
i ■'•■ 

I  / 

• 

CO 

CD 
<M < 
CM ( 
© 

/ 
AFCRL-TR-75-0616 
INSTRUMENTATION PAPERS, NO. 243 / 

Design Criteria and Numerical Simulation 
of an Antenna System for 
One-Dimensional Limited Scan 

GIORGIO V. BORGIOTTI 

2 December 1975 

D D C 

n(_APR 6 ,976 iifi uteEinnsJlil 

V 

Approval for public rtlaoii; dlitribution unlimited. 

MICROWAVE PHYSICS LABORATORY       PROJECT 4600 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
HANSCOM APB. MASSACHUSETTS 01731 

AIR FORCE SYSTEMS COMMAND, USAF 

MB 



-  "«^?S«p3^ 

St...   S^P 

Qualified requestors may obtain additional copies from the Defense 
Documentation Center. All others should apply to the National 
Technical Information Service. 

/ 



-; 

?ESIGN CRITERIA AND NUMERICAL 
SIMULATION OF AN ANTENNA £YSTEM 
FOR ONE-DIMENSIONAL LIMITED SCAN. 

/,/ In Hi 01  
* <' il* _   '  ..wji.li m ' 

Giorgio V /yfeorgiotti   I 

SSSSSS i THII n ijC i »m»mw-——mnaa iota mo ADDRESS 
Air Foi ce Cambridge Research Laboratories (LZR) 
Hanscom AFB 
Massachusetts   01731 
II.    CONTROLLING OFFICE NAME AND ADDRESS 

Air Force Cambridge Research Laboratories 
Hanscom AFB 
Massachusetts   01731 

S.   TYPE OF REPORT « PERIOD COVERED 

Scientific'.      Intejrtm. 
«. PERFORMING ORG. REPORT NUMBER 

IP NO. 243 
•  CONTRACT OR GRANT NUMBER*«) 

10. PROGRAM ELEMENT. PROJECT. TASK 
AREA « «ORK UNIT NUMBERS 

46001303 
62<PQ2F 

14.    MONITORING AGENCY NAME ft^ADORtfesrif dttUtTt from Con f roll 

RMt>00 (?0li 
16.    DISTRIBUTION STATEMENT fol Mil« Rtport) 

IS.   SECURITY CLASS. (ol ID/« roporr; 

Unclassified 
IS.     OECLASSIFICATION/OOÄNGRADING 

SCHEOULE 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (ol fho mbmttmct orttorod In Block 20. II dtltmtont from JtoporfJ 

lü.   SUPPLEMENTARY NOTES 

This research was accomplished while the author held a National 
Research Council Resident Senior Research Associateship. 

It.   KEY WORDS tConilnum vn ro.oro* «Id« II nocooomry mnd Idontlty AT Aloe* nummof) 

Limited scan arrays 
Antenna systems 
Phased arrays 
Antenna theory 

STRACT (Canlln> •vor«« aid* It nocoaoory and tdonnly br AlocA rumft.r; 

An analytical and numerical study was performed on a novel design scheme 
for an antenna system for limited one-dimensional scan.   The system has a 
number of control elements approximately equal to the minimum that are 
theoretically compatible with the aperture size and field of view (FOV).   The 
radiating structure consists of a "boot lace" lens with linear outer and circular 
inner profiles.   This geometry plays a basic role in determining excellent scan 
performance over a moderate frequency band.   A linear array whose size 

DD    I  JAN Tl    W3 EOlTlON OF   I NOV *S IS OBSOLETE unclassified 
> ^ 

SECURITY CLASSIFICATION OF THIS PAGE i =•"•-1 r«0 *«7loroa<> 

. I 
ii 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGEfWJmi Dmlm Enlnrtd) 

(Cont.) 

depends critically upon scan requirements and the lens focal length is located 
on the focal plane and is focussed onto the inner lens profile.   The array is 
fed by a Hybrid Network (HN) performing a spatial Fourier transformation. 
The input ports of the HN are fed by the output ports of a Beam Forming 
Network (BFN) through a set of variable phase shifters.   The BFN has separate 
input ports for the sum and difference patterns controlled independently.   The 
system works as follows.   The antenna illumination is synthesized as the 
weighted superposition of components illuminations or "overlapping subarrays", 
each of which is due to the excitation of one of the ports of the HN.   The 
amplitudes of the subarray excitations are fixed and determined by the power 
divisions provided by the BFN.   Their phases are controlled by the net of 
variable phase shifters.   A desirable feature of the scheme is that for fixed 
phase shifter settings, neither the beam scans nor the width changes for a 
moderate frequency variation.r*Wirough a suitable design of the BFN, ultralow 
sidelobes outside the FOV canlBe achieved at the expense of a slight reduction 
of the illumination efficiency, Which is always high, however, since the aper- 
ture is fully used.   Extensive nuiAerical computations for an antenna having a 
half-power beamwidth of 1. 2° shotfus that the sum beam can be scanned in a 
sector greater than 6 beams on a band of 20 percent with excellent performance 
from the viewpoint of gain and sidelobes, the scan sector being slightly less 

I for the difference beam. 

Unclassified 
SECURITY CLASSIFICATION OF THIS PAGf ■**•* Dmtm Cnf*r*d) 

-*_ 3. ■ 



Contents 

1. INTRODUCTION 

2. THE OVERLAPPING SUBARRAY CONCEPT 

3. ANTENNA CONFIGURATION AND ANALYTICAL MODEL 

4. THEORY OF OPERATION 

5. DESIGN PROCEDURE AND COMPUTER SIMULATION 
OF A PARTICULAR CASE 

6. NUMERICAL RESULTS AND DISCUSSION 

7. CONCLUSIONS 

REFERENCES 

APPENDK A:   A Hybrid Network with a Number of 
Input Ports Twice the Number of the 
Output Ports 

APPENDDC E:   The Effects of Phase Quantization 
on Radiation Pattern 

7 

9 

11 

15 

18 

20 

53 

55 

57 

61 



1. Antenna System Scheme 

2. Beam Forming Network for Independent Control 
of Sum and Difference Patterns 

3. Amplitude and Phase Illumination of Subarray 1R, 
Frequency f 

4. Radiation Pattern of Subarray 1R, Frequency f 
5. Amplitude and Phase Illumination of Subarray 4T, 

Frequency f 
6. Radiation Pattern of Subarray 4R, Frequency f 

7. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   = 0°, Frequency f 

8. Sum Pattern; Scan Angle 9n = 0°, Frequency f 

9. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 1.2°, Frequency f 

10. Sum Pattern; Scan Angle 90 = 1.2°, Frequency f 

11. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   = 2.4°, Frequency f 

12. Sum Pattern; Scan Angle 9   = 2.4°, Frequency f 
13. Sum Pattern, Amplitude and Phase Illumination; 

Scan Angle 9   =3.6°, Frequency f 

14. Sum Pattern; Scan Angle 9   =3.6°, Frequency f 

15. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   = 0°, Frequency f 

16. Difference Pattern; Scan Angle 9   = 0°, Frequency f 

17. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   - 1.2°, Frequency f 

18. Difference Pattern; Scan Angle 9   = 1.2°, Frequency f 

19. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   = 2.4°, Frequency f 

20. Difference Pattern; Scan Angle 6   = 2.4°, Frequency f 

21. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 3.6°, Frequency f 

22. Difference Pattern; Scan Angle 9Q = 3.6°. Frequency f 

23. Amplitude and Phase Illumination of Subarray 1R, 
Frequency 0.9 f 

24. Radiation Pattern of Subarray 1R. Frequency 0.9 f 

25. Amplitude and Phase Illumination of Subarray 4R, 
Frequency 0,9 f 

26. Radiation Pattern of Subarray 4R, Frequency 0.9 f0 

27. Sum Pattern Amplitude and Phase Illumination; 
Scan Angle 0O = 0°, Frequency 0.9 f0 

28. Sum Pattern; Scan Angle 0Q = 0°. Frequency 0.9 f 

lustrations 

12 

13 

23 

23 

24 

24 

25 

25 

26 

26 

27 

27 

28 

28 

29 

29 

30 

30 

31 

31 

32 

32 

3? 

33 

34 

34 

36 

I   - ' '  ___^__ 



Illustrations 

29. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 0   = 1.2°. Frequency 0.9 f 

30. Sum Pattern; Scan Angle 9Q = 1.2°, Frequency 0.9 1Q 

31. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 6   = 2.4°, Frequency 0.9 f 

32. Sum Pattern; Scan Angle 9Q = 2.4°, Frequency 0.9 tQ 

33. Sum Pattern, Amplitude and Phase; 
Scan Angle 9Q = 3.6°, Frequency 0.9 f 

34. Sum Pattern; Scan Angle 0O = 3.6°, Frequency 0.9 tQ 

35. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 0°, Frequency 0.9 f 

36. Difference Pattern; Scan Angle BQ = 0°, Frequency 0.9 tQ 

37. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 1.28, Frequency 0.9 f 

38. Difference Pattern; Scan Angle 0Q = 1.2°, Frequency 0.9 f 

39. Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 0Q = 2.4°, Frequency 0.9 f 

40. Difference Pattern; Scan Angle 9Q = 2.4°, Frequency 0.9 fQ 

41. Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 3.6°. Frequency 0.9 f 

42. Difference Pattern; Scan Angle 9Q = 3.6°, Frequency 0.9 fQ 

43. Amplitude and Phase Illumination of Subarray 1R, 
Frequency 1.1 f 

44. Radiation Pattern of Subarray 1R, Frequency 1.1 f 
45. Amplitude and Phase Illumination of Subarray 4R, 

Frequency 1.1 f 
46. Radiation Pattern of Subarray 4R, Frequency 1.1 f 

47. Sum Pattern. Amplitude and Phase Illumination; 
Scan Angle 0   = 0°, Frequency 1.1 f 

48. Sum Pattern; Scan Angle 0Q = 0°, Frequency 1.1 fQ 

49. Sum Pattern, Amplitude and Phase Illamiriation; 
Scan Angle 9   = 0°, Frequency 1.1 f 

50. Sum Pattern; Scan Angle 9Q= 1.2°, Frequency 1.1 tQ 

5i.   Sum Pattern, Amplitude and Phase Illumination; 
Scan Angle 9   =2.4°, Frequency 1.1 f 

52. Sum Pattern; Scan Angle 0Q = 2.4°. Frequency 1.1 fQ 

53. Sum Pattern. Amplitude and Phase Illumination; 
Scan Angle 9   = 3.6°, Frequency 1.1 f 

54. Sum Pattern; Scan Angle fl   = 3.6°. Frequency 1.1 f 

55. Difference Pattern. Amplitude and Phase Illumination; 
Scan Angle 9   = 0°, Frequency 1.1 f 

56. Difference Pattern; Scan Angle 0O = 0°, Frequency 1.1 f 

36 

36 

37 

37 

38 

38 

39 

39 

40 

40 

41 

41 

42 

42 

43 

43 

44 

44 

45 

45 

46 

46 

47 

47 

48 

48 

49 

49 



Illustrations 

— 

57.   Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 0   = 1.2°, Frequency 1.1 f 

Difference Pattern; Scan Angle 9   = 1.2°, Frequency 1.1 f 

Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 2.4°, Frequency 1.1 fQ 

Difference Pattern; Scan Angle 9   = 2.4°, Frequency 1.1 f 

Difference Pattern, Amplitude and Phase Illumination; 
Scan Angle 9Q = 3.6°, Frequency 1.1 f 

62. Difference Pattern; Scan Angle 9   = 3.6°, Frequency 1.1 f 

63. Illumination Efficiency vs Scan Angle 

64. Composite Hybrid Network 

58. 

59. 

60. 

61. 

50 

50 

51 

51 

52 

52 

53 

59 

Tables 

1.   Sum and Difference Illumination Coefficients 20 



I 

Design Criteria and Numerical Simulation of an 

Antenna System for One-Dimensional 

Limited Scan 

1.  INTRODUCTION 

In recent years, a number of studies have been devoted to limited scan an- 

tenna techniques.      The goal of these studies has been the reduction of the number 

of costly control elements (phase shifters or variable power dividers) as com- 

pared to the number in a phased array that is designed in a "conventional" way 

using a phase shifter for each elementary radiator.    Actually, >n the latter case, 

the antenna aperture is the main factor determining the number of elements. 

Narrowing the field 01 view (FOV) produces only a limited saving on the number 

of pht •» shifters over those used in a wide angle antenna system because the 

maximum element spacings are constrained in order to avoid grating lobes. 

Therefore, the antenna gain rather than the scan sector is the factor that mainly 

affects the number of phase shifters.   A substantial reduction of the number of 

control elements in an antenna system for limited scan can be obtained only with 

totally different design schemes. 

In several of the proposed solutions, a limited scan is achieved by using a 
small array located in the focal region of a microwave optical system whose 

magnifying effect i3 exploited in some v/ay.   The aperture is in most cases ineffi- 

ciently used because for each scan direction,   only a limited part of it is actually 

(Received for publication 28 November 1975) 

1.    Mailloux, R.J., and  Blacksmith, P. (197'!)   Array and reflector techniques 
for airport precision aporoach radars.  Microwave J.,  pp 35-38. 
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radiating. 2'3   In the design scheme described ir :tef. 3 the design is optimized 

from the viewpoint offhe minimization of the number of control elements. 
The system proposed in this report is based on the idea of synthesizing the 

aperture illumination by using overlapping subarrays whose excitations are inde- 

pendently controlled.   The concept was probably originated by A. Rudge,    and 
pursued by R. Tang. 5   Both these authors did not present a detailed analysis or 

design procedure.   The contributions of this paper consist of providing detailed 

analysis and design criteria for a specific antenna configuration, for limited scan 

in one plane, having a number of very desirable features: 
- The number of phase 3hifters is the theoretical minimum for the given 

a 
aperture size and FOV. 

- The aperture is fully used with high efficiency. 
- The beam pointing and width are approximately constant for a moderate 

change of frequency, so providing wide instantaneous bandwidth. 
- Ultralow sidelobes outside the FOV can be obtained at the expense of a 

slight decrease of the illumination efficiency. 
- The aperture illumination can be accurately controlled, yielding excellent 

sum and difference pattern specified independently. 
The structure consists of a cylindrical lens with a linear outer aperture and a 

circular inner profile.   The lens is a Rotman "bootlace" type.   This means that 

corresponding collecting and radiating elements - at the inner and outer faces of 
the lens - equidistant from the lens axis are electrically connected through equal 

lengths of coaxial cables.   A linear focused array is located on the focal plane, and 

fed by a hybrid network (with a number of radiation ports greater than the number 

of input ports).   A beam forming network, providing separate control of sum and 

difference patterns, feeds the hybrid network through a set of phase shifters whose 

number is approximately equal to the product of aperture length (in wavelengths) by 

FOV (in "sinfl space"). 
For a numerical investigation an antenna with a 3 dB beamwidth of 1.2° with a 

nominal scan sector of approximately 6 beamwidths has been considered.   The 

numerical results of computer simulation-antenna patterns, lens aperture illumina- 

tions, and focal array illuminations confirm the theoretical expectation of excellent 

performance.   The behavior on a 20 percent bandwidth centered around the design 

2. Winter, C. (1968)   Phase scanning experiments with two reflector antenna 
systems,  Proc. IEEE 56(No. 11). 

3. Schell. A.C.  (1972)   A Limited Sector Scanning Antenna.  IEEE G-AP Inter- 
national Symposium. 

4. Rudge, A. W,, and Whithers, M. J. (1971)   New techniques for beam steering 
with fixed parabolic reflectors.  Proc. IEE (British) 118(No. 7):857-863. 

6. 

Tang, R.  (1972)   Survey of Time-Delay Beam Steering Techniques.  Proc. 1970 
Phased Array Antenna Symp., Artech House, pp 254-260. 

Borgiotti, G. V. (1975)   Degrees of Freedom of an Antenna Scanned in a 
Limited Sector.  IEEE G-AP International Symp.  pp 319-320. 
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frequency is also investigated with the purpose of assessing the broadband proper- 

ties of the system.   It is shown that ehe main effect of frequency change is to vary 

the level of the far out sidelobes.   Ir. stead the main beam shape and pointing and 

the sidelobe3 inside the FOV are only slightly affected. 

In the analysis, no mutual coupling effects on the lens elements were con- 

sidered.    This means that in the frequency band of interest, the various apertures 

are assumed matched.    Because the scan sector is limited, this condition is not 

difficult to achieve.   However, the discussion of this point is o-rtside the scope of 

this report. 

The report is organized as follows.    In Section 2, the idea of synthesizing an 

array illumination by using translated interpolating functions (overlapping sub- 

arrays) is introduced.    In Section 3, an antenna configuration practically imple- 

menting the concept is considered and an accurate mathematical model developed. 

The theory of operation is discussed in Section 4 by using a simplified analytical 

model.   An outline of the design procedure for a particular case is presented in 

Section 5; in Section 6 the calculated performances are discussed.   In Appendix A, 

a special hybrid network scheme is considered, and in Appendix B an approximate 

analysis of phase quantization effects is developed. 

2. THE OVERLAPPING SUBARRAY CONCEPT 

In this section we will discuss in detail the overlapping subarray concept in 

order to establish several relationships which form the foundation of the proposed 

antenna system design.   The antenna configuration and its theory of operation are 

described in Sections 3 and 4. 

Let 2a be the aperture length and x an abscissa on it.    Let u. 

2»     .  a u   =   —  sinö , (1) 

be an abscissa on the wavenumber axis, where 9  is the angle from broadside 

direction and X  is the wavelength of operation.    If the polarizatio.i is in the plane 

of incidence, the relationship between the radiation pattern g(u) and the antenna 

illumination f(x) is given by the Fourier transformation: 

g(u)   =    \     f(x) exp(jux) dx (2) 

Let 2e   be the actual angular width of the FOV greater than the nominal scan 

sector to take into account the beamwidth of the radiated beam (as discussed later). 



Put 

2V 

T sine (3) 

With the usual notation put: 

I      1     for      U      £    U; 
rect 

2u, 
(4) 

0   for |u| > u- 

Let us consider a function g (u) different from zero only in the FOV which, 

of course, is unrealizable as a radiation pattern generated by a finite aperture. 

A representation of g_(u) is the following: 

g0(u) rect TT^
-
   £J   a   expnpff — 2uf    p      p     H\'F    u6 

( -1     -I     I     1       \ 
\ 2 '      2 '   2 '   2 " 7 

(5) 

Equation (5) is recognized to be a conventional Fourier series of period 2u6 mul- 

tiplied by a linear phase term.   It is easy to show that the terms of Eq. (5) form a 

comDlete system of functions in -u. Thus Eq. (5) can be used 'instead of a 

more conventional Fourier series (that is, one with the indexes p taking integer 

values).    The reason for choosing this expansion will be apparent in the sequel. 

It is related to the "se of a hybrid network with an even number of input ports. 

By taking the inverse F. T. of Eq. (5) and then truncating it to the length 2a of the 

aperture, one obtains the aperture illumination f(x) that provides the best rms 

realizable approximation on the entire u axis of the unrealizable pattern of Eq. (5): 

* - PTT 
fix) rect —   L   a 

2a    p     P 
M

X
"Pü: 

(G) 

where constant factors have been neglected. 

Equation (6)  represents the antenna illumination as a weighted sum of "over- 

lapping subarrays" whose centers lie in the equispaced points: 

=   PT7T =   P 2 sin. (P. 
113 \ 

'   " 2 '   2 '   2  "•/■ 
(7) 

Because of their oscillating behavior, the contributions to the radiation pattern 

inside the FOV, of the terms of Eq. (6) for which x„ lies outside the aperture, 

are small.    Thus the radiation pattern will not change substantially if the sum of 

10 



Eq. (6) is truncated by retaining only those terms for which the subarray centers 

belong to the aperture.   Thus we will write for the illumination with self-explanatory 

notation: 

sin 

f(x) reCt£    |£p|<*aP 
Hx-pü 

Mx~p^) 
(8) 

The radiation pattern of a single subarray is given by the convolution (neglecting 

multiplicative constants): 

,  >        sinau 
gp(u)  *   —~ ®   [rCCt2^ exp (*•£ 4 (9) 

and thus is given by a rectangular waveform multiplied by a linear phase term 

"filtered" by tlie pattern of the uniformly illuminated aperture.   Terms with higher 

I pi's correspond to subarray illuminations centered in points closer to the aper- 

ture edges,  and are therefore more severely truncated by the aperture finite 

length.   Their patterns thus deviate more and more from a rectangular shape, as 

is numerically shown in Section 6. 

The choice of the coefficients a    is made simply by sampling a desirable 

illumination for a continuous aperiure in the points of Eq. (7).   In this way vre ob- 

tain for the pattern a periodic function filtered out by the subarray patterns which 

limit the radiation essentially to the FOV.   The procedure, considering a numeri- 

cal example, will be discussed in Section 5. 

We proceed now to the discussion of a design scheme for the practical imple- 

mentation of the concepts outlined above. 

3.   ANTENNA CONFIGURATION AND ANALYTICAL MODEL 

With reference to Figure 1,  consider a "bootlace" cylindrical plane-circular 

lens.    Corresponding collecting and radiating elements on the two faces (located 

at the same distance x from the lens axis) are connected through equal cable 

lengths. 

Denote the focal length, equal also to the radius of the inner lens profile by F. 

Recalling that  2a is the aperture length, let 

sinfl    = — , 
a       F 

(10) 

where 0    is the lens half angular aperture.   With the notation of the preceding 

section, denote the ratio ("magnification") by ji : 

i 
ii 

______ 



sinö_ 

sine (11) 

We will denote by 2b the length of a planar array located on the focal plane, illu- 

minating the lens.   We require that 

b = i. (12) 

EQUAL LENGTH 
LENS 

2£ « 9.16» 

sin». 
sint 

• MAGNIFICATION 

N « 8 

PHASERS 
HYBRID 
MATRIX 

2o*50x -^-~— 

FIXED TIME DELAYS      [*(<)■ ?f ./F^TT1] 

SUBARRAY  SPACING:    AxD = ;r4-r v     2smE 

PHASER SETTINGS:      *,4, - ♦, > ( ^ sin«.) ax, = ,gjii 

Figure 1.   Antenna System Scheme 

As shown in Figure 1, the array elements are connected to the set of output ports 

of a hybrid network.    This can be a Butler matrix or a different structure as dis- 

cussed in Section 5 and Appendix A.    The hybrid matrix is fed, in turn, through 

a set of variable phase shifters by a Beam Forming Network, (BFN) that provides 

independent, separate control of even ("sum") and odd ("difference") sets of co- 

efficients.   A network to accomplish this result is shown, for example, in Fig- 
7 

ure 2 (taken from  Stark ).   The spacing between focal array elements  must be 

close to half wavelength to avoid grating lobes.   Fixed time delays are applied to 

the array elements for the purpose of focusing the energy radiated into points of 

the inner profile of the lens.    If £  is an abscissa on the focal array, the phase 

transfer so introduced, for an element located at £   (neglecting terms independent 

of £) is, at the wavelength A, 

7.   Stark, L.  (1974)   Microwave theorv of phased array antennas—a review,  Proc. 
IEEE 62(No. 12>: 1661- 1701. 
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♦«) »    V?2
+F2 

(13) 

PHASE SHIFTER INPUTS 

9 9 9 9 

180° HYBRID T JUNCTION (TYP) 

Figure 2.   Beam Forming Network for Independent 
Control of Sum and Difference Patterns 

Assume that the number of input ("equipment") ports of the hybrid network is 

even and equal to N.    When only one of the ports, denoted by the subscript p, is 

excited by a unitary incident wave» the excitation of an element whose center is 

located at the abscissa | , is 

m }(|)  =   rect^   exp(-jip?)exp[j0(?)] 

/ N-l N-l   ^   , N-l\ (14) 

where the phase transformation of Eq. (13) has been included. 

Let us consider how the sum pattern is generated.    Parallel discussion applies 

to the difference pattern.   When the sum port of the BFN is excited, the N outputs 

will be a set of equiphase voltages ja_(p)|,   whose magnitudes are chosen to be 

equal to the samples of "good" illumination at the locations of the subarrays 

centers.   Suppose now that the phase shifters are set to introduce phase delays A 

proportional to the abscissae of the subarrays centers on the lens aperture.   Then 

2ir .   . 
6     -   — x_ sint VP A      P 

(15) 
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where the x 'a are given by E^. (7) We shall see, when disjussing the theory of 

operation in Section 4, that sin0Q is the sine of the scan direction.    Because of 

Eq. (7), the abscissa x    is proportional to A.    Thus the phase settings of Eq. (15) 

are independent of frequency, and can be written as 

sinö 
pit 

0 
sin€ 

(16) 

with p taking half integer values.    Since the focal array elements have been 

assumed as being closely spaced (~A/2), the actual array aperture distribution 

generated by discrete elements can be replaced in our analysis by a continuous 

distribution obtained by assuming that in Eq. (14)  ij  takes continuous values. 

Thus by using superposition, we obtain for the sum illumination of the focal array 

[see Eq. (14)] 

N-l 
2 

(« 10o)= rect 4 2^   aj.tp) mp(|) exp (-jp, f^2 ) (17) 

(Re-1 icing the subscript E with A, one obtains the expression for the difference 

illumination on the focal array.) The antenna aperture illumination (on the outer 

lens face) is therefore found to be (neglecting constants) 

jV*«,-"«)-,'\K) 
-b 

exp 

According to Eq. (2), the antenna pattern is 

gz(u'Öo)=j     fr(xlö0)  exp(jux)dx. 

r-)¥('•♦«*-»»«j 
1/2 

d? (18) 

(19) 

Expressions parallel to Eqs. (18) and (19) hold for the difference illumination and 
pattern. 

14 
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4.  THEORY OF OPERATION 

The various relationships established in the preceding section provide an ac- 

curate analytical model of the system and have been used for the computer simu- 

lation of the antenna performance.   However, to gain an insight into the way the 

antenna system works, it is convenient to resort to a simplified theory that more 

clearly illustrates certain basic features of the design scheme. 
Consider Eq. (18).   The amplitude term can be expanded with respect to |/F 

as follows: 

(F
2
 + |2 - 2x£] =   F"1/2 h + *i   + higher order terms). (20) 

The maximum absolute value that the first order term in square brackets can take 

is [see Eqs.(ll) and (12)] 

T sinO   sin,    « 1 
2 a        6 

(21) 

T'.ius we may replace the amplitude term in Eq. (17) with a constant.   With regard 

to the phase term, by again expanding with respect to i; /F we can writ? 

£ [VF v- 2xi - v^7] = f h - &£ ♦ high er order terms .(22) 

Neglecting terms of order higher than the first in Eq. (22) has a negligible effect 

on the integral of Eq. (18) provided that their phase contribution at the aperture 

edge (where it is maximum) is small.   We postulate that only the first order term 

in the series of Eq. (22) should be retained if for every x and £  the second order 

term is less than a radian.    This leads to the condition 

'(x)K)2( sine    < 1 (23) 

Assuming that Eq. (23) holds (as discussed for the numerical example in Section 5), 

we can write for Eq. (18), neglecting unessential multiplicative constants. 

Mxl0or 

N-l 
sinö„ A / Sl™0 \ Li        a_(p) exp -ipir —:— I 

N-l    £ \ sine/ 

|"°<£J>Ni?*->sJHj- (24) 
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Consider the integrals in Eq. (24).    By recalling that 

b =   F sine 

and referring to Eq. (3), one obtains 

I «»[«(S'-psih 
2 sin b (- ■ 

21 
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(25) 

which, a constant apart, is the subarray illumination desired [see Eqs. (7) and 

(8)].    Inserting Eq. (25) into Eq. (24), we find that the illumination takes the form 

of Eq. (8) that is sought.   The corresponding radiation pattern is, paralleling 

Eq. (9) 

:H*o)= ^® rect JL . Z 
2u, <a 

/       U"U0 \ aj,(p) exp I jpir-jj—I (26) 

Equation (26) expresses the radiation pattern as the convolution of a term, in 

square brackets, that has the meaning of an array factor (a periodic function) 

multiplied by a rectangular "element factor", and a term that represents the 

effect of the truncation of the subarrays due to the finite aperture size 2a.   Thus, 

the term in square brackets represents a non-realizable pattern strictly limited 

to the FOV.    The convolution with the aperture function [the first term in Eq. (26)] 

expresses the physical realizability of the pattern with the given aperture.   The 

pattern has its peak at u» for the set of coefficients a„(p) real and positive. 

Thus the phase settings of Eq. (16) are those to be given to obtain the scan in the 

wanted direction.   Notice that for the sum pattern, the illumination coefficients 

are even with respect to p; 

a (p)   =   a (-p) , 

while the coefficients of the difference pattern v/ill have an odd symmetry 

(27) 

aA(p)   =   " aA("P) ' (28) 

It is thus recognized that the difference pattern has a zero in the direction 6L if 

the phase shifter settings at the input of the hybrid matrix are given by Eq. (16). 
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i  I 
Several interesting features of Eq. (26) [and of its companion for the differ- 

ence pattern] become apparent if, in the term in square brackets, the variable u 

is wi itten as a function of 6 and A.: 

/   u"uo\ 
2U£    |Xp|<a^^^—)- rect -^—  | J-* 

p 

rect sin0 
2sin£    |*p|<a    S 

av(p) exp   -j 
sin0 - simön 

sine 
(29) 

First notice that the angular esrtension of the subarray pattern of rectangular shape 

—in absence of aperture truncat jii-is independent of frequency.   The physical 

reason becomes clear by recalling the way the subarrays are generated.    By in- 
creasing the frequency, the focused beams radiated by the focal arrays for each 

input port excitation of the hybrid matrix become more concentrated, as do the 
subarray illuminations on the secondary lens aperture.   The subarray radiation 

patterns should therefore increase their widths.   However, this effect is compen- 

sated for exactly by the beamwidth narrowing due to frequency increase.   Also, 

the correct subarray spacings are preserved with change in frequency.   Notice 
however that the compensation is exact only for the linear-circular geometry of 

the lens profiles here considered.   Notice also that the array factor in Eq. (29), 

directly related to beamwidth, is a function of sinö, independent of frequency. 

Another point is also interesting from a practical viewpoint.   If the phase 

shifters have insertion phases approximately independent of frequency (in a 

limited band of interest) and if the hybrid network provides, for each input port 

excitation, a phase slope independent of frequency, then the settings of Eq. (16) 

of phase shifters for steering the beam in 0o direction are independent of fre- 

quency.   In other words, the beam does not experience a "natural" scan due to 

a frequency variation.   The physical reason is that when the frequency changes, 

the variation o:  jpacing between subarray peaks produces in turn the exact phase 
slope change on the secondary aperture necessary to keep the beam direction fixed. 
Again this compensation is exact only for the particular lens-array geometry here 

discussed. 
Considering Eq. (29) instead of Eq. (26) amounts to neglecting the subarray 

truncations due to the finite aperture of the lens.   The results discussed above, 

however,  still hold with excellent approximation when taking into account such an 

effect, which amounts to having the subarray patterns spreading somewhat outside 

the KOV.    The question will be considered in detail in Section 6 when discussing 

the calculated performance of a particular antenna configuration. 
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5.  DESIGN PROCEDURE AND COMPUTER SIMULATION OF A PARTICULAR CASE 

We will now discuss the computer simulation of a particular case.   In doing 

this, we will also briefly outline the step-by-step design procedure of the antenna 

system. 

Assume that the specified half power beamwidth of the sum pattern is 

03db  *   U2° 
(30) 

with first (and highest) sidelobe not higher than -25 dB.    The aperture illumina- 

tion to be approximated by overlapping subarrays is chosen for the sum pattern 

to be a Taylor distribution with n = 5 and sidelobe level 

the aperture length is chosen to be 

o 
25 dB.      Consequently 

2a 50Xr (31) 

where A« is the wavelength at center frequency.    This yields for the theoretical 

3 dB beamwidth a value equal to 1.207°, close enough to that specified in Eq. (30). 

From the discussion of Section 4 it follows that in order to make the behavior of 

the system close to the theoretical one. it is convenient to choose a long focal de- 

sign.   Thus we will assume, as shown in Figure 1, that 

a 
F 

sinÖa = 0.5 , 6  = 30° (32) 

The extent of the limited scan sector is assumed to be specified equal to 8°. 

However, the FOV 2e   is taken approximately a beamwidth wider; in this way, at 

the edge of the scan sector, most of the main sum beam will be inside the FOV 

and its periodic replicas outside it. 

At center frequency fQ we will require that the edges of the aperture will co- 

incide approximately with the outer 3 dB points of the main lobes of the subarray 

illuminations closest to the aperture edges. The number of subarrays N is given 

by the ratio between aperture length and subarray spacing.   Thus, from Eq. (7) 

N  =  ~ 2 sine (33) 

with N an integer number.    N has the form of a product, aperture (in wavelengths) 

by FOV (in sinö), and is equal to the minimum theoretical number of control ele- 

ments necessary to steer the beam in the FOV. 

8. Taylor, T. T.  (1955)   Design of line source antennas for narrow beamwidth and 
low sidelobes,  IRE Tran. AP-3:16-28. 
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Since 2e   should be close to 9.2J,   Eq. (33) gives, with the actual aperture size 

N  =   8 ;        sine  = 0.08 (that is, 6=4.58°) . 

The magnification factor is 

sin0_ 
P  = *   6.25 , 

sin€ 

and the focal array size is 

2b  =  — =   8Xn p 0 

(34) 

(35) 

The number of radiating elements of the focal array is chosen equal to  16, thus 

their size is half wavelength at center frequency.   The ele«nents are fed by a 

hybrid network with 8 inputs and  16 outputs, and each output is time delayed ac- 

cording to Eq. (13) [which represents a time advance since we have dropped terms 

independent of | ].    The hybrid network can be either a  16 by  16 matrix, whose 

only inputs corresponding to the 8 beams closer to broadside are excited, or any 

other structure whose input-output behavior is equivalent to it (see Appendix A). 
Thus the array illumination, when the port p is excited, is given by Eq. (14) 

where p can take the values 

-L 

(36) 

The hybrid network is fed through a set of phase shifters by a BFN providing a 

separate control of the sum and difference excitation (see Figure 2).   The coef- 

ficients a_(p) of the sum beam are obtained by sampling the Taylor distribution 

already mentioned (n = 5, sidelobe level  -25 dB) at the abscissae of the peaks of 

the subarrays (at center frequency).   The odd illumination sampled in the same 

points to provide the coefficients a.(p) for the difference beam is the first anti- 
symmetric prolate spheroidal function with c = 8.    The discussion of those 

choices for the illuminations is outside the scope of this report.   The coefficients 

generated by the  BFN  are indicated in Table 1.   Notice that in our case 

ff £ /sine X   \       a; f (sin £)    =   0.251 

■i- sine   sine    -   0.02 . 
2 ä 
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Table 1.   Sum and Difference Illumination 
Coefficients [a„(-p) = a^p) a^(-p) = -a^p)! 

p a aA 

1/2 

3/2 

5/2 

7/2 

1 

0.8508 

0.5943 

0.4249 

1 

-2.4400 

-2.4800 

-1. 1200 

Hence, on the basis of the discussion in Section 4,  [see Eq. (21) and Eq. (23)], we 

expect the structure to behave in a way close to that analytically described in 

Section 2, with excellent performance.   This is the case as shown by the numerical 

results discussed in the next section. 

6.   NUMERICAL RESULTS AND DISCUSSION 

Extensive numerical analysis of the structure described in Section 5 has 

been made.   Subarray illuminations and patterns, and sum and difference illumina- 

tions and patterns for various scan conditions have been evaluated by using the 

formulas developed in Section 3.   To check the broadband properties discussed 

in Section 4, the calculations have been performed at three different frequencies: 

fQ (for which the aperture is 50 wavelengths long), 0.9 fQ, and  1.1 f«.   All the 

graphs have been computer generated.   In some cases this fact is apparent by 

inspection of the plots showing the linear interpolation between computed points. 

The linear scale of ordinates for the amplitude illumination is arbitrary.   The 

ordinates of the phase illumination are scaled in units of ff, that is, one unit cor- 

responds to a phase difference of 180°.    The scale of abscissae for the illumina- 

tion is normalized to unity ft the aperture edges.   Notice that the scale of ab- 

scissae for the radiation patterns is given in units of sinö.    When calculating 

sum and difference patterns, the phase shifter settings are those in Eq. (16)  and 

thus for a given nominal steering angle 0« are the same for every frequency. 

Figure 3 shows the amplitude and phast  Df the aperture illumination for 

center frequency fQ when one of the two ports of the hybrid network which gener- 

ates a subarray located closest to the antenna axis is excited (the  BFN assumed 

thus disconnected, see Figure 1).   For this subarray and the one symmetric with 

respect to the antenna axi3, the truncation due to finite aperture size is the least 

severe.   Thus the pattern shape, Figure 4, is the closest to the ideal, "rectangu- 

lar" form.   Figure 5 shows the amplitude and phase illumination for excitation of 

port 4R of the hybrid network.    The amplitude and phase plots are still those 
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expected, but the severe truncation generates a subarray pattern which has a 

relatively high level of radiated energy outside the FOV, and so is less similar 

to the ideal one (Figure 6).    In Figures 7-14 the illuminations (amplitudes and 

phases) and the radiation patterns for the sum pattern for different directions of 

scan are shown.   As described in previous sections, the illumination is obtained 

by weighting the subarray excitations (through the power divider constituting the 

BFN) with coefficients given in Table 1.   Interestingly, during scan the amplitude 

illumination changes  its shape substantially as Figures 7, 9,   11, and  13 show; 

the phase being almost exactly linear.   The pattern within the FOV is close to 

the one theoretically expected, with a level of sidelobes of approximately - 24 dB, 

and decaying rapidly outside.   For scan angle of 9n - 3.6°, a grating lobe begins 

to appear, since the periodic replica of the main beam (at a distance 2 sine on the 

sin0 axis)  starts entering into the FOV.    Figures 15-22 show phase and ampli- 

tude illuminations and radiation patterns for difference beams, still at frequency fQ. 
The illumination coefficients are given in Table 1.   In this case, the pattern 

deteriorates substantially for a scan angle equal to 3.6° (Figure 22).    This is, of 

course, expected since the periodic replica of the difference beam enters into the 

FOV for a scan angle less than that in the case of the sum beam (because the 

difference beam has a greater angular extension).   Notice, however, that the null 
of the difference pattern still is in its nominal position.   This suggests that in the 

absence of interference the pattern of Figure 22 is possibly still usable. 

Figures 23-42 depict similar results for the freqnency 0.9 f~.    It is inter- 

esting that the 3 dB width of the pattern of the subarray 1R in Figure 24  is not 

significantly changed witn respect to the corresponding one at frequency f„ (Fig- 

ure 4).    For the subarray 4R, because of the more severe truncation at the lower 

frequency (Figure 25), the decay of the pattern outside the FOV  is slower than at 

f- (Figure 26).    The sum patterns of Figures 28, 30, 32, and 34  show higher 

sidelobes than those at the center frequency.    However the direction of the peak 

of the beam does not change with frequency.    Moreover the  3 dB b°amwidth  re- 

mains essentially the same.   This point has been discussed in Section 4 where 

the array factor was shown to be approximately independent of frequency and can 

now be explained from a different viewpoint by comparing the amplitude illumina- 

tions at the frequency 0.9 f_ with those at the frequency ffl.    The illumination 

taper is much less for the lower frequency cases and this effect compensates the 

natural beam broadening due to frequency change.   Similar remarks can be made 

for the difference patterns. 

The last group of figures  refers to the frequency 1.1 f0.    In Figures 43 and 

44 the amplitude and phase illuminations and the radiation pattern of the subarray 

1R are plotted.    The less severe truncation now leads to a faster sidelobe decay. 
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The same can be said for subarray 4K (Figures 45 and 46).    Because of the more 

effective filtering effects due to the subarray patterns, the level of sidelobe level 

in the sum pattern drops immediately below -40 dB outside the FOV, as Fig- 

ures 47-54 show, while being under -25 dB within it for all scan conditions. 

Similar remarks can again be made for the difference patterns.   Again the varia- 
tion of the sum 3 dB beamwidth with frequency is not easily detectable on the 

computer plots.   Also,  comparisons with the patterns at f0 show that the peak 

and null directions, for the phase settings [Eq. (16)], do not depend upon frequency, 

under our hypothesis of ideal phase shifters and hybrid network. 

It is finally interesting to evaluate the efficiency of the illuminations, particu- 

larly for the case of frequency equal to  1.1 f0 for which ultrasidelobes outside the 

FOV are obtained.   The plots as function of scan angle are given in Figure 63, 

and show that the efficiency of the illumination is very high.    Also, for the fre- 

quency 1,1 f0 the slight decrease of efficiency is expected to be compensated by 

a smaller spillover loss (not calculated). 
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Figure 3.   Amplitude and Phase Illumination of 
Subarray 1R, Frequency f» 

S1 = 1 .0 

Figure 4.    Radiation Pattern of Subarray 1R, 
Frequency (~ 
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Figure 6.    Radiation Pattern of Subarray 4R, 
Frequency fQ 
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-1.00 -0.75 -0.25 O.OO 
X 

C.Z5 O.SO 0.75 1.00 

Figure 7.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 6L = 0°, Frequency fQ 

Sl = l -0 

CO CM 

a ' 

üü       4.t4 b.ll -b.M 0.0C 0.1» 0.1« 0.f4 0.« 
SIN19) 

Figure 8.   Sum Pattern; Scan Angle 6Q = 0° 
Frequency f, 
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Figure 9.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scar. Angle 6L = 1.2°, Frequency fQ 

S 1 = 1 -0   9n=l -2 

Figure 10.   Sum Pattern; Scan Angle 6L = 1.2°, 
Frequency f_ 
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Figure 11.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q =2.4°, Frequency fQ 

SI=1-0   Bn=2.4 

Figure 12.   Sum Pattern; Scan Angle 6Q = 2.4°, 
Frequency f. 

27 

! 

_*.—L. —   rfiim ■'■■■■• —  

. !      nt Tiii 
»i_S_= i  

—i  - 



Figure 13.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 6L = 3.6°, Frequency fQ 

Sl-1 .0   90=3.6 

Figure 14.   Sum Pattern; Scan Angle 9Q = 3.6°, 
Frequency f-. 
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Figure 15.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 8Q = 0°, Frequency fQ 

SI=1 .0   90=0.0 

Figure 16.   Difference Pattern; Scan Angle Ö» = 0° 
Frequency ffl 
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Figure 17.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 6Q = 1.2°, Frequency fQ 

SI-1 .0   80=1.2 

Figure 18.    Difference Pattern; Scan Angle 6Q - 1.2" 
Frequency f„ 
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Figure 19.   Diffprence Patten., Amplitude and Phase 
Illumination; Scan Angle 6Q = 2.4°, Frequency fQ 

Sl-1 .0   9n=2.4 

S I NI 9 ) 
0.J4 0.» 

Figure 20.   Difference Pattern; Scan Angle 0Q = 2.4' 
Frequency fQ 
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Figure 21.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 6L = 3.6°, Frequency fQ 

Sl-1 .0   9n=3.6 

Figure 22.   Difference Pattern; Scan Angle 0O = 3.6° 
Frequency fQ 
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-1.00 -G.7S 

Figure 23.   Amplitude and Phase Illumination of 
Subarray 1R, Frequency 0.9 fQ 

SU0.9 

LU CM 

i75»        -b.14        -b.16       3üäi       o'.oo ö.oe.       o.ie o.!< O.K 

SINI8) 

Figure 24.    Radiation Pattern of Subarray 1R, 
Frequency 0.9 f» 
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Figure 25.   Amplitude and Phase Illumination of 
Subarray 4R, Frequency 0.9 fQ 

S1=0.9 

CO CM 

$ir 

IV :A 

.0« 0-00 
SIN19) 

0'.!« 0.H 

Figure 26.    Radiation Pattern of Subarray 4R, 
Frequency 0.9 f» 
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-0.75 -0.50 -0.2S 0.00 0.25 0.50 0.75 1.00 

Figure 27.    Sum Pattern, Amplitude and Phase 
Illumination; Scan Angle 6L = 0°, Frequency 0.9 fQ 

S1-Q.9   9n=0.0 

O.N       T.n 

Figure 28.    Sum Pattern; Scan Angle 8Q - 0° 
Frequency 0.9 L 
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-1.00 -0.75 -0-25 0.00 0.2L 0.50 Ü.7S t .00 

Figure 29.    Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q = 1.2°, Frequency 0.9 fQ 

SU0.9   8n=l -2 

Figur«; 30.   Sum Pattern; Scan Angle 6Q ~ 1.2° 
Frequency 0.9 f- 
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Figure 31.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0-= 2.4°, Frequency 0.9 f_ 

SU0.9   9n=2.4 

Figure 32.    Sum Pattern; Scan Angle 6Q = 2.4°. 
Frequency 0.9 f. 
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Figure 33.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle ft. = 3.6°, Frequency 0.3 ?Q 

SlrO-9   9n=3.6 

Figure 34.    Sum Pattern; Scan Angle 0Q = 3.6° 
Frequency 0.9 fQ 
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Figure 35.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 0Q = 0°, Frequency 0.9 fQ 

Slr0.9   QQHO.O 

Figure 36.    Difference Pattern; Scan Angle 0Q = "° 
Frequency 0.9 fQ 
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1.00 -0.75 -0-50 -0-25 0-00 0.25 0-50 0.75 L.00 

Figure 37.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 9Q= 1.2°, Frequency 0.9 fQ 

SU0.9   8n=l -2 

Figure 38.    Difference Pattern;  Scan Angle 6Q = 1.2°, 
Frequency 0.9 f. 
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Figure 39.    Difference Pattern, Amplitude and Phase 
Illumination;  Scan Angle 6Q = 2.4°, Frequency 0.9 fQ 

S1=0 -9   90=2.4 

Figure 40.    Difference Pattern; Scan Angle <L - 2.4' 
Frequency 0.9 f- 
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Figure 41.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0O = 3.6°, Frequency 0.9 f0 

S1=0 -9   90=3.6 

o«        o'.oo'        o'Toi   "     o'.i« o.f4 o.yt 

SIN(S) 

Figure 42.    Difference Pattern; Scan Angle 0- = 3.6°, 
Frequency 0.9 f- 
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S1 = 1 .1 
\ 

1       / / 

v     ■ 

LJ \A 
^\/V v 

-1.00 -0.76 -0-50 -0.25 0.00 0.25 0.50 0.75 1.00 

Figure 43.   Amplitude and Phase Illumination of 
Subarray 1R,  Frequency 1.1 f„ 

S 1 r 1 . 1 

CO IM 

:«        b.24      "ti.'i'e" '  -0.08       ötoö        o'.oe" " "o'.ie        öt?«        J.32 
SIN:B ) 

Figure 44.    Radiation Pattern of Subarray 1R, 
Frequency 1.1 fQ 
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S1 = 1 - 1 
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-1.00 -0.75 -0.50 -0.25 0-00 
X 

0.25 Ü.5C 0.7Ö UflP 

Figure 45.   Amplitude and Phase Illumination of 
Subarray 4R,  Frequency 1.1 f^ 

sui -i 

Figure 46.    Radiation Pattern of Subarray 4R, 
Frequency 1.1 f« 
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C.&O U.7b 

Figure 47.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q = 0°, Frequency 1.1 fQ 

SU1 -1   90=0.0 

Figure 48.   Sum Pattern; Scan Angle 0Q = 0°, 
Frequency 1.1 f« 
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Figure 49.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q = 0°, Frequency 1.1 fQ 

S1=1-1   90=1.2 

Figure 50.    Sum Pattern; Scan Angle 0Q = 1.2°, 
Frequency 1.1 f-. 
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00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 I.00 

Figure 51.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q = 2.4°, Frequency 1.1 fQ 

Figure 52.    Sum Pattern; Scan Angle 0O = 2.4°, 
Frequency 1.1 f« 
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~-!.00 -0.75 -C.SO O.ZS 0.00 0.2S O.SO 0.7S 1.00 

Figure 53.   Sum Pattern, Amplitude and Phase Illu- 
mination; Scan Angle 0Q = 3.6°, Frequency 1.1 fQ 

Sl-1 . 1   9n=3.6 

Figure 54.    Sum Pattern; Scan Angle 6Q = 3.6°, 
Frequency 1,1 f« 
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Figure 55.   Difference Pattern, Amplitude and Phase 
Illumination, Scan Angle (L = 0°, Frequency 1.1 fQ 

Si-1.1    9n=0-0 

VTt6 ^O« 0.0Q 0.0« 0.16 Ö*.^4 Q*.** 

SIN19) 

Figure 56.   Difference Pattern; Scan Angle 0» = 0°, 
Frequency 1.1 f- 
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Figure 57.   Difference Pattern, Amplitude and Phase 
Illumination;  Scan Angle ft, - 1.2°, Frequency 1.1 f» 

S1 = 1 !=1 

CGCN 

a ' 

>.«     -b.«4     ^rni    ^t 06 0.00 0.08 0.16 

SIN(8! 
O.M 0.« 

Figui-e 58.   Difference Pattern; Scan Angle 0Q = 1.2°, 
Frequency 1.1 f« 

30 

.. I 
______ 



a 

sui/T^ ö0=2.4        X 
\ 

m 
tn 
m 
m ^^ji— 

§8 

Q. 
E 

16 

\ 
\    i 
\    i 

o 
\ 
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Figure 59.    Difference Pattern, Amplitude and Phase 
Illumination;  Scan Angle 0Q = 2.4°,  Frequency 1.1 fQ 
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Figure 60.    Difference Pattern; Scan Angle 9Q = 2.4' 
Frequency 1,1 f. 
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Figure 61.   Difference Pattern, Amplitude and Phase 
Illumination; Scan Angle 6Q = 3.6°, Frequency 1.1 fQ 

Si = 1 .1   8nr3.6 

Figure 62.    Difference Pattern; Scan Angle 0O = 3.6' 
Frequency 1.1 f« 
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Figure 63.    Illumination Efficiency vs Scan Angle 

7.  CONCLUSIONS 

In this sAudy a design scheme for an antenna system for limited scan in one 

plane has been discussed, the design principles outlined, and the performance 

numerically investigated.   The proposed system has the property that the beam 

pointing and the beamwidth remain approximately constant with moderate changes 

in frequency for a fixed setting of the variable phase shifters.   Hence the system 

is wide band in the sense that its band limitations are dictated by the pertinent 

properties of the microwave components (radiating and collecting elements, hyfc.id 

junctions,  phase shifters,  BFN)  rather than by the overall antenna configuration 

and geometry.    The number of phase shifters used in the scheme is close to the 

minimum theoretically possible, given by the product aperture in wavelengths by 

FOV in sinö units.    Calculated patterns indicated excellent performance expected. 

The study performed  refers to a 3 dB beamwidth of 1.2°  and a FOV whose 

width is approximately 7 beamwidths.    The specification of wider scan sector may 

lead to problems in designing suitable  HN's.    Since, however, th*' purpose of the 

HN is that of performing a spatial  Fourier Transformation, the HN  can possibly 

be replaced by a small lens in the focal region, performing, although only approxi- 

mately, the same operation.    This is a very interesting area of future investiga- 

tion, because of the design flexibility and greater simplification achievable in this 

way.    Also  it seems that for the extension of the design scheme here proposed to 

two dimensional scan (that is, to tridimensional structures*,  such an approach is 

more attractive than that of using cascading HN's and  BFN s; an alternative 

possible approach. 
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In recent years, the idea has been proposed of implementing scan in a 

limited sector by generating what can be called a "virtual feed" whose location in 
9 

the focal region of a lens constituting the antenna aperture is controlled.     This is 

obtained by using a small focal lens and focusing on it the radiation of a small 

phased array.   The idea is that of "matching" as closely as possible the receive 

focal field with the virtual feed distribution.   Through this scheme an illumination 

of the main aperture is obtained whose amplitude remains approximately constant 
when the beam steering direction is changed and whose phase distribution is ideally 

linear.   In the system proposed here, however, the concept is different; the am- 

plitude distribution on the focal array varies with scan condition, and so does also 

the main lens aperture distribution, as we have shown in our numerical calcula- 

tions.   In fact, it can be shown that as a consequence of the two cascading Fourier 

Transformations occurring in the system, the amplitude distribution on the focal 

array for a certain scan direction is similar in shape to that portion of the far 

field pattern belonging to the FOV.    The discussion of this point will not be pur- 

sued here, but the pertinent numerical analysis (not reported here) corroborates 

this contention.    Thus, all the focal aperture, not only a limited part of it, con- 

tributes to the lens illumination, constituting in fact an oversized feed with care- 

fully controlled current distribution.    This is an alternative way of explaining why 

the secondary lens distribution is so well synthesized, yielding the excellent per- 

formance calculated. 

9.    Tang, C. H., and Winter, C. F. (1973)   Study of the Use of a Phased Array to 
Achieve Pencil Beam over Limited Sector Scan. AFCRL-TR-73-04S:. 
ER73-4192, Raytheon Co., Final Report Contract F19628-72-C-0213. 
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Appendix A 

A Hybrid Network with a Number of Input Ports 
Twice the Number of Output Ports 

In designing antenna systems,  it may prove necessary to design a hybrid 

matrix having a number of output (antenna) ports greater than the number of input 

(equipment) ports while still preserving beam orthogonality and high crossover 

levels for adjacent beams.    The question of extending the Butler network scheme 

to any number of antenna ports was studied by Foster and Hiatt.       However, 

their solution leads to adjacent beams having low crossover levels.   This is be- 

cause in their work the number of output elements of a conventional NX N Butler 

matrix is increased, through a particular design scheme, still keeping unchanged 

the relative phase difference between two adjacent output elements for each input 
excitation. 

With the order N of a Butler matrix given, the maximum length of the aper- 

ture (that is, the minimum width of a beam)  is determined by the need of limiting 

the element size to avoid grating lobes.   Hence if one wants to generate N ortho- 

gonal beams having gains higher than those dictated by such a limitation with high 

crossover levels, one must resort to a more complex structure.   A possible solu- 

tion consists of using a Butler matrix of order 2N X 2N, and exciting only those 

N input ports generating the beams pointing into the directions closer to broadside. 

An alternative solution using two N order Butler matrices is here presented. 

10.    Foster, H. E.,  and Hiatt, R. E.  (1970)   Butler network extension to any num- 
ber of antenna ports, IEEE Transactions on Antennas and Prop. AP-18:818- 
8^0. 
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Consider a Butler N X N matrix, N being the even number of input and output 
ports, indexed by i and p respectively with i and p taking half integer values: 

i,p  = 
N-l 

2 
N-l 

+   1. 
N-l 

2 
(AD 

When the input port i is excited, the output voltages at the ports p can be repre- 

sented by the set of N numbers 

e (NO  =   N' 
P 

1/2 exp (jipf )• (A2) 

where the indexes i, p   can take all the values of Eq. (Al). 

By using two identical NXN Butler matrices with interlaced output elements 

and suitable connections of the input ports, we want to obtain a hybrid network 

generating a set of output voltages, 

ek(2N|i)  =   (2N) •1/2 exp N) (A3) 

where i, the index of the input ports, takes the values of Eq. (Al) and the index k 

of the antenna ports takes the 2N half integer values 

2N-1 2N-1 
+  1. 

2N-1 (A4) 

A way to achieve this result is the following.   Let us consider the outputs of the 

component matrices A and B to be geometrically interlaced as in Figure 64. 

Output elements of the two matrices with the same indexes p [see Eq.Al)] are 

adjacent.   Equal lengths of transmission lines connect the outputs of the compo- 

nent Butler matrices and the radiating elements.   Corresponding input ports of 

the two matrices (that is, with the same index i) are fed from a common input by 

dividing the power into two equal parts and using equal lengths of cables.   How- 

ever, two fixed phase shifters are inserted in front of corresponding input ports 

of the component matrices A and B.    The phases inserted are, for the matrix A 

(Figure 64), 

0au)   =       1   , rA 2N 

a delay or a lead according to the sign of i, and for the matrix B 

'B (i)  =   -0.(0 

58 

I' j_.i—i— -3*~- '     ii MI     f  *i 

MMfeMHH 
s • »-il     lilll   III  IMI]   !!>■ I   II  II 



Thus the phase sequence at the output of the composite hybrid network will be for 

excitation of the port i, 

2N-1  .   ,T     /    2N- 1   ,  ,\ .  tr 
  l — ,  + 1   l — 

2 N      \        2 /    N 
2N-1    . V 
    i — 

2 N 

that is the set 

0..    =   ik — Mk N 

with k given by Eq. (A4).   Thus the output voltages are identical to Eq. (A3) as 

sought. 

YYYYYYYYYYYYYYYY 

Figure 64.    Composite Hybrid Network 
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Appendix B 

The Effects of Phase Quantization on Radiation Pattern 

It is well known that in a conventional array, with a phase shifter for each 

radiating element, the rms level of power associated with "hash radiation" due 

to phase errors is inversely proportional to the number of radiating elements and 

depends weakly upon the direction of observation (decaying with angle as the pat- 
terns of the radiating elements).   For the design scheme proposed here the situa- 

tion is different.   In fact, the filtering effect of the subarray patterns reduces the 

rms sidelobe level to a negligible value at large angle from broadside.   Only 

close-in sidelobes (within the FOV) are affected substantially by phase quantiza- 

tion.   The following approximate analysis has the purpose of quantitatively defin- 

ing the phenomenon and of providing a reasonable criterion for the determination 
of the number of bits to be used in the phase shifters for an assigned level of 
sidelobes. 

Let us consider, for a certain direction u, the variance of the pattern, that is. 

the rms value of the difference between the pattern in absence of phase quantiza- ' 

tion error (namely, assuming analog,  error-free phase shifters) and the pattern 

with the actual errors.   We assume that the phase quantization errors of the vari- 

ous phase shifters are uncorrelated and uniformly distributed in the phase interval 
of the least significant bit.    This implies that some form of "randomization" has 

beer, exploited,  such as adding known, but randomly generated, fixed phase shifts 
to each subarray.    \\ e also assume that the phase error y    for subarray p is 
small.    Thus we can write ' 

expijy  )   a   l 4 jy 
(Bl) 
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Under these hypotheses tlie variance a (u) of the pattern can be shown to be 

given by 

0 (u)  =   E Ce   T                      /• „ X"U0 \ sin a (u-A)   ., \       L> a     y     exp I lpff 1 ;  dX 
J       p    P  'P I        ue   /      u-X 

(B2) 

whei'e we recall that 2a is the aperture length and where E [  ] is the statistical 

average operator.   The phase errors are uncorrelated. 

E [Vq]   =   6Pqa+ (B3) 

where 6      is the Kroneker's delta.   For a phase shifter having B bits, the vari- pq 
ance of the phase distribution is 

_  2 2TT\
2
    1 

B       12   ' 
(B4) 

Because of Eq. (B3), the pattern variance takes the form, 

<r2(u) SI« JV2 
U 

J£ /•-     ^ \ sin a(u-A)    ,. exp^up—j       —        dX (B5) 

independent of the scan direction.   It is apparent that, unlike conventional arrays, 

the hash radiation is strongly angularly dependent and, outside the FOV, decays 
_2 

essentially as u    .   This is, of course, due to the filtering effect of subarray 

patterns. 

If we consider points u within the FOV no large error is committed if we 

replace in Eq.(B5)   sin au/u with 1/ff times a delta function.    This is because 

for every well behaved function t(X) 

i-       f./M   sin a(u-X)   ,, ,,,  . hm   \ t(X)   ;  dX   =   I7t(u) 
a-»» J u-X 

(B6) 

Thus since a » 1/u   ,   for u belonging to the FOV, we can write approximately 

r2(u)  -   E la  |    CT.
2
 ff2 for I u | < u 

n D * lie 
(B7) 

independent of u. 
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In order to understand how the "hash radiation" [Eq.  (B7)] affects the pattern, 

normalize it to the error-free power pattern on its peak, that is to 

w= V       f£       /•    A"uo\ sina(V 
VaP_J      expVffp—)—vT 

X) 
dX (B8) 

Following the same reasoning leading from Eq. (B5) to Eq. (B7), we may write 

i2 ,fA)r 
P     P 

2   *2 
(B9) 

thus 

2/  i g (u)        . 

lg0(uoleo)l2 

or approximately 

Z/ a a, 
P P t 

i2 
(BIO) 

P    P 

a2(u) 

j0(u0le0)|2        r,N 
(BID 

where TJ is the efficiency of the illumination that has been approximated through 

sampling at the abscissae of the N subarray centers. 

A way of specifying the number of the phase shifters is to require that Eq. (BID 

be less than a chosen amount.   For example, we may require that Eq. (BID be one 

half the minimum nominal sidelobe level within the FOV.    For the numerical case 

discussed in Section 5, we will require that Eq. (BID be close to -28 dB, since 

in the FOV all sidelobes are nominally -25 dB under the peak.   This yields for 

N=8, T?=0.9   [from Eq. (BID] 

O,2   =   0.0114 rad2 

From Eq. (B4).  if B is chosen equal to 4, one finds 

0.0128 rad 

(B12) 

(B13) 

that is close enough to the value (B12). 

The criterion which has been used here to determine the number of bits of 

the phase shifters is, of course, somewhat arbitrary.   A more systematic and 
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logical way consists of determining the probability density of the pattern for a 

given u and of establishing the level of confidence for a sidelobe not exceeding an 

assigned threshold.   The philosophy underlying such an approach, has been outlined 

in Lo,      although for a different situation, and a discussion of the matter is outside 
the scope of this report. 

11.    Lo, Y. T. (1964)   A probabilistic approach to the problem of large antenna 
arrays.  Radio Science 68D(No. 9): 1011-1019. 

G4 

UM>   IIHiiiftWiiiiri rrffir nr" -J--';.'- • '■-■.* --..-.■,-.... 


