22692

—

BPAO

CENTER FOR
CYBERNETIC
STUDIES

The University of Texas
Austin,Texas 78712

e o

Research Report CCS 218

IMPROVED LABELING OF L. P, BASES
IN NETWORKS

by

Fred Glover*

Darwin Klingman

August 1974
(Revised October 1975)

- \J/

“Professor of Management Science, University of Colorado, Boulder, Colorado

This research was partly supported by the Navy Personnel Research and
Development Laboratory Contract N00126-74-C-2275 with the Center for
Cybernetic Studies, The Umversity of Texas, Austin, Texas and the
Alexander von Humboldt Stiftung in Bonn, Germany.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 512
The University of Texas
Austin, Texas 78712 -~

(512) 471-1821 ¢

ABSTRACT

New labeling techniques are provided for accelerating the basis

zed linear programming methods for network

exchange step ol speciali

problems. These techniques substantially reduce the amount of computation

involved in updating operations.

1.0 1NTRODUCTION

In solving minimum cost flow network problems by specialized linear
programming methods, an important question 1is: how can one update the
spanning tree basis with the least amount of effort? A parcial answer to
this question is provided by special list structure techniques such as the
API method [1] and the more recent ATI method [4], whicbh have con£ributed
dramatically to improving the efficiency of network algorithms (see, e.g.,
(2, 3, 6, 7, 8]). This paper addresses the issue of which supplemental
techniques can be used to enable these list structures (and particularly
the ATI method) to be implemented with greater efficiency.

As shown in [1], the major updating calculations of a basis exchange
step can be restricted to just one of the two subtrees created by dropping
the outgoing arc. Consequently, a natural goal is to identify the smaller
of these two subtrees by means of a list t(x) that names the number of nodes
in the subtree 'headed by node ¥." A clever and rather intricate procedure
for doing this was proposed by Srinivasan and Thompson [9]. However, unfor-
tunately, this procedure requires sorting the nodes of the subtree by their
distances from the root, and then further entails a full subtree update of
both the distance values and the t(x) values at each basis exchange step.
Because of the substantial amount of work required to update the t(x) list,
its use has never been found practicable.

The purpose of this paper is to propose a new type of relabeling schexze
that succeeds in updating t(x) without sorting. In fact, this scheme requires
even less work than to update the distance values of [9]. The relabeling 1is

based on "absorbing" t(x) into the updating calculations of the ATI method.

Moreover, these calculations are carried out gimultaneously with the procedures

[4] for updating other changes introduced by the basis exchange step.

.
S

To achieve the integration of the ATI calculations and the update of
t(x), we introduce an index function f(x) that names the last node in the
subtree rooted at x. We show that f(x) additionally makes it possible to
streamline the ATI calculations. Finally, as.a bonus, we show that t(x)
can accommodate all of the relevant functions filled by the distance values,
and hence can replace these values. The net gains of all rhese advantages

produce a substantially improved procedure for implementing the basis

exchange operations.

2.0 NOTATION AND DLEFINITIONS

We shall follow the notational conventions of [l1], identifying the componentu

of the basis exchange step as follows:

the arc leaving the basis, where p is currently the

(p,q)
predecessor of q (via the 'predecessor indexing' used with the ATI method).

(u,v) = the arc entering the basis, where u is the node whose
"backward path" (consisting of all its ancestors under the predecessor
indexing) contains arc (p,q).

T = the basis tree

T(x) = the subtree of T that is rooted at node x (hence the sub-
tree that includes x and all its descendants under the predcvossor indexing)

S(x) = the "thread successor" of x as defined in thic ATI method
[4]. (In particular T(x) = {s°(x), sl(x), ..., s¥(x)} for some r 2 O,
where 8°(x) = x and sK*1(x) = s(sk(x)).)

£(x) the "last node" ("s®(x)") in T(x)

t(x) the number of nodes in T(x)

The basis exchange step may be visualized as consising of two components:

(1) Dropping arc (p,q) to create two independent subtrees: T(q)
and T - T(q) (where the latter 1is the subtree of T that excludes T(q) and
all its nodes, and hence which excludes the '"connecting arc" (p,q));

(2) Adding arc (u,v) to create a single new basis tree.
The subtrees T(q) and T - T(q) can be viewed as any two node-disjoint trees
which are to be joined by an arc to create a new basis trece. We shall therefore

first develop updating operations to make T(q) and T - T(q) into label "indepen-

¢ dent" trees in preparation for selecting which is to be the new ''upper tree"

" trees (ca_le”s 7.}

(called Tl) rooted at x]_and which is to be the new "lower

rooted at Xy, We may then assume that the root of T becomes the root of the

{ new basis tree. Additionally, we let (yl, yz) be the arc that joinms Tl’ and T2
where y; is a node of Tl and Yo is a node of Tz, Néxt we develop

operations to re-root T2 at y, in preparation for attaching T2 to T; via arc

-

—H

(yl, YQ) to create the new basis tree. (There is no requirement that Y be dis-

tinct from x; or that y, be distinct from x,.)

3.0 UPDATING OPERATIONS

Using the preceding definitions, we show how to find updated values s*(x),
t*(x), £f*(x) for s(x), t(x) and f(x) as follows.

I. Update s(x), t(x), f(x) to make the subtrees T(q) and T - T(q) independent

I.1. Update for T - T(q):

For s*(x): 1Identify the node y in T - T(q) such that s(y) = q.
Then set s*(y) = s(f(q)). No other s(x) values are changed. (Note: while
this step is obviously facilitated by the direct accessing f(q), the identi-
fication of y is further speeded by utilizing the f(x) functions as follows:

1 and the process stops.

First, let y1 = p. Second, if s(yl) =q, theny =y
Otherwise, let yl = f(s(yl)) and repeat the second step.)

For t*(x): Set t*(x) = t(x) - t(q) for those nodes x on che 'back-*
ward path" from p to the root of T. Due to cancellation effects of subse-
quent calculations, this step can be restricted to the partial backward path
from p to the "intersection" node z that is the unique node of the basis
loop that lies on the backward paths from both u and v, excluding node 2z

itself from consideration. (Thus, possibly there may be no updating in this

_step.) - S , R

For f*(x): Set f"(x) = y for those nodes x on the

sredecessor from p to the root such that f(x) = f(q). (If

f(p) # £(q) no updating is done.)

1.2. Update for T{(q):

For s*(x): Set s*(f(q)) = q.

. No other updating of any s(x), t(x) or £f(x) 1s required for 1?(q3:

II. Decide which of T(q) and T - 7(q) is to be T, and which is to be T2'

~5-

If t(q) exceeds alf the number of nodes in the network let T(q) be Tl’ and
let T - T(q) be T2 (hence X, = q and x, = the root of T). Otherwise, let T - T(q)

be T., and let T(q) be T2.

1’

The principal reascn for re-rooting is to minimize the computational effort
when the updating of the dual variables is integrated with the other updating
operations. However, it is possible to separate these updating operations, carrying
out the node potential update on the smaller subtree, and always carrying out the
other updating operations on subtree T(q), thereby leaving the root unchanged.

This latter case follows directly from the subsequent development.

I1II. Make Yo the new root of T,, reversing the predecessor orientation of the path

from y, to X,.

For s*(x): This portion of the updating of s(x) is carried out exactly as

specified in (4].

For t*(x): Let t*(yz) = t(xz). (But if T(q) = Tl’ and the restricted update
of t(x) was carried out in step 1.1 - which is computationally preferable - set
t*(yz) = t(xz) - t(q).) Then for each x on the path from X, o Yo, excluding x = ¥,
set t*(x) = t*(yz) - t(%), where x is the successor of x via the predecessor indexi g
before reversing the orientation of the path. (It is important to note here that
t(x) and t*(x) must be kept distinct from each other; i.e., it is not legitimate
to replace t(x) by t*(x) before computing t*x(x) = t*(yz) - t(x).)

For f*(x): The node of T2 that is examined last in the process of updating
the node potentials in T, via the ATI method is designated to be f*(xz). In
particular, if X, = Yps OF if f(xz) # f(iz), where §2 is the successor of X, before
reversing the orientation of the path, then f*(xz) = f(xz) (i.e., no change occurs
in f(xz).) Otherwise, f*(xz) = y for the node y such that s(y) = X (This y
may be found as in I.1, but it will be jdentified automatically at the conclusion
of updating node potentials.) Thereupon, set fx(x) = f*(xz) for all x on the

path from X, to y,. (No other changes are inade.)

1v. Attach T, to T, by adding arc (y., yq) to create the new basis tree
L RS L -

(where T, is now rooted at y, as a result of step III).

For sk (x): Set s*(f*(yz)) = s(yl) and s*(yl) =Y,

For t*(x): Set t*(x) = t(x)i—t*(yz) for all x on the path from
Y1 to Xy - (But if T(q) = T2, and the restricted update of t(x) was applied
in step [.1, then the current step should be restricted to those x on the
path from y, to z, excluding z itself, for the "intersection' node z as

identified in I.1.) o , - = =

For F*(x): If f(yl) # ¥ set f¥(x) = f(yz) for those nodes
x on the predecessor from y, to X, such that f(x) = f(yl). (No
changes are made if t(yl) = yl.)

The proposed procedure for updating t(x) clearly requires less effort than
updating the distance function of [9]), which minimally involves an addition for
every node of the subtree T(q), and in the case of T(q) = Tl, requires an addition
for every node of T. The fact that t(x) can replace the distance function is a
direct consequence of the observation that if t(x) < t(xl), then x cannot be a
descendant of xl. Thus, t(x) can be used 1n essentially the same manner as the

distance function to facilitate operations such as involved in identifying the

loop created by adding arc (u,v) to the basis tree.

4.0 INITIALIZATION

It is left to characterize the procedure for establishing the initial values
of t(x) and f(x). This occurs simultaneously with the initial determination of
the s(x) values as follows.

Consider the step in which gktl (Xo) = s(sk(xo)) is identified (K > 0).

If sk(xo) is the predecessor of sk+l(x°) (via the predecessor indexing), do
nothing. Otherwise, for all nodes si(xo) on the backward path from sk(xo) te
the predecessor of sk+l(x°), excluding the predecessor of sk+l(x°) itself, set
t(si(xo)) = k+1 - 1, and set f(si(xo)) = sk(xo).

When the lagt node sn_l(xo) of the network 1s determined (where n = the total

number of nodes in the network), set t(si(xo)) =n - i and set f(si(xo)) =

sn-l(xo) for all si(xo) on the backward path from sn"l(xa) to Xo.

- S e S R e

wrl

To easily keep track of the index i for each node si(xo) that is to be
considered on a given step, it is convenient to keep a list that consists pre-
cigely of the indexes i of the nodes si(xo) to x,. Specifically, to begin the
1ist contains the single index 0 (for so(xo)).‘ When sk+1(x°) is created, the
number k+l1 is added to the end of the list. When a backward path from sk(xo)
is traced, concisting of r nodes (say) si(xo) whose values t(si(xo)) and f(si(xo))
are to be set, the indexes of these r nodes will be exactly the corresponding
last r numbers on the list. By removing these numbers from the list just before

adding the number k+l, the desired structure of the list is maintained.

5.0 CONCLUDING REMARKS

The computational advances in network algorithms afforded by the techniques to
[1, 4, 5, 9),and the evident improvements {n these techniques provided by the
forgoing procedures, argues strongly in favor of the implementation value of these
procedures. Moreover, we conjecture that coupling the ATI method with the use
of t(x) and f(x) in the manner described, not only dominates all previous updating
procedures, but closel; approaches the "asymptotic 1imit" of effective trade~-off
between computational efficiency and memory requirement for a broad class of net-
works. Results of a computational study of these new procedures, imbedded in

various alternative implementations of specialized simplex codes, will be reported

in a subsequent paper.

References

Glover, F., D. Karney, and D. Klingman, 'The Augmented Precedessor Index
Method for Locating Stepping Stone Paths and Assigning Dual Prices In
Distribution Problems." Transportation Science, 6, 171-180, (1972).

Clover, F., D. Karney, D. Klingman, and A. Napier, "A Computational Study
on Start Procedures, Basis Change Criteria, and Solution Algorithms for
Transportation Problems.'" Management Science, 20, 5, 793-813, (1974).

Glover, F., D. Karney, and D. Klingman, "Implementation and Computational
Study on Start Procedures and Basis Change Criteria for a Primal Network
Code." Networks, 20, 191-212, (1974).

Glover, F., D. Klingman, and J. Stutz, "pugmented Threaded Index Method,"
INFOR, 12, 3, 293-298, (1974).

Johnson, Ellis, "Networks and Basic Solutions.'" Operations Research, 14,
4, 619-623, (1966).

Karney, D. and D. Klingman, "Implementation and Computational Study on an
In-Core Out-of-Core Primal Network Code." CS 158, Center for Cybernetic
Studies, University of Texas, Austin. To appear in Operations Research.

Klingman, D., A. Napier, and J. Stutz, "NETGEN - A Program for Generating
Large Scale (Un) Capacitated Assignment, Transportation and Minimum Cost
Flow Network Problems."” Management Science, 20, 5, 813-819, (1974).

Srinivasan, V. and G.L. Thompson, "Benefit-Cost Analysis of Coding Techniques
for the Primal Transportation Algorithm", JACM, 20, 194-213, (1973).
Srinivasan, V. and G.L. Thompson, maccelerated Algorithms for Labeling and
Relabeling of Trees with Application for Distribution Problems," Journal of
the Association for Computing Machinery, 19, 4, 712-726, (1972).

e N Y

P

R e i M) E 5 ; 2 . 3
oA 5 e L o y L _ S ey = g S " ——— T,

Unclassified

securnty Clas-afication

DOCUMENT CONTROL DATA - R & D

Security ¢lassothicat, of title, body of abstract and mndexn, an otation most bhe entered whe the overall roport o8 clussified)

1 OHILINA TING ACTIVET Y (Corpurate author) Zd. i F CTLECUR Ty CLASHFICAT L,

Unclassified

2b. GRROL P

5 The University of Texas
(*enter' for Cybernetic Studies

P)

(é% Improved Labeling of L. P. Bases in Networks, ¢/

4 DEECHIP 11y MO P (Typoe Ol ragrurrt and, fnclus Pva d5tes)] — __,__‘ . T
— B evar e : \ ciur“]

5 REPORT DATE 74. TOTAL NO. OF PAGES 7b. NO. OF KEFS

August 1974(Revised October 1975) 8 9

98, ORIGINATOR'S REFPOR NUMEERS)

NgF126-74-C - 227;(M2 Center for Cvbernetic Studies

: g Research Report CS 218 -~
/éyNR-,am-,em (@ — N\
o) (¢ ER REPORT NOI(S) (Any other numbers that may be assigned

vees —U8- R, T

i

d.

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

1t SUPPLEMENTARY NOTES 12. SPONtORING MILITAR ACTIVITY

Naval Personnel Research & Develop-
ment Center, San Diego, California

ADSTHRACT

New labeling techniques are provided for accelerating the basis exchange
step of specialized linear programming methods for network problems.
These techniques substantially reduce the amount of computation involved
in updating operations

1/3

et

FORM (PAGE 1)
DD "5V 1473 / Unclassified 7;&
S/N 0101-807-6811 wé /9 :7 Security Classific: tion = s1a08 |
- 244

Unclassified

Securtiy Classthoghion

KEY WORDS

|
LiInNK A Linr

LiNa C

1 " HOLE

wT

HOLt wT

Network

Spanning Trees
Linear Programming
Link Lists

Maximum Flaw
Transportation

DD 2™ 1473 (uan)

S5/N 0102-014-680C

Unclassified

security Classitication

£-314069

