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Ride, shock, and traverse tests were conducted with each vehicle configura-
ion at Fort Hood, Texas. These data were used to develop ride and shock .
elations for each vehicle and load configuration. Speed limitations due to :
teering and handling were identified and related to surface roughness for each t
onfiguration. Vehicle configurations were ranked according to relative ride X
uality, cargo responses, obstacle shock, traverse speed, and absorbed energy
er mile of traverse. Traverse speed predicted with the AMM was compared to
he measured traverse speed for each configuration.~y

Several of the commercial vehicles outperformed the M151A2 in each of the
ore important areas in which they were compared.. The standard Scout had the
est ride quality, the high-performance Ramcharger had the best shock- sustalnlng
characteristics, and the high-performance Bréncc had the best traverse "speed.

e ride quality of most of the commercial vehicles with the rated payload was
s good as, or only slightly lower than, those with 80C-1b payload. Mcst of the
igh-performance commercial vehicles with both the rated payload and the 300-
1b payload exceeded the traverse speed of the M151A2.

\’AMM was determined to be adequate for predicting speed performance on the
hort test traverse, provided the maximum control speed due to steering- and
andling-surface roughness relation is used.in predicting speed in place of
he 6-watt driver absorbed power limit, which is more appropriate for missions
of longer duration.
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Appendix A contains the detailed dynamics data for ride and obstacle tests,
ﬁnd Appendix B contains the detailed speed and dynamics data for the traverse
ests,
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PREFACE

Personnel of the U. S. Army Engineer Waterways Experiment Station
(WES) conducted the study reported herein from April to November 1975.
Vehicles were tested at Fort Hood, Texas, for the Modern Army Selected
Systems Test Evaluation and Review (MASSTER) in support of MASSTER Test
Plan No. FM300 under Intra-Army Order for Reimbursable Services No. 156~
75 dated 23 April 1975. The field test data were analyzed for the
Systems Division of the Research, Develcpment, and Engineering Direc-
torate of the U. S. Army Tank-Automotive Command (TACOM), under Intra-
Army Order for Reimbursable Services No. 75-12R dated 13 May 1975.

The study was conducted under the general supervision of
Messrs. W. G. Shockley, Chief, Mobility and Environmental Systems Labo-
ratory; A. A. Rula, Chief, Mobility Systems Division (MSD); E. S. Rush,
Chief, Mobility Investigations Branct (MII); and C. J. Nuttall, Jr.,
Chief, Mobility Research and Methodology Branch (MRMB). Field tests
were conducted at Fort Hood, Tecxas, with the general support of MASSTER
under the general supervision of COL A. S. Hawkins, Director of the
Combat Service Support and Special Programs Directorate, and
LTC T. G. Holloway, Chief of the Mobility and Maintenance Division,
MASSTER, and under the direct support supervision of .TC L. W. Grimes,
Chief, Mobility Test Branch (MTB) and C. D. Thompson, Test Officer, MTB.

Field test data werc collected by Messrs. D. D. Randolph, MRMB;

L. B. Naron, Operations Branch, Instrumentation Services Division;

L. M. Lewis, MIB; C. R. May, MIB; C. D. Currie, MIB; J. N. Peacock, MIB;
and D. E. Strong, MIB. Vehicle performance was predicted using the Army
Mobility Model (AMM) by Mr. R. P. Smith, Data Handling Branch, MSD. The
report was prepared by Mr. Randolph.

COL G. H. Hilt, CE, was the Director of WES during the study and

preparation of the report. Mr. F. R. Brown was Technical Pirector.
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CONVERSION FACTOR, U. S. CUSTOMARY TO
METRIC (SI) UNITS OF MEASUREMENT

Urits of measurement used in this report can be converted as follows:

Multiply By

inches 0.0254
feet 0.3048
nieles (U, S. statute) 1.609344
square inches -6.4516x10°4
acres 4046.856
pounds (force)) 4 L8222
pounds (force) per square 6.894757

inch .
miles per hour 1.6093k4k
tons (short) 907.1847
horsepower per ton 83.82
degrees (angle) 0.01745329

6

To Obtain

metres

metres
kilometres
square metres
square metres
newtons

kilopascals

kilometres per hour
kilograms
watts/kilonewton

radians
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COMPARISON OF RIDE AND MOBILITY CHARACTERISTICS OF
SELECTED COMMERCIAL 1/4- TO 3/4-TON VEHICLES
AND THE MILITARY M151A2 UTILITY TRUCK

PART I: INTRODUCTION

Background

1. The rising vost of consumer goods has affected every element
of American society, including the military. The annual military
investment in personnel and specially designed military equipment is
substantial. Measures have been required to ensure that the task of
equipping and maintaining a modern Army'can be accomplished with a
maximum return on investment. Use of commercially designed vehicles to
replace or support certain military vehicle types was identified in the
1972 DA WHEELS Study1 as an area where cost may be reduced without
affecting the overall Army posture.

D In response to the WHEELS Study findings, the U. S. Army
Materiel Command (AMC) and the U. S. Army Tank-Automotive Command
(TACOM) selected & high-performance vehicle and a standard commercial
vehicle from each of five manufacturers for evaluation to assist in
identifying a commercial vehicle configuration as a potential replace-
ment for the MISIA2 utility truck. Common features of the high-
performance vehicle group were high-horsepower engines, power steering,
power brakes, automatic transmission, and four-wheel drive. The standard
group was characterized by lower horsepower and four-wheel drive at the
driver's option.

3. The U. S. Army Inginecer Waterways Lxperiment Station (WES) was
asked by the Modern Army Selected Systems Test Evaluation and Review
(MASSTER) to support its test program No. FM300 by collecting data on
the mobility and ride characteristics of the M1S51A2 1/4-ton utility
truch and candidate commercial vehicles. Ride, shock, and traverse

tests were to be conducted at Fort Hood, Texas, during May-June 1975
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test course.

over selected dynamics test courses, rigid obstacles, and a traverse

WES was asked by TACOM to analyze the measured ride,

shock, and traverse data and to prepare a report.

Purgosg

4, The purposes of this study were to:

a.

=2

jo

(k=Y

Obtain experimental ride, shock, and speed data for 10
commercial 1/4- to 3/.4-ton vehicles, each carrying an
800-1b payload.

Usc ¢w crimental data to develop the appropriate ride
and snﬁcg Eelations for use in the Army Modiblity Model
(AMM) . <277

Make a limited comparison of the candidate commercial
vehicles with the military M151A2 utility truck on the
bases of ride, shock, and traverse performances.

Use the experimental ride and shock data and the measured
traverse speed data to validate the AMM rclations.

Scope

5. Tests were conducted with the 10 commercial vehicles and the

M151A2 or seven ride test courses, one obstacle-impact test course, and

one traverse test course. Data from the ride ¢nd obstacle-impact tests

were used to characterize the vehicle's vibration and shock qualities

tfor input to the MM, Speed wuas predicted for the traverse course with

AMM the AMM and comparced with the measured traverse speed for each of

the study vehicles.
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Figure 1 (sheet 3 of 4)
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Instrumentation for Measuring Vehicle Dynamic Responses

9. The instrumentation for measuring vehicle dynamic responses
consisted of: (a) three orthogonally positioned linear accelerometers
and two angular accelerometers mounted near the geometric center of the
cargo area to measure the bounce, fore-to-aft, side-to-side, and pitch-
and-roll accelerations in the cargo area; (b) three orthogonally posi-
tioned linear accelerometers mounted on the driver's seat and connected
to a portable ride meter to measure the driver's absorbed power;* (c)
one vertically oriented accelerometer mounted on the floor beneath the
driver's seat; and (d) one vertically oriented accelerometer mounted on
the front axle. All signals were recorded on FM magnetic tape by a 14-
channel heavy-duty recorder and its associated signal processor and 30-
volt battery power source, which were also mounted on the vehicle (Fig-
ures 2-5). The ride meter converted the acceleration signals at the
driver's seat to absorbed power. In addition to being recorded on tape,
absorbed power was displayed continuously on a meter for visual observa-
tion of the responses occurring during each test. The elapsed time and
time-averaged absorbed power were obtained from a digital meter at the

end of each test.
Test Courses

Location

10.  MASSTER personnel selected the general test area. WES per-
sonnel selected the specific dynamics and traverse courses in areas
where obvious GO conditions existed. All courses were in the same
general area at Fort Hood, northwest of the Belton Reservoir along Owl
Creek (Figure 6). Geographic coordinates for the area and locations of
the test sites are given in Figure 7. An environmental description of

Fort Hood is given in Reference 5.

* Absorbed power is the criterion used in human tolerance to vibration
(see paragraph 35).

14
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Figure 2. Portable ride meter and associated accelerometers

Legend

1 - Tape recorder

2 - 30-volt power source

3 - Signal controller

4 - Ride meter

5 = Absorbed power display

6 - Voltmeter w/averaging circuit

Figure 5. Basic instrumentation recording components
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Figure 4. Ride meter installed for vehicle test

§
!
1
Legend

1 - Lincar accelerometers

2 - Rotational (angular) accelerometers
|
L]

Figure 5.  Accelerometer mount for cargo area
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DescriEtion

11. Ride test courses. Previous testss’6

at Fort Hood have shown

a distinct difference in vehicle ride over cross-country terrain and
over roads and trails. The repetitive traffic over trails tends to
smooth out the natural high-frequency components in the terrain surface.
Therefore, to provide a represcniative group of surface conditions,
three cross-country courses, three trails, and a secondary road (grav-
eled surface) were used to characterize vehicle ride. The :ross-country
test courses were designated as CClA, CC2A, and CC3A; the trails, as TI1,
13, and T4; and the single secondary road, as SR1 (Figure 7 for loca-
tions, and Figure 8 for photos of the courses).

12. Trail courses Tl, T3, and T4 and secondary road course SR1
were the same as established for previous test programs.s’6 CC1A, CC2A,
and CC3A vere in the same area, but with different paths, to ensure that
the high-frequency components of the terrain surface were present.

13. The three cross-country courses, course T3, and course SR1
were each 400 ft long; Tl was 800 ft long; and T4 was 300 ft long. A
profile of each course was measured with rod and level at 1-ft intervals,
and surface roughness (rms elevation) was determined from these profiles
using current procedures which eliminate frequency components having
wave lengths greater than 60 ft. The surface roughness (rms elevation)

for each ride test course was as follows:

Test Course Surface Roughness (rms elevation), in.
CC1A 0.5
cc2a 1.4
CC3A 1.8
11 2.0
T3 0.8
T4 1.2
SR] 0.4

14. Obstacle-impact test course. Rigid, semicircular obstacles 4,

6, and 8 in. high werc positioned in a line on a level, hard surface.

A perpendicular approach lane to cach obstacle wus used to permit the

19
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a. Cross-Country Test Course lA b. Cross-Country Test Course 2A
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l .: Figure 8. Dynamics test courses (sheet 1 of 2)
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Figure 8 (shee 2 of 2)
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test vehicles to achieve the desired speeds. Time to traverse the last
100 ft to the obstacle (during which speed was fully stabilized) was
used to compute the impact speed. Location of the course is shown in
Figure 7; a photograph of the 8-in. obstagle, in Figure 8h; and a
sketch of the obstacle course layout, in Figure 9.

15. Traverse course. The traverse course was the same as the

course described as the Primary Test Course for a preVious study,5 but
all terrain units previou ' ly classed as cross-country were redefined as
trails hecause of repetitive traffic over the course since the previous
study (Figure 10). The course was 7.07 miles long and composed of con-
tiguous secondary road and trail units. The 14 secondary road units
{units 1-11 and 41-43) and 38 trail units (units 12-40 and 44-52) com-
prised 42 and 58 percent, respectively, .of the total length.

Test Procedures

Preparation of vehicles for testing

16.  The test vehicles were serviced and checked before each test
to ensure peak mechunical performance during tests. When major mechan-
ical problems devecioped, the commercial vehicles were returned to local
dealers for repair. Minor repairs were accomplished in the field by
Army mechanics.

17. Roll bars were fitted to all commercial test vehicles to
decreuse the « nces of serious accidents and to ensure that all
vehicles were equipped with the sume safety devices (some of the candi-
date commercial vehicles were equipped with roll bars as standard
equipment).

18. Scat belts and safety helmets were also used during testing
of all vehicles eacept the MIS1A2. Drivers of the MISIAZ wore safety
helmets but felt safer without the sest belts since the vehicle was not

ecquipped with & vo' * bar.* However, the WES driver {whose spceds were

* Limited experience with military drivers has indicaved that presence
¢t a4 roll bar ancrcases opervating speeds in rough tervain,
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used for the final evaluation) maintained that he remained in contact
with the seat at all times with the aid of the steering wheel.

19.  Sand bags were used to load all the vehicles except the CJS at
rated payload. Lead weights were required in addition to sand bags for
this vehicle because of the small cargo area. Vehicles were weighed
with portable scales at the test site.

20.  Tire pressures were checked and adjusted as necessary before
each traverse test and before and at intervals during the ride and shock
tests. Tire pressures used during testing were those recommended by
TACOM (Table 2).

Dynamics tests

21. Ride tests. Several tests were conducted with each vehicle
over each ride test course at selected speeds ranging from a low of
about 5 mph to the maximum safe speed. Speed was increased from test to
test, usually in 3-5 mph increments, untii the ride limit or the maximum
control speed due to steering and handling problems was equaled or
slightly exceeded.

22.  Each test began with the vehicle positioned a sufficient
distance from the beginning of the test course to enable the driver to
reach the desired test speed before entering the test course. This
speed was then maintained at a nominally constant level (using the
vehicle's speedometer) throughout the lergth of the course. An observer
rode in the vehicle during each test and selected the test speed,
operated the ride meter,.and narrated details of the tests on the
magnetic tape.

23. During these tests, data were also taken to define motions in
the cargo bed.

24.  Obstacle-impact tests. Four or five tests were conducted with

each vehicle over each obstacle (4-, 0-, and 8-in. heights) at relatively
constant speeds from 5 mph to the maximum safe speed to characterize
the vehicle shock response.

25. Each test began by positioning the test vehicle a sufficient
distance from the 100-ft timing stake (Figure 9) so that the driver

could reuach the desired test speed before reaching the stakes. He then
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maintained that speed (using the vehicle's speedometer) until the vehi-
cle had completely crossed the obstacle. (Obstacle-impact speed was
computed from the distance and elapsed time between passage of the
stakes and obstacle contact.) An observer rode in the vehicle during
each test, selected the test speed, operated the ride meter, and nar-
rated the pertinent test activities.

Traverse tests

26. Each of the 20 vehicle configurations was run over the
traverse test course by each of thrre selected military drivers and one
experienced WES driver {80 test runs). Prior to traverse testing, all
drivers were asked to familJiarize themselves with the vehicles they were
to drive. Each military driver was then allowed to drive one pass over
the traverse test course at a moderate speed accompanied by a WES
observer, who pointed out dangerous locations and also determined if the
driver seemed sufficiently trained for testing. The test drivers and

their experiences expressed in miles driven prior to this test program

were:

Driver Rank M151A2 Commercial 1/4-ton Off-Road Vehicles
White E-4 3,000 e 1,000+
Shaw E-3 8,000 1,000+
Leigh E-4 3,000 1,000+
Nixe E-2 0 100
Ellis E-4 1,000 0
Campbell E-3 200 1,000+
Allison  E-3 9,000 1,000+
Baker E-4 15,000 1,000+
Lewis Civilian 3,000 50,000+

27. Just prior to testing, each driver was instructed to drive the
course at the maximum safe speed, considering himself, the observer, and
the cargo. He was told that the WES chserver was in command of the
veliicle at all times but would make no decision as to how the test
course should be driven, except to tell the driver to slow the vehicle

te a contiollabie speed if the driver began to lose control. In the
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interest of safety, the driver was also instructed to limit his speed on
the secondary road to 40 mph. The driver was also instructed to enter
the first road unit at 45 mph and to continue along the traverse,
adjusting his speed as necessary to obtain a maximum safe speed for the
traverse.

28. The WES observer in the vehicle during traverse testing also
operated the ride meter and narrated pertinent occurrences. The driver

and observer commeanted on the test activities at the end of each
traverse test.

Test Data Collected

Ride tests

29. The principal data for the ride tests were the vertical
accelerations at the driver's seat. Fore-to-aft and side-to-side
accelerations at the driver and cargo areas and vehicle speed were also
measured, The acceleration signals on the driver's seat were converted

to absorbed power by the portable ride meter.
Obstacle-impact tests

30. The data collected for the obstacle-impact tests were the same
as thosc measured in the ride tests, but only the peak values of
vertical accelerations beneath the driver's seat were considered in the
analysis. In addition to the dynamics data, the elapsed time and corre-

sponding average speeds were determined for each test.

Traverse tests

31. In addition to the dynamic response data, the time each vehi-
cle spent in each terrain unit in the traverse course was recorded.

32. Data were collected to characterize the traverse test course
in the quantitative terms (Table 3) required by the AMM for predicting
maximum speed. Procedures for collecting terrain data for vehicle mo-
bility tests are given in Reference 5. To achieve maximum prediction
accuracy, actual recorded values for terrain rather than midpoint class
values were used in the model predictions for this study; however,

terrain factor classes were used to establish terrain units and road
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PART 111: ANALYSIS OF FIELD DATA

Dynamics Tests

Ride tests

33. The basic data describing the ride and cargo responses from
the ride tests are listed in Appendix A (Table Al) for each vehicle s
cenfiguration.

34. Ride quality is presently based on the vertical motions at the

driver's seat and is used as a basis for assessing the speeds at which

a driver will operate the vehicle. Ride quality in itself does not
fully represent the degree of accompanying vehicle abuse or vehicle i
tolerance to such abuse. Other motions, such as fore-and-aft and side-
to-side, are being studied in other research programs to determine their :
effects on driver perceptions of ride quality and his corresponding
driving behavior. All three motions were recorded in these field tests,
but ride quality values for the present study were developed from
vertical motion at the driver's seat only.

35. Absorbed power, which is a measure of the rate at which
vibrational energy is absorbed by a human, is a ride comfort criterion
established through a laboratory test program at TACOM several years
ago. Six watts was established as the human tolerance 1imit7 when
vibration was in the vertical direction only. Results of field tests
indicate that the 6-watt value is often low for certain short traverse
tests and that a driver is often willing to subject himself to 10-20
watts for short periods of time. Field tests in which drivers have
subjected themselves to more than 6 watts for several hours have not
been conducted; therefore, the 6-watt criterion is still used for
describing ride comfort.

36. Cargo arca responses to continuous vibrations are described in
terms of the composite rms acceleration. Composite rms acceleration is,
in essence, a measure of the effective acceleration intensity resulting
from the combined vertical, side-to-side, and fore-to-aft motions,

disrecgarding the direction of the resultant vector. It is computed by

45




- e S i

-

the equation

t
Composite rms acceleration =\l% cjf xzdt

where
T = the total timz over which the accelerations are averaged.
t = the instantaneous time,
x = the square root of the sum of the squares of the accelerations

in the vertical, side-to-side, and fore-to-aft directions.
This particular descriptor was used because it was felt that cargo
damage depends more on the overall intensity of the vibration and less
on the direction of vibrntion. These assumptions have not been vali-
dated, and further study is required to.rélate these response quantities
to cargo damage limits. These data were included in the basic data
table only for direct comparison of study vehicles. The angular
accelerations were not analyzed because their effects are inherently
reflected in the three-dimensional translational acceleration and thus
are incorporated in the composite rms accelerations.

37. In addition to the composite rms accelerations, the number of
occurrences of peak values of the composite acceleration falling within
six preselected levels are included in the basic data. These cargo data
are included mainly as supplemental information and are not analyzed.
They provide a means of examining cargo responses and determining the
distribution of pcak g levels occurring in the cargo area during each
test. ‘This information could be used for estimates of the probability
of exceeding given acceleration levels under certain specified cordi-
tions.

38.  The assumptions have not been validated, and further work is
required before tvpe of cargo, packaging, etc., can be related to kind
and degree of damage to be expucted when cargo is subjected to vehicular
vibrational environments.

39.  The basces of the ride and cargo quantification are the absorbed
power versus speed and composite rms acceleration versus speed relations,

respectively, shown in Plates 1-20. ‘These data show the manner in which
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the ride and cargo responses change as a function of speed for each test
vehicle configuration on each cross-country and trail course. A dis-
tinction was made between the cross-country and trail courses, and
separate curves were drawn because past expeviences with ride tests have
revealed that trail courses gencrally permit higher speeds than the
cross-countsy courses for corresponding levels of absorbed power and
surface roughness. Repetitive vehicular traffic on trails, particularly
that of heavy track-laying vehicles, tends to smooth out the high-
frequency components in the terrain surface, which constitute a large
portion of vibrational energy transmitted to the vehicle's main frame.
It is realized that a better way of discriminating the frequency content
of a profile is needed because some cross-country profiles may not have
high-frequency components. For this study, however, the distinction
between roads and trails was made in the absence of a better method.

40.  The absorbed power-speed and composite acceleration-speed
relations were delineated by faired curves through the data points. The
lack of sufficient data, and even more important, the lack of consistent
curve shape preclude the use of conventional curve-fitting techniques.
Therefore, those curves were drawn on the basiﬁ of engineering judgments
and patterns developed from past experience.

41. Ride quality., To compare the ride quality of test vehicles,

the corresponding spceds at threc levels of absorbed power (3, 6, 9
watts) were obtained from the absorbed power-speed relations (tabulated
values are given for 6-watt level in Table 4) and plotted as a function
of the corresponding surface roughness (Figures 11-21). However, many
ot the vehicles were limited by the maximum speed at which the test
vehicle could be stcered through the test ccurse (designated the maximum
control speed) before reaching the 6-watt level of absorbed power. 1n
other cases, the test vehicle reached speeds in excess of 40 mph (about
40 mph was maximum speed on CClA and T3 due to different surface rough-
ness conditions in the approach and stopping lanes) without reaching a
6-watt level of absorbed power; therefore, engincering judgments were
required to complete the relations over the entire speed range.

42.  Since most of the test vehicles have relatively good
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suspension systems, the effect of steering the vehicles on the ride
dynamics test courses under the control of the driver (maximum control
speed) was found to be much more of a problem than ride quality for
these extremely light vehicles. That is to say, the driver was more
concerned with keeping the vehicle under control than with the punish-
ment he was taking in the driver's seat. The maximum control speed-
surface roughness relations determined for each study vehicle configura-
tion are shown in Figures 11-21 and tabulated values are shown in Table
4, In most cases, these reiutions show that the driver will take
considerably more than 6 watts of absorbed power and maintain steering
control at low speeds (10-15 mph) over high-surface roughness values
(1.8~ to 2.5-in. rms elevation), but that he is often limited by steering
control before reaching 6 watts at highér speeds (30-40 mph) over low-
surface roughness values (0.5- to 1.0-in. rms elevationj.

43.  To provide a concise, but approximate,* means of ranking the
vehicles on the basis of their ride characteristics, the speeds at which
6 watts of absorbed power occurred at 0,6-, 1.2-, and 2-in. rms eleva-
tion values on each cross-country and trail course were averaged to
obtain a single mcasure of the overall cross-country and overall trail
speeds for each test vechicle. The vehicles were then ranked in accord-
ance with their average specds, and each was compared in tcrms of the
percentage of its speed to that of the MI151A2 with 800-1b payload.

These rankings are given in Table 5. On this basis, the standard Scout
with its rated payload of 1919 1ib ranked first in ride quality on the
cross-country ride test courses with a 10,.9-percent increase in speed
over the M151A2, The standard Scout with an 800-1b payload ranked first
in ride quality with a 39.6-percent increase in speed over the M151A2 on
the secondary road and trail test courses.

14. Tuble 5 generally shows that the commercial vehicles ranked

* This assumes an equal probability ot encountering each rms roughness
and c¢qual probability of cross-country and trail operation. Actual
distributions arc highly terrain und mission dependent. Accordingly,
the rankings can only be considered approximations, and under some
circumstances might be misleading.
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equally as well, better, or only slightly lower with their rated pay-
loads than with the 800-1b payload.

45. Ranking of vechicles in this manner shows an overall ride .
quality superiority of vehicles subjected to a wide range of rms eleva-
tion values. However, the ranking may not apply to specific vehicle
missions or jobs with a4 lesser range in rms elevation.

16.  Cargo response. Since research has not yet established

tolerance levels to composite acceleration for various types of cargo or
even established composite acceleration to be the best measure of cargo
response, a comparison was made only for an arbitrarily selected 0.4-g
level.

47.  The speeds at 0.4 g's were obtained directly from Flates 1 to
20 for each study vehicle configuration-and ride test course. These
speeds were then related to the rms elevation for the test courses as
shown in Table 6 and 7.

48. To provide a concise meuns of ranking the study vehicle
configurations with regard to cargo response, the speeds at 0.4-g
composite acceleration at the different rms elevations were averaged to
obtain a representative measure ¢f cross-country and trail speeds for
each study vehicle configuration.* The study vehicle configurations
were also ranked according to their average speeds, and the percentage
of their speed to that of the M{51A2 with an 800-1b payload was com-
puted.™* These rankings are listed in Tables 6 and 7.

49,  The standard Scout with an 800-1b puyload ranked first relative
to cargo response with a 6.78-percent increase in speed over the M151A2
on the cross-country ride test courses. The M151A2 ranked first in
cargo response on the trail test courses with an (. 8-percent increase
mer the standard Scout with an 800-1b payload, which ranked second on

the secondary road and trail test courses,

Sce footnote puaragraph 45.

**  This ranking is strictly applicable to travel over trails and
sccondury roads having the same relative distributions of roughness,
slepe, curvature, ete., as the test traverse. More reliable rankings
can be made through use of AMM only in terrain and scenario conditions
representative ot projected ticld use.
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Obstacle-impact (shock) tests

50.  An important aspect of vehicle ground mobility is the ability
of vehicles to negotiate minor abrupt discrete obstacles. Logs, boul-
ders, rice paddy dikes, etc., are encountered frequently in off-road
travel and produce speed-controlling shock loads that depend on the size
of the obstacle, the size of the traction element, and the speed at
which the obstacle is impacted. Results of past studies have indicated
that obstacle height is a simple, straightforward, suitable descriptor
for characterizing such discrete obstacles. The prime response crite-
rion currently used for limiting vehicle speed is that level at which
the driver's vertical acceleration reaches 2.5 g's with acceleration
peak duration determined by a 30-Hz filter. However, there were in-
stances during the obstacle tests in this study in which the 2.5-g level
was not obtained because a slightly different filler in the field-
measuring device indicated that this peak 2.5-g level had been reached
when subsequent close analysis of the tape-recorded data showed that
this was not the case. Some of the vehicles were not tested over the 8-
in. obstacle because the clearance under these vehicles would definitely
have caused the vehicle to slow to less than 2 mph, and even then the
ciance of severe damage from hitting the unyielding steel obstacle was
kigh. For the vehicles not tested over the 8-in. obstacles, a speed of
2 mph was assigned since it was felt that the vehicle could cross many
natural obstacles of similar height at this low speed without damage.

51.  The basic data for peak uccelerations while the vehicles were

crossing obstacles are given in Appendix A (Table A2). The relations of

obstacle height versus impact speed for 2.5-g vertical acceleration for
each vehicle configuration are given in Figures 22-23 and tubulated
values are given in Table 8. Duata were collected over only 4-, 6-, and
8-in. ovhstacles. Previous testings has shown thot many vehicles will
never rcach a 2.%-g level of vertical acceleration while crossing a
4-in. obstacle; therefore, all test vehicle configurations which had not

reached a peak acceleration of 2.5-g's on the 4-in. obstacles
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were assumed to be able to negotiate 2-in. obstacle heights* at 60 mph
without reaching a 2.5-g level of acceleration.

52. To obtain a better idea of the relative effect of shock on
obstacle-crossing ability, the vehicles were ranked in accordance witH
their average obstacle-crossing speed over 4-, 6-, and 8-in. obstacle
heights** and also in terms of the percentage of their speed to that of
the M151A2 with an 800-1b payload. These rankings are presented in
Table 9.

53.  The high-performance Ramcharger with an 1885-1b payload
ranked first in shock performance with a 13.8-percent increase in speed

over the M151A2 over the obstacle test courses.

Traverse Tests

54,  Eighty traverse tests werc conducted with the 20 vehicle
configurations. Traverse speed (Table 10) and secondary road or trail
unit speed (Appendix B, Tables Bl to Blt) were measured for each con-
figuration using three militavy drivers and one WES experienced driver
as the basic control. The specd data collected during the test with the
WES control driver were used to compare the speed performances of the
configurations. The speed data collected during the test with the
military drivers were used to compare the performances of the military
drivers with that of the WES driver,

55. A1l traverse tests with the WES driver were instrumented to
obtain some dynamics datua in addition to the speed data., A detailed
listing of the datu obtuined for each vehicle configuration during the

instrumented tests is presented in Appendix B (Tables B17 to B36).

*  Seldom are obstacles with 2 2-in., height described as discrete
obstacles. In anv cevent, they would be included as a part of the
surface roughness profile.  Included as part of the surface roughness
profile, they could present cither o ride-limiting speed or 4 control
nrublem due to steering and handling before a 60-mph speed was
reacheld,

A2 Same hasic caution as noted In feotnote, paragraph 43.
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included in these data are the secondary road or trail unit distance,
speed, surface roughness (rms elevation), absorbed power, cargo com-
posite acceleration, and pruk acceleration measurements.

Speed performance

56. Terrain unit spceds are summarized by the bar graph for each
vehicle configuration in Figure 24. These bar graphs show the rela-
tively high speeds that all the vehicles were able to maintain over the
secondary road units and the lower speeds over the trail units. For a
simpler compariscn, the average speeds for all secondary road units, all
trail units, and the complete traverse are given in Table 11.

57. Table 11 shows that all the vehicle configurations were able
to average speeds greater than 39.5 mph for all the secondary road
units. Variations in vehicle speed for these units were largely a
resuit of vehicle speedometer error and the driver sometimes exceeding
the 40-mph speed limit imposed to reduce the chances of a serious
accident on the secondary road. Since these differences in speed on the
secondary road do not really indicate differences in vehicle performance
and are reflected in the traverse specds, the average speed for all
trail units was sciected for comparing the vehicle configurations over
the traverse.

58.. To get a better idca of the relative speed performance of the
vehicle configurations over the trail units, the vehicles were ranked
according to speed and the percentage of the speed of each configuration
to that of the MI51AZ with an 800-1b payload. The rankings and speed
comparisons are given in Table 12.

59.  ‘The high-performance Bronco with an 800-1b payload ranked
first with a 0.3-percent increase in speed over the M151A2, Table 12
also shows that the traverse speed of most of the high-performance
vehicles with a rated payvload was ecqual to or better tharn with an 800-1b
pavload. Most of the standayrd vchicles traverse speeds were better
with an 800-1b payload.

Ride quality
60. As experienced in previous test program. at Fort Hoods’b in

which vehicles were tosted over all or part of the traverse used in this

FIT R
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study, the test drivers were often willing to tolerate 15-20 watts of
absorbed power for many of the units (Appendix B, Tabtles B17 to B36). .

The tests in this study have confirmed that the 6-watt ride criterion is
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not valid for short traverses. 5
61. To get some idea of the difference in ride quality of the c.
vehicle configurations over the traverse, the measured absorbed power : 3

H and speed data for each terrair unit (Appendix D, Tables D17 to D36)

were used to compute the absorbed energy per mile for the traverse LEf),

which is considered to be an index of relative driver fatigue associated

with the measured traverse performance. Et is given by the following

equation:
2 Ptu
—— X
vV, Dtu
E = I-n tu
- D
s t
where:
} ey © average absorbed power for terrain unit, watts
f 'tu = average speed for terrain unit, mph
? Dtu = terrain unit distance, miles
- ? . = traverse distance iles ( = :
: T ‘ €&, M ( I-n Dtu)
i

i n = number of terrain unit

©2. The cumputation involves determination of the absorbed energy

per mile for cach terruin unit and weighted by distance to obtain an

averige value for the complete traverse. Absorbed enersy per mile of
| traverse was first expressed in the HIMO Study8 in which the absorbed
1 power per mile for each terrain unit (ptu/vtu
AMM speed prediction for the terrain unit (VAMM) and the 6-watt ride

)} was estimated from the

speed for the unit (Vr) by means of the following equation:

2

, p v
4 Ttu_pAMMY 6
L v h v v
1 tu T AMM
F
; 03. Traverse ride performances of the vehicie configurations were

then ranked according to the lowest value of absorbed energy per mils
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or the M151A2 with an 800-1b payload.

for the traverse and the percentage of the absorbed energy of each test
vehicle configuratio

@
[
o
V)
o
Ly

n t
These rankings ate given in Table 13.
63 'The standard Scout with a 1919-1b payload ranked first with an

absovbed energy per mile of traverse abcut one-half that of the MI51A2.

Cargo response

65. Composite acceuleration and peak acceleration values are
presented in Appendiz B {Tables B17 to B36). These data were not ;

analyzed in this study.

66.  Examination of the traverse speed data (Table 10) shows a 3-
to 17-percent difference in the speed performance between the military

driver with the lowest speed and the military driver with the highest

L e RS e R R AR A TR L ke

specd. Both the traverse speed data and the detailed secondary road and
trail unit data {(Appendix B, Tables BI to B16) shew that in all cases
the WES driver's speed exceeded the speed of any of the three military
drivers.

67. Table 14 gives the average traverse speeds of the three mili-
taty drivers, the average traverse speed of the WES driver, and the
percent-speed difference between the military drivers ana the WES
driver. The average spced of the military drivers rauged from 10 to 32
percent lower than that of the WES driver for Jdifferent vehicle config-
urations. The average military driver's speed was 19 percent lower than
that of the WES driver when all configuration were considered.

68. It should be noted that the military drivers did not have
complete contro! over their vehicles during traverse testing and would
not have been able to safely maintain the speeds they did without
the aid of the obscrver. Considerably more training of the military
drivers than was possible in this study would be required before they
could attain high-traverse speods safely without che aid of an expe-

ricenced observer.
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AMM Predictions

69. The primary purpose for conducting the traverse tests was to
check the ability of the AMM to predict speed over the traverse test
course. The traverse test course represents just one example of a
mission that might be expected of the study vehicles; if the AMM can be
demonstrated to reflect good performance predictions on the traverse,
the model can be used with more confidence to evaluate the study vehicles
over the wide range of terrain, road, and trail conditions that must be
cxamined before final decisions are made.

70. The aMC-74/x* version of the AMM8 was used to determine
terrain unit speeds for the traverse. Because some of the terrain units
in the traverse occupied short distances, acceleration and deceleration
cffects (AC/DC} on speed when a vehicle was entering and exiting a
terrain unit were also accounted for. Road and trail unit descriptions
used isn the predictions are given in Table 3, Vehicle characteristics
used in the model for predicting speed are shown in Table 15. The item
numbers in Table 15 are keyed to the vehicle characteristics numbers in
Table 16. * iitional items in Table 16 (38-41) identify the relations
used in AMC-74/x and &re given in Tables 4, 8, and 17.

71.  The predicted and measured speed for each of the study vehi-
cles with an 890-]b payload, using the standard 6-vatt absorbed power
ride criterion, are shown in Table 18, ‘The percentage of error between
the predicted and messurcd speeds vanged tfrom 2.4 to 40.5 percent for
the study vehicles with an 800-1b payload. The large error in the pre-
divted spreds was felt to be largely due to the fact that the driver did
not restrain himself to 6-watt absorbed power {Appendix B, Tables B17 to
B36). dew speed predictions were made with the AMC-74/x substituting
the maximum control specd-surface roughress relations instead of the
speed at 6-watr bsorbed power-surface roughness relation (Table 18).
The percentage of 2rror between the predicted and measured speeds ranged
from 5.2 to 17.6 perceant.

*AMC-T74/x denotes the current state of AMM.,  This version is considered
to contain about 95 percent of the refincments to the AMC-74 version.
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Miscellaneous Data
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Effects of tire pressure on absorbed power

72. A limited number of dynamics tests were conducted over ride
test courses CClA, CCZA, and T1 using the M151A2 with 800-1b payload at

tire pressures of 15 and 30 psi in addition to those conducted at 20 psi

n

(Table 2) to determine the influence of tire pressure on absorbed

g e bR

power. Test results showed very little or no change in absorbed power

H as tire pressure was changed over this range (Figure 25).

H VCIl* predictions

; i 73. VCI1 predictions were made with the AMM for each vehicle con-
i figuration and are given in Table 20. These data are included only as

supplemental data.

Summary Discussion of Evaluations

74.  The vehicle evaluations in this study were all primarily with
regard to ride characteristics and should not be interpreted otherwise,
. The vehicle configurations were not tested over a wide enough range of

terrains to completely evaluate the vehicles. The AMM and the dynamic

relations developed in this study must be used to evaluate the study
vehicles over widely ranging variations in terrains, trails, and roads
tor trail decision purposcs.

75. The study vehicles were evaluated and ranked in terms of ride

quality and cargo response, shock on impacting obstacles, and traverse

speed and absorbed energy per mile over the traverse test course. A

e — .

i summary of these rankings is given in Table 20.
7G.  Of those clements examined in the test program, traverse speed

is considered to be the most significant ranking because it integrates

i . the dynamic effect on vehicles due to surface roughness together with

i some simple effects of soil, slope, obstacles, and visibility, but the

* Minimum soil strength (cone index) required for one pass of a vehicle.
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evaluation is still limited.*

77. Ride quality is felt to be the next order of significance
since surface roughness has a continuous effect on vehicle performance.
in many terrain situations. Shock over obstacles is considered to be of
next significance.

78.  The significance of cargo response and absorbed energy per
mile has not been established but is thought to be less than the other
vehicle rankings.

79. Based primarily on traverse speed ranking (Table 20), which is
felt to reflect the ride characteristics and obstacle shock, all the
high-performance commercial vehicles with their rated payloads were able
to exceed the performance of the MI51AZ; and all high-performance com-
mercial vehicles except the CJ5 were able to exceed the performance of
the M151A2 with an 800-1b payload. The standard Scout and standard
Blazer, both with 800-1b payloads, were the only standard commercial
vehicles whose performance exceeded the M151A2.

80. None of the rankings directly reflect the abuse to the vehi-
cles involved in recaching the measured performances. The ride and shock
measurements at the driver's seat as well as control speed limits are
indicative of the :=peeds at which the vehicle will be operated. Rela-
tions of these speeds to potential vehicle reliability and maintenance

problems were not the subject of this study.

*  (0-NO GO capabilities in soft soils, for example, were not reflected
in any of the tests.
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PARY 1V: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

t

81. On the basis of this study, the following conclusions have

[RRSPRU

been reached:

a. Candidate evaluation based on test data

(1) From the special dynamics tests: )

{(a) The standard Scout with & 1919-1b ypayload has
the best ride quality on cross-country ride test
courses. It shows a 10.9-percent increase in
speed over the M151A2, which ranks fourth among
the 20-vehicle configurations.

(b) The standard Scout with an 800-1b payload has
the best ride quality on the secondary road and
trails ride test courses with a 39.6-percent
increase in speed over the M151A2, which ranks
last among the 20-vehicle configurations.

{¢) The high-performance Ramcharger with an 1885-1b
payload has the best shock-sustaining
characteristics during obstacle crossing with
a 13.8-percent increase over the M151A2, which
ranks fourth among the 20 study vehicle config-
urations.

{(d} Generally, the vehicles with the better ride
characteristics have the poorer shock-sustaining
! characteristics during obstacle crossings.

(2) From the traverse tests:

(a) The high-performance Bronco with an 800-1b
pavioad has the oest traverse speed with a
t..3-percent increase over the M151A2, which
ranks sixteenth among the 20-vehicle config-
l urations.

(b) Most of the high-performance commercial vehicles
are able to acheive a higher traverse speed with
i both the ruated payload and an 800-1b payload
then can the M151A2. Only the standard Scout
and the standard Blazer with an 800-1b payload
) i arc able to exceed the traverse speed of the

M151A2.
} b.  AMM validation. MM can be used to obtain geod traverse
i speed predictions tor the study vehicles, provided the

maximum control speed-surface roughness relations are




&

e s 005

T e § A

substituted for (or used in conjunction with) the speed
at 6-watt absorbed power-surface roughness relations.

le

AMM data support. Speed control due to steering and
handling is identified as a new factor. First analysis
indicates that limiting speed for a given vehicle is a
function of terrain roughness expressed in terms of rms
elevation.

Recommendations

82. 1t is recommended that the AMM, the ride and snock dvrnamics
relations, and the control speed limit relations developed in this study
be used to cvaluate the study vehicles over widely raiging variations jn
terrains, trails, and roads. The terrain developed for the HIMO Study
would be ideal for such further evaluations.

83. It is further recommended that research be undertaken to
define control speed limits in rough terrain more closely and to develop

the capability to predict such limits analytically.
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Table 2

lire Pressures Used During Testing

Tire Pressure, psi

Vehicle Front Rear

Standard Commercial

i Ramcharger 35 35
‘ ! Blazer 45 30
| | cJs | 35 35
Scout 30 30
Bronco 45 45

| ~ High-Performance Commercial

Ramcharger 30 30
‘ Blazer 30 30
L cJs 30 30
F Scout 30 30
S 5 . Bronco 45 45
P *
Military
i -
Foo i M151A2 20 20
-
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]
] - Table 5
i Ranking of Vehicles with Respect to Ride Quality*
Speed, mph at 6-Watts '
{ Absorbed Power for Average Percent b
rms {in.) lIndicated Speed M151A2
: Vehicle Payload, 1b 0.6 1.2 2.0 mph Speed Rank
ll Cross-Country
Standard 5Scout 1919 3B+ 15 8 20.3 110.9 1
Standard Scout 800 38** 13 9 20.0 109.3 2
Standard Ramcharger 800 39+ 12 8 19.7 107.7 3
High Performance 8lazer 800 3qx* 12 7 19.3 105.5 4
High Performance Scout 1919 36** 13 9 19.3 105.5 4
Standard Ramchurger 1885 38%* 11 8 19.0 103.8 6 {
] High Performance 8lazer 1660 KRkt 12 6 19.0 103.8 6 i
High Performance Ramcharger 800 37+ 11 8 18.7 102.2 8 {
High Performance Ramcharger 1885 37 11 8 18.7 102.2 8
High Performance CJ5 800 34 14 8 18.7 102.2 8
Standard 8lazer 800 35 13 7 18.3 100.0 11
) Standard CJS 1300 3o** 12 7 18.3 100.0 11
| Standard 8ronco 800 3o+ 12 7 18.3 100.0 11
) High Performance Scout 800 35%~ 13 7 18.3 100.0 11
: High Performance 8ronco 1340 34%* 12 9 18.3 100.0 11
i ® M151A2 800 35 12 8 18.3 100.0 11
i 3 High Performance Bronco 800 34r~ 12 8 18.0 98.4 17
s_ Stundard CJS 800 35%% 11 7 17.7 96.7 18
' & High Perfomunce CJ5S 1300 33** 12 8 17.7 96.7 18
; e Standard 8lazer 1660 330w 11 7 17.0 92,9 20
\
?t Roads and Trails
g . Standard Scout 800 50 29 12 30.3 139.6 1 :
g High Performance Scout 1919 49** 30 9 29.3 135.0 2 d
3 Stundard Scout 1919 37** 25 10 27.3 125.8 3
3 High Performance Scout 800 43 28 9 26.7 123.0 4
3 i High Performance Bronco 1340 41+ 29 10 2657 123.0 4
E % St:amdard CJI5 800 40+ 28** 11 26.3 121.2 6
. ligh Performance CJS 800 0 29 9 26.0 119.8 7
) } High Performance Bronco 800 J9»* 27 10 25.3 116.6 8 g
: ! Standard CJS 1300 40 28 8 25.3 116.6 8
4 ‘ g tiigh Performance CJ5 1300 0%+ 28+ 8 25.3 116.6 8
N Standard Blazer lot0 42 28 7 25.3 116.6 8 .'f
] St:undard Rumcharger 1885 142 & 9 25.0 115.2 12
: Standard 8lazer 800 KRR 25 8 25.0 115.2 12
i 4 High Pertformance Bluzer R0 50 17 7 24.7 113.8 14
i 3 Stundard Rumchargev 800 EELA 21 7 24.0 110.6 15
i Standard 8ronco 800 37 25 9 23.7 109.2 16
3 ; High Performance Ramcharger 1885 q5** 17 9 23.7 109.2 16
i i Hioh Performance Blacer 1660 42 18 10 23.3 107.4 18
g' H High Perforance Ramchurger 800 45 ** 17 8 23.3 107.4 18
MISTA2 ROV 35 21 9 21.7 100.0 20
g * nide quality runking based on average vehicle speed at 6-watt absorbed power for rms elevation valtues
{ £ of 0.6, 1.2, and 2.0 in. except as noted.
‘ } ** Maximum control speed reached before t-watt absorbed power obtained.
‘ §
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Table 8

Obstacle lleight and Corresponding Speed

i
} at 2.5-g Vertical Acceleration
. Speed, mph, at 2.5-g Vertical Accelera-
] tion fo- Obstacle Height, in., Indicated
i i Vehicle Payload, 1b 2 34 5 6 7 8
i 5 Standard Commercial
g Ramcharger 800 60 60 60 18 8 6 4
: 1885 60 60 60 20 8 6 A
Blazer 800 60 43 29 17 9 5 4
\ 1660 60 60 60 19 8 5 4
; CJs 800 60 23 12 9 7 5 4
: 1300 60- 26 15 10 6 4 2
. Scout 800 60 40 26 16 8 3 2
. 1919 60 30 19 14 9 S 2
l
: Bronco 800 60 22 14 11 9 7 6
i High-Performance Commercial
. Ramcharger 800 . 60 60 60 26 11 4 2
i 1885 60 60 60 36 20 9 2
Blazer 800 60 60 60 22 11 6 4
i 1660 60 60 60 21 10 5 2
CJS 800 60 35 22 14 8 4 2
1300 60 23 13 10 7 S &
3 i
1 Scout 800 60 32 18 11 7 4 2
3 , 1919 o0 2 16 12 8 5
Bronco 800 60 23 14 10 7 4 8
1340 60 43 28 16 8 4 2
SR
M151A2 800 60 60 60 28 8 5 4
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Table 11

Comparison of Average Vehicle Speeds on Secondary Roads,

Trails, and Traverse

Secondary
Road Trail ,
Vehicles Payload, 1b __Units Units Traverse
Standard Commercial
Ramcharger 800 40.7 24,3 28.2
1885 40.6 24.0 27.9
Blazer 800 41.6 25.5 29.4
1660 40.6 24.5 28.3
CcJ5 800 39.5 21.3 25.2
1300 41.0 22.1 26.2
Scout 800 39.9 26.5 30.6
1919 40.3 22.9 26.9
Bronco 800 42.4 25.1 29.2
High-Performance Commercial
Ramcharger 800 45.8 26.1 30.6
1885 43.7 26.2 30.4
Blazer 800 46.0 25.8 30.4
1660 45.5 26.6 31.1
CJ5 800 41.3 24.5 28.5
1300 41.3 25.8 29.7
Scout 800 42.6 26.6 30.6
1919 43.6 26.0 30.2
Bronco 800 40.4 26.9 30.4
1310 41.6 25.9 29.8
Military
M151A2 800 40.9 25.3 29.1




Table 12

Ranking of Vehicles with Respect to Traverse Trail-Unit Speed Perfurmance

Percent
Trail Unit M151A2
Vehicles Payload, 1b Speeds, mph Speed Rank
High-performance Bronco 800 26.9 106.3 1
High-performance Blazer 1660 26.6 105.1 2
High-performance Scout 800 26.6 105.1 2
Standard Scout 800 26.5 104.7 4
High-performance Ramcharger 1885 26.2 103.6 5
High-performarce Ramcharger 800 26.1 103.2 6
High-performance Scout 1919 26.0 102.8 7
High-performance Bron.o 1300 25.9 102.4 8
High-performance Blazer 800 25.8 102.0 9
High-performance CJ5 1300 25.8 102.0 9
Standard Blazer 800 25.5 100.8 11
M151A2 830 25,3 100.0 12
Standard Bronco 80C 25.1 99.2 13
Standard Blazer 1660 24.5 *96.8 14
High-performance CJ5 800 24.5 96.8 14
Standard Remcharger 800 24.3 96.0 16
Standard Ramcharger 1885 24.0 .94.9 oV
Standard Scout 1919 22.9 90.5 18
Standard CJ5 *1300 22,1 87.4 19
Standard CJ5 300 21.3 84.2 20




Table 13
Ranking of Vehicles with Respect to Absorbed Energy

Per mile of Traverse

Absorbed Percent

Energy M151A2
Payload watt per Absorbed
Vehicle 1b mile Energy ~ Rank

Standard Scout 1919 0.17 48.6 1

Standerd Scout 800 0.19 54.3 2

High-performance CJS 1300 0.23 66.5 3

High-performance Scout 800 0.24 68.5 4

Standard CJ5 800 0.24 68.5 4

High-performance CJ5 800 0.25 71.4 6

Standard Blazer 1660 0.25 71.4 6

Standard CJ5 1300 0.26 74.3 8

Standard Blazer 800 0.27 77.1 9

, High-performance Ramcharger 1885 0.30 85.7 10
f Standard Ramcharger 800 0.31 88.6 11
: Standard Ramcharger 1885 0.32 91.4 12
{ High-performance Scout 1919 0.33 94.3 13
, High-performance Bronco 800 0.34 97.1 14
i High-performance Blazer 1660 0.34 97.1 14
' M151A2 800 0.35 100.0 16
: High-performance Blazer 800 0.36 102.¢ 17
i ' High-performance Bronco 1340 0.38 108.5 18
‘ Standard Bronco 800 0.43 122.9 19
e High-performance Ramcharger 800 0.47 134.3 20

k i
1

ke i it o Tt ac it i a0

.
ki < e < n

* Based on absorbed energy.
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Table 14

Comparison of performances of Military and WES Drivers®

Speed, mph
Military WES Percent
Vehicle Payload, 1b Driver . Driver pifference**
Standard Commercial
Ramcharger 800 19.2 28.2 -32
1885 20.6 27.9 -26
Blazer 800 23.0 29 .4 -22
1660 22.5 28.3 -20
CJs 800 22.7 25.2 -11
1300 . 22.5 26.2 -14
Scout 800 24.5 30.6 -19
1900 22.9 26.9 -16
Bronco 800 25.7 29.2 -12
High-Performance Commercial
Ramcharger 800 23.7 30.6 -22
1885 21.3 30.4 -30
Blazer . 800 24.2 30.4 -20
1660 23.9 31.1 -23
CJs 800 24.2 28.5 -15
1300 24.4 29.7 -18
Scout 800 25.6 30.6 -16
1919 27.3 30.2 -10
Bronco 800 26.0 30.4 -15
1340 26.0 29.8 -13
Military
M151A2 800 24.0 29.1 -18

N . - .
Comparison based on vehicle speed on traverse.

T 5 oy . speed of military dziv;rwéssgegd of WES driver
speed 0 river
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Table 16

Key to Vehicle Characteristics

Used by AMC-74 Mobility Model

Item Dimen- Characteristic
No. Vehicle Characteristics sions Application*
1 Vehicle configuration - B
2  Gross vehicle weight (cross-country) 1b B
3 Payload tons B
L Track type - T
5 Grouser height for tracks; number of in. B
tires for wheeled
6 Tire ply rating - W
T Gross rated horsepower bhp B
8 Number of tracks or tires - B
9 Number of axles - W
10 Vehicle width in. B
11 Vehicle length in. B
12 Track width or nominal tire width in. B
13 Vheel rim diameter in. W
1% Recommended tire pressure (sdnd) psi
15 Area of one track shoe (tracked) or in. B
number of wheels (wheeled)
16 Number of bogies in contact with ground - B
(tracked) or chain indicator (wheeled)
(0 = no chains, 1 = chains)
17 Vehicle ground clearance at the center in. W
of greatest wheel span
18 Minimum vehicle ground clearance in.
19 Rear-end clearance (vertical clearance in.
of vehicle trailing edge)
20 Vehicle departure angle deg B

(Continued)

¥ T denotes tracked vehicles only; W denotes wheeled vehicles only; and
B denotes both wheeled and tracked vehicles.
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Table 16 (Continued)

Ttem Dimen- Characteristic
No. Vehicle Characteristics sions Application*
21 Front-end clearance (vertical clearance in. B
of vehicle's leading edge)

22 Vehicle approach angle deg B

23 Length of track on ground or wheel in. B
dianeter

2k Height of vehicle pushbar (leading edge in. B
when no pushbar)

25 Distance between first-and last-wheel in. B
center lines (or bogies)

26 Horizontal distance from the center of in. T
gravity to the front -wheel centerline

27 Vertical distance from the center of in. B
gravity to the road-wheel center lines

28 Maximum span between adjacent wheel in. v
center lines

29 Horizontal distance from the center of in T
gravity to the center of the rear
sprocket or idler

30 Vertical distance trom the ground to the in. T
center of the rear idler or sprocket

31 Track thickness plus the radius of the in. T

road wheel

32 Rolling radius of tire or sprocket in. B

pitch radius

33 Maximum braking coefficient the vehicle - B

develops

34 Maximum force the leading edge can 1b B

withstand

35 Maximum axle load/gross vehicle weight - W
36  Vechicle rated horsepower per ton hp/ton B
37 Transmission type - B
38 Array containing vehicie velocity versus - B

obstacle height at 2.5-g vertical
acceleration

(Continued)
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Table 16 (Concluded)

OO TS @ e o 0w

Item Dimen- Characteristic
lio. Vehicle Characteristics sidns Application¥
39 Array containing ride dynamics versus - B
speed curve (cross country)
Lo Array containing ride dynamics versus - B
speed curve (trails and secondary
roads)
L1 Array containing tractive force-speed - B

array
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Table 18
Comparison of Predicted and Measured Traverse Speeds

Measured Predicted Algebraic :
: Speed* Speed Deviation** Percent
Vehicle mph mph mph Errort
6-watt Ride Criterion
Sy Ramcharger 28.2 19.4 - 8.8 31.2
3'8'3 Blazer 29.4 20.6 - 8.8 29.9
S & [CI5 25.2 25.8 + 0.6 2.4
8 E S Scout 30.6 26.7 - 3.9 12.8
® § 7 IBronco 29.2 22.3 - 6.9 23.6
]
§§ Ramcharger 30.6 18.2 -12.4 40.5
i 80 S|Blazer 30.4 19.3 -11.1 36.5
‘5058.3 cJs 28.5 125.8 - 2.7 8.8
25 §§ Scout 30.6 24.1 - 6.5 21.2
& S 7 |Bronco 30.4 24.2 - 6.2 20.4
£ o
S o|M151A2 29.1 22.2 - 6.9 23.7
o s
g2
Maximum Control Speed Ride Criterion
EE‘: Ramcharger 28.2 26.6 - 1.4 5.0
30 S|Blazer 29.4 27.9 1.5 5.1
gs.s cJs 25.2 26.5 1.3 5.2
S E5Scout 30.6 26.7 - 3.9 12.8
- “ 8 Z|Bronco 29.2 25.3 - 3.9 13.4
' 0 Ramcharger 30.6 25.2 - 5.4 17.6
. £ 5| Blazer 30.4 28.2 - 2.2 7.2
o @ =[CJ5 28.5 27.4 - 1.1 3.9
] 2% Eé’ Scout 30.6 27.6 - 3.0 9.8
: &S  |Bronco 30. 4 26.3 - 4.1 13.5
b2y
B 3 M15142 29.1 27.7 - 1.2 4.1
- 0
s )
-‘T, >

* Measured speed with WES driver.

] ** Algebraic deviation = predicted speed - measured speed.

. bredicted speed - measured speed
measured speed ’

t+ Percent ervor
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Table 19

VCI, Values for Test Vehicles

1
Vehicle Payload, 1b VCI1 (Fine-Grained Soils)
Standard Commercial
Ramcharger 800 28
1885 31
Blazer 800 30
1660 34
CJ5 800 26
1300 29
Scout 800 27
1919 32
Bronco 800 27
High-Performance Commercial
Ramcharger 800 22
1885 25
BRlazer . 800 20
1660 22
CJ5 800 24
1300 26
" Scout 800 28
1919 32
Bronco 800 26
1340 28
Military
M151A2 800 19
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. APPENDIX A: DETAILED DYNAMICS DATA FOR RIDE AND SHOCK TESTS

1. The detailed dynamics data for the ride tests are given in

Table Al, and the detailed data for the shock tests are presented in
Table A2,

i b
e WA S SR L s

e e s

Lt P
.

R

Al
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