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U
3 1. INTRODUCTION

I 1.1 BACKGROUND

I A tactical missile guidance system may require an

accurate estimate of missile-target range. Acceptable accu-

I racy can usually be achieved using direct radar range mea-

surement techniques. However, it is a distinct possibility

that radar range information may not be available, either

due to electronic jamming by the hostile target, or due to

the use of a passive seeker (with infrared or electro-optical

sensors, for example).* In either case, the missile guidance

system will generally be able to measure target bearing or

Lline-of-sight (LOS) angle. It is thus important to develop

passive range estimation techniques, ')ased on the assumption

Ithat LOS angle is the only information available regarding

the relative position of the target from the missile.

il One application where range estimation is of inter-

est is a ho-ming guidance system attempting to intercept a

surface target (land or sea). A recent feasibility study

undertaken at TASC has demonstrated that a sophisticated,

inertially-aided. data processing algorithm (filter) can

provide quite accurate estimates of range in an antiship-

!ping missile application when the missile performs a termi-

nal pitch-up maneuver (Ref. 1). Li that investigation, an

*If it is anticipated that range measurements may be denied
by jnimming, then a home-on-jam capability can be incorpo-
rated in the target tracking system, while passive seekers
are specifically designed to provide LOS angle information.

1-1
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II

extended Kalman filter was provided with measurements of LOS

angle, missile acceleration, missile altitude, and missile

attitude. Range estimation was greatly facilitated by the• I

terminal missile pitch-up maneuver performed to achieve an

advantageous target approach angle. Furthermore, the success

of the extended Kalman filter was due in part to the assump-

tion that initial estimation errors were relatively small --

as might be the case if radar range measurements were avail-

able up to the filter initialization time.I|
In many missile guidance situations, it is important

to be able to obtain good range estimates at relatively

long ranges were LOS angular excursions are small. If it is

necessary to perform a terminal maneuver, for example, it

would be important to initiate the maneuver at the correct

missile-target separation. It may also be necessary to have

an accurate passive ranging capability when initial range

estimates are poor. These requirements provide the motiva-

tion for the present detailed investigation of passive range

estimation algorithms.

The essentials of the problem under consideration

are depicted in Fig. 1.1-1. In this study, the equations of

motion are expressed tn Cartesian coordinates, x and y,

representing missile-target separation. This formulation

ii leads to system dynamics that can be approximated with a

linear model, and to a measurement equation that contains the

nonlinearity

8tan (y/x)(1-)

where 0 is the LOS angle. While the use of polar coordinates

would lead to a linear measurement equation, the system dynamic

equations that result contain a number of highly nonlinear

jj terms. Cartesian coordinates are chosen so that attention

1-2
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I -

Figure 1.1-1 Missile-Ta Intercept Geometry

UMU

can be restricted to a single domirant nonlinearity--the LOS

~angle measurement equation indicated in Eq. (1.1-1). An
I I additional secondary nonlinear effect that may appear in the

above measurement equation is LOS angle quantization. The

impact of LOS angular quantization on the range estimation
problem is studied here as well.

It is assumed that the measurement data consists of
noisy measurements of0 n noise-free measurements of the

i missile acceleration. The motion of the target (ship) is

modeled as a horizontal acceleration vector, at with a mag-

nitude that is a correlated gaussian random process with

T bandwidth and rms value selected appropriately. Mathematical
ii details concerning the system model may be found ii. Chapter 2.

I The above paragraphs outline the motivation for, and

i provide an overview of, the rarnge estimation problem considere

in hisinvestigation. Intenext section, an otieo
~possible filter design techniques that may fulfill the need

for accurate estimates of missile-target separation is pre-

z1-3
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I
1.2 TECHNICAL APPROACH

I hThe optimal estimation problem for linear systems

has been solved (Ref. 2). The well-known Kalman filter algo-

rithm results in a set of recursive relations with which

I each measurement can be processed to yield an updated esti-

mate of the system variables of interest. The estimate pro-

vided by the Kalman filter is optimal, in the sense that the

variance of the estimation error is minimized. One essential

I property of this approach is that an exact replica of the

linear system model is incorporated in the algorithm; the3 performance of the filter is impaired if this model inaccu-

rately reflects the real world. The relation between the

linear system model and the optimal Kalman filter is por-
Itrayed in Fig. 1.2-1

fWhile the technique outlined above has proven to

be very successful in applications where the assumption of
ME linearity is realistic, the extension of optimal estima-

tion methodology to the nonlinear case is not necessarily

p straightforward. A widely-used solution to the nonlinear

filtering problem is the extended Kalman Filter (Ref. 2);

it is depicted in Fig. 1.2-2 in the same conceptual terms

as the Kalman filter shown in Fig. 1.2-1. The implementa-

tion of the resulting algorithm calls for replacing all sys-

tem nonlinearities with linear gains that are equal to the

slopes of the nonlinearities; the slopes are computed at the

present estimate of the system variables, x. This pro-

_ -cedure is called small-signal linearization about the cur-

rent estimate. It is accurate (i.e., provides a realistic

system model for incorporation in the filter algorithm) as
T r long as estimation error is small and changes in the slopes

L of the nonlinearities are small over the region of interest.

Clearly, these conditions may be restrictive, and they

1-4
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DEFINE SYSTEM STATES.xA DERIVE LINEAR STATF VkCTQR
DIFFERENTIAL EQUATION AND

MEASUREMENT MODEL

MEASUREMENTS
± (NOISY OBSERVATIONS:

DESIGN OBJECTIVE OBTAIN2
MINIMUM VARIANCE ESTIMATE

Oi- THE STATE."xD V

U IKALMAN FILFER ALGORITHM

OPTIMAL

RECURSIVE

ESTIMATEIIFigure 1.2-1 Kalmnan Filter Design Principles
for Linear Systems

h raise questions as to how "small" th( estimation error and

slope variatiois must be, and how much the filter perform-

ance is degraded when the condition:s are violated. None-

theless, thcore have been many applications in which the

exteded almn fiterhas rovn tobe ffecive
vxeddKla itrhs rvnt eefcie

If the underlying assuiptions of the extended

IKalman filter design approach are questionable, as may be
the case in applications of the sort considered here, then

I more sophisticated solut ions to the nonlinear filtering

1-5
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RECURSIVE
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Figure 1.2-2 Fxtended Kalman Filter Design

Principles for Nonlinear 'ystems

problem could be required. One possible approach is based

on describing function theory. and can be called the quasi-

linear Kalman filter design. This concept, which involves

replacing each system nonlinearity with a random-input[describing function (Ref. 3), is illustrated in Fig. 1.2-3;

it is an alternative design technique investigated in this

[study.

1-6
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ii Figure 1.2-3 Quasi-Linear Kalman Filter Design

Principles for Nonlinear Systems

The fact that nonlinear filtering is not amenable to

a unified, dependable methodology is compensated to some

extent by the existence of the fram6r-Rao inequality. In

some instances, this inequality defines lower bounds on the

filter estimation error variance that can be achieved by

the best possible filter, even if such a filter is unknown.

A

1-7
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3 (Given a Cramer-Rao lower bou. 1 on achievable estimation

error variance, it is possible to assess how well existing

5 filters are performing a -cific nonlinear filtering task.

If a candidate filter provides estimation errors that are

comparable to the Cramdr-iao lower bound, then there is

little to be gained by using other algorithms.

II The goal of this investigation is to determine the

performance of the extended Kalman filter and of several

iforms of the quasi-linear Kalman filter in the range esti-
mation problem outlined in Section 1.1. Direct comparison

I of the performance of these filter algorithms provides a

great deal of insight into their strengths and weaknesses,

U and the Cram~r-Rao inequality is useful in assessing their

absolute performance.

oI
1.3 REPORT OUTLINE

The subsequent chapters of this report contain the

following material: Chapter 2 is concerned with the develop-

ment of the system model and the derivation of the extended

and quasi-linear Kalman filter algorithms, Chapter 3 deals

'ith direct performance comparisons of the two types of

algorithms in a few key situations, and Chapter 4 presents

a summary of the investigation and the conclusions derived

from the study. Appendix A provides an overview of non-

linear estimation theory, and Appendix B treats the evalua-

tion of random-input describing functions for the arctangent

nonlinearity involved in the bearing measurement equation.

1-8
x
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2. MODEL DEVELOPMENT

In this chapter, the range estimation problem

under investigation is specified-by deriving a simple mathe-

I matical model Lo represent the missile and target dynamics.
One essential nonlinear effect is incorporated: the LOS

angle measurement relation (Eq. (1.1-1)). The model described
here is quite similar to that of Ref. 1; the problem has

been simplified, however, by the exclusion of some secondary

error sources (altimeter bias and random altitude measure-

mert error, accelerometer bias, attitude reference tilt and

gyio drift). The elimination of these error sources does

not compromise the degree of realism iecessary to achieve

the goals of the study.

UA
2.1 TARGET MOTION MODELU ,

The range estimation problem outlined in Section

1.1 deals with the planar intercept case, with the motion

of the target constrained to be along the horizontal or x

axis (Fig. 1.1-1). We assume that the target acceleration

magnitude, at, is a first-order Markov process, modeled as

a zero-mean gaussian white noise process, w, passed

through a single stage of low-pass filtering, as depicted

in Fig. 2.1-1. By suitably adjusting thr values of the tar-

get maneuver bandwidth, wt, and acceleration rms level,

a ata wide variety of random target maneuvers can be real-

istically represented. A constant rms level of horizontal
acceleration is assumed for the present study,*

*E[1 denotes the expected value of the bracketed variable.

N2-1
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-IUI

WHITE NOIS

NOS 0. f TARGE

F.71 TARGET VELOCITY
1 \ TARGET ACCELERATION

I Figure 2.1-1 Target Maneuver Model

UE[a2(t) 2 (2.1-1)

To achieve this condition, the spectral density of the

white noise process, q, is specified by

E[w(t)w(T)= q S(t-T) = 2wta 2a0 (t-T) (2.1-2)

A ship of moderate maneuverability can be modeled by choos-

0ing the bandwidth and rms acceleration level to be 0.05 rad/sec
and 3.22 ft/sec2 (O.1g), respectively. The target horizontal

I velocity and position in an earth-fixed inertial frame, vt

and x t respectively, are then obtained by integration

I(Fig. 2.1-1)

2.2 MISSILE TRAJECTORY GENERATOR

iThe motion of the missile with respect to an earth-

fixed inertial frame is modeled deterministically by a

trajectory generator that produces a specified time history

of missile position, xm and ym, missile velocity, vmx and

Vmy# and missile acceleration, amx and amy, in Cartesian

coordinates. By utilizing the specified trajectory, the

need for modeling the guidance and control system is avoided.

2-2
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ifl Furthermore, by removing the range estimation function from

the guidance and control loop, it is guaranteed that the

same trajectory will be followed in each case studied, making

the filter performance evaluations exactly comparable.

The trajectory is qualitatively similar to that

portrayed in i*'.g. 1.1-1, i.e., there is ar initial low-

altitude cruise phase of 7.2 sec followed by a pitch-up ter-

minal maneuver. Details of the trajectory, expressed in

normalized units, are given in Chapter 3.

. 2.3 STATE VECTOR DIFFERENTIAL EQUATION AND
MEASUREMENT MODEL

U The five state variables used in the missile-target j
ranging problem are indicated in Table 2.3-1. Observe that t

the horizontal separation and separation rate are relative,

i.e., the state variables x1 and x2 represent the horizontal

displacement and velocity from the missile to the target.

The state vector differential equation then has one random

input w (Fig. 2.1-1) and two deterministic or known inputs,

amx and amy, which are henceforth denoted by uI and u2,

respectively. By considering the missile accelerations

I to be deterministic filter inputs, it is assumed that errors

that may arise in the resolved body-mounted accelerometer

measurements are negligible in comparison with the LOS angle

measurement errors. In terms of the above variables, the

relative missile-target motion is governed by 4

= Fx + gw + Lu (2.3-1)

I2-3A
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TABLE 2.3-1

STATE VARIABLES IN THE MISSILE-TARGET
_ _ RANGE ESTIMATION PROBLEM

STAi ALTERNATIVE INTERPRETATION
VARIAB1 ,S YMBOL

Missile-target horizontal
separation

x -Missile-target horizontal
veparat ion rate

X3 YA Missile altitude

f 4 v.7  Missile altitude rate

X5  at  Target horizontal acceleration

wnere

0 1 00 0 0l 0 0
0 0 0 0 -1 0 1 0

SF = 0 0 0 1 0 0 , L= 0 0

0 0 0 0 J 0 1
0 0 0 0 t 0 O

(2.3-2)

The scalar measurement available for range estima-

tion is a corrupted observation of line-of-sight angle sampled

at times tk ,

Z k = tan- (x3 (tk)/xl(tk)) + vk

A k + Vk k = 0,1,2,... (2.3-3)

where it is assumed that the sampling rate is uniform,

tk =k (2.3-4)

with sampling interval, T. The measurement noise sequence

vk is assumed to be a zero-mean gaussian random process with

2-4
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og ovI
E[v k] = 0

E~2 v k =0,1,2,... 
(2.3-5)

A further source of measurement inaccuracy

considered in this investigation is quantization, which is

denoted by the nonlinear operation fq(.) defined by

0 oIzl < 6/2
6 sign z , 6/2 _s Izi < 36/2

26 sign z, 36U/S < Iz < 56/2
f q (z) (2.3-6)

N6 sign z, (2N-1)6/2 IzI < -

The quantizer output takes on the (2N+I) discrete values

0, t6. ±26,... ,±N6 as z varies continuously. It is assumed

that quantization occurs after the corruption of the LOS

angle measurement by the random sequence Vk,'k3
Z q,k = fqjtan- (x3(tk)/xl(tk)) + Vki (2.3-7)

This last relation is the most general measurement equation

considered in this study.

An overview of the system dynamics and measurement

model is provided in Fig. 2.3-1. This model serves as the

basis for the design of filter algorithms to estimate target

position, velocity and acceleration when the only available

measurement of relative target position is LOS angle.

2-5
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Figure 2.3-1 Mathematical Model for the
Range Estimation Problem

2.4 LINEARIZED MEASUREMENT MODELS AND MODIFIED KALMAN
FILTER ALGORITHMS

2.4.1 Filter Algorithms When Quantization is Absent

Equations (2.3-1) to (2.3-3) provide the basis for

+[! designing both the extended Kalman filter (EKF) and quasi-

linear Kalman filter (QKF) for the range estimation problem

U when quantization is not present. The system dynamics, indi-

cated in Eq. (2.3-1), are linear, so it is necessary to lin-

earize only the measurement, Eq. (2.3-3). Two approaches

Uare used in this study.
Li The first technique considered is small-signal

linearization about the current filter estimate of the state,

21ta + tan tan +x 1-( X
ZS k =tn( 3/xl) y)

_I=_R.

-p-L tan- l (x3-x3) + k

hT (2.4-1)

2-6
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3 The vector is given by

h-- tan- .) 0 - a_(xI-S 1Tx11  tiaxn(ij) XP

II (2.4-2)

~A^
and i,.-x-x is the difference between the true state vector and

*he current estimate.

The second linearization technique is called quasi-

linearization (Ref. 3); it entails replacing Eq. (2.3-3) with

the random-input describing function (ridf) representation

ZQ,k = + (2.4-3)

III In this approximation, A and hQ are given by

0=A Eltan (x 31xl)j

h T tan- (x/x)]P- (2.4-4)

where E[ ] denotes expected value, R is the random part of x.

_x - E~xl

and P is the associated covariance matrix,

P AE[R _T

The quantities 0, defined in Eq. (2.4-4) satisfy the con-

dition that the resulting mean square error in approximat-

jj ing Eq. (2.3-3) by Eq. (2.4-3) is minimized.

2 -7
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iniaeIn the standard ridf methodology, the expected values
indicated in Ea. (2.4-4) are evaluated by assuming that x is

Ba vector of gaussian random variables with mean m and covar-

iance matrix P. In the present application, m is the currentif state estimate, i, and P is the filter covariance matrix which
is propagated as part of the recursive algorithm detailed sub-

sequently. As noted in Appendix A, the gaussian assumption

results in the dependence of the ridf's on x and P alone:

cwIn the studies described in Chapter 3, three dis-

tinct quasi-linear representations of arctan (y/x) are

considered. One reason for this multiplicity is that 6 and

ho defined as in Eq. (2.4-4) cannot be evaluated analytically

in closed form when x and y are jointly normal; consequently

two approximate techniques have been applied to the prob-

lem. The third ridf model for this nonlinearity is based on

a nongaussian density function; it was developed to study

the impact of the gaussian assumption on the performance of

1a qu1si-linear Kalman filter (QKF) algorithm.

The most accurate gaussian-based ridf is obtained by

numerical integration; the filter which utilizes that approach

is designated the QKF-N and the ridf components are denoted
8N' hQN" A simpler ridf representation of arctan (y/x) is

obtained by a power series expansion technique; it should be

noted that this leads to ridf's that are distribution inde-

pendent. The corresponding filter algorithm and ridf compo-

nents are called the QKF-P and 6D, hQp, respectively. The

third quasi-linear representation is based on a truncated

and folded gaussian density,

2
" ~ 2-8
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0 , x < 0(0

PT(x'Y) = (2.4-5)
m, p(x,y) + p(-x,y) , x > 0

where p(x,y) is the joint density of x and y under the

gaussian assumption (cf. Eq. (B.1-5)); by truncating the

density at x 0 0, it is assumed that there is no probabil:cy

that the missile has flown past the ship. Using the trun-

cated density, Eq. (2.4-5), numerical integration is used to

obtain aT' hT; substituting these results in the quasi-

linear filter algorithm leads to the QKF-T. Details con-

cerning the evaluation of these ridf's are given in

Appendix B.

El The above linearized measurement models are nearly

the same when the estimation error variances (elements of P)

are small. However, if there is significant uncertainty in

the estimate, they differ considerably. The comparison indi-

cated in Table 2.4-1, normalized to a unity altitude estimate,

Estimates and 1-4.unt pl-(00nis2
Estimation Error 2 401.0 units P11 - (00 uis

Variances 13 uis P33 -(0.2 units)2

JJLinearization O(i) or 0(rad) h (rad/unit) J h(rad/uait)
Small-Signal 2.5 x 2 -1.25 x 1;7 5.10 x1

Quasi-Linear, 10 01 -. 9x1- .6x1-Numerical Integration 10 0 17 ~482

Psei ear 3.12 x 10-2 -2.19 x I0- 6.24 x 10-

Quasi-Liear NE T.0 ARxAON 10 A-CTA (x 3 x 10-'I

Truncated Density 10

unit" denotes a normalized length, Pi are the relevant entris of P,
and hl, h3 are the nonzero elements of orn

2-9 - 1
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i 3 = 1, indicates that a 50 percent uncertainty in the hori-

zontal separation estimate can lead to large disparities; these

B conditions may not be un'easonable during the cruise phase.

The extended Kalman filter (EKF) algorithm is

mechanized according to the following relations: given

Xk_1(+) and Pk-1(+) as the state vector estimate and filter

covariance matrix after the previous measurement and update,

the filter variables satisfyU
Extrapolation Between Measurements

1k(-) T Rk-l(+) +1 k0(t k-t)L u(t)dt

Btk_1

k heek(-) = ()k-( t + Qd (2.4-6)

where

'0(t) exp(Ft)
T

d A qJ (T- ) TV T(T-)d& (2.4-7)

0

and q is the spectral density of w (Eq.(2.1-2)),

LI Update at a Measurement

k + ) =k + kk[Zk -
S--(2.4 3)

k [ -k kI k())]

where P T
k k ()hSl (  T Pk (-  T Pv )  (2.4-9)

2-!0
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The first step of the above procedure, Eq. (2.4-6), propagates
the filter estimate over the time period between measurements,

according to the linear dynamic model of Eqs. (2.3-1) and

(2.3-2), and the modification of P reflects the change in

estimation error covariance during the same interval. The

Isecond step, Eq. (2.4-8), represents the use of the current
measurement zk to update the state vector estimate. The

auxiliary matrices indicated in Eqs. (2.4-7). and (2.4-9) are

the general transition matrix, t(t), the transition matrix

evaluated over one sample time, 0., the equivalent discrete
noise matrix, Q and the Kalman gain vector, k" Equations

(2.4-6) to (2.4-9) are the particular case of the EKF algorithm

presented in Appendix A.

The quasi-linear Kalman filter (QKF) for the present

problem differs from the above EKF algorithm only in tne

jupdate step:

j Xk(+) -k + k k - k

(2.4-10)

k = I - khT(x Pk(-))]Pk(- )

where

P -h/hTP() + (2.4-11)

The extrapolation step is unchanged, since the system dynamics

equations are linear. These equations are considered in more

detail in Section A.3.

2.4.2 Filter Algorithms When Quantization is Present

Introduction of the quantization nonlinearity f (

given in Eq. (2.3-6) in the measurement, is in Eq. (2.3 7),

2-11 i
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I!
requires further modification of the estimation algorithms
given in Section 2.4.1. The approaches used to deal with

this effect in the EKF and QKF algorithms are quite different, 
a

since the discontinuous nature of the nonlinearity precludes

the formal use of small signal linearization, as mentioned in

Section A.2.

I Observe that the quantizer characteristic in Eq.

(2.3-6) approaches a continuous linear unity gain character-

istic as 6 goes to zero and N goes to infinity. This implies

that quantizatica can be ignored in the limit as the cell-

width 6 becomes small, and we can replace the quantizer with

a unity gain. When 6 is not infinitesimal, it is clearly

not reasonable to make a formal application of the EKF

principle of small-signal linearization,

LIh(-) h(R) + Th

,A

since the fact that the nonlinearity has zero slope for

almost all values of the input would lead to setting hS

F1 to be zero. A more intuitively satisfactory linearization

technique entails replacing the quantizer with a unity

gain (Ref. 4) and modeling the difference between the input

and the output as an additive white quantization noise, v
- q

If the quantizer input probability density function is

nearly constant over each cell, then it is accurate to
atsume that v is uniformly distributed over the interval

-_6, 126. As can readily be established (cf. Table C.2-1

of Ref. 5), a random variable with this distribution has

a zero mean and rms level of 6//-I-. If this artificial

randoiv process is assumed to be uncorrelated with the real

2-12
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I measurement noise sequence vk in Eq. (2.3-3), the total

measurement noise variance is then

Pq = 0v + 62/12 (2.4-12)

Modifying the measurement noise variance as in Eq. (2.4-12)

completely accounts for the effect of quantization in the

II small-signal linearized measurement model.

A quasi-linear model for the quantization effect

defined in Eq. (2.3-6) is needed for the QKF. Given the

input statistics,

E[z] = m

E[(zm)2]= a2

the quasi-linear representation of the quantizer is of the

form

f (z) f (m,a) + n (ma)(z-m) (2.4-13)
q q q

LI The ridf's indicated in Eq. (2.4-14) are (Ref. 3)

N'q = 6i=I[PPI 2 i - I ' 62 u  + PI (21-1)6 - ]I=I +c a) 2a a/i

(2.4-15)
nF( ) [6-) m(26-1)6 m+'

q .= 2a a)

where

2I

PF(v) v=- e

L P(v jv (2.4-16)pI(v) =f PF(v)dv

2-13
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3 From the quasi-linear representation of the noisy

LOS angle measurement before quantization, zQ,k (Eq. (2.4-3)),

the quantizer input statistics are evaluated approximately as

2=h (2.4-17).=Q ! Q + v

E The complete quasi-linear measurement model is then obtained

by cascading the random component ridf's as follows:

z k q q nq(h R + v (2.4-18)

The two linearized measurement models described

[above are depicted in Fig. 2.4-1. In the small signal or

EKF case, the addition of the fictitious quantization noise

LI (Eq. (2.4-12)) to the model given in Eq. (2.4-1) completely

accounts for the quantizer, while the quasi-linear repre-

sentation of the same effect introduces a describing func-

_ tion gain, nq, and a modified expected value, fq.

LI On the basis of the above arguments, the EKF

algorithm modification that accounts for the presence of LOS

angle quantization is obtained by merely replacing pv in

Eq. (2.4-9) with Pq given in Eq. (2.4-12),

ki -k = Pk(-)hsl(hPk(-)hS + Pv + 62/12) (2.4-19)

H The quasi-linear model of Eq. (2.4-18) is seen to result

in the QKF algorithm having measurement update equations of

the form

+) k( ) + !k(Zk - fq(m,a)) ((2.4-20)
k q :khT(-k ( - Pk(-))]Pk(-)ii = [i- m,

'\ 2-14
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IV ..28

9. Z -38h -W

II 0) MEA'SLMEMENT MODEL WITH CUIANTIZATION

LI Zq5

b) APPROXIMATE MEAS4JREMENT MOMS MOR EKF DESIGNf

[3

iN23 Quni3to MIel

f

where

[3The algorithms given in this section fretmtn
relaivemissile-target position, velocity and acceleration

are based on two quite general and powerful nonlinear

2-15
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3 estimation techniques: the extended Kalman filter (EKF) and

the quasi-linear Kalman filter (QKF). The goal of this

study '-s to determine their performance (both absolute and

comparative) in the antishipping missile application

(Fig. 1.1-1).

2-1
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3. FILTER RANGE ESTIMATION PERFORMANCE

3.1 PRELIMINARIES

j The missile from which the target line-of-sight angle

(LOS angle) measurements are taken follows a deterministic

trajectory which is qualitatively depicted in Fig. 1.1-1. The

initial 7.2 sec of the flight is a constant-altitude cruise,

with normalized altitude of unity (y=1 unit) and an initial

L horizontal missile-target separation, x0 , of 425 units. The

cruise phase of the engagement ends at x=300 units and is

LI followed by a pitch-up maneuver. The latter leads to a maxi-

mum altitude of about 22 units at 19 sec and terminates at

U the nominal target position at 26.5 sec. It is assumed that

the motion of the target is characterized by a horizontal
acceleration which is a zero-mean correlated gaussian random

process with bandwidth 0.05 rad/sec and rms level of

3.22 ft/sec 2 ; these parameter values are representative of a

moderately large ship conducting a slow random maneuver. The

LOS angle measurement noise sequence, vk in Eq. (2.3-3), is

always assumed to be a zerG-mean discrete gaussian process

with rms level 4.38 mrad (0.25 deg); the data rate is

5 measurements/sec.

In order to assess the performance of the various

filter algorithms, a single random realization of the

stochastic nonlinear estimation problem is obtained. Ran-

dom number generators are used to generate a suitable mea-

surement noise sequence, vk' and random target accelera-

tion sample function, at. In all of the engagements pre-

sented here, the time-histories of vk and at are the same,

i
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which permits direct comparison. The variables of greatest

concern are the initial values of the error in the filter

estimates, ?0, and the uncertainty of these estimates, P0 ,whe

The initial state vector is always specified by*

425.3 u

1] -17.90 u/sec
x(O) 1.0 u (3.1-2)

0.0 u/sec

6.142 ft/sec2  I

jJ The initial estimation error covariance matrix is assumed

to be of the form

0 0 0
xO 0

po 000 0 0 0 0
2

PCxO': G 0 0 0 0,

Po-  0 0 0 2

P 2 Poa 0  0 (3.1-3)IYo Yo

0 0 pCoO 2  0

0 0 o o
LL0

where p is chosen to be 0.707, which allows for correlation

[1 between the initial velocity and position estimates, in each

*The abbreviation u stands for unit (normalized length).

3-2
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3 coordinate. Thus, P0 is completely specified by the five

diagonal elements, or their square roots. For convenient

reference, the vector a0 is defined as follows,

aT 0T [ o0 a ao oa] (3.1-4)0 °x 0  0 YO 0

II Finally, the error, r, in estimated range, and the estimate

of rms range uncertainty,* ar, provided by the filter covari-

0 ance matrix are of particular interest; these are given by

- x+y

ax ax

x +2p 3 x +P 33Y )/(x += [(Pl 2 + 2P1 3 j + P332)i(2+2) (3.1-5)

3.2 MEASUREMENT WITHOUT QUANTIZATION

The filter performance comparisons presented in this

section are for situations where quantization efiects can be

neglected. The engagements investigated are categorized

1according to the assumed value of the initial rms horizontal-

separation estimation error, oxx0

*Note that or is not the true rms range estimation error
because the filter covariance matrix is generally not equal
to the actual estimation error covariance in a nonlinear

_p filtering problem.

\ 3-3
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3.2.1 Small Initial rms Horizontal-Separation
Estimation Error

The initial values of R and a are specified by

ii-4.67 u 14.29 u
0.703 u/sec 0.707 u/sec

-0 0.2 u go 0.209 u (3.2-1)

-0.08 u/sec j 0.0849 u/sec

6.142 ft/sec2J 3.22 ft/sec2

These conditions correspond closely to the nominal case of

Ref. 1 without altimeter measurements; they are typical of

situations where radar range measurements are available until

the filter initialization time, when they are denied by tar-

j get jamming activity.A

The time-histories of it, the range estimation error,

and ar' the rms filter range uncertainty, are depicted in

Fig. 3.2-1. Since a is much smaller than x for the first

10 sec of the engagement,* it might be anticipated that the

EKF and the two QKF algorithms should perform nearly iden-

tically, as is indicated in Fig. 3.2-1. In mid-engagement,

however, there is some departure between the EKF and the QKF

with accurate ridf's determined by numerical integration,

denoted QKF-N (Sections 2.4 and B.3). Observe that the QKF

with approximate ridf's based on a power series expansion

(Section B.2), which is designated QKF-P, is indistinguish-

able from the EKF. The QKF based on the truncated gaussian

.1 density (QKF-T) was not exercised for this case; as shown

*Since the missile altitude is always much smaller than the
horizontal missile-target separation, the pairs (x,r),
(Ox,Or) and (RJ) are very nearly equal in the studies per-

- formed here.

3-4

-A



THE ANALYTIC SCIENCES CORPORATION

12- 12-- R-20803

I I

- 0

0 KF, E KF-N

C0C 4- 8-

cc ccKQK. .

o 0-

u w OKF-NIa

z OKF.N I-

(a) RANGE ESTIMATION andR," ()RMS FILTER TANEc UCRANfr

~Figure 3.2-1 Time-Histories of Range Estimation j
Eroran Uncertainty for Small
Initial Uncertainty

~subsequently, its performance can be anticipated to be inter-

H mediate to that of the QKF-N and the QKF-P.

The relative behavior of the three filter alga-

ilrithms directly reflects the comparative values for the"
linearized measurement model parameters -- 0e or 0, hi, and

Hh 3 -- listed in Table 2.4-1. The table demonstrates that

corresponding values of these parameters are more nearly

equal for the EKF (small-signal linearization) and the

QKF-P (power series) than for either the EKF or the QKF-P

and the QKF-N (numerical integration). All algorithms main-

Ii tamn 0  and i within the range + 12 units for the trial per-

formed, which may be adequate in some circumstances, espe-

Ii cially in the first half of the engagement (t<15 sec) when

range is greater than 180 units.

x 3-5
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3 3.2.2 Large Initial rms Horizontal-Separation
Estimation Error

p ,!
The initial rms error in the horizontal separation

estimate was increased to 220 units, to represent very poor

filter initialization. Five initial values of R0 were con-

sidered, viz., 225, 125, 25, -75 and -175 units, which are0 designated Cases i to 5, respecticvely. As mentioned pre-

viously, P0 a ,x since O is small. Both the QKF-N and the

0 EKF were exercised for all initializations; the truncated

gaussian quasi-linear algorithm, QKF-T, was applied to

L1 Cases 1, 3 and 5, and the approximate QKF-P was evaluated
for Cases 1 and 5. Figure 3.2-2 depicts the simulation

results.

An adverse effect observed in the QKF-N time his-

=tories of P is a large negative step change at the time the

first measurement is processed, followed by a long period

of relative inactivity; i changes only slightly over the

first ten seconds after the first filter update. The rea-

[]son for this quiescent behavior is clearly evident in the
corresponding plots of ar: The filter covariances become

so small that subsequent Kalw-.n gains are likewise very

small, and thus the corresponding measurement data is vir-

tually ignored. The small values of a can be explained by1 r
contrasting the initial quasi-linear measurement equation

parameters (QKF-N) with those obtained by small-signal

Ij linearization (EKF), as given in Table 3.2-1 for Case 1.

Based on x and axo , the quasi--linear representation

ji 0(x) O e(xP) + hQ (x-R) + hQ3(yj)

Igive: rise to values of e and hQ that are very large in com-

parison with the corresponding small-signal linearization

~3-6
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Figure 3.2-2 Time-Histories of Range Estimation
Error and Uncertainty for LargeiInitial Uncertainty (Cont.)

TABLE 3.2-1

El COMPARISON OF MEASUREMENT LINEARIZATION
PARAMETERS, CASE 1

EKF QKF-N

El] 8(i) = 0.00584 rad 5 = 0.573 rad

-4- -5

Bh 5  1.02x104  hQ = 8.56x10 5

3 I "

parameters 0(x) and hs!. In the filter update equation

for the QKF-N, Eq. (2.4-10), the large 8 and hQ1 values

result in a large change in x and in the (1,1) element of

3-9
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(I-k h T) being very small; this greatly reduces aafter the

first update. The behavior of the QKF-N described above is

clearly inappropriate in Cases 1,3,4 and 5; for Case 2, the

apparent superiority of the QKF is "accidental," in that the

large step change in i just happens to be nearly "correct. "

The QKF-P behaves somewhat like the QKF-N in Case 1.

An abrupt initial change occurs in i, followed by small

variations. Since ar for the QKF-P is larger than for the

QKF-N, the QKF-P takes advantage of the additional angular

information provided by the pitch-up maneuver sooner than
Li the QKF-N, achieving a smaller value of f after 10 sec. In

LI Case 5, the QKF- is much closer to the EKF in performance.

This is attributed to the fact that xi s much larger than

a -for this case (by a factor of 3), resulting in a smallerx0 ,

differen between quasi-linearization (particularly in the

iwer series approximation) and small-signal linearization,

_s shown in Fig. B.3-2.

The QKF-T was considered in this study to investi-

gate the impact of using alternative densities for x. The
1

truncated gaussian density, Eq. (2.4-5), was used in the

numerical integration arctangent describing function sub-

routine (Section B.3) as the basis for describing function

evaluations. It appears tnat the truncation of the density

improves the QKF significantly for large positive initial

range estimation errors (Fig. 3.2-2a), but that performance
for small or large negative values of the initial estimation

error is not better than the EKF in the same circumstances.
as, while modifying the density function p(x) upon which

.he quasi-linear filter is based does remove one deficiency

of the gaussian-based QKF -- the large initial step change

in r and ensuing 10 sec period of quiescent behavior discussed

3-10
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above -- it does not appear that the QKF methodology is

significantly superior to the simpler EKF algorithm in this
appl icat ion.

SAll filter algorithms appear to be more effective

for i>O, i.e. for initial filter estimates of range that

are smaller than the actual value. This result can be

explained by the geometry of the situation: The arctangent

nonlinearity and its slope become very small as x increases,

which implies that it becomes more difficult to distinguish

negative horizontal-separation estimation errors (x<x) than

positive ones of the same magnitude.

[I Of the algorithms considered, the QKF-N is the

least effective, especially during the cruise phase. This

is attributed to unrealistically small values of ax (or,

equivalently, small values of a -- Fig. 3.2-2) after the

first measurement is processed. Considering the remaining

filters, there does not appear to be a clear-cut advantage

to any single algorithm. The EKF appears to have a band-

width that is too wide, as may be deduced from the presence

of large error "spikes" (at t=9 sec, for example). The

QKF-T and the approximate QKF-P are in some senses compromises

between the EKF and the QKF-N (refer to Figs. 3.2-2 and

r B.3-2); they do not seem to offer any compelling advantages

over the EKF for the cases studied, however. Because of

ft the divergence for small values of x exhibited by the power i
series quasi-linear term, Op (shown in Fig. B.3-2), it might

1 be inadvisable to use the QKF-P design.
3k

N_71
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3.2.3 The Cram6r-Rao Inequality

5 The studies discussed in Sections 3.2.1 and 3.2.2

indicate that the QKF methodology is not significantly superior

to the EKF in the present application. This result was not

anticipated since quasi-linearization generally provides a

more realistic representation of a nonlinear effect than

U small-signal linearization, which should result in obtaining

a more effective filter algorithm. However, there is a clear-

cut explanation for the unexpected results in this investi-

gation: The EKF appears to be quite effective in comparison

0 with the "best that can be done" in the situation considered.

1The Cram6r-Rao inequality (Ref. 7) provides an

absolute reference for judging the performance of a filter

algorithm in solving a nonlinear estimation problem. Based

on the system and measurement models, and on the initial

statistics of the estimation error, this inequality provides

a lower bound on the rms estimation error that is the best

that can be achieved by any algorithm. In general terms, if

J x(z) is an unbiased estimate of the quantity x, which is based

on a noisy measurement, z, then a fairly straightforward appli-

cation of the Schwarz inequality leads to a lower bound on

the variance of the estimation error,

El( (z)-x)2] > l/E[(in p(zlx)/x) 2 I1

The function p(zlx) is the conditional probability density

function (pdf),

kp(zlx) = p(xz)/p(x)

'where p(x) and p(x,z) are the pdf of x and the joint pdf of

x and z, respectively. The Cram6r-Rao inequality is useful

for determining whether a given algorithm is comparable in

3-12
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3 performance to the unspecified optimal algorithm, and thus,
whether it is fruitful to attempt to design a "more sophis-

5ticated" filter for the same problem.

The result shown in Fig. 3.2-3 demonstrates the

application of the Cramdr-Rao lower bound to a scenario

that is similar to but slightly .simpler than, the engagementstudied in Section 3.2.2. Po0 in Eq. (3.1-3) is specified

by setting the correlation coefficient p to zero and clhoosing

.0 to be

"220.0 u

4 0.707 u/sec

0 0.209 u

0.0 u/sec

0.0 ft/sec2

Thus the target acceleration and altitude rate rms levels

are neglected in this case. Furthermore, since range esti-

mation in the cruise phase is of particular interest, the

pitch-up missile maneuver is suppressed; the altitude y~satisfies

y(t) = 1 unit

during the entire engagement.i] i
For comparison purposes, the EKF is used to estimate

range in the same circumstances. The particular initial con-

dition considered in obtaining the results in Fig. 3.2-3 is

225.0 u

0.703 u/sec

-= 0.2 u

0.0 u/sec

_ 0.0 ft/sec2

3-13
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Figure 3.2-3 Application of the Cramdr-Rao
(C-R) Inequality to the Range
Estimation Problem

and the measurement noise sequence, vk9 is the same as in

all previous cases. Since the EKF range estimation error,

is well within the Cram~r-Rao lower bound on rms range

estimation error over most of the trajectory,* it may be

inferred that the EKF is quite effective for the range

estimation task treated in this study.

3.3 THE QUANTIZED MEASUREMENT CASE

The study of quantization in the LOS angle measure-

ment was performed for the scenario treated in Section 3.2.1,

where the initial range estimation error and rms filter

range uncertainty are small (-4.67, 4.29 units respectively).

The QKF models the quantizer with a random-input describing

pfunction that takes into consideration the exact form of the
*The Cramer-Rao lower bound is statistical in nature; i.e.,

i for any specific trial may be less than the Cram6r-Rao
lower bound on rms range estimation error, as in Fig. 3.2-3.
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nonlinearity and the statistics of the quantizer input, while
the EKF accounts for the effect by the artiface of introduc-

ing a "fictitious quantization noise" of suitable rms level.

The measurement models upon which the EKF and QKF algorithms
are based are portrayed in Fig. 2.4-1. The three cases con-

sidered in this investigation are specified by quantizer level
increments, 6, of 0.5, 1.0 and 2.0 degrees. The number of

positive and negative levels, N, is 40, 20 and 10, respec-
tively, so that quantizer saturation occurs at ±20 degrees

II in each instance.

fj The small quantization increment, 0.5 deg, leads to

the filter performance curves depicted in Fig. 3.3-1. The

filter algorithms applied to this problem were the EKF and

the QKF-N. During the cruise phase, t < 7.2 sec, the per-

formance curves are essentially identical to those obtained

without quantization, Fig. 3.2-1. This behavior is to be

expected, since the LOS angle is less than 0.25 deg over this

period, and the measurement noise is sufficient to mask the

effect of the quantizer. Beyond 10 sec, both the QKF and EKF

curves ara displaced positively with respect to the corres-

ponding range estimation curves obtained without quantiza-

tion. The peak EKF range estimation error of 11 units at

16 sec is twice that shown in Fig. 3.2-1 at the same time,

and the negative peak in i for the QKF-N at 14 sec is reduced

from -12 units (without quantization) to -6 units in the

present case. The reason for this apparent offset is not

clear; extensive monte carlo simulation would be required to

determine if biases due to quantization are present. Com-

paring the results in Figs. 3.2-1 and 3.3-1 (the former cor-

responding to the same scenario without quantization), there
does not seem to be any basis for a judgment concerning the

relative statistical performance of the two filter algorithms

with or without ouantization present.

A
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Figure 3.3-1 Range Estimation Algorithm Per-
formance With One-Half Degree
LOS Angle Quantization

The filter performance curves for quantizer incre-

ments of 1 and 2 deg are given in Fig. 3.3-2. Three filter

algorithms were used in these studies, the EKF, QKF-N

and QKF-T; observe that the QKF-T was indistinguishable

from the QKF-N in its behavior in both cases. Very much

the same behavior is observed as in Fig. 3.3-1, in that

the first 7.2 sec of the engagement still results in an

unchanged time history of i, and the QKF curve is generally

displaced below the EKF curve of f thereafter.Hi

d ,3.4 SUMMARY

_=I The material presented in this chapter gives an

indication of the range (;timation capability of two types

of filter algorithms, for engagements representing a tac-

tical missile intercepting a surface target after a cruise
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I I
(constant altitude) phase. While the design principles of the

filter algorithms are quite different, the EKF being derived

I from small-signal linearization and the QKF being based on

quasi-linearization, their performance is quite comparable

for small estimation errors (Section 3.2.1). As the mean and

rms initial estimation errors are increased, the behavior of

the range estimates becomes very dissimilar, especially when

Ithe initial estimate is small compared to the true value.
However, it is difficult to make a case for the superiority

[1 of either algorithm based on the limited number of monte carlo

simulations that have been performed.

3-1

iiJ

LI
ii

Ji

3'

"l,, 3-18



Aspnizeo% ~ Vag. owltimrtion prob),Pim, .rel

*rrW a adilitaaa4to 'lwatraetr

*wd of an riw,.r the miatstlo Iiea
K 5i5(t !-Ow a-lti e 6on9 1y ps itchu Mzuuv

zichtiteaF~te aetneAthe den.,r-,d approwch ta
y towakrt the tAgtih arget Is so0urnd t,} be '-ou-

'~d to ,ie ,on thee seDufae uhring h rvnpus

Wen3E] 143tnular *nCIWSiXnS are sm alII, p ro vIdtIng

'w.in~ Thtormnttipa; the pitcwh-ut ratnuver t'mn cnhvnn#csta

:Ahrange eatima~tioa, cakpaility. Ithe dynvmtc t~

of notonare fontulated ±a Carteslan coorcdina"ez-, iso
t.:ty can realiistieally be aesunmod to be I-near; the

-j jI r~r na~t'urv Ot"tbe task is .then. teetricted to the mnea-

Ocaqni10nf1 an 'inverse tangent relatio.,n occurs.
Itional naitcot mep~euretnent error that is. cosnPl*red

tiwzation, tilustrated in 1 t. 2.4-1a.

'Two types of range eetimtton airooi thre, arc invcs-
~. 1 s~thinvefft, Tbe f irst, the extcn eialntan f(i,-

c~f4> i b~stt n alinear filter design m~odel obtained
~~m~tnvswat-sgnllinearization to the measuremtr

Ireal"."gVis. Th'*fcndi-h quasi-linear Kalmoan filter
2'>~~ -,Ae uteeq t' ear representatiens of the-vyntcrn
o ar,*f~ta he distinct telzJons of the QKY,

Best Available Copy



Aumaritj ~wb*4 ito tbo abo** pra~mgft,

The oiaimUtIoi tults xr swoarizod it, Ctaptnr 3.
IT the cAse with 40 4* ett -qtmatixatlon, filter perfora-

* ce curves, toy tw Wt.er i ait lizvtionx are conaidered;

tt el: are typifti4d by small-.ad-large Initial rms range exti-

t,,A+e uncertainty, or . The prouentation :ror this came it-, con-
t Idnd with a dircussion of a dlosely-rolated subsidiury

-vo-tigst Lion -- w application of the Crwnr-Rao inoquality

;A rtmplifted intereept scenario. The latter study estab-

livhe,; the lower bound on ranga 0etimatlon error that can be

'...h1oved by any algorithm for the problem (;onsidered. It thus

r t!1do a basis for assessing the performance of the varlous

7,r1Ahbm in the same case. The chapter concludes with a

i'.:Lion~ of the effect of quantization for three quantizer

liyl increments.

4.2 CONCLUSIONS

From the simulation results presented in this report,

1t appears that the gaussian Q with numerical integration

(1-., the QKF-N algorithm with describing functions for the

arct,.ngent meamurement nonlinearity based on the gaussian

aiunmption) perfores poorly when initial range esttinate errors

Afid rma uncertaintiu are large (Section 3.2.2). In nuch

an. ri, the filter makes one large initial correction to the

ran;t ostimate, and then almost completely iguoren subsequent

m-lamir#,ment data during the crvise phase, an Illustrated In

Y~g. 3,2-2. This probleM I" due to the sinansn uinomption. the

-Best Available Copy



A4.11Vt ,*tklrt F~ t:" cot4~ wtA or,4 b o

~ ~~t~*nitv is~~4L. ~ptO th* f et, OhAt the

.e4 ot*hbt' tisi U4n400, fobx truit of .the QV-"(

*~-0 * r-r lit tl wit **sai to be eiap~r or tc>

zT~y. The ~ .P b*don po Lr-nriose8 @poflsic4 tech-

*lW. for ovaluati 4'psow ibJi% 3ctiont for, -the aretariont

* r,~ '41ri ty , Vls~o did bfrvMarypae te~f its
1_.-0vv to tb' U'

The Craa~rao lvoe bound on rvms catimation error

f nlk t en tbe achieV44ed b~~ lgorithm ,'Applied to the cruise

of the aisoo 1i0 thb large Initial. range uncertainty

Sas reported inl Bection 3.2.3) Indicates that the ElF

:ifo nearly ast v*13 as possible. If this is true, thon

L~kr failure of any qiw to outperform the EKI' in due to the

fact that the El? is W611-uuitod for the present filtering

..A; thus it mynot be worthwhile to seek more sophisti-

vatfd filter algori.thma (e.g. modified QKF's) for the

~pp tiatl,3n considered here.

A second factdr contributing to the~ inability of

truw QKF methodology to qutporform the EKF design technique

si thig applicationflis that statistical linearization can

bo v.ery se'nsitive to tk- assumpti~ne made regadisig the joint

prob.-Liity dens~.cy function of the system state variabl.es9

(M-Nf. 5.) This problem is espocially acute in dealing

,4w-. norlinaritios ouch a~s arctufgent(y/-x) which exhibit.

jag c:hatign for "mall1 changes in Input -- an happen-,I hwrv

0. This sensitivity in; clearly deonstrated in thc-

Yo'*.nco of the QVi-N~ and QK?-T (Fig. 3.2-2). it IS

~ibl'that A more effective QI? algorithm~ could bf,

f-nd bristod on othor joint probability dens~ity ftinctionn.

-h~rr, tho Crmmr6r-Rao renult outlined abv inakes it

4, Best Available Copy



VKtWu1 tha&t tho pstOrfaOrlC CAiia Obta~ined inl thin wn:,

Tho treatmat qf quantl*ton (Sectlon 3.3) loado

* .:niusons that 4ra similar t" those discussed above.

. is, there 2oes not appear to be performanco advatag s

utarent in any Of th0 filter design techniques considered.

-tmnsive monte oicox analysis of all filteor algorithms ii

t -Jed to. make armo-re definite crAprison.

7he fact that the Q10 approach did not appear to

iekd to algorithms whch 'perform significantly better than

the F for the gobleft comtiderad in this report should not

be interpreted to b a gneral cr~ticism of this applica-

tion of describing function techniques. It im reasonable to

oepoet that there are applications in which the QIF will

excel. In a considerably simpler nonlinear estimation

problem (Refs. 2 and 8), definite performance advantages of

thie WF were observed. The results presented in this docu-

ment provide a basis for further research in this area, and

4ve some insight into problem areas thtt might be encoun-

tered and methods of dealing with them.

Best Available COp9



THE ANALYTIC SCIENCES CO:PORATION

APPENDIX A

OUTLINE OF NONLINEAR FILTERING THEORY

The equations of the optimal (Kalman) linear filter

and of several modified Kalman filters for the nonlinear

case for estimating the states of continuous systems using

discrete noisy measurement data are reviewed briefly in

this appendix. The extended Kalman filter and quasi-linear

Kalman filter are suboptimal generalizations of the optimal
linear filter, and are applicable to systems which contain

significant nonlinear effects such as those encountered

in the range estimation problem studied in this report.

This appendix provides the background and notational con-

ventions needed for understanding the algorithms applied

in this study; a basic familiarity with random variables

and state space notation is assumed. Additional detail

can be found in Ref. 2.o
0 A.1 KALMAN FILTER EQUATIONS

To apply Kalman filtering to any estimation prob-

lem, it is necessary to derive a linear stochastic first-

order vector differential equation to model the system, of

.. the form

,(t) F(t)x(t) + G(t)w(t) + L(t)u(t) (A.1-1)

where x(t) is an nxl column vector representing the system

state, and F(t) is an _xn dynamic matrix which defines the

4
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interaction of the state vector components. The vector

w(t) is a pxl column vector of white gaussian noise inputs,

specified by a zero mean and the spectral density matrix* Q,

E[y(t)] = 0 ; E[I(t)w() T Q(t)6(t-T)

and the matrix G(t)- is an nxp distribution matrix which

indicates how Pach component of w(t) affects each component

of the system state derivative. The variable u(t) is an mxl

column vector of known system inputs, which are allocated

LO the state differential equations by the nxm matrix L(t).

In the missile-target range estimation problem considered

here, the compone..s of the state vector x include position

and velocity, variables plus target acceleration. Note

that F, G, L and Q matrices may be time-varying; in sub-

sequent development the explicit notation (t) will be

omitted.

At discrete instanfs of time, tk, measurements of

linear combinations of the state variables are made. The

equation describing this measurement process has the general

form

zk +v (A.1-2)

where zk is a vector of r measured quantities at time tk , Hk

is an rxn observation matrix describing the linear combinations

of state variables which comprise zk in the absence oZ noise,

p and v is an r-vector of zero-mean gaussian measurement errors

with a covariance matrix, Rk, defined byt
i-k

*The symbol 6(t-T) denotes the Dirac delta function.

'The symbol 6jk is the Kronecker delta; it is unity
for j=k and zero otherwise.

A-2
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IT
I~~~~ {k]=RkjkU

The objective of optimal estimation theory is to

process the measurements in real time and produce an esti-

mate R(t) of the system state x(t) having minimum error, in

some statistical sense. The optimization criterion most

orten chosen is that of minimizing the mean square estimation

error. This estimate is calculated with the Kalman filter-

II ing algorithm.

il As each new measurement becomes available, there

is essentially an instantaneous change in the knowledge

of the state x(tk) Denoting the optimum estimate of

x(tk) just prior to the availability of zk as 9_(-) and

the optimum estimate of the state vector immediately after

processing Zk as 9 (+), the Kalman filter generates the

optimum estimate of the system state according to the

Um following algorithm:

A (t) = FR(t) + Lu(t) ; (tk_) = S (  t ! tk

(A.1-3)

-= ) + Kk[Zk - Hk k(-)] (A.1-4)

Equation (A.1-3) is used to propagate the estimate between

H measurements, and Eq. (A.1-4) is used to update the estimate

when new data is received.

ii The nxr matrix Kk in Eq. (A.1-4) is the Kalman

gain matrix, which is obtained from the estimation error

II covariance matrix, P, as follows:

Pk = Pk()HkT[HkPk(-)HkT + Rk] -1 (A.1-5)

A-3
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The matrix P satisfies the propagation and update equations

given in Ref. 2 as

P(t)=FP PFT + GQGT  k1 ttk (A.I-6)

Pk( = [I - KkHk]Pk(-)

These relations complete the outline of the Kalman filter

design for linear systems.

A.2 THE EXTENDED KALMAN FILTER FOR NONLINEAR ESTIMATION

Optimal linear estimation theory provides a power-

ful analytical tool for analyzing and synthesizing filter

algorithms when the system equations of motion and measure-

ment equations are linear. However, the range estimation

II problem contains at least one inherent nonlinear effect

which may be sufficiently important to warrant the use of

0a nonlinear estimation technique. This effect is the LOS

angle or bearing measurement provided by the target track-

ing system sensor, which is a nonlinear function of rela-

tive missile-target position in Cartesian coordinates.

Whenever nonlinearities are not negligible, a data pro-

cessing algorithm derived from the principles of non-

linear estimation theory may yield considerably better esti-

imates than a linear (or linearized) Kalman filter. This

section discusses the extended Kalman filter used in this

report as one solution to the nonlinear range estimation
problem.

IA quite general mathematical model for nonlinear

stochastic systems is given by the equations

A(t) = f(x(t),t) + G(t)w(t) + L(t)u(t) (A.2-1)

= ~k((tk)) + Yk k = 1,2 .... (A.2-2)

A-4
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where 1- and hk are nonlinear differentiable* functions of

the state vector x, w(t) and vk are zero mean, independent

gaussian white noise processes having spectral density

and covariance matrices Q(t) and Rk, respectively, and u is

a vector of known inputs. Assume as before that measure-

ments are taken at discrete times tk*

The first approach one might use to derive a

filtering algorithm for x(t) in Eq. (A.2-1) is to linearize

the nonlinear functions f and hk about an appropriate known
reference trajectory R(t) and then apply conventional optimal

linear estimation theory -- i.e., the Kalman filter discussed

in the last section. Thus, denoting i(tk) by -xk' the so-

called small-signal linearization procedure results in the

expressions

LIf
f(x,t) t) + (x-X)

X=X

_ f(x,t) + F(R,t)(x-x) (A.2-3)

hk(_k )  _hk(X k ) + ahk -

=+ Hk ( - (A.2-4

--hk(k) +Hk(-k)(Xk-k) (A.2-4)

*Note that differentiability, as required in Eqs. (A.2-3) and
(A.2-4), precludes the formal application of the present
technique to systems with nonlinearities such as the limiter
and the quantizer which do not have derivatives everywhere.
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I which may be substituted into Eqs. (A.2-1) and (A.2-2) to
derive the corresponding Kalman filter which estimates the

variation in x, Ax(t) Ax(t) = i(t), from the reference

trajectory. When the reference trajectory is chosen to be
the current best estimate of the state x(t), the resultingI algorithm is known as an extended Kalman filter (EKF); the

mechanization equations for the latter are given in Table

A.2-1 (Ref. 2).

TABLE A.2-1

SUMMARY OF THE DISCRETE/CONTINUOUS
EXTENDED KALMAN FILTER ALGORITHM

Systm~ Moef(x,t) + G(t)E(t) + L(t)R(t);

I ys em Moel{ (t)E(T)] - t at-r

JJMeasurement Model S-1!()+ y* , kow1,2,...; E[4T] - %Jk

Initial Conditions Z[(X(O)) - t , {(X(O)-m)(mCO)3 0)r]. - P

Other Assumptions {w(t)x-k] 0 for all k and all t

0 1!(t) is a known input vector

State Estimate A f(1,t) + L(t)u!(t) ; 1(t~~
Extrapolation k1 -L+

0Error Covariance -Fqt,t)p + _ ~gt) + 0(t)Q(t)G;T (t);
Extrapolation

State Estimate Update - + Kk[-% -~k-)

IError Covariance Update Pk+ -kk(k-] k)

Gain matrix Kk- Pk(-)fHk %-)i + Rkj

Definitions
3h (x

H k -ItI~
A-6
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As long as the linearization in Eq. (A.2-4) is

_ accurate, the filter algorithm will give nearly optimal per-

formance. Experience with similar ranging problems indi-

cates that the EKF is an adequate suboptimal estimation

technique in applicationu in which estimration error is small.

A.3 THE QUASI-LINEAR KALMAN FILTER FOR NONLINEAR ESTIMATION

As in the previous section, the general mathematical
model is assumed to be of the form indicated in Eqs. (A.2-1)

U and (A.2-2), with the removal of the restriction that f and

h must be differentiable. The point of departure is the

method of linearization: Rather than assuming that estimation

error is "small" in some sense and making use of the small-

signal linearization technique, it is assumed that the esti-

mation error vector Rc is a zero-mean gaussian random vari-
able with covariance P, and the nonlinearities in the model

are replaced with their approximate random-input describing

function (ridf) representations. The quasi-linear analogs

jJ to the approximations in Eqs. (A.2-3) and (A.2-4) are

f(x,t) - f(xP,t) + Nf( P, t)(x_-i)

h"k(Xk(-)) -- _(k(- ) ,Pk(-)) + h , k ( L_.k ( - )x Pk(-))(Xk-_k()

II (A.3-1)

where

fI 0(,P, t) 1 (2 ,r)nIPI fp . fxt)exp{(-iTp1', I dx 1dx 2. *dx~

~-"

(A.3-2)
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and the arrays lk' Nh,k are defined in a similar way with

hk substituted for f in Eq. (A.3-2).

I For further details on the above statistical

linearization procedure, see Refs. 3 and 5. In the present

U context, it suffices to observe that the gaussian assump-

tion guarantees that the ridf arrays in Eq. (A.3-1) are

functions only of x, P and t, as the notation suggests.

For small estimation error (for P small), the quasi-linear

approximation approaches small-signal linearization; when
the deviation of x from x is not insignificant, then P pro-

vides the statistical measure ("aruplitude") of this deviation,

and the ridf representations of f and h are dependent on

this amplitude in a way which captures the nonlinear effect

| H much more faithfully than the small-signal linearized model.

fl HThe use of the quasi-linear approximations indicated

in Eqs. (A.3-1) and (A.3-2) as the basis fur a modified Kal-

man filter algorithm leads to the quasi-linear Kalman filter

(QKF). The equations are directly analogous tc thoso given

in Table A.2-1 with the following substitutions:

f(*,t) -_ + ?_^Pt

nUF(i, t) - N Nf(x ,Plt)

Shk - fh(xk(-),Pk(-))

Hk  N- N k(Ak(),pk( ) (A.3-3)

The algorithm obtained by making the changes indicated in

Eq. (A.3-3) in Table A.2-1 completes the development of theH QKF.

~iA
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I

APPENDIX B

RANDOM-INPUT DESCRIBING FUNCTIONS FOR THE RANGE
I ESTIMATION MEASUREMENT NONLINEARITIES

i B.1 INTRODUCTION

3 Two nonlinearities are treated in this investigation:

tan-1 (y/x), which is encountered in expressing LOS angle

fl (target bearing) in terms of missile-target separation in

Cartesian coordinates, and fq (z), or the quantizer defined

in Eq. (2.3-6). The quasi-linear representation of the

quantizer (Eqs. (2.4-13) to (2.4-15)) is a well-known result,

so it is not presented here (cf. Ref. 3). The arctangent

nonlinearity has not been treated extensively prior to this

study (refer to Ref. 6 for a preliminary approximate approach),

il so it is considered in some detail.

Q The random-input describing function (ridf)

approximation sought is of the form

O(x,y) - tan-l(y/x)

- + nx(x-9) + ny(y-y)

+ n TB11

Uwhere

,T A 9xT =(x y]

x E[O(x))

T A')T -1n E[8(x)(x-x)T]P (B.1-2)

-B-1
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and it is assumed that the vector x is gaussian with mean, x,

and covariance, P, given by

P = E[(x-)(x-x)T ]

pxy PyyJ

The evaluation of n is simplified under the gaussian assump-

tion (Ref. 5) to be

nT= __ (B.1-4)

However, the integral required in evaluating e, as speci-

il fied in Eq. (B.1-2), i.e.,

A 1 f (ta (y/x
0 -2lp tan- (y/x exp-(xx)TPl(x- dxdy

-00 -CO (B.1-5)

cannot be performed analytically to yield a closed-form

isolution, eo other approaches to evaluating Eq. (B.1-2) are
required.

B.2 AN APPROXIMATE QUASI-LINEAR REPRESENTATION
OF ARCTAN(y/x)

IA technique that gives rise to approximate ridf's
for use in Eq. (B.1-1) is based on the series expansion of

j the nonlinearity. In gpneral, given

B
B-2 :
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_f + af
f(x) = f(x) + (x-)" +- (y-)Ix=x x x

I (x- )2 + 2 - (x-) (y-")
x=x X=xI

+ higher order terms (B.2-1)

Hl the expectation operation yields

+I a 2f
ay 2 AyH X=x

I + higher order terms (B.2-2)

If the elements of P are not large with respect to x and 9
J(i.e., if the estimation error uncertainty is small in com-

parison with the estimates of missile-target separation), then

a useful approximation is obtained by omitting the higher

order terms in Eq. (B.2-2). For arctan(y/x) this leads to

A 1A ( .. A 2 2 A2A2 I0 = ep = tan- ( /) + (XY(Pxx-pyy) - Pxy(x y2 )]/(x+y)

S(B.2-3)

rB
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3 Observe that substituting the first term of Eq.

(B.2-3) into Eqs. (B.1-2) and (B.1-4) yields the small-sig-

nal linearization approximation given in Eq. (2.4-1),

0(x) + (x-6) (y-y) (B.2-4)

Iw 0(X, -ax ByA.Yy

I The second term in Eq. (B.2-3) represents the first correction

term which accounts for the estimation error uncertainty.

This approximate expressinn for 6, and the approximate

values of nx and ny obtained by applying Eq. (B.1-4), should

II quite accurately represent the amplitude-dependent nature of

the arctangent nonlinearity in cases where rms estimation

uncertainty is moderate with respect to i.

= B.3 EVALUATION OF RIDF'S BY NDMERICAL INTEGRATION

II Although the integrals involved in determining the

expected values indicated in Eq. (B.1-2) cannot be evaluated

analytically in closed foxm, useful results can be obtained

by direct numerical integration. The implementation of

* numerical solutions to Eq. (B.1-2) proceeds as follows:

Given the input means (Ri) and covariances (pxx' Pyy, Pxy)

of the gaussian random variables (x,y), first determine

the lower triangular transform matrix T,

-ii

S= =T(x-x) (B.3-1)

which results in u being a zero-mean gaussian random variable

with covariance
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El uuT]=F 0 1 - (B. 3-2)

This operation thus transforms ellipses of constant proba-

bility,

(x-x)Tp-(x-x) = constant

in the (x,y) plane into circles centered on the origin of the

(uv) plane. The (u,v) plane is then divided into n xn cells

in polar coordinates, as shown in Fig. B.3-1. The center of

each cell is then accorded a weighting which depends only

on the gaussian assumption and on its radial distance from

the origin; the cells bounded by (j-1)Ar and jAr have the

weighting

1
wj = exp(-J(J-i)Ar (B.3-3)

Integration is completed in the (u,v) plane by summing over

the cells,

nr

8 -1 Y(Ujk Vjk)IN = 1 tan -x u jk7LJ I) (B.3-4)

'3 where

Ujk = (j-I)Ar cos( k )

vjk = (J-*)Ar sin(Ok)

H k = 2n(kl/ (B. 3-5)

Iand x and y are found by inverting Eq. (B.3-1),
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Figure B.3-1 Transformation of Variables for
Numerical Integration of Random-LI Input Describing Functions

H x~~ujkvjk) = x Py -p i2 u + Pxyvjkily~~

H Y(u~kvk V /-V +9 (B 3-6)

The numerical integration of E[(x-x^)6] required for the

evaluation of the random component ridf's as indicated in

Eq. (B.1-2) is performed in a directly analogous manner.

Observe that this technique is perfectly general

±1 witih respect to the assumed joint probability density function
(pdf) of x and y. If the gaussian joint pdf is denoted p(x,y).

N B-6
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then the truncated gaussian pdf upon which the QKF-T is based j
is defined by

p(x,y) + p(-x,y) x > 0
PT(xY) (R.3-7)

0I, x<o

The same numerical integration subroutine which evaluates 0N'

Eq. (B.3-4), was thus simply modified to calculate 6T' or 6

based on the joint pdf given in Eq. (B.3-7), for use in the

QKF-T algorithm.

Figure B.3-2 portrays the evaluation of e by numerical

integration, 0N' for 90 cells (nr=5 , n =18) and for 360 cells
(nr=10,n,=36), for various values of estimated horizontal

separation, x. Based on the small deviations between these

results, it is judged that 90-cell numerical integration is

adequate for this application. The plots 6T' 0 (corresponding

to the result obtained by applying Eq. (B.2-3)), and 8(x),

corresponding to the use of small-signal linearization, Eq.

(2.4-1), are also depicted for the sake of comparison. Note

that as x becomes large (relative to the estimation uncertainty), a

the three approaches are very nearly equivalent. The largest

deviation between 8(x) and N with this value of p occursN xx
iifor PCxx ; at that distance, N is 11 times larger than

o( ). The power series approach for obtnining approximate

ridf's presented in Section B.2 leads to 6p. which essentially

diverges for small i. This effect for small estimated hori-

I zontal separation may not be critical, sitice the missile

will no longer be in a cruise phase when it is so close to

the target. In the middle range of x, however, the disparity

between 6 and ''N is also quite large -- 
8 N is as much as 6

times larger than Op -- which indicates that 8p may not be a use-

ful approximate ridf. On the other hand, since bis etween

0(x) ane. N for all x greater than 8 units, a quasi-linear

Kalman filter based on series-approximate ridf's can be
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Figure B.3-2 Arctangent(y/x) ridf s by Numerical Inte-
gration and Power Series Approximation

expected to exhibit a performn. ,anat is intermediate to

the EKF (based on 0(x))and the 3at-urate QKF (based on 6N)'

so the fact that p is not an accurate ridf may not be

detrimental in this application. The nongaussian-based

ridf, 6T' behaves most like ^p for moderate and large i
(2 / -x); as x decreases, 6T remains small compared with

itq the other results.
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3 It may be of interest to compare the computer time

expenditure required by the EKF, QKF-P and QKF-N: A simu-

3 lation of a single engagement of the type considered in

Chapter 3 necessitates 135 evaluations of 6(x), 6p or §N P

respectively; the corresponding data processing times are

1.74 min, 1.81 min (+3.7 percent), and 2.17 min (+24.5 percent),

where the percentage increases indicated for the QKF-P and

QKF-N are defined with respect to the EKF. Thus the compu-

tational burden for th QKF-N is not a significant problem.

Sections B.2 and B.3 have summarized two approaches

used to generate quasi-linear representations for the mea-

surement arctangent nonlinearity. The results presented in

Chapter 3 demonstrate the performance that can be achieved

using the ridf's derived in this appendix as the basis for

the design of a quasi-linear Kalman filter to estimate

missile-target range from measurements of LOS angle.

B-9IEl1
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