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ABSTRACT 

Identities and inequalities for Fourier kernels and for difference 

operators are related to a geometric series identity. The 

resulting machinery is applied to obtain, in the approximation 

theory for ordinary or partial derivatives of any order, necessary 

and sufficient conditions in place of classical sufficient conditions. 

Alternative formulations are given in terms of Tauberian Theorems, 

and in terms of Schwartz distributions. 

The results are achieved by making ase, as in L. C. Young's 

papers on Stochastic integrals and the like, of pairs of estimate 

functions in place of the classical higher moduli of continuity^ 
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DERIVATIVES, DIFFERENCES, MULTIPLE FOURIER KERNELS 

D. B. Liu and L. C. Young 

§1. Introduction. We shall be concerned, in this note, with some 

elementary properties of multiple Fourier kernels, and with their use in the 

approximation theory for derivatives of all orders, for functions of one or 

more variables. Some basic devices go back as far as Riemann's theory of 

trigonométrie series and H. A. Schwarz's generalized second derivative. 

We take the trouble, in this connection, to establish for the first time a 

little lemma, conjectured by Uttiewood and Paley. At various places we 

indicate the bearing of our methods and results on Tauberian theorems, 

Laurent-Schwartz distributions, and classical approximation theory. 

Generally speaking, our results differ from the classical ones by being neces¬ 

sary and sufficient conditions, rather than merely necessary, or merely suf¬ 

ficient. This is due to our systematic use of a pair of estimate functions, 

instead of a single modulus of continuity of the appropriate order. Our work 

is related to, and partly extends, recent work in which such pairs of estimate 

functions were used to study Stieltjes and Stochastic integrals (Main Theorems, 

Young 25, 26; "best possible" character, Young 27; z¿e also, for instance, 

Young 24, Lesniewski and Orlicz 13). We provide, in this connection, an 

alternative approach to the Stochastic integrals, there introduced. 

Sponsored by the United States Army under Contract No. DAAG29-7 5-C-0024 
and the National Science Foundation under Contract No. GP-27211. 



§2- The elementary geometric kernel and a Llttlewood-Paley lemma. 

We shall require some simple identities concerning special cases of 

the polynomial 

(2.1) p(z) = Zcvz' 
N N z - a 

N N r r 

z - a •í-TTÍ- 

Here q and the Nr denote positive integers, while z and the ar are 

complex numbers #0 . 

The properties of (2.1) and its special cases are the basis of methods 

used in various topics of analysis, such as Fourier series, summability, 

finite differences. We term (2.1) a geometric kernel. Equivalently we may 

consider a general Fourier kernel 
N -N 

_s_ £ r - & r 
(2.2) TT —-r— , tr = z/a . 

r=l L - t'A r r 
r r 

In the Fourier context it seems very clear that a general study of the 

polynomial (2.1), or of the kernel (2. 2), is a necessary preliminary for who¬ 

ever desires to see how far one can get by elementary methods. The ar 

must be allowed to vary independently, at least on the unit circumference of 

the complex plane. This is the basic idea of the approach initiated by 

Littlewood and Paley (11). 

The obvious starting point for such a study should be a good estimate 

of the coefficients . We therefore take this opportunity to establish a 

lemma conjectured by Littlewood and Paley (11, footnote p. 117). Our proof 

eliminates a weaker result, and therefore some minor Littlewood-Paley 

inaccuracies (e.g. loc^it, top of P. 118, where a statement in italics 
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contradicts the Kronecker-Weyl theorem). 

(2.3) Little wood - Pa ley Lemma. In (2.1) suppose each ja^j =1. Then 

(2.4) Max |cj < A(q) ^br 
V 

where A(q) Is a constant depending only on q , and where the br are 

defined by setting 

Nrs = Mln(Nr,Ns), ars = N"* t I»,-»,!, <>r = IT ^ • 
s 

s# r 

Proof of (2. 4)*. By re-ordering we arrange that 

a = a = Max ars , 
r,s 
r^s 

N12 = N1 < N2 * 

We denote by P.iz), P_(z) the funcüons derived from (2.1) by omit- 
i ¿ 

ting from its right-hand side the factors corresponding respectively to r=2 

and r=l. Further, in the expansions of the form 2CV 2 for Pi^2^ 

P2(z), we denote by C, C2, respectively, the corresponding greatest |cv¡. 

By multiplying the expansions of 

P2(z) and 

N N, 

2 -al 

z - a 1 

we see that N.^C < C, , while the idenUty 
1 - 2 k2 n2 N N. 

(ai-a2)P(z) = (z “ - a2" ) fyz) - (z 1 ‘ ai 1)p2(2) 

evidently implies |ara2|C < 2 Cj + 2 C2. It follows by addiUon that 

oC < 2C + 3C , and therefore, by an induction in q , that (2. 4) holds with 
1 2 

A(q) = 5 q-1 

^The estimate obtained byreplacing ars by Nrs is trivial. So is, by the 
partial fraction expansion of (2.1), the estimate in which arg is replaced by 

I a _a |. To the practical analyst, the existence of two estimates, X < A , 
X < B,S automatically suggests X < C, for some nice symmetrical expression 
C< Min (A, B). Here (2. 4) does amount to such an estimate X < C . 

#1578 -3- 



§3. Basic identities. For the kernels (2.1), (2.2), inequalities such 

as (2. 4) would become essential here if we proposed to employ a Fourier 

series approach to the topics we shall consider. We prefer a direct approach. 

We write 4 for the vector (4^... ,4q), where again 4f = z/ar . 

Similarly, a symbol such as n , which occurs as an exponent, may have 

components nf (r = 1,...,q), and in that case 4n denotes the product of the 

n -th powers of the 4r. The following variants of Lemma A(4.1) of (26) are 

easy consequences of the geometric series identity. 

(3.1) Let £, £* denote, respectively, the sets of convex^ombint^- 

tions 

Z\,V, .¿wv 
of products Qi Pj, Q* P* , where each P^ has the form, 4°, each P^ the_ 

form i(4n + 4"n), each Qi the form 4“- 1, and each the form 

i(4n + 4"n-2), and where, moreover, the exponents n in each Q1 

and the components of the exponents n in each P^ , P^ are positive integerg, 

not exceeding the corresponding Integers Nr . Furtherjet 

F(z) = it F/Nr » F* = Fr/Nr » 
r=l r r=1 r=l 

N 

4r r ’ 1 

N -N 
4 r- ^ r r 

" 1 # 
,-1 

Then q_1(F-l) « £ , q’^F* - D « X* . 

(3.2) Let L, L* denote, respectively, the sets of convex combina - 

tions 

Zw Zs < • 

4- 
#1578 
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of expressions of the form z11-!, i(z + z - 2), where the 

exponents n are positive integers not exceeding qN . Further let 

ar =1, N. = N (r = 1,...,q), so that now 

F(z) = (^-)q/Nq , F*,z» = • 
z - z 

Then F- 1 c L , F* - 1 « L . 

We shall find it more coavenient to multiply up by the denominators 

L - 1. C - t."*. etc. The above assertions then take the following form, 
r r r ’ 

* ÿ 
(3.3) Let X , X be the sets obtained from J, r by multiplying the 

elements respectively by | | (Cr-1), | |(^r ■ Cr ). Similarly let K, K be the_ 
^ q -1 q 

sets obtained from L,L by multiplying the elements by (z-1) , (z-z ) . 

Then 

I,..) iff a/-d/n - >r, 
q r=l r r q r=l 1 

<3.M 

(3.6) 

(3.7) 

N'q (zN - l)q - (z - l)qt K ' 

54. Translations and differences. Let f(x) be an arbitrary function 

defined in a Euclidean space, termed x-space, or in particular, if we write 

t for x , on the real line, and suppose the values of f(x) lie in a vector 

space. We shall give to the idenUties of the preceding section a new inter¬ 

pretation in terms of the translations of f(x) that arise from translations of 

x-space along coordinate axes (not necessarily a same coordinate axis for 

different translations). 

#1578 -5- 



To this effect, it will be convenient to define &r and z in (3,4), (3.6) 

ns translations, by setting 4r f(x) = f(x + zf(f) = f(tl*h), and to modify 

these definitions in (3. 5), (3.7), by writing instead yix) = f(x + ihf), 

zf(t) = f(t + ih). Evidently our assertions remain valid in the algebra of such 

translation operators. We shall formulate them in terms of difference operators. 

If h isa vector along a coordinate axis, the simple difference , and the 

simple symmetric difference , are defined by setting 

Ah f(x) = f(x+h) - f(x), A* f(x) = f(x + ih) - f(x - lh) . 

(4.1) Let X£ t X* denote, respectively, the sets of convex combinations of 

expressions of the form 

-i i 
(i) ( Ah ) A^f(x+ri), (ii) (i 

where k denotes an arbitrary positive multiple nr hr of some hr , and r\ 

an arbitrary sum £ nr hr of such positive or negative multiples, subject to 

the condition that each nr is an Integer in (i), or a half-integer in (li) not 

exceeding Nr . Then 

q'1 {fr (n;1 an h » - ft Ah }«x> * > 
r=i * r r r_1 r 

>-AAh )f<X) ' ' r-i r r r=i r 

(4.2) Let Kf,K* denote, respectively, the sets of convex combinations oj 

expression of the form 

(i) (Ab)q Akf(t), (ii) i( aJ^íA^)2 f(t) , 

where k denotes an arbitrary multiple nh of h such the, n is a positive 

Integer in (i), or a positive half-integer in (11), not exceeding qN. Then 

{N‘<,(ANh)q - (Ah)q)«t)< K{ , {N'<,(A*h)q - (A*)q}«t). K*. 

^ KA*/ 

-6- 
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§5. A characterization theorem for distributions which reduce to 

continuous functions. We propose to extend to continuous functions of 

several variables a theorem proved in (26, Appendix A) on the existence and 

continuity of an n-th derivative of a function f(t). The straightforward exten¬ 

sion is false: the correct extension turns out to be a theorem on Schwartz 

distributions, or alternatively, on a different kind of n-th derivative. 

We recall a definition used in the Theorem quoted. A pair of real 

functions defined on the interval 0<u<l are termed estimate functions 

of orders q,m, where q,m are positive integers, if <p is non-negative and 

Borel measurable, while is continuous and monotone increasing, and takes 

the value i|>(0) = 0 , and if further 

(5.1) for 0<X<1, ç>(\u) > (iMq*(u) and 4<(xu) >(£x)m«MvO » 

(5.2) S(l)<00, where S(h) = u q <¡p(u)d4<(u) . 
0 

We begin by following the general line of argument of the theorem 

referred to. The function f(x) of the preceding section will now be supposed 

continuous, and to have values in a Banach space, or in particular real or 

complex values. We fix a vector n in x-space, with non-negafive integers 

as components, where £ ni = q ‘ W® shall use the notion of the mixed 

derivative of order q with type n , or simply the n-th derivative Dnf(x) , 

in two senses. One of them results from n^ partial derivations in x^ , for 

each i . However in that case we shall always specify that the partial deriva- 

tions are understood in the sense of Schwartz distribufions, so that the manner 

in which we order them is immaterial. The other definition of D f(x), the one 

we employ unless the contrary is stated, is as the unique limit of 

#1578 -7- 



for reala hr * 0 which tend to 0 . Here 0r(r = 1,... ,q) are unit vectors 

along coordinate axes, and we stipulate that, for each i , ^ of the 0r are 

along the axis of . Howevar, we shall require also a more special defini¬ 

n’^ 
tion, of what we term the symmetric n-th derivative D f(x). We define it 

as the limit, as h-* 0 of the expression h qAjJ f(x), where h > 0 , where 

An* A* 
h = rü h0r ' 

and where the Ô are as before. We term the symmetric n-th difference 

of gauge h , or simply the n* difference of gauge h . We define also an n* 

n* 
integral of gauge h , which we write «9^ : we do so by setting 

n* n* 
f(x) = a" F(x) , 

h h 

where F is the n-th indefinite integral of f , which results from f by q 

indefinite integrations, of which, for each i , n^ are in x^ finally we 

$ $ 
shall have occasion to use the n + 2 difference 

n* * 2 < <\0> » 

where 0 is an arbitrary coordinate unit vector. These various notations will 

on occasion, be supposed extended in the obvious way to distributions. 
>(< * 

The function f(x) will be said to admit, for its n + m difference, 

the estimate functions near the point x , or at the point x, if ?,4< are 

as described above, but of orders q,m and if, for all small h,k subject 

to k > ih and for all x of some neighbourhood of x , or for x = x , as the 

case may be, 

*We could avoid the unnecessary factor i entirely. However, we really use 
the condi tien only for k > h , except in the case of estimate functions at^ the 
point x , where we set here m = 2 (Theorem 6. 3). 

-8- 
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(5.3) I A"*(A*e)mf(x) I < ?>(h)4j(k) , 

for each coordinate unit vector 0 . Similarly, a distribution T , expressible 

near x as a distribution n-th derivative of a continuous f(x), will be said 

to admit, for its n* integrated m* difference the estimate functions , 

if for small h,k subject to k> £h, f(x) satisfies (5. 3), or equivalently if, 

for each coordinate unit vector 0 , 

n* * rti 
4 »T 

is near x a continuous function, with local supremum norm < ?(h)i|j(k). 

Of course every T is for some n locally such an n-th derivative. 

However the existence of a corresponding pair <p,^ is a different matter. 

What is clear a priori is that if T satisfies the above condition for a given 

set of n,?,4> and of the associated q , it must satisfy it also for n aug¬ 

mented to n+n', and q correspondingly to q+q', if ^ is kept the same, 

and ?(h) is simply replaced by hqV(h). For n = 0, the condition requires 

T to be near x a continuous function. (In that case a possible pair ^,4» is 

obtained by setting ?(u) = 1, and by choosing for »V the m-th modulus of 

continuity. ) 

The following is a strong converse in the case m=2. 

(5.4) Theorem.. Let n be a vector of x-space with non-negative 

integers n^ as components, where = ^ anc* let T be a Schwartz dlstri^ 

bution which admits, for its n* integrated 2* difference, estimate functions 

<PA near x • Then T ls’ near x> a continuous function. 

We shall derive Theorem (5.4) from the following result. 

#1578 -9- 



(5.5) Theorem. Let f(x) be continuous, and suppose it admits near 

estimate function^ for its n + 2 difference. Then D f(x) exists f( 

0 0 near x and is continuous. Moreoverf near x , 

(5.6) |Dnf(x) - h'qA¡¡* f(x)I < K S(h) , 

and the second modulus of continuity of D f(x) is 5. K S(h) . 

Here S(h) is as in (5. 2). Moreover, Dnf(x) has the meaning 

explained above, and its conUnuity clearly implies that it then agrees with 

the corresponding n-th derivative in the sense of distributions. Thus (5. 4) 

does reduce to a consequence of (5. 5), which we prove in §§7-9 below. We 

repeat that Dnf(x) is not here the classical n-th derivative, the existence 

of the latter would presuppose that of appropriate partial derivatives of lower 

orders, and they need not exist. This is the main difference between (5. 5) ^ 

and its one-dimensional version, treated in (26, Appendix A). 
« 

56. Some one-dimensional variants, and their relation to Ttiuberian 

theorems and to approximation theory. We limit ourselves again to new 

results. The simplest is (6. 3), in which the n* + 2* condiUon is assumed 

only at tQ . Our first two theorems are equivalent forms of the analogue of 

(5. 4) for the n + 4 difference. We have been unable to extend them 

further. We could also interpret them as a Tauberian theorem. We give such 

an interpretation in detail in the case of a one-sided variant, Theorem (6. 4), 

with m=l and n arbitrary: it constitutes Theorem (6. 5). We recall that t 

now replaces x , and that n = q. ‘ . 

(6.1) Theorem. Let T be a Schwartz distribution on the real line, 

which admits, for its n* integrated 4 difference, estimate functions 

-10- 
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near tQ . Then T Is, near tQ , a continuous function, with a fourth 

modulus of continuity < K(n)S(h) . 

(6#2). Theorem. Let f(t) be continuous, and suppose It admits for Its 

n* + 4* difference, estimate functions near tQ . Then D f(t) exists 

near t0 , Is continuousT and Is the classical n-th derlvatlve_of f(t). The 

fourth modulus of continuity of 0nf is < K(n)S(h). 

(6.3) Theorem. Let f(t) be continuous, and suppose It admits a| tQ 

estimate functions <pA for Its n* + 2* difference. Then the symmetric 

n* 
n-th derivative D f(tg) exists, and 

|Dn’f(t0) - h‘nA^*f(t0)| < Kin)S(h) . 

We shall formulate a one-sided variant only in the simplest case. 

The function f(t) Is then real-valued and has a continuous n-th derivative 

g(t), and we write by definition l” Akg(t) to mean A^flt). We say that 

g admits, for its n-th Integrated first difference for large t , one-sided 

estimate funcfions If the latter are of orders n,l, and if, for large t 

and small k , where k > h > 0 , we have Akf(t) > -?(h)»Mh). I« particular, 

If n = 0, ? = 1» f = 9» the condition is Akg(t) > -vp(k), which simply means 

A g(t) > -e where e. - 0 as k - 0. This will be termed uniform one- 
k - k k 

sided continuity, and we consider it for large t . 

(6.4) Theorem. Let g(t) be real and continuous, and suppose it 

admits, for its n-th integrated first difference for large t , one-sided_e_sto¬ 

mate functions Then g(t) has uniform one-sided continuity for large t, 

in fact 

A. g(t) > K(n)S(k) . 

#1578 
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(6. 5) Theorem. Let g(t) be continuous, and suppose it Is either 

real and subject to the hypotheses of (6. 4), or else that it Is uniformly 

bounded and satisfies for large t the hypotheses of (6.1) for the distribution 

there denoted by T . In addition, suppose that, as t - » , 

G(t) = e'4 Jtg(u)eudu - L . 
0 

Then g(t) -► L . 

We observe that In the real case, with the one-sided hypotheses of 

(6.4), this last result reduces to triviality in the case of a function g which 

is monotone for v-1 < t < v , v = 1,2,... . In fact, if we write sv = g(v), 

a = s - s ,, the assumption G(t) -*• L becomes 
v v v-1 

s - 6a = s , + (l-6)a -* L , 
v v v-1 v 

where 6 is some subject to 0 < 6 < 1. However, if we first change « 

variables by substituting t for e1 , a corresponding specialization of g 
t 

provides, in the case n=0, one of the most elementary of known Tauberian 

theorems; Suppose £av converges (C,l). Then in order that it converge_s 

in the ordinary sense, it is necessary and sufficient that it satisfy the one¬ 

sided Landau condition, namely that, as function of 6 > 0 , the quantity 

Sup (s -s ) for |x< v < (1+6)^ 
V u — 

Ijg ^ ^ where 0 as 6-^0. Clearly, for a series which converges 

(C,l) this condition is then necessary, as well as sufficient, for convergence 

in the ordinary sense. It follows from a theorem of N. Wiener (11, Theorem 4, 

p. 73), that if we strengthen the condition by requiring s^ to be bounded, it 

becomes necessary and sufficient for ordinary convergence of a series which 

converges in the Abel sense. This is then the long-known one-sided version 

-12- 
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of a theorem of Landau (10, §3, p. 270), which is also necessary and suffi¬ 

cient. It includes the famous one-sided Tauberian theorem of Littlewood, 

which assumes a > -K/v, a condition merely sufficient. Our theorem 

(6. 5), on the other hand, while still necessary and sufficient in this context, 

weakens the one-sided Landau condition by n integrations with respect to 

the old variable t which is now log t. 

Similar comments apply when we compare our theorems to the results 

of classical approximation theory. The classical theorems, like the Tauberian 

theorem of Littlewood, are best possible of their kind, but they provide only 

sufficient conditions for their conclusions. Our results are best possible, 

as proved in (27), that is to say if + are subject to (5.1) and not to (5. 2), 

there is an f for which the corresponding assertions become false. However 

our conditions are necessary as well as sufficient, whereas the classical 

ones, which go back to Marchaud (13) and which set h = k, instead of |h < k, 

are not necessary. Marchaud established the existence and continuity of 

Dnf(t), if the n+1 -st modulus of continuity of f is, in our terminology, 

< p(h)4»(h), provided ?,4> are subject to a stronger condition than (5. 2), 

namely 

(6.6) J’hu"n'V(u)4j(u)du < ®. 
0 

In fact, if Dnf exists and is continuous, our theorems allow us to take for 

i|/(h) its modulus of continuity and to set q»(h) = c h , while the classical 

condition would require further that J" u v|j(u)du < « . 

The assumption (6. 6), which we do not make here, is precisely what 

distinguishes from our results the classical ones requiring only the case h =k 
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of (5. 3). With this assumption, our proofs would not only be correspondingly 

simpler, they would also allow us rather easily to extend the results to m > 4. 

We could have simplified our theorems, alternatively, by setting 

throughout m = 1, and by replacing symmetrical differences by their transla¬ 

tions, and therefore by ordinary differences. Then (6.1) and (6. 2), the most 

difficult of our theorems, would have become more special cases of the cor¬ 

respondingly simplified form of Theorem (5. 5), where the final part of the 

conclusion would now concern the first, instead of the second, modulus of 

continuity of Dnf. The theorems would be weaker, mainly because, by set¬ 

ting m = 1, we would strengthen our hypotheses in (5.1), and therefore affect 

the possible orders of magnitude of S(u). The resulting restrictions on 

would be such as to render it immaterial in practice, whether the modulus of 

continuity of Dnf considered is the first or the second. This last can be 

seen by applying classical equivalence theorems for the higher moduli of 

continuity, theorems which may be considered to assert, in most practical 

cases, the of higher moduli of continuity when they do not 

tend to 0 rapidly enough. Thus, if x(h) denotes an order of magnitude, and 

e,0 are between 0 and 1 , the relation 

X(0h) < K0ex(h) 

ensures the equivalence of the types of relations 

(6.7) uq+r = 0(hq/x) and =0(hq/x) , 

for moduli of continuity Xp(h) of orders q+r and q of uniformly bounded 

functions where r > 0 . See for instance Timan (17). 
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We observe that conditions of the type •*> which involve two 

kinds of differences, one in t . the other in k , are most natural in the 

case of a function f expressible asa convolution since we then 

have 

n*. . * .m 
(\e) 

V a. / f = f,» * (\9) t2 

It is in this form that our methods were first used in (23,24), to establish 

the existence of certain Stieltjes integrals, and in (25,26) to define corres- 

ponding stochastic integrals. In the case where *(u), iJj(u) are powers u , 

u^ (0 < a,p < 1) the Stieltjes integrals were found in (12) to reduce to clas¬ 

sical ones by fractional integration by parts. 

Generally, fractional integration and derivation has been used also 

in the classical approximation theorems. We shall indicate briefly in §10 

the effect of these operations on our results. 

§7. Tho lemmas for m = 4. It is convenient to begin with these, as 

all our theorems can then be obtained by a single method of proof. Our lemmas 

concern symmetric differences. 

(7.1) Lemma. The quantity 

j(A*,)Z(Ak! )2f(tl 

can be expressed as a convex combination of terms of the form 

* .4 f(t+n) + f(t-Ti) ..*.4*,_ ,**.4*,^ 
(7 2) (^,^,,) -1— 2-1-. -(^,) f(t),-(^,,) f(t) , 

where the n have the form irfk'±k"), r = 0,1,2,3,4. 

(7.3) Lemma. Let R = = R^N = {(Nhfq(A^h)q-h'q(A*)q}f(t), and let 

ß = R£ . Then R - M" K is i convex combination of terms of the form 

¿h*qíA*)q(AjV;A*(l|2f(t) 
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. 2 
and of similar terms multiplied by M , where k',k" are quarter Integer 

multiples sh of h , s< 2q MN. 

Proofs. From the identity 

12u2v2 = (u+v)4 + (u-v)4 - 2u4 - 2v4 , 

we derive, by setting u = sin 2or, v = sin 2ß, an expression of 

y (2 sin2or)2(2sin 2ß)2 

as a convex combination of the terms 

(2 sin(a+ß)cos(a-ß))4, (2 sin(a-ß)cos(cH-ß))4, -(2sin2ar)4, -(2sin2ß)4. 

Here, by setting y = eia, z = e^, we express 

1. 2 -2.2 . 2 -2.2 ■^y -y ) (z -z ) 

as a convex combination of terms of the form 

(yz - y z ) P, (yz -y z) P, -(y -y ) , -(z -z ) , 

where P is of the form 

i(P +P ), r = 0,1,2,3,4, p = yz or p = yz’ . 

From the identity in y,z thus obtained, we derive (7. 3) by interpreting y,z 

as translation-operators t-^t+^k', t-*t+£k", on f(t). 

To prove (7.3), we subtract from (4. 2), M -q-2 times the corresponding 

^ Q -2* 
identity with h replaced by h = Mh. In this way hq(R-M R) becomes a 

convex combination of expressions 
I 

• ♦ a * 2* i -0-2 *0*2, 
V - iM <AMh"AMk' f,t»' 

each of which is the mean (with weights \) of 

.(A^V2^2 - (A*!2)«';) and -M'2(M'q(A^h)q.(A*)q}(A^k)2fm . 

By applying (4. 2), with M in place of N, to the two curly brackets, the 

second time with 2 in place of q, we find that the last two expressions 

become, respectively, convex combinations of terms of the form required. 
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§8. Characteristic inequalities along carefully thinned binary 

sequences. Let {h} be a subsequence of the binary sequence hQ2 , 

V = 0,1,2,...,h0 >0 . [A ternary sequence hQ3 V would be Slightly more 

convenient--the ratio of successive terms of a subsequence is then odd, and 

an odd N in (4. 2) eliminates half-integers. ] We choose this subsequence 

so that the characteristic property of a geometric series in practice--that its 

remainder be of the order of its difference--should hold, not for its terms 

h v = 0,1,2,..., but for the corresponding k|i(h ). We term it a carefully 
y * * * ' V 

thinned bina.y sequence, if 

(8.1) 24i(hv) < 1 22m+1^(hi/) . 

The existence of such an {h}--elsewhere termed one subject to the condi¬ 

tions C(l) and C(2)--is proved in (26, Appendix A). We associate with it 

the series 
00 

(8.2) Z l>v‘qWhu)4>(hv l) , 
V=1 

or 'V,4< estimate series", whose sum is shown in the same reference 

to satisfy the relations 

(8.3) 2'qS(h0) <S{h} < 2^^8(^), 

where hg,hj are the initial terms of {h}, and where S(h) is the integral 

defined in (5. 2). 

To avoid keeping precise track of factors K(q,m) such as occur in 

(8.3) , we term generally K-estimate series, and denote by , any 

series derived from (8.2) by at most K operations, consisting of multiplying 

by at most K , or of adding term by term the remainder series after at most 

K terms. For instance, on account of (8.1), the general term of (8.2) is 
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increased at most by a factor K , if in it ^{\m]) !• replaced by 

M < 2r. or even by Mh . ), where r < K. Similarly it becomes at most K 

times the corresponding (v+r)-th term, if in it we replace o>(hv) by e(2 h^). 

With this notation, the proofs of our theorems will depend on estimates of the 

form 

(8.4) (i) a,, «v<bv , or(ii) £ av ! Zbv+2V Xav - 2bv + 2V 

or, in the one-sides case, 

(8.5) < b R+ > -b 
' V — V ' V — V 

On the left of these "characteristic inequalittes", the various 

quantities are defined as follows, Rv , R^ as functions of t , and , a^ 

as the maxima in x (or in particular in t) of functions <*y(x), a^(x) in a 

closed neighbourhood of x0 or t0, except in connection with Theorem (6. 3) 

when we take a , a to be the corresponding values for t = t_. We first 

write, in agreement with the preceding section, Vn for 

(Nh)‘qA^* f(x) - *(x) » 

and, when x = t, h > 0, R^ N for the corresponding expression without 

stars, Rh~ N for the similar expression with -h for h. We then define 

R , R*, R' as the values of these quantities when h = h^, Nh = h^ ^ , 

and we set (with x = t when relevant) 

a (x) s IR. %-| when h = h and M is fixed, 
y ' n,M' V 

VX) = SuPh,N|Rh,Nl When hv-h’ Nh- hv.l ’ 
and when h, Nh are further restricted to belong to the complete binary 

** s sequence h^ 2 , s s 0,1,2,... . 
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With the hypotheses of Theorems (5. 5), (6. 3) or (6.4), the verification 

of (8. 4) (i), or in the case of (6. 4) that of (8. 5), follows at once from (5. 3) 

and the identities (4.1) or (4. 2), or in the case of (6. 4) the one-sided 

analogue of (5. 3) together with these identities. [This is where we use the 

unnecessary factor £ in the relation k > |h which affects (5. 3). ] 

With the hypotheses of Theorem (6. 2), we shall establish only (8.4) 

(ii). For this, we show that both £ and Yiav are - K Z > where 

b = b + b ., . We first observe that Kb is not less than the norm of 
y V v+3 V 

the expression 

(8.6) h"qA^*f(t) for hy <h<hv l , ¿h <k <Khv l . 

By (5.1) this norm is <Kbv as long as k > h , since f satisfies (5. 3). 

However, if k < h , the norm is at most K times a convex combination of 

translations of the function of t given by the norm of the quantity 

I ik±h 
8 

which is at most in an appropriate neighbourhood of tQ . 

Next we apply Lemma (7.3), with the roles of M,N reversed, ünd 

with N = hv j /h^ , h = hv , and we transform the result by Lemma (7.1). 

We find that 

M “ N ^Nh,M 

is a convex combination of multiples by ±K of translations of (8.6). Since 

N > 2 , we may write, by identifying Kb^ with b^ , 

3 \ ^ 
from which it evidently follows that — £ + 2]bv , or as we prefer 
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to write, that £ <*v < 2o0 + , by a K-operation. Similarly, if the sums 

are from v0 to « , aQ is here replaced by the value of for v = vQ . 

< 2a0 + ^b^ . We apply for this It remains to be shown that ¿]av 

purpose Lemma (7.3) with M = 2. If we again transform the result by Lemma 

(7.1), the difference expressed as a convex combination is 

where, for some t,h,N which provide the maximum a^ for N under the 

conditions stated in its definition, the quantity denotes the corresponding 

value of R-. XT. The terms of the convex combination have as before the 
2h,N 

common majorant b . Further, for v > 1 , we clearly have a < a + a . V — V— V v-1 

By combining this with the relation 

we find that, for v > 1 , 

and hence that 

2 Z av - 4 Z bv + 3ao - 4 £ bv + 4a0 * 

which, by a K-operation, can be written in the desired form. 

§9. Proofs of theorems of §§5,6. The verification of (6.5), subject 

to (6.4) and to its hypotheses, is elementary. Now g is real and has uni- 

form one-sided continuity. The assertion becomes obvious, if the upper 

limits of L - g(t) and g(t+h)-L as t-'«> are >-eh> where eh-* 0 as 

h 0 . However this follows at once from the relations 

eh G(t+h) - G(t) - (eh-l)g(t) = /t+1]g(u)-g(t))eu"tdu > -(eh-l)eh , 

-ehG(t+h) + G(t) + (eh-l)g(t+h) = /t+h(g(t+h)-g(u))eu'tdu > -(eh-l)eh 
t 

by dividing by eh-i and making t-* «> . 
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We next dispose of (6.4). In this case g is the continuous n-th 

derivative of its indefinite n-th integral f . Hence Dnf = g, so that 

converges and has for sum the value for h = h^ of the difference 

h‘nA¡¡ f(t) - g(t) . 

Similarly Rv converges to a similar expression, in which h is changed 

to -h , and in it we change the variable from t to t + nh. Since the 

difference ratios 

h‘nA£f(t), (-h)"nA"hf(t+nh) 

are identical, we find by subtraction that g(t + nh) - g(t) is a difference 

Z " 2X > where the first sum is at the Point t. and the second at t +nh. 

Hence by (8. 5) and (8. 3) 

g(t + n h0) - g(t) > -KSihj) >-KS(nhQ) , 

so that Theorem (6.4) follows by taking for n h^ an arbitrary small k > 0 . 

We pass on to (5. 5), (6. 2) and (6. 3). From (8. 4) (i) or (ii), it then 

follows first that an<* therefore converge. This means that the 

difference ratio 

(9.1) h"q A^* f(x) , 

or in particular the corresponding expression with t or t^ for x , has a 

limit Lq as h describes the sequence {h}. In fact has the value 

of (9.1) at h = hQ, diminished by LQ. The same limit LQ is clearly then 

also that of (9.1) as h describes the complete binary sequence h02"V, 

v = 0,1,2,... , since a^-* 0. Moreover, since a^-* 0, LQ does not alter 

when hQ is replaced by any multiple M hQ by a positive integer M , nor 

therefore when hQ is replaced by a rational multiple. 
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With the hypotheses of (5. 5) or (6. 3), we have, by (8.4) (i) and (8. 3), 

(9.2) |h"q ¿£*f(x) - LJ < K S(h) , 

for h = hQ. Therefore, If hQ is rational, this holds also for any rational h 

below a certain bound, without altering LQ . Evidently it must then hold 

equally, when h is irrational. By definition D f(x) therefore exists and 

equals Lg, which we now see has to be independent of hg . This incident¬ 

ally disposes of (6. 3). 

We proceed with the proofs of (5. 5) and (6.2). In the latter we have 

still not quite got to the same stage, and we go back to the point where 

L = L (x.h ) was found to be the limit of (9.1) along {h}. Clearly this 
0 0 0 

limit is uniform, by the Weierstrass M-test, so that Lg is continuous near 

X (or t ) in X . We have moreover, for h = hn, with the hypotheses of 
0 0 u 

(6.2), 

(9.3) I h'qA¡¡* f(t) - L0I < E av - 2a0 + Zbv ‘ 

If we replace in this f(t) by A¡¡*f(t), aQ evidently becomes <2bg,and 

the remaining a^ are multiplied by at most K , so that the extreme right- 

hand side becomes < KS(h). Similarly the norm of (9.1) becomes < bg . We 

thus find that, for h = hg , 

(9.4) |Amh* L„| < KS<h> 

with m = 4, 0 = 1 in the case relevant to (6. 2). The same is true with m = 2, 

0 a unit vector along any of the axes, in the case relevant to (5. 5), by a 

n* 
simplification of the above. It remains only to show that Lg is D f(x). 

To this effect, we denote by f^ the n-th indefinite integral of the 

continuous function derived from LQ by multiplying by a suitable localizing 
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factor, and we write = f - f^ . If now X denotes a C function with 

support in the neighbourhood of xQ , the convolution f0 * X has an n-th 

derivative which is the uniform limit along {h} of the finite difference ratio 

corresponding to (9.1). This n-th derivative is identically zero, obviously. 
i 

Hence ^ has a vanishing n-th difference, and by choosing X so that 

Íq * X converges uniformly to f^, we see that the «-th difference of f^ 

vanishes identically near . Thus near x^ we have D f(x) = D fj(x) 

and since D f,(x) = Ln , we find that Dnf(x) = L . The relation (9.4) then 
n 1 o u 

shows that the m-th modulus of continuity of Dnf(x) near xQ is <KS(h), 

while (9. 2) gives the approximation to Dnf(x) asserted in (5. 5). Finally, 

in the one-dimensional case, f0 is evidently a polynomial of degree < n 

near xQ , and L0 is the ordinary derivative of fj, and therefore of f . 

This completes the proofs of (5. 5) and (6. 2). Clearly (5.4) and (6.1) are 

immediate consequences. 

Finally we dispose of the part of (6. 5) which relates to hypotheses 

of the type of (6. 2). By the arguments used in the one-sided version, it is 

enough to show that g is uniformly continuous. This follows from the 

classical futility Theorem (i i), quoted in connection with (6.7) above, since 

g is bounded and has by (6. 2) its fourth modulus of continuity < K S(h) . 

§10. Fractional derivatives, derivatives ln L . By cortrast with 

the formula of fractional integration by parts, which, as stated in §6, provides 

information about the entities concerned, the extension of the results of §§5,6 

to fractional derivatives, merely repeats, in a different notation, results 

already obtained. Nevertheless, the notation is convenient. 
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We shall consider only the Riesz definition of an a-th integral, and 

we restrict ourselves to real a . What matters here is not the choice of such 

a definition, but the manner in which this choice then determines both the no¬ 

tion of (q-cr)th - derivative and that of (q-a)-th difference. Thus an intrinsic 

definition of (q-o)-th derivative would be useless to us, unless attached to a 

correspondingly intrinsic definition of (q-a)-th difference. 

We define, for 0 < a < 1; Dq af(t) tornean Dqf0(t), where f^ 

denotes the a-th integral of f . Similarly the differences , Ah of 

f(t) mean h'a times the corresponding differences A¡J , Ahq of fa . The 

modulus of continuity « (f,u) is u_a times the supremum in t,h, for 

|h| <u and arbitrary t , of the quantity |Aq af(t) hQ\. In these definitions, 

we restrict ourselves to functions f(t) of one real variable; and we suppose 

each f periodic, of period 2* and mean value 0 , and moreover either 

continuous, or p-th power integrable in the period for a suitable p . 

The notions of estimate functions of orders \,n, where X.,p. 

are positive reals, are the formal analogues of those given previously for 

\,p. = q,m. We shall, however, restrict ourselves to p = m = 1,2, or 4 . 

What matters is that if <pA are estimate functions of orders q-a,m then 

the functions u%(u), ^(u) are estimate functions of orders q,m. 

The fractional analogues of Theorems (5. 5) and (6. 2) are automatic. 

(10.1) Theorem. Let 0 < a < 1 , let m = 2 or 4 , .and let_ q be a 

positive integer. Further let f(t) be continuous, of period 2* and mean-, 

value Q r and suppose that, for 0<h<l, ih<lc<l, 

|A*q-a A*m £(t)| < ^(h) ^ , 

-24- #1578 



where are estimate functions of orders q-a,m, and where in particular 

S(h) = /h u"iq"aV(u)d^(u) 

0 q-a 6 
converges. Then f(t) has a continuous (q-a)-th derivative D f(t), of_ 

modulus of continuity of order m not exceeding K(q)S(u). Moreover, In 

the case m = 2, 

I Dq"flff(t) - h‘(q'°')A*q'a£(t)| < K(p)S(h) . 
y 

With regard to derivatives in L , we recall the fact that, as described 

in (26, Appendix A, pp. 162-166), the theorems concerning them are theorems 

of the type (10.1) for skew self-convolutions 

F = f * g where f(t) = f(-t) . 

Here f is taken to be complex-valued, and f(-t) is the complex conjugate 

of f(t). In addition f is again supposed periodic, and this time square 

integrable over a period. The convolution is taken over a period. 

2 
In passing from (10.1) to the corresponding result for derivatives in L , 

the values of q,cr,m are, however, halved. It is therefore necessary in them 

to suppose now 0 < or < ^ , and q can be a half-integer, while m is now 

1 or 2 . This is one place where the artificialities of the definitions of 

fractional derivatives and differences becomes apparent, since for a = 1 the 

expression used to define Aq f leads, not to A^ f, but to h > 

where fj is the indefinite integral of f . 

§11. (Added by L. C. Young) Stochastic Integrals. Let X(t) be 

Hilbert-valued, let AX denote its difference at the ends of a t-interval A, 

and let k(A,A*) denote the scalar product (AX,A*X). Here X is the complex 

conjugate of X : the vector-valued function X(t) is understood to mean the 
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same as the complex valued function x(t,w), whose values for constant t 

are the points, or vectors, X of a Hilbert space L2(i2); and X(t) is under¬ 

stood to arise similarly from the complex conjugate x(t,w) of x(t,u). We 

suppose x(t,w) defined on TXii, where T is an interval of the real line, 

and Í2 is a measure space with a unit measure dw. We speak of X(t) as 

$ 
a stochastic process, and of k(A,A ) as its covariance. 

« U V» 

We shall suppose that, for intervals A, A of equal length < h, 

|k| has the supremum ^ (h) when A,A are non-overlapping, and the 

supremum q2(h) when A = A* . By Schwarz's inequality <p(h) <q(h), and 

we are mainly interested in the case where <p is "much less" than q , i. e. 

when <p - o(q) as h - 0 . In that case AhX(t) and A2X(t) are of the same 

order. In fact: 

(11.1) Theorem. If A2 X(t) = o(q), then ?,q are of the same order. 

(11.2) Corollary. If X(t) has a non-vanishing derivative, then ? = q(l-o(l)). 

Proof of (11.1). We have 

I A*2 XWl2 = |AhX(t) - A_hX(t)|2 . 

Hence 
^ 

|AhX(t)|2 < o(q2) + 0(ç>2) - |A_hX(t)|Z< o(q ) + 0(ç» ) , 

and, by taking the supremum in h , we derive (11.1) since <p < q . 

Proof of (11. 2). In this case q2 = Ah2, where A = Sup|X(t)| * 0. In this 

case I A±hX(t) | 2 can be chosen simultaneously close to A h and their sum 

is at most o(h2) + 2| k|, where k is the scalar product of AhX(t) and 
2 2 

A X(t). Thus 2Ah2 < o(h2) + 2f2(h), and (11.2) follows since ? <Ah. 
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The above results suggest that it is only for non-differentiable X(t) 

that is is worthwhile to distinguish ç from q . For these reasons, the 

existence of a derivative cannot be expected to follow from any weaker 

assumptions than those considered in §6, which involve q and not <p . 

The question therefore arises as to whether the existence of stochastic inte¬ 

grals, such as those of [25,26], can be derived directly from theorems such 

as those of §6, and not from hypothetical refinements involving the covariance 

of non-overlapping intervals. 

For convenience we now write F in place of f in the theorems of §6, 

and we suppose F Hilbert-valued. Moreover we weaken the results by 

setting n = 1, m = 1. In the theorems referred to m was mainly 2 or 4 , 

but their hypotheses will be satisfied a fortiori, apart from a constant K in 

(5. 3). Actually we need to change (5. 3) slightly in a different way. We shall 

suppose there are two pairs of estimate functions, <p, ^ and p,<r, and that, 

for k > h > 0 , 

|AhAkF(t)| < p(h) <r(k) + ?(h) W . (11. 3) 

Here moreover, x and \\i will be supposed connected by the condition A of 

[26]. This ensures that a carefully thinned binary sequence for x makes not 

only the p,x estimate series of the same order as the integral 

also, at the same time, the estimate series of the same order as the 

With these small changes, it is easy to derive from the integral 

arguments used to establish the theorems of §6 that a continuous F(t) sub¬ 

ject to (11. 3) has a continuous deiivative F(t) and that 
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|Ê(t) - h_1AhF(t)| < K S(h) , 

where S(h) is now the sum of the integrals from 0 to h of u *pd<r and 

u V d4>. 

Let now X(t) be a stochastic process with <p and q defined as 

before, and let p(u) = q(u)^. We denote by f(t) a deterministic function, 

i.e. a complex-valued (scalar) function subject to the integrated Lipschitz 

conditions 

f ¡f(t+h) - f(t) I dt < 4<(h) , 
T 

(11.4) 

/ I f(t+h) - f(t) 12dt < <r2(h) , 

T + 
and we write F for the convolution f * X. (Here T is an interval with T 

in its interior. ) We shall suppose the intervals of definition slightly ex¬ 

panded, if necessary, so that F is defined near 0 at least. In these 

circumstances, the stochastic integral 

/T f(t)d X(t) 

is defined as the derivative -f(0) of the function -F(t). To show that this 

derivative exists, it is sufficient to verify (11. 3) for the function F , and this 

turns out to be an elementary exercise in multiple inteçyration. 
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