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INTRODUCTION

The years following the Second World War have seen a substantial development in
understanding the search and detection game involving two military unitF searching for
each other with some specified detection hardware. it has become apparent that Koopman's
attempt - a good part of which stands canonized in his 1946 book - establishes a suitable
framework for the description of these operations. Much of the early work, however, fails
to adequately accommodate the modified rules of the game that technological development as
well as increased analytical exigencies have since imposed upon us.

It is the contention of the author that notwithstanding tbc proliferation of papers that
have been written ou the subject attempting to account for the complexities of modern search
and detection, a clear framework malleaiole enough to handle a large variety of outstanding
real life problems has failed to emerge. Therefore, the purpose of this paper will be to
revisit, criticize, slightly modify, and subsequently expand the original Koopman framework.

Perhaps it is worth noticing from the onset that we have chosen to address little, if
anything, of this work to the question of comparison with the state of the art. We have done
so because we are more interested in presenting an independent framework, whooe right forsurvival we shall heretofore attempt to argue, rather than improve on limited treatments
available in the literature.

1. THE KOOPMAN APPROACH RIEVISITED
In the original Koopman formukation, the game of sea -ch and detection includes two

players, the searcher and a target. The two players engage in some sort of geometrical

search pattern, whereby each one of them moves along deterministic trajectories. This
kinematical part of the game is well described mathematically by the relative track of the
target,

While moving on its trajectory the searcher is assumed to be looking, either through
glimpses or continuously, for the target. The work "looking" is used here to mean attempt
of detection via some hardware, be it visual, radar, sonar, or any other means whatso-
ever. This part of the game is pure'v probabilistic in nature and the central mathematical
entity to be considered is the instantaneous probability density of detection v(t) ,Where

Y(>2(t)+ 2(t)) (1-2)

T $ t
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Notice that in equation (1-2), v(t) is not taken to depend on the relative bearing of the

target. While not a necessary assumption, it certainly is a very reasonable one for most

detec ion hardware.

Once v(t) is given, the probability of detection for continuous looking through time
t is given by: t

-f d-y(r)

0 (1-3)p(t) -- 1 - e t-1"

In principle, equation (1-3) provides the probability of detectioRn for relative tracks of any
given complexity. In practice, one is limited, of course, by one's :apability of estimating
the exponent in (1-3) along the track. In fact, the task of evaluating the integral i'i question
is wore often than not a quite formidable one, and correspondingly, solutions are difficult
to get for all but a few instances which, in virtue of their simplicity, are hardly7 realistic.
It is also evident, that a solution to equation (1-3) is less than realisc: in that it fails to
take into account the random nat-re of target arrival.

A somewhat more significant result obtains if one is willing to restrict the Koopman
treatment by making the following strong assumptions:

* The target's position is uniformly distributed over some region of size A in
the ocean.
* The searcher's path is random in A in the sense that it can be thought of as
having its different (not too near) portions placed independently of oue another
in A.

Then, the probability of detection is given by the Koopnian random search Zorw.-ula,

WL/A
p) = 1 e , (1-4)

where WV stinds for the effectwe search width of the detection law and L represents
the total length of the searcher's path within A . Let us emphasize, however, that while
this developm,-nt does indeed eliminate the dtif:.uultv of Integrating -..(t) along the relative
track of the target, it only does so at the expense cf ;,scrifi(,ing the realistic and cften
crumcal concept of correlation along the path of the searcher.

2. TillE KOOPMAN APPROACH MODIFIED

The Koopman framework has proved quite successful in a large varietjY of naval wax'-
fare problems, and has served as a guideline to many, more sophisticated later treatments.
It is within the nature of our stated purpose, however, to investigate the shortcomings of

S... . . ? "-'7 • 7 =- :•___27 ' , v€ o



the fformulation rather than eiiaphasize its vlrtues. Correspondingly, we shall concentrate
tn the following upon tLe major limitations of the Koopman framework.

As will be recalled, the Koopman theory takes the a posteriori view of the search and
detection problem whereby both target and searcher trajectories are assumed known. More
often than not, however, such is nrt tt.2 case, In fact, the path of a military unit is well
represented by a j!u%'aposition of oi,!termin:stic pieces of path, the process of passing from
one tc any other in time neing a r- adom onc to be sampled from some given distribution
dependent oa both trztical and physical parameters. The question to be answered, then,
is one concerning the manner in ,"hich the probabilistic descripf'ion inherent to the arrival
procers is to be incorporated in the Koopmar, equation. While we do recognize that an
an attempt at addressing this qniestion exists in the Koopman theory, it is important to note
that limitatLons in the mathematical formulation thereof do not allow the preservation of
correlations along the path of th. searcher,

It is also worth noticing th it the two par •s of the game as envisioned in the Koopman
formalism are no'. really independent of each other, in that looking can produce feedback
on the trjectories of both players. In this sense, the framewerk is void of dynamics.

The formnlation that we nropose and deveiop to some extent in this work is designed
to hopefully handle each and all of the points raised against the Koopman framework. It
esseiti ally consists in determirnng various physical quantities relevant to the search and
detection game f( - any of a fimily of shaple target paths, each one of which is assigned
a given probability of havi.g been chosen from the famiy. The actual value of the physical
quantity of int2rest is then obtained by averaging over the family parameters.

The main conceptua' virtue c& this framework is that it is more responsive to the
actual restrictions that realitv: imposes upon the search and detection game. This added
responsiveiiess gets reflected not only in the possibility of choosing the path probabilities
to sit the real case at hand, but also in the freedom A choosing the family in such a man-
ner that it be i •';cative of the operational features of the actual setup while still simole
enough to allow, in principal ait least, for tractable solutions to equation (1-3). It is inter-
esting to note that, unlike the Koopmn formulation, all of these conceptual adv- ges are
available without the loss of corrlation along the path of the s2archer. In fact, as we
shall discuss later on in some detail, most of the relevant correlations are properly taken
into account by the thoory. Statements coacerning the less conceptual advar cages the frame-
work offer-, are relegated to conclusions when the reader shall be more familiar with
the laný-iage.

3. OU iLINE

For reasons )f simplicity we have chosen to break the presentation to follow up into
two tarts. in the first chapter we shall address the relatively independent question of
determining realistic probabilities of arrival, Ilath because they are relevant in them-
selves and becauase, as it turns out, they are the necessary building blocks for calculating

-3 -



probabilities of detection. The second chapter of this paper will show how nonuniform diL, -
tributions of target arrival caut be incorporated into the detection problem. Since we suc -
ceed in doing so without breaking up the searcher path in independent pieces, correlations
along the path of the searcher are fully preserved in the formalisra.

-4-
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PART I. NIONUNIFORM rROBABILITIES OF ARRIVAL

A. THE GENERAL FRAMEWORK

We pursue the progiam outlined in the Introduction te this papc- by addressing Lrst
the relatively independent ques.rton of calcuiating realistic probability densities of target
arrival. We thus let,

F(r,w) = 0 (A-I)

be an arbitrary family of curves parameterized by thLý set w and define the probability
a(t) that the target has chosen to approach the searching area alonig some path W
Naturally,

a t, (A -2)
F

Now, if IC (, tG j j, tP ) repres4-nts the probability density of arriving at (P$, t)

from (j , t along path w we write for the probability denslity of arrival at (, t)

having started a; ('0 1 to)

fdw -",tj(-t'0,t0) d ý) (A-3)

To proceed, we now specify

G (Z"tIo,to) = 6((,tJ- ) (A-4)

where w, t) describes the position of the moving target along the path W, * Corres -

pondingly,

GP -t 0t G. = 'dw t'w) 6 r(w t)--pC~~p,t )0

lii fact,

"Jdw a r(w, t) = fdu) a(u) f d- + 6((, t)

f dP -P 'dwJ aLoJ) 6 (r+e,t) --7P

-5-
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which identifies G I , given in equation (A-5). For the reader who is not im-

pressed with the rigor of our derivation, we note that one can easily continue the argument
to show that (A-5) also has the appropriate higher moment.

Using the properties of the Dirac delta function, on immediately shows that
(3 (', t I 0,to) is properly normalized at all times if a(w) satisfies equation (A-2). Indeed,

using equation (A-5), we have:

fdý G(tt 0 ,t 0 ) -- f dw a()

and hence,

fd; G(p,tjP 0 ,tO) 1

It is noteworthy that the global correlation expressed in the requirement that the target
reach (;, t) having started at (0', to0 ) is here automatically translated into purely geo-

metrical restrictions to be imposed upon the family,

as well as upon the integration in equation (A-5). This interesting feature of the formalism
shall prove of some importance later on in that it offers a convenient way of including cor-
relations i.nto the framework.

B. THE CASE iF THE ISOTOPIC WALK

To start the framework off, a senibi, choice nr the family of paths is made, Fcr
purposes of illustration and because they are indic. ive of many re listic cases, we analyze
the family of all r, loin walks starting at the origin and parameterized by

w jn,(o ; v i; ) (B-i)1  X i L .... l J
Here, as displayed in figure 1, the set (0 o , v , 1 ,tands for the angle, speed along, and

time interval j! the ith step in the walk, while n represents the number of steps con-
sidered. Specificnliy, for a ra~dwii walk of n steps the family equation rtaFds:

-6-



S

Sn n
xn (t) - ai cos 0 ; y (t) = • a. sin e. (B-2)

i=Y 1 i=1 1

n n~

a. Vi = Ti (B-3)

In this section we specialize t the simple case

a.a ; vi v ; i=1,2,...,n (B-4)

and correspondingly measure time in units of T = a/v

t =nT (B-5).

01

a02 '
0 x

FIG. 1: 11Ri FAMlI.Y OF RANIDM WALIKS

Therefore, the associated quantity a(tw) becomes the joint probability density
a(0,02,. . . 8 e ) that the family parameters take onthe set of values ( ,. .. ,a )1 ' (Oi e
respectively, and

-7-
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G(P-ItIO, r = Z d r 2 rd nO. 1-t ) f dO2 " dIn a(200 ,On)* (B-6)
0 0 0

6(1 a cos 0.-) 6 a sin o.-p

for (7, o) the cartesian components of p

We now make the simplifying assumption that the decision of choosing any particular
value for some given a. is independent of the past,

a(61,0 2 -. ,0) = a (0 1 )a 2 (Oe) . . an(0n) (B-7)

Because (B1-7) is tantamount to assuming that the probability distribution for any given
angle 0 is independent of the point in the ocean at which the walking unit finds itself, wei

shall refer to (B-7) as the "isotopic walk case." We hasten to add, however, that while
of some methodological importance here, the isotopic walk assumption is by no means
necessary. In fact, realistic correlations along the path of the walk will be properly taken
into account in a later chapter Uf this paper.

Finally, to make matters as simple as possible, we specify:

a i (0 i = 1 / 2 1T =1 2 . . , (B -8)

while mentioning that the minor restriction imposed by (B-8) can be lifted with no difficulty

at all.

Hence,

G(p'tjo'°) dO1 f d02 "'" don (B-9)

0 0 0

6(1 a cos O-.o)6(j a sin ol-p

-8-



*I To cast equation (B-9) into a more manageable form, we make use of the spectral repre-
sentation for the Dirac delta function,

00

6(x) 1 f dk eikX (B-10)

and have:

G(P+'tj0 0) = ?IT! f d~ e _ fj dne -i p( - 1
_....(B-li)

"*1

* [ 42rd iO.e COS 0einla sin aj n
doe

Recognizing that

2 T

f "i~ COS 6 inia sin 0 ( '2/ •l
SdoeIc e +o r)B-2

I0

where Jo + ) denotes the zeroth Bessel function of the corresponding argument,

G(',tI',0) = (± fde1 fdne-ilPn + n (B-13)

We shall find it conve'ikmt to pass to polar coordinates in ( T , r)

ý xncos4 ; n=x sin

and explicitly perform the angular integration,

GC•,ti•,O -X• 1 j0 , -27 JOn(otx) (B-14)
G($ttjj, 0) -L dx xJ0( v a + (B14

0

-9-
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An immediate offshot of (B-14) is that

G(p,tI0,0) = 0 if + > na (B-15)

as L ,pected.

Wc can now start the simple but lengthy job of calculating G (p, t 0 0) for various
values of n . Thus, for n=2, (see figure (2),

Y

A

0x

FIG. 2: GI:ON]ITRY CONCtRNING '1111 ARRIVAL
PROBABIII'IY FOR n=?

4 , (B-16)

4ir 22

where A represents the area under the triangle formed by the triplet ( + Q; ); .a
Naturally, in accordance with equation (B-15), the probability density of arrival for n=2
va....shes whenever the triplet fails to form a triangle. We also note that for the marginal
case of measure zero,

12+ p 2c*

where A=0 , the probability densit-- of arrival becomes infinite.

-10-
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To handle the ease n >2 , we could make repeated use of the equality

f dO + J Z 2Z; cos = (Z)J()(B-17)

0

to reduce the power of the Bessel fuiction to n=2 , and then employ (B-16), but restrain
from doing so here. Rather, we develop in the next section a more general technique of
handling the calculational problem that shall provid2 answers at a much smaller expense,
and at the same time, indicate the manner in which generalizations to the simple example
considered here are to be approached.

C. THE EQUIVALENT ITERATIVE FORMULATION

To begin with, recall the result (B-13) from the previous section,

2 ~~ i ,-G( * n•i0,0) f d0 ne (C-1)

but avoid explicit integration on , n) • Instead, make use of the convolution theorem
for the Fourier transform,

!W -gkk-OD
dxeikX f(x)g(x f- dk f

where

f(i) -. dxMif f(Z)

and

g(G) J dxe g(x)

-- p0

onto the product .Jo(c a +r l to1have:

/ (a ~/



G('O,n~rliu,O) - d~e i&Cr dy 2l -( *Y

(Zn) f f

Ctoý

and continuing,

2 fdY OLO. (PYfl dco \Y
-G 2 2 2 -

- ~ -0 22 2f dxfs~o.x- 2 s(oPla-P- ))

+2 

~2 )}
aX12-

a _(P Y)Ot CPI
ODI

L _ _ _ _ _ _ _ _ _ _j _ _ _ _ _ _ _ _ _ _ _ _ _ __V



2 2

and correspondingly dropping the step function 0 [a - (p- Y) ] whose value is always one
on the circle

2 2 2(G -x) + (o -y) a ,

the probability density of arrival at p in n steps becomes:

G(p,n•I0,O) 2 f dxdy 65[(o-x)2 + 2 -

2(/22

f dpeiie'P f dve3 iy 0 n-i )1+

Finally, since in virtue of equation (C-i),

die- IPX d7 e- ivy jon-l (I v

= (27) G ,(n-lirio ,

for r the two-dimensional vector of components (x, y) , our main result reads:

1 912

A quick glance at (C-3) will now convince the reader that the physical content em-
bodied thercin is surprisingly simple: the probability G ( , n T r 0) id of arriving at'in n stenr~s having started at the origin is given by the probability G (h , (n- 1) T ,0 )d of

arriving at r in (n-i) steps having started at the origin folded into the probability
++2 2-* +_ 6 [(p_ -r) - a ] d• of taking the last step from rto P and integrated over all intermediate

points r .13-

L13



L1

"(o-x)2 + (p-y) 2 = 2

r

0

FIG. 3: Gt-ONFIRY OF IM:F IHIRATI'Oi SOTIYlION
FOR AN UNIFORM ISOTOPIC IV'M.K

Also note, that since the one step probability identified above is properly normalized,

J d$-1 5[(-r) -c ( = 1 , (C-4)
TI

as one cqn easily ascertain by explicit integration, the normalization condition

dr G( r,(n-1)t-0,0, = 1 (C-5)

implies via (C-3),

f dp G(P,nI,0,0.) 1

as exnIo_.cti

The very reasonable physical interpretation that we have just given equation (C -3),
suggests the possibility of guessing at the results to be expected for cases that are some-
what more complex than the simpie uniform isotopic case analyzed so far. Thus, to lift
the restriction of equation (B-8), we allow ai (0i) to be any arbitrary,_-properly normal -
ized set of functions and write for the probabiity density of arrival at p in n steps,

-14-



-2 fL 4.' (C -7
G(5,nljo,O) f d' 2 a,(P-r) p(-) r G( r,(n-l)lO,O(c-7)

where (see figure 4):

00

an(p-r)_ an(OO) ; sin 00 = P~

nu, p)

•'0// j (x,y)

0

FIG. 4: GEON•IIRY w' -llE I'llil\T SOIITION
FOR A NON-UINII:OR•M ISOTOPIC WALK

That (C-7) is, in fact, the correct answer can be checked, of course, with the tech-
nique that led to (C -3), but in view of the transparent physical content of (C -7) that is
hardly warranted

Needless to say, the few cases mentioned above as illustrative Instances do not exhaust
the set of configurations that can be handled by the iterative technique, but we shall leave it
to the patience of the interested reader the job of looking through them. The one configura-
tion, however, that involvcs relaxing ausumption (B-7) as well as the ensuing discussion
are considered sufficiently delicate to warrant a separate later section. As to the manner
in which actual numbers can be obtained from the rather formal results of this section, we
shall have little to say at this time, but note that quite powerful Monte Carlo methods are

-15-
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a-ailable for handling exactly this kind of iterative equations. Correspondingly, when
needed, solutions for any value of n can be obtained at much less expense than experi-
enced in the previous section.

D. THE CASE OF THE CORRELATED WALK

For all their value, the results that have been obtained so far suffer from che overall
constraint embodied in (B-7). We shall now show that the main features of what under-
standing has been gained fur the case of the isotopic walk survive the introduction of
correiations.

Consider again,

x = a ; = v ; i =

and make the following assumption of nonisotopy:

n -
a(0 1 , 2 ,..6 - a,(01 ) 7r ai (Oil 1  a cos 0; 1 a sin O. / (-l)

i=2 j=l j=1

to replace (B-7). Here

a(e a cos e.; i a sin )
j=1 j 1

represent the conditional probability distributions for sampling 0 g given that the walking
unit is at the point in the ocean of coordinates,

i-1 i-1

Xi a cosO. ; a.= • cisin O
j=1 j 1 j=1 3

along its path. Correspondingly,

-16-
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G(pntI0,O) : fdo1a11 (6l f 7r' dO *
i=2

Y C(i-1 i-1SO• . a cos 0.; }_ a sin 1. *
a. j=1 E a si (D-2)a j~l J j=1

ac cos 0k- 6 c s, -
k= kk=

or, rather,

G(j,n-rjO,) 7'r doi dxi dyi ai (6i1xi',i) " l cos

(D-3)

- j)6 
a )6 i j lc1 sin Oj6 k a Cos k- ai sin k= k ok-

and using again the spectral representation of the Dirac delta function together with the
convolution theorem for Fourier transfor as, we obtain

G(p,n-il,0) fd 2a ) 6P ]Gr i a G(r,(n-1PIjo)

where

a r si o = YaI nThrr k ('n n Ot



It then follows that all conceptual as well a.s calculational advantages It•t go along with
the iterative type solutions of section C, remain also valid for the correlated configuration
considered here. It is perhaps worth noticing at this time that while (D-lp is not the most:
general correlation along the path that can be envisioned, it should account for the majority
of realistic situations one might be concerned with. Correspondingly, we shall pursue the
question of correlations no further.

E. THE CASE OF THE BOUNDED WALK

In many realistic cases of interest to us, intelligence information is available con-
cerning the existence of a bounded region in the ocean within which the approaching enemy
vessel is most likely to be found. Cor respondingly, the study of the arrival prohability
density in the presence of given boundary conditions becomes relevant. Within our f-rame-
work, the question of boundary conditions can be treated with relative ease in the same
spirit the question of correlations along the path of the walk has been, i. e., by translating
the physical restrictions imposed therein into geometrical constraints for (A-5).

To illustrate the basic concepts involved, consider the following simple boundary
conditions,

0 < xy < L (B-i)

corresponding to a square shaped limitation upon the walk of the target. To ensure that
(E-i) is respected, it shall suffice to limit the set of paths on which the integration in (A-5)
is performed to include only those that independently satisfy (E-i). Therefore, if the case
of the uniform isotopic walk with constant speed and step is chosen again,

(-C('• -)) 1• f n\ do. ~ (L i )*
G (p 7n" di L - I a cos Oi

acos 0) 0 ct sin 0. o - a. sin 0j (1>2)
j J

Ca cos 0.--u ) j ( sin o.-I )

1 J \-i=,-
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We can now attempt to reduce (E-2) t, an Iterative sohIcion, employing the techniques

developed in Section C. in fact, using the spectral represtntation for the step function.

iwx
_(x) -d e dw e

2x Vi . + E-

one can show that:

G BC (P,nTjOO) =(L-o) 0(a) B(L-p) 0(p)

(E-3)

fdr 1-6[(p-r)'a ] (;i C(r,(r1-l)TO, O )
Lt

which displays the same intuitively simple content that its predecessors have.

The attentive reader will have noticed the little swindle that has been perpetrated in I
the definition of GBC (-,,nT - , 0) • Specifically, since,

K~ d -p (iB(,T O fdw a (c::Kn BCid: f

where the right hand side integral extends only over those w paths that satisfy (E-1), the

probability density is not normalized to unity. In fact, one can easily argue that

Kn < I

To compensate for the swindle, let us define,

awid use t1.e symrmetry property

C;'BC(•P•, li roo) = (i;c(o,nfIO) (F-5)

-19-



to write

Kn(r 0 ) = dp PBc(ro,nT ,o0)

Hence, in virtue of (E-3)

K (io) = 1

e= O(L-x3) e(x 0 ) O(L-y0) e(y 0 ) * (E-7)

2 2

d• r 6[(r 0 -r-a I K (rT n-1

an. I for each value of n, the properly normalized probability density is oltained dividing
through the appropriate solution oi (E-3) by the corresponding solution of (E-7) taken at

0

Gn(p,nlý,0)n ,U
BC= _ (E -8)

Kn(O)

-20-
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PArW TI. DETECTION PROBABILITIES

Having modifle I the Koopman approach to account for non-uniform probaLilities of
arrival, we are now prepared to address in some detail the problem of target detection
within the framework of a search and detection game. As the reader will recall, the
main point of our proposal is to allow the target to arrive in the vicinity of the searcher
along any one of a family of possible paths parameterized by the multidimensional set w

F(r; t) = 0

Each path within F is subsequently assigned a given probability a (ni) of having been
chosen by the approaching target, and

J dwa(u) = 1

F

Hence, if p (w, t) represents the probability of no detection through time T tor a tar-
get approaching the searcher along path w , we write for the probability of no detiection
through time t,

Pc --f dw~)('t)

F

A. THE DETECTION ROBABILITY FOR A SPECIFIED SEARCH 'PATTERN

Let the searcher proceed along the specified search pattern,

r = rs(t) )(A--)

Then, as indicated in Koopman's book, the probability of no detection through time t is
obtained by solving the following differential equation:

(in __ ) 0.ý -V r ,,(,t - r (t)~d (A -2 N

subject to the initial condition

S(= P0

Hele, and everywhere else, r T(w, t) represents the position of the target along its
trajectory at time t

-21-



To proceed, we take p 0 = 1, write equation (A-2) as,

t

r (w, t) f d f [Y(W T ) r (A-3)

0

and Newman iterate (A -3) into the form,

+ f f I dT. rTn- I
p(tt) f1 + d (-13n dt 1  2 . . dtn

n= 1 0 0 0 (A-4)

In equation (A-4) we employ the symbolic notation T to represent the time ordering

of the product of y within the square brackets, i.e.,

T -0 < 1 < T2 < ' n < t)

We make use of the symmetry ef the time-ordered expression upon interchange of

any of the coordinates t T1  to symmetrize the Integration interval with
2 ' Tn

respect to the n indices. For n 2 we recognize

ftd-r1 fT1 daT2  r r s

0 0

CI &t TT ,r --r

0 2 J "t d l TIY(rT(w, [i)-rs r1))Y('T(w',2)- ( 2))1

0
t -tj dai f dL2 Tly(rT( -11)-rs(T))Y(r WT wx)r(T2)÷-
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4

For general n we can similarly carry out the ni permutations cf the n indices and
extend the integration region over the ni-dimensional cube from zero to t . Each of the
ni permuted time-ordered regions contributes equally, and we therefore write

p(•(,t) = 1 + i 0-1 n f ft ftd

n=1 0 0 0

TI • 1) --Y ()'1(w • -[I •) 'S ( •) T•, S (-on)

Next, we employ the identity

.Yc(TW,Ti)-rs (Ti fdr1 Y( r r S(Tij) 6 (r("
, ~ ~ T(,)r i)) = f xti -rCi•(T•'i

to write for the probability of no detection,

dnf ft ft dtnd r
p(w,t) 1 + E n!d f dr 1 d, f dr 2 dr 2  f dn drn

n=l 0 0 0

(A -5)

T[y(ri-rs(T,)) 6(rr(w,)-rl).. r 6

Ience, the actual probability of no detection,

p(t) f dw a(w) p(W't)

tyecomes:

-23-
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M 1 dT+ dr d etr2..t dT n dr
nf 2, 2. fdT *n 0 0 0

Tiy(r1-r ('r ((T 2)) -r. r(r -rr)) . (A -6)

where, of course, in obtaining (A-6) we have had to assume that the Infinite s'un over
n in equation (A -5) has the necessary convergence properties to justify our piecewise

application of the integral operator fdw a

In equation (A-6), the w integration extends only over the family of solutions to the
simultaneous set of equations,

as ensured by the Dirac delta functions appearing there. Within this family, however, I
the probability corresponding to any given path is expressable as the product,

n
a(w) = VT ai(w)

i=l

where a. represents the probability of selecting from all trajectories connecting
1

(~r. , l) t , (ri, ,i) the particular one that coincides with the segment of the
w -path that is contained therein.

-24-
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• If the Markovian type assumption is made, whereby aI (w) depend only on the set w.

parameterizing the family of curves connecting(ri.1 * i )to ((Y ") it can be
easily shown that,

.w a nw (÷' )-r 6ýr i-1) (,

V" G rij , T i r i _I ,

i=1

for ro the initial target position, -c 0 , and where G (ri ÷ )

are the probability densities of arrival discussed in Part I of this paper.

Consequently,

p(t) = 1 + .( ft *'n dTid;. y(rj...rs(i) grii ri_l,Ti.) (A-7)

n=1 0 i=i.

It is perhaps worth noticing that the disappearance of the symbolic time ordered
product in equation (A-7) is only formal inthat each G(r.,t. .r ,. T

implicitly carries with it a causal step function, 0 - ensuring that all propa-
gation takes place forward in time.

One way to render equation (A-7) useful, would be to define:

nrl + t f t -
ýn( r n+l , r ,i) f dT~dr1 ... dT"dr n

0 0

2(A--8)
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and correspondingly write for the probability of no detection,

Pd)=1 . - dc~d -Y(rn-rs(Tn) n - r (rnr n +0'0) (A -9)

n. j n n nSn n 1\nu /
n=- 0

Although not necessarily transparent, there is virtue in having written p(t) in the
form of equation (A-9). The advantage Is contained in the observation that n thus defined
satisfy an iterative type equation of the form

23
÷ ÷ /t~n+1

n@niTnlOTO) = f dtndr (r(+iTn+ I rn 'n) A

0

(A-1O) I

Y(1n_rs (_[n)) /÷-J11T 0)

with, 3

In fact, if we choose to identify 1Pn(rin+1 "TA. r0 0T) with the prohlbili.ty of tar-

get arriv1+ at (rn+i, Tn+ 1 ) in the presence of an n-uple attempt at detection, equation

(A-1O) obtains the following simple physical interpretation (see figure 5): the probability
of arrival at (-tn+ 1 ' T n+i) in the presence of an n-uple attempt at detection,

rn rnl T) dir is obtained by multiplying the probability of arrival at

some point / T , . ) in thc presence of an (n-l)-uple attempt at detection,I ý n n ., , +
.n1 n I r0 , T0 ) dri÷, with the Instantaneous probability of detection Y,(rn- rs (1n)) dtFn

by one glimpse at T , propagating the product thus described from (rt In) ton

(rn+1',n+1) via the "propagator" G( rn+lT n+1inrn)d+i and then integrating

over all the allowed Intermediary points (%, T)
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&

Searcher path

, ~ S • (nr, n)1

~nl 'n+1~

• -"-n n

1'T(0)

FIG. 5: GEOMETRY OF THE ITERATIVE SOLUTION FOR DETECTION
ALONG A SPECIFIED SEARCH PATTERN

It is quite important to recognize the crucial role that the propagator plays in the
formalism discussed above; it is precisely the presence of G rn+I In+1 rnTn)

in equation (A -10) that properly accounts for whatever correlations there exist along the
path of the searcher, in that the propagator is responsible for the target arriving at the
sight of the (n+l)th attempt at detection with full memory of the point ( , T) where
the nth attempt at detection took place. In fact, if one were to arbitrarily break the corre-

lation -by replacing G r 'l-n+ r,T ) inequation (A-10) with G rn ,T r

the entire framework would automatically collapse into a Koopn an-type result for p(t)
Indeed, upon defining

t

qJn1 (t) I f dtd Y(rn-rs(Tn) Pn-(rn Tnj ro' , (A -11)
0

and performing the indicated replu' ement, equation (A-10) becomes:

'00) n-i~t -d yr-rS()C j' roJ I 0 )0A/2

0
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and correspondingly,

P (tj = + 1 1)9i q5t (A-13)
n= ln. n-i

But, in virtue of equation (A -12)

o•n L) d-rdr y) r-rs( rT rot 0 ) (A•I4)
0

so that

p~t =1 n l n! d-idr y r-rs(T) G'r.,Tir0,C0 (-5

[0

or, rather,

f d-dr y(r'(t)) G(ritr r, T)

P (t) e (A-16)

to be compared with equation (1-3). If one is Further willing to assume that G r, 1'0 , T 0)

represents uniform arrival within an ocean region of area A, equation (A-16) simply J
reduces to (equation (1-4)) as expected.

Returning to the general formalism as comprised of equations (A-9) and (A-10), we
finally note that it displays the appropriate stricture to render the Monte Carlo numerical
methods mentioned in Part I equally useful to the detect-f c problem stuc•ied here.

B. GLOBAL DETECTION PROBABILITIES

In the foregoing discussion, the path of the searcher has been arbitrarily specified
and the principle of biasing the set of possible paths in accordance with a(w) used only in
the description of target motion. The distinct advantage of doing so lies in the possibility
of using the formalism thus developed for analyzing search pattern optimization problems.
Scmetimes, however, there is value in calculating global probabilities of detection, where-
by both the searcher and the target motion are treated via the biasing principl . When such
is the case, we shall use

p(u,(,';t) y[rT(•,t) - r(o,t) I dt (B-.)
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to replace equation (A-2), where o and w represent the family of trajectory parameters
for the searcher and target, respectively. Therefore,

p(C"W;t) = . - f dr yrT(w, LI T)s ,,)]W•(O,;) (B-2)
0

and Newman iterating (B-2),
S n

P(c•,W;t) 1 . f i. -c
n.z fn.. f ci,

0 0

(B-3)

I .(r' ,(-T,) -'r (.. T1) ('(r f,( )-W, Ot n)) r

Just as before, we now use

r r

drf a•pi y (r i-• p (Tmi-i) r r(0s(,i) - i

to wi ite equation (B-3) in the form:

L- L1.• .t- t t
p(CF,w ; t -0 + n ! d l r d o1 p-... (d T nd r n d pn

n=l

0 0

In- A,.

... (WT1 ( 'r,,)--n- Qn) I.+ n-+
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Hence,

p(t) --1+ 1 od~ ....-4 --pd -- -

n-1 Mn ( r dp I (drrnpdrp nn)
0

(B-5)

T. ... Y(rn-Pn) dwda A(a,w) *

(T(,1~ I ( S PI1~2 6(rT n m-rnJ)6Ts@, lPn)

where A (a, w) stands for the joint probability that the searcher follow path a anci the
target path W

We shall assume for simplicity that:

A(o,wO)AI() A2(W) (B-6)

which is tantamount to ignoring the dynamics of the search and detection game.
Correspondingly,

p(t) = 1 + I 1n f (dTadr dp1 ) f (dTndr ndn)
n-0 o 0 (B-7)

T y(ri- )c r G i 30-Pi,
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Again, we i itroduce:

(B-8)

f ITr~ 1  Pn ~'1+ i1n+1 n

n -

to write,

p () 1 + I -~~-f (d-r dr dp ~r (r ,p T- r,¶)(-9)
n1 -~ Y~r%) r'n-iflflfl(B

and notice that ip satisfy the iterative equation, (see figure 6).
n

(dT drd -) G~ G B

f n~ T'P ( P,'r~lPn~n) T(n i~nlr~nn
0
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(J(Pn,•n)g GP~'nl

r (0)
S

----- n+1- n+l

r (0)
' rn' rn)

FIG. 6: GEOMETRY OF THE ITERATIVE SOLUTION
FOR GLOBAL DETECTION PROBABILITIES

Naturally, equation (B-10) contains physical information similar to that Identified in
equation (A-10) and therefcre most of tha discussion following equation (A-10) should apply
here too. Also, by the nature of (B-10), some generalization of the Monte Carlo methods
suggested there for the solution to the specified search pattern problem ought to be useful
in finding glohal probabilities of detection.
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II

DISCUSSION H
Mutivated by the need for developing a framework of larger breadth and flexibility than

the Koopman one, we have succeeded in delineating a train of thought that holds the promise
of successfully accounting for the modern sophistication of the search and detection game.

Thus, a principle of biasing has been employed, whereby given probabilities are
assigned to all possible paths of a military unit, and the probability of arrival of that unit
at any point in the ocean expressed in terms of them. It then becomes possible, as shown
in Section C, to formulate the result in terms of iterative solutions whose phyAcal content
is interest:ngly simple and whose calculational advantages are many fold. In fact, a full
sulution can be obtained numerically, if the input probabilities per path are given. Whether
they reflect our total ignorance concerning the unit's motion or the highly correlated nature
of the path, a choice of such inputs is always possible, in that the inputs merely represent
our actual data baoe , ad ýýot some rcstrictive model assumption that might not correspond
to the reality we want to describe. The flexibility that this imparts to the formalism is such
that one might approach within the same framework problems that have varying amounts of
input information.

Let us also note, that by the very nature of the iterative solutions we propose, a con-
nection can be establishod between the search and detection problem on one hand and the
well studied mathematical theory of Green's function on the other, thus opening a door for
the imnlux ot a whole family of numerical methodologies that have proven useful elsewhere.
A though much might still be said about the hidden or obvious dimensions of this frame-
work, we stop our discussion here for we wish merely to enlighten our reader's judgement,
not to influence it.
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