AD-ANZ22 649

DEVELOPMENT OF A PROJECTILE PENETRATION THEORY.
REPORT 2. DEEP PENETRATION THEORY FOR HOMORENEOUS
AND LAYERED TARGETS

Robert §. Bernard

Army Eno“neer Waterways Experiment Station
Vicksbuiy Mississippi

February 1976

DISTRIBUTED BY:

aemal ecﬁmil int@té@n sé%@
U. S. BEPARTMENT OF CORIMERCE




.
' . ie -
.
’ -~
’ 2
: ; B T, P
L] “ G
. , .
. ,
¢ -
-
* -
- 3 * . - " -
’ &
.
+ -
_ ) \
.
¥
- -
p
i r .
.
R
B u R . N
! "
' ¢ s
< .
1
.
)
~~
i -
“
" -
’ -

/ ) F

5

e S8



_ Unrlassified
SECVRITY CLASRFICATION OF VRIS PAGE (When Da'e Entered)

. ) - READ INSTR IONS
REPORT DOCUMENTATION PAGE BEFORE COMBLETING FORM
T REPCRNT RUMBER 2, GOVY ACCESSION NG) 3. RECIPIENT'S CATALOG NUMBER

Technical Report S-T5-9

4. TITLE (and Subtitle) 5. TYPE OF REPO®T & PERIOD COVERED
| DEVELOFMENT O™ A PRGJECTILE PENSTRATION THEORY;
Report ¢, Deep Penetration Theory for Report 2 of a Series
Homogeneous and Layered ‘Targets 6. PERFORMING ORG. REPORT KUMBER
7. AYTHOR(s) 8. CONTRACT OR GRANT NUMBER/«)

Robert S. Bernerd

9. PERFORMING ORGANIZATION NAME AND ADORFSS 0. :gggFd@ﬁasﬂ%fag&%tp&%oéfgg. TASK
U. 8. Army Englineer Waterways Experiment Station
Soils and Pavements Laboratory Project hA1611C2B52E,
P. 0. Box 631, Vicksburg, Miss. 39180 Task Ob, Work Unit 13
1, CONTROLLING QFFICE NAME AND ADDRESGS 2. REPORYT DATE
Office, Chief of Engineers, U. 5. Army ==_February 1976
Washington, D. C. 20314 " :‘(’)“E"‘ SRt
i

14, MONITORING AGENCY NAME & AULDRESS(if ditie ent from Controlling Ollice) 15. SECURITY CLASS. (of this raport)

Unclassified
64 DECLASSIFICATION’ DOWRGRADING
SCHEDRJLE

16. DISTRIBUTION STATEMENT (of thiz Repori)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT [of the abstract enterod in Block 20, if ditlerent from Roport)

19, SUPPLEMENTARY NOTES

19. KEY WORDOS (Continue on reverse side if necessary ana identily by block number)

Projectile penetration

20. ABSTRACT (Continue on reverse aide Il necossary end identily by bluck number)

Existing shallow penetration theory (which is based on cavity expansion
theory) is modified and extended for application to deep penetration in homo-
geneous and layered targets. This is accomplished by means of a postulated
relation between the target penetration resistance and the so-called "solid
Reynolds number."” The predictions of the modified theory are shown to be

(Continued)

FORM
1 PP
DD | an7s 1473 Eoimion of 1 nov 6515 0BsOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




SECUEITY CLanes

Imelasaif

R

e ABSTRACT (Continued)

ent with experime-tal, empirical, and iwo-dimensional

sults for shallow as well as deep penetration in metal,

te, and cohesive =0il targets.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Dete Enfared)




PREFACE
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CONVERSION FACTORS, U. S. CUSTOMARY TO
[RIC (SI) UNITS OF MEASU

U. S. customary units of measurement used in this report can be converted

to metric (SI) units as follows:

Multiply By To Obtain
inches 2.5L centimetres
feet 0. 3048 metres
square inches 6.4516 square centimetres
pounds (mass) 0. 4535924 kilogceams
pounds (mass) per 16.018k46 kilograms per cubic metre

cubiec foot

pounds (force) per 689k . 75T pascealis
square inch

feet per second 0.30L4€ metres per second

Note: 1 kilobar = 1,000 bers = 14,500 pounds per square inch = 100
megapascals.



DEVELD

T OF A PROJECTILE PE

ATION THEORY

DEEP PENE

TION THEORY FOR HOMOGENEOUS AND LAYERED TARGETS

PART I. INTRCDUCTIONM

Background

1. Projectile penetration has been the object of theoretical and
experimental investigalions for at least two centuries. However, until
recent years, reliable penetration predictions were achieved only by
means of empirical eguations using various target resistance functions
and pseudoconstants which were drawn directly from penetration experi-
ments. The first successful analysis on purely theoretical grounds was
eppsycntly due to Bishop, Hill, and Mottgl who related quasi-static
punch indentation to the static expansion of spherical and cylindrical
cavities in an infinite medium. In a later development which incorpora-
ted an 2d hoc analogy with the dynamic expansion of a spherical cavity
in an infinite medium,2 Goodier3 formulated a dynamic penetration theory
for rigid spherical projectiles which is applicable to elastic-plastic
strain-hardening targets. In subsequent efforts, attempts were mede to
account for the effects of target compressibility14 and proJjectile nose
shape,S but the substance of the Goodier penetration theory remained
unchanged.

2. A useful penetration theory must be fairly simple in order
that reliable predictions can be made with a minimal expenditure of time
end money. A numbter of simplifying assumptions must be made in the
development of such a theory; and since the objective is simply to ob-
tain an equetion of motion for the projectile, only the gross features
of the target response may be taken into account. An extreme alternative
to the simple theoretical approach is provided by two-dimensional (2D)
finite-difference analyses which generally require large expenditures in
man-hours and computer tize. Yryortheless, a 2D finite-difference

solution has the advantage that the details of projectilc¢ and target



behavior can be closely examined; and while an approach of this kind may
be too costly and cumbersome for large-scale parameter studies, it can
be extremely valuable for assessing the relative effects of various
mechanisms in the penetration process.

3. At the present time, there is widespread need for a tractable
theory which can be used to study the penetration of soil, rock, con-
crete, and metal targets by wrojectiles such as bombs, bullets, shell
fragments, ard missiles. Such a theory is needed from both the offen-
sive and defensive viewpoints since a theory which analyzes the pene-
tration precess can also be used to determine the conditions under which
final penetration depth is maximized or minimized, respectively. Ir
July 1973, a small research effort was initiated under the sponsorship
of the Office, Chief of Engineers (OCE), to develop a penetration thecry
which would account for the penetration of homogeneous and layered tar-
gets by rigid exisymmetric projectiles. In the period July 1973 to June
1974, the previously existing Goodier theory for spherical projectiles3’h
was extended for projectiles with conical and ogival nose shapes at
shallow to moderate depths, as reported in Reference 5. In the present
report this theory is modified and extended to account for deep penetra-
tion of homogeneous and layered targets at very high impact velocities.
However, it is emphasized that the modified theory is still applicable
to shallow penetration problems and produces approximately the same
results as the unmodified theory at low impact velocities. The theory
developed herein supersedes all preceding work and is applicable for
shallow and deep penetratior in cohesive targets. The developments
presented in this report are the results of efforts conducted under the

OCE program during the period July 19T4 to January 1975.

Purpose

4, The purpose of this investigation is to build upon existing
penetration theory5 to develop a more general theory for cohesive targets
which is valid for deep penetration at very high impact velocities as

vell as for shallow penetration at low impact velocities. As in



previcus work, the fundamenial basis for the penetration theory is the

2 G
d;namic cavity expansion theory,3 ° and the modification for high-speed,

deep penetration is sccomplisztzd througn a postulated reletion between

target penetration resistance and the "sclid Reynolds number," which was

first introduced in Refer:a2nce 5.

Scoge

5. This report is intended to be & self-contained Jdocument on the
subject of projectile r-emetration theory for cohesive targets, and it is
structured such that euch part may be read independently or in sequence,
depending on the interests of the reader. The cavity expansion theory
is discussed ia Part II. Previous worik in shallow penstration theory is
outlined in Part III, followed by the modifications whereby the theory
is extende? for deep penetration. Practical applications of the theory
are presented in Pa:t IV, and conclusions and recommendations are stated

in Part V.



PART II: CAVITY EXPANSION THEORY

Background

6. The dynamic expansion of spherical cavities in solids has been

2=5

investigated by several authors. Goodier3 used ik. theory cf dy-

namic cavity expansion in an incompressible strain-~hardening material2
as the basis of a penetration theory for rigid stherical projectiles and
homogeneous targets. In Reference 5, the cavity expansion theory was
extended to concentrically layered compressible media and was useG as
the basis of a projectile penetration theory for layered targets. The
cavity expansion theory deveioped in Reference 5 represents a first
attempt at a theory for concentrically layered media and is more compli-
cated than necessary. In the following discussion, a simplificd version
of the cavity ex-ansion theory for concentrically layered media will be

presented and w._. provide a smoother transition to the penetration

theory than does the more complicated version.

Problem Formulation

T. Consider a spherical cavity of radius a(t) surrounded by
two concentric layers of different materials, as shown in Figure 1.
These materials exhibit elastic-plastic respcense with linear strain-

hardening under skear stress, as illustrated in Figure 2. Both

h(i)

Figure 1. Spherical cavity
expansion in a concentrically
inyered medium

/ LAYER 2



SHEAR STRESS

SHEAR STRAIN

Figure 2. Material behavior in shear

materials exhibit ideal locking compressibilityh under hydrostatic
stress such that transitior from the elastic to plastic states is ac-
companied by a smell but finite volumetric strain known as the locking

strain
e, = 1ln — {1)

where pO and pQ are the material densities in the elastic and locked
plasiic states, respectively, and !€2| << 1 . OCtherwise, the materials
are incompressible, and the regions of elastic and locked plastic be-
havior are separated by a weak plastic shock front of radius b(t) ,

where t denotes time. Accordingly, the locking condition on strain is

€y s 8 <r <b>
e.+ 2, = (2)
0O, r>bd

vhere er(r, t) and ee(r, t) are normal strains in the radial and cir-
cumferential directions, respectively, with r as the radial coordinate.
The associated strain rates are related to the outward radial particle

velocity v(r, t) by



e =T= 3 &, = (3)

where a dot above any quantity denotes a time derivative., Eguations 2

and 3 give rise to

fg(t)
2 ®

a <r <5b

(%)

where fg(t) and fe(t) are unknown functions. The stress=strain

relation for the material in shear is

€,) , a<r<b

0y = 0, = (5)

where or(r, t) arnd Ge(r, t) are normal stresses in the radial and

circumferential directions and Y , E , and E are the yield strength,

t
elastic modulus, and strain—hardeninghmodulus, respectively, for the
riaterial in compression. The geometry is spherically symmetric, and the

material equation of motion is

o0
T

—_+;2‘-(or_o- -av+ ov (6)

o) = P\3x Vv an

where p 1is the local density. After combining Equations 4, 5, and 6,
the resulting equation is integrated from r = « to r = a(t) , subject
to the condition that the material is stress-free as 1r =+ = ., The equa-
tion for the compressive ncrmsl stress p = ncr[a(t)] at the cavity

surface is then found to be:



(=]

where th is the discontinuity in o at r = b(t), given by

Ao, = oé+) & 0é=) (8)

(+)

and O',b

and oé_) are the limiting values of o  as r +Db in

the elastic and locked plastic regions, respectively.

Problem Solution

8. 1In order to evaluate Equation 7 and thereb, obtain an explicit
relation between p and a(t) , relations must be established between
a(t) and fl(t) 5 fe(t) R Aob(t) , h(t) , bl(t), and Ee(r, t) .

The first of Equations 4 is evaluated at r = a leading to
f =a"a (9)

The Jump condition for conservatiom of mass is applied at r = b so that

oglo = v(71 = o 1o - 1™ (10)

0

(+ (=)

where v and Vv are the limiting values of v as r -+ b in the

elastic and locked plastic regions, respectively. After evaluating

10



Fguation 4 at r = b and combining the results with Equations 9 and 10,

the following is obtained:
a e
gﬁg - ab’b

where o 1s the material compaction ccefficient defined by

o
o0 =1 === ¢ (12)
0 L
3
which is limited to o << 1 since attention has been restricted to
!egi << 1 . The jump condition for conservation of momentum is applied
at r =D so that
bo, = (13)

Evaluating Equation 4 et r = b and then combining the results with
Equations 9, 11, 12, and 13 leads to
apgﬁz(l - a.2/b2)2

= )
Aob T (14)

For large deformations, the circumferential strain can be eppropriately

expressed as
€, = ln — (15)

where ro is the initial position of a particle located at position r .
Restricting attention to situations where Y << E , E, << E , and

t
le, | << 32/2Et , then

2|

.= (16)
C;

ee[b(t)] = 1ln

U‘lc‘

subject to B << 1 where bo is the initial position of a particle

located at r =b , and

11



Y

B = ETirtrii:T (17)

9. Attention is now restricted to materials which have identical
values of ¢ and €p o (This restriction can be relaxed by establishing

appropriate composite values of a« and ¢ for the two layers.)

'3
Approximations for eeér, t) , b(t) , and h(t) will now be obtained
subject to the following assumptions:

a. Prior to the arrival of the plastic frcnt at the initial
layer interface location (i.e., b < h_), the entire second
layer is in the elastic state, and the location of the
interface is approximately h(t) tho .

b. After the plastic front arrives at the initial layer in-
terface position (i.e., b > h ), the locked plastic region
extends into the second layer, and the motion of the in-
terface is no longer neglible.

10. Considering first the situation wvhen D < ho and
a3(t) >> a3(0) , conservation of mass in the locked plastic region

gives rise to

r3-a.3a=(l-a)r2,a<r<b (18)

Rearrapging Equation 18 and then combining the result with Equation 15
vields the expression
{ 3
1 1 . g
ee(r,t)-Sekz—Slnk.:.—Ij),a<r<b (19)
Conservation of mass in the elastic region of the first layer requires
that

ro - b3 = r3 . b3 , b<r<h (20)
) ) o

The approximate relaticrn sbhtained rom rearranging Equation 20 and

consolidating the result with Equations 15 and 17 is

3
Blb

r

ee(r, t) = s, b<r«< ho (21)

12



vhere 8 is given by Equation 17, and the subscript "1" denotes first
leyer material properties. Prior to the arrival of the plastic front at
the initisl interface locetion, the entire second layer is in the elas-

tic stete, and the circumferentiel strain is approximated by

3
8,h

eG(m t) 3*2-—%’ »b<h <r (22}
r

which is enalogous to Equation 21 for the first layer. The subscript "2"
denotes second layer material properties. Although Equation 22 is culy
approximately correct, the error which is introduced in Eguation T is
the same order of megnitude as the error which results from the assump-
tions (a) +that h =h  when b <h_ eand (b) that the entire second
leyer is in the elastic state when b < ho . Then the substitution of

b and bo for r and Ty = respectively, in Equation 18 results in

3
=& b <h (23)
1 (o]
where
6i=oz+3Bi,i=l,2 (24)

and the subscripts "1" and "2" again denote first and second layer mate-

rial properties, respectively. Note that the criterion b < ho is now

equivalent to a < 611/3h0 .
1l. Now considering the situation when b > h (i.e., when
a gaﬁll/Bho}, Equations 18 and 19 are applicable to the locked plastic

regions in both layers. Furthermore, the motion of the interface is no

longer neglible, and

n’h = 8% , b > h_ (25

Integrating Equation 25 from to to t yields
3 3 3 ey
h” =a” + (1 -8 )h , b>h \26)

13



1/3
l ho L]
The circumferential strain in the elastic region is cbtained by replac-

where the initiel conditions are h(to) = ho and a(te) = §

ing 81 with 82 in Fquation 21 so that

B>

2
&~ &
e@(r, t) r3 s, ¥ >b > ho (27)

When a3 >> 61h§ » the relation between a and b must approach

EB §§a3/62 » Which is anslogous to Equation 23. Thus, the corresponding

ratc equation relating & and b must aprroach
b7 = &2 (28)

where 62 is given by Equation 24. 1In order to obtain an approximate

but continuous expression for b , Equation 28 is integrated from to

to t , resulting in

3 6. -8
b3§'a—'-+-=2°=6——=l-hg,'b_>_h (29)
2 2 ©
e s . _ _ . 1/3
where the initial conditions are b(to) =h_  eand a(to) =8, n_ .

Normal Stress at the Cavity Surface

12. Approximations have now been established relating ee(r9 t),

b(t) , h(t) , and a(t) for the two cases b <h_ and b>h (i.e.,

s < 5. 1/3, 1/3 ° °
1 1

Equations 9, 11, 1k, 19, 21, 22, and 23 are used with h = ho to

end a > § h respectively). For the first case,

evaluate Equation 7. For the second case, Equations 9, 11, 1L, 19, 26,
2T, and 29 are used to evaluate Equation 7. Imr each case, the resulting
expression for the compressive normel stress at the cavity surface has

the form
p = Ps <+ pI (.‘30)
where 128 is the contribution due to material shear, and Py is the

1k



contribution due Lo material inertia (i.e., the dynemic pressure at the

cavity surfaca)
p. = p. (B an + B_a° (31)
I PARNE 2

where @ , a , and & are the radisl position, velocity, and acceler-
ation of the cavity wall. With the exception ol the inertial coeffi-

cients B, and B the subscripts "1" and "2" 'are used to denote

1 2 °?
first end second leyer properties, respectively. Prior to the arrival
of the plastic front at the initiel layer interface location, the

exprecsions for Py Bl s and Bg are

e o 2 s
pg(b < ho) == 3Y Ind
% as\ N o3
+351E11“5h3f382]‘32 s 13 (32)
; h
10 170
1/3 o 1/3 Poo\ a
B.(b<h )=1-26 +<1-——>6 -<1-—)-— (33)
1 o} 1 81 []. 901 h0
2
(L =236.)
1 1 h/3
B.(b<h )=2B_ + -—(l-G >
1
|
0 L
02 4% a
- - (34)
"01);15

After the arrival of the plastic front at the initial interface loca-

tion, the expressions for P, s Bl , and B2 are



oy 1p Boa X
p (b >h ) =2Y In-=+ 5

(33)
[ Ppo %R go%
B(b2h)=1-(1->= h 8.0 b (36)
\ °e 2”01
p L
By(b > b ) = 2B, + 012 b-%““%"'ﬁéﬂ“éﬁ
=0 1 §5(1 - a) = n' Poaln’ b
Poz (1 3 51_)2 2
1 T 2) v’ (37)
T2 l1-a

vhere h and b are given, respectively, by Equations 26 and 29 for

t>h .
o

13, When both layers have identical properties (i.e., when the

medium is homogeneous), the layer subscripts are dropped, and Equa-
tiocns 31--37 reduce to

ee 92
py = 0, (Baa + B,3°) (38)

Ps=“‘2§“““§ t(g' Z (39)

m=l

16



B, =1 - == (ko)

2 2
3 & (1-5)] 11;/3[ (1‘5@/5)1
By =5 - 273 [2 - T I*3¢ 1 -"=F"a (1)

Jdaterial Compressibility

14, Throughout the development of the foregoing cavity exmansicn
theory the compaction coefficient o = - €y << 1 has been regarded as a
material constant. This restriction is relaxed by allowing a to be a
slowly varying function of pressure and then neglecting its derivatives.
By taking this approach, it is possible to relate the appropriate in-
stantaneous value of a to the dynamic pressure in the material adja-
cent to the cavity. Since the theory is already limited to small values
of o , materials of interest are incompressible to a first approxima-
tion. For an incompressible homogeneous material, the volume-averaged

dynamic pressure5 in the plastic region a < r < b 1is approximately

~3 (. .1/3 L/3 «2(,.1/3 -‘4/3)
Pive =2 Po [33(51 By 07 ) - (2‘51 - 38; + 38 } (k2)

where

6 =38 << 1 (Lk3)

By using Equation 42 in conjunction with the pressure-density relation
for a given material, a first approximation can be obtained for the com-
paction coefficient. When Pave is sufficiently small, many materials

can be characterized by the linear pressure-density relation

<<< 1 (hdk)

where C 1is the dilatational wave velocity in the material.

15. The cavity expansion theory for a concentrically layered

17



medium is restricted to materials with identical compaction coefficients.
However, this theory can be applied to materials with different compac-
tion coeffiecients by estimating a composite compaction coefficient for

both layers according to

= & iy g
@ “1( - h) * “2(h) (b5
vhere a, and @, are obtained from Equations 42 and s by using first

and seccnd layer properties, respectively. The effective locked plastic

densities for the two layers are then

P
- o1
Pl1 " T -« (46)

- I (1)

P
L2 1T -

The particular expression for o which appears in Equation 45 is
chosen so that the composite compaction coefficient will vary smoothly

in o manner similar to the inertial coefficients Bl and 32 3

18



PART III:

16. The first successful theoretical investigation of the penetra-
tion process is apparently due to Bishop, Hill, and M@ttsl who related
quasi-static punch indentation to the static expansion of spherical and
cylindrical cavities in an infinite medium. By means of an ad hoc
analogy with dynamic spherical cavity expansi@n,z GoodierB later de-
veloped a theory for the high-speed penetration of incompressible,
strain-hardening targets by rigid spherical projectiles. Subsequently,
Hanagud and Rossh modified the dynamic spherical cavity expansion theory
in an effort to account for material compressibility and incorporated
the results in Goodier's penetration theory. The next development came
when Bernard and Hanagud5 modified the Goodier theory in an attempt to
account for the effect of projectile nose shape. Bernard and Hanagud
also proposed a dimensionless parameter called the "solid Reynolds
number"” which serves as an order-of-magnitude index of the ratic of
dynamic pressure to shear stress in the target and which can be used to
scme extent to determine the relative applicability of the theory in a
particular penetration problem. Moreover, it was found that the range
of applicability for the penetration theory in Reference 5 is restricted
to low to moderate values of the solid Reynolds number (corresponding
to shallow to moderate penetration depths). At high values of the solid
Reynclds number (i.e., at very high velocities) the theory overpredicts
the target resistance. resulting in an underprediction of final penetra-
ticn depth. Accordingly, the Bernard-Hanagud version of the penetration
theory will be referred to as the "shallow penetration theory," and the
objective of the present invastigation will be to develop a deep penetra-
tion theory which is applicable for very deep penetration as well as for

shallow penetration in cohesive targets.

Shallow Penetration Theory

17. The basic assumptions in the shallow penetration theory are

as follows:

19



a. The projectile is completely rigid.

b. The portion of the projectile frontal surface which is
embedded in the target is in complete contact with the
target.

¢, Tangential stresses on the projectile frontal surface
are negligible,

d. The compressive normal stress p on the frontal surface
is given by

+ Pp (18)

where p is the contribution due to target behavior in
shear and D is the dynamic pressure in the target ad-
Jacent to thé frontal surface.

e. The shear contribution p is independent of projectile
geometry, uniform over the frontal surface, and equeal to
the cavity expansion shear term, which is given by Equa-
tion 39 in Part IT1.

18. With these assumptions in mind, only the dynamic pressure
term Py remains to be determined in the expression for p . By draw-
ing a loose analogy with the cavity expansion theory, Equation 38 is
replaced with

o e 2
P, = pl(Blaoq + B2Vp) (k9)

for fully embedded axisymmetric projectiles (Figures 3 and k),

where
Py = locked plastic density of the target
Bl’B2 = inertial coefficients given by Equations 40 and b1
a = projectile radius
v_ = particle velocity in the target adjacent to the frontal
P surface
é = projectile accgleration (the latter three terms replace

a , &, and & , respectively)

This then leaves the distribution of the particle velocity vP te be

specified along the frontal surface.
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Dy TARGET SURFACE

Figure 3. Projectile with fully embedded
conical ncse

4

"

TARGET SURFACE

Figure 4. Projectile with fully embedded
ogive nose
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19.

The constraints on particle motion along the frontal surface

are as follows:

and the equivalent dimensionless cone position is

8. The velocity of a particle at the nose tip z = 0 must
be identical with the projectile velocity g .

b. Material cannot cross the projectile-target interface;

thus the particle velocity compcaent v , which is
normal to the fromtal surface, must be égual to the
normal component of the projectile velocity.

c. The particle velocity must be continuous on the frontal
surface,
G. Tinally it is assumed that the particle velocity com-

ponent vy , which is tangent to the frontal surface,

is zero at the base of the nose 2z =1L , where z is

axial distance from the nose tip and L 1is projectile
nose length.

20. For the conical nose shown in Figure 3, v is given by
v, = é sin ¢ (50)
where ¢ 1is the cone half-angle., The varistion of Ve is assumed to
be
v, = (1 - x)l/2 qecos ¢ , 0<x <1 {51)
where the nondimensional cone position is denoted by
x =-E- (52)
The resulting expression for vp is then
Y T (Vi " Vi)l/z = 4(1 = x cos? ¢)1/? (53)
For the ogive nose shown in Figure L,
v_ = q sin n (54)

n

5
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cos N - cos ¢
1l ~-cos ¢ cos n

(55)

xe(n) = cos n

where Eguation 55 is analogous to Equation 52. Replacing x and ¢

with xe(n) and n , respectively, in Equation 51 leads to

vy =1 - x (M2 G cosn, 0n <o (56)

so that

W, = (vi + v5)1/2 =q [1- xe(n) cost n]l/2 (57)
21. To obtain the projectile equation of motion for the case °f
a conical nose, Equation 53 is inserted into Equation 49, and the re-
sulting expression for Py is used in Equation 48, The total axial
resisting force FZ acting on the projcectile is then found according
to
z=L
F = j o, + py(z, ¢)] sin ¢ da(z, ¢) (58)

z
z=0

where the surface element dA(z, ¢) is expressed as

aA(z, ¢) = 21 E—?‘;—‘—% z dz (59)

Similarly, tor an ogive ncse, Equation 57 is inserted in Eguation 49,
and the resulting expression for Pr is used in Equation 48. Then

FZ is found according to
¥ o= [ps + pI(n)] sin n dA(n) (60)

where the surface element dA{n) 1is exprecsed as
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Eﬁag(cos n = cos ¢)[(cos ¢ - cos n) c052 n - cos nl dn
da(n) = 5 (61)
(1 = cos ¢)° cos n

For both cases, the projectile equation of motion is obtained by setting
Mg = EF& , where M 1is the projectile mass. The resulting equation of

motion has the form

3 T 2 -2)
(ﬂ + ﬂaoprl)q = -nao(ps + pRBanq (62)
where Py » Bl , and B2 are given by Equations 39-41 as funetions of

the target yield strength Y , elastic modulus E , strain-hardening
modulus Et , and compaction coefficient ¢« . The quantity fn is the
so-called nose shape factor resulting from the variation of dynamic
pressure along the projectile frontal surface. For conical noser, fn
is given by
. 2 1 2
= 4 -

fn sin™ ¢ 3 cos ¢ (63)

where ¢ 1is related to the nose length L and projectile diameter

D= 2ao by

tan ¢ = o= (6b)

For ogives, the nose shape factor is

fn=1--é—-—-2—-—6-[B21n (2-&:)-(3B2+2B)(B-e)
e (1 - €)

+ -%— (3B% + 6B + 1)(B° - €°) - %- (B” - &)

-2 @ v 63+ 3) - )+ (283G - e“)] (65)



where
B = 2 - €° (66)

and the parameter e is related to the ogive caliber radius (CRH)
and to L/D by

2

R_1 _L° 1

R e = = e =
CRH = o = = 2" (67)

{A hemisphere is an ogive with CRH = L/D = 1/2 , in which case Equa-
tion 65 reduces to fh = 2/3 .) As pointed out in Reference 5, Equa-
tion 62 is precumed tc be valid only for projectiles and targets for
which the condition ﬂazp B, << M is satisfied. In any case, the term

1
B. is thought to represent an upper limit insofar as the effect of

tirget acceleration is concerned.

22, During the embedding of the nose (penetration depth g f_L),
the projectile equation of motion is obtained by substituting a for
& in Equation 62, where a8y is the cylindrical radius of the pro-
Jectile at the target surface.

23, For the penetration of lsyered tergets, the quantities Pg »
B. , and B

! 2
for a concentrically layered medium. The derivation of these quantities

are modified in accordance with the cavity expansion theory

in Reference 5 is lengthy and cumbersome; thus it is appropriste that
the discussion for layered targets be deferred until later when a
simpler approach will be taken in the development of the deep penetra-
tion theory.

Solid Reynolds Number

24, Among the varicus parameters defined in Reference 5 is the

' which is an order-of-magnitude index of the

"solid Reynolds number,'
ratio of dynamic pressure (i.e., inertial stress) to shear stress in

the target, defined by

R £ ——— \68)



The solilid Reynolds number can be used as a scaling parameter for ex-
perimental and theoretical results for cohesive targets and also 23 an
indicator of the relative applicability of the shallow penetration
theory to particular penetration problems. The working range of this
theory for depth predictions appears to be 0 < Rs s 100 , while the
working range for projectile deceleration predictions (accurate within
a factor of two) is more like O < R, s 10 . In other words, the shal-
low penetration theory seems to work best for cases in which the re-
sistance of the target due to shear is comparable to that due to
inertia. When the solid Reynolds number becomes very large (i.e., for
"high" velocities and "soft" targets), the theory overpredicts the pro-
Jjectile deceleration, which results in an underpredicticn of the final
penetration depth. Furthermore, the magnitudes of the overprediction
and underprediction tend to increase with increasing Rs .

25. The breakdown of the shallow penetration theory at high
values of Rs is not surprising since the dynamic pressure variation
along the projectile frontal surface is obtained from a particle veloc-
ity distribution vp/a , which is a function only of projectile geometry
and axial distance from the nose tip. This results in a nose shape
factor or "drag coefficient” which is a function of projectile geometry
alone and which is independent of projectile velocity and target proper-
ties. In order to account for the variation of fn with projectile
geometry, projectile velocity, and target properties, an approach is now
sought that will yield fn as a function of the solid Reynolds number

as well as the projectile geometry.

Deep Penetration Theorv for Homogeneous Targets

26. In attempting to develop a penetration theory which is applii-
cable at high values of Rs , one might modify any or all of the basic
assumptions of the shallow penetration theory (see paragraph 17). In
particular, the assumption of complete contact between the target and
the projectile frontal surface is questionable, and the possible occur-

rence of separation on the frontal surface may affect the resistance of
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the target to penetration. Nevertheless, all of the basic assumptions
of the shallow penetration theory will be retained, and the development
of the deep penetration theory will proceed from a simple modification
of the perticle velocity distribution on the projectile frontal surface.

2T7. The constraints on particle motion along the frontal surface
(see paragraph 19) are taken to be the same as in the shallow penetra-
tion theory, except for the assumption that vy = 0 at the base of the
nose. This particular constraint is relaxed to allow more flexibility
in the distribution of Ve along the frontal surface.

28. Considering first a projectile with a fully embedded conical
nose as shown in Figure 3, the particle velocity component v, normal
to the frontal surface, is still given by Eguation 50. However, ‘he

tangential velocity component v is now assumed to vary according to

t

~p(R_)x/2

vt(x, Rs) = (q cos ¢)e (69)

wvhere x = z/L , RS = poée/Y , and w(Rs) is an unknown function of
RS . Eguation 69 is by no means a unique expression for Ve o 1t does,
however, represent a convenient functional form in which v, decreases

with increasing =x= and increasing ¢ . If w(Rs) is chosZn to be a
monotonicelly increasing function, then Equation 69 will result in an
expression for the nose shape factor or "drag coefficient" that de-
creases with increasing projectile velocity and nose length (which is
more or less consistent with experimental observation). Incorporating
Equation 69 (which now replaces Equation 51) in Equation 53, the expres-
sion for vp becomes
al/2
. ~p(R,)x

vP = q sin2 ¢ + cos” ¢ e (70)

Equation TO is substituted into Equation 49, which is in turn inserted
into Equation 58. Setting Mg = =FZ as before, the resulting projec=

tile equation of motion is
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M+ mas p B.)E = ~mas + 0. B.f (¢, R )G° (71)
< o 1 %)q =Tey |Pg T PPty s 5’4 1

where

-lP(Rs)
£ (¢, R)) = sin® ¢ + & ;(gé) cos® ¢ (72)

Equation T2 now replaces Equation 63 for the nose shape factor fn
during all yhases of the penetration process, including the embedding of
the nose.

29. Equation T2 is, of course, restricted to projectiles with
conical nose shapes. In order to apply the present approach directly
to ogives, Equation 69 should be replaced by

: -¥(R_)x2(n) /2
v,(n, R)) = (q cos n)e (13)

wvhere n is defined in Figure L4, and xe(n) is given by Equation 55.

Equation 73 should then be used in the relation v2 = vﬁ + v2 which is

in turn substituted into Equation 49. The resulting equatioz for the
dynamic pressure Py must then be inserted into Equation 60 to obtain
the resisting force Fz and, subsequently, the projectile equation of
motion which will be of the same form as Equation Tl but with an ex-
tremely complicated relation among fn s V¥ , end the maximum half-
angle ¢ (Figure 4). Moreover, the integral for FZ must be evaluated
numerically when this approach is teken, and thus it is expedient to
seek a simpler approach that results in an approximate analytic expres-
sion for fn 5

30. In order to obtain an expression for fn vhich has the
same form as Equation T2, the effective ogive half-angle is defined

as follows:

\
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(74)

. 2
sin ¢e

where

cos ¢e =1 - sin2 ¢e (75)

and dA(n) is given by Equation 61. Evaluation of Equation Tk results

in

2 h
sin2 o = 3~ 8 cos & + 6 cos” ¢ =2cos ) (16)
€ 6 - 12 cos ¢ + 6 cos” ¢

where ¢ 1is the maximum value of n , and ¢ is related to CRH and
L/D by

1 h(L?/DQ) -1

cos ¢ = 1 = = = (77)
2.CRH N(LE/D2) + 1
The nose shape factor for ogives is then approximated by
~-P(R_)
:,.2 l - ¢ S 2 (8)
fn(Rs’ ¢e) = sin ¢e N w(Rs) cos ¢e T

According to this scheme, any ogive can be replaced by its equivalent
cone which, by definition, has approximately the same value of fn as
the ogive. Equivalent cone L/D ratios are listed for ogives in
Table 1.

31. At this point only the relastion between ¢ and RS is still
unspecified. In acccrdance with paragraph 28, ¢ is defined as a mono=-

tonically increasing function of Rs with the limiting values
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lim ¢y = 0
R -+ 0 (79)
s
and
lim ) = =
R =+ o (80)
s
Table 1
Egquivelent Cone Parameters for Ogives
Equivalent Equivasient
Ogive CRH Ogive L/D Cone L/D Qgive CRH Ogive L/D Cone L/D
C.5 0.50 0.50 5.5 2.29 1.990
1.0 0.87 0.78 6.0 2.40 2.08
1.5 1.12 0.99 6.5 2.50 2.17
2.0 1.32 1.16 7.0 2,60 2.26
2.5 1.50 1.31 T.5 2.69 2.3k
3.0 1.66 1.h5 8.0 2.78 2.42
3.5 1.80 1.57 8.5 2.87 2.50
4,0 1.94 1.69 9.0 2.96 2.57
4.5 2.06 1.80 9.5 3.0k 2.6h
5.0 2.18 1.90 10.0 3.12 2.71
The corresponding limiting values for fn are then
R =+0
s
with
. . 2
lim fn = sin ¢
R =+ w (82)



for cones and

lim fn = sin2 ¢e
(83)

R =+ =
S

for ogives. It now remeins to determine & single monotonically increas-
ing function w(RS) which satisfies Equations T9 end 80 and which re-
sults in acceptable predictions of projectile decelerstion and final
penetration depth. This function must be determined empirically, but
once established it will be considered "universal,” i.e., it will be
presumed to be the same for all projectiles and all cohesive targets,
within the context of the present theory. If a different function w(RS)
has to be chosen for each target and each projectile, then the theory

is no better than a strictly empirical approach in which the "constants"
in the projectile equation of motion must be determined separately for
each individual situation. On the other hand, if a single function
w(Rs) can be found that correlates experimental data for a variety of
projectiles and targets, for both shallow and deep penetration, then
the theory may represent a useful tool for meking predictions before the
fact.,

32, With the preceding observations in mind, the following equa-

"
w(R)) =\-g

It will be shown in Part IV that Equation 84 results in good agreement

tion is proposed for w(Rs) :

between theory and experiment for a number of different projectiles and
targets. Other expressions for w(Rs) have been found that also produce
good results (e.g., Y = Rs/15), but Equation 84 appears to produce the
best overall results within the context of the present theory.

Deep Penetration Theory for Layered Targets

33. In order to modify the projectile equation of motion (71) for
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the penetration of layered targets, the eppropriate expressions for the
guantities ps = Bl ,» and Ez must first be determined by means of an
analogy with dynamic cavity expansion in a concentrically layered

mediuvm. The situation to be considered is illustrated in Figure 5;

K\~ TARGET SURFACE

LAYER INTERFACE g,

PLASTIC
FRONT

Figure 5. Projectile penetration in a layered target

however, the target may have any number of layers as long as the pro-
Jectile motion 1s significantly influenced by only two layers at a time.’
The penetration process is now divided into two regimes: (a) when

L < H , the nose tip has not yet reached the layer interface; and

(b) when L > H, the projectile has begun to perforate the layer inter-
face. Each of these regimes can be divided into three subregimes:

(2) when S < H , the plastic front has not yet reached the layer
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interface; (b} when 8 > H , the plastic front has reached the layer in-
terface; and (e) when H L8 the effect of the first layer on the
projectile equation of motion is negligible.

34, To spproximate the values of P, » By ,and B, for the
sbove regimes and subregimes, it is first necessary to consider Equa~
tions 20-%1 in Part i?. In Reference 5, an attempt is made to account
for the deformetion of the layer interface due to the approaching
projectile. Moreover, an upper limit approximaetion is used to obtain
the effective interface deformation, and the resulting expressions for

H, 8, p,, B ,and B are not only lengthy and cumbersome, but

the approximation for the iiterface deformation is itself questionable
and has only a small effect on the actual values of R Bl s and 32 .
A great deal of complication can then be avoided (without any demon-
strable loss of accuracy) by simply neglecting the deformation of the
interface altogether. Accordingly, the quantities h(t) and h ~ which
appear in Equations 32-37 will be replaced by the distance H from

the base of the projectile nose to the interface,
H=H -q+1L (85)

As a result, the criteria L <H and L > H can now be replaced by
g < HO and ¢ Z.Ho , respectively.

35. In the first regime where gq < Ho » the equations for Py >
3, , and B

1 2
with H , and b(t) with S (effective distance from base of projec-

are obtained by replacing a(t) with 8, s h{t) and ho
tile nose to plastic front) in Equations 23, 29, and 32-37. Thon,

S < H is substituted for the criterion b < ho . The results are as

follows:

a3
8323—9,S<H (86)
1
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m=lm
+ 3 B.E{l -]+ =8.E, 3 (87)
37171 22H3

Bl(S<H)==1=<Si/3+<1~m (88)
(89)
(90)
5 __ a 3m a 3n
S N o o]
te, IngtgEo ( ﬁ") - ('s"')
N
+ 3 82E2 (91)
P a  op
Bl(SiH)zl-(l., 02 a.,e,,__ggf_g (92)
o1 60015

3L
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L
Y a
a (poa) (l - 62)2 _§E

01

2 1 2
62(1 - a)
L L L
il %, l02f% %
2 L P01 Hh Sh
a‘o p02)( _q_)
)
1
Thus, when q < H0 . pll is substituted for Py in the projectile
equation of motion (71), and the expressions for P, » B, ,and B, are
replaced, respectively, by Equations 87-89 when S < H and by Equa-
tions 91-93 when § > H . The quantity a 1is the composite compaction
coefficient for the two layers (which will be discussed later); 61 and
62 are defined by Equaticn 2L4; and, with the exception of Bl and B2 s

the subscripts "1" and "2" denote quantities evaluated in the first

and second layers, respectively. In the regime q < HO , the effective

nose shape factor fn* is approximated according to

a a
o) 0
= -— r— g e )4\
Lo (l i )fnl B n2 (94)
h £ d f a btained by inserti R. = '2/Y and
where nl an no re o 1 Yy 1ns ng s1 pOlq 1
Rs2 = p02q /Yo , respectively, into the equation for fn . Thus, when
q < HO , then fn = fn* and the product an2 is given by
f B, =1 4B, (5 <H) ,S<H (95)
£B,=1,B,(5>H) ,58>H (96)
When a =H, Equation 9% reduces to fn* =f ., Equation 90 becomes
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approximately
=52, 8 =N (om
and Equations 87-89 and 91-93 give way to Equations 39-Ll. (That is,

the projectile equation of motion is the same as for a homogeneous

target which has the same properties as the second layer). Accordingly,

when H i,ao s P, 1is replaced in Equation T1 by Poo and Py » Bl°
and B2 are written as
p(H<a)=-2Y 1n6. + (98)
s =-="0 3 72 2
_ G
Bj(H<a))=1- 573 (99)
8
2
( ; (1 - 8,)°
Bl sa) =5~ T TI oo
4
) 2
PS4 T (R IR (100)
2 2 62

36. In the other regime where q z_HO , the expressions for I

B. , and f B
n

1 when S < H are approximated by

2

)
P, (101
a? °oza%
= - — = 2
B, 1 5 }B,(8 < H) + 5 B (H < e ) (102)
% 01%0
a o 8.2
fB,=|1-—=1f B (S <H)+ %21, 3 (H <a) (103)
n e 2 | n¥2 2 n2 2" = %o =
Olao



where ag is the cylindrical redius of the projectile at the interface
location H@ s and & 1is still given by Equations 90 and 95. The con-
ditions S8 < H and gq > H, cen occur simultaneously only when L > 5 ,
i.e., when the projectile nose length is greater than the effective
radius of the plastic front relative to the base of the nose. On the

other hand, wher & > H P Bl , and thg are gpproximated by

5 az 5.2
= | Y Z ‘e
P E|1 - p8 28 + 5 p(H <)) S
A &,
3\§ 3
a £ na
I .
- S E{82H)+ --O—Qs%-Bl(H <8) (105)
ao} Po1%o
32
le 5(s>m) + 221 ¢ &g ) 6
fn%Bg - + 2 n2 2 S a'O (106)
/ Po1%

For both regimes (i.e., q < H end q Z_HO) the expressions for p_ ,

Rl , and B, reduce to Equations 98-100 when a, = H . Thus, whenever

2

H < a_ , the projectile equaticn of motion is Equation T1 witih

[&]
Po = Pys s fn = fn2 s and P, » Bl , and B2 given by Equations 8-
100, respectively.

Target Compressibility

37. In order to estimate the target compaction coefficient «
at any time during the penetration process, an estimate is first made
for the volume-avseraged dynamic pressure Pave in the plastic zone sur-
rounding the projectile frontal surface.5 This is done by substituting
é for a in Zquation 42 and dropping the acceleration term (projectile
acceleration is always negative and could result in a negdtive value of
Pave , which is inadmissible). The resulting equation is multiplied by
fn to account for the effect of nose shape at high values of RS , and

one then obtains
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/

- 98 + 3(38)" (107)

This equation is used in a pressure-density relation (e.g., Equation Lk)
to estimate o . For layered targzts, o dis calculated separately for

each layer, and then a composite value is determined by substituting a,

9

ce af{t) and H for h(t) in Eguation 45 yielding

i

a a
_ - o o
o = alif - Eﬂ} to, g s 8 L8 (108)

Obligque Impact

38. No modifications have been msde in the oblique impact theory,
which is discussed in Reference 5. The obligue theory is still limited
to predictions of projectile rotation during the embedding of the nose
and 1s yet to be verified by comparison with experiment. However, in
light of the present work, it is appropriate to replace the value of fn
used in Reference 5 with that given by Equation T2. Thus, the equations
which govern the forces and moments acting on the projectile will have
the same form as before, but the incorporation of Egquation T2 for fn
introduces an implicit dependence upon the solid Reynolds number. Since
fn is a decreasing tunction of RS » Mmaximum projectile rotation will
be seen at low values of RS , and the projectile rotation will be a
more rapidly decreasing function of impact velocity than that produced

by the value of fn which was used in Reference 5.

Nondimensional Results for Typical Targets

3¢. Although the penetration theory which has been developed may
appear somewhat complicated at first, the implications for homogeneous

targets are fairly simple when viewed in the proper perspective. For
heavy projectiles (i.e., ﬁaszBl << M), the projectile equation of

motion reduces approximately to
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Ma %é< ) ) (109)
“TEolPs T PaPalad

==

-

which can be replaced by

(110)

s @ 2L

For slightly compressible targets, the range of values for p_ B is

L2
pn S 0,B s 3 p
0~ "2~ 2P0 (111)
and the corresponding range for Py is
2Y 5 p_ $ 5Y (112}

It is reasonable to characterize a "typical" target by P =LY and

0D ~ 1 .
prgq /pS =3 RS , so that Equation 110 becomes
r 3,2
....;1‘.4.9..2_2—2-<1+%fR),Q<L
hra“y a
o
__.Ti%__g< (113)
Ta P
ots M 1
hra®yY
L o)
When the transformation
1 4 ,-2
= & oS 4
1° 353 ) (11k)



and the nondimensional depth
BWaiqu
£ = 3 (115)

are introduced, Equation 113 gives way to

-~

dR 2
_E.Eiage(——%-— (143 5m)s o<
M" 8nap L
- =~ § \ o0 ¢
2 11
Ta D ( )
—ER;S— El+l'=-fR q>L
L dg 3 ns? -

For deep penetration (final penetration depth ap >> L), Equation 116
can be replaced by

Moo eyl (117)
-2 T Tag — 3 'n's
Waops

The peak nondimensional deceleration of the projectile can thus be ob-
tained by using the impact value of RS = povi/Y , and the corresponding
dimensional value is obtained by multiplying by hwaiY/M . The final

nondimensional penetration depth gf = Bﬂaip /M is found by inte-

q
grating Equation 117 numerically, and the cogrzsponding dimensional
depth is found by multiplying &, by M/Bnaip0 . In Figure 6, peak
nondimensional deceleration is plotted against nondimensional impact
velocity v0§{337§- for conical noses with L/D =1, 2, and 3 . In
Figure T, nondimensional final penetration depth is plotted against non-
dimensional impact velocity. Results are presented for the shallow
penetration theory, in which f = fn(¢) , and for the deep penetration
theory, in which fn = fn(¢, RS) . For very blunt noses, i.e.,

L/D < 1/2 , the predictions of the deep penetration theory reduce essen-
tially to those of the shallow penetration theory. Thus, it is empha-
sized that at high values of Rs deep penetration theory is probably

valid only for sharp projectiles where L/D > 1 . A deep penetration
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theory for blunt prejectiles should account for the effect of target
material Jjust shead of the projectile which is formed into a sharp coni-

cal "nose" during the impact phase.
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PART IV: APPLICATIORS

Introduction

40. This part of the report is devoted to the appliceiion of the
deep penetration theory to problems of practical interest and to the
comparison of theoretical results with experimental, empirical, and 2D
finite~difference results for cohegsive targets. 1In the applications
which follow, the range of the so0lid Reynolds number extends from very
low values (shallow penetration) to very high velues (deep penetration),
and the function ¥(R ) is given by Equetion 84 for all targets and all
projectiles, In each example, the predictions of the shallow penetra-
tion theory are compared with those of the deep penetration theory.

When comparisons are shown with 2D finite-difference calculations, no
attempt is made to assess the validity or accuracy of the various as-
sumptions and techniques employed by different authors since this lies
beyond the scope of the present investigation. Thus, the reasons for
agreement or disagreement between theoretical and 2D solutions remsin
open to speculation. The agrcement achieved between theoretical predic-
tions and empirical and experimental results is encoureging but not
conclusive, Furthermore, the relative applicability or inapplicebility
cf the deep penetration theory to the overall range of practical problems
can only be demonstrated by extensive comparison with experimental data
from Geep penetration tests. However, most data which are now available
lie in the range of shallow tc moderate depths for which the theory is

already fairly well documented.

Choice of Material Properties

41, The development of the deep penetration theory stems from
the cavity expansion theory which is based upon the presumption of rate-
independent, bilinear material behavior in shear. Unfortunately, real
materials exhibit neither bilinear shear behavior nor rate-independence,

and so there exists the problem of choosing an appropriate bilinear
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stress-atrain curve that adequately spproximates real material behavior
insofar as it relates to cavity expansion and projectile penetration.
For upper-bound predictions of final penetration depth, the results of
unconfined sta*ic trinvial compression tests are used to estimate target
shear properties; and for many applications, these upper-bound predic-
tions are adequate. However, for a priori predictions in untried tar-
gets, upper-bound predictions should be supplemented with lower-bound
predictions using properties obtained from the results of dynamic tests.
Anisctropic behavior may further complicate the situation so that upper-
and lower-bound properties have to be chosen with regard to maximum
variation due to enisotropy as well as rate effects. In any cese, sc-
ceptable results are usually obtained by setting Et = 0 and idealizing

the "real" stress-strain curve, as shown in Figure 8.

— — “REAL" BEHAVIOR
~—— IDEALIZED BEHAVIOR

- N Figure 8. Idealization of a
"real" stress-strain curve

SHEAR STRESS

SHEAR STRAIN

Shallow Penetration of Roeck

Lo, Thigpen6 has performed 2D finite-difference calculations in
an attempt at simulating two rock penetration tests reported by
Patterson.7 In these calculations the shallcw penetration of nonrigid

frictionless projectiles in Madera limestone and welded tuff is analyzed

bk



using an elastic-plastic Von Mises material model for both terget and
projectile. The predictions of the shallow and deep penetration the-
ories are now compared with the 2D results for rigid but otherwise
identical projectiles. TFor the range of dynamic pressures encountered,
the compressibility of both targets is adequately characterized by
Equation hl, and the elastic modulus is approximately equal to the ini-
tial value. In the limestone calculation, the target properties used
by Thigpen are

)

Py = 168 pef® (2.69 gm/cm

<
it

13,690 psi (0.944 kbar)
E = 3,15 x 106 psi (217 kber)

Et =0

i

11,155 fps (3400 m/sec)

3

and the (rigid) projectile characteristics are

W= 6Tk 1b (306 kg)

D =8 in. (20.32 cm)
CRH = 9.25 (ogive nose, L/D = 3)
v, = 570 fps (174 m/sec)

Po initial density
Y = compressive yield strength

E = elastic modulus

Et = strain-hardening modulus

C = dilatational wave velocity
W = weight

D = diameter

CRH = ogive caliber radius

% A table of factors for converting U. S. customary units of measure-
ment to metriec (SI) units is presented on page 3.
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o
In the welded tuff calculation, the target properties used by Thigpen are
= 115 pef (1.85 gm/cmB)

14

impact velocity

Po
Y = 5510 psi (0.380 kbar)
E=1,09 x 106 psi (75.5 kbar)

E, =0

C = 6725 fps (2050 m/sec)

and the (rigid) projectile characteristics are

W = 1000 1b (455 kg)

D=9 in. (22.9 cm)
CRH = 6.0 (ogive nose, L/D = 2.4
v, = 695 fps (212 m/sec)

The solid Reynolds numbers at impact are RS = 0.86 and 2.17 in the
limestone and tuff, respectively. The results are compared in Figures ©
and 10, showing that, for low values of RS , the deep penetration the-
ory predicts slightly higher decelerations and shallower final penetra-
tion depths than the shallow penetration theory. (This trend is reYersed
at high values of RS .) As pointed out in Reference 6, the oscillations
in the 2D results are due to projectile nonrigidity which is accounted
for in neither the shallow nor deep penetration theories. No experi-

mental deceleration record is availsgble for the welded tuff test.

Shallow Penetration of a ngothetical Frozen Soil

8
43. Ito et al. have performed a 2D finite-difference calculation
analyzing the penetration of a hypothetical frozen soil by a rigid pro-

Jectile. The 2D calculation incorporates an elastic-plastic material

hé
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model with a Mohr-Coulomb yield surface a&s well as s hypothetical model
for Coulomb friction in which the tangential stress et the projectile
surface is proportiocnal to the normel stress. By subtracting the con-
tribution due to tengential stress from the net force on the projectile,
it is possible to approximate the projectile loading for the "fricticn-
less" cese in addition to that for the hypothetical frictional case.

The unconfined target properties are
= 125 pef (2.00 gm/cmB)

Y = 2030 psi (0.140 kbar)

5]
]

5.70 x 10° psi (39.3 kbar)

=
W

0

C = 7100 fps (2165 m/sec)

Target compressibility is adequately characterized by Eguation Ll for
the range of dynamic pressﬁres encountered. The projectile charachter-

istics are

W=17.3 1b (7.86 kg)
D=3 in. (7.62 cm)
CRH = 2.35 (ogive nose, L/D = 1.L45)
and
v, = 450 fps (137 m/sec)

The shellow and deep penetration theories are now applied to the same
problem (in the absence of friction), and the results are compared in
Figures 11 and 12. The solid Reynolds number at impact is R = 2.69 ,
and both theories produce peak decelerations and final penetration
depths that are in approximate agreement with the 2D results for the

"frictionless” case.

Shallow Penetration of Aluminum

L4, Since the cavity-expension-based penetration theory has
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changed somewhat since Itis initial formulation by Goodier,3 it is appro-
priate to apply the present shallow and deep penetration theories to

at least one of the problems which were discussed by Goodier in his
original work. Consider the penetration of a homogeneous 202L-T3 glumi-

num target by spherical steel projectiles. The target properties are

bo = 173 pef (2.77 en/en”)

Y =5.6 x th psi (3.86 kbar)

E = 10T psi (689 kbar)
E, = b1 x 10 psi (28.3 kbar)
and
2 ~ o nl .
p.C” =10 psi (689 kbar)

Target compressibility is adequately characterized by Equation 44 for
the range of dymamic pressures encountered. Goodier gives his results
in nondimensional form, choosing 2qf/D as the nondimensional final
penetration depth and VOQJEZ7§— as the nondimensional impact velocity.
The quantity o represents the projectile density, where p_ = 491 pef
(7.82 gm/cmS) fgr steel. Consequently, a nondimensional impagt velocity
vog!3;7§_= 1 is equivalent to v_ = T2T fps (222 m/sec). The predic-
tions of the three penetration theories are compared with experimental
result53’9 in Figure 13. For the experimental results, the range of
solid Reynolds numbers at impact is 1 g RS £ 20 . The difference be-
tween Goodier's results and those of the shallow and deep penetration
theories is due primarily to the fact that Goodier uses Meyer's law to
characterize target resistance during the projectile embedding process
(References 3 and 5). In the present work, Meyer's law is repiaced by
an equation of motion which is based upon the cavity expansion theory
(see Part III, paragraph 22), resulting in reduced penetration depths at

the lower velocities.

Shalloy Penetration of Concrete

45. The penetration of concrete has been the object of extensive
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experimental study for several decades, and a number of empirical pene-
tration equations have been developed from the resulting data. For
example, a fairly reliable equation for the penetration of reinforced

concrete by various types of projectiles is given bylo
v ll5
0.215( o) >
222 W D 1500
AVY

+ g + 159 (118)

Qe =
where ~ 1s specified in inches, W in pounds, D in inches, vy in
fps, A in square inches, and Y in psi. No range of applicability is
defined for this equation, but sample calculations given in Reference 10
lie in the range 152 m/sec < v_ < 762 m/sec (i.e., 500 fps < v_ < 2500
fps). For comparison with penetration theory predictions, the above
equation will be used to make calculations in the velocity range
100 m/sec s v, s 1000 m/sec (328 fps s v, S 3280 fps), corresponding to

0.T s Rq s TO at impact. The concrete static properties arell



o, = 150 pef (2.40 @fcmBE
¥ = 5000 psi (0.345 kbar)
E=h, 10 x 106 psi (283 Xbar)

and

The pressure-density relationlg illustrated in Figure 1l represents

0.1¢ 1 T ¥ | T
0.08} : R o
@)
{; 0.06 E
q
i
i 0.04 - -
8
0.02} R
0 i i 1 i 1
() ) 2 3 4 5 8
P,.ye » KBAR

Figure 14, Typical pressure-density relation
for concrete

typical bhehavior of concrete under pressure. The static value of ¥
is used in the thecretical celculations as well as in Equation 118, and
the resuvlting theoretical predictions of final penetration depth then
correspond to upper-=bound values. However, if a maximum dynamic value
of Y (i.e., 40 percent .iigher than the static value) is chosen, the
thecretical penetration depths are reduced by only about 15 percent.
Since Equation 118 does not account for projectile geometry, two sep-
arate ogive nose shapes are used in the theoretical calculations,
CRH = 1.25 (L/D = 1) end CRH = 9.25 (L/D = 3) . Otherwise, the pro-
jectile characteristics are chosen toc be W = 1000 1b (455 kg) and

o2



D = 12 in. (30.5 cm) , which are typical of the projectiles for which
Equation 118 was deduced. Results are compared in Pigure 15, which

shows good sgreement between empirical and theoretical predictions.
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Figure 15. Finel penetration depth versus impact
velocity for 5000-psi concrete

Perforation of an Aluminum Slab

46, Wilkin513 has performed 2D finite-difference calculations
analyzing the perforation of an aluminum slab by a sharp steel pro-
jectile. This sort of problem is of particular interest in the present
investigation since it represents an extreme example of penetration in
a layered target. The first layer is the slab, which has a finite thick-
ness as well as a finite density, yield strength, and elastic modulus;
the second layer is gir, which has a negligible density and no resis-
tence at all to shear (i.e., the second layer is a fluid, in which
Rs = for all q > 0). Wilkins makes two separate calculations:

(a) in his first calculation, the ultimate strength of 6061-T6 aluminum
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is used as the target yield strength; aend (b) in his second ecalculation,
this yield strength is doubled. The predictions of the shallow and deep
penetration thecries for layered tergets will now be compared with

Wilkins® results. The aluminum slab has & thickness of 1 in. (2.5L4 cm),

end the nominal target properties are
= 169 pef (2.7 gm/cm3)
Y = 43,500 psi (3 kbar)

E 95107 psi (689 kbar)

anda

p C2 = 1()7

0 psi (689 kbar)

Target compressibility is adequately characterized by Equation Ll for

the range of dynamic pressures encountered. The projectile characteris-

tics are
W = 0.0183 1b (8.32 gm)
D= 0.3 in. (0.7€2 cm)
L/D = 1 (conical nose)
and
v = 2756 fps (840 m/sec)

L7. Since Wilkins does not give deceleration histories for the
projectile, the most stringent comparison of 2D and theoretical results
lies in the examination of residual projectile kinetic energy (i.e.,
the kinetic energy of the projectile after it has passed completely
through the slab). Theoretical and 2D predictions of residual kinetic
energy are compared in nondimensional form in Figure 16, where V. is
the residusl projectile velocity and vo\fsg7§_ is chosen as the non-
dimensional impact velocity (note that VEAJQO/Y = \!ﬁg at impact).

The variation of nondimensionel impact velocity is achieved by varying
¥ instead of Vg, end the predictions of kinetic emergy loss exceed

Wilkins' values by &as much as T5 percent, which may be considered "good"

54



I-@ Ly . & - ) . )
= —-- SHALLOW PENETRATION THEORY
DEEP PENETRATION THEORY
O__ 2D FINITE-DIFFERENCE RESULTS
0.8 -
0.0l
N
>
o
>
0.4f Q/ W=0.0183 LB =
D=0.3 IN.
L/D=|
4
0.2F H -
!
!
!
!
o 1 1 1 ]
o 2 4 6 8 10

VO ypO/Y

Figure 16. Nondimensional residual kinetic

energy versus impact velocity for conical

nosed steel projectile after perforating

l=in.~thick aluminum slab

or "bad" depending on one's viewpoint. (Wilkins' results for Y = 3 kbar
are in agreement with experiment.l3) This example indicates to some
extent the accuracy with which the two penetration theories prediect
projectile deceleration and energy loss at low to moderate values of
R near an interface between two layers which have extremely different
meterial properties. At low values of Rs , the deep penetration theory

predicts higher energy loss than the shallow penetration theory, but

this trend is reversed as RS increases.

Deep Penetration of a Multilayer Earth Target

48, In July of 197h, the Defense Nuclear Agency (DNA) spensored
a series of large-scale projectile penetration tests which were con-
ducted by Sandia Laboratories at the Watching hill Blast Range near
Ralston, Alberta, Canada.lh The three test projectiles ranged in weight
from 200 to 400 1b (91 to 182 kg), final penetration depths ranged from
30 to 99 ft (9 to 30 m), and impact velocities ranged from 306 to
619 fps (93 to 189 m/sec). This represents one of the best documented
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large-scale earth penetration experiments ever conducted, consisting
of eight successful shots into a target which had been previously sub-
jected to an extensive material property investigation. A svmmary of
the test results is given in Table 2, which is taken directly from
Reference 1k,

49, The shallow and deep penetration theories will now be used
to calculate projectile motion in the idealized four-layer target site.
Bilinear shear properties and initial densities are tabulated for the
target in Table 3 (Et = 0 for alll%ayers). These properties were used
in a pretest calculation by Rohani and are obtained from the results
of unconfined dynamic tests.lh The relation between density and pres-
surelh is given for each layer in Figure 17. The projectile weights
and diameters are 200 1b (91 kg), 280 1b (127 kg), 400 1b (182 kg), and
L,125 in. (10.48 em), 6 in. (15.24 em), 6.5 in. (16.51 cm), respectively.
The 400-1b projectile has a 9.25 CRH ogive nose shape (L/D = 3); the
other two have 6.0 CRH ogive nose shapes (L/D = 2.4). Comparisons of
theoretical and experimental final penetration depths are given in
Figures 18-20, and a ccmparison of theoretical and experimental decelera-
tion records for Test No. 6 is shown in Figure 21. These calculations
fall in the range of moderate to high solid Reynolds number (RS ~ 102),
and the shallow penetration theory exhibits an increasing tendency to
underpredict final penetration depth at the higher impact velocities
(i.e., at the higher values of RS). On the other hand, the deep pene-
tration theory reproduces the observed final depths with fair accuracy.
Examination of the deceleration records in Figure 21 reveals that
neither theory duplicates the details of the experimental deceleration
curve; however, the deep penetration theory predicts decelerations which

are more nearly in sgreement with the experimental results.

Very Deep Penetration of & Multilayer Earth Target

50. Some of the deepest earth penetration events on record were
observed in tests conducted by Sandia Laboratories at the Tonopah Test

Range (TTR) near Tonopah, Nevada. The results of these tests are
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Table 3

Material Properties for Watching Hill Test Site

Depth of
pO Y E Layer Bottom
pef _bar bar ft
03.0 3.10 276.0 8
88.6 2.07 138.0 16

116.0 2.07 138.0 2h
123.0 2.07 82.7 e

0.5 T T T T

LAVER 1
0.4+ LAYER & 4,;#”'
0.3 =

LAYER 2

x =i=p,/py,

0.2

0.1 =
\LAVER 4
° 4 j 1
o 0.1 0.2 0.3 0.4 0.5
P KBAR

AVE?

Figure 17. Pressure-density relations
for Watching Hill test site
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for L00-1b Watching Hill test projectile
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Figure 19. Final penetration depth versus impact velocity
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: . 6
reported by P&ttersonl for a projectile with the following

characteristics:
W = 650 1b (295 kg)
D=9 in. (22,9 cm)
CRH = 6.0 (ogive nose)

1T

Peterson and Hadala  have made upper- and lower-bound strength estimates
for the Antelope Dry Lake where the tests were conducted. These esti-
mates were made using available unconfined strength data and visual
classifications for the Antelope Lake and Main Lake beds along with
constitutive property analyses for similar playa deposits at TIR and

at the Nevada Test Site. The estimated strengths are listed for the

idealized four-layer target in Table L.

Table 4
Material Properties for TTR Antelope Dry Lake Site

Depth of
Layer o Lower-Bound Y Upper-Bound Y Layer Bottom
No. pef bar bar 't
1 103 0.689 3,448 25
2 99 0.001 3.448 37
3 111 5.172 10.3k5 109
L 103 3. 448 10.345 @

For the upper-bound strengths, E = 150 Y ; and for the lower-bound
strengths, E ® 75 Y. The target is assumed to be incompressible.

51. Experimental and theoretical results for final penetration
depth are compared in Figures 22 and 23, with the shaded area repre-
senting the range of predicted depths resulting from the estimated
bounds on the target properties. The difference in the predictions of

the two penetration theori=s is dramatic: the shallow penetration
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heory exhibits a growing tendency to underpredict final depth with in-

e

creasing impact velocity, while the deep penetration theory predicts an
approximately linear relation between final depth and impact velocity
which is in rough agreement with the experimental results. Figure 23
also serves to illustrate the prediction spread which is to be expected
when target propertiy estimates are made without the benefit of a detailed
investigation of the target site itself. In these calculations, the
solid Reynolds number at a velocity of 2500 fit/sec is on the order of

3

R = 107 . ©No experimental deceleration records are available.



PART V: CONCLUSIONS AND RECOMMENDATIONS

52. As a result of efforts made under the present research pro-
gram, the projectile penetration theory originally formulated by
Goodier‘3 has been extended so that the theory is now applicable for
deep penetration as well as for shallow penetration in both homogeneous
and layered cohesive targets. The initial formulation of the theory
was based on an ad hoc analogy with the dynamic expsnsion of & spherical
cavity in an infinite wedium. The final step in the theoretical de-
velopment was directly empirical in that a single function w(Rs) had
to be chosen which relates dynamic penetraticn resistance to the solid
Reynolds number as well as to the projectile geometry. This was ac-—
complished by means of a trial and error comparison of experimental and
theoretical results, but it is emphasized that the expression for
w(RS) which was chosen (Equation 8L) is the same for all targets and
projectiles. The deep penetration theory now represents a self-
contained tool for making penetration predictions and requires only the
projectile characteristics and the target constitutive properties as
input.

53. The deep penetration theory is most applicable for cohesive
targets, such as metal, rock, and concrete. On the other hand, it is
least applicable for granular targets, such as sand, which exhibit a
strong dependence between shear strength and confining pressure.

54L. The comparisons of theoretical and experimental results for
cohesive targets in Part IV suggest reliability at solid Reynolds

3

numbers as high as RS ~ 10” , at least for nose shapes with L/D > 1 .
For L/D < 1 , the range of reliability probably decreases with de-
creasing L/D . When L/D > 1 , the theory results in an approximately
linear relation between final penetration depth and impact velocity,
which is consistent with experimental observation. The theory also
predicts an approximately linear relation between final depth and pro-
jectile frontal loading W/A , as well as a nonlinear relation between
final depth and projectile nose length.

55. 1In those cases where it is appli.able, the deep penetration

6h



theory can generally be expected to predict peak deceleration within
about a factor of two and final penetration depth within about 20 per-
cent when the target density end unconflined strength are known with
reasonable accuracy. Other quantities, such as total duration of the
penetration event, will probably be accurate within about a factor of
two. BError in prediction will, of course, increase as uncertainty in
target propertles increases.

56. Future efforts should be directed toward further comparison
of theoretical and experimental results and toward the development of
a penetration theory for materials which are governed by the Mohr-
Coulomb failure condition (shear strength proportional to confining
pressure). The Mohr-Coulomb condition is more generally applicable to
soils than is the Von Mises condition which is used in the present

theory.
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APPENDIX A: NOTATION

® =o

a,8,8 Radial position, velocity, and acceleration, respectively, of
spherical cavity wallt

ay Projectile radius at layer interface location

a, Maximum projectile radius = D/2 (Figures 3 and L)

a, Projectile radius at target surface

A Maximum projectile cross—section area = wai = WDz/h

b Radial position of spherical plastic front (Figure 1)

S Initiel radial position of particle located at position D
Bl’B2 Cavity expansion inertial goefficients (Equations 40 and 41 )++

C Dilatational wave speed

CRH Ogive caliber radius (Equation 67)
Maximum projectile diameter = 2a (Figures 3 and &)

Modulus of elasticity in compression

Et Strain-hardening modulus in compression
f £, Functions of integration (Equations 4, 9, and 11)
£ Projectile nose shape factor (Equetions 62, 63, 65, 72, and T78)
fn* Effective nose shape factor near a layer interface (Equation 9k4)
Fz Het axial resisting force exerted on projectile by target
g Gravitational acceleration = 32.2 ft/sec2 (9.8 m/secz)
h Radial position of interface between two concentric layers
(Figure 1)
ho Initial radial position of interface between two concentric
layers
H Distance from base of projectile nose to layer interface loca-

tion (Figure 5)
Projectile nose length (Figures 3 and 4)
m Summation index

M Projectile mass

T A dot above any quantity denotes differentiation with respect to
time.

tt+ With the exception of B, and B, , the subscripts 1 and 2 denote
first and second layer quantities, respectively.



B,8
Ao

Compressive normal stress at cavity surface (Equations T and 30)
and at projectile fromtal surface (Equation h8)

Dynamic pressure at cavity surface (Equation 38) and at pro-
Jectile frontal surface (Equation 49)

Compressive normel stress at cavity surface due to material
behavior in shear (Equation 39)

Volume-averaged dynamic pressure in plastic region (Equations
42 and 107)

Projectile penetration depth, velocity, and acceleration,
respectively

Final penetration depth

Eulerian radial coordinate

Initial radial position of particle located at position r
Shown in Figure b

Solid Reynolds number (Equation 68)

Effective distance from base of projectile nose to plastic
front (Figure 5)

Time
Outward radial particle velocity

Components of Vp » respectively, normal and tangent to projec-
tile frontal surface (Figure 3)

Projectile impact velocity

Target particle velocity adjacent to projectile frontal surface
(Figure 3)

Residual projectile velocity

Projectile weight

Nondimensional cone position (Equation 52)

Equivalent nondimensional cone position for ogive (Equation 55)
Yield strength in compression

Axial distance measured aft of projectile nose tip (Figures 3
and L)

Material compaction coefficient (Equation 12)
Nondimensional material parameters (Equations 17 and 24)
Discontinuity in o  at r = b(t)

Ogive parameter (Eguation 67)

Locking strain (Equation 1)

A2

R N ol

s

A



Nermal strains in radiel and circumferential directions,
respectively

Shown in Figure k4

Nondimensional depth (Equation 115)
3.1416

Material density

Locked plastic density

Projectile density

Initial density

Limiting value of 0. as r»b in the elastic region

Limiting value of c. @s r+b in the locked plastic region

Normal stresses in radial and circumferential directions,
respectively

Cone half-angle (Figure 3)
Equivalent cone half-angle for ogive

Function relating v, and RS (Equations 69 and 8k4)

t

A3
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