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ABSTRACT 

\ 
The purpose of this study is to investigate and eval- 

uate adaptive tracking filters for shipboard gun fire control 
systems that must defend against evasive targets. Several 
design concepts are compared using both tracking error and 
predicted position error as performance measures. The 
effects of target evasion, sensor measurement noise level, 
modeling uncertainties, and length of the measurement inter- 
val are investigated, an 1 the trade-offs bet ween performance 
and algorithm complexity are discussed. 
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1. INTRODUCTION 

1.1    BACKGROUND:   GUN FIRE CONTROL SYSTEMS 

The need to develop snipboard gun fire control systems that are capa- 

ble of destroying high-speed, maneuverable enemy missiles creates a require- 

ment for pointing and tracking techniques that more accurately account for 

target motion than do conventional systems.   In principle, this can be accom- 

plished by hardware improvements, such as more accurate tracking sensors 

and higher bandwidth gun control loops, which allow the gun pointing line to 

respond more quickly to target maneuvers.   However, an retractive alternative 

approach that does not depend upon advances in hardware technology is the use 

of modern estimation and control theory to develop sensor data processing 

techniques — i.e., computer software — which uke maximum advantage of 

the known mathematical model of target motion.   With respect to conventional 

weapon systems, this represents improved software, rather than hardware — 

realized by improving the computational algorithms used to generate gun 

pointing commands. 

The principal elements of a fire control system are illustrated m Fig. 

Kl-1 for a single axis.   Briefly, one or more tracking sensors provides target 

position measurements which are processed in a computer, together with 

measurements of ship's motion, to obtain estimates of target position, velocity, 

and acceleration in inertial coordinates.   The latter are appropriately combined 

to determine the drive signal for bringing the actual pointing line into coinci- 

dence with the commanded pointing line. 

A number of error sources illustrated in Fig. 1.1-1 can have an 

important effect on projectile accuracy: these include: 

1-1 
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Figure 1.1-1 Principle Elements of a Shipboard 
Gun Fire Control System 

The dynamic lag attributed to the finite bandwidth of 
the gun servo which prevents achieving exact equality 
between the actual and commanded pointing lines 
against a moving target. 

The prediction error caused by the fact that the 
commr^ded pointing direction is not exactly in the 
direction required to hit the target because of target 
trajectory prediction errors.   The latter are in turn 
caused by imperiect modeling of target motion and 
tracking sensur measurement noise. 

The projectile ballistic dispersion error produced 
by unknown aerodynamic effects along the projectile 
flight path, as well as non-uniformity in projectile 
characteristics and firing conditions. 

1-2 
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To some extent the above errors will be reduced as specifications on 

component and instrument quality become progressively more stringent.   How- 

ever an important alternative (and potentially less costly) route to system 

improvement is to construct computer algorithms, using estimation theory., 

which extract the maximum amoun of useful information from the tracking 

n;o?;urement data, thereby reducing the prediction error.   Tins is especially 

important in the case of highly maneuverabte targets where prediction error 

cap  «asily be the most significant error source in the entire gun fire control 

sys'f »m.   The intent of this report is to investigate the potential for better pre- 

di«   on accuracy through software improvements. 

The heart of the computer in Fig. 1.1-1 is the target tracking filter 

v        combines the tracking measurements to estimate the target position, 

wI'M ity, etc., with respect to a stabilised coordinate frame.   The latter are 

r       rod to ultimately calculate the projectile time of flight, the predicted 

tar    ; position at the impact point, and the gun pointing commands.   Conse- 

q.   .'ly, it is desirable that the tracking filter produce estimates whose errors 

a*     'b siLiall as possib'e, in some sense.   Modern estimation theory provides 

a *.   lematic procedure lor accomplishing this goal.   Basically, if the target's 

nr'; 'i und the tracker measurement errors can be described by appropriate 

su .   <)<:;u mathematical models, then recursive digital algorithms such as the 

K -1     n filter are available which will yield minimum variance estimates of the 

v.- ;    les (called state variables) which describe the target's motion.   Such an 

al ^ ;thm is called an optimal filter; its dependency upon the target's equations 

< '  . >tmn and parameters and the noise statistics is emphasized in Fig. 1.1-2. 

The concept of optimal filtering is currently under investigation by the 

N.r.    for both the MK 68 and MK 86 gun fire control systems.   In future appli- 

plions, a problem of particular concern is the degradation in tracking filter 

p   i »i inance observed when a target performs significant unexpected maneuvers. 

1-3 
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Figure 1.1-2        Illustration of Factors Entering into 
Tracking Filter Design 

As stated above, the filter construction requires knowledge of the mathematical 

iiiodel of target motion; if the actual motion violates the model, then the filter 

is no longer optimal.   Modeling errors can also arise with respect to the tracker 

measurement noise statistics.   For example, the errors in radar measurements 

are to some extent dependent on the target reflection properties which are fre- 

quently not well known.   Hence, the statistical parameters (rms noise levels) 
noeded for designing the filter will be in error. 

In practice, modeling errors are unavoidable because complete infor- 

mation about a maneuvering target and the tracking sensor measurement noise 

is not available.   Thus optimal filter design is impossible and the problem is to 

design a suboptimal tracking filter which gives estimates that are close to opti- 

mum.   One common approach to suboptimal design is to experimentally select 

the fixed filter which gives the nest performance over the complete range of 

tracking situations that will be encountered, i.e. it is the best design "on the 

average".   Another approach is to use an adaptive design of the type illustrated 

in Fig. 1.1-3, in which auxiliary real-time computations are performed to 

1-4 
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{ . 

obtain better knowledge of the model parameters, and thereby improve the 

filter estimation accuracy on-line.   The purpose of this study is to investigate 

adaptive filtering techniques that are designed to track highly manuverable 

missile-type targets, and to compare their performance with conventional fixed 

filters over a range of target engagement situations. 

1.2   TECHNICAL APPROACH 

In this report, a realistic but comparitively simple target tracking 

problem is defined.   Tho optimum filter for this problem is discussed and 

several practical suboptimal designs are developed in detail.   These include 

both adaptive and fixed filters which were selected after a careful review of the 

technical literature; they represent original work a3 well as applications of 

available techniques.   A comparitive study of these designs is conducted using 

two related, but distinct, performance measu:es.   First, they are evaluated on 

the basis of estimation error — i.e., the error between the targets state 

variables (position, velocity, etc.) and their estimates.   This indicates how 

well each filter can "track" the current behavior of the target. Since the ultimate 

1-5 
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task of the tracking system is to predict the future position of. the target so that 

a gun pointing line c in be calculated, the various designs are also compared 

based upon their prediction error      i.e., the error between the future target 

po Jition and its predicted position,   ^he sensitivity of each design to changes 

in carget manuver behavior, range,      * sensor noise are studied as well as the 

effects of noise correlation and measurement data rate.   The results indicate 

the ultimate prediction accuracy possible with the various tracking filters for 

different target maneuver characteristics, and the tradeoff between algorithm 

complexity and tracking accuracy. 

1.3    ORGANIZATION OF REPORT 

In Chapter 2, the tracking problem is formulated and the assumptions 

and simplifications made for this work are discussed.   Chapter 3 describes the 

design of tracking filters based upon optimal filtering theory, discusses practical 

suboptimal fixed configuration filters, and describes the use of adaptive tech- 

niques as a means of obtaining better tracking accuracy.   Chapter 4 presents 

the simulation results obtained when each design is tested over a range of 

tracking conditions and its performance is measured in terms of estimation 

error and prediction error.   A summary of the results and conclusions are 

presented in Chapter 5. 

The appendices provide background material for the filtering techni- 

ques investigated.   Appendix A summarizes optimal filtering and prediction 

theory and Appendix B discusses the details of designing adaptive filters. 

1-6 
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2. TRACKING PROBLEM FORMULATION 

2.1 TARGET TRACKING AND PREDICTION 

Li Ws chapter, the sjjcific tracking problem to be studied Is devel- 

oped and discussed.   This simplified, but realistic, formulation is the basis 

upon which tracking filters are designed in Chapter 3 and evaluated in Chapter 

4. 

The principal elements of a two-dimensional tracking problem are 

illustrated in Fig.  2.1-1.    The radar (or other tracking sensor),  for 

«iie«>o 

TARGET 
TRAJECTORY 

y  - TARGET VELOCITY 

£ - TARGET ACCELERAT;.N 

, 0 - BEARING 

TRACKING SENSOR 

1 Figure 2.1-1 Tracking Sensor and Target Geometry 
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simplicity assumed to be fixed in incrtial space,   takes noisy measurements 

of the target range (r) and bearing (B) at regular intervals.   The tracking filter 

processes these measurements and estimates tue target's state variables — 

i.e,, those variables which describe the target's moflon such as its position, 

velocity, acceleration, etc.   Given these estimates the tracking filter is then 

used to predict the future position of the target by propagating the dynamic 

equations of the target forward in time from the current state estim    ;S.   The 

total error in predicted position depends upon tho length of the prediction inter- 

val (the projectile flight time),  unknown inputs l.o the target dynamics during 

this interval, errors in the target prediction model, and errors in the current 

estimft 3 of the target's states.   The ultimate objective is to minimize the 

prediction error.   The length of the prediction interval is determined by the 

target's trajectory, firing delays, and projectile velocity.   With the future 

inputs to the target dynamics unknown, the only way to reduce the prediction 

error is to model the target dynamics as accurately as possible and design a 

tracking filter which gives the best possible estimates of the target's current 

state. 

Modern optimal estimation techniques, such as the Kaiman filter, can 

be applied to the above tracking problem.   However, they must be used with 

some care because the filter design requires complete knowledge of the target 

dynamic equations and the statistics of all random inputs.   In this problem, the 

control policy or attacking strategy of the target is assumed to be partially or 

completely unknown.   The target might be following a deterministic guidance 

law or it might be taking evasive action in a random manner.   Another poten- 

tially unknown quantity is the level of measurement noise, which can depend 

upon atmospheric conditions and upon the size and shape of the target, its range, 

and its changing reflection properties as it maneuvers.    With all of these 

1  
Known sensor motion relative to inertial space can easily be subtracted out 
of the problem; hence no generality is lost with this assumption. 

2-2 
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uncertain elements in the problem, it is impossible to design an optimum 

tracking filter.   However modern estimation theory provides the basis upon 

which suboptimal filters can be designed to give fairly good performance over 

a wide range of possible conditions; the application of this technology to the 

fire control tracking problem is the goal of this report. 

The remainder of thla chapter formulates in detail the particular 

tracking problem to be älucieti m& defines the conditions under which the 

k tracking filters will be designed.   The simplifying assumptions used in this 

work are also discussed. k 
L 2.2     CHOICE OF TRACKING COORDINATE SYSTEM 

In this section the targets equations of motion and the tvacking 

measurement equations are expressed in botli rectangular and polar coor- 

dinates and a simplified target motion model based on polar coordinates is 

discussed. 

Referring to Fig. 2.2-1, the equations of motion of the target defined 

in rectangular coordinates arc 

x = ax (2.2-1) 
. . 
y =  a 

y 

• Assumkg that the radar or other tracking sensor takes noisy measurements, 

| zr and z , of the target's range and bearing, the measurement equations are 

I zr ■ V*2 + y2  *vr 

(2.2-2) 

ze = tan"   (y/x) + ve 

2-3 
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TARGET 
ACCELERATION 

►    X 

TRACKING SENSOR 

Figure 2.2-1        Target Acceleration Component Definitions 

where v   and v„ are measurement errors.   The range measurement, z , is 
r 6 r 

the true range, r, plus the range measurement noise, v , and z   is similarly 
T Q 

related to the true bearing, e.   Note that while the dynamic equations, 

Eq. (2.2-1), are linear in the rectangular (x, y) coordinates, the correspond- 

ing measurement equations, Eg, (2.2-2), are highly nonlinear. 

To derive the equivalent set of equations in polar coordinates the 

following transformation is used: 

x = r cos 0; y  =  r sin 8 (2.2-3) 

2-4 
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Differentiating each of these equations twice with respect to time and solving 
the resulting pair of simultaneous equations for rand b gives 

•2 r ■  re" +   x cos 6 + y sin 3 

*     -2fe      -x sin e + y cos e 
(2.2-4) 

: 

I 

L 

I   I 
I    t    ; 

Note that the target's acceleration components along and perpendicular to the 
line-of-sigjit   (see F?g. 2.2-1)   are respectively given by 

ar = x cos 6 + y sin B 

a.  -   «x sin e + y cos 0 

Substitution from Eq. (2.2-5) into Eq. (2.2-4) produces 

r =  re   + A_ 

v   -2re     ae 
G =  —- + — r r 

The measurement equations are 

zr = r + vr 

*e =e+ve 

{2.2-Sy 

(2.2-6) 

(2.2-7) 

(2.2-8) 

Thus, in polar (r,g) coordinate» the system has nonlinear dynamic equations 
b»*t linear measurement eqi itions. 

For the purpose of evaluating different target tracking filters, a sim- 
plified tracking model, defined in terms of polar coordinates, is employed. 

2-5 
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With respect to the target's angular motion, the term involving r in 

Eq. (2.2-7) is neglected, yielding 

8   = -± (2.2-9) 

This assumption is justified for evaluating design concepts because the pri- 

mary error in tracking © tends to be that caused by a  , the unknown target 
w 

normal acceleration — i.e., its acceleration perpendicular to the line-of- 

sight.   Likewise in Eq. (2.2-6) the primary error in tracking range is caused 

by a , and this equation can be approximated by 

r = ar (2.2-10) 

Since Eqs, (2.2-9) and (2.2-10) have the same form it is sufficient to test 

adaptive tracking schemes using Eq. (2.2-9) as the simplified model off the 

true system.   Once a promising adaptive scheme has been found then it can be 

easily applied to tracking a target that actually obeys Eqs. (2.2-6) and (2.2-7). 

In summary, the various filters in this report are tested against a 

target that obeys Eq. (2.2-9).   These tests are made at a constant range, r, 

and sensitivity studies are performed to determine how the estimation errors 
vary with range. 

2.3    MEASUREMENT NOISE AND TARGET REFERENCE MODEL 

To test tracking filters using a computer simulation, a measurement 

noise and target reference model must be defined.   In an actual tracking 

situation the measurement data comes from the sensor and only the filter is 

implemented in the tracking computer.   In a computer simulation, the source 

2-6 
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of the measurement data must be simulated as well.   The measurement noise 

and target reference model performs this function.   In this report the target 

reference model consists of the simplified tracking model   Eq. (2.2-9), and a 

variety of profiles for the target's normal acceleration, a .   The measurement 

noise reference model consists of errors calculated ".sing the computer random 

number generator.   These errorr are then added to the target's computed 

angular position, 0, to obtain noisy measurements, z  . 

Figure 2.3-1 is a block diagram oi' the target and measurement 

reference model.   For a particular test run the following must be defined: 

At 

vv 
e(0) 

*(0) 

- target range, (ft) 

- normal acceleration rate time history, (ft/sec ) 

- measurement interval, (sec) 

- measurement noise sequence, (rad) 

- initial angular position, (rad) 

- initial angular velocity, (rad/sec) 
2 

- initial normal acceleration, (ft/sec ) 

««(0) 9(0) 9(0) M 11613 

*•'«„• 

»•<«„> 

Figure 2.3-1 Target and Measurement Reference Model 
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The type of target trajectory produced by this mode! is determined by 

the choice of afl(t).   Figure 2.3-2 gives three examples of acceleration rate 

profiles that might be produced by a target with a large maneuver capability. 

Both a   and the resulting a   are plotted for a ten-second trajectory.   Part (a) 

of this figure, where the target has a constant normal acceleration, represents 

what will be called the nongvasiyr case.   Part (b) is referred to as a "mildly" 

evasive target which changes its acceleration with the maximum absolute value 
3 3 of a   being 50 ft/sec   and the rms value being 30 ft /sec   or about 1 g/sec. This 

ü 

is called the nominal case.     Finally, part (c) of the figure is the highly evasive 

case which represents tho worst evasive motion considered in trs study and 

anticipates the possible capabilities of future antishippLic? missile  threats. 
3 Here the maximum absolute value of sL is 150 ft/sec   and the rms value is 

3 e 

90 ft/sec   or approximately 3 g/sec.   The filters in this report arc optimized 

for the nominal case, and then tested for all three cases to determine their 

performance over the complete range of target behavior. 

Choosing the noise sequence, v (t ), defines the reference model for 

the measurement noise process.   The set of times, t , are the sampling; or 

measurement times.   Two types of models are used in this report.   The first 

is an uncorrelated, or white, gaussian sequence.    Here the samples are 

chosen from a zero mean gaussian random number generator where the indi- 

vidual members of the sequence are independent of each other, and the rms 

value of the sequence is a .   That is, 

Efv.(t )] =     0 for al! n By n 

( 0 R /m 
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The second noise model is a correlated or "colored" gaussian sequence, having 

correlated samples generated by passing a white sequence like that defined 

above through a low pass filter.   Specifically, the measurement noise sequence 

is generated by driving the difference equation for a low-pass filter with the 

output of a gaussian random number generator.   The equation is 

VV = e"At/Tve(tn-i) + Vi (2-3"1) 

where w   is a zero mean gaussian white noise sequence, r is the correlation 

time, At is the measurement interval, and v   (t ) is the measurement noise at 6   n 
time t .   To keep the rms value of vrt (t ) equal to tr«e nominal value, o , the n r 9   n    ^ '    v* 
rms value of w , denoted c, is given by 

a = |/l - e"2*t/r   a (2.3-2) 

Thus v   (t ) is a correlated, or "colored", gaussian noise sequence with an 
ö   n 

rms value equal to j   and a correlation time of v seconds- 

In the tracking problem, the sensor (e.g., radar) receiver noise is 

usually wide-band so that white gaussian noise is a good model.   However the 

total measurement error can also contain low frequency, correlated noi.se 

components caused by a slowly varying target cross section, due to the target's 

own motion.   These considerations motivate the two measurement noise models 

above. 
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3. TRACKING FILTER DESIGN 

3,1    OPTIMAL FILTER DESIGN AND PERFORMANCE 

The best tracking algorithm design possible in terms of achieving the 

minimum mean square estimation error is the Kaiman filter outlined in 

Appendix A.   This design requires that the tracking system dynamic and 

measurement equatic s be completely known and linear.   In addition, the 

driving functions to the system differential equations must be white gaussian 

noise processes with known mean and spectral density and the measurement 
noise must be a gaussian sequence with known mean and jovariance.   If these 

conditions are met, the tracking filter design is completely deterrrmed. 

In this study, the filter designs are based upon the simplified linear 

model 

».1 
zJt) *(tn> + VV 

(3.1-1) 

(3.1-2) 

where the range r  is assumed known.   Equations (3.1-1) and (3.1-2) have 

the same form as the reference model defined in Chapter 2; however the input 

to the reference model -- the target acceleration a    in Fig. 2.3-2 -- is not 
6 

accurately represented as white noise and the statistical properties of the 

measurement noise sequence, v  (t ), may not be known accuratelv.   These 6   n 
facts prevent the design of an optimal tracking filter. 
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It is possible to artificially design an optimum filter fo*- the reference 

model by assuming that the target acceleration rate is known and the measure- 

ment noise is gaussian white noise with known covariance.   An analysis of this 

case gives «. measure of filter performance under ideal conditions,   Equations 

(3.1-1) and (3.1-2) are the system dynamic anc* measurement equations, where 

a   and r are given and the covariance (in this case the mean square value) of 
2 v    (t ) is a .   The dynamic equation can be put into state variable form cor- 

D        II V 

responding to Eq. (A. 1-1) of Appendix A by defining 

'■ 

F(t) =   F = 

rxj(t)- -e(t)- 

x(t) = 1 x2(t) eft) 

0   1     0 " [o 
0   0   l/r G(t)u(t) = 0 

0   C     0 J Lo 

and 

b(t) = 0 

ae(t) 

Then Eq. (3.1-1) becomes 

x(t)  =  Fxft)ib(t) (3.1-3) 
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The measurement equation is put in the form of Eq. (A. 1-8) by defining 

zn = Ze(tn> 

vn = ve(tn) 

H   =   Hn  =   fl   0  0] 

Then 
z    =  Hx(t )+ v (3.1-4) n -v n'       n v ' 

Since measurements are taken only at discrete instants of time it is convenient 

to express Eq. (3.1-3) in discrete time also.   It is assumed that the tracking 

filter is implemented on a digital computer so this formulation will be most 
natural and efficient. 

Assuming a uniform measurement interval of length At and using the 

definitions of Appendix A, Eqs. (3.1-3) and (3.1-4) become 

—n —n-1    —n-i 

z     =   Hx   +v n ~n      n 

(3.1-5) 

where 

FAt <J> = e 

r*n 
bnl=   / e      n       b(r)dr 

t  -At n 
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To complete the definitions required for the filter equations note that the driv- 

ing noise covariance matrix. Q   - is equal to zero (see Eq. A. 1-7) and 

Rn  =  Efvnl  =   al       (lxl matrix) 

where a   is the rms measurement noise level of the reference model.   By 

assuming values for the filter initial conditions, XQ(-) and PQ(-), the filter 

equations given in Fig. A. 1-1 are completely defined.   Again, it is empha- 

sized that both a   as a function of time and a , the rms value of measurement 

noise used in the reference model, must be known to implement the optimum 

filter. 

The filteiing algorithm for the case defined above is 

where x   is the optimum state estimate of x   immediately after the measure- 

ment z^ is taken and k   is the Kaiman gain vector defined by Eqs, (A. 1-14), 

(A. 1-15) and (A. 1-16).   The filter performance is shown in the figures that 

follow and is based upon the following parameter values: 

a     =1.4 mrad  (rms measurement noise level) 

I k At    = 0.1 sec      (measurement sampling interval) 

, , r     =  10,000 ft   (target range) 
(3.1-7) 

xQ   =   0 (initial state estimate) 
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with 

X(0)   = 

2.0 x  10~3 rad 
-2 4.0 x  10" rad/sec 

m 2.0 x 102 ft/sec2 . 

v-> 
2.0x10"6rad2 

0 

0 

7.1 x10"4 (rad/sec)2 

0 

(3.1-7) 
cont. 

2.7 x 104 (ft/sec2)2 

Figure 3.1-1 shows the target position, velocity, and acceleration esti- 

mation errors as functions of time for a ten-second simulation using the 

nominal case for a   shown in Fig. 2.3-2(b).   Part (a) of the figure shows the 

angular estimation error on the right vertical scale and the position estimation 

error (measured normal to the line-of-sight) on the left vertical scale.   For a 

range of 10,000 ft. the small angle approximation efl = sin (ej is valid since 
A 0 8 

e   = 9 - 0 is much less than 5 degrees.   Thus 

re0  =   r sin (e0) 

gives the position error in feet.   Part (b) of the figure makes the same approx- 

imation to obtain the velocity error from the angular velocity error. 

Since the target acceleration rate is assumed known, it is accounted 

for exactly by the term b^ in the filter equation, Eq. (3,1-6); therefore the 

errors shown in the figure are independent of the particular choice of ä  (t). 
8 

This is a basic property of the opümal filter since the equtions which propa- 

gate and update the estimate of the error covartance matrix, P , (Eqs. (A. 1-15) 
and (A. 1-16)), are independent of the system input vector b(t), which contains 

a  (t).   Part (d) of Fig. 3.1-1 shows how the mean square estimation errors 

converge towards /ere as calculated by the filter covariance equations.   These 
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(a) Position Estimation Error (b) Velocity Estimation Error 

i» 

A     POSITION (HI7 

■      VtlOCITY Id MCl' 

C      ACCl II RATION  Ift.'WcV 

(c) Normal Acceleration Estimation Error (d) Mean Square Values of Estimation Error 

Figure 3.1-1 Estimation Errors and Their Mean Square Values versus 
Time for the Optimal Filter: Nominal Trajectory 
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curves are in qualitative agreement with the actual estimation errors shown in 

parts (a), (b), and (c) of the same figure. 

Note that the estimation errors in Fig. 3.1-1 parts (b) and (c) become 

small relative to their initial values after approximately two seconds.   The 

rms values given for the errors are calculated using only the last eight seconds 

of the simulation to remove the effect of this initial transient. For the purposes of 

target prediction discussed later, notice that the three estimation errors are 

highly correlated; that is, when the normal acceleration estimation error is 

large and positive, so are the position and velocity estimation errors.   This 

tends to cause the components of the rms prediction error, contributed by the 

individual estimation errors, to combine additively.   Section 4.3 develops this 

point in more detail. 

Figure 3.1-2 gives a clearer illustration of the convergence of the 

normal acceleration estimate as a function of time relative to the actual value 

of normal acceleration.   Note the rapid convergence to a small percentage 
error. 

I 
UJ 

8 < 

300 

>~i. 
200 

100 
IA 

r RMS ERROR - 3.5 lt/*c?                           >v                         A 

0 r              i ,J_                   -L-                   _L 

Figure 3.1-2 
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TIME (*c) 

10 

Normal Acceleration and its Estimate for Optimum 
Filter:  Nominal Trajectory 
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The results in this section demonstrate the accuracy with which the 

optimum filter can track the target's states if sufficient knowledge is available 

to construct the filter.   In the next section, practical designs will be discussed 

where this knowledge is not available. 

3.2    PRACTICAL FILTER DESIGN AND PERFORMANCE 

The last section demonstrated how an optimum filter would work if 

the target and measurement model were accurately known.    The primary 

unknowns which make the optimum design impractical are a (t), the time 

history of acceleration rate, and a  , the true rms measurement noise level. 

This section assumes that a   is known and the major problem is dealing with 

the unknown target normal acceleration.   The problem of a  being different 

than its assumed val» e is left until Section 4.2 where measurement noise 

sensitivity is discussed. 

One common method of dealing with the unknown input ä   is to assume 
0 

that it can be approximated by white noise and construct a Kalman-type track- 

ing; filter as described in Appendix A.   Recall that the reference model equa- 
tion is 

x =  Fx + b(t) (3.2-1) 

A proposed filter design is based upon a model of (tie form 

im ■ r*m**m (3.2-2) 

where the notation x   (t) denotes the model representation for x(t) and 

u(t) = 

0 ■ 

0 

LV4)J 
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The quantity u„(t) is assumed to be a gaussian wnitc noise process with 

E[u3(t)u3(r)] = qö(t-T) (3#2-3) 

That is, the unknown input aflis modeled as gaussian white noise with a spec- 

tral density equal to q, (see Appondix A).   Recalling Fig. 2.3-2, it is clear 

that the a0 signal shown does not look like white noise.   However, the    hite 

noise moJel has two advantages.   First it does not increase the order (number 

of states) of the filter beyond that required for the optimum filter discussed in 

the last section.   Second, if the target has a constant acceleration, then b(t) = 

0 in Eq. (3.2-1) and can be modeled exactly in Eqs. (3.2-2) and (3.2-3) by 

setting q = 0.   Furthermore, the white noise model is a good approximation to 

sL if the effective bandwidth of the latter is large relative to other dynamic 

effects. 

The filter design based on Eqs. (3.2-2) and (3.2-3) is the same as 

that discussed in Section 3.1 except that b(t) is unknown and not included in the 

filter equations and the matrix O , which originally was zero, now becomes 

t ro   0   0 
%=fn enn-r) 0 0 0 

0   0   q tn-At 

(/*»-" < 

T 

j   dr 

The filter algorithm is 

I 

in = *x    1   + k   fz   - H*x    ,] -n-1      -n ' n -n-lJ (3.2-4) 

where k   is the Kaiman gain sequence defined by Eqs. (A. 1-14), (A. 1-15), and 

(A. 1-16) when they are based upon the design model.   Note that the Kaiman 

gain sequence depends upon the choice of q.   This algorithm will be called the 

suboptimal third-order fixed filter. 

The value for the spectral density, q, chosen for the suboptimum filter 

in Eq. (3.2-4) can be any positive number; however the particular value chosen 
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effectively determines the filter bandwidth and is therefore very important 

to the performance of the filter.    A low value of q results in a low-band- 

width tracking filter which can accurately track targets that mamiver very 

little — i.e., the rms value of a   is small and target motion is low frequency 

in nature so a low-bandwidth filter can be used to eliminate the measurement 

noise from the data.   On the othe~ hand, if the target is nighly evasive and    s 

motion has high frequency components, then a large value of q is needed so that 

the filter has a high bandwidth and can respond rapidly to the target motion. 

In this case, for a fixed measurement rate and measurement noise level, even 

the best choice of q will give poorer tracking accuracy than the case where q 

is small and the target manuvers very little.   Thus the proper choice of q, and 

consequently the filter bandwidth, is dependent upon how evasively the target 

maneuvers.   Hereafter, q will be referred to as the design parameter for the 

third-order fixed filter. 

To be more specific, Fig. 3.2-1 shows the results of a series of 

simulations for the same conditions given in Eq. (3.1-7), except that the sub- 

optimal filter derived above is employed.   The trajectory for a (t) chosen here 
ö 

is that of Fig. 2.3-2(b), the nominal case.   The figure shows the mean square 

estimation errors, again calculated by time-averaging over the last eight 

seconds of each run to eliminate the effect of the initial transient.   The mean 

square estimation errors of angular position, angular velocity, and normal 

acceleration are plotted for a wide range of choices of q, the model spectral 

density which must be selected by Uie filter designer.   AH three curves are 

minimized at approximately the same value of q.   Thus, there is a "best" 

choice for q for this 'trajectory; but it cannot be determined unless a  (t) is 

known a priori. 

Figure 3.2-2 shows how the mean square normal acceleration esti- 

mation error varies as a function o* q, for the different target trajectories 

shown in Fig. 2.3-2.   The bottom curve in Fig. 3.2-2 is the nonevasive case 
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Figure 3.2-2 Trajectory Sensitivity of the Third-Order 
Fixed Filter 

(Fig. 2.3-2(a) where the target acceleration is constant.   This curve indicates, 

as stated earlier, that the optimum choice of q is zero for the nonevasive case. 

The middle curve corresponds to the nominal trajectory (Fig. 2.3-2(b)) and the 
3 

best q is near 10 .   Finally, the top curve corresponds to the worst-case 

evasive trajectory (Fig. 2.3-2(c)) with the best value of q - 104.     Recall that 
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li 
the optimum filter of Section 3.1 gives the same rms estimation errors re- 

gardless of the time-history of a  (t) because a   (t) is assumed known; this is 
8 8 

evidently not the case for the suboptimal filter evaluated in Fig. 3.2-2.   The 

filter's performance deviates farther from optimum as the rms value of ä (t) 
8 

increases, even if the best choice of q is known. 

To further clarify the operation of the third-order fixed filter design, 

it is useful to plot the target normal acceleration and its estimate as a function 

of time for the nominal trajectory for three different values of q.   This is done 
2        5 

in Figure 3.2-3 for q equal lo 7.5, 750, and 75,000 ft   'sec  .   ^he rms esti- 

mation error differs significantly between these three plots.   Part (a), which 

*• is the low q case, corresponds to a filter having a low bandwidth.   Observe 
A 

that the estimate afl has difficulty tracking rapid changes in a«, however, the 

time history of afi is very smooth indicating that most of the measurement 

noise is suppressed by the filter.   By comparison, Fig. 3.2-3(c), corresponds 

to a relatively high bandwidth filter.   Here afl can track aQ when it varies 

rapidly, but a lot of the measurement noise gets through the filter and degrades 

the estimate.   Fig. 3.2-3(b) is a medium bandwidth filter and represents a 

nearly optimum tradeoff between tracking ability and the amount of measurement 

noise that corrupts a«; thus it has a lower rms estimation error than the other 

two cases. 

The third-order fixed filter models su as white noise and consequently 

aft as the output of an integrator driven by white noise; in this model the target 

acceleration is called a random walk process.   In an effort to improve the 

filter's performance, other models for aQ can be investigated.   For example, 

in another set of simulations, a6 was modeled as the output of a low pass filter 

with time constant, T, driven by white noise with spectral density, q; i.e., 

*e =   - f *e   ♦   -z "3 (3.2-5) 
v'T 
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In this case two parameters must be selected, 7 and q.   A filter based upon 

this model was simulated using the highly evasive trajectory in Fi£. 2.3-2(c). 

The mean square normal acceleration estimation errors as functions of the 

parameters in Eq. (3.2-5) are shown in Fig. 3.2-4.   For comparison, the 

results for the random walk acceleration model are also given.   It is clear 

from this figure that the random walk model yields better performance than 

the more complex low-pass model just described.   Note also that the various 

low-pass models are slightly more sensitive to the incorrect choice of q and 

approach the random walk model as r is increased. 

Another possibility is to try a higher-order acceleration model. For 

example, in Fig. 3.2-5, a is represented as the output of a double integrator 

driven by gaussian white noise with spectral density, q.  Using this model, the 
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Doubly Integrated Gaussian White Noise Model for 
Target Acceleration 

equations of Appendix A give a fourth-order fixed filter design.    Figure 3.2-6 

shows the rms normal acceleration estimation errors achieved with this model 

for the three test trajectories and compares these errors with those obtained 

using the third-order fixed filter that assumed a random walk acceleration 

model.   Again it is clear that in each case, the simpler third-order filter 

works better than the fourth-order filter. 
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These studies indicate that the fixed filter design, based upon the 

random walk model for afl shown in Fig. 2.3-1 is preferable if the tracking 

situation is similar to that tested here; i.e., for the given data rate, measure- 

ment noise level, and target maneuver characteristics.   The main value of 

these studies is that they show the type of procedure that must be followed to 

design a filter for a particular class of tracking situations.   Clearly the third- 

order suboptimal filter cannot perform nearly as well as the ideal, but im- 

practical optimum filter described in Section 3.1; however it appears to do 

about as well as possible if the target maneuver time-history is not known a 

priori.   The primary design problem is the choice of q since its best value is 

related to the unknown rms value of &Q over the trajectory.   In the next section 

adaptive designs are considered in an attempt to overcome this problem. 

3.3    ADAPTIVE TRACKING FILTER DESIGN 

Two steps are important in the design of a target tracking algorithm. 

First, a mathematical model for target acceleration must be chosen based 

upon theoretical considerations and experimental work, as described in pre- 

vious sections.   This model must be general enough to cover all anticipated 

target acceleration profiles.   Second, a tracking filter must be designed based 

upon this model, the target's equations of motion, and the measurement error 

statistics.   Its performance should be as good as possible despite changes in 

the target's acceleration profile, errors in the particular dynamic model 

selected for target acceleration, and variations in the measurement noise level. 

One approach is to experimentally determine the values of the filter design 

parameters that give the best average performance over all anticipated track- 

ing situations; alternatively the parameters could be optimized for the worst 

case—i.e., for the most violent target maneuvers and highest measurement 

noise level.   However, a fixed parameter design based on either of these 

3-17 

IT. -  
«J—Ä* 

^Hti 



( 

L 
7 

I. 

i 

THE ANALYTIC SCIENCES CORPORATION 

procedures is likely to perform significantly worse than a design matched to 

the actual target maneuver characteristics encountered. 

A potentially better design than the fixed parameter filter is an adap- 

tive filter which can identify each particular tracking situation as it arises 

and adjust itself for achieving the best performance.   For example, if the type 

of target trajectory could be identified on-line, then the proper choice of the 

bandwidth parameter q for the third-order filter could be made.   Many different 

adaptive filtering techniques have been investigated in the past ten years and an 

extensive literature review was conducted to determine which methods might be 

useful for the target tracking problem treated here.   Three techniques which 

seem promising are described in this section and computer simulation results 

are presented in the next chapter.   All of these methods start by assuming 

that the filter is to have the same basic structure as the optimal Kaiman filter 

outlined in Appendix A.    They differ in how they change or augment this 

structure to make the filter adjust for modeling errors and changing conditions. 

References 1 through 17 contain the adaptive filtering theory found to be per- 

tinent to the tracking problem.   The techniques described in this report were 

developed from this background and represent both applications and extensions 

of existing techniques. 

3.3.1    Adaptive Bandwidth Filter 

The general structure of the adaptive bandwidth filter is shown in 

Fig. 3.3-1, consisting of two connected filters.   Filter 1 is a fixed configura- 

tion fourth-order Kaiman filter which produces estimates of the target evasive 

maneuver level, that is, the rate of change of target angular acceleration, afJ. 

Filter 2 is an adaptive bandwidth, third-order Kaiman filter which estimates 

the target's angular position, angular velocity, and normal acceleration. 

The bandwidth of the latter is controlled by the estimate of target evasive 
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maneuver level obtained from Filter 1.   Thus if the target is not evading and 

afi is small, then the estimate a0 will be small and Filter 2 is adjusted to 

have a low bandwidth to achieve good noise suppression.   If the target begins 

to change its angular acceleration rapidly, Filter 1 will reflect this fact in its 

estimate of acceleration rate and will accordingly raise the bandwidth of Filter 

2.   Essentially this adaptive filter tries to detect how much the target is man- 

euvering and then adjusts itself to the proper bandwidth for that maneuver 

level. 

The design of the fourth-order fixed filter is the same as that discus 

sed in Section 3.2 where target acceleration is modeled as the output of a 

double integrator driven by white noise with a spectral density designated by 

the parameter q; see Fig. 3.2-5 for a block diagram of this model. 

Recalling that the third-order filter, investigated in Section 3.2, 

develops appreciable acceleration estimation errors when the target maneu- 

vers evasively, it is expected that the estimates of acceleration rate from 
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the fourth-order filler will not be very accurate.   However, the philosophy of 

this design does not require accurate estimates of zL.   What is needed is a 

general idea of its magnitude so that the bandwidth of the third-order filter 

can be appropriately adjusted.   Assuming that a rough estimate is available 

for a«, the design of the variable bandwidth Kilter in Fig, 3.3-1 is now 

discussed. 

Filter 2 is a third-order Kaiman filter which models target accelera- 

tion as the output of an integrator driven by gauss5an white noise with a spec- 

tral density of q.   For a constant q, this is the same third-order filter des- 

cribed in Section 3.2.   In that section it was determined that the best choice 

of q was related to the rms value of the acceleration rate for a particular 

trajectory.   For a highly evasive trajectory, the rms value of ä~ is large and 

a large value of q is required to minimize the rms estimation error.   This 

effectively provides a large filter bandwidth permitting the filter estimates to 

track the changing target acceleration.   Likewise for a nonevasive trajectory 

where the acceleration rate is small, q should be small so that the filter has a 

low bandwidth to achieve good noise suppression.   In the adaptive design of 

Fig. 3.3-1, q is calculated on-line using the estimates of JL from the fourth- 

order filter, in the manner described below. 

Figures 3.3-2 and 3.3-3 show the results of a series of simulations 

made to find the optimum choice of the design parameter assuming the target 

acceleration rate is known.   Figure 3.3-2 is a plot of the steady state mean 

square normal acceleration estimation error produced by a third-order fixed 

filter which is tracking a target whose acceleration rate is held constant,   Each 

curve is for one particular value of a   and shows how the estimation error 
0 

varies with the choice of q.   Except for the fact that acceleration rate is con- 

stant, tbj simulation conditions here are the same as those specified in Section 

3.1, Eq. (3.1-7).    It is clear from Fig. 3.3-2 that for each value of a« 
6 
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Figure 3.3-3 Optimum Design Parameter versus Target 
Acceleration Rate:   Derived from Fig» 3.3-2 

there is an optimum choice of q.   The dashed l*ne in the figure is the locus of 

the minima of the curves.   The solid curve in Fig. 3.3-3 is a plot of the best 

value of the design parameter, designated q*, for each value of acceleration 

rate.   This shows how to choose q for the variable bandwidth filter if the 

target acceleration rate is known.   To simplify the implementation, the dashed 

curve approximation in Fig. 3.3-3 is used,    'ich is described by the equation 

q*  -  4.8 (aer (3.3-1) 

This approximation is justified because it results in only small errors in the 

choice of q*; much larger errors will be incurred in estimating the value of 

a   to be used in Eq. (3.3-1).   The fact that q* depends upon the square of the 

acceleration rate is in agreement with the general relationship between q and 

the rms value of a   indicated in the experiments of Section 3.2. 
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\ 

Replacing a  by ä   in Eq, (3.3-1), the third-order filter bandwidth 
u 0 

parameter is adjusted according to 

q =  4.8 (I/ (3.3-2) 

and the filter gains k , needed to mechanize Eq. (3.2-4), are computed on-line 

as shown in Fig. 3.3-4. 

R-11915 
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FILTER 

Ecj. (3.3-2) Eqs. (A.1-14), 
(A.1-15), (A.1-16) 

*n 

ESTIMATE FROM 
FOURTH-ORDER 
FIXED FILTER 

\ 

Eq. (3.2-4)        f=b 

KALMAN 
GAIN SEQUENCE 

Figure 3.3-4 Functional Diagram of Adaptive Bandwidth Filter Design 

The design in Fig. 3.3-4 is based upon the specific set of experi- 

mental conditions defined in Eq. (3.1-7).   Perhaps the quantity that is least 

accurately known is the rms value of the measurement noise,   if a different 

level of nois« were used in the reference model then Eq. (3.3-2) would have to 

be rederived.   Thus, this adaptive design will be sensitive to inaccurate know- 

ledge of the measurement noise statistics. 

Finally, the bandwidth parameter, q, for the fixed fourth-o; der fiter 

must be selected.   Si*-?e this quantity is to remain fixed and its optimum value 

depends on the rms acceleration rate, there is no a priori "best" choice. 

Here its value is arbitrarily picked to yield the best estimates of afi for the 
ü 

nominal trajectory in Fig. 2.3-2(b).   This value is determined from Fig. 3.2-6 
2       7 to be approximately 7.5 ft /sec .   This completes the choice of design par- 

ameters for the adaptive bandwidth filter to be used in tht simulations described 

in the next chapter, where the various adaptive techniques are compared. 
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3.3.2     Hypothesis Testing Filter 

This section presents an application of the general hypothesis 

testing theory discussed in Appendix B.   The hypothesis testing filter partially 

circumvents the problems of fixed filter designs by optimizing the filter design 

parameters on-line.   It assumes 'hat over some time interval, T, the optimum 

filter is one member of a set of N possible known filters — i.e., is one of N 

hypotheses.   These filters are run in parallel and an algorithm operates on 

each set of estimates to calculate the probability that each hypothesis is cor- 

rect.   The final state estimate is the sum of the estimates from all N filters, 

each weighted by the probability that the corresponding filter is optimum. 

Figure 3.3-5 shows the structure of the hypothesis testing filter for 

the target tracking problem.   For the purpose of limiting the amount of com- 

putation required, only three parallel filters are considered, each based on 

the third-order rcodel developed in Section 3.2.   Different values of the design 
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Figure 3.3-5 Hypothesis Testing Filter 
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parameter q are chosen to represent different hypotheses about the target 

behavior.   The low, medium, and high values of q shown in the figure cor- 

respond to low, moderate, and high target evasive maneuver levels. 

i 
Following the notation of Appendix B, H   is the hypothesis that Filter 

2 3 1 is optimum over the interval T.   H   and H   are designated in a similar 

manner.   The interval measurement history, Z , up to and including the most 

recent measurement z     is the set 
en 

n     ] e n-m-1 • v. • \ i 
where m is the number of measurements taken in the interval. 

Given the *hree estimates of the system state x   during the interval, 
* 1       2 A 'A ~~^ 

denoted by x  , x   , and x   , and generated by Kaiman filters designed accord- 

ing to the procedure described in Section 3.2, the probability of each hypothesis 

conditioned on the measurements, denoted by p JH |Zn( , is given recursively 
by 

n' 

p|Hk|Zj    - 

f(V* Vl)p{Hk|Zn-l} 
~3  

Zf(VHk' Vl)p{Hk|Zn-l} 

(3.3-3) 

where f (v,    |H , Z    - J is a known normal probability density function defined 

in Appendix B.   In this manner, the probability that each hypothesis is true is 

calculated at every sampling time in the interval. 

The estimate produced by the hypothesis testing filter immediately 
after a measurement is 
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k= 1 

with the corresponding covariance matrix given by 

(3.3-4) 

Pn(+) = EP"k(+,PfHk|Zn} 
k= 1 

(3.3-5) 

To complete the filter design, it is necessary to select the reset 

interval, T, and the a priori probabilities  needed to initialize Eq. (3.3-3) at 

the beginning of each interval.   The interval T should reflect the approximate 

length of time over which the target's behavior is likely to remain constant. 

The a priori probabilities for each hypothesis should be chosen using any 

knowledge available which indicates the relative probabilities of the various 

types of target behavior.   For example, if it is reasonably certain that the 

target will have a highly evasive trajectory, then the a priori probability of 

the third hypothesis should be set much higher than that of the others. 

At the end of each interval the filters are reset to test for the possi- 

bility that a change has occured in the target manuver characteristics.   This 

is done by resetting all three estimates and eovariance matrices to the com- 

bined estimate and combined covariance matrix   s calculated by Eqs. (3.3-4) 

and (3.3-5) at the end of the interval, and the probability of each hypothesis is 

reset to its a priori value.   This procedure allows the tracking filter to periodi- 

cally adapt to new target behavior. 

This design has two disadvantages.   First, it requires approximately 

three times a.c; much computation as the third-order fixed filter discussed in 

Section 3.2 and about 30'/ more computation than the adaptive bandwidth desijm 
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which only requires that two filters be implemented.   Second, it will be demon- 

strated in the results of Chapter 4 that this design is very sensitive to the 

proper choice of the design value for the rms measurement noise level; that is, 

if the noise level is not known accurately and the filter is designed assuming 

the wrong value, the estimation accuracy is seriously degraded.   This limits 

the use of the hypothesis testing fi'ler to tracking situations where the meas- 

urement noise level is fairly well known ? priori.   Otherwise, this design is 

theoretically sound and can be expected to work quite well as long as the assump- 

tions upon which it is based are not seriously vioteted. 

3.3.3   Residual Testing Filter 

The residual testing filter is similar to the design discussed in the 

last section; its complete details are given in Appendix B.   The motivation for 

this particular design is the noise sensitivity problem discovered when the 

hypothesis testing filter was tested foi various rms measurement noise levels; 

it is an attempf to retain the advantages of the hypothesis testing scheme while 

reducing its noise sensitivity.   Figure 3.3-6 shows the structure of the residual 

( testing filter, where the individual filters 1, 2, and 3 are exactly the same 

design as these in Fig. 3.3-5.   That is, Filters 1, 2, and 3 are designed for 

low, moderate, and high target maneuver levels, respectively.   The difference 

between this approach and the hypothesis testing filter is the manner in which 

the final state estimate is calculated from the three individual state estimates. 

This residual testing teclmique does not  attempt to calculate the 

probability that one of the individual filters is optimu-o over an interval. 

Instead it observes each state estimate over the interval T, at the end of which 

a decision is made as to which estimate is best.   Over the next interval, the 

residual testing Tiller's output is the output of that individual filter which worked 

best over the previous interval. 
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Figure 3.3-6 Residual Testing Filter 

The best of the three parallel filters over an interval is defined to be 

th:\t one whose residual sequence has the smallest mean square value.   Elements 

of the residual sequence for the k    filter are defined as 

7n . - H; <-> (3.3-3) 

The mean square value is computed from the residual sequence using 

n + M-1 o 
-k      1   v* 

I  k\2 (3.3-7) 

n = II 
Ü 

where n   is the value of the time index n at the beginning of the interval, T, 

and M is the total number of samples in the interval.   This calculation is per- 

formed for each filter, i.e., k: 1, 2, and 3, and at the end of the interval thai 

fitter which has the lowest value of g   is judged host.   Its estimates are the 
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output of the residual testing filter over the next interval.   The justification for 

this adaptive procedure is discussed in detail in Appendix B. 

At the end of every interval, each filter is reset to the state estimate 

and covariance matrix of the filter which is judged to be best.   This is done to 

permit adaptation to changes in target behavior.   The design of the residual 

testing filter is completed by choosing the reset interval, T.   This must be a 

practical compromise between the objective of achieving rapid adaptation, 

which requires a small T, and achieving an accurate estimate of the rms level 

of the residuals, which requires a reasonable averaging interval in Eq. (3.3-7). 

The computational requirements of the residual testing scheme are 

essentially the same as those for the hypothesis testing filter.   However, it has 

the advantage that it is lc ss sensitive to differences between the actual and 

design values for the rms measurement noise level than the other adaptive 

filter design techniques as demonstrated by the simulation results presented 

in the next chapter. 

In this chapter, praetical-suboptimum target tracking filters were 

designed and discussed in relation to the optimum design.   Both fixed and 

adaptive filter structures applicable to the target tracking problem were con- 

sidered.   In the next chapter, these designs are compared and evaluated in a 

variety of tracking situations to see which of them would make good target 

tracking filters in a practical application. 

3-29 

 . ■A     i      in i — 



L 
THE ANALYTIC SCIENCES CORPORATION 

4. TRACKING FILTER PERFORMANCE EVALUATION 

L 

I 

This chapter gives the results of simulations designed to compare 

the performance of the fixed and adaptive tracking filters discussed in the pro- 

ceeding chapter.    In the first half of this chapter the results are presented in 

terms of the accuracy with which the filter can estimate the target's position, 

velocity, and acceleration and in the second half these same results are pre- 

sented in terms of the accuracy with which the filter can predict the future posi- 

tion of the target»   The filters are evaluated for different levels of target 

evasive behavior, levels of measurement noise, data rates, amounts of correla- 

tion in the measurement noise, and target ranges.   In Section 4.4, tho sensi- 

tivity of prediction error to projectile velocity and target closing velocity is 

also discussed.   The advantages and disadvantages of each filter are analyzed 

and related to the specific properties of each design. 

4.1    TRACKING FILTER EVALUATION PROCEDURE 

To give a fair and logical comparison between several filters, it is 

necessary to define a nominal tracking situation.   Each algorithm is designed 

based upon this nominal situation; performance results are then compared for 

a variety of different operating conditions.   The following set of conditions 

define the nominal tracking situation: 

•      The target's normal acceleration profile is <>iven in 
Fig. 2.3-2(b), the nominal case with the rms value 
of acceleration rate (a ) equal to 30 ft/sec**. 

0 
.     The target's range (r) is 10,000 ft. 

4-1 

~--~rr mrtrr «..»    -r  ■--- —  



u 
THE ANALYTIC SCIENCES CORPORATION 

. 

! 

1 

: 

The measurement noise sequence v (t ) is a white 
0 n 

gaussian sequence with an rms level of a   s 1.4 

mrad, i.e., the rms angular measurement error 
is 1.4 mrad, or equivalently, the rms position 
measurement error normal to the line-of-sight at 
10,000 ft is 14 ft. 

The data rate is 10 measurements per second. 

The initial estimate at t = 0 for all filters is x   =0. 

The initial covariance of the estimation error at 
t = 0 for all filters is 

v-> 
2.0xl0'6(rad)2 

0 

0 

0 0 

7.1xI0"4(rad/«cc)2 0 

0 2.7xl04(fl/«ccV 

The initial condition on the target is 

L 

x(0) = 

'2.0X10"5 (rad) ■e(o) 

4.0 xlO"2 (rad/sec) s 6(0) 

.2.0xl02 (ft/sec2)_ LV0) 

This nominal tracking situation is selected to be generally representative of 

digital gun fire control system capabilities.   The tracking filters are evaluated 

by holding all of the above conditions constant except one, which is varied to 

test the sensitivity of each design to a change in that condition only.   Six dif- 

ferent tracking filter designs were investigated.   These are specified below. 

Filter A — Third-Order Fixed - Filter A is the third-order fixed 

design discussed in Section 3.2 which models the target's normal acceleration 
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as the output of a single integrator driven by white gaussian noise with a 
2       5 spectral density of q.   For this design, q is chosen to be equal to 750 (ft /sec ), 

which is approximately the best value for the nominal target acceleration pro- 

file, as indicated by Fig. 3.2-1. 

Filter B — Adaptive Bandwidth - The adaptive bandwidth filter is dis- 

cussed in Section 3.3.1.   Its structure is specified in Figs. 3.3-i and 3.3-4. 

Filters CE, CL, and CH — Hypothesis Testing - The design of the 

hypothesis testing filter is discussed in Section 3.3.2 and its structure is 

shown in Fig. 3.3-5.   In each case the reset interval chosen is T = 2 seconds. 

This choice is made because any shorter interval does not give the probability 

calculation algorithm, (Eq. (3.3-3)), sufficient time to converge to the correct 

hypothesis in the nominal tracking case, whereas a longer reset time reduces 

the filter's ability to adapt rapidly if the tracking situation changes.   Filters 

CE, CL, and CH are exactly the same design except for the choice of the a 

priori probabilities, p?H {, at the beginning of each reset interval.   Filter 

CE assumes that all three of the hypotheses are equally probable at th2 start 

of each interval.   Filter CL assumes that there is a high probability that the 

low maneuver filter is optimum; specifically 

pJH1}   = 0.90 

p{H2}   =  p{H3}   =  0.05 

Filer CL 

Filter CH assumes that there is a high probability that the filter designed for 

the highly evasive manuver case is optimum.   The a priori probabilities chosen 

are 

p(K!)  = p(H2) = 0.05 

p(H°)  =  0.90 

Filter CH 
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Filter D — Residual Testing - The design of the residual testing, 

filter is discussed in Section 3.3.3 and its structure is shown in Fig. 3.3-6. 

Here again the reset interval chosen is 2 seconds because this is the shortest 

interval found to permit a realistic choice between the three parallel filters 

based on the analysis of the residual sequence.   For shorter intervals there is 

not enough data to make an accurate estimate as to which filter is operating 

best under the nominal tracking conditions. 

The six filters and their letter designations are summarized as 

follows: 

• A - Third-Order Fixed Filter 

• B - Adaptive Bandwidth Filter 

• CE - Hypothesis Testing Filter (Equal Probability) 

• CL - Hypothesis Testing Filter (Low Evasion Probability) 

• CH - Hypothesis Testing Filter (High Evasion Probability) 

• D - Residual Testing Filter 

4.2    FILTER PERFORMANCE AND SENSITIVITY COMPARISONS 

In this section the six filters described above are compared in terms 

of rms errors in the estimates of the current (not predicted) target position, 

velocity, and acceleration under different tracking situations.   The rms esti- 

mation error shown on the figures is calculated by taking the square root of the 

time average of the estimation error squared over the period from two seconds 

until ten seconds.   This is done to omit the initial transient in the estimation 

error.   The transient is due to the large initial errors in the estimates which 

are rapidly eliminated by all of the filter designs-- for example, see Fig. 

3.2-3.   In all of the results presented, except for the range sensitivity study, 

only the rn,s normal acceleration estimation error is shown because the 
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accuracies of the angular position and angular velocity estimates for the 

various filters usually compare in the same manner.   As shown in Section 

4.3, target acceleration estimation error is the primary contributor to pre- 

dition error. 

4.2.1   Sensitivity to Target Maneuver Level 

Figure 4.2-1 shows how each filter performs for the three target 

acceleration profiles defined in Fig. 2.3-2.   The results for the six filters 

are presented in two parts for clarity; the results for Filters A and CE are 

shown in each part of the figure for comparison purposes.   Note that the rms 

normal acceleration estimation error goes up almost linearly as a function of 

the target's rms normal acceleration rate for each design.   Thus, as the 

target increases its level of evasive maneuvers, all designs have decreasing 

j accuracy. 

j For the nominal trajectox-y—i.e., the mildly evasive case—the simple 

third-order fixed filter is best, as expected, since it is optimized for this 

case,   The other filters give only a slightly higher rms error, except for the 

hypothesis testing filter (CH) w£ich assumes that there is a high probability 

that the target will maneuver in an evasive manner; for the nominal trajectory 

this is a poor assumption, which is reflected in the filter's performance. 

For the nonevasive trajectory, Filter CH again works poorly, as 

expected.   However, Filters B and CL offer a signficant improvement over 

Filter A, the fixed third-order filter.   Filter B (adaptive bandwidth) is clearly 

best able to recognize the fact that the target is not changing its normal ac- 

celeration and lowers ils bandwidth accordingly by reducing q to achieve a 

lower rms estimation error.   Filter CL also works well because it assumes 

that there is a high probability thai the target is nonevasive and, for this 
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trajectory, this is an accurate assumption.   Filter CE, the equiprobability 

hypothesis testing filter, works fairly well compared to the others consider- 

ing the fact that it assumes that all types of trajectories are equally probable, 

when the actual trajectory is nonevasive.   Filter D, the residual testing filter, 

has only a slightly lower rms estimation error than that of the much simpler 

Filter A.    Figure 4,2-2 shows time-histories of the acceleration estimates 

of the CE and CL filters for the nonevasive case and demonstrates the 

importance of a priori probabilities in the hypothesis testing design,  since 

the two filters are exactly the same except for the choice of their a priori 

probabilities. 

For the evasive trajectory, all of the adaptive designs offer an im- 

provement over the fixed design.   In Fig. 4.2-1, notice that the CH filter 

gives the curve with the smallest slope.   This indicates that for sufficiently 

violent target manuvers (more violent than those tested here), the CH filter 

would be the best.   Figure 4.2-3 shows the acceleration estimate of the CE 

filter for this case. 

In general, Fig. 4.2-1 shows that adaptive designs yield come im- 

provement over the fixed design if the change in target behavior is radical. 

It also shows that even the best design has a high rms estimation error if the 

target behaves evasively.   Filter B, using the adaptive bandwidth principle, 

gives the best overall performance.   The biggest percentage improvement in 

estimation error achieved by the adaptive filters over the fixed design is at 

low rms acceleration rates.   At high rates no design significantly reduces the 

tracking error below that of the third-order fixed filter which is optimized for 

the high rate case. 
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Figure 4.2-3        Normal Acceleration and Its Estimate Using 
Hypothesis Testing Filter CE:   Highly Evasive 
Trajectory 

A further demonstration of the adaptive designs at low maneuver levels 

is provided in Fig. 4.2-4 where Filters D and CL are compared with two ver- 

sions of the third-order fixed filter designated A* and A**.   The former is 

designed (q    7.5 ft" sec°) so thai, for the nonevasive trajectory, its rms 
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Figure 4.2-4 

30 SO 

RMS NORMAL ACCELERATION RATE (ft/tec3) 

Comparison of Adaptive Filters versus Fixed 
Filters Optimized for the Nonevasive 
Trajectory 

i acceleration estimation error is one-half that achieved with Filter CL.   Thus, 

the A* filter is very close to the optimum design (q ■ 0) for this trajectory, 

but its performance is degraded for the nominal and highly evasive trajectories. 

This demonstrates dramatically the price paid for a near optimum design if the 

target does not behave as assumed. 

The filter designated A** is the same as A* except its value of q is 

selected to have the same rms error as filter CL for the nonevasive case. 

This fixed design does nearly as well as the adaptive designs (CL, B) for the 

nominal trajectory but its performance is poor for the highly evasive case. 

Thus, if the filters are "matched" to have the same rms error for a nonevasive 

target, the adaptive filters perform much better if the target acutally is evasive. 
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4.2.2   Sensitivity to Measurement Noise Level 

All of the filters have been designed assuming a nominal rms measure- 

ment noise level of 1.4 mrad.   This section describes what happens to the rms 

normal acceleration estimates if the actual measurement noise level is signifi- 

cantly higher or lower than the design value.   This is an important sensitivity 

study because the measurement errors in an actual tracking situation are to 

some extent determined by variable factors such as weather and target cross- 

section; thus the rms error level may not be known accurately at any given time. 

Figure 4.2-5 shows the simulation results obtained for the nominal target 

trajectory. 

For the nominal noise level, the results are the same as these given 

in Section 4.2-1 for the nominal trajectory case.   When the noise level is 

decreased, all the filters yield approximately the same rms error except for 

Filter D which gives the best performance.   The high noise case gives the 

most interesting and important sensitivity results.   Compared with Filter A, 

all of the adaptive designs except Filter D are extremely sensitive to meas- 
urement noise which is higher than the assumed level.   This sensitivity to 

measurement noise level is common to many adaptive techniques and motivates 

the residual testing scheme, Filter D.   This behavior will be explained presently. 

The adaptive bandwidth filter (B) is sensitive to measurement noise 

level because its bandwidth is controlled by estimates of acceleration rate. 

As the estimate a   increases, the bandwidth of the filter also increases 

through the mechanization of Eq. (3.3-2).   This is the desired result if the 

actual rms acceleration rate also increases.   However, if the measurement 

nois'i level increases, then the state estimates produced by the fourth-order 

fixed filter in Fig. 3.3-1 become more noisy; hence the rms level of aA will 

4-11 
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be higher due to its increased noise content*   Consequently, the adaptive band- 

width filter cannot tell whether the estimated rms acceleration rate has in- 

creased due to an evasive maneuver or to higher measurement noise, but its 

bandwidth will be raised in both cases.   In the former case its bandwidth 

should be raised; in the latter it should be lowered.   Thus the filter adapts in 

the wrong direction when changes in rms measurement noise levels occur. 

The hypothesis testing filter suffers from the same difficulty des- 

cribed above.   The design based on the nominal noise level tells the filter how 

imch noise to expect in the estimates.   If the actual noise level is greater than 

its assumed value, the filter effectively interprets the increased fluctuations in 

the measurements as caused by increased target evasive action and errone- 

ously determines the high bandwidth filter in Fig. 3.3-5 to be   ie most probable. 

The residual testing filter (D) overcomes the noise sensitivity problem 

because its bandwidth is directly related to the rms value of the residual 

sequence of each parallel filter in Fig. 3.3-6.   As discussed in Section 3.3-3 

and Appendix B. 2, this sequence is a direct reflection of the actual estimation 

error.   Filter D determines which of the parallel filters has the lowest rms 

residuals and therefore provides the smallest estimation error.   Another way of 

looking at this is to notice that the hypothesis testing and adaptive bandwidth 

filters have designs in which the adaptive algorithm depends upon the assumed 

level of noise.   If this levsl is incorrect, they adapt in the wrong direction 

On the other hand, the adaptive part of the residual testing filter is independent 

of the actual measurement noise level; therefore it adapts correctly. 

One possible means of reducing the noise sensitivity of Filters B, CH, 

CL, and CE would be to design them assuming the highest level of measurement 

noise that might ever be encountered.   This would work well in the high noise 

case, but the estimates would compare poorly with those of Filters A and D if 

4-13 
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th  actual noise level were much lower.   In situations where the measurement 

noise level is poorly known or changing, a better approach is to use a filter 

which is designed for the most likely noise level but is insensitive to changes 

around this design value; for example, the residual testing filter designed for 

the nominal noise level. 

. 

4.2.3   Sensitivity to Correlated Measurement Noise 

In the tracking problem, the sensor (e.g., radar) receiver noise is 

usually wide-band so thai white gaussian noise is a good model.   However the 

total measurement error can also contain low frequency, correlated noise 

components caused by a slowly varying target cross section, due to the target's 

own motion.   The simulation described here *J conducted to see how much cor- 

related noise affects estimation accuracy.   Except for the measurement noise, 

the tracking situation is the nominal case defined in Section 4.1.   Only Filter 

A is tested, but similar results would be obtained for all of the filters. 

The measurement noise sequence is generated by driving the difference 

equation for a low-pass filter with the output of a gaussian random number 

generator.   The details of the measurement noise model used in this simulation 

are presented in Section 2.3, wher   the correlation time is denoted by the 

varuu.or. 

Figure 4.2-6 shows that increasing the correlation initially in- 

creases the error.   As the correlation time becomes very large, (i.e., T>1 

sec), the error begins to decrease because very low-frequency noise has 

little effect on the estimation of a time-derivative such as target acceleration. 
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Figure 4.2-6        Sensitivity of Filter A to Measurement 
Noise Correlation 

4.2.4   Sensitivity to Data Rate 

One means of improving estimation accuracy is to increase the infor- 

mation available to the filter by increasing the frequency with which measure- 

ments are taken.   Thus far ten measurements per second has been assumed to 

be a reasonable data rate for the tracking system.  To see how much improve- 

ment is possible, Filter A was exercised at data rates of twenty and fourty 

measurements per second; the results are shown in Fig. 4.2-7.  It is clear 

from this graph that a higher data rate will improve estimation accuracy; 
However, this improvement is achieved at the expense of increased computer 

time requirements—i.e., if the data rate is doubled, then it takes approxi- 

mately twice as much computer time to calculate the estimates for a given 

computer design; thus; a faster computer might be required.   Data compression 

(prefiltering) techniques could probably be useful for reducing the computation 

time required at high data rates (Ref. 20). 
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Figure 4.2-7        Sensitivity of Filter A to Data Rate 

4.2.5   Sensitivity to Target Range 

Ail of the results presented so far have assumed that the target is at a 

constant range of 10,000 ft. However, an attacking target will be at this range 

only once during its trajectory; thus it is important to know how the estimation 

errors of each filter vary with range. 

To determine the estimation error sensitivity to range, a set of 

simulations was performed under the nominal tracking situation with the range 

parameter r changed for Filters A, B, CE, and D.   Figure 4.2-8 shows results 

for ranges from 2,500 to 25,000 ft.   In part (a) of this figure the rms position 

4-16 

i 



Ü 

ü 
ü 
0 

' 

' 

THE ANALYTIC SCIENCES CORPORATION 

I *l 
i 
I 

A 3faü«0»nilHII) ».IHR 
S AOAPTIVt bVMMMbTN fUHR 
Cf MWOIMCSIS l» 51 INC. I il II H II wPraUbtt,! 
O MSIOUAI USiING HtT|R 

-i_ 
b.WO «000 10.000 ts.ooo 

RANGt. r IM 

(a) Position rms Estimation Error versus Range 

I i ■ 
I 

l      30 

1 
i 
w     40 

* i^mwtH i> nimmt* 
■ AOATIIVt MMMMWIOI 
et MWotMfSisim«MbriLi>Rn<»MirtatMWrtvi 
D OtSNHIAl irSIWHi HI II R 

(b) Velocity rms Estimation Error versus Range 

v^ci 

h  «0 
•^*\j0 A 

ei/ 
I *p 

A 

■ 
et 
D 

f' 1» IIIIDHMIR 
AOARCVt BAWNMOtM -Uli! 
MV« 11 Mt «IS HSfMbfUU* 
l.«-.i'»iAi   HMiV. HUI« 

1   ...  f.   :.*.-.,                       1 

1 1   1—_  1 1_ .     ■       ,,J 1 

. 

. 

Figure 4.2-8 

(c) Normal Acceleration Estimation Error versus Range 
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estimation error in feet is plotted against range for the four filters,   This 

error is calculated using the small angle approximation for the angle estimation 

error.   Thus the position estimation error e   is given by 

ep =  r sin (e^ =  ree 

where r is range in feet and e    is angular estimation error in radians.   Like- 

wise in part (b) of the figure, the velocity estimation error in feet per second 

is found by using 

e    =  i e • v e 

where e •   is equal to e - &, the angular velocity estimation error.   In part (c) 

of Fig. 4.2-8, the rms normal acceleration estimation error is shown. 

As expected, the estimates become more accurate as the range of the 

target decreases since this is an angle measuring system.   For a constant rms 

angular measurement error, the measured position error decreases linearly 

with range, and consequently the estimated position, velocity, and acceleration 

become more accurate as the signal-to-noise ratio of the data improves.   In 

practice, the rms angular measurement error may vary with range; this effect 

is not included in this study because it is dependent upon the particular target 
encountered and tracking sensor used. 

All of the filters have approximately the same range sensitivity as 

shown in Fig. 4.2-8 except for the hypothesis testing filter which does poorly 

at the longer ranges.   This seems to be due to the fact that the higher effective 

noise level at longer ranges (i.e., the measured position error is larger) 

makes it more difficult to calculate the probability of each hypothesis. 
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4.2.6   Summary of Filter Estimation Accuracy 

The results described in this section show the merits of each adaptive 
design in terms of estimation accuracy.  If the rms measurement noise level 
is well known, then all of the adaptive designs offer some advantage over the 
fixed filter (A) for targets with widely different maneuvering characteristics. 
For this case the adaptive bandwidth filter (B) appears to give the best tradeoff 
between complexity and estimation accuracy.   The price paid for this design is 
the requirement that both a third-order and a fourth-order tracking filter be 
implemented, giving a more than two-fold increase in computational require- 
ments over the third-order fixed filter.   If accurate a priori knowledge is 
available about the probabilities of various target trajectories, then the hypo- 
thesis testing filter (CE, CL, or CH) is the best choice.   However it is more 
complex than Filter B and it is especially sensitive to changes in measurement 
noise level and target range, so it must be used wich caution. 

For tracking situations where the measurement noise level is unknown 
or changing, the fixed third-order filter and the residual testing filter yield 
the best performance.   The residual testing filter can offer better estimates 
than the fixed filter if the target changes its behavior over a wide range, or if 
the measurement noise varies sufficiently.   The cost of this is a three-fold 
increase in computation over the fixed third-order design. 

li 
c 
c 

4.3    PREDICTION ERROR EVALUATION PROCEDURE 

In this section, the procedure used to evaluate the tracking filter 
designs in ternrj of prediction error is specified.   Prediction error is defined 
as the error made by-the filter in predicting the future position of the target. 
A simple, but realistic, scenario for an attacking target provides the basis for 
plots of rms predicted position error versus time-to-go, t    .   The position 
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error is measured normal to the true line-of-sight and time-to-go is defined as 

the time remaining until the attacking target reaches the ship«   This is a more 

practical basis for tracking filter evaluation than comparing target trajectory 

estimation errors because the ultimate effectiveness of a gun fire control 

system is determined by the projectile miss distance which depends upon the 

rms predicted target position error.  Other sources of miss distance such as 

ballistic dispersion and gun pointing error are not considered here* however, 

these will tend to be much smaller than the target prediction errors for highly 

evasive targets. 

The simplified scenario for an attacking target depicted in Fig. 4.3-1 

is based upon several assumptions, which are not necessary in an actual situa- 

tion, but make possible a clear comparison of the performance of different 

tracking filters.   First, assume the target is approaching the ship at a constant 

radial or closing velocity denoted by vT, and its evasive action consists of 

motion perpendicular to the line-of-sight.   Thus, ite target's range as a func- 

tion of time is assumed known, but its angular position, 8, must be estimated 

and predicted.   Second, it is assumed that the projectile fired from the ship 

tiavels with constant radial velocity, vp. If the target is at range r when it is 

fired, then using the above assumptions the range at intercept, rp defined as 

the range at which the projectile and target are the same distance from the ship, 

is given by 

ri ■ 

vPr 

vp + vT 
(4.3-1) 

and the time-to-go, t    is * '   go 

(4.3-2) 
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Figure 4.3-1        Target Prediction Scenario 
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: 

The prediction time, t     is defined as the time required for the projectile and 

the target to reach the intercept range r. measured from the time when the 

projectile is fired.   Thus t   is given by 

t_ - 
(4.3-3) 

or 

I. 

t        = 
VP*VT 

(4.3-4) 

Using Eqs. (4.3-1) through (4.3-4), range, intercept range and prediction 

time as functions of Mme-to-go are 

T go (4.3-5) 
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rI 
= 

vpvT 

VP + VT 

s = 
vT 

Vp + VT 

go 

go 

(4.3-6) 

(4.3-7) 

\- I 

1. 

These three equations along with choices for vp, vT, and a range of values 

for t    define the variables needed for target prediction.   The final step is to 

find the rms predicted position error as a function of time-to-go. 

For a particular value of t , the target is at range r and the track- 

ing filter provides estimates of its position, velocity and acceleration normal 

to the line-of-sight. These estimates are then used to predict the position of 

the target t   seconds later when it reaches the intercept range.   The difference 
Mr 

between the predicted and actual target positions is the predicted position error 
given by 

t2 t3 

«to - yv+vw+vv -l+ % v + (4.3-8) 

I 
! 

where e     is the predicted position error perpendicular to the line-of-sight at 

the intercept range, e (t J, ev(tj, e   (t J, and e-  (tQ) are the position, velocity 
e e 

acceleration, and acceleration rate estimation errors at the start of prediction, 

and t   is the prediction time.   Equation (4.3-8) follows directly from the third- 

order target model assumed in designing the filters and the assumption that the 

acceleration rate is constant during the prediction interval.   Figure 4.3-2 shows 

how the last three terms of Eq. (4.3-8) affect the error in predicted position as 

a function of t , for various values of the estimation errors.   Evidently the 
P 

predicted position error increases rapidly with prediction time if significant 

errors exist in the estimates of target acceleration and acceleration rate. 
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Because the estimation errors in Eq. (4.3-8) are random, prediction 

accuracy can be described in terms of the mis value of the predicted position 

error as a function of prediction time, denoted by «    and defined by 
irMr 

*-(»tur (4.3-9) 

where E [.] denotes expected value.   The expansion of Eq. (4.3-9) with sub- 

stitution from Eq. (4.3-8) leads to an expresston for a    which contains cross 

terms of the form E [e e ], E [epea ], etc.   Recall that in Section 3.1, it is 

shown that the position, velocity, and acceleration estimation errors are highly 

correlated.  In this case, a good approximation is 

E w-(-Kw«ur (4.3-10) 

\ . 

jl. 

k 

Similar expressions apply for the other cross-product terms.   Substituting 

the latter into Eq. (4.3-9) produces 

t2 t3 

(4.3-11) 

e a 6 

where oe (U) is the rms value of e (t^), etc.   This approximation is worst case 

in the sense that less than perfect correlation between the estimation errors 

leads to an actual value of rms prediction error less than that given by 

Eq. (4.3-11). 

i 

I 

To calculate the rms value of e    using Eq. (4.3-11) it is necessary 
HP 

to know the prediction time, t , and the various ims estimation errors at the 

start of the prediction interval, which are functions of the range r.   The quan- 

tities t   and r are given by Eqs. (4.3-5) and (4.3-7) respectively as functions 

of time-to-go, t    .   The range sensitivity studies in Section 4.2-5 indicate 
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how the rms position, velocity, and acceleration estimation errors vary with 

range.   The rms acceleration rate estimation error, o-  , is equal to the actual 
. aa 

rms target acceleration rate; i.e., the rms value of a_, because the filters do 
ö 

not estimate a,..   It was found in Section 3.2 that attempts to estimate this 

variable using a fourth-order filter actually degrade the overall estimation 

accuracy; the rate estimates are so poor that they may as well be set equal to 

zero.   The latter policy is followed here.   In subsequent calculations of the rms 

predicted position error this term will be neglected, which is the same as 

assuming that the target has a constant acceleration over the prediction interval. 

The effect of a change in target acceleration during the interval can be deter- 

mined from Fig. 4.3-2(c) and added to the prediction error. 

With the above convention for handling Q.   , the rms predicted posi- 
tion error is giver1 by 

PP 

t2 

P v ae 

(4.3-12) 

The three rms estimation errors needed by tnis equation are calculated as 

follows:   For each filter, normalized range sensitivity curves are plotted and 

approximated by curves of the form y = xa shown in Fig. 4.3-3, which give a 

good fit to the normalized range sensitivity curve of each filter.   Figure 4.2-8 

shows the original range sensitivity of position, velocity, and acceleration 

estimation error lor Filters A, B, CE, and D.   These curves were plotted 

again with the horizontal scale normalized to 10,000 ft—i.e., 1 corresponds 

to 10,000 ft— and the vertical scale normalized to the rms estimation error at 

10,000 ft—i.e., 1 corresponds to a particular filter's rms position, velocity, 

or acceleration estimation error at 10,000 ft.   Figure 4.3-4 is an example of 
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this for Filter A, showing both the approximating curves and the actual simu- 

lation results taken from Fig. 4.2-8. 

This procedure has been carried out for each of the tracking filters 

for which range sensitivity studies were conducted--i.e., Filters A, B, CE, 

and D.   The approximate range sensitivity curves obtained are based on the 

nominal target trajectory and nominal rms measurement noise level; but they 

can be used to obtain the approximate rms estimation errors as a function of 

range for a particular filter in any tracking situation if the rms estimation 

errors are known at 10,000 ft.   Now, since time and range are directly related 

in this scenario by the constant target closing velocity, the rms errors at the 

start of the prediction time are defined by the range at that time. 

This completes the detailed description of the prediction error eval- 

uation procedure.   In summary, foi a particular target closing velocity vT 

and a particular projectile velocity vp,  the prediction time t ,  the target 

range at firing r,  and the intercept range rT are calculated as functions 

of time-to-go, t .   This assumes that the target closes at a constant velocity go 
and evades only by moving perpendicular to the line-of-sight and that the pro- 

jectile travels at a constant radial velocity.   Using the rms estimation errors 

obtained for each filter in each tracking situation, and the results of the range 

sensitivity study provided in Section 4.2, the rms predicted position error 

normal to the line-of-sight is calculated as a function of time-to-go, assuming 

tfes target does not change its acceleration during the prediction interval.   The 

results of the analysis--plots of rms predicted position error versus time-to- 

go for each filter operating in a particular tracking situation--are presented 

in Soot ton 4.4. 
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4.4    PREDICTION ERROR PERFORMANCE AND SENSITIVITY 

This section compares the performance of Filters A, B, CE, and D 

by showing how their rms predicted position errors vary with time-to-go.   A 

detailed account of how these results are obtained is given in Section 4.3 

together with an explanation of tho approximations and assumptions involved. 

From the results presented in this se^Mon a general idea of the kill probability 

could be obtained by assuming a particular rate of fire, projectile lethal radius, 

f! and rms gun pointing error.   The results not only show the comparitive per- 

« formance of the filters but also indicate the overall accuracy that is likely to 

be achieved with any good tracking filter for the types of target maneuvers 

considered in this report. 

To complete the specification of the target attack scenario described 

in the last section, the projectile velocity, vp, and the target closing velocity, 

vT, must be chosen.   For most of the results presented in this section, these 

quantities are taken i J be 

vp =  2600 ft/sec 

vT =  1300 ft/sec 

At the end of this section, the sensitivity of the rms predicted position error to 

changes m these values is shown.   With this choice of vpand vT, the range r, 

intercept range r., and the prediction time t   are completely specified as func- 

tions of time-to-go (Eqs. (4.3-5), (4.3-G), and (4.3-7)) as shown in Fig. 4,4-1. 

4.4.1    Sensitivih (o Target Maneuver Level 

The target rms predicted position errors corresponding to the esti- 

mation erjjrs acnieved for the three different target trajectories, in the otherwise 
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Figure 4.4-1 Target Range, Intercept Range, and Prediction Time 
versus Time-To-Go for vp - 2600 ft see and v,r = 
1300 ft/sec v l 

nominal tracking situation defined in Section 4.1, are given in Fig. 4.4-2. 

The results are given for Filters A, B, CE, and D, and for each of the target 

trajectories defined in Fig. 2.3-2.     To Interpol these curves, assume that 

only rms predicted position errors less than 100 ft are of interest and anything 

larger is an almost sure "miss": then the length of time a particular curve is 

belotf this 100 ft threshold is important.   Vur example, in Fig. 4.4-2<a> Curve 
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B for the adaptive bandwidth filter is below 100 ft for approximately 9 seconds 

before the target reaches the ship.   Thus there are 9 seconds of firing time 

during which there is some chance of hitting the target.   If the gun fires one 

projectile per second, then there are nine firing opportunities before the target 

reaches the ship.   Suppose that one projectile is fired at t     =9 seconds, one is 

fired at t     =8 seconds and so on until t     =1 second.   The rms predicted go go * 
position error associated with each of these projectiles can be found f~om the 

height of the curve at the respective time it is fired.   Thus the rms error for 

the projeclile fired at t     = 4 seconds is about 20 ft and from Fig. 4.4-1 the 

range at intercept is about 3600 ft, the range to the target when the projectile 

is fired is 5200 ft, and the total prediction time is 1.3 sec.   If the gun pointing 

error is small compared to the predicted position error and if the target does 

not change its acceleration drastically during the prediction time, the rms 

error of 20 ft found here is a good indication of the miss distance.   Knowing 

the projectile lethal radius, the rms miss distance, and the number of firings, 

the kill probability can be estimated. 

Comparing the three parts of Fig. 4.4-2, it is clear that the prediction 

error is very sensitive to the level of evasive maneuver.   For the highly evasive 

case, the firing interval during which the error i3 less than 100 ft is around 

four seconds for Filters B and CE.   There is very little time to fire, the asso- 

ciated errors are relatively large, and the kill probability would be much 

lower than for the nonevasive case. 

The simulation results indicate that the best tracking filter for these 

conditions is the adaptive bandwidth filter (B).   It is clearly best for the non- 

evasive case and works almost as well i\s any of the others at higher target 

maneuver levels, especially when rms errors under 100 f* are considered to 

be critical.   The differences between (he performance of the various designs 

are not great compared to their sensitivity to maneuver level.   Depending upon 
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the lethal radius of the projectile and tne pointing accuracy of *he gun, these 

differences may or may not have a significant effect on overall kill probability. 

In addition, large prediction errors caused by the target changing its accelera- 

tion during the prediction interval (See Fig. 4.3-2(c)) could decrease the im- 

portance of the performance differences shown.   It is important to note that 

much better accuracy would be achieved for the nonevasive trajectory if the 

filters were designed for this case rather than for the nominal trajectory; this 

point is discussed in detail in Section 4.2.1. 

4.4.2   Sensitivity to Measurement Noise Level 

The target rms predicted position errors achieved for three different 

noise levels, based on the rms estimation errors obtained in Section 4.2.1 are 

given in Fig. 4.4-3.   The rms predicted position error increases significantly 

as the measurement noise increases, as would be expected.   The choice of a 

"best" tracking filter for this set of conditions is not clear.   Filters A and B 

are superior for the high noise case; however Filter CE is best in the low 

noise case, but worst in the high noise case.   These results taken together 

with those presented in Fig. 4.2-2 indicate that filter B (adaptive bandwidth) 

would probably be the best choice over the conditions tested.   However, in 

practice the best choice also depends upon the likelihood of the off-nominal 
tracking conditions occurring. 

4.4.3    Sensitivity to Correlated Measurement Noise 

Figure 4.4-4 shows the sensitivity of Filter A to correlated measure- 

ment noise for the nominal tracking situation, using the results obtained in 

Section 4.2.3.   The figure shows the decrease in accuracy that occurs if the 
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o 
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2      100 
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5 
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Figure 4,4-4 Prediction Error Sensitivity to Measurement 
Noise Correlation for Filter A:  Nominal 
Trajectory I 

rms measurement noise level remains constant but its correlation time, T, is 

changed from r = 0 to T = 0.5 and T = 1 sec. Note that the error increases by 

as much as 50% over the range of r. 

**4*4    Sensitivity to Data Rate 

Figure 4.4-5 shows the improvement in prediction accuracy that is 

obtained tor Filter A in the nominal tracking situation if the measurement data 

rate is increased from 10 measurements per second to 20 and 40measurements 

per second.   Evidently significant improvement is possible at a higher rate. 

but whether this improvement Justifies the additional computer time re- 

quired depends upon the tradeoff between increased cost and improved kill 

probability. 
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Figure 4.4-5 Prediction Error Sensitivity to Measurement 
Data Rate for Filter A:  Nominal Trajectory 

4.4.5   Sensitivliy to Target and Projectile Velocity 

It is instructive to see how the prediction results change if different 

wu.os are chosen for the projectile velocity, vp, and the target closing velocity, 

v.      Figure 4.4-6 shows the results for Filter A operating in the nominal track- 

ing situation where vT = 1000 ft /sec and vp is varied from 2000 to 3500 ft/sec. 

An increased projectile velocity helps by directly reducing the required predic- 

$i M tirw* frv •• rtfven time-to-go and hence the prediction error.   Figure 4.4-7 

s*vi\7s the effcrf of variations in target closing velocity.   Increasing vT increases 

th   predicti< n error for a given value of time-to-go because the corresponding 

vtlu*» of tat*.*** range at the firing instant is increased (sec Kq. (4.3-5)).   There 

15* a vrept :wi»-»»»tage to targets which have a verv high closing velocity, r*s well 

as »he abH.«   •   maneuver at the level of the nominal trajectory used for this 
|it*f'.sl!«,.itio:,. 
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4.4. G  Summary of Prediction Error Results 

Several general conclusions can be drawn from the results presented 

..: «he preceding sections.   First, and most important, tracking filter design 

( n he crucial to the ultimate effectiveness of the gun fire control system, so 

.  careful and thorough design effort is needed for each specific application. 

me filter design of either the fixed or adaptive type is necessarily best 

f '• ill target engagement situations.   The final selection of the tracking 

f'Her (Upends very much on the complete environmental range in which it 

♦ : operate, the speed and size of the computer available, and the relative 

* stance assigned to tracking accuracy for each situation.   Even for a well 

• ified set of tracking situations, a single filter will be **e best for each 

t: er of the set and the final design must be select « on the bacis of 

:   i i dive judgements as to the relative importance or probability of each 
ion. 

Tracking filter comparisons should be based upon prediction error 

■.«til. r than estimation error.   Certainly these performance measures are 

. »o.ely related, but prediction is ultimately required to direct the gun pointing 

'»t and prediction error depends upon prediction time and the target motion 

• del, as well as the tracking filter's current estimates of position, velocity, 

id Acceleration«   What might appear to be a large difference m performance 

l••   .veen two filters based upon estimation error may not be such a large difference 

"••• fre< ms of prediction error, and vice versa, depending upon the attack scenario. 

TIK choice between adaptive and fixed designs depends upon the speci- 

i    «optical im.   Adaptive designs have the ability to offer large performance 

•:-iprr»v< in • i:  »ii some situations but they should not be considered as the 

:•:    Aci- i<> iJi desist problems.   They require additional complexity and eom- 

j.   -»itfifi li:m  .e»d ina> be overly sensitive to  :»uxpeeted changes in the 

* 
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mciaurement noise level.   Adaptive tracking filters must be applied cautiously 

and should always be judged against a Rood fixed (nonadaptive) design.   The 

range of possible adaptive methods is virtually infinite and there can never be 

complete assurance thai the best design for a particular application has been 

found. 

The results in this chapter indicate that guided projectiles arc needed 

a. -tu Tire systems which are required to have a high kill probability against 

targ< ti with a modest manuver capability.   Figure 4.4-20)) shows the sire of 

tin. cms predicted position errors for the various tracking filters if the target's 

:v..s acceleration rate, normal to the line of sight, is approximately 1 g'sec. 

F n tiuie-to-£0 greater than six seconds all of the filters have n rms pre die- 

i:••!■ - rror greater than 100 ft, which exceeds the lethal radius of a conven- 

;i-' r:l projectile.   The important concept hero is the following:  In this attack 

si vi ;r: i, the target will be verv close to the ship before the rms predicted 

Cpo «itinn error is smaller than the lethal radius of the projectile.   This means 

thai I he gun is effective against the target during only the last few seconds of the 

Oei.g^jment,   Thus, there is not enough time to fire more than a few times and 

evi-i. Ü the target is hit it still might continue on its trajectory to the ship and 

• iv..». serious damage. 

There is an ultimate limit on (he prediction ai curacy possible due to 

L the [light lime of the projectile.   Even if the estimates from the tracking fiitc r 

a e perfect, it is not possible to determine the target's exact future position 

(^ because the target can maneuver or change its acceleration during the prediction 

.. JntM| vai.   As long as the target's future behavior is unknown or random and it 

t- i«'«-s a htrue evasive capability, it is impossible to exactly predict its future 

Ifcwifiiui.   In this case the matcnitude of the minimum rms predicted position 

'•nor L, nearh independent of thi tracking s\stem and depends mostly upun the 
r- •-;:!»ilit ♦♦ > nl »lie lar-.et. 
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Beyond these general conclusions, the results show that the specific 

adaptive designs tried in this report can be useful for pun fire control systems. 

For the case where the measurement noise is accurately known, the adaptive 

bandwidth and hypothesis testing filters give significant improvement in predic- 

tion error over the fixed design.   The hypothesis testing design is especially 

useful if there is accurate knowledge of the relative probability of different 

target manuver levels.   If the measurement noise is poorly knovt. and can 

vary as much as a factor ol three above and below the nominal design level, 

the advantage of the adaptive designs is partially lost because they are more 

sensitive to measurement noise level than the fixed designs.   However, the 

adaptive band vidth filter still performs adequately and might be a good design 

choice.   The fixed filter design also has some good features.   First it is less 

complex and requires much less computation than the adaptive designs. 

Second, it is not overly sensitive to the measurement noise level.   The fixed 

filter mi^ht be adequate in many cases. 

Finally, this report indicates the design and evaluation procedure 

which must be undertaken to select a tracking filter for a gun tire control 

system application.   The r* suits show quite clearly the large prediction errors 

that can result if the filter is not chosen carefully.   Such errors can seriouslv 

degrade the gun system's kill probability and must be kept as small as possible 
through good tracking filter design. 

i y* 
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SUMMARY AMD 

"This report treats the subject of target tracking fitter design for 

shipboard gun fire control systems.  Particular emphasis is placed vftm agpli- 

cation» ia wMch the target threat baa the capability to maneuver evasively «ad 

the senior measurement noise level may wot!* accurately known. % this 

end, a realistic but comparatively simple target track&g problem is defined to 

provide a basis upon which various filter designs «re developed and evaluated. 

The optimum tracking filter for this problem is destr&ed la detail«  The reason 

why it cannot be implemented becomes clr-ur; i.e., hi t. practical tracking flitoa« 

tton there is generally not enough known abort the ta*frt and its behavior to 

design an optimum tracking filter.  SabopUasam d<cigns with both ft»* wA 

adaptive structures are proposed and developed as practical alternatives based 

qxm the knowledge available about the target,   Rwar designs were selected 

after a earefcl review of the technical literature for those method* well suited 

tothis 
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*     Ftod Filter - This design is 
behavior and is selected to be 
that behavior; this Is a good design 
the range of tracking sHwattsns 

si the 
toe 

the average" 
toseasttiv* to cterages to 

B*ad*rUfth Fitter — This design adjutU tie own 
h based upon the observed target behavior: U e., 

J Itself on-line to achieve improved tracking 
accuracy over a range of tracking situations* 
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Hypothesis Testing Filter -. This design in a bank oi 
find filters each designed for a different assumed 
level of target evasive behavior.   Hie estimates of 
each filter are then weighted and combined to give an 
overall estimate.   The weights are determined from 
the probabilities that each of the filters is optimum. 

Residual Testing Filter — This design consists of the 
same bank of fixed filters used in the hypothesis test- 
ing filter above.   The final estimate, however, is 
selected from that filter which appears to have been 
operating best in the recent past; i.e., that filter 
whose estimates have been in closest agreement with 
the measured data. 

A comparative study was conducted of the four designs described above 

In which tracking error and prediction error were the performance measures« 

Tracking error was defined as the error the filter makes in estimating the tar~ 

gat1« position, velocity, and acceleration, while prediction error is the error 

tea filter makes in predicting the target's future position.   The advantages'-and 

disadvantages of each design were investigated over a wide range of potential 

tracking situations.   The sensitivity of estimation and prediction accuracy to 

changes in the following was studied: 

• Target evasive manuver level 

• Measurement noise level 

« Measurement noise correlation time 

• Measurement data rate 

• Taiget range 

• Target closing velocity 

• Projectile velocity 
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Table 5.2-1 gives ft qualitative compurlsoa of tfec fimr 
desigus studied in this report*   This rompudsoB is basedupon ttavirn-yi*» 
dieted position errors shown in Figures 4.4-2 gad 4.4*3 md fapfletft* that ffet 
adaptive bandwidth filter gives the best overall tradte-off hs&mm mmmer an* 
conqile^ityfortliecaLÄSiiive^Ipted.  Parts (a) aiwi (b) erf Figaro. 4-S axe 
also repeated beio\r to show the rms predicted position mmr normal io the 
line-ef-stght achieved for each filter for both a noneroMve {constant fcaffGt 
acceleration) and mildly evasive target trajectory.  These ftgaros give their 
results as a function of time-to-go, — i.e., the time remafethigbefore the 
targat reaches the ship during a representative engagement.  If t&e projectiles 
fired at the target have a maximum lethal radius of 50 ft it is clear thai the 

* 

TABLE 5.2-1 

TRACKING FILTER PERFORMANCE 

L 
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4 f 

M  Evas»» Target 

RliS Predicted Position Error verm* 
Time-To-Go for Severs! Different 
Tracking Fitters 

gun system is an effective weapon 
short time interval before the 

against the evasive target for only a 
reacts the ship. 

i 
The principal conclusions of this report are: 

K torn fitter designs, based upon tbe nominal 
level of target acceleration rate considered in this 
iraport, potentially offer significant performance 
improvement over used designs in some tracking 
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eration rate Is actually a»o9 as 
Mg*5. 5.2-1 (a) and (b).   For nig 
all designs give poor prediction 
fixed filter design is nearly as 

A limited study of the case where the nominal target 
acceleration Is assumed to be constant (see Fig, 
4L 2-4) indicates that adaptive fitter designs perform 
sipiifiea&tly better than fixed filter designs wtea the 
target rms acceleration rate is actually onto 
This observation is consistent with the more  
tfonal application of adaptive Altering techniques _ 
track targets that are generally well-behaved, tat 
occasionally perform unexpected maneuvers, 

The selection of a trackL'-s filter requires a tnvde-off 
between accuracy and complexity.   The* " 
^eui^us require two to three times more «^ 
ihs* the fixed cfelign white they achieve a 50% 
redaction (at Vj» maneuver levels) in the ptf«fic- 
tion error for some of the cases investigated here 

Adaptive filter designs are usually more  
the measurement noise level than fixed designs 
CM be very important if the actual level is 
ten 

For almost all cases tested, the predict»* error 
result« indicate that a guided projectile would be re- 
ouired to obtain acceptable lethality against t&neis 
that ffiSHsver evasively, unless toe target is to be 
allowed to get within a few thousand f st erf the strip 
before it is engaged. 

accuracy up to a point, but require Increased com- 
potation speed in the tracking computer.   The ulti- 
mate limit in prediction accuracy is determined, not 
by the tracking system, but by the ability of the 
target to manuver (hiring the flight time erf the 
projectile. 
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•> TECHNOLOGICAL FORECAST 

. i   PR()H1 EM DEFINITION 

The pr )blem addressed in this report is that of designing digital 

* raking ; Lgorithms for shipboard gun fire control systems which can 

K'1   missile targets that are capable of unexpected, large evasive ma neu - 

s.   Targets having the capability of achieving acceleration and accei- 

. ion rate levels as high as 300 ft/sec   and 150 ft/sec4', respectively, 

v. ■ considered.   Th«    bjective of the study is to develop tracking algo- 

• t hi is having an adaptive structure, permitting automatic tracking of a 

j    variety of target maneuver characteristics.   The solutions to this 

.   .   km described in the report indicate the limitations in tracking per- 

i     .:ance and target prediction accuracy achievable with modern data pro- 

ng technology.   This information will be valuable to the Navy for cte- 

* .jning those situations in which hardware improvements — such as 

: accurate tracking sensors, higher measurement data rates, and 

5 projectiles — are necessary in order to achieve acceptable projec- 

ts?: distance. 

SPAT»   OF TECHNOLOGY 

Mix« rn data processing technology has previously been applied to 

i\    inning target tracking algorithms for the Navy's MK 8G Gun Fire Control 

j-vstem.   Kaiman filtering techniques are used to process radar tracking 

<i:it;i to obtain estimates of target position, velocity, and acceleration for 

••     In pre dieting the target's future position.   However, the target 

6-1 
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maneuvers investigated in these applications have typically been at levels 

on the order of one g or less.   The emphasis of this study is on targets 

capable of much higher acceleration levels, and capable of changing their 

acceleration quite rapidly in an evasive fashion.  Daring the study, adap- 

tive filtering techniques were developed specifically for tracking these 

types of targets and their performance was evaluated under a wide range 

of tracking conditions. 

6.3  SUGGESTIONS AND IMPLICATIONS 

Several conclusions obtained from this study are summarized in Sec- 

tion 5.2.   An important quantitative result is that all of the tracking techniques 

yield a predicted root mean square target position error in excess of 50 feet 

for evasive targets at ranges in excess of 5,000 feet, in all of the tracking 

situations investigated.   This is near the lethal radius limit for conventional 

projectiles.   Some improvement in prediction accuracy can be achieved by 

employing more accurate sensors at higher data rates; the formier may re- 

quire the use of infrared or optical tracking devices, and higher data rates 

will require increased computer capability to cycle the tracking algorithm 

computations at a faster rate.   Alternatively, higher prediction errors can 

be tolerated if guided projectiles with the capability for homing on the tar- 

get are developed.   The output of this study includes specification of algo- 

rithm design techniques needed for tracking maneuvering targets, and in- 

dicates the tirget prediction accuracy limitations, thus providing a basis 

for judging whether hardware, as well as software, improvements are re- 

quired to achieve an acceptable probability of kill against evading, maneu- 

vering targets. 

As stated previously, the work undertaken here was motivated by 

the increasing threat of the use of missiles against Navy shipping, with 

-  
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»heir attendant high velocities and acceleration capabilities.   Our effort was 

» . ..-; rod toward answering the question: How should target tracking algo- 

■1»unfi L    designed to cope with maneuverabic targets which employ unp:   - 

.< v'A cvr.sive actions limited only by their maximum acceleration capa- 

l   ..ty. and what arc the target prediction accuracy limitations?  However, 

• the i ear term, we expect that the guidance lavs for most missiles will 

».   ucsigncd to intercept a ship, without having a built-in evasive capability. 

"\   structure of these guidance laws may be known sufficiently well so that 

•:     r■» king performance achieved wHh the optimal design described in 

or 3 can be closely approximated by including a mathematical model 

iuissile guidance law within the design model of the tracking filter, 

nvestigation of the target prediction accuracy achievable under these 

.arnstances merits future study. 

6-3 
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APPENDIX A 

OPTIMAL FILTERUNG AND PREDICTION THEORY 

The equations of the optimal (Kali AMI) titter for processing noisy 

•it asureinent data are reviewed briefly in this appendix to provide the appro- 

pi: tie background and rotational conventions necessary for the development of 

?».♦. adaptive tracking filters investigated in this report.   Frediction theory is 

. k.
c    reviewed and its relation to the Kaiman filter is discussed.   The devel- 

»■■ ent assumes a basic familiarity with random variables and state space 

.,. Jion, for linear systems; additional detail can be found in Ref. 18 and 

i »tapters 1 through 4 of Ref. 19. 

♦ 

! 

\   I      KALMAN FILTER EQUATIONS 

To apply Kaiman filleri/ig to any estimation problem, it is necessary 

lerive a linear stochastic first-order vector matrix differential equation 

."ich models the manner in which the system states interact and propagate as 

• 'unc iion of time.   This equation has the general form 

i(t)  =  F(t)x(t) f G(t)u(t) fb(t) (A.1-1) 

■••■•*• \(i) is an m y 1 column vector representing the system state, F(0 is a.n 

rj dynamics matrix which defines the interaction of the state vector com- 

«its, and u(t) is a pv 1 column vector of white gaussian noise inputs such 
;« 

Efuft)] =  0:      Covfu)  -   Efu(l.)u(T)J -  Q(06(t-T) 

r»,e symbol E f J denotes mathematical expectation: Cov [ u ) denotes I he 
•>variance matrix of u. 

A-1 
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The matrix G(0 is an invp distribution matrix which indicates how each 

component of u(t) affects each component of the .system state derivative. x(t), 

and b (t) is a &i v 1 column vector of known system inputs. 

In the target trucking problem the components of the state vector x 

will typically include position anc' velocity variables plus additional component.«, 

representing target acceleration and perhaps correlated measurement noise. 

Note that the F, G and Q matrices may be time-varying.   In the target tracking 

problem the- system state equation is nonlinear, unlike ^q. (A. 1-1); however, 

the nonlinearities can usually be linearized about a nominal trajectory co that 

the linear estimation techniques described here can be applied. 

The solution to Kq. (A. 1-1) can be written for t ^ tQ in the form 

t 

x(t) = #(t, t0)JBQ) 4    /   •(t,T)fGWuW + b(r)Jay (A.1-2) 

<0 

where X(»Q) is the initial value of the system state vector at time t0 and <J>(t,t0). 

the state transition matrix, «satisfies the matrix differential equation 

♦ (i, t0)  =   F(t)+(t, t0);      #(t0, l0)  .  I (A.1-3) 

I 

When F is constant, * becomes the matrix exponential, 

*(*, tQ)  - e 
F(t-t0) 

fA.l-<T 

En a digital tracking system one is generally interested in the state vector at 

discrete instants of time.   Equation (A. !-2) may be used !o relate the states at 

two instant.-- of time, t    - and i „   The resulting difference equation can be 
written in the form 

—n        n-1 -n-1    —n-1    — n-1 

A-2 

(A.1-5) 
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where 

S    -   x(t ) -n      -   n 

n-1 n     n-1 

-n-1  =   J      •ftB,T)G(i)nfr)dT 

n-1 

-n-1   =     /     *an.T)b(T)d: 

n-1 

Observe that v, is a gaussian white sequence.   Thai it: 

Efwn]   -   0 

*[»,*£,] ■ roj;  j /o 

K T 
-n-I -n-1 

(A. 1-6) 

%-\~~ J   *Vr)G(T)Qt,)G(T)*T<VT)dr 

n-1 (A.1-7) 

At discrete instr.nts of time, measurements of linear combinations of 

the state variables arc made.   The equation describing this measurement  pro- 
cess has the general form 

! 
T. If    X      IV 
-n n -ii    -n (A.1-R) 

A-3 
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» !. ».   /    is a vector of r measured nuantuies at time t , II   i:; an rx m n n     n 
•..■• t v  : mi matrix describing the linear combinations of 3tate variables whirl» 

.     r>«• z    in the absence of noise, and v    is an r vector of zero mean ~n -n 
:i    :• measurement errors with a covartance matrix. R   at time t , defined n n 

fv   vT]   . L-n-mJ 

0  :    n    m 

Rn:    a=m 

At any time t , the ob jet live of optimal estimation theory is to process 
;   .'..      üusuremeius taken up to thr.t time to produce an estimate k    of the 

. ..     state 35   having minim am error. In a statistical sense.   The optimiza- -n * 
n t • \erkui most ofte.» chosen is ihat of minimizing the mean square estima« 

4 .» •••.   This estimate is calculated with the Kaiman filtering algorithm. 

. '.•. 

i«a • 

As new measurements become available there is essentially an in- 

•u:: change In o"r knowledge of the state <:  .   Denoting the optimum 

* of x   just prior to the availability of z   as x  (-) and the optimum 

• '  it the state vector immediately aftci processing z   is x (+), the 

Mltcr generates the updated optimum estimate of the system stale 

> i he following algorithm: 

*„<-> = Vl5h-1(l),2n.r- 5fW - E[_XD] (A. 1-9) 

*„M      i„<-)»K»^n-
|,»5n(-)l (A.1-10. 

Onlv •••' discrete or sampled measurement form oi the K.ilman filter is con- 
:;ic!«'iVii heIV. 

A-4 
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whe re 

x    ,(+)      the optimal estimate of x    - given measurements 

«r *2- ••• Vi 

x (-)  -   the optim?l estimate of x   given measurements -n s -n 
zv *r ... zn4 

K    -  an nu* r iv in matrix further described below n r 

Observe Unit Eq. (A.1-9) is merely the discrete form of the continue us time 

equal Ion 

x(t) ■=  F(t)x(t) • b(t) (A. 1-11 

The viuantitv K   is the Kaiman pain matrix.   Let x   denote the error * n * -n 
made» in estimati .g x  , i.e., 

x      -   X    - X -n      -n    -n (A.1-12) 

and let 

P    s  Cov x L n -n [*n*nj (A.1-13> 

Theti K   is computed with the following recursion relations: n 

K P (i)H1 IT1        P (-)HT III   M (-niT i U n n       n    n n       r |L  n   n       n       n J 

-1 
(A.1-14) 

A-fi 
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P   (-)    =   *      «  P     t(t) «I*1   t n n-1    n-1        n-1 Q n-1' 
(A.l-IS) 

P (+)   *   P (-UP (-)HT |H   P (-)HT  i R   |      H   P (-) 
ii n n       n L n   n       n        nj        n   n 

(1 - K H ) P (-) (i - K   II )T i K  H  KT 

n   n    n n   n n   n   n 
(A.1-1G) 

where the CO and (-) notation again refers to the quantities before and alter 

measurement. 

Tue Ka'm:;n algorithm has two distinct pluses.   Equations (A. 1-9) and 

(A. 1-15) closer!- o the time evolution of t);e ^tatc e: limatc and its error statis- 

tics between measurements und r the innueace of system dynamics and loisc. 

This piece•■••"• is commonly referred io as e::tisolation.     Equations (A. 1-10) 

and (A. I-10) indicate how the estimate and its erro: covarianee are updated 

at the measurement time to reflect the now information available.   The extra- 

polation and update phases of the Kaiman filter are summarized in Fig. A. 1-1. 

Information flow in a typical Kaiman filter application is shown in Fig. A. 1-2. 

Perhaps the most uniqu - feature of the Kaiman filter is that Uve per- 

formance analysis of the filter is inherent in the algorithm for K .   The matrix 

P   is a complete description of the second-order error statistics.   In particu- 

lar, the diagonal terms of P   represent the minimum mean-square error ob- 

taint ci in estimating each component of x  .   Note thai P   is specified for aU 1 ~ n n 
times bv Eqs. (A. 1-13) and (A.1-1&*.   Knowledge of neither x  , x  , nor / 1 -n   -n n 
is required to obtain a performance analysis for the optimal filter. 

In summary the following conditions must be met to implement an 

optimum Kaiman filter; 

A-6 
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Figure A. 1-1 Equations for Each Phase of the 
Kaiman Filter Algorithm 
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^J 
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EQ. (A.l-15)      | 
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EQ.(A.1-9)      ii 

5J-) 

.J 

Figure A. 1 -2 Information Flow Diagram for Discrete 
Kaiman Filter 
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The system must be sufficiently described as being 
linear and obe\ ing Eq. (A. 1 -1). 

F(t), G(t), and b (t) must be known functions of time. 

u (I) must be a vector of zero mean gaussian white 
noise inputs with known covariance matrix, Q (t). 

e      The measurements must obey Eq. (A. 1-8) and H 
must be known for all n. n 

v   must be a vector of gaussian white noise 
measurement errors with its covariance matrix, 
R , and its mean known. 

To initialize the filter equations, Eqs. (A. 1-9) and 
(A. 1-15), xQ(-) = E |xQ] and PQ(-) -- E [xQ x£) must 

be provided. 

If the tracking problem met all of the conditions above, then the 

design of an optimum tracking filter would jusi be the direct implementation 

of the Kaiman filter equations.   However, in practical situations one or more 

of these conditions are usually violated and the design problem is more diffi- 

cult.   The goal is then to design a suboptimal filter, based upon optimal filter 

theory, which gives nearly optimal performance.   Suboptimal filtp»* design and 

evaluation for the target tracking problem are the major topics of this report. 

A. 2   OPTIMAL PREDICTION THEORY 

Given estimates of the current system state it is oftei required that 

a prediction be made of its future state.   In inc sun fire control problem the 

iUure position of the target is required so that the projectile will intersect the 

target at some future time.   To aim the gun properly the future position of the 

target must be known.   Kalian filter theory applies directly to this problem. 

A-9 

- •     -  • ■ --- -  



--—■*-=•**— ■'■■•" '-••"-—•■"■»■ 

THE ANALYTIC SCIENCES CORPORATION 

I 

. 

One way to think of the prediction problem is to look at how the 

Kaiman filter operates when no measurements are being made.   This is done 

by setting the II   matrix in the measurement equation, Eq. (A. 1-8), equal to 

zero;  then Eq. (A. 1-14) indices that the Kaiman gain matrix, K , is zero 

and the filter equations become 

£(-) =  $       x    1(-) 4 b    - -nv n«..    n-1 -n-1 (A. 2-1) 

P (-)  =  $    , P    ,(-) #    - +Qi   i n n-1   n-1      *n-l      TI-1 
(A.2-2) 

Eq. (A. 2-1) is the optimum prediction algorithm and Eq. (A. 2-2) indicates the 

propagation of the prediction error covariance.   To predict the future system 

state for any time t   beyond the present time these equations are solved itera- 

tively starting with the current state estimate and its covariance matrix.   Note 

that these equations are independent and the predicted future state may be found 

without using Eq. (A. 2-2). 

A-10 
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APPENDIX B 

ADAPTIVE FILTERING THEORY 

The design of an optimal Kaiman filter to estimate the states of a 

dynamic system requires an accurate statistical model of the system as out- 

lined in Appendix A.I.   This model completely determines the filter's struc- 

ture ..hich is independent of the measurement data.   In practice, such a model 

is rarely available because the physical system is not well known in advance 

and may be changing unpredictably. 

One approach to suboptimal filter design is to specify a fixed filter 

design and experimentally determine how well it works on the system in ques- 

tion.   This technique is satisfactory in many situations where the assumed 

system model is a good approximation to the true system if the filter is de- 

signed to be insensitive to errors in the model.   However, in many situations 

wheie an accurate system model is not known or the system is changing in an 

unknown manner no one fixed design gives adequate performance,   li is this 

problem which motivates the search for adaptive filter structures to give im- 

proved performance. 

Since the measurement data contains information aboi\ the system's 

structure as well as the system's state, it seems reasonable to try to design a 

filter which uses the data to identify the correct system model.   Essentially, 

an adaptive filter is a suboptimal filter with a time-varying structure dependent 

upon the measurement data.   If it is derated properly, it should be able to 

adjust itself to a previously unknown or changing system so that it gives near 

optimal estimates.   The degree with which the performance of an adnptive 

filler approaches that of an optimal filter depends upon how fast the adaptation 

n-i 
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occurs and how well the structure of the adaptive filter can model the .structure 

of the optimal filter.   Unfortunately, there is often no unique way to select a 

particular adaptive structure for a particular application.   The literature 

describes many different types of adaptive schemes and the only way to judge 

their performance is by experimentally applying each to the design problem 

at hand.   This appendix gives the details of two of the three adaptive filtering 

techniques tested in this report.   The third, the adaptive bandwk7iV filter, is 

discussed in Section 3.3.1. 

B. 1    HYPOTHESIS TESTING FILTER 

•   • 

The design philosophy of the hypothesis testing filter is to operate a 

number of different filters in parallel and compare their estimates.   This 

comparison is used to calculate a final estimate which is a weighted average 

of the individual estimates; those which appear to be the most accurate are 

given the largest weights.   Specifically, assume chat over some time interval, 

T,  the optimum Kaiman filter for a particular linear system is one of 

N known filters.   If this assumption is correct, then it is possible to calculate 

the probability that each of the fillers is optimum over that interval.   The si,iic 

estimate produced by the hypothesis testing ultcx is the sum of the estimates 

from each of the N individual filters weighted by the probability that each is 

optimum.   This design is theoretically sound and can be expected to work very 

well as long as the assumptions upon which it is based are met.   The primary 

disadvantage of iho method is the requirement that N Kaiman filters be imple- 

mented jnjgaralle].   If N is large and/or the order of each filter is largo, this 

requirement means that the amount of computation required can easily become 

excessive.   For the purposes of this report a simplified form of the general 

hypothesis testing filler is developed in this section.   A much more general 

discussion can be found in Ref. 4. 

H-2 
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Assume that the system to which this method is applied enn be modeled 

by Eq. (A. 1-5) with the deterministic input vector b    = 0, that is, only a vector 

of "white" gaussian noise sequences, w , drives the system.   This assumption 

represents some IOL'O of generality, but many systems with unknown inputs can 

be modeled in this way.   If b    is known, however, it can easily be included in 

the equations which follow.   The syslem equation then becomes 

where 

^n  =  *n-l*n-l+*n-l 

E   w.   1 wT A   -  Q   « L-n-1-n-lJ        "Vl 

(B.l-1) 

(B.2-2) 

Further assume that for the time interval under consideration, the matrix 

O   1 is constant and designated by Q*, which represents its true value over t) 

interval, T.   Assume that Q< is not specifically known, but it is known to be 

one of the members of a set of N possibilities; i.e., 

Q%|Q\ Q2, . . .QN] 

For each of these possibilities there is a distinct Kaiman filler des 
defined by the equations 

ign 

5«w = Viiw (B.l-3) 

«fr)  =  X*(-)H K* [z    -H   xk(-)l n [-n       n -iv   J —n ~n k- 1, 2,  ... , N       (B.l-4) 

*->■ VlPa-lW*Il^ (H.l-5) 
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Kk = rk(-) IIT Til Pk(-) HT + R 1 n n   '   n [ ii   ir      n        nj 

Pk(+) =   Fl-KkH lpk(-) ir L       n   nj   n 

-1 
(B.l-6) 

(B.l-7) 

th where the superscript k indicates the k    filter in the set of N filters, each 

with covariance calculated assuming Q* = Q .   These equations also assume 

that $, H, and U   are known and the same for each filter. For simplicity, the 
■ i i 

filter initial conditions, PQ(-) and XQ(-), are the same for each k.   This com- 

pletely defines the structure of the N Kaiman filters. 

The adaptive part of the design is based upon calculating the proba- 

bilities of N hypotheses conditioned on the measurements taken during the 
1 * 1 

interval.   The first hypothesis, designated H , is that Q   equals Q.   The 
9*9 \f 

second hypothesis, H , is that Q   = Q , and so on.   In other words, II   is the 

hypothesis that the k    filter in the set is optimum for the given measur«. ment 

data.   Once the probability of each hypothesis is known, the optimum state 

estimate is a linear combination of the estimates from all N individual filters, 

calculated by multiplying the estimate from each filter by the probability that 

the hypothesis corresponding to that filter is true and then adding all of these 

weighted estimates.   A diagram of this structure is shown in Fig. B.l-1. 

To discuss how the various probabilities are calculated it is necessary 

first to define the interval measurement history, Z .   Let Z   be the set of nil n n 
measurements taken during the interval in question up to and including the m 

measurement, taken at time t f n* 

where v. 
ii-m-1 

n       i-n-m-r        ■ -n-r -n t 

is the first measurement taken in the interval at rnv t 
n-ni-r 

The probability that hypothesis II   is true, conditioned on the measurement 
history Z. is designated by p | H | Z J . 

Ji-4 
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Given the estimates from each of the filters, (he measurement data, 

and tho a priori probability of each hypothesis at the beginning of the inter.-ul, 

it is possible to recursively calculate p II |Z     .   Using Bayes' rule (Ref. 4.) 
th the formula for the k    probability is 

„|Hk|Z    I 'fa.»""- Zn>{"V'n.l} 

f0sJ"k'8«-i>{I,ki»--i} 
k:      1 

Tk       rj where f (^n|H , Z   -) is an r-dimensional normal probability density func- 

tio    r being the dimension of the measurement vector z  .   The value jf this 
- n 

function is given by 

jur> 



-Il-^^ rnmmmm n^MMimmimm^mmmmmnmmammmmm^" >—-—T—~ r^-"— ■ -»---J-1- 

L 

U 
D 

i 

. 

I 

THE ANALYTIC SCIENCES CORPORATION 

*■*z"-) ' S5%4 i^-^RTth-i^Hl 

where 

» n   n        n        n 

m.1-91 

(B.l-10) 

and IS   I indicates (he determinant of the matrix S .   Note that H   is the k 
n n (  k hypothesis while H   is the state observation matrix.   In this manner, p-!H 15 

is calculated for each k at each sampling time in the interval, T. 

The overall estimate for the adaptive filier immediately aft 
measurement is given by 

er a 

N 

(B.l-ll) 

with its corresponding covarinnce given by 

P„M 

N 

ZPn(+)^HkiZn> 
k=l 

(B.l-12) 

Up to this point, all of the development has been with respect tc a 
single interval of length T.   Theo re lically, if only i ne of the N filters is 

optimum for all time, T should be set equal to infinity and the design is com- 

plete.   The probability of the correct hypothesis will converge to one and the 

final estimate will be equal to the estimate from the optimum individual filter. 
If, however, the correct hypothesis changes with In» e because the correct 

model for the system changes, then a provision must be mark- for (he adaptive 
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y 
filter to restart the probability calculation to test for a now hypothesis being 

true.   This is (tone bj initializing the filters and the probability calculation 
every T seconds. 

. 

i 

!. 

I. 

At the beginning of iho first interval, the N filters must be Initialised 
* k k by setting each XQ(-) and PQ(-) to the a priori mean and covariance of Iho 

estimate.   That is 

*?-> - E^-o] 

* 

for all k 

for all k 

(B.l-13) 

(B.1-H) 

where 

-k -k, . 
X       =   X     - X   (-) 
-o    -o  -o 

(B.l-15) 

defines the initial estimation error vector.   It is also necessary to choose a set 

of initial values for the probabilities calculated recursively using Eq. (B.l-R). 

This choice should reflect any knowledge available about the system. For 

example, if very little is known about which of the filters mi^ht be optimum it 

is natural to choose these a priori probabilities equal.   After the first interval 

and at the end of each interval thereafter, the filters and the probability calcu- 

lations are reset since a new hypothesis mij;ht hold over the next interval. 

Each probability, p jll , | Z^) is reset to its a priori probability an<I each of 

the N filters is re-initialized by setting its estimate equal to the combined 

estimate given by Eq. (D.l-11) and by setting its covariance matrix to that 

given by Eq. (B.l-12).   The entire adaptive filter is then ready to calculate the 

probability of each hypothesis over the next interval and to continue calculating 
the weighted estimate. 

, 

The design of this filter requires a number of choices, the most im- 

portant of which is the set of hypotheses or Qk matrices.   The reset interval, 

H-7 
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the a priori probabilities of each hypothesis, and Ilia filler initial condition* 

must also be selected to completely specify the design«   Those choices must 

reflect what is known in advance about the system and are all very important to 

the performance of the Titter. 

The hypothesis testing filter has some primary limitations in practice. 

First, the optimum Kaiman filler for the system may not be one of the N possi- 

bilities over a particular interval.   This could be due !o system modeling 

errors, improper choice of the noise covaiiaace matrix, R , or a choice for 
k n 

the Q   set that does no? cover all possibilities.   Second, the choice <>i the 

reset Interval and a priori probabilities is oftc   i »mewhat arb; i\;ry because 

of Ignorance of tha system dynamic benavior.   Unfortunately the filler's per- 

formance is often very sensitive to these effects.   In pariirular, as discu 

in Chapter 4, if tho noise covarlance matrix R   is incorrect, the adaptive 

algorithm can adapt in the wrong direction and give the highest weight to the 

estimates from that individual filter which is producing the poorest est mates. 

The final difficulty with this design is the requirement that N fillers be built hi 

parallel.   This computational burden may be vnacceplable in many applications« 

B. 2    RESIDUAL TESTING FILTER 

The motivation for the adaptive design described in this sect »on is the 

sensitivity of the hypothesis testing filter lo ihr incorrect choice of R , tho 

measurement noise covarlance matrix.   This problem is n.cnt'oncd above and 

demonstrated dramatically in the results presented in Section 4.2 ;*nd 4.4. 

Basically, the adaptive algorithm of the hypothesis testing filter aepen !s 

directly upon, R , (see Kq. (H.1-I0)) and iJ car adapt in the wrong "direction" 

if It   Is not equal to Hu true misc covarlance matrix.   The residual testing n r 

filter has th<? same structure as hypothesis tes'uig filter, (see Fig. L>.2-l)but 

Ihc adaj live algorithm is chosen differently«   In this approach, the adaptive 

H-<: 
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Ficurc B.2-1 Structure of Residual Testing Filter 

part is designed so Unit it is independent of the choice of R   for the individual 

filters.   The adaptive algo« Llhm observes all of (lie estimates over an interval 

T and at the end of the interval it makes a decision ss to which filter is operat- 

ing best.   Over the next interval, the output of the adaptive algorithm in the 

output of ..:at individual filter selected as best uvov the previous interval. 

Meanwhile the observation of all estimates continues so that a neu* choice can 

be made for ino next intcrva- 

i   * method by which the choice of a best filler is made at th' em! of 

each Intel va   involves the use of the residual sequence ut each filter, the de- 

ments of which are defined hv 

1 7     -II     xV> 
ii       -n       n -ii 
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This vector i:; prcmullipiied by the KrJr. r.n v,:\m matrix, K , and used to up- 

date the state estimate aller the measurement z    is made (see En. (A. 1-10)). -n l 

Using the measurement equation, Eq, (A. 1-8), and Eq. (A. 1-12), the equation 

for v    becomes 
*—n 

vk   -   H   xk(-) + V -n        n-n        -n (B.2-2) 

where x k(-) is the estimation error of the k    filter jus! prior to thrt arrival of 

the measurement z  .   A measure of each filter's performance is provided bv 
~n k the scalar quantity, ^ , defined as 

ii 
y Ay *- n       -n (B.2-3) 

where A is my symmetric positive definite matrix.   The expected valiu of c , 

denoted by £  , is given by 
w 

. 

£  -  Bta-)THTAH5i(.>l   ,2ErxV)TnjAv    1 + FT fvTAv   1 n L~n -n    J [-n n   -mj |~n    «nj 

k Since x  (-) and v   are independent random variables arc! E[vJ - 0, it follows 

that 

gk       E [x^-)TKTAH  xk(-)l   ♦ K [VJAV 1 ©.2-4) 

Kal:n; n filter th<   rv .stales Hat an optimal filter minimfces nix   llx L-n    -nj 
for anv positive semirfeftniie matrix B.   Noting that the matrix \\   All   in Ko. 

ii       n ' 
(B.2-4) is positive semtdclitiitc because A is po   fiw definite, one logical 

means of selecting Itu best filter fi       :i   * t of N is tc stlrH lhal wait .i 
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—k minimizes g  .   In other words, since an optimal filter is known to minin ize 

E[x   Bx] and the first term on the right side of Eq. (B.2-4) is of this form, 
~~ —k then if one filter out of a group of filters is found to have a lower g    than all 

the others, it is a likely choice for .he optimum filter.   If none of the filters 
—k is optimum   then that filter with the lowest value of g   can be called "best". 

This is not a rigorous argument for choosing the best filter, but it is a logical 
—k method of doing .~o.   In practice g   is not known for each of ihe residual 

sequences, but an estimate of it can be made over some interval by calculat- 

ing the time average of g .   Setting A equal to the identity matrix, the esti- 

mate of g   is ^n 

-? 1 
M 

n +M-1 o 
k k T 

nil ;      pn      ^n in 
(B.2-5) 

n=n 

where n   is the value of the time index n at the beginning of an interval and M 

is the total number of samples in the interval«   This calculation is performed 
—k for each of the N filters and the filter that gives the minimum g   is selected as 

"best" over the next interval. 

1 • At the end of the interval, each filter is re-initialized to the estimate 

and covariance matrix of the filter which was judged best.   Thus, at the start 

of each interval all of the N filters have the same initial conditions.   This is 

done to reset any fillei which may be working very poorly to the estimate and 

covariance which arc probably most accurate. 

[ 

The design of the residual testing filter consists of choosing a set of 

reasonable filters for the system, initial conditions for the fillers, and a reset 

interval.   These choice.' must be made based upon the particular system to 

which the filter is applied and should reflect any knowledge available abou' the 

ii-11 
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system.   The filler has essentially the same computational requirements as 

the design developed in the last section,   II is less sensitive lo an incorrect 

choice for the mep.su vein en I noise covariance; i.e., it does not adapt in the 

wrong direction.   However, it tends to be less accurate than the hypothesis 

testing filter in cases where the design parameters for the latter are accur- 

ately known. 
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