AD-A023 015

ADAPTIVE TRACKING FILVER DESIGN AN EVALUATION FOR
GUR FIRE CONTROL SYSTENMS

Charles M. Brown, Jr., et al

Analytic Sciences Corporation

Prepared for:

Naval Ordnance Systems Command

23 January 1974




Z @
Ogﬁ!“-”"’

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE  LEGIBLY.



]
1
1
8
;
)
.
’
i
i
I
}
[
J
]
J
i

TR-387-1 —
ADAPTIVE TRACKING FILTER DESIGN AND

EVALUATION FOR
GUN FIRE CONTROL SYSTEWS

23 January 1974




THE ANALYTIC STIENCES CORPCRATION

pan
/

g

ADAPTIVE TRACK'NG FILTER DESIGN AND . —
EVALUATION FOR
GUN FIRE COKTROL SYSTEMS

23 January 1974

Prepared Under:
Contract No. N00G17-73.-C-4323 —

for
NAVAL ORDNANCE SYSTEMS C:3MMAND
Arlington, Virginia
Reproduction in wholeor in part °pa 2d by:
P or ,
jsz permitted for any purpose of Cc‘; ;"3 M. l;':im’ Jr.
the United States Government. »les F. Price
Approved for public release: Approve d by:
distribution unlimited. Arthur A. Sutherland, Jr.

Arthur Gelb

THE ANALY TIC SCIENCES CORPORAT/ON
6 Jacob Way
Reading, Massachusetts 01867

4

/




THE ANALYTIC SCIENCES CORPORATION

-

—
’

FOREWORD

This report documents work performed for the
Naval Ordnance Systems Command under Contract No.
NC0017-73-C-4323. The authors wisi, to express apprecia-
tion for the consulting assistance provided by Professor
John J. Deyst, Jr., of the Massachusetts Instilute of
Technology during the course of this stedy, and for several
helpful technical discussions with Dr. Barry L. Clark of
the Naval Weapons Laboratory.

.-
i

|
ii \i P\" ‘




THE ANALYTIC SCIENCES CORPORATION

ABSTRACT

The purpose of this study is to investigate and eval-
uale adaptive tracking filters for shipboard gun fire control
systems that must defend against evasive targets. Several
design concepts are compared using both tracking error and
predicted position error as performance measures. The
effects of target evasion, sensor measurement noise level,
modeling uncertainties, and length of the measurement inter-
val are investigated, an 1 the trade-offs between performance
and algorithm complexity are discussed.
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1. INTRODUCTION

1.1 BACKGROUND: GUN FIRE CONTROL SYSTEMS

The need to develop snipboard gun fire control systerus that are capa-
ble of destroying high-speed, maneuverable enemy missiles creates a require-
ment for pointing and tracking techniques that more accurately account for
target motion than do conventional systems. In principle, this can be accom-

F plished by hardwa:c improvements, such as more accurate tracking sensors
and higher bandwidth gun control loops, which allow the gun pointing line to
respond more quickly to target maneuvers. However, an zctractive alternative
approach that does not depend upon advances in hardware technolegy is the use
of modern estimation and control theory to develop sensor data processing
techniques -- i.e., computer software -- which iake maximum advantage of
the known mathematical model of target motion. With respect to conventional

} weapon systeins, this represents improved software, rather than hardware --
| realized by improving the computational algorithms used to generate gun

pointing commands.

=

The principal elements of a fire control system are illustrated .n Fig.

1.1-1 for a single axis. Bricfly, one or more tracking sensors provides targat
position measurements which are processed in a computer, together with

measurements of ship's motion, to obtain estimates of target position, velocity,
and acceleration in inertial coordinates. The latter are appropriate!y combined

to determine the drive signal [or bringire the actual pointing line into coinci-

dence with the commanded pointing line.

A number of error sources illustrated in Fig. 1.1-1 can have an

important effect on projectile accuracy; these include:

i-1
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Figure 1.1-1 Principle Elements of a Shipbnard
Gun Fire Control System

e The dynamic lag attributed to the finite bandwidth of
the gun servo which prevents achieving exact equality
between the actual and commanded pointing lines
against a moving target.

e The prediction error caused by the fact that the
comm>nded pointing direction is not exactly in the
direction required to hit the target because of target
trajectory prediction errors. The latter are in turn
cacsed by imperiect modeling of target motion and
tracking sensur measurement noise.

e The projectile ballistic dispersion error produced
by unknown aerodynamic effects along the projectile
flight path, as well as non-uniformity in projectile
characteristics and firing conditions.
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To some extent the above errors will be reduced as specifications on
component and instrument quality become progressively more stringent. How-
ever an important alternative (and potentially less costly) route to system
improvement is to construct computer algorithms, using estimation theory,
which extract the maximum amoun of useful information from the tracking
iz asurement data, thereby reducing the prediction error. This is especially
imj,.rtant in the case of highly maneuverable ‘argets where prediction error
car --asily be the most significant error source in the entire gun fire control
sv~'-m. The intent of this report is to investigate the potential for bet:er pre-

dic on accuracy through software improvements.

The heart of the computer in Fig. 1.1-1 is the target tracking filter
v . combines the tracking measurements to estimate the target position,
velacity, ete., with respect to a stabilized coordinate frame. The latter are
1 - red to ultimately calculate the projectile time of flight, the predicted
ta: i nosition at the impact point, and the gun pointing commands. Conse-
q. 'ly, it is dasirable that the tracking filter produce estimates whose errors
a' - s siiall as possib’e, in some sense. Modern estimation theory provides
a « -tematic procedure 10r accomplishing this goal. Basically, if the target's
m~ 0 und the tracker measurement errors can be described by appropriate
st.: wcal mathematical models, then recursive digital algorithms such as the
K-Y i filter are available which will yield minimum variance estimates of the
vo ¢ Jes (called state variables) which describe the target's motion. Such an
aj-~ -ithm is called an optimai filter; its dependencv upon the target's equations
«* _ilivn and parameters and the noise statistics is emphasized in Fig. 1.1-2,

The concept of optimal filtering is currently under investigation by the

Nave for both the MK 68 and MK 86 gun fire control systems. In future appli-

c~tions, a problem of particular concern is the degradation in tracking filter

p :rmance observed when a target performs significant unexpected maneuvers.

1-3
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TARGET EQUATIONS
F MOTION &-9827

(. MEASLEEVENT STATE VARIABLE
e ESTIMATES
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TARGET  NEASUREMENT
MANEUVER NOISE
, PAPAMETERS  STATISTICS
5 _4
[
’ Figure 1.1-2 Illustration of Factors Entering into

Tracking Filter Design

As stated above, the filter construction requires knowledge of the mathematical |
inodel of target motion; if the actual motion viclates the model, then the filter '
is no jonger optimal. Modeling errors can also arise with respect to the tracker
measurement noise statistics. For example, the errors in radar measurements
are to some extent dependent on the target reflection properties which are fre-
quently not well known. Hence, the statistical parameters (rms noise levels)

n2eded for designing the filter will be in error.

In practice, modeling errors are mavoidable because complete infor-
mation about a maneuvering target and the tracking sensor measurement noise
is not available. Thus optimal filter design is impossible and the problem is to
design a suboptimal tracking filter which gives estimates that are close to opti-
mum. One cornmon approach to suboptimal design is to experimentally select
the fixed filter which gives the nest performance over the complete range of
tracking situations that will be encountered, i.e. it is the best design "on the
average'. Another approach is to use an adaptive design of the type illustrated

in Fig. 1.1-3, in which auxiliary real-time computations are performed to

1-4
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TARGET EQUATIONS
) OF MOTION g
[ aovrive
MEASUREMENT STATE VARIABL
’ DAlA >l TRACKNG B——1— Estuates é
(. FLTER
|
i ~
{ .| Aparine

PROCESSOR

3 Figure 1.1-3 Structure of ar Adaptive
1 Tracking Filter

obtain better knowledge of the model parameters, and thereby improve the
filter estimation accuracy on-line. The purpose of this study is to investigate
adaptive filtering techniques that are designed to track highly manuverable
missile-type targets, and to compare their pe-formance with conventional fixed
filters over a range of target engagement situations.

1.2 ' TECHNICAL APPROACH

In this report, a realistic but comparitively simple target tracking
problem is defined. Thr optimum filter for this problem is discussed and
several practical suboptimal designs are developed in detail. These include

both adaptive and fixed filters which were selecled after a careful review cf the

technical literature; they represent original work as well as applications of

L available techniques. A comparitive study of these designs is conducted using

two related, but distinct, performance measu:es. First, they are evaluated on
the basis of estimation error -- i.e., the error between the target's state
variables (position, velocity, etc.) and their estimates. This indicates how

well eachfilter can""track' the current behaviorof the target. Since !he ultimate

1-5
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task of the tracking system is to predict the future position of the target so that
a gun pointing line can be calculated, the various designs are also compared
based upon their prediction error i.e., the error between the future target
po sition and its predicted positicn. The sensitivity of each design to changes
in carget manuver behavior, range, - sensor inoise are studied as well as the
effects of noise correlation and measuren’ :nt data rate. Tha results indicate
the ultimate prediction accuracy possibie with the various tracking filters for

\ different target maneuver characteristics, and the tradeoff between algorithm
complexity and tracking accuracy.

1.3 ORGANIZATION OF REPORT

In Chapter 2, the tracking problem is formulated and the assumptions

and simplifications made for this work are discussed. Chapter 3 describes the
design of tracking filters based upon optimal filtering theory, discusses practical
suboptimal fixed configuration filters, and describes the use of adaptive tech-
niques as a means of obtaining better tracking accuracy. Chapter 4 presents

the simulation resuits obtxined when each design is tested over a range of
tracking conditions and iis performance is measured in terms of estimation
error and prediction error. A summary of the results and conclusions are

presented in Chapter 5.

The appendices provide background material for the filtering techni-
ques investigated. Appendix A summarizes optimal filtering and prediction

theory and Appendix B discusses the details of designing adaptive filters.

1-6
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2. TRACKING PROBLEM FORMULATION

; 2.1 TARGET TRACKING AND PREDICTION

In this chapter, the spo-ific tracking problem to be studied is devel-
oped and discussed. This simplified, but realistic, formulxtion is the basis
upon which tracking filters are designed in Chapter 3 arnd evaluated in Chapter
4.

The principal elements of a two-dimensional tracking problem are
illustrated in Fig. 2.1-1. The radar (or other tracking sensor), for

R-11650

TARGET /

—
TARGET
TRAJECTORY

r — RANGE

Y = TARGET VELOCITY
8 = TARGET ACCLLERAT!..N

0 — BEARING

TRACKING SENSOR

Figure 2.1-1 Tracking Sensor and Target Geometry
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*
simplicity assumed to be fixed in inertial space, takes noisy measurements

of the target range (r) and bearing (9) at regular intervals. The tracking filter
processes these measurements and estimates tne target's state variables --
i.e., those variables whicl describe the target's motion such as its position,

3 velocity, acceleration, etc. Given these estimates the tracking filier is then
used to predict the future position of the target by propagating the dynamic

1 PR

equations cr the target forward in time from the current state estim: :s. The
total errer in predicicd position depends upon the: length of the prediction inter-
val (the projectile flight time), unknown inputs io the target dynamics during

Sinia oy may e

this interval, errors in the target prediction model, and errors in the current
‘ estim~{ s of the target's states. The ultimate objective is to minimize the
prediction error. The length of the prediction interval is determined by the
target's trajectory, firing delays, and projectile velocity. With the future
inputs to the target dynamics unknowr;, the only way to reduce the prediction
error is to model the target dynamics as accurately as possible and design a
tracking filter which gives the best possible estimates of the target's current
state,

Modern optimal estimation techniques, such as the Kalman filter, can
be applied to the above tracking problem. However, they must be used with
4 | some care because the filter design requires complete knowledge of the target

dynamic equations and the statistics of all random inputs. In this problem, the

control policy or attacking strategy of the target is assumed to be partially or
completely unknown. The target might be following a deterministic guidance
law or it might be taking evasive action in 2 random manner. Another poten-
tially unknown quantity is the level of measurement noise, which can depend
upon atmospheric conditions and upon the size and shape of the target, its range,

and its changing reflection properties as it rmaneuvers. With all of these

- :
Known sensor motion relative to inertial space can easily be subtracted out !

of the problem; hence no generality is lost with this assumption,

2-2
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uncertain elements in the problem, it is impossible to design an optimum
tracking filter. However modern estimation theory provides the basis upon
which suboptimal filters can be designed to give fairly good performance over
a wide range of possible conditions; the appiication of this technology to the

o P

——

fire control tracking problem is the goal of this report.

The remainder of this¢ chapter formulates in detail the particular

Oy
i ’

t~acking problem to be sivéied and defines ihe conditions under which the

Z. and ze, of the target's range and bearing, the measurement equaticns are

l tracking fillers will be designed. The simplifying assumptions used in this
I__ work are also discussed.
[ 2.2 CHOICE OF TRACKING COORDINATE SYSTEM
. . ]
E' In this section the target's equations of inotion and the tracking
- measurement equations are expressed ir bothh rectangular and polar coor-
i dinates and a simplified target motion model based or. polar coordinates is
discussed.
}‘ Referring to Fig. 2.2-1, the equations of motion of the target defined
! in rectangular coordinates axo
X = Ax .j
! (2.2-1) 1
y = a J,
! 1
Assumir g that the radar or other tracking sensor takes noigsy measurements, !
|

N
"

\/x2+é-*v |
r y T !

: (2.2-2)

..](

tan ~ (y/x) + v

N
I}

e

2-3
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A TARGET e

A
ACCELERATION

TARGET

\6‘6

*.‘.»

|
|
|

| _
/»“«0 r — RANGE i
'
/\a — BEARING |
: i

FRACKING SENSOR

Y
=<

Figure 2.2-1 Target Acceleration Component Definitions

where v and v_ are measurement errors. The range measurement, Z, is

6

the true range, r, plus the range measurement noise, Vo and z9 is similarly

related to the true bearing, 6. Note that while the dynamic equations,

Eq. (2.2-1), are linear in the reciangvlar (x, y) coordinates, the correspond-

ing measurement equations, Eq. (2.2-2), are highly nonlinear.

To derive the equivalent set of equations in polar coordinates the

following transformation is used:

X = rcos@; y = rsin ¢ (2.2-3)

2-4
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! l Differentiating each of these equations twice with respect to time and solving
- the resulting pair of simultaneous equations for ¥ and ¢ gives

‘2 (X o0
¢ + Xco80+ysind

‘ e =218 -Xsin g +y cos @
a = +
| & X

) Note that the target's acceleration components along and perpendicuiar to the
| line-of-sight (see Fiz. 2.2-1) are respectively given by

a = Xcos 6 +V sin @
| .
{2,2-5)
2y = ~-X 8in @ + ¥ cos 8
Substituiion from Eq. (2.2-5) into Eq. (2.2-4) produces
o0 52
F r=re +a (2.2-6)
3 L XJ - ‘Zi'é ae <
: 0 = =L (2.2-7)
| The measurement equations are
Z =T+vV
: r r
L l (2.2-8)
Ze =0 + Ve

Thus, in polar (r,6) coord:inates the sysiem has nonlinear dynamic equations

bt linear measurement equ ations.

For the purpose of evaluating different target tracking filters, a sim-
plified tracking model, defined in terms of polar coordinates, is employcd.

2-5
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With respect to the target's angular motion, the term involving r in
Eq. (2.2-7) is neglected, yielding

a
e -_Q B
5 = = (2. 2-9)

This assumption is justified for evalvating design concepts because the pri-

mary error in tracking 8 tends tc be that caused by a_, the unknown target

9 ’
normal acceleration -- i.e., its acceleration perpendicular to the line-of-
gight. Likewise in £q. (2.2-6) the primary error in tracking range is caused

by as, and this equation can be approximated by
T =a (2.2-10)

Since Egs. (2.2-9) and (2. 2-10) have the same form it is sufficient to test
adaptive tracking schemes using Eq. (2.2-9) as the simplified model of the
true system. Once a promising adaptive scheme has been fuund then it can be
easily applied to tracking a target that actually obeys Egs. (2.2-6) and (2. 2-7).

In summary, the various filters in this report are tested against a
target that obeys Eq. (2.2-9). These tests are made at a constant range, r,
and sensitivity studies are performed to determine how the estimation errors

vary with range.

2.3 MEASUREMENT NOISE AND TARGET REFERENCE MODEL

To test tracking filters using a computer simulation, a measurement

roise and target reference model must be defined. In an actual tracking

situation the measurement data comes from the senscr and only the filter is

implemented in the tracking computer. In a computer simulation, the source

2-6
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of the measurement data musi be simulated as well. The measurement noise
and target reference rodel performs this function. In this report the target
referenice model consists of the simplified tracking model Egq. (2.2-9), and a

variety of profiles for the target's normal acceleration, a,. The measurement

0
noise reference model consists of errors calculatednsingthe computer random
number generator. These errors are then added to the target's computed
angular position, 6, to obtain noisy measurements, ze.
Figure 2.3-1 is a block diagram oi the target and measurement
reference model. For a particular test run the dollowing must be defined:

r - target range, (ft)
ie (t) - normal acceieration rate time history, (ft/seca)
At - measurement interval, (soc)
Vo (tn) - measurement noise sequence, (rad)
6(0) - initial angular position, (rad)
L 8 (0) - initial angular velocity, {rad/sec)
ag (0) - initial normal acceleration, (x‘t/secz)
;
sg (0) 6(0) 6(0) " 11613
| N 4
..Go _:_ 29 3] . ‘l 0 % S % 9“,‘) - la‘(n,
at *
1/’ 'o ('n,
Figure 2.3-1 Target and Measurement Refercnce Model

2-1
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The type of target trajectory produced by this model is determined by
the choice of ée(t). Figure 2.3-2 gives thrce examples of acceleration rate
profiles that might be produced by a target with 2 large mancuver capability.
Both a_ and the resulting a

6 )
of this figure, where the target has a constant normal acceleration, represents

are plotted for a ten-second trajectory. Part (a)

what will be called the nonevasive case. Part {b) is referred to as a "mildly"

I ANmestEm  gEmE—

evasive target which changes its acceleration with the maximum absolute value

{ l of ée being 50 fl/sec3 and the rms value being 30 fi/sec or sbout 1 g/sec. This

is called the nominal case. Finally, part (c} of the figare is the highly evasive

case which represents the worst evasivc motion considered in {5 study and
antizipates the poxsible capabilities of futare antishipping missile threats.
Here the maximum absclute value of zie is 150 ft/se03 and the rms value is
90 ft/'sec3 or approximately 3 g/sec. The filters in this report arc optimized
for the nominal case, and then tested for all three cases to determine their

formance over the complete range of target behavior.

Choosing the noise sequence, v 9(tn), defines the reference modei for
the measurement noise process. The set of times, tn. are the sampling or
| measurement times. Two types of models are used in this report. The first
+ is an uncorrelated, or white, gaussian sequence. Here the samples are
chosen from a zero mean gaussian random number genevator where the indi-

: vidual members of the sequence are independent of each other, and the rins

value of the sequence is g . That is,
v

Elvg t)] = 0 for al' n
( 0 L#m
Efvgtt)ve t )]= ? 9
c, n=m

2-8
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The second noise model is a corielated or '"colored” gaussian sequence, having
corrclated samples generated by passing a white sequence like that defined

! above through a low pass filter. Specifically, the measurement noise sequence
is generated by driving the difference equation for a low-pass filler with the
output of a gaussian random number generalor. The equation is

o AL/ (2.3-1)

ve(tn) - Ve (tn-l) * Wit

where wn is a zerc mean gaussian white noise sequence, 7 is the correlation

time, At is the measurement interval, and Ve (tn) is the measurement noise at
time tn. To keep the rms value of Vg (tn) equal to the nominal value, T, the

rms value of W denoted ¢, is given by

= ‘/1 _enlat/T (2.3-2)

Thus Ve (tn) is a correlated, or "colored", gaussian ncise sequence with an

rms value equal to Ty and a correlation time of - seconds.

! In the tracking problem, the sensor (e.g., radar) receiver noise is l

usually wide-band so that white gaussian noise is a gcod model. However tho
total measurement error can also contain low frequency, coerrelated noise
components caused by a slowly varying target cross sectici, due to the target's
own motion. These considerations motivate the two measurement noise models J
above.

dely Lo

ikl
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3. TRACKING FILTER DESIGN

3.1 OPTIMAL FILTER DESIGN AND PERFORMANCE

The best tracking algorithm design possible in lerms of achieving the
minimum inean square estimation error is the Kalman filter outlined in
Appendix A. This design requires that the tracking system dynamic and
measurement equatic ‘s be completely known and linear. In addition, the
driving functions to the system differential equations must be white gaussian
noise processes with known mean and spectral density and the mcasurement
noise must be a gaussian sequence with known mean and covariance. If these

conditions are met, the tracking filter design is completely determined.

In this study, the filler designs are based upon the simplified linear

model
a
e _ 9 ,
0 = - (3.1-1)
z6 (tn) = 8(tn)+ve(tn) (3.1-2)

where the range r is assumed known. Equations (3.1-1) and (3.1-2) have
the same form as the reference model defined in Chapter 2; however the input
to the reference model -~ the target acceleration a9 in Fig. 2.3-2 -- is not
accurately reprecented as white noise and the siatistical properties of the
measurement ncise sequence, Ve (tn), may not be known accurately. These

facts prevent the design of an optimal tracking filter.
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i It is possible to artificially design an optimum filter for the reference
' model by assuming that the target acceleration rate is known and the measure-

ment noise is gaussian white noise with known covariance. An analysis of this

|

case gives o meosure of filter performance under ideal conditions. Equations
[ (3.1-1) and (3.1-2) are the system dynamic and measurement equations, where

ag and r are given and the covariance (in this case the mean square value) of

! Ve (tn) is 0‘2,. The dynamic equation can be put into state variable form cor-

responding to Eq. (A.1-1) of Appendix A by defining

Xy (t) I’ 8 (t)
g (t) |

x{t) = Xt | =
lae(t)

Xg (&)

Then Eq. (3.1-1) becomes

x(t) = Fx(t)+b(t) (3.1-3)

3-2
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The measurement equation is put in the form of Eq. (A.1-8) by defining

z = z9 (tn) |
v, = ve(tn) |
:
:
H=H =[00] 1
Then
z = Hg:_(tn)+ v (3.1-4)

Since measurements are taken only al discrete instants of time it is convenient
to express Eq. (3.1-3) in discrete time also. It is assumed that the tracking
filter is implemented on a digital comgputer so this formulation will be most

natural and efficient.

Assuming a uniform measurement interval of length At and using the
definitions of Appendix A, Eqs. (3.1-3) and (3.1-4) become

Zc—n ‘b-)En-l + En--l
(3.1-5)

z = Hx +vV
n -n n

3-3
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To complete the definitions required for the filter equations note that the driv-

ing noise covariance matrizx. Q“_1 is equal to zero (see Eq. A.1-7) and

R = E[v:] = G (1x 1 matrix)

where ay is the rms measurement noise level of the reference model. By
assuming values for the filter initial conditions, X 0 (<) and PO(-), the filter
equations given in Fig. A.1-1 are completely defined. Again, it is empha-
sized that both ée as a function of time and L the rms value of measurement
noise used in the reference model, must be known to implement the optimum

filter.

The filte1ing algorithm for the case defined above is

- - 3.1-6
+ lln +k [zn - H(‘pin-l + En-l)] ( )

= &X -1 —-n

X
—n =n-1

where % n is the optimum state estimate of X immediately after the measure-

ment z is taken and En is the Kalman gain vector defined by Eqs, (A.1-14),
(A.1-15) and (A.1-16). The filter performance is shown in the figures that
follow and is based upon the following parameter values:

o, = 1.4 mrad (rms measurement noise level)
At = 0.1sec (measurement sampling interval)
(3.1-7)
r = 10,000 ft (target range)
J_':O = W (initial state estimate)
3-4
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ith i
v 2.0y 10°° rad

2

x(0) =] 4.0 x 10°° rad/sec

2.0 x 10>  ft/sec>

(3.1-7)
cont.
2.0 x 10 % rad? 0 0
P.(-) = -4 2
0(-) = 0 7.1 x 10" ° (rad/sec) 0
0 0 2.7 x 10 (tt/sec?)?

Figure 3.1-1 shows the target position, velocity, and acceleration esti-
mation errors as functions of time for a ten-second simulation using the
nominal case for ée shown in Fig. 2.3-2(b). Part (a) of the figure shows the
angular estimation error on the right vertical scale and the position estimation
error (measured normal to the line-of-sight) on the left vertical scale. For a

range of 10, 000 ft. the small angle approximation e 6= sin (ea‘) is valid since

e 0= 6 - 6 is much less than 5 degrees. Thus

re6 = r sin (ee)

gives the position error in feet. Part (b) of the figure makes the same approx-

imation lo obtain the velocity error from the angular velocity error.

Since the target acceleration rate is assumed known, it is accounted
for exactly by the term p—n—l in the filler equation, Eq. (3.1-6); therefore the
errors shown in the figure are independent of the particular choice of ée (t).
This is a basic property of the opiimal filter since the equtions which propa-
gate and update the estimatle of the error covariance matrix, Pn, (Egs. (A.1-15)
and (A.1-16)), are independent of the system input vector b (t), which contains
éa (t). Part (d) of Fig. 3.1-1 shows how the mean square estimation errors

converge towards zerc as calculated by the filter covariance equations. These
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curves are in qualitative agreement with the actual estimation errors shown in
parts (a), (b), and (c) of the same figure.

Note that the estimation errors in Fig. 3.1-1 parts () and (c) become
small relative to their initial values after approximately two seconds. The
- rms values given fcr the errors are calculated using only the last eight seconds
: of the simulation to remove the effect of this initial transient. For the purposes of
target prediction discussed later, notice that the three estimation errors are

highly correlated; that is, when the normal acceleration estimation error is
large and positive, so are the position and velccity estimation errors. This
tends to cause the components of the rms prediction error, contributed by the
; individual estimation errors, to combine additively. Section 4.3 devclops this
: point in more detail.

Figure 3.1-2 gives a clearer illustration of the convergence of the
normal acceleration estimate as a function of time relative to the actual vaiue

E of normal acceleration. Note the rapid convergence to a small percentage
| error.

R11654
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E %
| =
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5 2 RMS ERROR = 3.5 ft/sec?

3
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Figure 3.1-2 Normal Acceleration and its Estimate for Optiraum

Filter: Nominal Trajectory
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The results in this section demonstrate the accuracy with which the

r’ ) ! optimum filter can track the iturget's states if sufficient knowledge is available
1 to vonstruct the filter. In the next section, practical designs will be discussed
{ where this knowledge is not available.

i 3.2 PRACTICAL FILTER DESIGN AND PERFORMANCE

The last section demonstrated how an cptimum filter would work if
i the target and nmeasurement model were accurately known. The primary
unknowns which make the optimum design impractical are ée(t), the time
history of acceleration rate, and Oy the true rms measurement noise level.
This section assumes that oy is known and the major problem is dealing with
the unknown target normal acceleration. The problem of o, veing different

t than its assumed valre is left until Section 4.2 where measurement noise

[ sensitivity is discuseed.

One common method of dealing with the unknown input 5‘6 is to assume

that it can be approximated by white noise and construct a Kalman-type track-

ing filter as described in Appendix A. Recall that the reference model equa-

tion is
f .
| X = Fx+bit) (3.2-1)
| A propo:ed filter design is based upon a model of tiie form
Xm = FXp,+ul) (3.2-2)

where the notation x m(t) denotes the model representation for x (t) and

0
o) = ]

0
u3(t)_!
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| - The quantity u3(t) is assumed to be a gaussian wnite noise process with
E[ug(t) ug(r)] = qé(t-7) (3.2-3)

That is, the unknown input éeis modeled as gaussian white noise with a spec-
tral density equal to q, (see Appendix A). Recalling Fig. 2.3-2, it is clear

that the 59 signal shown does not look like white noise. However, the ‘hite

noise mo.el has two advantages. First it does not increase the order (number 1
, of states) of the filter beyond that required fcr the optimum filter discussed in |
the last section. Second, if the target has a constant acceleration, then bt} =

0 in Eq. (3.2-1) and can be modeled exactly in Egs. (3.2-2) and (3. 2-3) by

setting ¢ = 0. Furthermore, the white noise model is a good approximation to

NP —

59 if the effective bandwidth of the latter is large relative to other dynamic

effects.

The filter design based on Egs. (3.2-2) and (3.2-3) is the same as
that discussed in Section 3.1 except that ll(t) is unknown and not included in the

! filter equations and the matrix Qn’ which originally was zero, now becomes

0 0O

R —— — p—

| t / T
n F(t -7) \
Qn=f eFha Mo 0 ofle ™ ) ar
t -
; t -t D 6 o
L
_, l The filter algorithm is
| X, = @R 4+ k [z -Hex ] (3.2-4)

where En is the Kalman gain sequence defined by Eqs. (A.1-14), (A.1-15), and

ey

(A.1-16) when they are based upon the design model. Note that the Kalman

; - gain sequence depends upon the choice of q. This algorithm will be called the
suboptimal third-order fixed filter.

The value for the spectral density, q, chbsen for the suboptimum filter

[ in Eq. (3.2-4) can be any positive number; however the particular value chosen

3-9
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effectively determines the filter bandwidth and is therefore very important
L. to the performance of the filter. A low value of q results in a low-band-
width tracking filter which can accurately track targets that manuver very

- little -- i.e., the rms value of a_ is small and target motion is low frequency

6
in nature so a low-bandwidth filter can be used te eliminate the measurement

noise from the data. On the othe™ hand, if the target is nighly evasive and 's
motion has high frequency coraponents, then a large value of q is needed so that
- the filter has a high bandwidth and can respond rapidly to the target motion.

In this case, for a fixed measurement rate and measurement noise level, even
the best choice of q will give poorer tracking accuracy than the case where q

is small and the target manuvers very little. Thus the proper choice of q, and
consequently the filter bandwidth, is dependent upon how evasively the target
maneuvers. Hereafter, q will be referred to as the design parameter for the

third-order fixed filter.

To be more specific, Fig. 3. 2-1 shows the resuits of a series of
simu’ations for the same conditions given in Eq. (3.1-7), except that the sub-
optimal filter derived above is employed. The trajectory for é.e(t) chosen here
is that of Fig. 2.3-2(b), the nominal case. The figure shows the mean square

J estimation errors, again calculated by time-averaging over the last eight
seconds of each run to eliminate the effect of the initial transient. The mean
L square estimation errors of angular position, angular velocity, and normal
ucceleration are plotted for a wide range of choices of q, the model spectral
density which must be sclected by ihe filter designer. All three curves are
minimized at approximaieiy the same value of q. Thus, there is a "best"
choice for q for this irajectory; but it cannot be determined unless 519 (t) is

known a priori.

Figure 3. 2-2 shows how the mean square normal acceleration esti-
mation error varies as a function o: q, for the dilferent target trajectories

shown in Fig. 2.3-2. The bottom curve in Fig. 3.2-2 is the nonevasive case

3-10
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R-11640

i' 10°
.

Z
L N B |

104

" 08

O HIGHLY EVASIVE TRAJEC1ORY
(® NOMINAL TRAJECTORY
* 0 NON EVASIVE TRAJECTORY

MEAN SQUARE NCRMAL ACCELERATION ESTIMATION ERROR (ft/sec?)

1 10 102 10° it 10° 108

DESIGN PARAMETER, q (11%/sec®)

Figure 2.2-2 Trajectory Sensitivity of the Third-Order
Fixed Filter

(Fig. 2.3-2(a) where the target acceleration is constant. This curve indicates,
as stated earlicr, that the optimum choice of q is zero for the nonevasive cuase.
The middle curve corresponds to the nominal trajectory (Fig. 2.3-2(b)) and the
best q is near 103. Finally, the top curve corresponds to the wurst-case
evasive trajectory (Fig. 2.3-2(cj) with the best value of q = 104, Recall that
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the optimum filter of Section 3.1 gives the same rms estimation errors re-
s garcdless of the time-history of 2'19 (t) because ée (t) is assumed known; this is
" evidently not the case for the suboplimal filter evaluated in Fig. 3.2-2. The
' filter's performance deviates farther frora optimum as the rms value of a 9(t)

P increases, even if the best choice of q is known.

To further clarify the operation of the third-order fixed filter design,
. it is useful to plot the target normal acceleration and its estimate as a function
: of time for the nominal trajectory for three different values of q. This is done
.. in Figure 3. 2-3 for q equal {0 7.5, 750, and 75, 000 Itz/secs. The rms esti-
mation error differs significanily between these three plots. Part (z), which
‘e is the low q case, corresponds to a filter having a low bandwidth. Observe
that the estimate 56 has difficulty tracking rapid changes in g, however, the

e time history of a, is very smooth indicating that most of the measurement

]
: ' noise is suppressed by the filler. By comparison, Fig. 3.2-3(c), corresponds

b to a relatively high bandwidth filter. Here 56 can track ag when it varies

rapidly, but a lot of the measurement noise gets through the filter and degrades

‘e the estimate. Fig. 3.2-3(b) is a medium bandwidth filter and represents a
nearly optimum tradeoff between tracking ability and the amount of measurement
e noise that corrupts 59: thus it has a lower rms estimation error than the other

[ two cases.

The third-order fixed filter models ée as white noise and consequently

‘. ag as the output of an integrator driven by white noise; in this model the target ]
v acceleration is called a random walk process. In an effort to improve the ]
] filter's performance, other models for ag can be investigated. For example,
in another sct of simulations, ag was modeled as the output of a low pass filter
= with time constant, 7, driven by white noise with spectral density, q; i.e., :
a, = - La /:: , (3. 2-5)
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Figure 3.2-3
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PO
.

In this case two parameters must be selected, + and q. A filter based upon

i this model was simulated using the highly evasive trajectory in Fie. 2.3-2(c).
. The mean square normal acceleration estimatior errors as functions of the
1- parameters in Eq. (3.2-5) are shown in Fig. 3.2-4. For comparison, the

results for the random walk acceleration model are also given. It is clear

N———

from this figure that the random walk model yields better performance than
I the more complex low-pass model just described. Note also that the various
A% low-pass models are slightly more sensitive to the incorrect choice of q and

approach the random walk model as r is increased.

Another possibility is to try a higher-order acceleration model. For

example, in Fig. 3.2-5, a_ is represented as the output of a double integrator

6
driven by gaussian whilc noise with spectral density, q. Using this model, the
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GAUSSIAN WHITE . R-11638
NOISE PROCESS ag ag
— 3 i
SPECTRAL DENSITY = g

Figure 3.2-5 Doubly Integrated Gaussian White Noise Model for
Target Acceleration

equations of Appendix A give a fourth-order fixed filter design. Figure 3.2-6

shows the rms normal acceleration estimation errors achieved with this model
for the three test trajectories and compares these errors with those obtained
using the third-order fixed filter that assumed a random walk acceleration
model. Again it is clear that in each case, the simpler third-order filter

woriks better than the fourth-order filter.
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Figure 3.2-0 Comparitive Performance of Third-Order and Fourth-
Order Fixed Filters for Three Trajectories
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These studies indicate that the fixed filter design, based upon the
random walk model for a, shown in Fig. 2.3-1 is preferable if the tracking
situation is similar to that tested here; i.e., for the given data rate, measure-
L. ment noise level and target maneuver characteristics. The main value of

these studies is that they show the type of procedure that must be followed to
L. design a filter for a particular class of tracking situatinns. Clearly the third-

order suboptimal filter cannot perform nearly as well as the ideal, but im-

. - practical optimum filter described in Section 3.1; however it appears to do
about as well as possible if the target maneuver time-history is not known a
| : priori. The primary design problem is the choice of q since its bes! value is

related to the unknown rms value of 519 over the trajectory. In the next section |

adaptive designs are considered in an attempt to overcome this problem.

3.3 ADAPTIVE TRACKING FILTER DESIGN |

Two steps are important in the design of a target tracking algorithm.
First, a mathematical model for target acceleration must be chosen based
| upon theoretical considerations and experimental work, as described in pre-
vious sections. This model must be general enough to cover all anticipated
target acceleration profiles. Second, a tracking filter must be dzsigned based
i ‘ upon this model, the target's equations of motior, and the measurement error
statistics. Its performance should be as good as possible despite changes in
the target's acceleration profile, errors in the particular dynamic model
h} | selected for target acceleration, and variations in the measurement noise level.

One approach is to experimentally determine the values of the filter design

parameters that give the best average periormance over all anticipated track-
ing situations; aliernatively the parameters could be optimized for the worst
case--i.e., for the most violent {target mancuvers and highest measurement

noise level. However, a fixed parameter design based on either of these

3-17
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procedures is likely to perform significantly worse than a design matched to

the actuval target maneuver characteristics encountered.

A potentially better design than the fixed parameter filter is an adap-
tive filter which can identify each particular tracking situation as it arises
L. and adjust itself for achieving the best performance. For example, if the type
of target trajectory could be identified on-line, then the proper choice of the
_ bandwidth parameter q for the third-order filter could be made. Many differen!.
n adaptive filtering techniques have been investigated in the past ten years and an
extensive literature review was conducted to determine which methods might be
useful for the target tracking problem treated here. Three techniques which
seem promising are described in this section and computer simulation results
are presented in the next chapter. All of these methods start by assuming
that the filter is to have the same basic structure as the optimal Kalman filter
outlined in Appendix A. They differ in how they change or augment this
structure to make the filter adjust for modeling errors and changing conditions.
References 1 through 17 contain the adaptive filtering theory found to be per-
tinent to the tracking problem. The techniques described in this report were
developed from this background and represent both applications and extensions

of existing techniques.

3.3.1 Adaptive Bandwidth Filter

The general structure of the adaptive bandwidth filter is shown in
Fig. 2.3-1, consisting of two connected filters. Filter 1 is a fixed configura-
tion fourth-order Kalman filter which produces estimates of the target evasive
mancuver level, that is, the rate of change of target angular acceleration, 510.
Filter 2 is an adaptive bandwidih, third-order Kalman filter which estimates
the target's angular position, angular velocity, and normal acceleration.

The bandwidth of the latter is controlled by the estimate of target evasive

3-18




ﬂ L THE ANALYTIC SCIENCES CORPORATION
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maneuver level obtained from Filter 1. Thus if the target is not evading and

a
6
have a low bandwidth to achieve good noise suppression. If the target begins

is small, then the estimate 3 6 will be small and Filter 2 is adjusted to

to change its angular acceleration rapidly, Filter 1 will reflect this fact in its

estimate of acceleration rate and will accordingly raise the bandwidth of Filter
2. Essentially this adaptive filter tries to detect how much the target is man-

euvering and then adjusts itself to the proper bandwidth for that maneuver

level.

The design of the fourth-order fixed filter is the same as that discus:
sed in Section 3.2 where target acceleration is modeled as the output of a
double integrator driven by white noise with a spectral density designated by
the parameter q; see Fig. 3.2-5 for a block diagram of this model.

Recalling that the third-order filter, investigated in Section 3.2,
develops appreciable acceleration estimation errors when the target mancu-

vers evasively, it is expected that the estimates of acceleration rate from

ve MTASUREMENT fi-11615
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Figure 3.3-1 Adaptive Bandwidth Filter
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{

E’ I the fourth-order filter will not he very accurate. However, the philosophy of
- this design does not require accurate estimates of 519. What is needed is a

E I general idea of its magnitude so that the bandwidth of the third-order filter

i ' can be appropriately adjusted. Assuming that a rough estimate is available

% I for ée, the desimn of the variable bandwidth yilter in Fig. 3.3-1 is now

j discussed.

£

L
-

Filter 2 is a thira-order Kalman filter which models target accelera-

tion as the output of 2n integrator driven by gaussian white noise with a spec-

i

7
[ Se—
-

tral density of q. For a constant q, this is the same third-order filter des-
cribed in Section 3.2. In that section it was determined that the best choice
of q was related to the rms value of the acceleration rate for a particular
trajectory. For a highly evasive trajectory, the rms value of ‘;‘9 is large and
a large value of q is required to minimize the rms estimation error. This
effectively provides a large filter bandwidth permitting the filter estimates to

=™

track the changing target acccleration. Likewise for a nonevasive trajectory

1

where the acceleration rate is small, q should be small so that the filter has a

M
LS

low bandw.dth to achieve good noise suppression. In the adaptive design of

Fig. 3.3-!, q is calculated on-line using the estimates of ée from the fourth-

(g |

order filter, in the manner described below.

o

Figures 3.3-2 and 3.3-3 show the results of a series of simulations

made to find the optimum choice of the design paraimeter assuming the target
I: acceleration rate is known. Figure 3.3-2 is a plot of the steady state mean
. square normal acceleration estimation error produced by a third-order fixed !
I- filter which is tracking a target whose acceleration rate is held constant, Each '
:- curve is for one particular value of 2'19 and shows how the estimation error
i

3 varies with the choice of q. Except for the fact that acceleration rate is con-
j' stant, tke simulation ‘conditions here are the same as those specified in Section

3.1, Eq. (3.1-7). It isclear from Fig. 3.2-2 that for each value of ée
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. Figure 3.3-3 Optimum Design Parameter versus Target
{ Acceleration Rate: Derived from Fig. 3.3-2

there is an optimum clioice of q. The dashed l'ne in the figure is the locus of
the minima of the curves. The solid curve in Fig. 3.3-3 is a plot of the best
value of the design parameter, designated q*, for each value of acceleration
rate. This shows how to choose q for the variable bandwidth filter if the
target acceleration rate is known. To simplify the implementation, the dashed

curve approximation in Fig. 3.3-3 is used, - “ich is described by the equation

[ ¢ ¥ 486 (3.3-1)
{ This approximation is justified because it resulis in only smal! errors in the
choice of g*; much larger errors will be incurred in estimating the value of
I” 2'16 to be used in Eq. (3.3-1). The fact that q* depends upon the square of the
acceieration rate is in agreement with the general relationship between q and
[' the rms value of ée indicated in the experiments of Section 3. 2.
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Replacing a P by 29 in Eq., (3.3-1), the third-order filter bandwidth

parameter is adjusted according to
$ 2
q = 4.8(@ap (3.3-2)

and the filter gains En, needed to mechanize Eq. (3.2-4), are computed on-line
as shown in Fig. 3.3-4.

R-11915

THIRD-ORDER
ADAPTIVE MATRIX RICCAT! VARIABLE BANDWIDTH
ALGORITHM EQUATION FILTER
2N k B
8 q . =n L=n
2 e e | o o2e D

ESTIMATE FROM KALMAN
r&l)l(%ﬂg?&%%" GAIN SEQUENCE

Figure 3.3-4 Functional Diagram of Adaptive Bandwidth Filter Design

The design in Fig. 3.3-4 is based upon the specific set of experi-
mental conditions defined in Eq. (3.1-7). Perhaps the quantity that is least
accurately known is the rms value of the measurement noise. 1if a different
level of noise were used in the reference model then Eq. (3.3-2) would have to
be rederived. Thus, this adaptive design will be scnsitive to inaccurate know-

ledge of the measurement noise statistics.

Finally, the bandwidtk parameter, q, for the fixed fourth-o. der {’lter
must be selected. Sir-e this quantity is to remain fixed and its optimum value
depends on the rms zcceleration rate, there is no a priori "best" choice.

Here its value is arbitrarily picked to yield the best estimates of ée for the
nominal trajectory in Fig. 2.3-2(b). This value is determined from Fig. 3.2-6
to be approximately 7.5 ftz/sec7. This completes the choice of design par-
ameters for the adaptive bandwidth filter to be used in the simulations described

in the nex! chapter, where the various adaptive techniques are compared.
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3.3.2

Hypothesis Testing Filter

This section presents an application of the general hypothesis
testing theory discussed in Appendix B. The hypothesis testing filter partially
circumvents the problems of fixed filter designs by optimizing the filter design
parameters on-line. It assumes ‘hat over some time interval, T, the optimum
filter is one member of a set of N possible known filters -- i.e., is one of N
hypotheses. These filters are run in parallel and an algorithm operates on
each set of estimates to calculate the probability that each hypothesis is cor-

rect.

The final state estimate is the sum of the estimates from all N filters,

each weighted by the probability that the corresponding filter is optimum.

Figure 3.3-5 shows the structure of the hypothesis testing filter for
the target tracking problem. For tlic purpose of limiting the amount of com-
putation required, only three parallel filters are considered, each based on
the third-order model developed in Section 3.2. Different values of the design

R-11642
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Figure 3.3-5 Hypothesis Testing Filter
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parameter q are chosen to represent different hypotheses about the target

respond to low, moderate, and high target ¢vasive inaneuver levels.

\ h behavior. The low, medium, and high values of q shown in the figure cor-

&

Following the notation of Appendix B, Hl is the hypothesis that Filter

W T —

1 is optimum over the interval T. H2 and H3 are designated in a similar

manner. The interval measurement history, Zn, up to and including the most

recent measuremessit z6 is the set
n

i en-m-l 6n-l en '

where m is the number of measurements taken in the interval.

Givan the three estimates of the system state X, during the interval,

Ly

denoted by 5;, :ﬁ , and ¥ ", and generated by Kalman fllters designed accord-
ing to the procedure described in Section 3.2, the probability of each hypothesis
conditioned on the measurements, denoted by p {Hk|Zn} , is given recarsively

L
i
L A PR
i'
{
1
L

by
k (v K
{‘ ) f(zenlll , Zn—l)plu |Zn_1}
[ plHZ } = — (3.3-3)
; z : . k 1k
f("enIH ! Zn-—l)plH IZn—l}
[ k=1 i
( where { ('/.9 [Hk, Zn-l) is a known normal probability density function defined
) n

in Appendix B. In this manner, the probability that cach hypothesis is true is

[ calculaled at every sampling time in the interval.

{ The eslimale produced by the hypolhesis testing filter immediately
after a measurement is
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3

x_(+) = Z i:: (+) p {Hklzn } (3.3-4)
k=1

with the corresponding covariance matrix given by

3
P (+) = Z pl‘: (+)p{Hk|zn } (3.3-5)
k=1

To complete the filter design, it is necessary to select the reset
interval, T, and the a priori probabilities needed to initialize Eq. (3.3-3) at
the beginning of each interval. The interval T should reflect the approximate
length of time over which the target's behavior is likely to remain constant.
The a priori probabilities for each hypothesis should be chosen using any
knowledge available which indicates the relative probecbilities of the various
types of target behavior. For examnple, if it is reasonably certain that the
target will have a highly evasive trajectory, then the a priori probability of

the third nypothesis should be set much higher than that of the others.

At the end of each interval the filters are reset to test for the possi-
bility that a change has occured in the target manuver characteristics. This
is done by resetting all three estimates and covariance matrices to the com-
bined estimate and combined covariance matrix s calculated by Eqs. (3.3-4)
and (3.3-5) at the end of the interval, and the probability of each hypothesis is
reset to its a priori value. This procedure al'ows the tracking filter to periodi-

cally adapt to new target behavior.

This design has two disadvantages. First, it requircs approximately

three times as much computalion as the third-order fixed filter discussed in

Section 3.2 and about 39° more compuiation than the adaptive bandwidth design
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l
which only requires that two filters be implemented. Second, it will be demon-
i. strated in the results of Chapter 4 that this design is very sensitive to the
proper choice of the desigr value for the rms measurement noise level; that is,
i.. if the noise level is pot known accurately and the filter is designed assuming
the wrong value, lh.e estimation accuracy is seriously degraded. This limits
! the use of the hypothesis testing fi'ter to tracking situations where the meas-
urement noise level is fairly well known 2 priori. Otherwise, this design is
‘ theoretically sound and can be expected to work quite well as long as the assump-
tions upon which it is based are not seriously violzled.

L 3.3.3 Residual Testing Filter

i‘ The residual testing filter is similar to the design discussed in the
last section; its complete details are given in Appendix B. The motivation for
l this particular design is the noise scnsitivily provlem discovered when the

hypothesis testing filter was tested fox various rms measurement noise levels;

it is an attemp! to retain the advantages of the hypothesis testing scheme while
reducing its noise sensitivity. Figure 3.3-6 shows the structure of the residual
testing filter, where the individual filters 1, 2, and 3 are exactly ihe same
design as these in Fig, 3.3-5. That is, Filters 1, 2, and 3 are designed for

: low, moderate, and high target mancuver levels, respectively. The difference A
between this approach and the hypothesis testing filter is the manner in which

{ the final state estimale is calculated from the three individual stale estimates.

This residual testing technique does not attempt to calculate the

probability that one of the individual filters is optimum over an inlerval.
Instead it observes each state estimate over the interval T, at the end of which
a decision is made as to which estimate is best. Over the next interval. the

residua; testing Jilter's output is the output of that individual filter which worked

best over the previous intcrval.
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Figure 3.3-6 Residuail Testing Filter

The best of the three parallel filters over an interval is defined to be
that one whose residual sequence has the smallest mean square vilue. Elements
of the residual sequence for the km filter are defined as

y:,( = 2z - Hi: (=) (3.3-9)

The mean square value is computed fromr the residual sequence using

n +M-1
(o]

s X
e - L Z 52 (3.3-7) N

where ng is the value of the time index v at the beginning of the interval, T

and M is the total number of samples in the interval. This calculation is per-

formed for each filter, i.c., k=1, 2, and 3, and al he end of the interval tha:

-

filter which has the lowest value of Ek is judped best, Its estimates are the
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output of the residual icsting filter over the next interval. The justification for

-

! = this adaptive procedure is discussed in detail in Appendix B.

[ ; At the end of every interval, each filter is reset to the state estimate
{ and covariance matrix of the filler which is judged to be best. This is done to
permit adaptation to changes in target behavior. The design of the residual
testing filter is completed by choosing the reset interval, T. This must be a

practical compromise between the cbjective of achieving rapid adaptation,

which requires a small T, and achieving an accurate estimatc of the rms level |

of the residuals, which requires a reasonable averaging interval in Eq. (3.3-7).

The computational requirements of the residual testing scheme are
essentially the same as those for the hypothesis testing filter. However, it has
[' the aavantage that it is lcss sensitive to differences between the actual and
design valucs for the rms measurement noise level than the other adaptive

filter design techniques as demonstrated by the simulation results presented
b in the next chapter.

In this chapter, practical-suboptimum target tracking filters were
designed and discussed in relation to the optimum design. Both fixed and
adaptive filter structures applicable to the target tracking problem were con-
sidered. In the next chapter, these designs are compared and evaluated in a
variely of tracking situations to see which of them would makc good target
* tracking fillers in a practical application.




THE ANALYTIC SCIENCES CORPORATION

g 4, TRACKING FILTER PERFORMANCE EVALUATION
L

This chapter gives the results of simulations designed to compare
) the performance of the fixed and adaptive tracking filters discussed in the pre-

\ ceeding chapter. In the first half of this chapter the results are presented in

i terms of the accuracy with which the filter can estimate the target's position,
velocity, and acceleration and in the second half these same results are pre-
sented in terms of the accuracy with which the filter can predict the future posi-
tion of the target. The filters are evaluated for different levels of target

! evasive behavior, levels of measurement noise, data rates, amounts of correla-
tion in the measurement noise, and target ranges. In Section 4.4, th. sensi-

\ tivity of prediction error to projectile velocity and target closing velociiv is
also discussed. The advantages and disadvantages of each filter are ana’yzed

( and related to the specific properties of each design.

4.1 TRACKING FILTER EVALUATION PROCEDURE

To give a fair and logical comparison between several filters, it is

‘ necessary to define a nominal tracking situation. Each algorithm is designed
based upon this nominal situation; performance results are then compared for
a variety of different operating conditions. The following set of conditions ]

define the nominal tracking situation:

e The target's normal acceleration profile is given in
Fig. 2.3-2(b), the nominal case with the rms value
f of acceleration rate (ae) equal to 30 it/sec3.

( e The target's range (r) is 10,900 (L. ‘
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{ ° The measurement noise sequence ve(tn) is a white
| gaussian sequence with an rms level of o, = 1.4

mrad, i.e., the rms angular measurement error
is 1.4 mrad, or equivalently, the rms position
measurement error normal to the line-of-sight at
z 10,000 ft is 14 ft.

e The data rate is 10 measurements per secoad.

o  The initial estimatc at t = 0 for ali filters is X =0.

0

° The initial covariance of the estimation error at
t = 0 for all filters is

- 2.0 x10"% (raq)? 0 0
P () = 0 7.1 x 10~ (rad/sec)? 0
0 0 2.7x 10‘ (ﬂ/u:cz)z

e  The initi..1 condition on the target is

i 2.0 x 10"3 (rad) 6(0)
. x(0) =] 4.0x 1()"2 (rad/sec)| = é(O)
2.0 x 102 (ft/secz) aG(O)

This nominal tracking situation is selected to be generally representative of
digital gun fire control system capabilities. The tracking filters are evalualed
by holding all of the above conditions constant except one, which is varied to
test the sensitivity of cach design to a change in that condilion only. Six dif-

ferent tracking filter designs were investigated. These are specified below.

Filter A -- Third-Order Fixed - Filter A is the third-order fixed

desigm discussed in Section 3.2 which models (he target’s normal acceleration
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as the output of a single integrator driven by white gaussian noise with a
spectral density of q. For this design, q is chosen to be equal to 750 (ftz/secs),
which is approximately the best value for the nominal target acceleration pro-
file, as indicated by Fig. 3.2-1.

Filter B -- Adaptive Bandwidth - The adaptive bandwidth filter is dis-
cussed in Section 3.3.1. Its structure is specified in Figs. 3.3-1 and 3.3-4.

Filters CE, CL, and CH -- Hypothesis Tesl(ing - The design of the
hypothesis testing {ilter is discussed in Section 3. 3.2 and its structure is

shown in Fig. 3.3-5. In each case the reset interval chosen is T = 2 seconds.
This choice is made because any shorter interval does not give the probability
calculation algorithm, (Eq. (3.3-3)), sufficient time to converge to the correct
hypothesis in the nominal tracking case, whereas a longer reset time reduces
the filter's ability to adapt rapidly if the tracking situation changes. Fiiters
CE, CL, and CH are exactly the same design except for the choice of the a

priori probabilities, p ;Hki , at the beginning of each reset interval. Filter

CE assumes that all three of the hypotheses are equally probable at tha start
of each interval. Filter CL assumes that there is a high probability that the

low maneuver filter is optimum; specifically

p{H'} = 0.90

Filer CL

3 0.05

p{H’} = piH

Filter CH assuines that there is a high probabilily that the filter designed for
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