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1. INTRODUCTION

1.1 BACKGROUND

A tactical missile guidance system may require an
accurate estimate of missile-target range. Acceptable accu-
racy can usually be achieved using direct radar range mea-
surement techniques. However, it is a distinct possibility
that radar range information mav not be available, either
due to electronic jamming by the hostile target, or due to
the use of a passive seeker (with infrared or electro-optical
sensors, for example).* In either case, thz missile guidance
system will generally be able to measure target bearing or
line-of-sight (LOS) angle. It is thus important to develop
passive range estimation techniques, "ased on the assumption
that LOS angle is the only information available regarding
the relative position of the target from the missile.

One application where range estimation is of inter-
est is a homing guidance system attempting to intercept a
surface target (land or sea). A recent feasibility study
undertaken at TASC has demonstrated that a sophisticated,
inertially-aided. data processing algorithm (filter) can
provide quite accurate estimates of range in an antiship-
ping missile application when the missile performs a termi-

nal pitch-up maneuver (Ref. 1). 1Ia that investigation, an

*If it is anticipated that range measurements may be denied
by jamming, then a home-on-jam capability can be incorpo-
rated in the target tracking system, while passive seekers
are specifically designed to provide LOS angle information.
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extended Kalman filter was provided with measurement:s of LOS
angle, missile acceleration, missile altitude, and missile
attitude. Range 2stimation was greatly facilitated by the
terminal missile pitch-up maneuver performed to achieve an
advantageous target approach angle. Furthermore, the success
of the extended Kalman filter was due in part to the assump-
tion (hat initial estimation errors were relatively small --

as might be the case if radar range measurements were avail- i
able up to the filter initialization time.

In many missile guidance situations, it is important
to be able to obtain good range estimates at relatively
long ranges were LOS angular excursions are small. If it is
necessary to perform a terminal maneuver, for example, it
would be important to initiate the maneuver at the correct
missile~-target separation. Jt may also be necessary to have
an accurate passive ranging capability when initial range
estimates are poor. These requirements provide the motiva-
tion for the present detailed investigation of passive range
estimation algorithms.

The essentials of the problem under consideration
are depicted in Fig. 1.1-1. In this study, the equations of
motion are expressed in Cartesian coordinates, x and y,
representing missile-target separation. This formulation
leads to system dynamics that can be approximated with a
linear model, and to a measurement equation that contains the
nonlinearity

8 = tan"l(y/x) (1.1-1)

where 6 is the LOS angle. While the use cof polar coordinates
would lead to a linear measurement equation, the system dynamic
equations that result contain a number of highly nonlinear
terms. Cartesian coordinates are chosen so that attention

1-2
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Figure 1.1-1 Missile-Ta * Intercept Geometry

can be restricted to a single dominant nonlinearity--the LOS
angle measurement equation indicated in Eq. (1.1-1). An
additional secondary nonlinear effect that may appear in the
above measurement equation is LOS angle quantization. The
impact of LOS angular quantization on the range estimation
problem is studied here as well.

It is assumed that the measurement data consists of

e 0 LA 0 ik, 10090 BN, e

noisy measurements of 6 and noise-free measurements of the

oo B —— B — S ——or

missile acceleration. The motion of the target (ship) is

4 modeled as a horizontal acceleration vector, a with a mag-

] =t
nitude that is a correlated gaussian random process with

bandwidth and rms value selected appropriately. Mathematical

i

details concerning the system model may be found ii. Chapter 2.

The above paragraphs outline the motivation for, and
provide an overview of, the range estimation problem considere
in this investigation. In the next section, an outline of
possible filter design techniques that may fulfill the need
for accurate estimates of missile-target separation is pre-

L B o B o
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1.2 TECHNICAL APPROACH

The optimal estimation problem for linear systems
has been solved (Ref. 2). The well-known Kalman filter algo-
rithm results in a set of recursive relations with which
each measurement can be processed tc yield an updated esti-
mate of the system variables of interest. The estimate pro-
vided by the Kalman filter is optimal, in the sense that the
variance of the estimation error is minimized. One essen*ial
property of this approach is that an exact replica of the
linear system model is incorporated in the algorithm; the
performance of the filter is impaired if this model inaccu-
rately reflects the real world. The relation between the
linear system model and the optimal Kalman filter is por-
trayed in Fig. 1.2-1

While the technique outlined above has proven to
be very successful in applications where the assumption of
linearity is rezlistic, the extension of optimal estima-
tion methodology to the nonlinear case is not necessarily
straightforward. A widely-used solution to the nonlinear
filtering problem is the extended Kalman Filter (Ref. 2);
it is depicted in Fig. 1.2-2 in the same conceptual terms
as the Kalman filter shown in Fig. 1.2-1., The implementa-
tion of the resulting algorithm calls for replacing all sys-
tem nonlinearities with linear gains that are equal to the
slopes of the nonlinearities; the slopes are computed at the
present estimate of the system variables, i. This pro-
cedure is called small-signal linearization about the cur-
rent estimate. It is accurate (i.e., provides a realistic
system model for incorporation in the filter algorithm) as
long as estimation error is small and changes in the slopes

of the nonlinearities are small over the region of interest.

Clearly, these conditions may be restrictive, and they

-
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DIFFERENTIAL EQUATION AND

MEASUREMENT MODEL

MEASUREMENTS
{NOISY OBSERVATIONS!

DESIGN OBJECTIVE OBTAIN
MINIMUM VARIANCE ESTIMATE
OF THE STATE.?

KALMAN FILTER ALGORITHM }.1*__

OPTIMAL
RECURSIVE

ESTIMATE

Figure 1.2-1 Kalman Filter Design Principles
for Linear Systems

raise questions as to how "small" the¢ estimation error and
slope variatioas must be, and how much the filter perform-
ance is degraded when the conditions are violated. None-
theless, thore have been many applications in which the

extended Kalman filter has proven to be effective.

If the underlying assumptions of the extended
Kalman filter design approach are questionable, as may be
the case in applications of the sort considered here. then

more sophisticated solutions to the nonlinear filtering

1-5
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Figure 1.2-2 Fxtended Kalman Filter Design
Principles for Nonlinear Jystems

problem could be required. One possible approach is based
on describing function theory. znd can be called the guasi-
linear Kalman filter design. This concept, which involves

replacing each system nonlinearity with a random-input
describing function (Ref. 3), is illustrated in Fig. 1.2-3;
it is an alternative design technique investigated in this
study.
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The fact that nonlinear filtering is not amenable to

a unified, dependaktle methodology is compensated to some
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extent by the existence of the Cramér-Rao inequality. In

R
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some instances, this inequality defines lower bounds on the
filter estimation error variance that can be achieved by
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the best possible filter, even if such a filter is unknown.
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Given a Cramer-Rao lower bcu. d on achievable estimation
error variance, it is possible to assess how well existing
filters are performing a : ~--cific uonlinear filtering task.
If a candidate filter provides estimation errors that are
comparable to the Cramér-i{ao lower bound, then there is
little to be gained by using other algorithms.

The goal of this investigation is to determine the
performance of the extended Kalman filter and of several
forms of the quasi-linear Kalman filter in the range esti-
mation problem outlined in Section 1.1. Direct comparison
of the performance of these filter algorithms provides a
great deal of insight into their strengths and weaknesses,
and the Cramér-Rao inequality is useful in assessing their
absolute performance.

1.3 REPORT OUTLINE

The subsequent chapters of this report contain the
following material: Chapter 2 is concerned with the develop-
ment of the system model and the derivation of the extended
an? quasi-linear Kalman filter algorithms, Chapter 3 deals
with direct performance comparisons of the two types of
algorithms in a few key situations, and Chapter 4 presents
a summary of the investigation and the conclusions derived
from the study. Appendix A prcvides an overview of non-
linear estimation theory, and Appendix B treats the evalua-
tion of random-input describing functions for the arctangent
nonlinearity involved in the bearing measurement equation.

1-8

o B e T b Dt N S

Sl




e PRI L T T == = =wee Teee— — e — e
A5 f‘{{éf?x%k; B O s = s R e S
e g WAL =

THE ANALYTIC SCIENCES CORPORATION

2. MODEL DEVELOPMENT

Jiga

In this chapter, the range estimation problem
under investigation is specified-by deriving a simple mathe-
matical model io represent the missile and target dynamics.
One essential nonlinear effect is incorporated: the LOS
angle measurement relation (Eq. (1.1-1)). The model described
here is quite similar to that of Ref. 1; the problem has
been simplified, however, by the exclusion of some secondary
error sources (altimeter bias and random altitude measure- :
mert error, accelerometer bias, attitude reference tilt and % §
gy.o drift). The elimination of these error sources does ;
not compromise the degree of realism :ecessary to achieve 2
the goals of the study.

we h.;;ﬁgmp,u ™

) O A i 0 S

2.1 TARGET MOTION MODEL

The range estimation problem outlined in Section §
1.1 deals with the planar intercept case, with the motion
of the target constrained to be alorg the horizontal or x

r axis (Fig. 1.1-1). We assume that the target acceleration

¥ magnitude, a, is a first-order Markov process, modeled as :
- a zero-mean gaussian white noise process, w, passed ;
% through a single stage of low-pass filtering, as depicted g

in Fig. 2.1-1. By suitably adjusting the values of the tar-

3§ get maneuver bandwidth, w,, and acceleration rms level,
Oa’ a wide variety of random target maneuvers can be real- i 3
% istically represented. A constant rms level of horizontal 1
* E
acceleration is assumed for the present study, B
4 % *E[] denotes the expected value of the bracketed variable. :
2N
AN

N
‘ |
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INPUT DISPLACEMENT

w, fg— TARGET VELOCITY
TARGET ACCELERATION

Figure 2.1-1 Target Maneuver Model

2 - 2
E[atbtﬂ = Uao (2.1-1)

To achieve this condition, the spectral density of the
white noise process, q, is specified by

E[w(t)w(r)] 8 g 8(t-1) = 20,02 §(t-1) (2.1-2)
o]

A ship of moderate maneuverability can be modeled by choos-

ing the bandwidth and rms acceleration level to be 0.05 rad/sec

and 3.22 ft/sec2 (0.1g), respectively. The target horizontal

velocity and position in an earth-fixed inertial frame, v

t
and x

¢ respectively, are then obtained by integration
(Fig. 2.1-1)

2.2 MISSILE TRAJECTORY GENERATOR

The motion of the missile with respect to an earth-
fixed inertial frame is modeled deterministically by a

trajectory generator that produces a specified time history

of missile position, X and Ym? missile velocity, Vmy and
Vmy » and missile acceleration, am, and amy, in Cartesian

coordinates. By utilizing the specified trajectory, the
need for modeling the guidance and control system is avoided.

2-2
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Furthermore, by removing the range estimation function

from

the guidance and control loop, it is guaranteed that the

same trajectory will be followed in each case studied,
the filter performance evaluations exactly comparable.

making

The trajectory is qualitatively similar to that

portrayed in i'lg. 1.1-1, i.e., there is ar initial low-
altitude cruise phase of 7.2 sec followed by a pitch-up
minal maneuver. Details of the trajectory, expressed i
normalized units, are given in Chapter 3.

2.3 STATE VECTOR DIFFERENTIAL EQUATION AND
MEASUREMENT MODEL

The five state variables used in the missile-t
ranging problem are indicated in Table 2.3-1. Observe
the horizontal separation and separation rate are relat

ter-
n

arget
that

ive,

i.e., the state variables Xq and Xq represent the horizontal

displacement and velocity from the missile to the targe
The state vector differential equation then has one ran

t.
dom

input w (Fig. 2.1-1) and two deterministic or known inputs,

Ay and amy, which are henceforth denoted by uy and Uy,
respectively. By considering the missile accelerations

to be deterministic filter inputs, it is assumed that errors

that may arise in the resolved body-mounted accelerometer

measurements are negligible in comparison with the LOS angle

measurement errors. In terms of the above variables, the

relative missile-target motion is governed by

x = Fx + gw + Lu

(2.3-1)

B - e g o LA o 4
e SO
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TABLE 2.3-1

STATE VARIABLES IN THE MISSILE-TARGET
RANGE ESTIMATION PROBLEM

VARTNBLD AR IVE INTERPRETATION
x -X Missile-target horizontal
1 T e separation
X, V-V Missile-target horizontal
separation rate
x3 Im Missile altitude
x4 v.’ Missile altitude rate
xg ‘t Target horizontal acceleration
where
0 1 0 O 0 0 0O O
0 0 0 0 -1 0 1 0
F=10 0 0 1 0 , =10 , L=10 O
0 0 0 O 4] 0 0 1
0 0 0 0 -u 1) 0 0]

(2.3-2)

The scalar measurement available for range estima-

tion is a corrupted observation of line-of-sight angle sampled
at times tk’

N
|

-1
K = tan (x3(tk)/x1(tk)) + Vi

g

ek Ve k=0,1,2,... (2.3-3)
where it is assumed that the sampling rate is uniform,

tk = k7 (2.3-4)

with sampling interval, 1. The measurement noise sequence

Vi is assumed to be a zero-mean gaussian random process with

Y bt . vy o
v SR ol Wb Adionls 4 v o8
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constant variance pv,
E[vk]
E[vi]

A further source of measurement inaccuracy

"
o

, k=0,1,2,... (2.3-5)

]
©
<

considered in this investigation is quantization, which is
denoted by the nonlinear operation fq(°) defined by

( 0 , lzl < &/2
§ sign z , §/2 < |z]| < 368/2
j 26 sign z, 38/2 < |zl < 55/2
£,(2) = | . . (2.3-6)

\NG sign =z, (2N-1)48/2 5 |2]| < =

The quantizer output takes on the (2N+1) discrete values
0, +&., *26,...,*tNS§ as z varies continuously. It is assumed
that quantization occurs after the corruption of the LOS
angle measurement by the random sequence Vi

Zq,k = Tq{tan™ (xg(t)/x (t)) + v} (2.3-7)

This last relation is the most general measurement equation
considered in this study.

An overview of the system dynamics and measurement
model is provided in Fig. 2.3-1. This model serves as the
basis for the design of filter algorithms to estimate target
position, velocity and acceleration when the only available
measurement of relative target position is LOS angle.

2-5
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UNEAR CONTINUOUS- TUAE NONUNEAR DISCRETE - TIAAE t-un
ONNAMICS MODZL MEASUREMENT MODEL
MEASUREMENT
NOXSE SEQUENCE

“

l
l
I
I T . QUANTIZER
> o —X g B 200
i
{
|
l
|

{

Figure 2.3-1 Mathematical Model for the
Range Estimation Problem

2.4 LINEARIZED MEASUREMENT MODELS AND MODIFIED KALMAN
FILTER ALGORITHMS

2.4.1 Filter Algorithms When Quantization is Absent

Equations (2.3-1) to (2.3-3) provide the basis for
designing both the extended Kalman filter (EKF) and quasi-
linear Kalman filter (QKF) for the range estimation problem
when quantization is not present. The system dynamics, indi-
cated in Eq. (2.3-1), are linear, so it is necessary to lin-
earize only the measurement, Eq. (2.3-3). Two approaches
are used in this study.

The first technique considered is small-signal
linearization about the current filter estimate of the state,

X
_ --1 ~ A a -1 _3_ __’:
25 ° tan (x3/x1)-+3§— tan (x ) (x4 kl)
L /14
3 -1 (*3 a
+ T tan (;—) (x3-x3) + Vi
3 1 ~
X=x
o) +nl g+ v (2.4-1)
2 2g 2 k .
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The vector hq
2

<%
h, = [—3— tan’*(—%)

is given by

X

9 -1f"3
0 +—— tan —
3x3 (xl)

g

(2.4-2)

and géx-g is the difference between the true state vector and
“he current estimate.

The second linearization technique is called quasi-

linearization (Ref. 3}; it entails replacing Eq. (2.3-3) with
the random-input describing function (ridf) representation

ZQ.x = 8 + EQ X+ v (2.4-3)

In this approximation, 8 and EQ are given by

@>
Hl

4 E[tan_l(xalxl)}

he & E[*T tan’l(xs/xl):]p‘1 (2.4-4)

where E[ ] denotes expected value, X is the random part of x,

& x - Elx)

Bl

and P is the associated covariance matrix,

P& E(x &)

The guantities 5, go defined in Eq. (2.4-4) satisfy the con-
dition that the resulting mean square error in approximat-

ing Eq. (2.3-3) by Eq. (2.4-3) is minimized.
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In the standard ridf methodology. the expected values
indicated in Ea. (2.4-4) are evaluated by assuming that x is
a vector of gaussian random variables with mean m and covar-
iance matrix P. In the present application, m is the current
state estimate, X, and P is the filter covariance matrix which
is propagated as part of the recursive slgorithm detailed sub-
sequently. As noted in Appendix A, the gaussian assumption
results in the dependence of the ridf's on i and P alone:

by = hy(%.P)

In the studies described in Chapter 3, three dis-
tinct quasi-linear representations of arctan (y/x) are
considered. One reason for this multiplicity is that 6 and
EQ defined as in Eq. (2.4-4) cannot be evaluated analytically
in closed form when x and y are jointly normal; consequently
two approximate techniques have been applied to the prob-
lem. The third ridf model for this nonlinearity is based on
a nongaussian density function; it was developed to study
the impact of the gaussian assumption on the performance of
a quasi~linear Kalman filter (QKF) algorithm.

The most accurate gaussian-based ridf is obtained by
numerical integration; the filter which utilizes that approach
is designated the QKF-N and the ridf components are denoted
éN' EQN' A simpler ridf representation of arctan (y/x) is
obtained by a power series expansion technique; it should be
noted that this leads to ridf's that are distribution inde-
pendent. The corresponding filter algorithm and ridf compo-
nents are called the QKF-FP and §P, hQP' respectively. The

third quasi-linear representation is based on a truncated

and folded gaussian deasity,
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0 , X <0
Pp(Xx,y) = (2.4-5)
p(x,y) + p(-x,y) , x 20

where p(x,y) is the joint density of x and y under the
gaussian assumption (cf. EZq. {(B.1-5)); by truncating the
density at x = 0, it is assumed that there is no probabil:cy
that the missile has flown past the ship. Using the trun-
cated density, Eq. (2.4-5), numerical integration is used to
obtain éT' hqr; substituting these results in the quasi-
linear filter algorithm leads to the QKF~T. Details con-
cerning the evaluation of these ridf's are given in
Appendix B.

The above linearized measurement models are nearly
the same when the estimation error variances (elements of P)
are small. However, if there is significant uncertainiy in
the estimate, they differ considerably. The comparison indi-
cated in Table 2.4-1, normalized to a unity altitude estimate,

TABLE 2.4-1

COMPARISON OF SMALL-SIGNAL LINEAR AND
QUASI-LINEAR APPROXIMATIONS OF ARCTAN (X3/§1)*

2
Fstimates and - P11 = (20.0 units)
Estimation Error §1 - 42‘8 5§i:: P13 = 0.0
Variances 3 : p33 = (0.2 units)?
Li 1 -
Teg§:§q§2‘1°“ 8(%) or 8(rad) | h (rad/unit) | hy(rad/unit)
Small-Signal 2.5 x 102 -1.25 x 105 | 5.10 x 10-4
Quasi-Linear, -1 - . _-—_
Numerical Integration| 1+00 X 10 -1.79 x 10-4]8.25 x 10-4
Quasi-Linear, -2 - -
Power Serios 3.12 x 10 -2.19 x 10-5 | 6.24 x 10-4
Quasi-~Linear, -3 =5 -
Truncated Density 4.98 x 10 -2.85 x 10 8.83 x 10-4

*“unit” denotes a normalized length, Pij are the relevant entrios of P,
and hy, h3 are the nonzero elements of bg or gq.
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zontal separation estimate can lead to large disparities; these
conditions may not be unreasonable during the cruise phase.

The extended Kalman filter (EKF) algorithm is
mechanized according to the following relations: given

§k-‘(+) and Pk_1(+) as the state vector estimate and filter

' i §3 = 1, indicates that a 50 perceat uncertainty in the hori-

covariance matrix after the previous measurement and update,
the filter variables satisfy

e

Extrapolation Between Measurements

t
R,(-) = 0 R (+) *jf Ke(t,~t)L u(t)de

L ¥ TP

tk-1
B (=) = ¢Tpk_1(+)¢f +Q (2.4-6)
i U where 1
| oct) & exp(Ft) é
) o, o) i %
- Q & Q{(T b(T-£) gglO (T-£)dE  (2.4-7) ’?
| |

and q is the spectrgl density of w (Eq.(2.1-2)),

—

Update at a Measurement

ot

BB L
[ ———
[r—

(2.4 3)
- . T .
1 Pe(+) = [1 - g () | Pe(o)
ez where
i 8 p h.Tp (-)ha + p.) (2.4-9)
ky = Py(-)hg/(hg Py(=)hg + oy :
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The first step of the above procedure, Eq. (2.4-6), propagates
the filter estimate over the time period between measurements,
according to the linear dynamic model of Egs. (2.3-1) and
(2.3-2), and the modification of P reflects the change in
estimation error covariance during the same interval. The
second step, Eq. (2.4-8), represents the use of the current
measurement 2y to update the state vector estimate. The
auxiliary matrices indicated in Eqs. (2.4-7). and (2.4-9) ars
the general transition matrix, ¢(t), the transition matrix
evaluated over cone sample time, ¢T, the equivalent discrete
noise matrix, Qd' and the Kalman gain vector, k- Equations
(2.4-6) to (2.4-9) are the particular case of the EKF algorithm
presented in Appendix A.

The quasi-linear Kalman filter (QKF) for the present
problem differs from the above EXF algorithm only in tne
update step:

X (+) = X, (=) + gk[zk - ’e‘(gk(—),Pk(-))]
(2.4-10)
- T &
P = [T - iy (), 2 () [y ()
where
k, 2 P (-)b_/(hiP, (-)h, + ) (2.4-11)
=k Tk IR Ty '

The extrapolation step is unchanged, since the system dynamics
equations are linear. These equations are considered in more
detail in Section A.3.

2.4.2 TFilter Algorithms When Quantization is Present

Introduction of the quantization noniinearity fc(-)
ffiven in Eq. (2.3-6) in the measurement. 1s in Eq. (2.3 ?),

2-11
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requires further modification of the estimation algorithms

given in Section 2.4.1. The approaches used to deal with

this effect in the EKF and QKF algorithms are quite different,
since the discontinuous nature of the nonlinearity precludes

the formal use of small signal linearization, as mentioned in
Section A.2.

Observe that the quantizer characteristic in Eq.
(2.3-6) approaches a continuous linear unity gain character-

istic as § goes to zero and N goes to infinity. This implies

that quantizatica can be ignored in the limit as the cell-

width § becomes small. and we can replace the quantizer with

a unity gain. When § is not infinitesimal, it is clearly

not reasonable to make a formal application of the EKF

principle of small-signal linearization,

Y

h(x)

e

oh

Ed

=R

>

T.
h(R)+hex

since the fact that the nonlinearity has zero slope for

almost all values of the input would lead to setting h

S
to be zero.

A more intuitively satisfactory linearization
technique entails replacing the quantizer with a unity

gain (Ref. 4) and modeling the difference between the input
and the output as an additive white guantization noise, v
If the quantizer input probability density function is
nearly constant over each cell, then it is accurate to
assume that vq is uniformly distributed over the interval
-%48, 36. As czn readiiy be established (cf. Table C.2-1

of Ref. 5), a random variauble with this distribution has

4 wero mean and rms level of §/v12. If this artificial

raador process is assumed to be uncorrelated with the real

2-12
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measurement noise sequence Vi in Eq. (2.3-3), the total
measurement noise variance is then

- 2 -
pq = oy + 67/12 (2.4-12)

Modifying the measurement noise variance as in Eq. (2.4-12)
completely accounts for the effect of quantization in the
small-signal linearized measurement model.

A quasi-linear model for the quantization effect
defined in Eq. (2.3-6) is needed for the QKF. Given the
input statistics,

E[z] = m
E[(z—m)z] = 62

the quasi-linear representation of the quantizer is of the
form

fq(z) = fq(m,o) + nq(m,o)(z-m) (2.4-13)

The ridf's indicated in Eq. (2.4-14) are (Ref. 3)

N
3 o= s (2i-1)§ . m\ _ p;f(2i-1)§ m
q i;[p:[( 20 o PI 20 o
(2.4-15)
N
_s (2i-1)6 m) (2i-1)6 m
97 % ;g; [PF( %0 0;'+pF( 20 " o© ]
where
1 ~4y2
PR(v) =5 e
(2.4-16)

v
PI(v) =f PF(v)dv

-0

2-13
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From the quasi-linear representation of the noisy
LOS angle measurenent before quantization, zQ K (Eq. (2.4-3)),
the quantizer input statistics are evaluated approximately as

m= 8§
2 . T {(2.4-17)

h.Ph., + Py

7 T 2"

The complete quasi-linear measurement model is then obtained
by cascading the random component ridf's as follows:

z =% +n
qQ,k q q

1>

(92 + V) (2.4-18)

The two linearized measurement models described
above are depicted in Fig. 2.4-1. 1In the small signal or
EKF case, the addition of the fictitious quantization noise
(Eq. (2.4-12)) to the model given in Eq. (2.4-1) completely
accounts for the quantizer, while the quasi-linear repre-
sentation of the same effect introduces a describing func-
tion gain, nq, and a modified expected value, fq.

On the basis of the above arguments, the EKF
algorithm modification that accounts for the presence of LOS
angle quantization is obtained by merely replacing Py in
Eq. (2.4-9) with pq given in Eq. (2.4-12),

- T 2
k, = P (-)hg/(hP, (-)hg + o + 6°/12) (2.4-19)

The quasi-linear model of Eq. (2.4-18) is seen to result

in the QKF algorithm having measurement update equations of
the form

Be(+) = 2,(-) + K (z - £,(m,0))
(2.4-20)

P+ = [ - “q"""’)ikﬁg@k(‘)’pk(-))]pk(_)

2-14
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J

where

L |

&

_ /s T .
k, = PM-’%@M-)»Pk<->)/(“q<m’°>LEka<')Eq*pv]) (2.4-21)

=
P T L

&

The algorithms given in this section for estimating
relative missile-target position, velocity and acceleration
arc based on two quite general and powerful nonlinear

2-15
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estimation techniques: the extended Kalman filter (EKF) and
the quasi-linear Kalman filter (QKF). The goal of this
study s to determine their performance (both absolute and
comparative) in the antishipping missile application

(Fig. 1.1-1).
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3. FILTER RANGE ESTIMATION PERFORMANCE

3.1 PRELIMINARIES

The missile from wﬁich the target line-of-sight angle
(LOS angle) measurements are taken follows a deterministic
trajectory which is qualitatively depicted in Fig. 1.1-1. The
initial 7.2 sec of the flight is a constant-altitude cruise,
with normalized altitude of unity (y=1 unit) and an initial
horizontal missile-target separation, Xx,, of 425 units. The
cruise phase #f the engagement ends at x=300 units and is
followed by a pitch-up maneuver. The latter leads to a maxi-
mum altitude of about 22 units at 19 sec and terminates at
the nominal target position at 26.5 sec. It is assumed that
the motion of the target is characterized by a horizontal
acceleration which is a zero-mean correlated gaussian random
process with bandwidth 0.05 rad/sec and rms level of
3.22 ft/secz; these parameter values are representative of a
moderately large ship conducting a slow random maneuver. The
LOS angle measurement noise sequence, Vi in Eq. (2.3-3), is
always assumed to be a zerc-mean discrete gaussian process

with rms level 4.38 mrad (0.25 deg); the data rate is
5 measurements/sec.

In order to assess the performance of the various
filter algorithms, a single random realization of the
stochastic nonlinear estimation problem is obtained. Ran-
dom number generators are used to generate a suitable mea-
surement noise sequence, vk, and random target accelera-
tion sample function, ay . In all of the engagements pre-
sented here, the time-histories of Vi and a, are the same,

3-1
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- ‘

which permits direct comparison. The variables of greatest

concern are the initial values of the error in the filter
estimates,

TR PO L ATTITEY

Xy and the uncertainty of these estimates,?o,whe

4

§[ X, = x(0) - x(0)

- T (3.1-1)

N Po = ick']

éE The initial state vector is always specified by* é
[425.3 u i ]

‘i} -17.90 u/sec p

b x(0) =| 1.0 u (3.1-2) :

1 0.0 u/sec : %

- 6.142 ft/sec? | ‘

o 4

The initial estimation error covariance matrix is assumed
to be of the form

2 y
. o po_. © 0 0 0 ;
XO XO XO £
2 3
po. O. o 0 0 0 <
[ Xo Xg X0 i
P8 o 0 o2 po_ 0, 0| (3.1-3)
- Yo Yo Yo
g 0 0 o. o, o? 0 3
f - P Yo Yo Yo :
§ g 0 0 0 0 02
i a,
a0 i .
§ 1

W

where p is chosen to be 0.707, which allows for correlation

between the initial velocity and position estimates, in each

e Vo e < e S
FPREFIS S E AL ot vt D St

*The abbreviation u stands for unit (normalized length).
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coordinate. Thus, Po is completely specified by the five
diagonal elements, or their square roots. For convenient
reference, the vector 9 is defined as follows,

T A
o~ =1|0 Ge O c o] (3.1-4)
0 [ X0 %0 Yo Yo ao]
Finally, the error, ¥, in estimated range, and the estimate

of rms range uncertainty,* Ur’ provided by the filter covari-

ance matrix are of particular interest; these are given by

T 4 r-r
= ¢X2+y2 - ,/5‘(24.?2
-, \T 3
o = j_al P .@.1:.
r 9x 9X
— A2 AN ,\2 '\2 A2 i
= L(pyq X7 + 2p13XY + Paa¥ )/ (X7HY )] (3.1-5)

3.2 MEASUREMENT WITHOUT QUANTIZATION

The filter performance comparisons presented in this
section are for situations where quantization efiects can be
neglected. The engagements investigated are categorized
according to the assumed value of fthe initial rms horizontal-
separation estimation error, oy .

*Note that o, is not the true rms range estimation error
because the filter covariance matrix is generally not equal

to the actual estimation error covariance in a nonlinear
filtering problem.

3-3
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3.2.1 Small Initial rms Horizontal-Separation
Estimation Error

The initial values of X and ¢ are specified by

p~ -

-4.67 u 4.29 u

0.703 u/sec ’ 0.707 u/sec
%, = | 0.2 wu , Gy =]0.209 w (3.2-1)
-0.08 u/sec 0.0849 u/sec
| 6.142 ft/secz_  3.22 ft/seczd

These conditions correspond closely to the nominal case of
Ref. 1 without altimeter measurements; they are typical of
situations where radar range measurements are available until
the filter initialization time, when they are denied by tar-
get jamming activity.

The time-histories of ¥, the range estimation error,
and T the rms filter range uncertainty, are depicted in
Fig. 3.2-1. Since Oy is much smaller than x for the first
10 sec of the engagement,* it might be anticipated that the
EKF and the two QKF algorithms should perform nearly iden-
tically, as is indicated in Fig. 3.2-1. In mid-engagement,
however, there is some departure between the EKF and the QKF
with accurate ridf's determined by numerical integration,
denoted QKF-N (Sections 2.4 and B.3). Observe that the QKF
with approximate ridf's based on a power series expansion
(Section B.2), which is designated QKF-P, is indistinguish-
able from the EKF. The QKF based on the triuncated gaussian
density (QKF-T) was not exercised for this case; as shown

*Since the missile altitude is always much smaller than the
horizontal missile-target separation, the pairs (x,r),
(0x,0r) and (xX,T) are very nearly equal in the studies per-
formed here.
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12 %12 R-20803

B <
5 8- o -
i EKF, QKF-P .
& 2
c 4 < 8-
[+
w &
2 o- S -
= 5
< g QKF-N
£ 4- z 44 4
= 4
@ c
w [+ o4

- w -
g 8 QKF-N -
< = EKF, QKF-?
o '8

12 T T T T T 2o T T T
o 10 26 BvxE O 10 20 30
TIME, t (sec) TIME, t (sec)
{a} RANGE ESTIMATION ERROR,¥ (b} RMS FILTER RANGE UNCERTAINTY, g

Figure 3.2-1 Time-Histories of Range Estimation
Error and Uncertainty for Small
Initial Uncertainty

subsequently, its performance can be anticipated to be inter-
mediate to that of the QKF-N and the QKF-P.

The relative behavior of the three filter algo-
rithms directly reflects the comparative values for the
linearized measurement model parameters -- 8 or 6, hl, and
h3 -- listed in Table 2.4-1. The table demonstrates that
corresponding values of these parameters are more nearly
equal for the EKF (small-signal linearization) and the
QKF-P (power series) than for either the EKF or the QKF-P
and the QKF-N (numerical integration). All algorithms main-
tain 0. and ¥ within the range + 12 units for the trial per-
formed, which may be adequate in some circumstances, espe-
cially in the first half of the engagement (t<15 sec) when
range is greater than 180 units.
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3.2.2 Large Initial rms Horizontal-Separation
Estimation Error

The initial rms error in the horizontal separation
estimate was increased to 220 units, to represent very poor
filter initialization. Five initial values of io were con-
sidered, viz., 225, 125, 25, -75 and -175 units, which are
designated Cases 1 to 5, respectively. As mentioned pre-
viously, Foiiio, since ?0 is small. Both the QKF-N and the
EKF were exercised for all initializations; the truncated
gaussian quasi-linear algorithm, QXF-T, was applied to
Cases 1, 3 and 5, and the approximate QKF-P was evaluated

for Cases 1 and 5. Figure 3.2 -2 depicts the simulation
results.

An adverse effect observed in the QKF-N time his-
tories of T is a large negative step change at the time the
first measurement is processed, followed by a long period
of relative inactivity; r changes only slightly over the
first ten seconds after the first filter update. The rea-
son for this quiescent behavio: is clearly evident in the
corresponding plots of Ot The filter covariances become
so small that subsequent Kalm~n gains are likewise very
small, and thus the corresponding measurement data is vir-
tually ignored. The small values of cr can be explained by
contrasting the initial quasi-linear measurement equation
parameters (QKF-N) with those obtained by small-signal
linearization (EKF), as given in Table 3.2-1 for Case 1.

Based on §0 and Oxq° the quasi-linear representation

e

8(x) = 8(x,P) + th(x-i> + hq3<y-§>

gives rise to values of § and hQ that are very large in com-
. . 1 . X
parison with the corresponding small-signal linearization

3-6
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il Figure 3.2-2 Time-Histories of Range Estimation
Error and Uncertainty for Large
Initial Uncertainty
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Figure 3.2-2 Time-Histories of Range Estimation

Error and Yncertainty for Large
Initial Uncertainty (Cont.)

TABLE 3.2-1

COMPARISON OF MEASUREMENT LINEARIZATION
PARAMETERS, CASE 1

EKF QKF-N

8(X) = 0.00584 rad | 8 = 0.573 rad

= -6.31x10"7 = _7.72x10™°
hs1 6.31x hQ1 X
-4 -5
hg = 1.02x10 hq, = 8.56x10
3 3

parameters e(%) and hg_.

In the filter update equation
for the QKF-N, Eq.

(2.4-10), the large ) ana hQ values
result in a large change in x and in the (1,1) element of
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(I—gkgg) being very small; this greatly reduces Oy after the
first update. The behavior of the QKF-N described above is
clearly inappropriate in Cases 1,3,4 and 5; for Case 2, the
apparent superiority of the QKF is "accidental," in that the
large step change in ¥ just happens to be nearly 'correct."

The QKF-P behaves somewhat like the QKF-N in Case 1.
An abrupt initial change occurs in ¥, followed by small
variations. Since 0. for the QKF-P is larger than for the
QKF-N, the QKF-P takes advantage ¢f the additional angular
information provided by the pitch-up maneuver sooner than
the QKF-N, achieving a smaller value of ¥ after 10 sec. In
Case 5, the QKF-¢ is much closer to the EKF in performance.
This is attributed to the fact that ﬁo is much larger than
UXO for this case (by a factor of 3), resulting in a smaller
difference between quasi-linearization (particularly in the

swer series approximation) and small-signal linearization,
.S shown in Fig. B.3-2.

The QKF-T was considered in this study to investi-
gate the impact of using alternative densities for x. The
truncated gaussian density, Eq. (2.4-5), was used in the
numerical integration arctangent describing function sub-
routine (Section B.3) as the basis for describing function
evaluations. It appears tnat the truncation of the density
improves the QKF significantly for large positive initial
range estimation errors (Fig. 3.2-2a), but that performance
for small or large negative values of the initial estimation
error is not better than the EKF in the same circumstances.

‘as, while modifying the density function p(x) upon which
.he quasi-linear filter is based does remove one deficiency
of the gaussian-based QKF -- the large initial step change

in r and ensuing 10 sec period of quiescent behavior discussed

3-10
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above -- it does not appear that the QKF methodology is

significantly superior to the simpler EKF algorithm in this
application.

All filter algorithms appear to be more effective
for >0, i.e. for initial filter estimates of range that
are smaller than the actual value. This result can be
explained by the geometry of the situation: The arctangent
nonlinearity and its slope become very small as X increases,
which implies that it becomes more difficult to distinguish
negative horizontal-separation estimation errors (x<§) than
positive ones of the same magnitude.

Of the algorithms considered, the QKF-N is the
least effective, especially during the cruise phase. This
is attributed to unrealistically small values of Oy (or,
equivalently, small values of 0. == Fig. 3.2-2) after the
first measurement is processed. Considering the remaining
filters, there does not appear to be a clear-cut advantage
to any single algorithm. The EKF appears to have a band-
width that is too wide, as may be deduced from the presence
of large error "spikes" (at t=9 sec, for example). The
QKF-T and the approximate QKF-P are in some senses compromises
between the EKF and the QKF-N (refer to Figs. 3.2-2 and
B.3-2); they do not seem to offer any compelling advantages
over the EKF for the cases studied, however. Because of
the divergence for small values of x exhibited by the power
series quasi-linear term, 6P (shown in Fig. B.3-2), it might
be inadvisable to use the QKF-P design.

3-11
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3.2.3 The Cramér-Rao Inequality

The studies discussed in Sections 3.2.1 and 3.2.2
indicate that the QKF methodology is not significantly superior
to the EKF in the present application. This result was not
anticipated since quasi-linearization generally provides a
more realistic representation of a nonlinear effect than
small-signal linearization, which should result in obtaining
a more effective filter algorithm. However, there is a clear-
cut explanation for the unexpected results in this investi-
gation: The EKF appears to be quite effective in comparison
with the "best that can be done" in the situation considered.

The Cramér-Rao inequality (Ref. 7) provides an
absolute reference for judging the performance of a filter
algorithm in solving a nonlinear estimation problem. Based
on the system and measurement models, and on the initial
statistics of the estimation error, this inequality provides
a lower bound on the rms estimation error that is the best
that can be achieved by any algorithm. In general terms, if
ﬁ(z) is an unbias=d estimate of the quantity x, which is based
on a noisy measurement, z, then a fairly straightforward appli-
cation of the Schwarz inequality leads to a lower bound on
the variance of the estimation error,

E[(%(2)-x)2] > 1/E[(31n p(z|x)/3x)°]

The function p(z|x) is the conditional probability density
function (pdf), ¢

p(z|x) = p(x,2)/p(x)

where p(x) and p(x,z) are the pdf of x and the joint pdf of
x and z, respectively. The Cramér-Rao inequality is useful
for determining whether a given algorithm is comparable in

3-12
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performance to the unspecified optimal algorithm, and thus,
whether it is fruitful to attempt to design a "more sophis-
ticated" filter for the same problem.

The result shown in Fig. 3.2-3 demonstrates the
application of the Cramér-Rao lower bound to a scenario
that is similar to, but slightly .simpler than, the engagement
studied in Section 3.2.2. PO in Eq. (3.1-3) is specified
by setting the correlation coefficient p to zero and cloosing

9 to be
[[220.0 u ]
0.707 u/sec
Sg = 0.209 u
0.0 u/sec
| 0.0 ft/sec2d

Thus the target acceleration and altitude rate rms levels
are neglected in this case. Furthermore, since range esti--
mation in the cruise phase is of particular interest, the
pitch-up missile maneuver is suppressed; the altitude y
satisfies

y(t) = 1 unit
during the entire engagement.
For comparison purposes, the EKF is used to estimate

range in the same circumstances. The particular initial con-
dition considered in obtaining the results in Fig. 3.2-3 is

225.0 u

0.703 u/sec
= 0.2 u

&

0.0 u/sec
0.0  ft/sec?]
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§ R-20809
€ 240 ;
= CRAMER-RAO LOWER BOUND ON
- RMS RANGE ESTIMATION ERROR
160
59
w
lﬁg 80 7
3
P
g8 °
zq
O .80
[
<h
= ul
W -160
uJ
OF -240 . T T T
s (] 10 20 30
(s e+ 4

TIME, t (sec)

Figure 3.2-3 Application of the Cramér-Rao
(C-R) Inequality to the Range
Estimation Problem

and the measurement noise sequence, Vi is the same as in

all previous cases. Since the EKF range estimation error,

r, is well within the Cramér-Rao lower bound on rms range
estimation error over most of the trajectory,* it may be
inferred that the EKF is quite effective for the range
estimation task treated in this study.

3.3 THE QUANTIZED MEASUREMENT CASE

The study of quantization in the LOS angle measure-
ment was performed for the scenario treated in Section 3.2.1,

where the initial range estimation error and rms filter

range uncertainty are small (-4.67, 4.29 units respectively).
The QKF models the quantizer with a random-input describing
function that takes into consideration the exact form of the

*The Cramér-Rao lower bound is statistical in nature; i.e.,

r for any specific trial may be less than the Cramér-Rao

lower bound on rms range estimation error, as in Fig. 3.2-3.
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nonlinearity and the statistics of the quantizer input, while
the EKF accounts for the effect by the artiface of introduc-
ing a "fictitious quantization noise" of suitable rms level.

The measurement models upon which the EKF and QKF algorithms

are based are portrayed in Fig. 2.4-1. The tiivee cases con-

sidered in this investigation are specified by quantizer level
increments, 6, of 0.5, 1.0 and 2.0 degreas. The number of
positive and negative levels, N, is 40, 20 and 10, respec-

tively, so that quantizer saturation occurs at +20 degrees
in each instauce.

The small quantization increment, 0.5 deg, leads to

the filter performance curves depicted in Fig. 3.3-1. The

filter algorithms applied to this problem were the EKF and
the QKF-N.

" y T Cir . Lk ML S M B e A e e
mmeooss B s B oo S —— BN —— B — - BN O

During the cruise phase, t < 7.2 sec, the per-

formance curves are essentially identical to those obtained

without quantization, Fig. 3.2-1. This behavior is to be

expected, since the LOS angle is less than 0.25 deg over this

period, and the measurement noise is sufficient to mask the

effect of the quantizer. Beyond 10 sec, both the QKF and EKF

curves arc displaced positively with respect to the corres-

ponding range estimation curves obtained without quantiza-
tion.

The peak EKF range estimation error of 11 units at
16 sec is twice that shown in Fig. 3.2-1 at the same time,
and the negative peak in ¥ for the QKF-N at 14 sec is reduced

from -12 units (without quantization) to -6 units in the
present case.

The reason for this apparent offset is not
clear; extensive monte carlo simulation would be required to

determine if biases due to quantization are present. Com-

paring the results in Figs. 3.2-1 and 3.3-1 (the former cor-
responding to the same scenario without quantization), there

3l e,

does not seem to be any basis for a judgment concerning the

relative statistical performance of the two filter algorithms
with or without cuantization present.
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Figure 3.3-1 Range Estimation Algorithm Per-
formance With One-Half Degree
10OS Angle Quantization

The filter performance curves for quantizer incre-
ments of 1 and 2 deg are given in Fig. 3.3-2. Three filter
algorithms were used in these studies, the EKF, QKF-N
and QKF-T; observe that the QKF-T was indistinguishable
from the QKF-N in its behavior in both cases. Very much
the same behavior is observed as in Fig. 3.3-1, in that
the first 7.2 sec of the engagement still resuits in an
unchanged time history of ¥, and the QKF curve is generally
displaced below the EKF curve of ¥ thereafter.

3.4 SUMMARY

The material presented in this chapter gives an
indication of the range e¢stimation capability of two types
of filter algorithms, for engagements representing & tac-
tical missile intercepting a surface target after a cruise

3-16
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RANGE ESTIMATION ERROR, T {units)
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{b) FILTER PERFORMANCE CURVES FOR § = 2 deg

Figure 3.3-2

Range Estimation Algorithm Per-

formance With One and Two Degree

LOS Angle Quantization
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(constant altitude) phase. While the design principles of the

filter algorithms are quite different, the EKF being derived
from small-signal linearization and the QKF being based on

quasi-linearization, their performance is quite comparable

for small estimation errors (Section 3.2.1). As the mean and

rms initial estimation errors are increased, the behavior of
the range estimates becomes very dissimilar, especially when
the initial estimate is small compared to the true value.
However, it is difficult to make a case for the superiority

of either algorithm based on the limited number of monte carlo
simulations that have been performed.
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4.2 CONCIUSIONS

From the simulation results presented in this report,
it appoars that the gaussian QKF with numerical integration
(1.a., the QKP-N algorithm with describing functions for the
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APPENDIX A
OUTLINE OF NONLINEAR FILTERING THEORY

The equations of the optimal (Kalman) linear filter
and of several modified Kalman filters for the nonlinear
case for estimating the states of continuous systems using
discrete noisy measurement data are reviewed briefly in
this appendix. The extended Kalman filter and quasi-linear
Kalman filter are suboptimal generalizations of the optimal
linear filter, and are applicable to systems which contain
significant nonlinear effects such as those encountered
in the range estimation problem studied in this report.
This appendix provides the background and notational con-
ventions needed for understanding the algorithms applied
in this study; a basic familiarity with random variables
and state space notation is assumed. Additional detail

can be found in Ref. 2.

A.l KALMAN FILTER EQUATIONS

To apply Kaiman filtering to any estimation prob-
lem, it is necessary to derive a linear stochastic first-
order vector differential equation to model the system, of

the form

x(t) = F(t)x(t) + G(t)w(t) + L(t)u(t) (A.1-1)

where x(t) is an nxl column vector representing the system
state, and F(t) is an axn dynamic matrix which defines the
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interaction of the state vector components. The vector
w(t) is a px1l column vector of white gaussian noise inputs,
specified by a zero mean and the spectral density matrix* Q,

Efw(t)] =0 ; E[w(t)w(t) ] = Q(t)8(t-1) E

and the matrix G(t) is an nxp distribution matrix which
indicates how ~ach component of w(t) affects each component
of the system state derivative. The variable u(t) is an mx1
column vector of known system inputs, which are allocated
to the state difierential equations by the nxm matrix L(t).
In the missile-target range estimation problem considered
here, “he componei...s of the state vector x include position
and velocitv variables plus target acceleration. Note
: that F, G, L and Q matrices may be time-varying; in sub-
sequent development the explicit notation (t) will be
L omitted.

At discrete instants of time, tk, measurements of
A linear combinations of the state variables are made. The

- equation describing this measurement process has the general
| form

] Zy = HXe *

Vi (A.1-2)

where z, is a vector of r measured quantities at time t,, H
is an rxn observation matrix describing the linear combinations X
of stale variables which comprise z, in the absence oi noise,

"""’;“1

and Vie is an r-vector of zero-mean gaussian measurement errors
with a covariance matrix, Rk’ defined by*
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*The symbol §(t-t) denotes the Dirac delta function.

W

TThe symbol 6jk is the Kronecker delta; it is unity
for j=k and zero otherwise.
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T _
E{Xk!j} = Rydik

The objective of optimal estimation theory is to
process the measurements in real time and produce an esti-
mate R(t) of the system state x(t) having minimum error, in
some statistical sense. The optimization criterion most
often chosen is that of minimizing the mean square estimation

error. This estimate is calculated with the Kalman filter-
ing algorithm.

As each new measurement becomes available, there

is essentially an instantaneous change in the knowledge

of the state g(tk). Denoting the optimum estimate of

E(tk7 Jjust prior to the availability of z, as gk(-) and
the optimum estimate of the state vector immediately after
processing 2, as gk(+), the Kalman filter generates the

optimum estimate of the system state according to the
following algorithm:

R(t) = FR(t) + Lu(t) ; R(t, 1) = & 1(H) , t, ; st <t

(A.1-3)

R () = R () + Kz - B & ()] (A.1-4)

Equation (A.1-3) is used to propagate the estimate between

measurements, and Eq. (A.1-4) is used to update the estimate
when new data is received.

The nxr matrix Kk in Eq. (A.1-4) is the Kalman
gain matrix, which is obtained from the estimation error
covariance matrix, P, as follows:

_ T T -1 )
m = PR(=)H [H P (=)H ~ + R.] (A.1-5)
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The matrix P satisfies the propagation and update equations
given in Ref. 2 as

5oy = T T
B(t) = FP + PF + GQG , t, St st

(A.1-6)
These relations complete the outline of the Kalman filter
design for linear systems.

A.2 THE EXTENDED KALMAN FILTER FOR NONLINEAR ESTIMATION

Optimal linear estimation theory provides a power-
ful analytical tool for analyzing and synthesizing filter
algorithms when the system equations of motion and measure-
ment equations are linear. However, the range estimation
problem contains at least one inherent nonlinear effect
which may be sufficiently important to warrant the use of
a nonlinear estimation technique. This effect is the LOS
angle or bearing measurement provided by the target track-
ing system sensor, which is a nonlinear function of rela-
tive missile-target position in Cartesian coordinates.
Whenever nonlinearities are not negligible, a data pro-
cessing algorithm derived from the principles of non-
linear estimation theory may yield considerably better esti-
mates than a linear (or linearized) Kalman filter. This
section discusses the extended Kalman filter used in this
report as one solution to the nonlinear range estimation
problem.

A quite general mathematical model for nonlinear
stochastic systems is given by the equations

x(t) = £(x(t),t) + G(t)w(t) + L(t)u(t) (A.2-1)

z, = h (x(t, ) +y  k=1,2,... (A.2-2)
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where [ and h, are nonlinear differentiable* functions of
the state vector x, w(t) and Vi are zero mean, independent
gaussian white noise processes having spectral density
and covariance matrices Q(t) and R, , respectively, and u is
. a vector of known inputs. Assume as before that measure-~
i ments are taken at discrete times tk'
The first approach one might use to derive a
filtering algorithm for x(t) in Eq. (A.2-1) is to linearize
the nonlinear functions f and h, about an appropriate known
reference trajectory Z(t) and then apply conventional optimal
linear estimation theory -- i.e., the Kalman filter discussad
in the last section. Thus, denoting X(t,) by X,, the so-
called small-signal linearization procedure results in the
L expressions

of
L] = — -
I(x,t) = £(x,t) + 35 (x-X)

] x=X

-

3 1,0 + F(X,t)(x-X) (A.2-3)

i . _ dh, _

| X=Xk

] A z = = -
: { *Note that differentiability, as required in Egqs. (A.2-3) and

A (A.2-4), precludes the formal application of the present

technique to systems with nonlinearities such as the limiter
{ and the quantizer which do not have derivatives everywhere.
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which may be substituted into Eqs. (A.2-1) and (A.2-2) to
derive the corresponding Kalman filter which estimates the
variation in x, Ax(t) 8 x(t) = x(t), from the reference
trajectory. When the reference trajectory is chosen to be
the current best estimate of the state x(t), the resulting
algorithm is known as an extended Kalman filter (EKF); the
mechanization equations for the latter are given in Table
A.2-1 (Ref. 2).

TABLE A.2-1

SUMMARY OF THE DISCRETE/CONTINUOUS
EXTENDED KALMAN FILTER ALGORITHM

X = 2(x,t) + G(HIN(E) + L(t)u(t);

System Model T
| '] = awrsce-n
Measurement Nodel 2z *h(x) 4y, k=1,3,.. E[Y.g!:] " Pdsx
Initial Conditions Ex(0)] = 2o » B (x(0)-5,)(x(0)-E0)" | = P,
Other Assumptions E[!(t)!kr] = 0 for all k and all t
u u(t) is a known input vector
State Estimat + LCOUCE) ; R(E, ) = +
1 State Estimate B 1@ MO 5 y) = 2y )
Error Covariance b= P(2,t)P + pr"'(x t) + 6(t)QIET(L) ;
Extrapolation
P(ty ;) = B 1(+)
State Estimate Update 2,.(4) = 2,(-) + ‘u[-’-k - By (2,(-))]

Error Covariance Update Py(+) = [""x"x‘*n“”] Py(-)

Gain Matrix K, = P (-)H [“g"x‘ )y + “k]

o B I

8 Atix,t)
F(R,t) 5%

E Definitions =X
8 ah (x,)
!k -~
I X = )
A-6
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As long as the linearization in Eq. (A.2-4) is
accurate, the filter algorithm will give nearly optimal per-
formance. Experience with similar ranging problems indi-
cates that the EKF is an adequate suboptimal estimation
technique in applications in which estimsntion error is small.

A.3 THE QUASI-LINEAR KALMAN FILTER FOR NONLINEAR ESTIMATION

As in the previous section, the general mathematical
model is assumed to be of the form indicated in Eqs. (A.2-1)
and (A.2-2), with the removal of the restriction that f and
h must be differentiable. The point of departure is the
method of linearization: Rather than assuming that estimation
error is "small" in some sense and making use of the small-
signal linearization technique, it is assumed that the esti-
mation error vector X is a zero-mean gaussian random vari-
able with covariance P, and the nonlinearities in the model
are replaced with their approximate random-input describing
function (ridf) representations. The quasi-linear analogs
to the approximations in Egs. (A.2-3) and (A.2-4) are

£(x,t) = £(X,P,t) + No(X,P,t)(x-3)
By (2, (=) = By (%, (=), P (=) + Ny L (B (=), P(=)) (%% (=)
(A.3-1)

where

£ x.P,t) A [(2«) [Pl] f-f f(x,t)exp -ixTP 1x }dxldx2 ax

N (a P,t) 4 [(21:) lpl] fff(x t)exp -ix 3 1 }P 1_)5 dxldxz...dxn

(A.3-2)
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h, substituted for f in Eq. (A.3-2).

i

' and the arrays ﬁk’ Nh,k are defined in a similar way with

I For further details on the above statistical
linearization procedure, see Refs. 3 and 5. In the present

“ context, it suffices to observe that the gaussian assump-

tion guarantees that the ridf arrays in Eq. (A.3-1) are

functions only of 2, P and t, as the notation suggests.

For small estimation error (for P small), the quasi-linear

approximation approaches small-signal linearization; when

the deviation of g from x is not insignificant, then P pro-

5 vides the statistical measure ("amplitude") of this deviation,

§ and the ridf representations of f and h are dependent on

_ this amplitude in a way which captures the nonlinear effect

much more faithfully than the small-signal linearized model.

R Ml i

The use of the quasi-linear approxiimations indicated
in Eqs. (A.3-1) and (A.3-2) as the basis for a modified Kal-
man filter algorithm leads to the quasi-linear Kalman filter

- (QKF). The equations are directly analogous tc thesc given
- in Table A.2-1 with the following substitutions:

£(R,t) - 2(%,P,t)
F(X,t) = Ny (%,P,t)
h (%,(-)) = B(X(-),P(-))

o Ty 43

The algorithm obtained by making the changes indicated in
Eq. (A.3-3) in Table A.2-1 completes the development of the
QKF.
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APPENDIX B

RANDOM-INPUT DESCRIBING FUNCTIONS FOR THE RANGE
ESTIMATION MEASUREMENT NONLINEARITIES

B.1 INTRODUCTION

Two nonlinearities are treated in this investigation:
tan'l(y/x), which is encountered in expressing LOS angle
(target bearing) in terms of missile-target separation in
Cartesian coordinates, and fq(z), or the quantizer defined
in Eq. (2.3-6). The quasi-linear representation of the
quantizer (Eqs. (2.4-13) to (2.4-15)) is a well-known result,
so it is not presented here (cf. Ref. 3), The arctangent
nonlinearity has not been treated extensively prior to this
study (refer to Ref. 6 for a preliminary approximate approach),
so it is considered in some detail.

The random-input describing function (ridf)
approximation sought is of the form

>

0(x,y) tan'l(y/X)

0

8 + n (x-%) + n (y-y)

8§ + nT(x-X) (B.1-1)

e

where

>

[x y]

> I%
-3 3
e

(& 91
E[6(x)]
o’ & Efo(x)(x-%)T1p7? (B.1-2)

@ %
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and it is assumed that the vector x is gaussian with mean, g,
and covariance, P, given by

P = x0T |

Pxx Pxy (B.1-3) 5

Pxy Pyy

The evaluation of n is simplified under the gaussian assump-~ i
tion (Ref. 5) to be

T

n = (B.1-4)

1
I

@ lo:
1%y (D>

However, the integral required in evaluating 6, as speci-
fied in Eq. (B.1-2), i.e.,

a 1 % m —1 ~ T ...1 ~ 3
6 = — tan “(y/x) exp{-3(x-x)"P “(x-x);dxdy
2n|P| ‘}/:}{. / { == == }
-0 -0 (B. 1"5)

cannot be performed analytically to yield a closed-form
solution, =9 other approaches to evaluating Eq. (B.1-2) are
required.

B.2 AN APPROXIMATE QUASI-LINEAR REPRESENTATION
OF ARCTAN(y/x)

A technique that gives rise to approximate ridf's
for use in Eq. (B.1-1) is based on the series expansion of :
the nonlinearity. In general, given 3

' Pl I — I — — N —

B-2
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- ed) + 2| (xep) + 2 5
fx) = 1) + 55| x-%) + 35 (y-y)
X=X XX
2 2
) 2 9" f A A
+ 3 2| . (x-X)" + 2 3557 A(x-X)(y-y)
£=X X=X
a2¢ | 2
+— (y-y)
" | x=3
+ higher order terms
the expectation operation yields
2 2
Elfo] = 2% + 3251 p vzl b
" x=z x=R
2
3°f
+ = p
2 vy
W x=%
+ higher order terms (B.2-2)

If the elements of P are not large with respect to X and §
(i.e., 1if the estimation error uncertainty is small in com-
pavrison with the estimates of missile-~target separation), then
a useful approximation is obtained by omitting the higher
order terms in Eq. (B.2-2). For arctan(y/x) this leads to

~

:A_A_ _l.sa An 2
8 = ep = tan “(y/x) + [xy(pxx-pyy) -p

A2 Az 4\2 l\2
xy (X Y (xT+y™)

(B.2-3)

TP A L AR,
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Observe that substituting the first term of Eq.
(B.2-3) into Eqs. (B.1-2) and (B.1-4) ylelds the small-sig-
nal linearization approximation given in Eq. (2.4-1),

o(x) = o) + 52| xR+ | -H) (B.2-4)
x=X =X

The second term in Eq. (B.2-3) represents the first correction
term which accounts for the estimation error uncertainty.

This approximate expressinn for 6, and the approximate

values of n, and ny obtained by applying Eq. (B.1-4), should
quite accurately represent the amplitude-dependent nature of
the arctangent nonlinearity in cases where rms estimation
uncertainty is moderate with respect to X.

e o S B En e e G e

B.3 EVALUATION OF RIDF'S BY NUMERICAL INTEGRATION

Although the integrals involved in determining the
expected values indicated in Eq. (B.1-2) cannot be evaluated
analytically in closed form, useful results can be obtained
by Jirect numerical integration. The implementation of
numerical solutions to Eq. (B.1-2) proceeds as follows:
Given the input means (X,y) and covariances (pxx' pyy. pxy)
of the gaussian random variables (x,y), first determine
the lower triangular transform matrix T,

 avoe S st

) ey |  onlasa B ahoont|

|

ul, .
u-= = T(x-X) (B.3-1)

Wﬂw:
WA,

which results in u being a zero-mean gaussian random variable
with covariance
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™ _ 1 0] 4
Jwt] - [2 9]¢, (8.3-2)

This operation thus transforms ellipses of constant proba-
bility,

(x-X) P " (x-X) = constant

in the (x,y) plane into circles centered on the origin of the
(u,v) plane. The (u,v) plane is then divided into nrxn¢ cells
in polar coordinates, 2s shown in Fig. B.3-1. The center of
each cell is t.hen accorded a weighting which depends only

on the gaussian assumption and on its radial distance from

the origin; the cells bounded by (j-1)Ar and jAr have the

weighting
w, = = exp(-(j-)2ar?) (B.3-3)
j 2w :
Integration is completed in the (u,v) plane by summing over

the cells,

nr n

w E :tan _Jdk' jk_ (B.3-4)
N ;;; I = (x(ujk’vjk)

ik = (J-2)Ar cos(¢,)

@)
W

>
ne>

where

u

Vik = (j-%)ar sin(¢é,)

b = 2m(k-1)/n, (B.3-5)

and x and y are found by inverting Eq. (B.3-1),
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R-19431

t

Figure B.3-1 Transformation of Variables for
Numerical Integration of Random-
Input Describing Functions

o —————  So———————i o

~ i

=1/ p 2 B +
x(qu’vjk) [ pxxpy'y pxy ujk ¥ pxyvjk]/ pyy x

Y(ujk’vjk) = 'Pyy vjk + § (8'3‘6)

& B e 5

The numerical integration of E[(i—i)e] required for the

Bra——y
[ T

evaluation of the random component ridf's as indicated in

[)

Eq. (B.1-2) is performed in a directly analogous manner.

I
Py
[ LT

W 0

Observe that this technique is perfectly general

e

4 A AR
e a—

wilh respect to the assumed joint probability density function
(pdf) of x and y. If the gaussian joint pdf is denoted p(x,y).
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then the truncated gaussian pdf upon which the QKF-T is based
is defined by

5p(x,y) + p(~x,y) , x20

Pp(x.y) =y (B.3-7)

0 , X <0

The same numerical integration subroutine which evaluates éN’
Eq. (B.3-4), was thus simply modified to calculate éT' or §
based on the joint pdf given in Eq. (B.3-7), for uses in the
QKF-T algorithm.

Figure B.3-2 portrays the evaluation of 8 by numerical
integration, éN’ for 90 cells (n_=5, n¢=18) and for 360 cells
(nr=10,n¢=36), for various values of estimated horizontal
separation, x. Based on the small deviations between these
results, it is judged that 90-cell numerical integration is
adequate for this application. The plots 6T’ §p (corresponding
to the result obtained by applying Eq. (B.2-3)), and 6(x),
corresponding to the use of small-signal linearization, Eq.
(2.4-1), are also depictec for the sake of comparison. Note
that as X becomes large (relative to the estimation uncertainty),
the three approaches are very nearly equivalent. The largest
deviation between 6(X) and éN with this value of P, x occurs
for x = /5;; : at that distance, 5N is 11 times larger than
0(X). The power series approach for obtzining approximate
rid{'s presented in Section B.2 leads to %P, which essentially
diverges for small X. This effect for small estimated hori-
zontal separation may not be critical, since the missile
will no lounger be in a cruise phase when it is s¢ close to
the target. In the middle range of §, however, the cJdisparity
between §p and ﬁN is also quite large -- éN is as much as 6
times larger than ép -- which indicates that §p may not be a use-
ful approximate ridf. On the other hand, since Bp is cetween
0(X) anc. éN
Kalman filter based on series-approximate ridf's can be

for all X greuter than 8 units, a quasi-linear
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EXPECTED VALUE OF LO3 ANGLE,  (red)
e

602

6.01 } )
01 1 10 100

ESTIMATED HORIZONTAL SEPARATION, X (units)

Figure B.3-2 Arctangent(y/x) ridf s by Numerical Inte-
gration and Power Series Approximation

expected to exhibit a performnn. wnat is intermediate to
the EKF (based on 6(X))and the s:x.urate QKF (based on éN),
so the fact that ep is not an accurate ridf may not be
detrimental in this application. The nongaussian-based
ridf, @T, behaves most like 6p for moderate and large X

(X 2 /Pxx); as X decreases, ﬁT remains small compared with

the other results.
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It may be of interest to compare the computer time
expenditure required by the EKF, QKF-P and QKF-N: A simu-
lation of a single engagement of the type considered in
Chapter 3 necessitates 135 evaluations of 6(x), 6p or 8y,
respectively; the corresponding data prccessing times are
1.74 min, 1.81 min (+3.7 percent), and 2.17 min (+24.5 percent),
where the percentage increases indicated for the QKF-P and
QKF-N are defined with respect to the EKF. Thus the compu-
tational burden for th QKF-N is not a2 significant problem.

Sections B.2 and B.3 have summarized two approaches
used to generate quasi-linear representations for the mea-
surement arctangent nonlinearity. The results presented in
Chapter 3 demonstrate the performance that can be achieved
using the ridf's derived in this appendix as the basis for
the design of a quasi-linear Kalman filter to estimate
missile-target range from measurements of LOS angle.

B-9
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