schmidt number

S* excitational cross-section constant

t time

T temperature

u particle velocity in the x-direction

v particle velocity in the y-direction

Vd drift velocity

w mass production rate

x direction parallel to the shock-tube wall

y direction normal to the shock-tube wall

z ratio of the degree of ionization defined by Eq.4.22
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degree of ionization

defined by Eq. 4 .50a

Y* isentropic specific heat ratio for a partially frozen flow

boundary layer thickness

internal energy

7' defined by Eq. 4.27

viscosity

v collisional frequency

p density

coordinate defined by Eq. 4.20

B coordinate defined by Eq. 4.62b

coordinate defined by Eq. 4.20

B coordinate defined by Eq. 4.62b

t 4 potential between the wall and the plasma

Subscripts

a atom

Ar argon

i A+ argon ion

e electron (Chapter 3)

e boundary layer edge (Chapters 4 and 5)

f ionization or for-ward reactior (Chapter 3)

H hydrogen

H+ hydrogen ion

i ion

I ionization

r recoduination or backward reaction

s sheath region (Chapter 4)

s shock (Chapter 3)
viii



Soerscri-pts

* -excitation

4+ ion

el elastic collision
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1. INTRODUCTION

The structure, of a strong 'shock wave in an ionizing gas, and the
associated nohequilibium boundary layer flow behind such a sho~ck, have
received considerable attention during the past decade. Research into shock
structure has determined how elastic\and inelastic collisions among atoms,
ions and electrons can influence the ionization process. Shock-structure
measurements present an opportunity for an indirect determination ofexcitation (or ionization) cross-sqctions for heavy gas particles°

An understanding of boundary-layer flow, in a partially ionized
gas is helpful in designing a successful reentry into 'the Earth's atmosphere
at supersonic and hypersonic conditions. If the term boundary layer can be
applied to any region of a continuum flow within which the jtransport of mass,
momentum and energy by diffusive mech~nists is .important, then the boundary
layer of an. ionizing gas can be seei to be generally more complex than that
normally encountered in a non-ionized aerodynamic type of flow. The presenceof ions and electrons introduces new transport mechanipms in the boundary
layer. Additionally, the magnitude of the various, transport properties of
a partial:ly-ionized gas can be marke4W different from a perfect 'gas.' Even
today, after many years of research, bpuidary. layer flows of a partialUy-'
ionized gas are not fully understood, experimentally or theoretically.

Experiments were recently conducted at UTIAS, using a hypervelacity
shock tube. These experiments provided uniqUe and reliable data (inter-
ferometric) on both the structure of a stroiig shOck wave in argon and on theshock-induced, nonequilibrium boundary-layer-fl6ws in ionized argon, inorder to compare with the analyses.

In Chapter 2 the general equations of motion for a partially
ionized gas .have been reviewed briefly. A simple model for studying initial
ionization and relaxation processes behind strong shock waves in an argon
flow is given in Chapter 3. The excitation (or ionization) cross-section
constant for argon atom-atom collisions can -be and is determined from a
comparison of theoretical and experimental results. The constant determined
herein is more reliable than the value obtained by Kelly (Ref. 12), which
has been widely accepted for previous theoretical calculations, The im-

r purity effect of hydrogen molecules on shock structure in argon is also
determined and discussed, and the theoretical and experimental results are
compared.

The laminar, nonstationary, shQcL. tube-wall boundary layer behind
f a normal shock wave, and the quasi-steady flat-plate boundary layer in

partially ionized argon, are both considere. in Chapter 4. The method of
solution was based on the Karman-Pohlhausen integral method. The integral
and similarity solutions are compared and the results discussed. Theoreti-
cal caliculations for nonequilibrium, frozen and equilibrium flows are
compared with UTIAS experimental data.

In Chapter 5 the cold-wall similarity method of Sullivan is
adopted and extended, in order to treat the ieraction of a laminar
boundary layer with a corner-expansion wave in a partially ionized super-
sonic argon flow. The flow was assumed to be frozen both before and
after the corner expansion. Actually, this assumption is not valid, as

1 1



deduced from experimental results (see Chapter 5). However, the assumption
greatly simplifies the calculations, and it provides a rough estimation of
the variations of pressure, density, temperature and Mach number as a
function of turning angle at the edge of the boundary layer. The validity
of this oversimplified model is discussed.

In the last chapter discussions are given on the significance of
the 'theoretical models.

2. GENERAL EQUATIONS OF MOTION

2.1 Introduction

The general formulation of the gasdynamic conservation equations
for individual species in a nonequilibrium partially ionized gas mixture
has been reviewed by Appleton and Bray (Ref. 1). The conservation equations
for the electrons and the overall conservation equations were developed for
a three-component plasma consisting of neutral atoms, singly ionized ions
and electrons. In this formulation the main assumption is that each of the
three components has a Maxwellian velocity distribution. Also, the electrons
can have a temperature 'that is different from the heavy particles and they
can drift relative to them.

The nonequilibrium electron temperature is of interest in gasdynamic
problems involving ionized gases, namely, ionization and relaxation processes
in shock waves and in expansion flows in rarefaction waves, nozzles (Ref. 2)
and at corners. Nonequilibrium phenomena of electron (or ion) mass production
are also of interest in shock structure, boundary layer and expansion-wave
(Ref. 3) problems. ecently, Igra (Ref. 4) reviewed briefly the relevant
formulations and atomic processes, especially the three-body recombination
process. The latter was studied in some detail.

In this chapter the basic equations are presented for a nonequilibrium
laminar boundary-layer flow induced behind a normal shock wave on the shock-
tube wall or over a shaxp leading edge flat plate. The basic equations for
an ionized argon plasma flow are based on the general formulation (Ref. I)
of the conservation equations.
2.2 General Equations of Motion for an Ionized Gas

An ionized monatomic gas or plasma is considered which consists of
a mixture of atoms, singly ionized ions and electrons. For each species the
macroscopic balance equations canibe expressed (Ref. 1) by using the plasma
mcroscopic properties, as shown below

Ft n5 <Os>3 + [n<>) =I() (2.1)Ins s + x j  n s s Vs

The quantity < s > is the average of the property Ss n. is the number density
of species s, I(Os) is 'the source term of property s and Vs is the total

2
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velocity of a particle of species s. The source term expresses the change
in < Os > as a result of both external influences (i.e., electric, magnetic
and gravitational fields) and internal influences (i.e., chemical reactions,
heat conduction, diffusion and viscosity).

In this analysis, for a mixture of atoms, ions and electrons, it
ill be assumed that each species has a Maxwellian velocity distribution

'with an appropriate temperature.

The equations for mass-production rate, momentum and energy for
'the electron gas are given belowl

j [ e ]e m (2.2)[n e

e e

+ n m (v + v.) (u1 -u 1) (2.3)
e e ea ei e

+n m (Vea ei k(- T )+ 1 m - u1 ) (2.3)

ively; u and ue are the velocities of the heavy particles(atoms and ions)
and electrons, respectively; *~e is the rate of creation (or disappearance)
of electrons; ma and me are the masses of the heavy particles (mass of an
atom is approximately equal to that of.an ion) and electrons, respectively;
e is the electron charge; E and Bare-Whe jelectric and magnetic fields,
respectively; C is 'the internal energy; Vea and Vei are the respective
collisional frequencies between electrons and atoms and between electrons and
ions; Qrad is the radiation source term; T and Te are-the respective tempera-
tures of heavy particles and electrons; Pe is the partial (hydrostatic)
pressure of electrons; and 1 is the net energy gained bythe electrons per
event of the three-body recombination process.

The equations of continuity, momentum and energy for the whole
plasma are obtained by suming the corresponding equations -for all the plasma
constituents. The following definitions and relationships are used.

| 1________



p ps S

C Z. rZ uhere s equals e, a and i
s s

e es s

E k T + (n+n k T

2 [ e k e  ( a  ne T

+ p =5[n e kT e + (n a + ne k T3

p ='(n e + n) k(T+aT) (2.5)

n
a e

n + na
e a

e ma(na + ne)

The degree of ionization of the plasma is denoted by the symbol a.

The equations of motion for the entire plasma are then wri tten as
follows:

e + [e u6 (2.6)TE + xj =

Di 8Pij-

P' ---uxi + (n. n ne e[E i + ('x B) ] + n e e[(- Ue x B (2.7)

DPDI - e[(u - -) B)i u + neu -ui Ei
++ Dt e e ee e e

dne (2.8)
+ j [(Ee + Pe) (u- - Urad dt

where, P is the pressure tensor defined as

P. P + T (2.9)

and Tij is the viscous stress tensor, which contributes to the plasma dissipa-
tion. H1 in Eq. 2.8 is d6fined by

HI= -52 m-k (T + a T). (2.10)
a[ ma___e
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We should note that if the viscous effects can be neglected (i.e., Tij = 0),
then Eqs. 2.8 and 2.9 reduce to the equations given by Appleton and Bray
(Ref. 1). Additionally, the pertinent set of equations for other simpler
problems can be obtained from the general equations - Eqs. 2.2 to 2.8.

2.3 Equations for a One-Dimensional Inviscid Flow of an Ionized Gas

For studies of shock structure and expansion nozzle flows, the
variation of dynamic and -thermodynamic quantities in the direction normal
to the flow direction are normally small compared with those in the flow
direction. Hence these problems can be treated as one-dimensional.

Actually, the flow for the shock-structure problem is nonstationary.
However, a nonstationary flow can be readily reduced -to a steady flow. Let
(x, i) be a coordinate system fixed with respect to the wall, and let (I, )
be velocities parallel to (x, y). The flow is unsteady in this (x, y)-
coordinate system. Let (x, y) represent another coordinate system which
moves with the same speed as the shock wave, and let the velocities parallel
to the x- and y-coordinates be denoted by u and v respectively. In this
coordinate system the flow is steady. The transformation relating the two
coordinate systems is given below.

=-ut

y 
e

y Y (2.11)
U= U- uw

v=v

The velocity of the wall, uw, equals the negative value of the shock velocity,
us. Under this transformation, nonstatioaa y flows for shock structure and
boundary layers behind a moving shock can be conveniently treated as quasi-
steady flows (see Fig. 1).

For treating the shock-structure prob.em two assumptions are made:
(I) no electric or magietic fields exisL (E = B , 0, (2) ue u= u. Note
that the magnitude of the electric field can be predicted by the following
expression.

Ei 1 p
nen e  xi

which is negligible for the present study. In a similar fashion the magnetic
field can be shown to be even less important. Due to the very small electron
mass, the effects of diffusion (ue u) are small and can be neglected. The
preceding two assumptions, which can be justified for many -types of nonequilib-
rium shock-structure problems, have been widely accepted by previous researchers.

For 'the present shock-structure study, tie translational transition
region of the shock front has been neglected, since its thickness is negligibly
small compared with that of the following relaxation 'egion. It should be
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noted that if the translational transition region of the shock 
front is

considered, gradients in the flow variables are large 
and the effects of

viscosity [ 0x ( u)3, and heat conduction, [ )] and [ ('e .- )]

must be included.

For a steady one-dimensional and inviscid flow of a 
singly ionized

gas, Eqs. 2.2 to 2.8 reduce to' the following expressions.

Conservation of electron mass:

(neu) = (2.12)
me k

( ne k T u)= 3 n e( + Ve) k( T)
2 e ke ema ea ei e

dn dT e dn
due I + + k u[n e  Te  _ (2.13)

- raU + Te dx

Conservation of total mass:

d (p u A) = 0 (2.14)

Total momentum:
du & (2.15)

P u -dx

Conservation of energy:

-u - e (2.16)
p 5 dx rad " (2.16

The Boltzmann constant is denoted by k, A is the shock-tube cross-sectional

area or expansion nozzle cross-section, I denotes the ionization 
energy of

"~ the -atom, and

p PL- (T + a Te)
a

= (e + p)/P, (2.17)

= [ne k Te + (na + ne) k T3.

These basic equations contain five dependent variables: he(X),

na(X), T(x), Te(X) and u(x). Any numerical solution will depend on 'the modeldne

adopted to describe the atomic processes for e andQ

in the case of the shock-structure problem, if the cross-sectional

area of 'the shock tube is sufficiently large, then the effects of the wall

boundary layer on reducing the total area will be negligibly 
small. Therefore,

6



A in Eq. 2.14 can be taken to be constant. The effect of the wall 'Poundary
layer can be included simply by assuming the variation of the cross-sectional
area outside the boundary layer is a given function of distance (x). Let
Ao be the initial area at distance x equal to zero, then

A(x) = A0F(x) (2.18)

where F(x) can be calculated by using boundary-layer theory.

The basic difference between shock-structure and expansion nozzle
problems is in the atomic collision processes. For the shock-structure
problem ihe initial ionization processes due to atom-atom collisions are
dominant. By contrast, in the expansion-nozzle problem, the three-body
recombination process dominates in the entire relaxation region. The former
case provides an opportunity to determine the excitation .(or ionization)
cross-section for an atom-atom collision, and the latter case allows one to
determine the excitation cross-section for electron-atom collisions or the
recombination rate constant.

2.4 Equations for the Laminar Boundary Layer Flow Induced by a Strong Shock
Wave

For a two-dimensional problem, Eqs. 2.2 to 2.8 contain fourteen
independent variables: ne, na, Te, T, u, v, ue, Ve, Ex. Ey, Ez, Bx, By and
Bz. Because of the complexity of the equations, nq numerical solutions
appear to exist. The less general two-diension inviscid plasma flow with
the assumptions, T = Te, ue = u, Ve = v, F= B =0Lnd Qrad =,O has been
solved by many researchers. For example, Glass and Takano (Ref. 3) deal
with the problem of a corner-expansion flow.

The occurrence of an appreciable degree: of ionization in a gas
flow introduces some features that are markedly different from those normally
encountered in a perfect-gas flow or in a flow with chemical dissociation,
primarily because of the presence of ions and electrons. The reasons are
given as follows:

1. The extremely low mass of the electron yields a species possessing a
thermal conductivity that can be much higher than that of any other
species present in the mixture.

2. The collisional energy-transfer process between electrons and heavy
particles is relatively slow and gives rise to the possible situation
in which 'the electrons may have a temperature different from that of
the heavy species.

The detailed analysis of an appreciably ionized gas is necessarily complex.

In general, it is well known that three rather distinct regions
exist near the surface of a plasma flow:

1. Away from the wall the gas is quasi-neutral, the ion diffusion vclocity
is small, and the behaviour of the gac in this region is described by
continuumn equations.

7



2. Near the surface but not adjacent to it the gas remains quasi-neutral,

but the ion diffusion velocity is comparable to the ion sound velocity

and the usual equations are not valid (the region will be referred to
as the "transition region".

3. Adjacent to the surface of the wall a space charge sheath exists within
the gas which is no longer quasi-neutral.

A major difficulty exists in onnection with the latter two rbgions, because
it is necessary to solve the Boltzmann equation for each species. In Fig. 2
the flow regimes near a cold surface arid the order Qf thickness of each
regime are indicated.

In the case of a partially ionized gas, a sheath formed next to the
wall is thin compared to the boundary layer thickness. Hence, the ionized
gas in the boundary laye., should be electrically neutral and the concept of
ambipolar diffusion can be adopted (described in Section 413).

The present section is specifically concerned vith,,the basic
equations for a nonequilibrium boundary-layer development on the cold wall
surface. The basic assumptions are: (1) steady flow, (2) laminar flow
(3) no continuum radiation losses, (4) all species have the same mass
motion velocity, (5) free-stream conditions are constant along the flow
direction, (6) no electric or magnetic fields exist, (7) T = Te. Note that
when the boundary layer is inside the relaxation zone, assumption (7)_ may
be invalid. Under these assumptions, the basic equations for the boundary
layer flow are given below (Ref. 47).

Continuity equation:

"pu) + (pv) = 0 (2.19)

Momentum equation:

u dp+ u)(2.20)

Energy equation:

6H FH 6 W u (2.'21)

Conservation of species:

Pu + Pv 6 P:- pi V.3 + i (2.22)

In these expressions, the respective symbols p, H, qc, qd, Vi) Pi and wi.
denote viscosity, stagnation enthalpy, conductive heat flux, diffusive
energy flux, ion diffusion velocity normal to the wall, ion density, and
net production rate of ions.

For an electrically neutral, singly ionized, monatomic gas consisting
of atoms, ions and electrons, all at the same temperature, the equilibrium-
thermodynamic relations and the equation of state for the mixture are given

below.

8



p = PR T (1 + a) (2.23)

H= RT (l+a) + a + - (2.24)

where, I denotes the ionizaticn energy. Note, the enthalpy due to excitational

effects is neglected.

The conductive heat flux (qc) is given as follows:

6T
K [ H F (1 + 2 (+ R T) l (2.25)

Cp

where Z is the "frozen" specific heat at constant pressure and defined below.

c = 2 R (l + U) (2.26)

R is the gas constant for the atom and K is the thermal conductivity for the
mixture if no chemical reactions took place.

The diffusive energy flux for abipolar diffusibn (qd) is given by
the following expression.

5q D (2.27)qd = a 2 TY

where Dam is the ambipolar diffusion coefficient.

The diffusive mass flux of ions (pi Vi) for ambipolar diffusion by
ion-electron pairs is governed by Fick's law, as given below.

P V = p a (2.28)

By introducing the Prandtl and Lewis numbers defined by[Pr P
(2.29)

pD a

Le K

the ion -(or electron) concentration and energy conservation equations take
the following form:

pu + pv r+ , (2.30)
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+! E(L 1) (1 + 2R T) (2.31)
r •

In general the Prandtl and Lewis numbers are functions of the gas temperature
(T) and degree of ionization (a), as shown in Section 4.2. This temperature
and degree of ionization dependence couples Eqs. 2.19 and 2.20 to Eqs. 2.30
and 2.31, making it difficult to obtain a solution.

3. SHOCK STRUCTURE AND INITIAL IONIZATION PROCESSES

3.1 I..croduction

Experimental and theoretical investigations of ionization rates and
relaxation processes behind strong shock waves moving in monatomic gases can
be found in Refs. 5 to 2-9. It is now well established that when a strong
shock wave raises the temperature of atoms from a low temperature (about 300 K)
to a high temperature (over 10,OOO0 K), the initial ionization is due to atom-
atom collisions. The rate of ionization is controlled by the rate of excitation
from the ground state to the first excited level. Ultimately when the number
of electrons becomes sufficiently large, electron-atom and ion-electron-electron
collisions dominate the excitation, ionization and recombination processes (see
Eq. 3.1), and the rate of ionization is controlled by the rate of energy trans-
fer between the heavy particles and the electrons. The radiative processes
will be important (Ref. 5) for a low electron number density (e.g., at T -
32000K and ne < 1012 cm -3 ). Treatments of relaxation phenomena in radiating
argon-plasma flows can be found in Refs. 6, 7, 8 and 9. For specific donditions

of a shock Mach number of 15 and an initial pressure of 1 torr, Kamimoto et al
(Ref. 9) have shown that the effect of radiation on the relaxation profiles is
negligible. Oettinger and Bershader (Ref. 6) have shown that the effect of
radiation is negligibly small only until the end of the relaxation zone.
Thereafter radiative emission becomes appreciable.

In enealtheexctaton ros-section for atom-atom collisions

is well known. The shock tube presents an opportunity, for indirect measure-
ments to be made of the excitation (or ionization) cross-section of heavy gas
particles. Recently, Harwell and Jahn (Ref. 10) have employed a transverse
microwave probe to determine the cross-section constant of proportionality,
SirAr, as equal to 7 x 1019, cm/eV, for argon inelastic atom-atom colli-
slons. Morgan and Morrison (Ref. 11) have made a theoretical reassessment
of the ionization mechanism and referred to earlier experimental measurements.

They showed that a best fit curve to the ionization relaxation time measure-
ments of Petschek and Byron (Ref. 5) was obtained by reducing Harwell and
Jahn's value (Ref. 10) for SjrAr by a factor of ten. Kelly (Ref. 12) has'
reduced the impurity level for-his experiments and obtained a value for

SATAr Of 1.2 x 1 -0 +- 15% cm2 jeV, which has been widely accepted by many
researchers (Refs. 2, 7, 10 and 13) for their theoretical calculations.
However, we must point out that there are two important effects which must

10
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I
be considered in regard to Kelly's experiments: (i) the range of the shock
Mach number was between 7 and 10, which is too low, and (2) the relatively

small cross-sectional area of the shock tube (5cm x 5cm) makes the wall
boundary layer effect important (i.e., dA/dx 0). On the other hand,
McLaren and Hobson (Ref. 14) have used double electrostatic robes to
measure ts ionization rates and they obtained a value for SjrAr of
2.5 x 10- cnt/eV, which is lower than the value suggested by Morgan and
Morrison (Ref. 11). Although many experiments have been made with argon
to determine the initial ionization processes, the excitation cross-section
for argon atom-atom collisions has not been determined with great accuracy.

An experimental investigation (Ref. 15) of the initial ionization
processes in a strong shock wave in argon and in a mixture of argon and
hydrogen (0.4% by partial pressure) was made recently in the UTIAS 4-in
x 7-in hypervelocity shock tube. This investigation provided the most
reliable data for determining S)r-Ar. Considerable care was taken to
reduce the impurity levels to approximately lO- 4 torr. Therefore at an
initial pressure of about 5 torr for the present experiments the impurity
level was about 20 parts per million or less. The large cross-sectional
area made the effect of the wall boundary layer negligible during the
experiments. The purpose of the present chapter is to propose a simple,
theoretical model from which the excitation cross-section donstant of
proportionality for argon atom-atom collisions can be determined from the
experimental results (Ref. 15). The effect of the small hydrogen impurity
in the argon test gas on the ionization rate is calculated, compared with
experimental work (Ref. 15) and discussed.

In the present study the transition through the translational
shock front is neglected since its thickneqs is negligibly small compared
with that of the relaxation region. In the translation transition/region

in the flow variables are large ad the ~effects of viscos it~ (6
and heat conduction L ,< (q ) and L , ( l'emust be considered.
However, as only the relaxation region is considered, where the gradients
are small (see Figs. 6 and 7), the viscous and heat conduction dissipative
processes can be neglected. Then the only important processes in the flow
are the collisional processes.

3.2 Collisional Ionization Rates

Petschek and Byron (Ref. 5) and Harwell and Jahn (Ref. 10) have
shown that excitation from the ground state to the first-excited state is
rate controlling for the overall ionization process. This two-step process
is based on the fact that the cross-section for excitation from the ground
state is greater than that for ionization from the ground state. This
familiar two-step collisional ionization model is adopted herein. Of course,
the multi-step collisional radiative ionization models of Hollenbach and
Salpeter (Ref. 16), Kamimoto et al (Ref. 9) and Bates et al (Ref. 17) are
the most accurate. However, many unknowns are contained in those models
and some simplifying assumptions are required before actual calculations
can be made. For example, there are three unknowns in the ladder-climbing
model of Hollenbach and Salpeter, where transitions to neighbouring levels
are only allowed. Kanimoto et al have shown that the resalts for argon
atom and electron number densities as calculated by a two-step model are

i1



nearly the same as those calculated using a multi-step model, except that

the relaxation time based on the multi-step niodel was somewhat longer.

The collisional-ionizaion kinetics of singly ionized argon are

postulated to take place according to the following equations:

Ar + X A* + X (3.1a)

A* + X A+ e+X (3.1b)

i+ A+ + e + X (3.1c)

r.

The two-step model is represented by Eqs. 3.1a and 3.1b for the overall

reaction path given by Eq. 3.1c; X denotes either the argon atom (Ar) or an

electron (e).

For this collision process one can express the electron-production

rates (A)a and (ne)e in- terms of recombination rates and equilibrium constants

(Ref. 13), as illustrated below:

= k n2  k n n2
(Aea fa a ra a e

= kra (T)n[K (T)n -n 23 (3.2)
ra. ) eq a) a e

de = fe na ne - kr e

= k (T)n (Te) na- n2 (3.3)

The electron-production rate due to atom-atom collisions is denoted by ('ne)a
and that- due to atom-electron collisions is denoted by (ne)e, and the

subscripts a and e denote atoms and electrons, respectively. The two equi-

librium constants are defined by the following expressions:

n2  (T)

eq(T 
(3.4a)

Keeq e (3.4b)
eq e)  e,eq (T

The calculations of -kra and kre require a knowledge of the depend-

ence of the inelastic-collision cross-section for the first-excited level

(a.*x) and on the kinetic energy (- ). A reasonably good approximation is
given below:

12
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=' S* (ex . E*) with G * 35ax ax "a x a

where Sax is the constant of proportionality of the first-excitation collision
cross-section between atom a, and particle xand Ca is 'the excitation energy
of the first level.

By applying Eq. 3.5, 'krp and kre can be expressed (as in Refs. II
and 13) in terms of Se for argon atoms as shown below:

' r(T a = 4.835 x i 1  ST.r + 2 exp 1- se--

a -8 aa ec (3.6)

kre(T) =1.843xl0 " 5 s* Te + 2 exp - (3.7)
re e A~r-e \T e/ Te sec

T* and TI are the first-excitation and ionization temperatures respectively
for an argon atom, and S* is in units of cm2 /eV. (Note that kra in Eq. 3,6
-has now been divided by a factor of 2 to avoid counting like-like collisions

A schematic diagram of the collision processes from the Rankine-
Hugoniot translational shock front through the relaxation region appears in
Fig. 3. The boundary layer formation in this region is also indicated.
Radiation losses give rise to a somewhat nonuniform equilibrium flow. It
is important to take this loss into account during the calculation of the
physical properties of the flow.

3.3 Governing Equations

The theoretical approach to solving the shock structure is
similar to that described in Ref. 13, except the correct equations given
in Section 2.3 are used. Note that the conservation equations of electron
energy described in Ref. 13 are only an approximation for Eq. 2.13, The
governing equations are obtained from Eqs. 2.12 to 2.16, as given below:

d dn
.(neu) = = e

] d~~e = ( e )  ea + Vei (T2e du 2 he e h(x+ e 39
-x m- U e) u dx 3 un e  X 2

neu Pul (3.1)
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p +'Ou 2 =pI + PIuz (3.I.

2

R(T + 0e), + ORT + u RT 2 A (3.12)

The subscript.) refers to the state of the gas in front of the translational
shock front, Vea and Vei denote the elastic collision frequencies for the
pairs electron-atom and electron-ion respectively, which can be expressed
in terms of the elastic-cOllision cross-sections Gel and o

e l, as shown below:
.ea ei

=(I-a)p e elVa m (3.13a)ea a  7 e  ea

Vei m 7M ei

a e

The degree of ionizati on (a) is defined by Eq. 2.5.

From the fact that Ae = ne(6/a), Eqs. 3.2 and 3.3 yield the following
expressions .*

"2 (T)
(TLa aT eq

* a2 (T)
e(T e = kre (Te) eq(T) - a) a] (3.14b)

The conservation of electron mass, Eq. 3.8, becomes

e a d (6a + &e) /u (3.15)

where &a and e denote production rates due to atom-atom and atom-electron
collisions, respectively.

The equilibrium value of the degree of ionization, a eq(T), can be

Litained from the following equation (Ref. 3):

OP P1  13/2
=eq = 'I exp(- T1 /T) (3.16)

eq P TI

The characteristic density for ionization Pl is defined by Eq. 2.24 of Ref. 3(see Table I of this report).

*Note that Eqs. 15 and'16 o Ref. 13 are incorrect.
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The value of du/dx which appears in Eq. 3.9 is obtained easily from
Eqs. 3.10 to 3.12, and it is given below,

du9 1 - ) +J j (3.17)dx 5 le Ta 5 s  T dx

3.4 Model Calculations and Comparison with Experimental Results for Pure
gon

For the present calculations the same collisional cross-section
employed by Petschek and Byron (Ref. 5) wth S~>e equal to 7.0 x 10 18 cm2/eV
was used. The values of a have been taken from Refs. 11 and 13. The initial
conditions employed for the calculations for a shock wave in pure argon are
summarized in Table 2, which coincide with those used in the experimental work
in the UTIAS 4-in x 7-in hypervelocity shock tube (Refs. 15 and 18).

The first-ordez differential equations (Eqs. 3.9 and 3.15) were
solved by using a standard Runge-Kutta method (see Appendix A). The initial
condition for a was taken as a(0) = 0. The initial value of the electron
temperature is somewhat ambiguous. Three values of the initial electron
temperature are given as follows:

1. Te(0) = T' (= 300-K),

2. Te(0) = T(O), and

3. local steady-state value.

However, it should be noted that these different initial values would not
affect the values of the other physical quantities, as the initial number
density of the electrons is very small, or a is approximately zero.

For a strong shock wave moving in pure argon (Case I of Table 2),
predicted and experimental variations of the degree of ionization (a) with

distance (x) through the relaxation region arc shown in Fig. 4. The degree
of ionization initially increases rather slowly from zero at the shock
front (x = 0) and eventually rises rapidly to its equilibrium value (ae =

0158). The dashed line corresponds to a solution using the value of
SAr_Ar equal to 0.6 x 1O- 19 cm2 /eV. It can be seen that this predicted
variation for a has the same features as displayed by the experimental data
(Ref. 15). but the predicted relaxation length (or time is significantly
shorter. It would be even worse for larger values of SAr.Ar. In addition,

a number of calculations with different SA values showed that the
relaxation length increased with decreasing values of S At" The continuous
line in Fig. 4, corresponding to a solution with a lower SArAr value of
3.5 x 102 o cm/eV, which is in good agreement with the experimental data.
Hence, from such a comparison the excitational cross-section constant for
argon atom-atom collisions (S._Ar) has been determined to be 3.5 x 10- 20

acmu/eV. This newly determined value is used for the remainder of the

calculations.
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The predicted and measured variation of density through the relaxation
region is shown in Fig. 5. The predicted and .measured density profiles are in
good agreement, adding further verification tO the acceptance of the new value
for S r-Ar.

The atom-temperature (T) and electron-temperature (Te) variations
through the relaxation zone 'are displayed in Fig. 6. Although three different
initial electron temperatures were selected, the electron-temperature profile
is affected by this choice only in the small initial part of the relaxation
region, as shown in the figure.

The flow velocity and pressure variations in the relaxation region
are given in Fig. 7, and in Fig. 8 the variations of electron number density
(ne) and ionization production rates are shown. It can be seen that the
ionization production rate due to atom-atom collisions (&a) is very large in
the initial stage of the ionization process as compared with that due to
atom-electron collisions (&e), and the collision process is controlled by
atom-atom collisions. The ionization production rate 6e increases very
rapidly as the number of electrons increase. After &e exceeds 6a, then aa
quickly decreases and the collision process is controlled by atom-electron
collisions. Eventually ae reaches a maximum and then falls off rapidly, and
the collision process is controlled by three-body recombination (electron-
electron-ion) and radiation processes.

Additional predicted and measured results (Ref. 15) Jor the density
and degree of ionization variations through the relaxation zone are given in
Fig. 9. These results for Case II, Table 2, are not too different from those
of Case I, and the predicted and measured data are in faiL agreement.

For Case III, Table 2, for which the shock strength and degree of
ionization are both less, the predicted and measured degree of ionization
profiles for the relaxation region are compared in Fig. 10. The agreement is
not as good as for Cases I and II. This disagreement, however, is most
likely due to inaccurate experimental measurements. Brimelow (Ref. 15) has
mentioned that it was difficult to obtain accurate data from interferograms
that exhibit small fringe shifts, as is the case when the degree of ionization
is small. However, it should be noted that the analysis predicts the correct
relaxation length.

t should be pointed out that the analysis overpredicts the relaxa-
tion lengths as measured by Oettinger and Bershader (Ref. 6). The initial
conditions for both Brimelow's work (Ref. 15) and Oettinger and Bershader
(Ref. 6) were the same. However, the measured relaxation lengths of Oettinger
and Bershader were shorter. The reason for the different lengths is not clear.
The shock tube used by Oettinger and Bershader had a smaller cross-section and
its impurity level is not known.

In some of the interferometric results of Brimelow (Ref. 15), it
was found that the degree of ionization was larger near the shock-tube wall
than at the centre of the freestream, and relaxation lengths were shorter
near the wall. At the present time it is difficult to explain this phenomenon.
It may be possible that a two-dimensional model incorporating the viscous
effect and impact phenomena between ions (or electrons) and a solid surface
would be required to explain the above-mentioned phenomenon, or perhaps
impurity gradients (e.g., water molecules) closer to the wall may account for
it.
I 16



3.5 Effects of Hydrogen Impurity on the Ionization Processes

The effects of impurities in the test gas on the structure of shock
waves was studied initially by Morgan and Morrison (Ref. -l). In this section,
the effects of a small addition of hydrogen (impurity) to the argon. test gas
on the shock wave structure is considered in some dezail.

The initial ionization of hydrogen 5n a strong shock wave has been
studied by Belozerov and Measures (Ref. 19). From a comparison of theoretical
and experimental results they have determined SHH to be 3.57 x 10 18 "cm2 /eV,
which is about 1/15 that of the corresponding cross-section for electron-atom
excitation collisions where *He equals 5.1 x 10-17 cm2/eV. They showed that
the electron temperature is nearly identical to the atom temperature every-
where in the relaxation region except for a very small region near the shock
front (x = 0). This result is quite different from a similar solution for an
argon test gas (see Section 3.4). The reasons are as follows: first, the
mass of the hydrogen atom is 1/40 that of the argon atom, and second, there
is no Ramsauer effect (Ref. 19) for the electron-hydrogen atom elastic colli-
sions. The latter effect reduces the cross-section for elastic electron-argon
atom collisions.

Chang (Ref. 20) has shown that for certain shock velocities it is
possible to consider the different relaxation processes (e.g., translation,
vibration, dissociation, and ionization) independently for hydrogen molecules.
For the present work we can assume that ionization of the hydrogen molecules
behind a strong shock starts effectively after dissociation is complete.
Also, the relaxation length for the dissociation process is very small
compared with ionization. With these assunitions there appears to be no
difference between hydrogen and monatomic argon in the theoretical description
of the ionization process. The only difference in the ionization processes
between pure hydrogen and argon is that the initial conditions for hydrogen
will correspond to those for a fully dissociated gas behind the shock front.
These required conditions have been given by Belozerov and Measures (Ref. 19).
For the present case (Case IV of Table 2), since we will consider only a
small amount of hydrogen impurity (0.4% by pressure) in the argon test gas,I the assunption is made that the initial conditions for hydrogen and argon are
identical.

The following reactions are considered for the collisional ionization
processes.

(a) Ak +A - A++ e +Ar r %Kr r r
r

(b) Ar+e A++e+eI r

(c) Ar+H A'+e+H~r

(d) H + Ar H+ + e + Ar

(e) H +H H + e + H

(f) H +e H+ + +e+e
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Processes (a) and (b) for pure argon have been discussed previously in Section! 3.4.

The production rates due to atom-atom collisions (a, c, d, and e)
and atom-electron collisions (b and f) can be expressed as follows:

Ar-Ar AAr Ar-Ar 2"" "- ka'(T) n2 k r-(T) n n (3.19a)
e anfae aAr - ra naAr e,A(r

Ar-e Ar- e (T n Ar-e(31b

ee = e a,Ar e,Ax re e e,Ar (3.19b)

( A) - H  k r H  k Ar -H (T 2
ea = fia T aAr na, H - fa na,H e,Ar

H-A = kH-A (T) n n kH - A (T) n 2  (3.19d)
ea fa a,H a,Ar ra , Ar e,H

H-H H-H 2  H- H
ne a  = fa ()a,H - kra ntHeH

,H-e H -e (Te' n n .k.e (Te) n 3(3.19f)
ae = kie na,H ne,H "kre e e,H

where it should be noted that (A ) Ar-H H-Ar
e a e a

A-B -
The forward rate coefficients kfa between atoms A and B and kfe

between atom A and an electron can be written in terms of the excitational
cross-section constants SB 'and S _e as shown below (Ref. 11):

[a L2 + IF3 2a S/L ]~ 1/2 (T3/2 /TA
A T) 2Tl (k) T (3.20)

La ~ ~ ~ ' TsiBLi mA \\'B

mA+m 1/2 3/2 T*
kA-e (T) 32_ A e + I Ake T (3.21)
-- V-[ + (m e)] (kTe) 2TTxpQ )

These rates must be divided by two for like-like collisions to avoid a double
count.

The forward and recombination rates are related to the equilibrium
constants as indicated below:

kA-B =kAB )/(T)/KAB (T) (3.22)
ra f a eq

kA-e= k A e (Te)/K eqe (T (3.23)
re f e eq ~e8
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The equilibrium constants are defined below:

(T)
Of (T (3.24)eq n,A.,eq(T}

Kex-H (T) = KA- (T)

eq eq

eAr (T) H H (3.26)
eq eq

e (e e (Te)
e  (T)  HeqT) (3.27)

eq e
eq n~a,H,eq(e

n (T)
,Ar-e e Ar ,eq -e '(3.28)

"64~ 11e n a,,Ar~eq (e)

eq ( e) (T(3.29)

The defini'tion of the degree of ionization for the mixture is as
follows;

n + n
a e Ar e,H (-0n .. . .... .. (3.30)

ne,Ar + he,H + na,Ar + ha,H

If we define a rtio C* as shown below,

C* = 2neH + na,H (3.31)
2ne,Ar + na,Ar

then a can be expressed in terms of C* as follows:

a (Ar + a H (3.32)
+ ( f~Ar) 1 ___H_

1 + ~ +C*( l40r)

where aAr and aH are defined below,
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a ne A (3*33)A = ne,Ar +a,Ar

H n neH (3.34)
e,H aH

For the present calculations the excitation collision cross-section for atomic
hydrogen by electron impact is given by,

*H-e = 5.1 x )O- '7 (10.2 - E)cm2  (3.35)

and

S* =7.0 x O 2 S
H-H H-e

as obtained by Belozerov and Measures (Ref. 19) from a comparison of theoretical
and experimental results. sr-H and SH. are still unknowns for the present
work. However, the method used by Kelly Ref. 12) in his treatment of the
argon-xenon case by assuming SLH = SA- and SAis adopted herein.
This assumption would be invalid for a high impurity level of H due to the small
mass ratio between H and Ar. However, it can be accepted for the present work
as the impurity level in the test gas (argon) is small.

Calculations were made for Case IV of Table 2 for the relaxation
zone behind a strong shock moving in argon with a small amount of hydrogen
(0.4% by pressure). The resulting density and degree of ionization variations
through the relaxation zone are given in Fig. 11, along with the experimental
data (Ref. 15). The agreement between the predicted and measured results is
good, confirming the choice of the theoretical model. From a comparison of the
results of Figs. 9 and 11, it is readily seen that the total relaxation length
of the pure argon shock transition is substantially reduced by a factor of
four through the addition of the 0.4% hydrogen impurity. This result is quite
different from the argon-xenon mixtures used by Kelly (Ref. 1). Kelly showed
that the addition of 0.1% and 0.48% xenon to the test gas argon did not sub-
stantially change the relaxation length from that for pure argon. The reason
is that the excitational cross-section for pure xenon is smaller than that for
pure argon. In addition, the mass of atomic hyd.'ogen is markedly smaller than
that of the argon atom. These two characteristics of the hydrogen impurity in
the argon test gas give rise to a significant reduction of' the relaxation length
or time.

3.6 Discussion

The following conclusions can be made from the present calculations
and their comparison with the experimental results for the relaxation processes
occurring behind a strong shock wave moving in pure argon or argon with a small
hydrogen impurity:
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1. The initial process of ionization behind a strong shock moving in pure
argon is due to atom-atom collisions. As the number of electrons
increases sufficiently, the process is controlled b. atom-electron
collisions, and subsequently by three-body recombination (ion-electron-
electron).

2. The new value of the excitational cross-section constant for argon-argon
atom collisions, S - 3.5 x 10

-20 cm2/ev, as determined from a
comparison of predicted and measured data, is smaller than the value of
1.2 x 1019 cW2/eV determined by Kelly (Ref. 10) and slightly larger
than the value 2.5 x 1020 cm2/eV given by McLaren and Hobson (Ref. 14).

3. Owing to the low- mss of the hydrogen atom and the large excitational

cross-sectio between hydrogen atom-atom and hydrogen atom-electron
collisions, the itmurity effect of hydrogen in the argon test gas is
to markedly reduce the relaxation length or time of the ionization
processes behind the shock wave, even when the impurity level of
hydrogen is as IUv ts 0.4%.

4. The effects of radiation losses and of the wall boundary layer are
problems for further study.

4. LAMINAR BOUNDARY-LAYER FLOW OF PARTIALLY IONIZED ARGON BEHIND A STRONG
SHOCK WAVE

4.1 Introduction

The nonlinear partia. differential equations for most boundary-layer
problems are difficult to solve. As a result, many researchers have resorted
to using simplifying similarity transformations. In the similarity approach
the system of partial differential equations is reduced to a system of ordinary
differential equations, which can usually be solved by standard integration
techniques. These so-called similarity solutions are, however, limited to
certain types of flows. For this reason, and because of the mathematical
difficulties encountered in obtaining exact solutions for general boundary
layer cases, approximate method- have also been developed.

One approxims te method of interest for this work is based on Karman's
momentum integral, which has been ext ided by Pohlhausen. This approach is
now known as the Karman-Poh'.ausen integral method. For such integral methods
certain assumptions are made as to th3 form of the unknown functions, which
reduces the problem to solving a set of' ordinary differential equations. By
satisfying appropriate boundary conditions at the wall, the velocity pr:z'ile
normal to the wall through the boundary layer is reduced to a function of
only one independent variable. Libby and Morduchow (Refs. 21 and 22) have
extended the Karman-Pohlhausen method to a sixth-degree velocity profile and
a seventh-degree stagnation-enthalpy profile. Chung and Anderson (Refs. 23,
24) have successfully applied this method to the boundary layer flow of a
dissociated gas over a flat plate. Another method developed by Dorodnitsyn
(Ref. 25) has been applied by Pallone (Ref. 26) to solve a mass-transfer
problem, and also applied by Lo (Ref. 27) to solve a corner-flow problem.
This latter method combines the Dorodnitsyn integration scheme and Karman-
Pohlhausen integral method. Note also that this approach was used by Pallone,
Moore and Erdos (Ref. 28) in solving the boundary layer equations for dissoci-
tion and ionizing air in a nonequilibrium flow.
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Another powerful method of solving the boundary layer equations is
the finite-difference approach, Blottner (Ref. 29) has applied this numerical
method in solving nonequilibrium laminar boundary layer flows of an ionized
gas. Kendall and Bartlett (Ref. 30) have combined the finite-difference
approach and matrix-inversion techniques (so-called integral-matrix method)
to obtain a nonsimilar solution of a multicomponent laminar boundary layer.

The laminar boundary layer behind a shock wave moving in a perfect
gas has been studied quite extensively (Refs. 31 to 34). The correct boundary
layer equations were used in Ref. 32. Values of skin friction and heat trans-
fer coefficients were obtained. However, velocity and temperature profilesthrough the boundary layer were not given. Mirels (Refs. 33 and 34) solved

the laminar and turbulent boundary layer equations for the flow behind a
shock wave. The most extensive calculations for laminar boundary layers
behind a strong shock wave for a dissociating gas cm be found mn Refs. 35
to 37. Knoos (Ref. 38) studied the Rayleigh and shock-tube end-wall boundary
layers for partially ionized argon. In his analysis, the basic assumption
is that of thermochemical equilibrium. Fay and Kemp (Ref. 39) considered
the heat transfer to a shock-tube end wall from an ionized monatomic gas forboth frozen and equilibrium flows;

For the steady laminar boundary layer in a partially ionized gas,
many researchers (Refs. 4o to 42) have studied the effects of a nonequilibrium
electron temperature. Back (Ref. 43) solved this problem based on a similarity-
solution approach for a frozen low-speed flow. The effects of high temperature
on transport properties and nonequilibrium flow remain unsolved.

For the present theoretical work the boundary layer is assumed to be
laminar. Note also that the boundary layers in the actual experiments (Refs.
15 and 18) are assumed to be laminar.

4.2 Transport Properties of Partially-Ionized Argon

The kinetic theory of gases provides a means of estimating the
transport coefficients of a partially-ionized gas. In this section, transport
properties of partially-ionized argon gas are considered, as based on the
mixture rule of Fay and Kemp (Ref. 39).

For the mixture of atoms, ions and electtons the thermal conductivity
(K) can be calculated by means of the approximate mixture rule:

K =Z aa (4.1)
j zxi Gji

G2m. ]/2 Q.a-(4.2)

The respective symbols Kj and xj are the thermal conductivity and mole fraction
of the pure component J1, and Q. is the effective hard-sphere cross-section for
a collision pair j and. i.
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The thermal conductivities of argon atoms (iAr) and of a completely
singly-ionized gas (Ks) are given by the following approximate expressions:

K = 5.8 x O / T /4  cal/cm sec0K (4.3)

A= 5.8 x lof I mT /23

s 4.4 x /Os T. 1  ln A cal/cm secjc (4.4)
*1

The ratio of the Debye, distance to the impact parameter (for 900 deflection) is
denoted by A, which: , given by the following relation:

A = 1.24 x 104 T3/2/nel/2

whereT is in °K and nQ in cm-3 .

The thermal conductivities for the electron gas (Ke) and argon ions
(K Ar+) can be related to (Ks) es shown below:

K = (l + ,2) (4-5)

e = [lfl 312 +$S)2 (4.6)

From Eqs. 4.i to 4.6 the thermal conductivity (K) for partially ionized argon
is given below:

aem e K- Qai -- 1IK = K -1o+ F2 + Kr aa _- (4.7)
mAr KAr Qaa ' aa

The viscosity of partially ionized argon can be calculated from simple
kinetic theory, and it is given below:

.1+a Qai
'.1 +-

1 - q i + a Q i i
5 UAr Qaa + - Qaa (4.8)

T2+ --
I-a qaa

where

UPr V mAr

is the mean thermal speed of the argon atoms. The electrons make no contribution
to the viscosity because of their extremely low mass.
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The ambipolar diffusion coefficient D is defined in terms of the

atom-ion diffusion coefficient Dai,

D 2 (4.9)
am l4C ai

From kinetic theory Dai is related to the ratio of the drive velocity Vd and the
electric field E (Ref. 30),

SV d kTI
D (41o

ai - Ee (4.10)

The ion temperature T1 may be taken as that for which the mean thermal speed

F8kT1  1/
equals the drift velocity, Vd = m From experimental data, the

effective hard-sphere collision momentum-exchange cross-sections for argon
atom-atom collisions (Qea)' arid for argon ion-atom-collisions (Qai) can be
expressed as functions of the gas temperature (Refs. -18 and 19),

aa, 10 4

(4.11)

0.16
Qai = l.44 T Qaa

The effective hard-sphere argon ion-ion collision cross-section Qii is quite
large 0 iO to 10 4 X2); for example, see Fig. 7 of Ref. 38.

Finson and Kemp (Ref. 44) have assumed that the pure ion viscosity
can be obtained from the ion's thermal conductivity by using monatomic perfect-
gas relations, and they dekeloped an expression for the Prandtl number,

Pr 2 KAr
Pr -K (l + a) (A +B) (4.12)

where /s m e l/2

(1 + 4 ) _1,_ __me_)_1_

= Q s(m 1e/2
a~ + (I-a) 1 (+ ,2)

aa( ~ ~

and

B--B =

(l+a)
Qaa
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The degree of ionization for an argon plasma with freestream and

surface conditions given in Teble 2 is plotted in Fig. 12 as a function of gas
temperature (T) for an equilibrium flow. Predictions for the Prandtl number
(Pr), Lewis number (Le) and the density-viscosity product ratio (C = PFl/Pee
where, "e" denotes the boundary layer edge), all obtained from the preceding
equations, are shoin in Fig. 13. These results for argon were specifically
based on the initial conditions summarized in Table 3, and the temperature
range of 300 to l4,000 K covers the surface wall to frees tream temperature
range for the boundary layer. At the wall where T is approximately 3000 K,
Pr, Le and C are equal to 2/3, 0.44 and I, respectively. At the other end of
the temperature range (14,OOO0 K and higher) the gas is significantly ionized,
and these quantities become small. For a completely ionized gas (T > 20,0000K)
the thermal conductivity is due almost entirely to electrons, and the electrical
conductivity is strongly dependent on temperature. For these reasons the Prandtl
and Lewis numbers are very small at high temperatures. Note that for a completely
ionized gas or plasma, the viscosity given by Eq. 4.8 may be related to Ihe elec-
tron thermal conductivity given by Eq. 4.5 (take the limit as na -4 0). Then,

om ( 1~/2
Pr _ e

and the Prandtl number is of the order of 1/100 for a completely ionized plasma.

4.3 Karman-Pohlhausen Integral Method

Since the original work of Karman and Pohlhausen, their momentum-
integral method for solving boundary-layer problems has been studied and
used by many researchers. Libby, Morduchow and Bloom (Ref. 45) and Morduchow
(Ref. 22) have made a critical study of the integral method for a compressible
laminar boundary layer for a perfect gas. Chung and Anderson (Ref. 24) have
applied this method to the boundary layer over a flat plate for a dissociating
gas. The basic principle of the integral method is to reduce the set of non-
linear partial differential equations for the boundary layer to a set of ordinary
differential equations. Additionally, the profile through the boundary layer for
each flow or dynamic variable is represented by a polynomial equation of appro-
priate degree.

In this section, the integral method is formulated in a general
fashion for a steady, two-dimensional laminar, compressible, boundary-layer
flow of a reacting-gas mixture. The freestream flow outside the boundary
layer is assumed to be in equilibrium. It is also assumed that the electron
and atom temperatures are equal in the boundary layer, or there is one charac-
teristic temperature, T. If the wall velocity is zero, we have the usual
boundary layer behind a moving shock wave, we let the wall velocity be equal
to the negative value of the shock velocity ur attach the coordinate system
to the shock front, as a matter of mathematical convenience. By taking the
x-axis along the wall surface and the y-axis perpendicular to the wall, the
boundary-layer equations for a partially-ionized-argon flow of either type
are given by Eqs. 2.19, 2.20, 2.30 and 2.31.

The boundary conditions for the boundary-layer flow behind a
moving shock wave are listed below,
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Wall su'face (y = 0)
U- U

w

v =0 (14.13)

H =H
w

a a w
Boundary-layer edge (y = 0)

U= Ue

e

e

Note that the boundary conditions for a steady flow over a flat-plate are the

same as those above, except at the wall (y = 0) the condition u = uw is re-
placed by u = 0.

By using the boundary condition given in Eqs. 4.13 for v, the equation
of continuity (Eq. 2.19) can be integrated with respect to y to yield the
following expression:

fv - dy (4.15)
0

By taking into account that He and ae axe assumed constant, integrations of the
boundary-layer equations with respect to y from y = 0 to y = 6 result in the
following expressions:

fPu(u - ue)d + pu dy = e 6- (4.16)

tpu(H- -L1)(I +2 RT) 6 (4. 1 7)

00

The Schmidt number (Sc) is given below,

Sc = r/ = rLe (4.19)p D
an

We now apply the following transformation,
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=X/L

(4.20)

where, L is a suitable characteristic length and

P =1 9 dy (14.21)
Pe

Under this transformation, y = 0 and y = 6 correspond. to 1 = 0 and r = 1,
respectively. By introducing the following dimensionless variables,

f = U/U

e

g = H/He (4.22)

z = a/a

and the following notation,

F3 = f(1- f) dn

F2 = f(. - g) dj (4.23)
0

Fp J f(l - z)
01

the following set of' first-order ordinary differential equations are obtained
from Eqs. 4.16 to 4.18,

dF- + 2 F3. d+u e . i. Me) F3.- P - S3.) = R 6f.-w24

du[

+ d.7\ + L e, 21 L1~
d9~ + 2F d9~ u :T9 ~Pr d~Jq

H (Le 1) a, 2 (4.25)

dFS+ N du L dH -

- +  F" + e- M)u L " "i %eo. (4.26)
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In the above expressions the following conditions were used:

u2
3 e

e 5 RT(14ae)

e .=

Rew L (4.27)

- PwUeL
R = Re2-

002

I .. Of Pu
0

Equations 4.24 to 4.26 are the basic integrel-differential equation- fox the
boundary-layer flow. Approximate solutions to these equations can be obtained
by assuming f, g and a are functions of only I , which satisfy certain conditions
at r = 0 and 1 = . These boundary conditions will be discussed later.

The general solution, based on the previous integral-differential
equations, can be obtained for the special case of a flow without a pressure
gradient. For this special case the simplified integral-differential equations
for the flow over a flat plate are given below,

dF1 + d1 F ? \ (4.28)
.- \- - + F F.,+ 2 (

dL - l (Le-l\ 2i +E)e ~
dF2 + , + e158 (4.29) ;

- + 2 F2  = RLF + --- He w (

N - d7 - [ SdcjwaeUeoPd (4.30)

The boundary conditions for velocity, enthalpy and degree of ionization
are given below:

For =0 f = r -uw/ue e

g = g. (4.31La)
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This last relation will be developed subsequently.
SFor 1 f =i g =1 Z =

t =0 g' 1 0 Vi f' =o g =o ' =o(4.31b)

fit = 0 g" = 0 Zt =0

fi' = 0 git = 0

where, the prime denotes differentiation with respect to 1. The edge of the
sheath is now the boundary condition for the boundary layer. Consequently, K,
the catalytic efficiency coefficient, is determined as follows: The wall is
at a floating potential. The momentum equation, Eq. 4.32a, can be obtained
(Ref. 41) from Langmuir-probe theory, if the electrons have a Maxwellian
velocity distribution,

S[n < e > exp- n. e V. =0 (4.32a)ne <e- kT s 3
where

/ kT )1/2

V. )V

and Ak is the potential between the wall and plasma, e denotes the electronic
charge and s denotes the sheath edge. The second relation (Eq. 4.32b) is
obtained from the continuity of mass flow of ions at the outer edge of the
sheath.

P5 Dns = Ps s V. (4.32b)

The final relation (Eq. 4 .32c) is obtained (Refs. 41 and 42) from the continuity

of electron-energy flux through the outer edge of the sheath,
<Ve>E T he  (2kT + eO) ne -- exp pf (4.32c)e dy ee-sep

nVae s Ts

where, K is the thermal conductivity of electrons, Vde is the drift veloci
of electrons, and he is the enbhalpy of electrons.

wt As already mentioned in Section 2.4, the sheath is very thin compared
with the boundary-layer thickness for the present problem, and the boundary
conditions are taken to be those at the wall. From the above equations for the
sheath, z'(x,O) can be related to z(x,O) and K are given by (Refs. 41 and 42),

Sc V.K= (4.33)

where, w = Tw/T e.
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The dimensionless velocity, total enthalpy and the degree of ionization,
defined by Eqs. 4.22, can be approximated by the following polynomial equations
for their profiles,

6
' an( ) In (4.34)

n=O

7n

g() nbn( ) Tn (4.35)
n=O

5
G(t),c) = n C( ) ,n (4.36)

n=-O

Morduchow (Ref. 22) has shown that sixth and seventh degree polynomial equations
for the velocity and enthalpy profiles, respectively, appear to be the most
promising approximation. Chung and Anderson (Ref. 24) have assumed a fifth-
degree polynomial for the profile of the degree of dissociation in a reacting
dissociative gas, and found this approximation to be reasonable, as did others.

The other supplementary boundary conditions for an, bn and cn can be
found by estimating Eqs. 2.20, 2.30 and 2.31 and their derivatives with respect
to coordinate y. The following supplementary boundary conditions for a boundary-
layer flow without a pressure gradient and at I = 0 (or y = 0) yield,

6fC =0 (4.37a)

(1+e C 1 ' f 2 4.37c)
P- +r He Hle P

3g C(:E + 2kT)ae z ue C ) f2]'[ g+L(Le 1).. .. - 2 ) (4.37d)
P-r Z+ He dn w He Pr w

i LX ] (4.37e)

where, C = pR/Pee and the prime denotes differentiation with respect to T.
Equations 4.31 and 4.37 produce seven, seven, and five boundary conditions for
an, bn and cn, respectively.
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An esti ate of the effect of C varying a ross the boundary layer was
studied by Back and Witte (Ref. 46) from the stagr,.cion-point heat-transfer
predictions for a high-temperature un-ionized gas. Lees (Ref. 47) has set
PwIUw = PePe in the heat transfer calculation. This approximation might be
reasonable for an accelerated ionized gas flow over a highly cooled wall. For
simplicity, we adopt the method of Lees by assuming that C is constant.

From the given boundary conditions, an, bn and en are listed below,

a -r -
0e

a.=2(l- r)

a2 = 0

a3 =0

a4 -5(1- r)

a= 6(1- r)

a6  -2(l- r)

b0  gw

a (I + RT ya Ue (Le 1) z e (1 Pr f2 (4i38)
2 He Lj2w 2He -Pr T[

a (I +5 RT) [3z]
bs (Le - ) He

b4= 35(1 - bo) - 20bX - lOb2 - 4b3
Cb

s = -84(1 - bo) + 45bI + 20b2 + 6bs

b= = 70(1 - bo) - 36b 1 - 15b2 - 4bs

b = -20(1 - bo) + IObj + 4b2 + bs

ca.= K - c

1 eA

c3 = 10(1 - co) - 6c, - 3c2

C4 = -15(1 - c) + 8c, + 3c2

c5 = 6(1- c0) - 3c -C2
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The remaining two unknowns c o and bj can be obtained by solving Eqs. 4.29 and
4.30.

By using the above results, the following relations can be obtained,

985 227 r(1 - r) (4'.39a)

= Bo - B, b, - B2 b2 - B3 b3  (4.39b)

F3 = Co - C1 cl - 02 C2 (4.39c)

where,
311

B 1-2- (1-bo) (1- r) + r(l -o)

B 821 (l r) + 3
B =12012 - r +

B2  151 (1- r) + r

B3 = (1- r) + M-

1rCo = (1 - c0) (1- r) + (1-co)

3= 95 (1- r) + r

3960(- r) +.0

Substitution of F1 into Eq. 4.28 yields the following expression for ? ,

A = o(4.4o)

7\ = Ma (4.41)
F1

where a3. = 2( - r).

The solution for ? can be obtained from Eq. 4.40 by using the initialCconditions N = 0 at =0, as shown below,

= o (4.42)

This solution implies that the boundary layer thickness is proportional to the
square root of t (or x).

The boundary layer displacement thickness 6*, which is defined by the
following expression,

f* = [1 Pu ] dy (4.43)
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can be related to ? as follows:
6,=- 2 L

Re
2

where, J is defined by the expression,

o eJ P [d-J (41.441)
0

When Eqs. 4.38 to 4.40 are used in conjunction with Eqs. 4.29 and
4.30, the following expressions for b.( ) and co(g) are obtained,

B db1 + R 1 1 1
F L2 B3 + Pr'xo b, =  Bo - B2b2 - Bs b3

db (I + 5 RTw)a"B2 dF B3 - Pr No (Le 1 ) He C1 (4.45)

dc

+ R K co -- + 1 r) - cSc2 - C2 c2 + L u- j d (4.46)

The derivatives of b2, ba and C2 with respect to are found from Eqs. 4.38.

The initial conditions for Eqs. 4.45 and 4.46 are: bl is finite and

co = 1 at = 0. These conditions will be discussed later for the equilibrium,
frozen and nonequilibrium flows.

The solutions for the velocity, total enthalpy and degree of ioniza-
tion profiles can be obtained from Eqs. 434, 4.35 and 4.38 and from the results
of Eqs. 4.45 and 4.46.

The use of the integral method to obtain a solution for the laminar

boundary layer equations is widely accepted in aerodynamics. Generally,
solutions are determined by integrating the appropriate equations in two
ways: first, in the direction normal to the wall, using assumed polynomial
distributions; and, second, in the flow direution, where new dependent vari-
ables arise as a result of the first integration. Such a method has proved
to be of considerable value in assessing skin-friction and heat-transfer
effects. However, such methods are of limited usefulness, since they give
no indication of the detailed nature of the flow.

It can be seen from Eqs. 4.24 to 4.26 tha' the solutions are independ-
ent of the variations of the Prandtl and Lewis numbers inside the boundary
layer, and they are depeiudent only on these numbers evaluated at the wall. As
a result, the successful method of Pallone (Ref. 26), who included the Dorod-
nitsyn (Ref. 25) integration scheme with the Karman-Pohlhausen approach was used.
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The method is formulated as follows. The viscous domain from the body surface
to the outer edge of the boundary layer is divided into N curvilinear strips.
The boundary layer equations can then be integrated along a coordinate normal
to the body from the surface to the boundary of each strip. The essential
difference between the Karman-Pohlhausen and Dorodnitsyn integral methods is
that, in the former, the partial differential equations are satisfied only
on the average over the entire boundary-layer thickness and in the latter the
partial differential equations are satisfied on the average over each strip of
the boundary layer. Note that for the laminar boundary-layer flow of a non-
equilibrium ionized gas, the use of the Dorodnitsyn integration scheme makes
the calculations very complicated.

4.4 Equilibrium Flow of Partially-Ionized Argon

The Rayleigh and shock-tube wall boundary layers for an equilibrium
flow of ionized argon were studied quite extensively by Knb5s (Ref. 38). He
concluded that, for a freestream temperature of 12,000°K or greater and a
freestream pressure of the order of 1 atm, the equilibrium assumption is
typically correct for the region of the boundary layer where T > ll,000 K, but
breaks down for T < 9,000°K, at times of the order of 10 [isec for a Rayleigh
boundary layer, and at a distance (x) of about 5 cm for the shock-tube boundary
layer. Hence, near the freestream edge of the boundary layer the flow is in
equilibrium, and near the wall surface the flow is in nonequilibrium.

In the case of ionization equilibrium the degree of ionization (a)
is normally considered as a function of temperature (T) and pressure (p),
while the pressure is related to a, T and density p by the equation of state
(Eq. 2.23). The equation for a for an equilibrium boundary layer is given
below (Eq. 3.16), and is called the Saha equation (Ref. 3),

RPT ( TI 5/2 e(TI/T) + J (4.47)
a RP P T e 1-4-7

Note that PI = 150.27 gm/cm3 and TI = 182,850 0 K for argon (Table 3),

C R(l + a) + L3 (1 - e) R + - (4.48)

The basic equations for an equilibrium boundary layer flow of partially
ionized argon are given by Eqs. 2.19, 2.20 and 2.21, where a is related to T
through the Saha equation (Eq. 4.47). Thus, /y can be related to T/ay.

T (4.49)

The supplementary boundary conditions given by Eqs. 4.37c and 4.37d are now
given as follows:

C ' + L (Le 1 ) 6 g' 2[c 1 L a2Pr Pw "He- Pr a w (450a)
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P-r Pr w He -Pr

+ y (4.50c)

6 R = RT/I (4.50d)

The variations of E and P with T are shown in Fig. 14. For a wall temperature
of 3000 K E and P are approximately zero. Also, Pw - ,O and P4 = 0. If Pr, Le
and C axe assumed constant at the wall surface, Eq. 4 .50a reduces to,

U
2

2 -e (Pr- i) (l- r)2b2 He (4.51)
1 + (Le - 1) Pw

and Eq. 4.50b becomes,

b3 _ 0 (4 52)

The differential equation for bi (Eq. 4.45) can be expressed as shown[.. below,

dbi + [ BI + PR jb.53)~b

The initial condition- for b, is that b3 must be finite at = 0. Equation
4.53 then yields the following solution,

1 1

b3:ab (4.54)
1 RB:L + Pr

In Refs'. 22, 23 and 24 it was shown that in an equilibrium boundary
layer a similar solution can exist, as the solution for f, g and a are
independent of t. However, if C is not assumed constant, then a similar
solution does not exist in 'the general case.

4.5 Frozen Flow of Partially-Ionized Argon

In the case of a frozen flow of partially-ionized argon it is assumed
'that a remains constant. Then, the temperature derivative of 6 (i.e., 2a/2T) is
zero. The specific heat at constant pressure for a frozen flow is given by,

C 2 R(l + a) (4.55)

If the degree of ionization is constant, there is no net production of ions or

atoms and W is zero. Hence, the electron conservation of energy equation (Eq.
2.30) reduces to,
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Pu + Pv P Dan (4

Note that although aX is a constant with temperature T, it varies with distance
x and y.

The differential equations for bl(g) and co(g) (Eqs. 4.45 and 4.46)
now reduce to,

Big R + ba-- Bo- B~b2
db1 - ' B1 + 2 B

(I + P E

i 1 dbs R e w c (4.57)- Bsbs - Bs -pT(e - -rA (457

0

(1 +r) +03. K oJT dc +  (1 +r) + C K477

+ R K co = 1 (1 + r) (4.58)

Equation 4.38 for c2 is given by reduced expression,

c2 0 (4.59)

The degree of ionization for the frozen boundary-layer flow can be
found using Eq. 4.58 and 4.36. The initial condition required is that co = 1
at t 0, since the degree of ionization has its freestream value at the leading
edge (0 = ). After the degree of ionization a has been.:found, bi can be ob-
tained from Eq. 4.57 by using the initial condition that bj should be finite
at1 1 1 db - (I + 2 RTw)a

Bo - 1 B2b2 - 1 Bsbs - B3 p, (Le ) He

2B + PrA (4.60)

One can see from Eq. 4.58 that the degree of ionization is dependent on g, and
therefore the profile for the degree of ionization in the frozen boundary layer
is not similar, that is, a similar solution does not exist. The profile of the
total enthalpy (g) is still a function of 9 and it is also not similat, in
contrast to the equilibrium results. However, the velocity distribution for
the frozen boundary layer is similar in the present work. If the value C was
not assumed to be constant, then a nonsimilar velocity profile would also
exist.

4.6 Nonequilibrium Flow of Partially-Ionized Argon

In the nonequilibrium boundary layer the mass-production rate for
electrons (or ions) is not zero, but it is a function of temperature and
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density. In order to solve Eqs. 4.45 and 4.46, the term (/p must be evaluated.
The collisional ionization rates for a partially-ionized argon flow have been
discussed in Chapter 3. The relationship between 6/p and the reaction rate
da/dt given by Eq. 3.14 is,

P da e
_ -=a + & (4.61)

where &a and 6e are the atom-catalyzed and electron-catalyzed reaction rates,
respectively, as described in Chapter 3.

In the present theory it is assumed that the electron and atom tempera-
tures are equal in the boundary layer, or one temperaturc. exists. Consequently,
&a and &e are functions only of this gas temperature. The gas temperature in
the boundary layer is expected to be less than 16,OO0K for a freestream tempera-
ture (T ) of 13,000"K. For this temperature range the significant contribution
to the mass-production rate /p is due to ion-electron-electron recombination,
and the contributions due to atom-atom and atom-electron collisions should be
small.

The initial conditions imposed for b. and co at = 0 are the same as
for the case of a frozen boundary-layer flow. Thus, b1 is given by Eq. 4.60
and co = 1.

4.7 Comparison of Theoretical and Experimental Results

4.7.1 Shock-Tube Side-Wall Boundary Layer

For the case of a laminar boundary layer induced behind a moving shock
wave, the boundary conditions for the freestream flow and the wall are listed
in Table 4. These initial conditions used for the boundary layer calculations
correspond to the experimental conditions for Brimelow's experiments (Ref. 15),
facilitating the comparison of theoretical and experimental results. Note that
appropriate constants for argon used in the calculations are listed in Table 4.

The predicted equilibrium, frozen and nonequilibrium density (PeP) and
degree of ionization (a) profiles for an assumed laminar boundary layer behind
a shock wave are shown in Fig. 15. The initial conditions are for Case I,
Table 4. The experimental results from Ref. 15 for 3.75 cm behind the wave are
also shown. The three predicted density profiles are very similar, and they are
in good agreement with the experimental data. For the three predicted degree
of ionization profiles, the equilibrium profile differs markedly from the very
similar frozen and nonequilibrium profiles, which are in good agreement with the
experimental data.

For the e4uilibrium boundary layer the degree of ionization attains
its equilibrium value instantaneously at the local temperature and pressure.
Since the wall temperature is very low a equals zero at the wall (y = 0).
However, it can be shown by using Eq. 4.47 that (W/ y)w is almost zero, or
( y/ U)w is almost infinite. Consequently, the equilibrium solution for the
degree of ionization differs markedly near the wall from the frozen and non-
equilibrium solutions. Note that at the frees tream edge of the boundary layer
the equilibrium solution for the degree of ionization is in good agreement with
the experimental results, as expected. This behaviour is in agreement with the
conclusions of Kn-5s (Ref. 38).

37



For the frozen solution, the .onization reaction does not occur and
the degree of ionization is controlled by diffusion. It is also affected by
the surface recombination catalycity, as described in Section 4.3. From the
initial conditions for co, the degree of ionization profile at x = 0 should
be constant, as a(y) = oY. For x greater than zero the profile changes due to
diffusion. As x increases from zero the value of o% decreases from aO and
approaches zero as x tends to infinity. The degree of ionization at the
edge of the sheath layer is not zero. It can be determined by using Eqs.
4.33 and h.31a for z'(O). In Fig. 15, the degree of ionization at the edge
of the thin sheath layer is seen to be very small, but it is nonzero.

The nonequilibrium solution for the degree of ionization is very
similar to the frozen solution. The reason for this behaviour is that the
gas temperature within the boundary layer is below 15,0000K and the mass
production rate of electrons therefore has a minor effect on the degree of
ionization.

For Case II of Tables 2 and 4, the predicted equilibrium, frozen and
nonequilibrium solutions for the density 9nd degree of ionization profiles are
shown in Figs. 16 and 17, along with the experimental results. The same
comments made for the previous case apply to these results. Additionally, by
comparing theoretical and experimental results it can be seen that near the
edge of the boundary layer the flow is in quasi-equilibrium due to radiation
losses that become increasingly important with distance (20 cm). Nonequilib-
tium effects are important near the wall region.

For Case III of Tables 2 and 4, the equilibrium, frozen and nonequi-
librium solutions for the density and degree of ionization profiles are shown
in Figs. 18 and 19. For this weaker shock wave and lower ionization case,
the predicted and measured results are in good agreement. At 12 cm and
lower temperatures radiation does not appear to be too significant.

For the case of a steady boundary layer in a partially-ionized-gas

flow over a flat plate, the integral method described in Section 4.3 can be
applied by setting r equal to zero. The significant difference between this
quasi-steady boundary layer and the boundary layer behind a shock wave is in
the velocity profile. In the latter case the velocity of the wall equals
zero,

4.7.2 Quasi-Steady Flat-Plate Boundary Layer

The freestream and wall conditions assumed for the steady lamii!(t
boundary layer over a flat plate in the UTIAS hypersonic shock tube are
summarized in Table 3.

For the case of an equilibrium boundary layer, the predicted degree
of ionization and temperature profiles as a function of V (IB is defined in
Section 4.8) for two particular Prandtl numbers of 1 and 0.7 are shown in
Fig. 20. It can be readily seen that the effect of the Prandtl number (in
the energy equation) on the degree of ionization and temperature is significant.

Equilibrium and frozen solutions for the temperature and degree of
ionization profiles for a flat-plate boundary layer are compared in Fig. 21,
and the associated density profiles are compared in Fig. 22. For both
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solutions the Prandtl and Lewis numbers were set equal to unity. The equilibrium
and frozen solutions exhibit sizeable differences. Note that the frozen solutions
displayed in both Fig. 21 and 22 were calculated for the case when x approaches
infinity, or when ow = 0. Then, an exact numerical solution can be obtained
easily by using the similarity assumption.

For a flat-plate boundary layer having the boundary conditions given
in Table 3, equilibrium, frozen and nonequilibrium solutions for the density
profile are compared in Fig. 23a, and those for the degree of ionization
profile are given in Fig. 23b. For these calculations the Prandtl number,
Lewis number and the density-viscosity product, C, were tE.aen as 0.67, 0.44
and 1.0, respectively. The three prcdicted profiles for the density are all
simi.ar, but their agreement with Whi ten's experimental data (Ref. 18) is not
good. Note that the minimum value of the density is at the edge of the boundary
layer for the predicted profile, while it occurs at y equal to 0.7 mm in the
experimental profile. This disagreement is presently being investigated.

C The predicted profiles for the degree of ionization are quite different
(Fig. 23b). Also, a signiticant discrepancy exists between the theoretical and
experimental results. The overshoot of the degree of ionization beyon~d its
freestream value is not understood at present, Some of the disagreement between
the predicted and experimental results could be due to errors in the integral
method. As described in Section 4.3, the present Kaman-Pohlhausen integral
method uses flow qanntities that are averaged over the entire boundary layer
thickness.

4.8 Comparison of Integral Method and Exact Numerical Calculations

Similar solutions and exact numerical calculations were made for
identical boundary-layer problems for comparison purposes. By an exact
solution it is meant that the Blasius-type solution is obtained by using the
Howarth transformation (Ref. 48) specified below.

BP fe et dx (4.62a)

B, jxfe e epy

T B =u e fy dy (4.62b)

The subscript B refers to the Blasius type of variable. In order to distinguish
between the notation of the dimensionless velocity in this section and in Section
4.3, we define

ft= Li
B ue

For a steady laminar boundary layer of a partially-ionized gas, Back
(Ref. 47) has discussed the similarity solution approach for a low-speed flow.
The basic equations for the boundary layer (Eqs. 2.19, 2.20, 2.30 and 2.31)
can be transformed to yield the following expressions.

C + B' + - f0 (4.63)
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(4.64)

5 RT

7 =uF dF
e

r 2t .e

e

The prima denotes differentiation with respect to

The flow over a flat plate is considered, with Pr,, Le and C held constant
for simplicity. For the equilibrium case the ion concentration gradient is ex-
pressed in terms of the enthalpy gradient. The basic equations (Eqs. 4.63 and
4.64) reduce to,

C fB + =0 (4.66)

..C 1 + (Le 1).P g9 + fB g 1 + H-e  o r ff'' (4.67)

He Pr fA

The symbol P is defined by Eq. 4 ,50c. The boundary conditions for the equili-
brium, similar boundary-layer equations are as follows:

fB(O) fi(o) =0

(4.68)

g(o) =w

g(i) -1i as -4 co

For the case of a frozen boundary-layer flow, Eqs-. 4.63 to 4.65 take
the following forms,

C f " + fBf 0 (4.69)
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C g,, + U2-l 1, ,]

+ -(Le 1) -2 ((l + G)z']' + f +-2 C Pr [f4.7 0P r H B g l + H eP r B( 4 .7 0 )

CLez" +fz' = 0 (4.71)Pr B =

The boundary conditions are as given in Eqs. 4.68 with the following additional
ones,

z(O) constant (1.72)

z() 1 as o-

In order to compare results of both the integral method and the exact
similar solutions, a common coordinate must be used. From Eq. 4.21 we have
the following expression: = (

-Y L d (4 .73)

0

Define f* as the common coordinae,

J P U ' U1 P e
.0 UW Y = o" dnl  (.74)

On the other hand, J* can be related to IB by,

p "-.% Pe*b-d (11.75)r j P d B (

From Eqs. 4.74 and 4.75 the relations between the derivatives :e,

P_ 1 PI P (4.76)
7T' e e B

where, ¢ represents an arbitrary parameter.

For a steady boundary layer over a flat plate with the freestream
and wall conditions as given in Table 2, the exact numerical profiles of
velocity, enthalpy, degree of ionization and temperature are displayed in
Fig. 24. The corresponding density profile is shown in Fig. 25. Also, the
effects of a different Prandtl number on the density are illustrated in this
figure. The exact numerical temperature profile has also been plotted in
Fig. 26, where it is compared with the integral method profile. The results
obtained by the two different methods are in excellent agreement.

For an equilibrium boundary-layer flow over a flat plate, exact numeri-
cal and integral method results for the degree of ionizttion and temperature
profiles were computed. These results are shown in Fig. 27, and it can be
seen that both sets are in excellent agreement.
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The comparison of the exact numerical and integral method results
serves the particular purpose in showing the accuracy of using polynomial
expressioni in the integral im.ethod. From 'he comparisons shown in Figs. 26
and 27, it can be concluded that the present integral method is in good
agreement with the exact numerical one.

4.9 Discussion

The integral method has been used to study both the lamninar wall

boundary layer induced by a moving shock wave and the quasi-steady flat-plate
laninar boundary layer. The following concluding remarks can be made.

1. The intogral method is in good agreement with experimental data for
the laminar wall boandary layer behind a shock wave. Near the edge of the
boundary Layer the flow is expected to be in equilibrium, and near the wall,
the flow is expected to be in a nonequilibrium or in a frozen state.

2. The fif:th, sixth and seventh order polynomial equations for the
degree of ionizatio)n,_ velocity and enthalpy profiles, respectively, are

sufficiently accurate for the present method.
3. A comparison between some predicted and experimental results for the

quasi-steady flat.plate boundary layer indicates that there are discrepancies.
Part of the disagreement may be due to the fact that actual variation of
Prandtl number, Lewis nwaber and the density viscosity product were n
'included in the analysis. A more satisfacory method might be to combine
the Karman-Pohlhausen integral method and ne Dorodnitsyn integration scheme
(Ref. 25).

It is possible that the analysis and experiment may agree for the
side-wall boundary layer where radiation effects close o the shock front
are not yet significant. However, in the case of the flat plate quasi-steady
boundary layer, where measurements are made far from the shock front (20-30 cm),
radiation losse s are important. For example, at shock Mach numbers of about
17, the fr;--t:eam ionization has dropped from 16% to 5%. It will therefore
be necessary, as a first step, to include the new iritial conditions in the
numerical analysis. As a second step, it appears that the boundary layer
equations woul h ive to be solved by including the effects of the radiation
terms. Ultinately, a finite-difference schemewould have to be developed
that would ,Permit the inclusion of variable Prandtl and Lewis numbers through
the boundary layer. Perhaps, when these major modifications are made in the
analysis, b~tter agreement with the interferometric results might be expected.

Nevertheless, when one looks at the results obtained by Brimelow
(Ref. 15) for the side-wall boundary layer it is clear that the agreement of
experiment with analysis is as good close (3.75 cm) to the shock front Ms = 17)
as fcr iarge distances (20 cm). This points to some basic differences between
tne two sets of data and the analyses. This problem is being investigated.

5. INTERACTION OF A LAIVIAR 'iOUNDARY-LAYER FLOW AND A CORNER-EXPANSION WAVE
IN PRTIALLI .IONIZED ARGON

5.1 Introductio)n
5.1For an ideal and inviscid flow at supersonic speed, the flow around

a sharp corner takes place through a stationary expansion wave. Such a flow
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is completely described by the well-known Prandtl-Meyer relations (Ref. 49).
The steady, inviscid flow of a partially.-ionized gas around a sharp, convex
corner is mach more complex to describe analytically, and it has been studied

* iin detail by Glass and Takano (Ref. 3). For a real gas flow a boundary layer
is produced on the wall surface. Its presence can lead to a considerable
modification of the results predicted by invisc.d flow theory near the surface.
The interaction of a laminar supersonic or hypersonic boundary layer with a
steady corner-expansion wave for a partially-ionized gas is an important
problem kior aerospace control surfaces and entry into planetary atmospheres.
This problem is still not well understood both theoretically and experiment-
ally.

The interaction of a laminar boundary layer and a corner-expansion
wave for a perfect gas has been investigated extensively (Refs. 27, 50 and 51).
A comprehensive solution to this problem has been given by Lo (Ref. 27) w.o
used Dorodnitsyn's integral method to solve the Navier-Stokes equations. To
solve the same problem Sullivan (Ref. 51) suggested a simpler approach called
the cold-wall similarity method. This method predicts successfully the major
features of the flow at the edgL of the boundary layer. The main advantages
of Sullivan's method are that the calculations are simple to perform and the
results are in good agreement with Lo's for the pressure distribution and
boundary-layer thickness. Additionally, the results of Sullivan's analysis
are in good agreement with experimental data (Ref. 52).

For an inviscid flow, Glass and Takano (Ref. 3) made a detailed
study of nonequilibrium, frozen and equilibrium expansion flows of ionized
argon around a sharp corner. The numerical calculation procedure was based
on the method of characteristics, and it is similar to that for dissociating
oxygen (Ref. 53). Furthermore, Glass and Igra (Refs. 54, 55) showed that
the experimental results substantiate the analysis of GLass and Takano for
a nonequilibrium supersonic corner-expansion flow of partially ionized argon.

In this chapter, Sullivan's method is applied to solve the inter-
action of a laminar boundary layer and a corner-expansion wave for a partially-
ionized gas. For simplicity the assumption of a frozen flow in the boundary
layer is made from the onset. A complete solution for the corner-expansion
problm would be based on the coupled solutions for inviscid flow (Ref. 3)
and the Navier-Stokes equations, which makes the analysis complex.

5.2 Cold-Wall Similarity Method for a Supersonic Ionized Argon Flow

The assumptions of hypersonic flow and a simple expansion wave used
in Sullivan's analysis (Ref. 51) are removed, in order to apply the cold-wall
similarity method to the case of a supersonic flow.

The boundary layer displacement thickness 6*, defined by Eq. 4.43,
can be expressed as,

_ X e dx ]12

00 I(x) P/, (5.1)
4Pe/P3~X OO
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e(x) -fa[- ] IalB (5.2a)
0 e

pw To(l + T o)
[C To (1 T~+ (5.2b)

I Cw w

The coordinate IB is given by Eq. 4.62b. A function G(x) is defined as,

Cpco TooG(x) = C (5.3)

Cpo = 5 R(l + a0 )

The basic relationship between 6* and Pe/Pco is,

. w -. 3/2 G(x) [x (5.4)

Equation 5.1 can be written in an alternate way in terms of the freestream
variables Mo, po and p .

P dz
6* x -2 G* (x) f(5.5)

1 5 z P

where
p e

Po

ReZ = -
M'o CO,

OU X00
Re

X, 6 C Coo

= g *RT(' + a.)'

Note that z is proportional to x, and hat '* equals 5/3 for the frozen flow.

From the cold-wall similarity assumption, G is independent of x, but
it is of constant value. Differentiating Eq. 5.5 with respect to z, then,

M= -2- 7* [LNRp (5.6)

001z5 44 z0 L2R2



z = z/x

P " = dP/dZ

p = P e/Poo

R = fPdZ

For a frozen flow ae is constant and the following relations are
applicable,

7*

e,,.

I

-- e= e)7 (5.90)

= i (5.11)

The rate of growth of the boundary layer diplacement thickness
immediately downstream of the corner is,

d*]+a= aT (5.12)I--d =- c w

Note that aw is the corner turning angle. The rate of growth of the boundary-
layer displacement thickness downstream of the corner can be related to the
deflection angle v(P).

d__aT - v(P) (5.13)

v(P) = v(Me) - v(Mj (5.14)

The Prandtl-Meyer function for a frozen flow v(M) is given below.

V(M) :y *+ 1 tan', '*1?

7*.

tan (5.15)
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Substituting Eq. 5.13 into Eq. 5.6 leads to the following equations for the
boundary-layer and expansion-wave interaction problem,

d - 1 - G- [aT -v(P)j (5.16)

d- (5.17)

Solutions to these two ordinary differential equations using a RIMge-Kutta
technique gives the pressure distribution Pe/Po. The initial conditions for
P and R are obtained from the values immediately upstream of the corner
(x = xc); that is, P = 1 and R = Rc (see Fig. 28). Note that the equation for

- the skin friction is,

N 2 f'(o, )' P (5.18)

oO

5.3 Model Calculations

The freestream and wall conditions for the following calculations of
a laminar boundary layer interacting with an expansion wave are given in
Table 2. Note that xc (Fig. 28) has been set at 13.5 cm. The value of G
(Eq. 5.3) is obtained by solving Eqs. 4.69 to 4.71 (see Appendix A), giving
G = 0.274(12).

Calculated results of pressure, temperature and density distribution
at the edge of the boundary layer as a function of distance are shown in
Figs. 29 to 31, respectively. In each case the results for four different
turning angles of 5, 10, 15 and 20 degrees are presented. Similar results
for Mach number, boundary layer, displacement thickness and skin friction

* j are given in Figs. 32, 33 and 34, respectively. It can be seen that as the
turning angle for the corner increaseb the surface pressure, temperature,
density, and skin friction decrease, whereas the displacement thickness and
Mach number increase.

Some experimental data on the interaction of a boundary layer and
a corner-expansion wave are given in Ref. 18. Profiles for the degree of
ionization and density have been measured. As in the flat-plate quasi-steady
boundary layer (Figs. 23a, b.), the post-corner boundary-layer profiles of these
quantities are in disagreement with the present analysis. In this case as
well, the reasons are being investigated.

5.4 Discussion

The cold-wall similarity method can be used to predict the flow
quantities at the boundary layer edge downstream of the corner. It is
believed thrt these predictions are quite reliable. However, it is doubtful
that the method can predict accurately the heat-transfer and skin-friction
coefficients, owing to the assumption of similarity. For the cold-wall
similarity method f"(0) is assumed constant downstream of the corner. Actually,f"(o) is a function of d(Pe/p)/dX. Near the corner this distance derivative
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of pressure is a maximum and dec2eases to zero only as x increases to infinity.
Since the skin-friction coefficient is proportional to f"(O), the predicted
coefficient is therefore only as accurate as the underlying assumption, which
is believed to be inaccurate. Similarly, the heat-transfer coefficient would
not be predicted accurately.

A new method, based on an iterative procedure, is suggested below.

1. Calculate pel/po and d(Pe/p)/dx by the cold-wall similarity method.

2. Calculate due/dX from the results of step 1.

3. Substitute due/dX into Eqs. 4.63 to 4.65 and solve them.

4. From the new results for fB, g and g' calculate G(x).

5. By using the cold-wall similarity method recalculate pe/p, and d(pe/po)/dx.

6. Repeat steps 2, 3, 4, 5 and 6 until the resulting error is satisfactorily
small.

This new method should enable the flow quantities at the boundary-layer edge
and on the wall surface to be predicted as accurately as with the finite
difference method. Similarly, the velocity, enthalpy, and degree of ionization
profiles for the boundary layer downstream of the corner would be predicted
accurately. However, the advantage is that the new method should provide a

meanls of predicting accurately the heat-transfer and skin-friction coefficients.

A complete solution for the flow field around a corner can be obtained
by combining the boundary-layer solution described in Chapter 4 with the solution
of Glass and Takano (Ref. 3) for the expansion wave. However, the difficulty of
defining a common coordinate for both parts of the flow field - viscous and
inviscid - would first have to be overcome.

6. CONCLSIONS

A study ;as ma.de of shock-wave structure, laminar boundary layers in
nonequilibrium flows of partially-ionized argon induced by a shock wave on
shock tube side walls and over a flat plate, and of the interaction of a
laminar boundary layer with a corner-expansion wave.

A new value of the ionizational cross-section constant for argon
atom-atom collisions, was determined as, S = 3.5 x 10 - 20 cm2/eV, by
coparing results from a theoretical two-step collision mod- with experimental
data of shock structure and its relaxation processes. It was confirmed that
the ionization rate is controlled by atom-atom collisions initially and then
by the more efficient electron-atom collisions. When the electron number
density increases to a certain level, the electron-production rate due to
atom and electron collisions drops quickly and the process reaches equilibrium.
Owing to the extremely low mass of a hydrogen atom and the large excitational
cross-sections for hydrogen atom-atom and electron-atom collisions, even a low
level of hydrogen impurity can reduce the total relaxation length of the shock
wave in argon.
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The integral method of Karman and Pohlhausen was applied to study
the shock-induced laminar wall boundary .Lyer and the quasi-steady flat-plate
laminar boundary layer in an ionized argou flow. Equilibrium, frozen and
nonequilibrium solutions were obtained, compared with each other, and with
available experimental results. The e-_]erimuntal da'a show that the flow
near the edge of the shock-induced b'tunCary layer on a wall is in equilibrium
but in the wall region the flow is in nonequilibrium. This conclusion is in
agreement with Knoos' results.

For the quasi-steady boundary-layer flow over a flat plate, there
is disagreement between the analytical and experimental results. It is not
understood why the analysis should agree with the wall boundary layer experi-
mental data and not with the flat-plate data. Th.Ls discrepancy may be due
to the error in using the integral method for the analysis. The solutions
based on the integral method are independent of variations of the transport
properties with gas temperature and degree of ionization, which is a serious
deficiency of the present analysis. The present method also suffers from
the fact that the results are averaged over the entire boundary layer,
rather than reflecting rapidly varying local properties. However, if these
were the reasons then they should be applicable to both boundary layers.
This is not the case. Perhaps the major difficulty arises from radiation
losses as discussed at the end of Section 4.9.

The cold-wall similarity method developed by Sullivan was
extended and applied to the interaction of a laminar boundary layer and a
corner-expansion flow for partially-ionized argon. The entire flow was
assumed frozen both upstream and downstream of the corner. The hypersonic
flow and simple expansion-wave assumptions were removed for the present case
of supersonic flow. The cold-wall similarity method predicts the pressure,
temperature and Mach number at the edge of the boundary layer, and the dis-
placement thickness, but breaks down for predicting flow profiles inside
the boundary layer. To overcome this difficulty a new method of solution
was proposed. Available post-corner, boundary-layer experimental data are
also in disagreement with the present analysis. The reasons why disagreements
occur in the case of the quasi-steady boundary layers on a flat plate and
after a corner-expansion interaction are presently under study, as discussed
at 'the end of Section 4.9.
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TABLE 1

NUMERICAL CONSTANTS USED IN THE CALCULATIONS

UNIVERSAL CONSTANTS

Boltzmnn constant 1.3803 x 10-16 erg/OK
o23

Avogadro constant 6.023 x 10 per mole
Mass of an electron (me) 9.1066 x lO-28 g
Partition function for electrons 2

CONSTANTS FOR ARGON

Molecular weight of an argon atom (mAr) 39.944 g/mole

Gas constant (Rhr = k/mr) 0.20813 x lO7 erg/g0K
Partition function for atoms 1

Partition function for ions 6

Ionization temperature (TI) 182,850 0K

First excitational temperature (T*) 135,000°K

Characteristic density of ionization
(PI) 150.27 g/cm3

CONSTANTS FOR HYDROGEN

Molecular weight of a hydrogen molecule
(mH2) 2.016 g/mole

Molecular weight of a hydrogen atom
(D H) 1.008 g/mole

Gas constant for a hydrogen atom (RH) 8.3135 x 107 erg/g°K

Partition function for atoms 2

Partition function for ions 1

Ionization temperature (TI) 157,0000 K

First excitational temperature (T*) 118,3800 K



TABLE 2

INITIAL CONDITIONS FOR A STRONG SHOCK WAVE

MOVING IN A QUIESCENT GAS

Case Gas P 1(torr) Ms  Tl('K)

I pure argon 5 :6 16.5 298.7

II pure argon 5.12 16.53 296.6

III pure argon 5.09 13.59 296.7

IV argon + O.4% hydrogen 5.17 16.68 297.4
(by pressure)

TABLE 3

FREESTREAM AND WAILL CONDITIONS FOR A LAMINAR BOUNDARY LAYER

OVER A FLAT PLATE IN PURE ARGON

u. 4778 m/sec
M 2.4

PI 2238.4 torr

T., 13,3939K

298.20K

M 16.98

x 13.5 cm



TABLE 4

FREESTREAM AND WALL CONDITIONS FOR A LANINAR BOUNDARY LAYER

BEHIND A STRONG SHOCK WAVE IN PURE ARGON

us  ms U U=u S-u 1  N l P Too T x
Case (n/sec) (/secsecmsec) (torr) (K) (0 K) (cm)

- 5303 16.53 4614.6 688.4 2.4 2231 13,221 297.9 3.75

II 5303 16.53 4614.6 688.4 2.4 2231 13,221 297.9 20

III 4369 13.59 3650.8 517.7 1.9 1331 11,758 299 12
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FIG. 1 TWO DIFFERENT COORDINATE SYSTEMS FOR A BOUNDARY 
LAYER INDUCED BEHIND

A MOVING SHOCK WAVE, a) COORDINATE SYSTEM 
FIXED TO THE WALL, b)

COORDINATE SYSTEM FIXED TC THE SHOCK-WAVE 
FRONT.
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BOUNDARY-LAYER
I FREESTREAM EDGE

CONTINUUM REGION (n,1 nf.)

TRANSITION REGION (ni =ne)
Woo-. ,SHEATH REGION (1i 9di e) .

Li x

0 0 [L R ] (Ref. 56)

"d = 4wne e2); (Debye length, Ref. 56)

e

6 > 6h for a high frees(trea ion density

Sh e

6 ," 6 for a low freestream ion densitySh

6 >> 6Sh for a sufficiently low freestream ion density

FIG. 2 SHEATH, TRANSITION, CONTINUUM AND FREESTREAM REGIONS FOR A WALL
BOUNDARY LAYER.
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FIG. 8 ELECTRON HU41IER DENSITY (ne) ANDT IONIZAUIION x (m
PRODUCTION RATES &Xa ANDI ae WITH DISTANCE 1'x)
THROUGH THE RELAXATION REGION FOR pa. = 5.6
TOR, Ms 16.5 AND T3 = 298.7 0 K IN PURE ARGON.
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CASE IV (TABLE 2)

- PREDICTED E
* MEASURED (REF. 15)

0.1,9

0.10 -T

•0

I
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4

0 -A 2
0 I 2 3 4 5 6 7
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FIG. 11 DENSITY (p) AND DEGREE OF IONIZATION (a) WITH DISTANCE (x)

THROUGH THE RELAXATION REGION FOR ARGON + O.4% HYDROGEN (BY

PRESSURE) WITH pi = 5.17 TORR, M,= 16.88 and T. = 297.4
0K.
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E ~ CASE 11 (TABLES 2 AND 4)

- EQUILIBRIUM

---- FROZEN

--- NONEQUILIBRUM

o EXPERIMENT (REF. 15)

1.5
I.I

I, //1.01.

/

0.5 /15
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c

FIG. 17 DEGREE OF IONIZATION VARTATION (a) THROUQH A L A AW WALL
BOUN1DA7-' LAYER BEHIND A SHOCK WAVE. IMITL'AL CONDITIONS AS
FOR FIG. 16.
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CASE III (TABLES 2 AND 4)
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CASE III (TABLES 2 AND 4)
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FIG. 19 DESITY VARfIATION (pe/p) THROUGH A LAMINAR WALL BOUNDARY LAYER
BEHIND A SHOCK WAVE. INITIAL CONDITIONS AS IN FIG. 18.
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INTEGRAL METHOD SOLUTION

1.0- FOR AN EQUILIBRIUM FLOW -4.28

-Pr a 1.0
---- Pr a 0.7

0.8- 3.42

0.6 I 2.57

oc c/e Io

0.4--- 1.71

0 0

0 0.2 T/Te 0. 0.86

T/ Te and oC /o.e

FIG. 20 TEMPERATURE (T/Te) AND DEGREE )F IONIZATION (cl/cte) VARIATIONS THROUGH
A QUASI-STEADY FLAT-PLATE BOUNDARY LAYER.
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EXACT NUMERICAL SOLUTION
FOR A FROZEN FLOW

Pr 1.0, Le 0.5, C 1.0

3

a u/u.

H/He

T /Te

0 ,
0 02 0.4 0.6 0.0 1.0

U/Ue, H/He, QC/cC e  and T/T e

FIG. 24 PREDICTED PROFILES OF FLOW VELOCITY, TOTAL ENTHALPY, DEGREE OF
IONIZATION AND TEMPERATURE FOR A QUASI-STEADY FLAT-PLATE BOUNDARY
LAYER.
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SOLUTIONS FOR A FROZEN FLOW

4 - EXACT NUMERICAL METHOD

---- INTEGRAL METHOD

Pr 1.0, Le a1.0

g3

Ii 4

'II
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T/Te

FIG. 26 COMPARISON FO EXACT NUMERICAL AND INTEGRAL METNOD SOLUTIONS OF TIll
TEMPERATURE PROFILE FOR A QUASI-STEADY FLAT-PLATE BOUNDARY LAYER.,:Iik 11)<"L~~ - -- l
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SOLUTIONS FOR AN EQUILIBRIUM FLOW

-- EXACT NUMERICAL METHOD
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- INTEGRAL METHOD

Pr- 1.0, Le , 1.0
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II / e

TII
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FIG. 27 COMPARISON OF EXACT NUMERICAL AND INTEGRAL METHOD SOLUTIONS
FOR BOTH THE TEMPERATURE AND DEGREE OF IONIZATION PROFILES
FOR A QUASI-STEADY FLAT-PLATE BOUNDARY LAYER.
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FIG, 29 PRESSURE VARIATION WITH DISTANCE FOR A

BOUNDARY LAYER-CORNER EXPANSION 
FLOW.
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FIG. 31 DENSITY VARIATION WITH DISTANCE FOR A
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APPENIXfl A: NETHOD OF SOLVIM~ BOUNDARY-IAYR EQUATIONS

The partial differential equations describing the boundary layer for
each problem encountered in this study have been transformed by.,mathematical

*0 techniques into ordinary differential equations. Among the vast number of
numerical methods available for solving boundary-value problems of ordinary
differential equations the Runge-Kutta method is probably used most frequently.
Standard Runge-Kutta computer programs are available and are qutxte easy to
utilize.

The ordinary differential equations of Section 4.8 (Eqs. 4.66 and 4.67)
for the equilibrium flow problem can be expressed in terms of five first-order
ordinary differential equations with three initial conditions: f (O) 0.,
f(O) - O, g(O) = gw, and two boundary conditions: f (w) 1 1, g(vc = 1. For
the frozen and nonequilibrium flow cases, the basic equations (Eqs. 4.69 to
4.71) can be written as seven first-order ordinary differential equations
with four initial conditions: fB(O) = 0, fA(O) = 0, g(O) - gw and either
z(O) - crnstant or z'(O) - constant, aad three boundary conditions: f (0) = 1,
g(o) = 1 and z(.o) = 1. A procedure is now given for finding the other initial
conditions, fg(O), g'(o) and z'(O) (or z(O)), for the frozen and nonequilibrium
cases. A similar procedure can be used for the equilibrium-flow case.

For 'he calculations we assume the initial conditions,

f f"(0) =a

, g'(O) = b (Al)

z (O) or E(O) = c

and define the following equations,

Ft(a,b,c) = 1 - fBI(**)

F(a,b,c) = 1 - g(co) (A2)

Fs(a,b,c) - 1 - z(o)

The solutions to these equations

F:(a,b,c) = 0

F2 (a,b,c) - 0 (W.3)

Fs(a,b,c) - 0

can often be found by a simple procedure known as the Newton-Raphson method.
The recurrence relation can be derived from the Taylor series expansion for

=f(o) + (x. - xo) f'(x) + .. (A3)

where, f represents F1 , F8, Fs and x for a,b,c.

Al



From Eq. A3, ani iterative sequence can now be obtained as follows:

aj: L a, a

b i~ b A-tb/A (4

0i+l ci - A/

where,

'Ib

A = F(~b,~ F (A6)

2.61

t ~6F

FaFaF~(a 1,b) C1) (A8

ib- i6 -

6F F. a 2h.C) 6
~~FC1:



and the partial derivatives bF:/bai can be approximated by

L- - FI(ai + h,bici) - F.(ai - h,bi,c,) (A9)

where, h is some appropriate step size. Similarly, the other partial derivatives
can be evaluated.

The above procedure is iterative, since an initial approximation a = ao,

b =bog c = co to the root of Eq. A3 has to be made, and a sequence of approxima-
tions ai+l, bi+I and ci+I are generated as the true root is approached.

The initial conditions (Eq. AI) used in the calculations of the exact
similar solutions of Section 4.8 have been checked, and they agree with the
values given in Refs. 23, 24 and 63.

A3
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