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PREFACE 

The Investigation reported herein was conducted by personnel of 

the Soil Dynamics Division (SDD\ Soils and Pavements Laboratory (S&PL),, 

U. S. Ar^iy Engineer Waterways Experiment Station (¥ES)9 as a part of DA 

Project No. UAl6llC?B52E, "Fragment and Projectile Penetration Resistance 

of Soils/' Task 0^4, Work Unit 13- 

The theoretical developments -weie originated by Mr. R. S. Bernard 

during the period July 297^ to January 1975 under the supervision of 

Dr.  J. G. Jackson, Jr., Chief, SDD.  Messrs. J. P. Sale and R. G. Ahlvin 

were Chief and Assistant Chief, S&PL, respectively.  SP5 D. C. Creighton 

developed and executed the necessary computer codes, ana Drs. B. Rohani 

and P. Fo Hadala provided continuous technical and moral support.  This 

report was prepared by Mr. Bernard. 

COL G, H. Kilts CE, was Director cf WES during the investigation 

and at the time of publication of this report. Mr. F. R* Brown was 

Technical Director. 
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CONVERSION FACTORS, U. S. CUSTOMMY TO 
METRIC (SI) UNITS OF MEASUREMENT 

U. S. customary units of measurement used in this report can be converted 

to metric (SI) units as follows: 

JftjltiE^L 

inches 

feet 

square inches 

pounds (mass) 

pounds (mass) per 
cubic foot 

pounds (force) per 
square inch 

feet per second 

M To Obtain 

2*5^ centimetres 

0»30hQ metres 

6.U516 square centimetres 

O.U53592U kilograms 

16.018U6 kilograms per cubic metre 

689^757 pascals 

0.sokB metres per second 

Notes  1 kilobar = 1,000 "bars 
megapascals. 

lU,500 pounds per square inch = 100 



JMlIg^gS-Q£A•QJggZ?^ pEMggRATIOff THEORY 

DEEP PENETRATXOi THEORY FOR HOMOGENEOUS AID LAYERED TABGETS 

PART I;  INTRODUCTION 

Background 

1. Projectile penetration has been the object of theoretical and 

experimental investigations for at least two centuries.  However, until 

recent years, reliable penetration predictions were achieved only by 

mean.3 of empirical equations using various target resistance functions 

and pseudoconstants which were drawn directly from penetration experi- 

ment0,  The first successful analysis on purely theoretical grounds was 

appai_ntly due to Bishop, Hill, and Mott3 who related quasi-static 

punch indentation to the static expansion of spherical and cylindrical 

cavities in an infinite medium.  In a later development which incorpora- 

ted an ad hoc analogy with the dynamic expansion of a spherical cavity 
2      3 

in an infinite medium, Goodier formulated a dynamic penetration theory 

for rigid spherical projectiles which is applicable to elastic-plastic 

strain-hardening targets.  In subsequent efforts, attempts were made to 
U 

account for the effects of target compressibility and projectile nose 

shape, but the substance of the Goodier penetration theory remained 

unchanged, 

2, A useful penetration theory must be fairly simple in order 

that reliable predictions can be made with a minimal expenditure of time 

and money, A number of simplifying assumptions must be made in the 

development of such a theory; and since the objective is simply to ob- 

tain an equation of motion for the projectile, only the gross features 

of the target response may be taken into account. An extreme alternative 

to the simple theoretical approach is provided by two-dimensional (2D) 

finite-difference analyses which generally require large expenditures in 

man-hours and computer tine,  nevertheless, a 2D finite-difference 

solution has the advantage that the details of projectile and target 



behavior can be closely examined; and while an approach of this kind nsay 

fee too costly and cumbersome for large-scale parameter studies, it can 

be extremely valuable for assessing the relative effects of various 

mechanisms in the penetration process. 

3. At the present time, there is widespread need for a tractable 

theorj which can be used to study the penetration of soil, rock, con- 

crete, and metal targets by projectiles such as bombs, bullets, shell 

fragments, and missiles.  Such a theory is needed from both the offen- 

sive and defensive viewpoints since a theory which analyzes the pene- 

tration process can also be used to determine the conditions under which 

final penetration depth is maximized or minimized, respectively.  In 

July 1973s a small research effort was initiated under the sponsorship 

of the Office, Chief of Engineers (OCE), to develop a penetration theory 

•which would account for the penetration of homogeneous and layered tar- 

gets by rigid axisymmetric projectiles.  In the period July 1973 to June 

197^, the previously existing Goodier theory for spherical projectiles f 

•was extended for projectiles with conical and ogival nose shapes at 

shallow to moderate depths, as reported in Reference 5.  In the present 

report this theory is modified and extended to account for deep penetra- 

tion of homogeneous and layered targets at very high impact velocities. 

However, it is emphasized that the modified theory is still applicable 

to shallow penetration problems and produces approximately the same 

results as the unmodified theory at low impact velocities.  The theory 

developed herein supersedes all preceding work and is applicable for 

shallow and deep penetration in cohesive targets.  The developments 

presented in this report are the results of efforts conducted under the 

OCE program during the period July 197^ to January 1975. 

Purpose 

h.     The purpose of this investigation is to build upon existing 

penetration theory to develop a more general theory for cohesive targets 

which is valid for deep penetration at very high impact velocities as 

well as for shallow penetration at low impact velocities. As in 



previous work,, the fundamental basis for the penetration theory is the 

dynamic cavity expansion theoryt   and the modification for high-speed, 

deep penetration is accompli i"u.?d through a po&tulated reie.tion between 

target penetration resistance and the "solid Reynolds number9" which was 

first introduced in Reference 5* 

Scope 

5*  This report is intended to be e,  self-contained document on the 

subject of projectile j^netration theory for cohesive targets, and it is 

structured such that each part may be read independently or in sequence, 

depending on the interests of the reader.  The cavity expansion theory 

is discussed in Part II. Previous work in shallow penetration theory is 

outlined in Part III, followed "by the modifications whereby the theory 

is extended for deep penetration* Practical applications of the theory 

are presented in Part IV, and conclusions and recoraEendations are stated 

in Part Ya 



PART II:  CAVITY EXPANSION THEORY 

Background 

6, The dynamic expansion of spherical cavities in solids has teen 
2-5       3 

investigated by several authors.    Goodier used il>.. theory of dy- 

namic cavity expansion in an incompressible strain-hardening material^ 

as the basis of a penetration theory for rigid spherical projectiles and 

homogeneous targets.  In Reference 5» the cavity expansion theory was 

extended to concentrically layered compressible media and was used as 

the basis of a projectile penetration theory for layered targets.  The 

cavity expansion theory developed in Reference 5 represents a first 

attempt at a theory for concentrically layered media and is more compli- 

cated than necessary.  In the following discussion, a simplified version 

of the cavity expansion theory for concentrically layered media will be 

presented and w ^ provide a smoother transition to the penetration 

theory than does the more complicated version. 

Problem Formulation 

7. Consider a spherical cavity of radius a(t)  surrounded by 

two concentric layers of different materials, as shown in Figure 1. 

These materials exhibit elastic-plastic response with linear strain- 

hardening under sbear stress, as illustrated in Figure 2.  Both 

Figure 1.  Spherical cavity 
expansion in a concentrically 

layered medium 

LAYER 2 

7 
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Figure 2,  Material behavior in shear 

h 
materials exhibit ideal locking compressibility under hydrostatic 

stress such that transition from the elastic to plastic states is ac- 

companied by a small but finite volumetric strain known as the locking 

strain 

e„ = In — 
& P, U) 

where and p  are the material densities in the elastic and locked 

plastic stateSg respectively, and  |e | « 1 .  Otherwise,, the materials 

are incompressible, and the regions of elastic and locked plastic be- 

havior are separated by a weak plastic shock front of radius b(t) , 

where t denotes time.  Accordingly,, the locking condition on strain is 

\. + 2^e 

e„ , a < r < b 

0 , r > b 

(2) 

where e (r, t) and e
fj(
r» *)  are normal strains in the radial and cir- 

cumferential directions, respectively, with r as the radial coordinate* 

The associated strain rates are related to the outward radial particle 

velocity v(r, t) by 

8 



3v 
"r  3r 

v 
*0 " r (3) 

where a dot above any quantity denotes a time derivative* Equations 2 

and 3 give rise to 

Vt> 
, a < r < b 

v(r9 t) = 
f <t) 
e 

(h) 

, r > t> 

where f„(t) and f (t) are unknown functions. The stress-strain 
1 e k 

relation for the material in shear is 

Y + 2Et(eQ - i e£) , a < r < !> 

0   r (5) 

2Ee  , r > b 

where a (rs t)  and a-,(r9 t) are normal stresses in the radial and 

circumferential directions and Y , E s and E  are the yield strength, 

elastic modulus, and strain-hardening modulus, respectively, for the 

material in compression.  The geometry is spherically symmetric, and the 

material equation of motion is 

87" + r (°r " a9} = pln + V 8r7 
(6) 

where p is the local density. After combining Equations U, 5* and 6„ 

the resulting equation is integrated from r = °° to r = a(t) , subject 

to the condition that the material is stress-free as r -*• » . The equa- 

tion for the compressive normal stress p = -a ,[a(t)3 at the cavity 

surface is then found to be: 



2 
f   2f 

/ P#"; 

b » 

• 2 J{Y • 2Et[,0(r, t) - I ej}& + 1, _/ E^Cr, t) & (7) 

where Aa  is the discontinuity in a  at r - b(t),  given by 

A% • 4+) - °b"' (8) 

and a,    and a^   are the limiting values of a  as r -> b in 
D        D r 

the elastic and locked plastic regions, respectively. 

Problem Solution 

8.  In order to evaluate Equation 7 and thereby obtain an explicit 

relation between p and a(t) , relations must be established between 

a(t)  and f£(t) s  fe(t) ,  Ao^(t) s h(t) , b(t), and e0(r9 t) . 

The first of Equations h  is evaluated at r = a leading to 

t%  = a2a (9) 

The jump condition for conservation of mass Is  applied at r = b so that 

p£[i - v<")] = P()[i - v
( + )] (10) 

where v    and v    are the limiting values of v as r -*•  b In the 

elastic and locked plastic regions, respectively.  After evaluating 

10 



Equation U at r = b and combining the results with Equations 9 and 10, 

the following is obtained: 

f ^af^obfb (  } 
e    1 - a 

"srtiere    a    is the material compaction coefficient defined by 

a-l--Sss-e (12) 
p£ l 

which is limited to a «  1 since attention has been restricted to 

|e.| << 1 .  The jump condition for conservation of momentum is applied 

at r - b so that 

h\= *v (-)[i.T<-lJ.vw[i.Tw] (13) 

Evaluating Equation It at r = b and then combining the results with 

Equations 9S 11, 12, and 13 leads to 

ap.b2(l - a2/b2)2 

A0 = ~J^____ (iU) 
D       1 - a 

For large deformations, the circumferential strain can be appropriately- 

expressed as 

e0 = in ^ (15) 
o 

where r  is the initial position of a particle located at position r , 

Restricting attention to situations where Y «  E , E. << E , and 

\z%\   «  3Y/2Et , then 

eQ[b(t)] = m jj-s $ (16) 
c 

subject to P << 1 where b  is the initial position of a particle 

located at r = b ,  and 

11 



e « H¥J_ (17) 

9. Attention is now restricted to materials which have identical 

values of a and e. .  (This restriction can 'be relaxed "by establishing 

appropriate composite values of a    and e£ for the two layers a) 

Approximations for eQfrs t) , b(t) , and h(t) will now "be obtained 

subject to the following assumptions? 

a* Prior to the arrival of the plastic front at the initial 
layer interface location (i*e8s b < h }„ the entire second 
layer is in the elastic state, and the location of the 
Interface is approximately h(t) — h 

b. After the plastic front arrives at the initial layer in- 
terface position (i.e., b >_h ), the locked plastic region 
extends Into the second layer, and the motion of the in- 
terface is no longer neglible. 

10.  Considering first the situation when b < h  and 
~      ~ o , 

a (t) » a (0) , conservation of mass in the locked plastic region 

gives rise to 

r3 - a3 a (1 - a)r3 , a < r < b (18) 

Rearrapglng Equation l8 and then combining the result with Equation 15 

yields the expression 

,(r, t) - i e£ a - i ln(i - S-j , eQ(r, t) - T e0 s* - - Infi - -5-J , a < r < b     (19) 

Conservation of mass in the elastic region of the first layer requires 

that 

r
3 - b3 s r

3 „  b3 , b < r < h (20) 
00 o 

The approximate relation obtained from rearranging Equation 20 and 

consolidating the result with Equations 15 and 17 is 

3xb3 

£0(rs t) £s -±-- , b < r < hQ (21) 
r 

12 



where B is given "by Equation 17» and the subscript "1" denotes first 

layer material properties. Prior to the arrival of the plastic front at 

the initial interface location, the entire second layer is in the elas- 

tic state, and the circumferential strain, is approximated by 

3 

eQ(r9 t) a-^-|- , b < hQ < r (22) 
r 

which Is analogous to Equation 21 for the first layer. The subscript "2" 

denotes second layer material properties. Although Equation 22 Is only 

approximately correct, the error which is introduced in Equation 7 is 

the same order of magnitude as the error which results from the assump- 

tions (a) that h — h  when b < h  and (b) that the entire second o o 
layer Is in the elastic state when b < h . Then the substitution of 

b and b  for r and r s respectively, in Equation 18 results in 

b3sf.  b < h (23) 
1      ° 

where 

6i = a + 3B± , i = 1, 2 (2U) 

and the subscripts "1" and "2" again denote first and second layer mate- 

rial properties, respectively. Note that the criterion b < h  is now 

equivalent to a < 6 ^h . 
° / 11, low considering the situation when b >^ h  (i.e., when 

a <_ 6   h ], Equations 18 and 19 are applicable to the locked plastic 

regions in both layers. Furthermore, the motion of the Interface Is no 

longer neglible, and 

h h * aa , b > h (25) 
— o 

Integrating Equation 25 from t  to t yields 

h3 £5 a
3 + (1 - 6. )h3 , b > h (26) 

1 o    — o 

13 



where the Initial conditions are h(t ) = h  and a(t ) = 6,  h . o    o        o    1   o 
The circumferential strain in the elastic region is obtained "by replac- 

ing 6  with 3  in Equation 21 so that 

e9(r, t) a-£— , r > b > hQ (27) 
r 

3     3 When a » 6 h , the relation between a and b must approach 
3   3 b — a /6  , which is analogous to Equation 23. Thus, the corresponding 

rate equation relating a and b must approach 

2- 
h2h=~r- (28) 

62 

•where 6  is given by Equation 2h.     In order to obtain an approximate 

hut continuous expression for b , Equation 28 is integrated from, t 

to t 9 resulting in 

bjsf-* „£^__A ^  b > h (29) 
§2       02    O     —  o 

where the initial conditions are b(t ) = h  and a(t ) = 6,  h .-, o    o        o    n   o 

Mormal Stress at the Cavity Surface 

12. Approximations have now been established relating efi(r9 t), 

b(t) , h(t) , and a(t) for the two cases b < h  and b > h  (i.e., 
1/3 1/3 ° ° a < 5   h  and a _> 6   h , respectively). For the first casef 

Equations 99 11, lU, 19, 21, 22s and 23 are used with h s h  to 

evaluate Equation 7° For the second casef Equations 9* 11» 1^» 19? 26, 

27, and 29 are used to evaluate Equation 7. In each case,, the resulting 

expression for the compressive normal stress at the cavity surface has 

the form 

P = Ps + Pj (30) 

where p  is the contribution due to material shear, and pT is the 

Ik 



contribution due to material inertia (i.e., the dynamic pressure at the 

cavity surface) 

L(Blaa + B/) pI = p£llBlaa + B2a (31) 

where* a , a , and a are the radial position, velocity, end  acceler- 

ation of the cavity wall. With the exception of the inertial coeffi- 

cients B  and 38 , the subscripts "1" and "2s' 'are used to denote 

first aad second layer properties, respectively. Prior to the arrival 

of the plastic front at the initial layer interface location, the 

expressions for p , B , and Bp are 

PB(D < hQ) - - f I, in §± * | *J£ -]£ ^ 

i 
3 T •-^l1- 6,h 1 o 

3 I* 3 62E2 >•£, 
(32) 

B,(h < h } 
1     o 

i - ^/3 • d . ?J 
(>-« 

«i/3-H 
" p0l/ ho 

(33) 

BQ(h < h ) 
d o 

2B + 
(1 - SjT 

«f3(l - a) " * (l " ^^ 

2(l^a) 
V3 .LMa 
«!'3 - (= p«,/nr 01/ h 

(3M 

After the arrival of the plastic front at the initial interface loca- 

tion, the expressions for p  , B_ , and BQ are 

15 



P (b > h ) *s      —   o 
h      h 

2Y1 ln a + 9 Etl 

2 
IT 

ir l&fel 3m 

El 

m=l 

+ 2Y2 ln S 

• i ^ia*r - («i • i 62E? 

m=l 

(35) 

Bn(b > h  ) = 1 -    1 - - 1      —   o \ p 
02 

Cl )i- 
ap02a 

(36) 

B2(b>ho) 2B1 + 

/P02V_       .   ,2 ak 

fi|(l - a) 

1 
"7     W~? 

1    "01 V       V 

2       It 
a 

7 
1 - a (3T) 

where h and t> are given, respectively„ "by Equations 26 and 29 for 

t > h . o 
13.  When both layers have identical properties (i.e., when the 

medium is homogeneous), the layer subscripts are dropped, and Equa- 

tions 31-37 reduce to 

Pi = pn(Bi^ + V*) (38) 

«• Y In 6 Wf-EJH BE (39) 

m=l 

16 



Material Compressibility 

lU. Throughout the development of the foregoing cavity expansion 

theory the compaction coefficient a — - e << 1 has been regarded as a 

material constant.  This restriction is relaxed by allowing a to be a 

slowly varying function of pressure and then neglecting its derivatives. 

By taking this approach, it is possible to relate the appropriate in- 

stantaneous value of a to the dynamic pressure In the material adja- 

cent to the cavity.  Since the theory Is already limited to small values 

of a  , materials of interest are Incompressible to a first approxima- 

tion., For an incompressible homogeneous material, the volume-averaged 

dynamic pressure in the plastic region a < r < b is approximately 

P   ss 
ave 

| pQ [aa(4
/3 - Sj + o^) • k\2^  - Ml • 36^

3)]    (U2) 

where 

6T  = 30 «  1 (1*3) 

By using Equation k2  in conjunction with the pressure-density relation 

for a given material, a first approximation can be obtained for the com- 

paction coefficient.  When P    is sufficiently small, many materials 

can be characterized by the linear pressure-density relation 

a--SZ|<«l (WO 

where C is the dilatational wave velocity in the material, 

15. The cavity expansion theory for a concentrically layered 

IT 



medium is restricted to materials with identical compaction coefficients. 

However, this theory can he  applied to materials with different compac- 

tion coefficients by estimating a composite compaction coefficient for 

both layers according to 

"il1 -1)+ <"2(t) <*: 
where «1 and ou axe obtained from Equations 1*2 and hk "by using first 

and second layer properties, respectively» The effective locked plastic 

densities for the two layers are then 

p*2 " -^- (1.7) 1 _ a 

The particular expression for a   which appears in Equation k^  is 

chosen so that the composite compaction coefficient will vary smoothly 

in a manner similar to the inertial coefficients B..  and B_ . 

18 



.PAST III?  PBIEfRATXQi HE01Y 

Background. 

16. The first successful theoretical Investigation of the penetra- 

tion procass is apparently due to Bishop, Hill, and Mott, who related 

quasi-static punch indentation to the static expansion of spherical and 

cylindrical cavities in an infinite medium. By means of an ad hoc 
2      3 

analogy with dynamic spherical cavity expansion, Goodier later de- 

veloped a theory for the high-speed penetration of incompressible, 

strain-hardening targets by rigid spherical projectiles. Subsequently, 
U 

Hanagud and Ross modified the dynamic spherical cavity expansion theory 

in an effort to account for material compressibility and incorporated 

the results in Goodierss penetration theory* The next development came 

when Bernard and Hanagud"' modified the Goodier theory in an attempt to 

account for the effect of projectile nose shape.  Bernard and Hanagud 

also proposed a dimenslonless parameter called the "solid Reynolds 

number" which serves as an order-of-magnltude index of the ratio of 

dynamic pressure to shear stress in the target and which can be used to 

some extent to determine the relative applicability of the theory in a 

particular penetration problem.  Moreover, It was found that the range 

of applicability for the penetration theory in Reference 5 is restricted 

to low to moderate values of the solid Reynolds number (corresponding 

to shallow to moderate penetration depths).  At high values of the solid 

Reynolds number (i.e., at very high velocities) the theory overpredicts 

the target resistance, resulting in an underprediction of final penetra- 

tion depth.  Accordingly, the Bernard-Hanagud version of the penetration 

theory will be referred to as the "shallow penetration theory/1 and the 

objective of the present inv2stigation will be to develop a deep penetra- 

tion theory which is applicable for very deep penetration as well as for 

shallow penetration in cohesive targets. 

Shallow Penetration Theory 

17. The basic assumptions In the shallow penetration theory are 

as follows? 

19 



ju The projectile is completely rigid. 

Tb. The portion of the projectile frontal surface which is 
embedded in the target is in complete contact with the 
target. 

c_.     Tangential stresses on the projectile frontal surface 
are negligible. 

cL The compressive normal stress p on the frontal surface 
is given "by 

P = Ps + Pj (W) 

where p is the contribution due to target behavior in 
shear ana pT Is the dynamic pressure in the target ad- 
jacent to the frontal surface. 

e_* The shear contribution p Is independent of projectile 
geometry, uniform over the frontal surface, and equal to 
the cavity expansion shear term, which is given by Equa- 
tion 39 in Part II. 

18.  With these assumptions in mind9 only the dynamic pressure 

term p  remains to be determined in the expression for p . By draw- 

ing a loose analogy with the cavity expansion theory, Equation 38 is 

replaced with 

PI = p£(Blao^ + Vp> {k9) 

for fully embedded axisymmetric projectiles (Figures 3 and k), 

where 

p. = locked plastic density of the target 

B ,B = Inertial coefficients given by Equations ^0 and Ul 

a = projectile radius 

v - particle velocity In the target adjacent to the frontal 
p  surface 

q = projectile acceleration (the latter three terms replace 
a , a , and a , respectively) 

This then leaves the distribution of the particle velocity v  tc be 

specified along the frontal surface. 
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TARGET SURFACE 

Figure 3o Projectile with fully embedded 
conical nose 

%TARGET SURFACE 

Figure h.     Projectile with fully embedded 
ogive nose 
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19. The constraints on particle motion along the frontal surface 

are as follows: 

a_. The velocity of a particle at the nose -tip ez = 0 must 
be identical with the projectile velocity q . 

Tb. Material cannot cross the projectile-target interface; 
thus the particle velocity compcaent v , which is 
normal to the frontal surface, must be equal to the 
normal component of the projectile velocity* 

c_. The particle velocity must he continuous on the frontal 
surface, 

d. Finally it is assumed that the particle velocity com- 
ponent vt , which is tangent to the frontal surface, 
is zero at the "base of the nose z = L , where z is 
axial distance from the nose tip and L is projectile 
nose length* 

20» For the conical nose shown in Figure 3S v  is given "by 

v = q sin <f> (50) 
n 

where <f> is the cone half-angle.  The variation of v  is assumed to 

he 

.1/2 v t = (1 - x) '  q cos <f> , 0 <_ x <_ 1 (51) 

where the nondimensional cone position is denoted by 

z 
x  L 

The resulting expression for v  is then 

(52) 

vp = L2
n + v2)        = 4(1 - x cos2 <f>)1/2 (53) 

For the ogive nose shown in Figure h% 

v = q sin n (5*0 

and the equivalent dimensionless cone position is 
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/ \ cos 11 - cos <fr ,__. 
e 1 - cos 4* cos rj 

where Equation 55 Is analogous to Equation 52. Replacing x and «f> 

with x (n) and n , respectively, in Equation 51 leads to e 

v = [l - x (n)]1/2 4 cos n , o < n < <f»        (56) 

so that 

1/2 
s |vn  vtJ  = q U - x (n; cos nJ vp - (v! + vf)  « q [1 - xjn) cos2 n]1/2       (57) 

21. To obtain the projectile equation of motion for the case ~f 

a conical nose., Equation 53 is inserted into Equation ^9? and the re- 

sulting expression for pT is used in Equation ^8*  The total axial 

resisting force F  acting on the projectile is then found according 

to 

z=L 

Fz s   / tps + Vz* *^ Sin * dA^z» •* (58^ 

where the surface element    dA(zs <j>)  Is expressed as 

dA(z,  <>)  = 2ir —^4 2 dz (59) cos  9 

Similarly, ror an ogive nose9 Equation 57 is inserted in Equation ^9? 

and the resulting expression for pT is used in Equation U8„ Then 

F  is found according to 

/ 
Fz " / tps + PI(TI^ sln n ^n) (60) 

•where the surface element dA(n) Is expressed as 
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2 2 
2ira  (cos  n - cos  $)[(cos  $ - cos  n)   cos     n - cos n]  dn 

dA(n) = —^~-~—-^^ (6l) 
(l - cos $) cos n 

For "both cases, the projectile equation of motion Is obtained by setting 

Mq = -F , where M is the projectile mass* The resulting equation of 

motion has the form 

(H * "^A)' = -MO(PS 
+ Wn«2) (62) 

where p , B , and B  are given by Equations 39-^1 as functions of 

the target yield strength Y , elastic modulus E , strain-hardening 

modulus E , and compaction coefficient a .  The quantity f  Is the 

so-called nose shape factor resulting from the variation of dynamic 

pressure ale 

is given by 

pressure along the projectile frontal surface.  For conical nosep9  f 

f = sin2 <j> + •- cos2 * (63) 
n 3 

•where    <j>    is related to the nose length    L    and projectile diameter 

D = 2a      by o 

tan <f> = jk (6k) 

For ogivess the nose shape factor is 

Th?[' f    = ! . •—    g |B
2 In  (2 - e)  -  (3B2 + 2B)(B - e) 

n e2(l - ef 

+ I (3B2 + 6B + 1)(B2 - e2)  - | (B5 - e5) 

- | (B2 + 6B + 3)(B3 - e3) + £ (2B + 3)(BU - e**)] (65) 
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where 

B = 2e - e2 (66) 

and the parameter e is related to the ogive caliber radius (CRH) 

and to L/D by 

(A hemisphere is an ogive with CRH = L/D - 1/2 , in which case Equa- 

tion 65 reduces to f = 2/3 .) As pointed out in Reference 5f Equa- 

tion 62 is preo-uiaed to be valid only for projectiles and targets for 
3 

which the condition wa p.IL. << M is satisfied.  In any ease., the term 
o £ 1 

B  is thought to represent an upper limit insofar as the effect of 

target acceleration is concerned* 

22*  During the embedding of the nose (penetration depth q <_ L), 

the projectile equation of motion is obtained by substituting a  for s 
a  in Equation 62, where a  is the cylindrical radius of the pro- 

jectile at_ the target surface,, 

23® For the penetration of layered targets, the quantities p  , s 
B., , and B_ are modified in accordance with the cavity expansion theory 

for a concentrically layered medium* The derivation of these quantities 

in Reference 5 is lengthy and cumbersome; thus it is appropriate that 

the discussion for layered targets be deferred until later when a 

simpler approach will be taken in the development of the deep penetra- 

tion theory. 

Solid_Re?molds jfeabar 

2k. Among the various parameters defined in Reference 5 is the 

"solid Reynolds number," which is an order-of-magnitude index of the 

ratio of dynamic pressure (i.e., inertial stress) to shear stress in 

the target, defined by 
-2 

Rs 5 -^_ (68) 
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The solid Reynolds number can be used as a sealing parameter for ex- 

perimental and theoretical results for cohesive targets and also ss an 

indicator of the relative applicability of the shallow penetration 

theory to particular penetration problems. The working range of this 

theory for depth predictions appears to be 0 < B 5 100 , while the 
s 

working range for projectile deceleration predictions (accurate within 

a factor of two) is more like 0 < R s 10 .  In other words, the shal- 
s 

low penetration theory seems to work best for cases in which the re- 

sistance of the target due to shear is comparable to that due to 

inertia. When the solid Reynolds number becomes very large (i.e., for 

"high" velocities and "soft" targets), the theory overpredicts the pro- 

jectile decelerations which results In an underpredicticn of the final 

penetration depth. Furthermore, the magnitudes of the overprediction 

and underpredlction tend to Increase with increasing R 

25. The breakdown of the shallow penetration theory at high 

values of R  is not surprising since the dynamic pressure variation 

along the projectile frontal surface is obtained from a particle veloc- 

ity distribution v /q , which is a function only of projectile geometry 

and axial distance from the nose tip.  This results in a nose shape 

factor or "drag coefficient" which Is a function of projectile geometry 

alone and which is independent of projectile velocity and target proper- 

ties.  In order to account for the variation of f  with projectile 

geometry, projectile velocity, and target properties, an approach is now 

sought that will yield f  as a function of the solid Reynolds number 

as well as the projectile geometry. 

Deep Penetration _Tbeory_for Homogeneous ?arggts_ 

26. In attempting to develop a penetration theory which is appli- 

cable at high values of R , one might modify any or all of the basic 
s 

assumptions of the shallow penetration theory (see paragraph 17)°  In 

particular, the assumption of complete contact between the target and 

the projectile frontal surface is questionable, and the possible occur- 

rence of separation on the frontal surface may affect the resistance of 
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the target to penetration.  Nevertheless, all of the "basic assumptions 

of the shallow penetration theory will "be retained, and. the development 

of the deep penetration theory will proceed from a simple modification 

of the particle velocity distribution on the projectile frontal surface. 

27. The constraints on particle motion along the frontal surface 

(see paragraph 19) are taken to be the same as in the shallow penetra- 

tion theory, except for the assumption that v, - 0 at the "base of the 

nose.  This particular constraint is relaxed to allow more flexibility 

in the distribution of v  along the frontal surface, 

28„  Considering first a projectile with a fully embedded conical 

nose as shown In Figure 3» the particle velocity component v . normal 

to the frontal surface^ is still given by Equation 50„ However g, the 

tangential velocity component v  Is now assumed to vary according to 

-Ki(R )x2/2 
v.(x, R ) = (q cos <f>)e   S (69) 

• 2 
where x = z/L , R = pnq /Y , and t|/(R )  is an unknown function of 

S       U 5 

R . Equation 69 is by no means a unique expression for v. •  It does9 s x 
however, represent a convenient functional form in which v  decreases 

with increasing x and increasing ty  .    If t|>(R ) is chosen to be a 

monotonlcally Increasing function, then Equation 69 will result in an 

expression for the nose shape factor or "drag coefficient" that de- 

creases with increasing projectile velocity and nose length (which is 

more or less consistent with experimental observation). Incorporating 

Equation 69 (which now replaces Equation 51) in Equation 53, the expres- 

sion for v  becomes 
P 

V
P 

= q 

11/2 

(70) 

into Equation 5®» Setting Mq = -F  as before, the resulting projec- 
2J 

Equation 70 is substituted into Equation ^99 which is In turn Inserted 

into Equation 5®» Setting 

tile equation of motion is 
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(M + rao p£Bl)5 B ^%   [PS 
+ plVn(*» V^]       (T1) 

where 

-*(Rs) 

fn(«, Rg) = sin
2 cf> + i~^~—- cos2 4 (72) 

s 

Equation T2 now replaces Equation 63 for the nose shape faetor f 

during all phases of the penetration process, Including the embedding of 

the nose* 

29» Equation 72 is, of course, restricted to projectiles with 

conical nose shapes. In order to apply the present approach directly 

to ogives, Equation 69 should he replaced by 

-¥(R JX2
(TI)/2 

vt(n, Rg) * (q. cos n)e (73) 

•where n is defined In Figure k,  and x (n) is given by Equation 55. 
e       2   2   2 

Equation 73 should then he used In the relation v - v + v,  which is 
p   n   t 

In turn substituted Into Equation ^9«  The resulting equation for the 

dynamic pressure p  must then he inserted into Equation 60 to obtain 

the resisting force F  ands subsequently, the projectile equation of 

motion which will be of the same form as Equation 71 but with an ex- 

tremely complicated relation among f  , IJJ , and the maximum half- 

angle «f> (Figure k).    Moreover, the Integral for F  must he evaluated 

numerically when this approach is taken, and thus it is expedient to 

seek a simpler approach that results in an approximate analytic expres- 

sion for f . 
n 

30. In order to obtain an expression for f  which has the 

same form as Equation 72, the effective ogive half-angle is defined 

as follows^ , 
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/ 

2 
sin n dA(n) sin r\ 

sin2 <f> = ^t^^^^^^^^^ {lk) 

TH 
dA(n) sin X] 

where 

cos2 (J>e = 1 - sin
2 <j>e (75) 

and dA(n) is given by Equation 6l. Evaluation of Equation 7^ results 

in 

2 k 
sin2 ^    = ±^A^£^±±±C2s_J - ^os    tfc (76) 

6-12 cos <f> + 6 cos    <f> 

"where    <f>    is the maximum value of    n   ,  and    <j>    is related to    CRH    and 

L/D    by 

cos • • 1 - ^ •    M^)  - X {77) 

The nose shape factor for ogives is then approximated by 

-*(Rs) 

f (R  , 4>   ) - sin2 (f>    + ^TTS-T—• cos2 <f> (78) n    s      e e IMR  ) e 
s 

According to this scheme, any ogive can be replaced by its equivalent 

cone which, by definition^ has approximately the same value of f  as 

the ogive.  Equivalent cone L/D ratios are listed for ogives in 

Table 1* 

31. At this point only the relation between $ and R is still 

unspecified. In accordance with paragraph 28, \p is defined as a mono- 

tonically increasing function of R  with the limiting values 

29 



lim ty  = 0 
R -*. 0 (79) 

and 

lim 4* = °° 

S 
(80) 

Table 1 

Equivalent Cone Parameters for Ogives 

Ogive CRH Ogive L/D 
Equivalent 
Cone L/D Ogive_COT Ogive L/D 

Equivalent 
Cone L/D 

0.5 0.50 0.50 5.5 2.29 1.99 

1.0 0.87 0.78 6.0 2.1*0 2.08 

1.5 1.12 0.99 6.5 2.50 2.17 

2.0 1.32 1.16 7.0 2,60 2.26 

2.5 1.50 1.31 7.5 2.69 2.3^ 

3.0 1.66 1.1+5 8.0 2.78 2.U2 

3.5 i.8o 1,57 8.5 2.87 2.50 

U.O 1.9U 1.69 9.0 2.96 2.57 

U.5 2.06 1.80 9.5 3.0^ 2.6k 

5.0 2.18 1.90 10.0 3.12 2.71 

The corresponding limiting values for f  are then 

lim f    = 1 
n 

R    •+ 0 
s 

(81) 

with 

lim f    - sin    <j> 
n 

R      -».   co 
S 

(82) 
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for cones and 

lim f * sin2 <j> 

R ,1 ' (83) 
s 

for ogives.  It now remains to determine a single monotonically increas- 

ing function I|J(R ) which satisfies Equations 79 and 80 and which re- s 
suits in acceptable predictions of projectile deceleration and final 

penetration depth. This function must he determined empirically, hut 

once established it will be considered "universal/1 i.e.,, it will be 

presumed to be the same for all projectiles and all cohesive targets, 

within the context of the present theory.  If a different function $(R ) 
s 

has to be chosen for each target and each projectile, then the theory 

Is no better than a strictly empirical approach in which the "constants" 

in the projectile equation of motion must be determined separately for 

each individual situation. On the other hands If a single function 

$(R ) can be found that correlates experimental data for a variety of 
s 

projectiles and targets, for both shallow and deep penetration, then 

the theory may represent a useful tool for making predictions before the 

fact. 

32. With the preceding observations in minds the following equa- 

tion is proposed for ty(R ) : 

It will be shown in Part IV that Equation 8U results In good agreement 

between theory and experiment for a number of different projectiles and 

targets. Other expressions for i|/(R ) have been found that also produce 
s 

good results (e.g., i|i = R /15)s but Equation 8U appears to produce the s 
best overall results within the context of the present theory. 

Deep__PejQetre,tiqn Theory _for Layered_Targets 

33. In order to modify the projectile equation of motion (71) for 
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the penetration of layered targets, the appropriate expressions for the 

quantities p , B, and B, , ««u. «_ must first "be determined by means of an 

analogy with dynamic cavity expansion in a concentrically layered 

medium* The situation to be considered is illustrated in Figure 5; 

^- TARGET SURFACE 

Figure 5» Projectile penetration in a layered target 

however, the target may have any number of layers as long as the pro- 

jectile motion is significantly influenced by only two layers at a time. 

The penetration process is now divided into two regimes:  (a) when 

L < H , the nose tip has not yet reached the layer interface; and 

(b) when L >_ H„ the projectile has begun to perforate the layer inter- 

face*  Each of these regimes can be divided into three subregimes: 

(a) when S < H , the plastic front has not yet reached the layer 
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iaterfacej (b) when S >_ H , the plastic front has reached the layer in- 

terface; and (c) when H <__ a , the effect of the first layer on the 

projectile equation of motion is negligible* 

3^» To approximate the values of p , B , and B0 for the 

above regimes and subregimes, it is first necessary to consider Equa- 

tions 30-hl in Part II. In Reference 5» an attempt is made to account 

for the deformation of the layer interface due to the approaching 

projectile* Moreover, an upper limit approximation is used to obtain 

the effective interface deformation,, and the resulting expressions for 

H , S s p , B-. , and B_ are not only lengthy and cumbersome» but 

the approximation for the interface deformation is itself questionable 

and has only a small effect on the actual values of p , B , and B0 . 
S     X it 

A great deal of complication can then be avoided (without any demon- 

strable loss of accuracy) by simply neglecting the deformation of the 

interface altogether. Accordingly^ the quantities h(t) and h  which 

appear in Equations 32-37 "will be replaced by the distance H from 

the base of the projectile nose to the interface, 

H = H - q + L (85) 

As a result, the criteria L < H and L > H can now be replaced by 

q < H  and q >_ H , respectively. 

35»  In the first regime where q < H  , the equations for p , o s 
B , and B  are obtained by replacing a(t) with a , h(t) and h 

with H , and b(t) with S (effective distance from base of projec- 

tile nose to plastic front) in Equations 23, 29, and 32-37. Tfoni, 

S < H is substituted for the criterion b < h . The results ^.re as o 
follows: 

a3 

S3 2sf° , S < H (86) 
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PS(S < 1) I Yx in «1 + | Etl|^ 
m-1 

m 

i«(-S** s3 
3
2E2 H3 

B^S < H) = 1 -•;«. (-!:)[<:«-(-^)# 

"»"'"' •'"' * #^4 - K' - •:") 

(8?) 

(88) 

Tcrrtr ^ - f - a) a o 

H 

Ps(S > H) - 2YX ^    I-   + | Etl 
w       fVH) 2 3m 

m-1 m 

• 2y2 m | • | Et2 

- 3 B2E2 

3m       ,       3m 

m=l        L 

(89) 

(90) 

(91) 

B^S   >. H)   «   1 
\ P0l/   H 

aP02ao 

VoiS (92) 
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Oi 

*2(S 1 H) 2B    + 
6g(l  - a) 

1_ 
2 

!      !o+f02(fio 
~ HU       P01 W 

1 
2 

7AP0l/V "  §2, 
1 - a (93) 

Thus*  when     q   <  H     s o '£1 is  substituted for p       in the projectile 
It 

equation of motion  (Tl),  and the expressions  for    p     s B  s and B  are 

replaced,, respectivelys "by Equations 87-89 when S < H and by Equa- 

tions 91-93 when S >_ H .  The quantity a is the composite compaction 

coefficient for the two layers (which will "be discussed later);  6  and 

6  are defined by Equation 2k\  ands with the exception of B^     and B_ , 
ti-i ?i the subscripts and 

and second layers, respectively. 

denote quantities evaluated in the first 

In the regime q < H  s the effective 

nose shape factor f ^ is approximated according to 

?n®  " X1  " H / 
f  + 
nl 

a _° f 
H  n2 (9*0 

f   are obtained by inserting R  = p where  f ,  and 
nl0 

R  = Pn9q /Y0 s respectively^ into the equation for  f 
oi«2/Yi and 

n Thus s when 

q<Ho , then f = f 
n n^ 

and the product  f B.  is given by 

fnB2 = fn^B2(S < «) , S < H (95.) 

fnB2 = fn*B2(S - H) ' S - H 
(96) 

When a = H 3 Equation 9^ reduces to f ^ = f  s Equation 90 bee omes 
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approximately 

a3 

S3 ss^L , a * H 
52   o 

(97) 

and Equations 87-89 and 91-93 give way to Equations 39-^1.  (That is, 

the projectile equation of motion is the same as for a homogeneous 

target which has the same properties as the second layer).  Accordingly, 

when H <_ a  ,  p  is replaced in Equation 71 "by 9go    and p  9 B , 

and B  are written as 

£' ps(H<ao, = -|,2i„a2 + iEt2  ^-X  -IU| B2E2 

m=l 

(98) 

B1(H  <_ a   )  ~ 1 
a 

.2/3 (99) 

B2(H<ao).f.-g^ 
62 

o  _ 
(i - 62r 

i^[-(.-t)! 
(1 - a) (100) 

36=  In the other regime where q >_ H  , the expressions for p  , 
o s 

B     ,  and    f B0    when    S < H    are approximated "by 

2\ 2 a-r \ a. 

Ps = 1 -4   PQ(S  < H)  +    4    PjH <a   ) 2 J*s 
a 2    *s 

(101) 

B 1 = ll - 4 JVS  < H)   + 
p02al 

P0lao 
3 B1(H ^ ao> 

(102) 

fnB2 " i1 " T    VVS  < H>  + 7^1 ^2 
ao/ P0lao 

f 0B0(H < a  ) -° °      —   o (103) 
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where &      Is the cylindrical radius of the projectile at the interface 

location K , and S is still given toy Equations 90 and 95. The con- 

ditions S < H and q >_ H  can occur simultaneously onlj^ when L > S , 

i.e., when the projectile aose length is greater than the effective 

radius of the plastic front relative to the base of the nose. On the 

other hand, when S _> H , pe , B , and f B_ are approximated "by 

a2\ a2 

P<assfi . -J]ps(S > H) +i pg(K<.ao) (10U) 
V 

\       %/ p01ao 

B1 a jl - -T »E(S >_ H) + ~^~ Bn(H < ao) (105) 

2 

fnB2 ^ I1 " T JVB2(S i H5 + ^h fn2B2(H i ao»      <106> 
ac/ p01ao 

For both regimes (i.e., q < H and q >_ H ) the expressions for p , 

B , and Bp reduce to Equations 98-100 when a = H . Thus, whenever 

H <_ a , the projectile equation of motion is Equation 71 with 

P£ ~ P£2 '  f =f2$ and P  »  Bi » and B2 S±Yen  ^ Equations 98- 
1009 respectively. 

Target Comprej£ihility 

37°  In order to estimate the target compaction coefficient a 

at any time during the penetration process, an estimate is first made 

for the volume-a/eraged dynamic pressure P    in the plastic zone sur- 

rounding the projectile frontal surface.  This is done by substituting 

q for a in Equation ^+2 and dropping the acceleration term (projectile 

acceleration is always negative and could result in a negative value of 

P   , which is inadmissible).  The resulting equation is multiplied by 

f  to account for the effect of nose shape at high values of R , and 
n s 
one then obtains 
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Pava "2 pOfn^[2(3B)1/3 ~ 93 + 3(3f3),+/3] (l07) 

This equation is used, in a pressure-density relation (e.g., Equation kh) 

to estimate a  .  For layered targets, a is calculated separately for 

each layer, and then a composite value is determined by substituting a 

fcr a(t) and H for h(t) in Equation k$  yielding 

/   a \     a 
'-   o!      o a = a^ - --/ + a2  j- , %  < (108) 

38.  lo modifications have been made in the oblique impact theory, 

which is discussed in Beference 5«  The oblique theory is still limited 

to predictions of projectile rotation during the embedding of the nose 

and is yet to be verified by comparison with experiment. However, in 

light of the present workf it is appropriate to replace the value of f 

used in Reference 5 with that given by Equation 72*  Thus, the equations 

which govern the forces and moments acting on the projectile will have 

the same form as before, but the incorporation of Equation 72 for f 

introduces an implicit dependence upon the solid Reynolds number.  Since 

f  is a decreasing function of R , maximum projectile rotation will 

be seen at low values of R , and the projectile rotation will be a 
s 

more rapidly decreasing function of impact velocity than that produced 

by the value of f  which was used in Reference 5. 
n 

Rondimensional Results for Typical Targets 

39= Although the penetration theory which has been developed may 

appear somewhat complicated at first, the implications for homogeneous 

targets are fairly simple when viewed in the proper perspective. For 

heavy projectiles (i.e., na p B1 << M), the projectile equation of 
O X> _L 

motion reduces approximately to 
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Mq a 
2 

-wa 

•^ • 

q <  L 

v. 
[PS 

+ PitB2f/] »  ^ i L 

(109) 

which can "be replaced by 

2 

Jk. 
2 

TO  p 
OS 

•< 
& 

P£B2fnq 
.  q < L 

1 * 
plVnq' 

s 

2 

9  1iL 

(110) 

For slightly compressible targets, the range of values for P5Bp Is 

pQ * p£B2 5 - pQ (111) 

and the corresponding range for p  Is 
s 

2Y S p s 5Y s (112) 

It Is reasonable to characterize a "typical" target by p — ^Y and 
-2     1 S 

p B q /p —-o R , so that Equation 110 becomes 

/" 

-.Mg^a-S./! + i 
Uira Y      a 

I1 + | fnRs)  •   * < 

2 A 

ita p 
o*s 

. ^|_ a x + I fnRs   ,   q > L 

Itira Y o 
3ns 

(113) 

When the transformation 

-Id  ,*2v 
q»?— <q   ) (11U) 
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and the nondimensional depth 

8TOoP0q ,   , 
e = —^— (115) 

are introduced, Equation 113 gives way to 

r 

fcft * * '-"•) 

na p 

» q < L 

(116) 

dR 
- -rr2" ^1+^fR  ,  q>L dC       3 n s 9 ^ — 

For deep penetration (final penetration depth q_ >> L), Equation 1.16 

can be replaced by 

"     dR       , 
. -|L a . _S. £ ! + i f R (llT) 

ira2p     dC       3 n S 

o^s 

The peak nondimensional deceleration of the projectile can thus be ob- 
2 

tained by using the impact value of R = pnv /Y , and the corresponding 
s   u o    _ 

dimensional value is obtained by multiplying by Uira Y/M * The final 

nondimensional penetration depth £ - 8na p_q /M is found by inte- 

grating Equation 117 numericallys and the corresponding dimensional 

depth is found by multiplying £  by M/8ira p  .  In Figure 69 peak 

nondimensional deceleration is plotted against nondimensional impact 

velocity v ^pT/Y for conical noses with L/D = 1, 29 and 3 •  In 
O ¥  0 

Figure 7? nondimensional final penetration depth is plotted against non- 

dimensional impact velocity,, Results are presented for the shallow 

penetration theory, in which f = f ($) , and for the deep penetration 

theory, in which f - f (<f>9 R ) . For very blunt noses, i.e., 

L/D <_ 1/2 , the predictions of the deep penetration theory reduce essen- 

tially to those of the shallow penetration theory. Thus,, it is empha- 

sized that at high values of R  deep penetration theory is probably 

valid only for sharp projectiles where L/D >_ 1 . A deep penetration 

ko 
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theory for 'blunt projectiles should account for the effect of target 

material just ahead, of the projectile which is formed into a sharp coni- 

cal "nose" during the impact phase. 

U2 



PJUtT IV s  APPLICATIONS 

Introduction 

UO. This part of the report is devoted to the application of the 

deep penetration theory to problems of practical interest and to the 

comparison of theoretical results with experimental9  empirical, and 2D 

finite-difference results for cohesive targets.  In the applications 

which follow, the range of the solid Reynolds number extends from very 

low values (shallow penetration) to very high values (deep penetration), 

and the function ¥(R ) is given "by Equation &k  for all targets and all 

projectiles.  In each example, the predictions of the shallow penetra- 

tion theory are compared with those of the deep penetration theory. 

When comparisons are shown with 2D finite-difference calculations, no 

attempt is made to assess the validity or accuracy of the various as- 

sumptions and techniques employed by different authors since this lies 

beyond the scope of the present investigation. Thuss the reasons for 

agreement or disagreement between theoretical and 2D solutions remain 

open to speculation.  The agreement achieved between theoretical predic- 

tions and empirical and experimental results is encouraging but not 

conclusive. Furthermore, the relative applicability or inapplicability 

of the deep penetration theory to the overall range of practical problems 

can only be demonstrated by extensive comparison with experimental data 

from deep penetration tests*  However, most data which are now available 

lie in the range of shallow to moderate depths for which the theory is 

already fairly well documented* 

Choice of Material Properties 

Ul.  The development of the deep penetration theory stems from 

the cavity expansion theory which is based upon the presumption of rate- 

independent, bilinear material behavior in shear. Unfortunately, real 

materials exhibit neither bilinear shear behavior nor rate-independences 

and so there exists the problem of choosing an appropriate bilinear 
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stress-strain curve that adequately approximates real material "behavior 

insofar as it relates to cavity expansion and projectile penetration. 

For upper-bound predictions of final penetration depth, the results of 

uneonfined static trivial compression tests are used to estimate target 

shear properties; and for many applications, these upper-bound predic- 

tions are adequate. However, for a priori predictions in untried tar- 

gets, upper-hound predictions should "be supplemented with lower-hound 

predictions using properties obtained from the results of dynamic tests. 

Anisotropic hehavior may further complicate the situation so that upper- 

and lower-bound properties have to he chosen with regard to maximum 

variation due to anisotropy as well as rate effects. In any caseg ac- 

ceptable results are usually obtained "by setting E = 0 and idealizing 

the "real" stress-strain curve, as shown in Figure 8„ 

(0 
m m 

_—   "REAL"   BEHAVIOR 

—    IDEALIZED  BEHAVIOR 

\S \ 
\ 

K 1       s < 
W \      / 
I 1    / 
tft 

Figure 8* Idealization of a 
"real" stress-strain curve 

SHEAR STRAIN 

Shallow Penetration of Eock 

U2. Thigpen has performed 2D finite-difference calculations in 

an attempt at simulating two rock penetration tests reported "by 
7 Patterson.  In thene  calculations the shallow penetration of nonrigid 

frietionless projectiles in Madera limestone and welded tuff is analyzed 

hk 



using an elastic-plastic Yon MIses material model for both target and 

projectile. The predictions of the shallow and deep penetration the- 

ories are now compared with the 2D results for rigid hut otherwise 

identical projectiles.  For the range of dynamic pressures encountered, 

the compressibility of both targets is adequately characterized by 

Equation hk9  and the elastic modulus is approximately equal to the ini- 

tial value.  In the limestone calculation, the target properties used 

by Thigpen are 

p * 168 pcf* (2.69 gm/em3) 

Y * 13$690 psi (0.9M kbar) 

E 35 3.15 x 10 psi (217 kbar) 

Et = 0 

C * 11,155 fps (3^00 m/sec) 

and the (rigid) projectile characteristics are 

¥ = 6lh  lb (306 kg) 

D = 8 in, (20,32 cm) 

CRH = 9„25 (ogive noses L/D = 3) 

v = 570 fps (llh  m/sec) 

•where 

Pn = initial density 

Y = compressive yield strength 

E = elastic modulus 

E - strain-hardening modulus 

C = dilatational wave velocity 

W = weight 

D = diameter 

CRH = ogive caliber radius 

* A table of factors for converting U. S* customary units of measure- 
ment to metric (Si) units is presented on page 3, 
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L = nose length 

v = impact velocity 

In the welded tuff calculation, the target properties used by Tfaigpen are 

pQ = 115 pcf (1.85 ©a/cm
3) 

Y * 5510 psi (0.380 kbar) 

E a 1.09 x 106 psi (75^5 kbar) 

E = 0 

C = 6T25 fps (2050 m/sec) 

and the (rigid) projectile characteristics are 

¥ - 1000 lb (1+55 kg) 

D = 9 in. (22.9 cm) 

CRH - 6.0 (ogive nose, L/D ~ 2«k 

v = 695 fps (212 m/sec) 
o 

The solid Reynolds numbers at impact are R s 0*86 and 2=17 in the 

limestone and tuff, respectively.  The results are compared in Figures 9 

and 10, showing that, for low values of R  , the deep penetration the- 
s 

ory predicts slightly higher decelerations and shallower final penetra- 

tion depths than the shallow penetration theory,  (This trend is reversed 

at high values of R  .) As pointed out in Reference 6, the oscillations 
s 

in the 2D results are due to projectile nonrigidity which is accounted 

for in neither the shallow nor deep penetration theories.  No experi- 

mental deceleration record is available for the welded tuff test. 

Shallow Penetration of a Hypothetical Frozen Soil 

8 
U3.  Ito et al.  have performed a 2D finite-difference calculation 

analyzing the penetration of a hypothetical frozen soil by a rigid pro- 

jectile.  The 2D calculation incorporates an elastic-plastic material 

k6 
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model with a Mohr-Coulca&b yield surface as well as a hypothetical model 

for Coulomb friction in which the tangential stress at the projectile 

surface Is  proportional to the norasl stress. By subtracting the con- 

tribution due to tangential stress from the net force on the projectile, 

it is possible to approximate the projectile loading for the "friction- 

less" case in addition to that for the hypothetical fFictional case* 

The unconfined target properties are 

pQ  = 125 pcf (2S00 ©a/cm
3) 

Y = 2030 psi (0*1^0 kbar) 

E = 5=70 * 105 psi (39=3 kbar) 

Et -0 

and 

C a Yioo fps (2165 m/sec) 

Target compressibility is adequately characterized "by Equation kk  for 

the range of dynamic pressures encountered* The projectile character- 

istics are 

W = 17.3 lb (1.86 kg) 

D ^ 3 in. (7.62 cm) 

CRH = 2.35 (ogive nose, L/D = 1.1*5) 

and 

v = 1+50 fps (137 m/sec) o 

The shallow and deep penetration theories are now applied to the same 

problem (in the absence of friction), and the results are compared in 

Figures 11 and 12. The solid Reynolds number at impact is B = 2„69 » 

and "both theories produce peak decelerations and final penetration 

depths that are in approximate agreement with the 2D results for the 

"frictionless" case 

kk.    Since the cavity-expansion-based penetration theory has 

U8 
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3 
changed somewhat since Its initial formulation "by Goodier,  it is appro- 

priate to apply the present shallow and deep penetration theories to 

at least one of the problems which were discussed by Goodier in his 

original work*  Consider the penetration of a homogeneous 202^-T3 alumi- 

num target "by spherical steel projectiles,, The target properties are 

P0 = 173 pcf (2.77 gm/cia3) 

and 

Y = 5.6 x io psi (3.86 kbar) 

E = 10T psi (689 kbar) 

E = k.l  x io5 psi (28.3 kbar) 

pQC
2 = 10T psi (689 kbar) 

Target compressibility is adequately characterized by Equation kk  for 

the range of dynamic pressures encountered.  Goodier gives his results 

in nondimensional form, choosing 2q_/D as the nondimensional final 

penetration depth and v ^p /Y as the nondimensional impact velocity. 

The quantity p  represents the projectile density, where p = U91 pcf 
o     P P 

(7.82 gm/cm ) for steel.  Consequently, a nondimensional impact velocity 

v ^P"7Y"= 1 is equivalent to v = 727 fps (222 m/sec).  The predic- 

tions of the three penetration theories are compared with experimental 
3 9 results '  in Figure 13.  For the experimental results, the range of 

solid Reynolds numbers at impact is 1 s R S 20 .  The difference be- 

tween Goodierss results and those of the shallow and deep penetration 

theories is due primarily to the fact that Goodier uses Meyer's law to 

characterize target resistance during the projectile embedding process 

(References 3 and 5)»  In the present work, Meyer's law is replaced by 

an equation of motion which is based upon the cavity expansion theory 

(see Part III, paragraph 22), resulting in reduced penetration depths at 

the lower velocities. 

Shallow Penetration of Concrete 

J45.  The penetration of concrete has been the object of extensive 
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Figure 13.  Nondimensional final penetration 
depth versus Impact velocity for steel spheres 

and 202^-T3 aluminum target 

experimental study for several decades, and a number of empirical pene- 

tration equations have been developed from the resulting data* For 

example, a fairly reliable equation, for the penetration of reinforced 

concrete by various types of projectiles is given by 

222 W D 0*215 

qf 
Vicoo/ 

AfY 
+ |+15% (118) 

where is specified in inches, W in pounds, D in inches, v in 

fps9 A in square inches, and Y in psi*  lo range of applicability is 

defined for this equation,, but sample calculations given In Reference 10 

lie in the range 152 m/sec <_ v <_ 762 m/sec (i.e., 500 fps <T < 2500 

fps).  For comparison with penetration theory predictions, the above 

equation will be used to make calculations in the velocity range 

100 m/sec < v < 1000 m/sec (328 fps < v s 3280 fps), corresponding to 

OJ S E 5 TO at impact*  The concrete static properties are 
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pQ = 150 pcf (2.U0 got/ear) 

Y » 5000 psi (O.3U5 Kbar) 

E a U.10 x 10 psi (283 Kbar) 

and 

Et = 0 

12 
The pressure-density relation  illustrated in Figure Ik  represents 

0.10 

2     3 

J 
AVE 

§»...„ , KBAR 

Figure lh. Typical pressure-density relation 
for concrete 

typical behavior of concrete under pressure.  The static value of Y 

is used, in the theoretical calculations as well as in Equation 118, and 

the resulting theoretical predictions of final penetration depth then 

correspond to upper-bound values. However, if a maximum dynamic value 

of Y (i.e., ^0 percent higher than the static value) is chosenf the 

theoretical penetration depths are reduced by only about 15 percent. 

Since Equation 118 does not account for projectile geometry, two sep- 

arate ogive nose shapes are used in the theoretical calculations, 

CRH = 1.25 (L/D - 1)  and CRH = 9°25 (L/D - 3) .  Otherwise, the pro- 

jectile characteristics are chosen to be ¥ = 1000 lb (^55 kg) and 
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D = 12 in. (30.5 cm) , which are typical of the projectiles for which 

Equation. 118 was deduced® Besults axe compared in Figure 15, which 

shows good agreement between empirical and theoretical predictions. 
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Perforation of an Aligdai^n Slab 

£|6* Wilkins  has performed 2D finite-difference calculations 

analyzing the perforation of an aluminum slab "by a sharp steel pro- 

jectile.. This sort of problem is of particular interest in the present 

investigation since it represents an extreme example of penetration in 

a layered target. The first layer is the slab, which has a finite thick- 

ness as well as a finite density, yield strength^ and elastic modulus 1 

the second layer is air, which has a negligible density and no resis- 

tance at all to shear (i.e., the second layer is a fluid, in which 

R = 00 for all q, > 0). Wilkins makes two separate calculaiionsi 
s 
(a) in his first calculation, the ultimate strength of 606I-T6 aluminum 
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is used as the target yield strength; and (b) in his second calculations, 

this yield strength is doubled.  The predictions of the shallow and deep 

penetration theories for layered targets will now "be compared with 

Wiikinss results. The aluminum slat) has a thickness of 1 in. (2*5^ cm), 

and the nominal target properties are 

3 
pQ = 169 pcf (2.7 ©a/cm ) 

Y = ^39500 psi (3 kbar) 

E ss io7 psi (689 kbar) 

and 

pQC
2 2 ioT psi (689 kbar) 

Target compressibility is adequately characterized by Equation hk  for 

the range of dynamic pressures encountered.  The projectile characteris- 

tics are 

¥ = 0.0183 lb (8.32 pa) 

D = 0.3 in. (0.762 cm) 

L/D - 1 (conical nose) 

and 

v = 2756 fps (8U0 m/sec) 

hf.  Since Wilkins does not give deceleration histories for the 

projectiles the most stringent comparison of 2D and theoretical results 

lies in the examination of residual projectile kinetic- energy (i.e., 

the kinetic energy of the projectile after it has passed completely 

through the slab).  Theoretical and 2D predictions of residual kinetic 

energy are compared in nondimensional form in Figure 16, where v  is 

the residual projectile velocity and v yp~jY    is chosen as the non- 

dimensional impact velocity (note that v ^*pT/l"= \/l*  at impact). 

The variation of nondimensional impact velocity is achieved fey varying 

Y instead of v , and the predictions of kinetic energy loss exceed 

Wilkins8 values "by as much as 75 percent, which may "be considered "good'? 
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or "bad"  depending on one's viewpoint.     (Wilkins1   results for    Y = 3 kbar 
1-3 

are in agreement with experiment.  ) This example indicates to some 

extent the accuracy with which the two penetration theories predict 

projectile deceleration and energy loss at low to moderate values of 

R  near an interface between two layers which have extremely different 

material properties.  At low values of R  , the deep penetration theory 
s 

predicts higher energy loss than the shallow penetration theory, but 

this trend is reversed as R  increases. 
s 

Deep Penetration of a Multilayer Earth Target 

^8„  In July of 197^, the Defense Nuclear Agency (DMA) sponsored 

a series of large-scale projectile penetration tests which were con- 

ducted by Sandia Laboratories at the Watching Hill Blast Range near 

Ralston, Alberta, Canada*   The three test projectiles ranged in weight 

from 200 to ^00 lb (91 to l82 kg), final penetration depths ranged from 

30 to 99 ft (9 to 30 m), and impact velocities ranged from 306 to 

6l9 fps (93 to 189 m/sec).  This represents one of the best documented 
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large-scale earth penetration experiments eTer conducted, consisting 

of eight successful shots into a target which had "been previously sub- 

jected to an extensive material property investigation. A summary of 

the test results is given in Table 2, which is taken directly from 

Reference lU. 

^9<» The shallow and deep penetration theories will now he used 

to calculate projectile motion In the idealized four-layer target site. 

Bilinear shear properties and initial densities are tabulated for the 

target In Table 3 (E =0 for all layers)»  These properties were used 
15 

in a pretest calculation bv Rohani  and are obtained from the results 
Ik 

of unconfined dynamic tests*   The relation between density and pres- 
lU sure  is given for each layer in Figure 17. The projectile weights 

and diameters are 200 lb (91 kg)9 280 lb (12? kg)9 U00 lb (182 kg)9 and 

U.125 in. (10.U8 cm), 6 in, (15.2U cm), 6.5 in. (16.51 cm)s respectively. 

The UOQ-lb projectile has a 9-25 CRH ogive nose shape (L/D = 3); the 

other two have 6.0 CRH ogive nose shapes (L/D = 2,k).     Comparisons of 

theoretical and experimental final penetration depths are given in 

Figures 18-20, and a comparison of theoretical and experimental decelera- 

tion records for Test No. 6 is shown in Figure 21. These calculations 

fall in the range of moderate to high solid Reynolds number (R -10 ), 
S 

and the shallow penetration theory exhibits an increasing tendency to 

underpredict final penetration depth at the higher impact velocities 

(i.e., at the higher values of R ). On the other hand9 the deep pene- 

tration theory reproduces the observed final depths with fair accuracy. 

Examination of the deceleration records in Figure 21 reveals that 

neither theory duplicates the details of the experimental deceleration 

curvei however, the deep penetration theory predicts decelerations which 

are more nearly in agreement with the experimental results. 

Very Deep Penetration of a Multilayer Earth Target 

50. Some of the deepest earth penetration events on record were 

observed in tests conducted by Sandia Laboratories at the Tonopah Test 

Range (TTR) near Tonopah,, Nevada. The results of these tests are 

56 



ta 
I.I 
O 

4.1 
w 
0) 

4) 
•P 
d.1 

P 
O 
(U 

o 
u 
p. 

4> 
•P 
S 
01 

•P 

1-3 
O 

fe. 
13 
01 
-P 

B 

P 

03 
P 

W 

K 

C\J 

V     E-i 
H 

i 
a 
o 
p 

OJ 
p' «   -- 

K   U 
<D   W 

O   P = 
u-\ H ec 

NO c—   co OS 
(<1H     ^ 

ft 

$-1 
-P S   ° 

in d  o> -P  S 

3 Vi 

A 

o 

> -P ml     -—• O    ^ i 
a!   cd -  I       I cO      I - 

NO NO     00  H 
oo H   \o s 

o t— 

!   5 !  S { 

•01      -^  rH 

l/N 
Ov 

o 
CO 

Si* 

I   ! 

o 
H 
-3 

o 
OJ 
H 
UN 

C-. 
CO 

~3 
O m 

o 
in 
NO 

H 
SO 

CO 

-3 
o 
-3 

O 
OJ 
l/N 

C-. 
oo 
ON 
-3 

NO o 
0O 

1 0\ 
H 

NO 

g.g 

ts «3 

OJ CO     CO 

co     ON    I/N 
-a-    co   NO 

ON 

NO 

CO 

& g 

s 

ON 

ON 

O 
CO 
OJ 

3 

ON    ON    r-i 

ON    ON    OJ 

O    CO    CO 
-3-      OJ      OJ 

O     CO    CO     o 
NO     -3-     _»     NO 

OJ 

o o 

o 
NO 

CM 

o 
o 
-3 

o   o 

8 8 
OJ      OJ 

NO NO     NO 

l/N l/N 

o l/N o o l/N l/N ITN 2 OJ 

NO NO NO NO NO NO NO -3 -3 

H OJ CO -=r l/N NO C— g ON 
o o o o o O O o 



Table  3 

Materiial Properties  for Watching Hill Test  Site 

Layer 
No. 

p0 
_££f 

93.0 

Y 
bar 

3.10 

E 
"bar 

276.0 

Depth of 
Layer Bottom 

ft 

1 8 

2 88.6 2.07 138.0 16 

3 116.0 2.07 138.0 2it 

k 123.0 2.07 82.7 CO 

0.5 

LAI"EM I 

LAYER 2 

LAYER 4 

O.A 

PAVE!KBAR 

O.ij 

Figure 17. Pressure=density relations 
for Watching Hill test site 
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Figure 20o  Final penetration depth versus impact velocity 
for 200-lb Watching Hill test projectile 
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reported by Patterson  for a projectile with the following 

characteristics: 

¥ = 650 lb (295 kg) 

D = 9 in, (22,9 cm) 

CRH =6.0 (ogive nose) 

17 Peterson and Hadala  have made upper- and lower-bound strength estimates 

for the Antelope Dry Lake where the tests were conducted.  These esti- 

mates were made using available unconfined strength data and visual 

classifications for the Antelope Lake and Main Lake beds along with 

constitutive property analyses for similar playa deposits at TTR and 

at the Nevada Test Site.  The estimated strengths are listed for the 

idealized four-layer target in Table U. 

Table U 

Material Properties for TTR Antelope Dry Lake Site 

Layer 
Ho. 

p0 
pcf 

103 

Lower-Bound Y 
bar 

Upper-Bound Y 
bar 

Depth of 
Layer Bottom 

ft 

1 0,689 3.UU8 25 

2 99 0.001 3.H8 37 

3 111 5.172 10.3^5 109 

14 103 3M8 10.3^5 CO 

For the upper-bound strengths, E % 150 Y ; and for the lower-bound 

strengths, E * 75 Y.  The target is assumed to be incompressible. 

51.  Experimental and theoretical results for final penetration 

depth are compared in Figures 22 and 23, with the shaded area repre- 

senting the range of predicted depths resulting from the estimated 

bounds on the target properties. The difference in the predictions of 

the two penetration theories is dramatic:  the shallow penetration 
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theory exhibits a growing tendency to underpredict final depth with in- 

creasing impact velocity9 while the deep penetration theory predicts an 

approximately linear relation between final depth and impact velocity 

which is in rough agreement with the experimental results.  Figure 23 

also serves to illustrate the prediction sprea.d which is to he expected 

when target property estimates are made without the benefit of a detailed 

investigation of the target site itself.  In these calculations, the 

solid Reynolds number at a velocity of 2500 ft/sec is on the order of 
3 

R  ~ 10  .  No experimental deceleration records are available. 
s 
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PAST eV:  CONCLUSIONS AID REC0t#ffiIDATX0I8 

52. As a result of efforts made under the present research pro- 

gram,, the projectile penetration theory originally formulated by 
3 

Goodier has been extended so that the theory is now applicable for 

deep penetration as well as for shallow penetration in "both homogeneous 

and layered cohesive targets. The initial formulation of the theory 

was "based on an ad hoc analogy with the dynamic expansion of a spherical 

cavity in an infinite medium.  The final step in the theoretical de- 

velopment was directly empirical in that a single function \f;(R ) had 
s 

to he chosen which relates dynamic penetration resistance to the solid 

Reynolds number as well as to the projectile geometry*  This was ac- 

complished by means of a trial and error comparison of experimental and 

theoretical resultss but it is emphasized that the expression for 

i^(R ) which was chosen (Equation 8U) is the same for all targets and s 
projectiles.  The deep penetration theory now represents a self- 

contained tool for making penetration predictions and requires only the 

projectile characteristics and the target constitutive properties as 

input. 

53. The deep penetration theory is most applicable for cohesive 

targetss such as metal, rock, and concrete.  On the other hands it is 

least applicable for granular targets, such as sand9 which exhibit a 

strong dependence between shear strength and confining pressure. 

5^.  The comparisons of theoretical and experimental results for 

cohesive targets in Part IV suggest reliability at solid Reynolds 

numbers as high as R •* 10  s at least for nose shapes with L/D _> 1 . 
s 

For L/D < 1 3 the range of reliability probably decreases with de- 

creasing L/D .  When L/D >_ 1 , the theory results in an approximately 

linear relation between final penetration depth and impact velocity, 

which is consistent with experimental observation.  The theory also 

predicts an approximately linear relation between final depth and pro- 

jectile frontal loading W/A s as well as a nonlinear relation between 

final depth and projectile nose length. 

55.  In those cases where it is applicable, the deep penetration 
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theory can generally be expected to predict peak deceleration within 

about a factor of two and final penetration depth within about 20 per- 

cent when the target density and uneonflned strength are known with 

reasonable accuracy.  Other quantities, such as total duration of the 

penetration events will probably "be accurate within about a factor of 

two.  Error in prediction will, of courses increa.se as uncertainty in 

target properties increases. 

56.  Future efforts should be directed toward further comparison 

of theoretical and experimental results and toward the development of 

a penetration theory for materials which are governed by the Mohr- 

Coulomb failure condition (shear strength proportional to confining 

pressure).  The Mohr-Coulomb condition is more generally applicable to 

soils than is the Von Mises condition which is used in the present 

theory. 
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APPHfBIX As  10TATX0S 

a9a9a Badial position, Telocity, and acceleration, respectively„ of 
spherical cavity wallt 

a_ Projectile radius at layer interface location 

a Maximum projectile radius - D/2 (Figures 3 and k) 

a Projectile radius at target surface 
S 2    2 A Maximum projectile cross-section area = ira = irD /h 

b Badial position of spherical plastic front (Figure 1} 

b Initial radial position of particle located at position b 

B-, ,Bp Cavity expansion inertial coefficients (Equations ^0 and Ul)tt 

C Dilatational wave speed 

CRH Ogive caliber radius (Equation 67) 

D Maximum projectile diameter = 2a (Figures 3 and k) 

E Modulus of elasticity in compression 

E Strain-hardening modulus in compression 

f ,f Functions of integration (Equations h9  99 and 11) 

f Projectile nose shape factor (Equations 62, 63»  65s 72, and 78) 

f ^ Effective nose shape factor near a layer interface (Equation 9U) 

F Ifet axial resisting force exerted on projectile by target 
Z 2 2 g Gravitational acceleration = 32,2 ft/sec  (9.8 m/sec ) 

h Radial position of interface between two concentric layers 
(Figure l) 

h Initial radial position of interface between two concentric 
layers 

H Distance from base of projectile nose to layer interface loca- 
tion (Figure 5) 

L Projectile nose length (Figures 3 and k) 

m Summation index 

M Projectile mass 

t A dot above any quantity denotes differentiation with respect to 
time. 

tt With the exception of B..  and B_ , the subscripts 1 and 2 denote 
first and second layer quantitiess respectively. 
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p   Compressive normal stress at cavity surface (Equations 7 and. 30) 
and at projectile frontal surface (Equation k&) 

PT   Dynamic pressure at cavity surface (Equation 38) and at pro- ~ 
jeetile frontal surface (Equation U9) | 

p    Compressive normal stress at cavity surface due to material f 
•behavior in shear (Equation 39) f 

P _    Volume-averaged dynamic pressure in plastic region (Equations I ave 
h2  and 107) 

qsq3q Projectile penetration depth,, velocity* and acceleration, l 
respectively j 

q Final penetration depth \ 

r Eulerian radial coordinate J 

r Initial radial position of particle located at position r I 
° , « B. Shown in Figure h ] 

R Solid Reynolds number (Equation 68) \ 
S I 

S Effective distance from "base of projectile nose to plastic i 
front (Figure 5) I 

t Time 

v Outward radial particle velocity 

v sv Components of vv  , respectively9 normal and tangent to projec- 
n Xf tile frontal surface (Figure 3) 

v Projectile impact velocity 

v Target particle velocity adjacent to projectile frontal surface 
P (Figure 3) 

v Residual projectile velocity 

W Projectile weight 

x londimensional cone position (Equation 52) 

x Equivalent nondimensional cone position for ogive (Equation 55) 

Y Yield strength In compression 

z Axial distance measured aft of projectile nose tip (Figures 3 
and h) 

a Material compaction coefficient (Equation 12) 

3,6 londimensional material parameters (Equations 17 and 2k) 

La, Discontinuity in a  at r = b(t) 
b r 
e Ogive parameter (Equation 67) 

e Locking strain (Equation l) 

A2 



"0 
Icrmal strains In radial and circumferential directions, 
respectively 

r\ Shown in Figure h 

£ Hondimensional depth (Equation 115) 

TT 3.1^16 

p Material density 

p. Locked plastic density 

p Projectile density 

P_ Initial density 

a Limiting value of o      as r-*b in the elastic region 

a Limiting value of 0  as r-»b in the locked plastic region 

0  ,o_ Normal stresses in radial and circumferential directions, 
respectively 

4> Gone half-angle (Figure 3) 

<J> Equivalent cone half-angle for ogive 

¥ Function relating v.  and R (Equations 69 and 8k) 
t      s 
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