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INTRODUCTION

The years following the Second World War have seen a substantial development in
understanding the search and detection game involving two military units searching for
each other with some specified detection hardware. it has become apparent that Koopman's
attempt - a good part of which stands canconized in his 1946 book - establishes a suitable
framework for the description of these operations. Much of the early work, however, fails
to adequately accommodate the medified rules of the game that technological development as
well as increased analytical exigencies have since imposed upon us,

It is the contention of the author that notwithstanding tho proliferation of papers that
have been written ou the subject attempting to account for the complexities of modern search
and detection, a clear framework malleable enough to handle a large variety of outstanding
real life problems has failed to emerge. Therefore, the purpose of this paper will be to
revisit, criticize, slightly modify, and subsequently expand the original Koopman framework.

Perhaps it is worth noticing from the onset that we have chosen to address little, if
anything, of this work to the question of comparison with the state of the ar:. We have done
80 because we are more interested in presenting an independent framework, who.e right for
survival we shall heretofore attempt to argue, rather than improve on limited treatments
available in the literature,

1. THE KOOPMAN APPROACH REVISITED

In the original Koopman formu.ation, the game of search and detection includes two
players, the searcher and a target. The two players engage in some sort of geometrical
search pattern, whereby each one of them moves along deterministic trajectories, This
kinemarical part of the game is well described mathematically by the relative track of the
target,

E = E(t) n = n(t) . (1-1)

While moving on its trajectory the searcher is assumed to be looking, either through
glimpses or continuously, for the target. The work "looking" is used here to mean attempt
of detecrion via some hardware, be it visual, radar, sonar, or any other means whatso-
ever. This part of the game is pure’y probabilistic in nature and the central mathematical
entity to be considered is the instantzneous probability density of detection y({t) , where:

vy(t) = Y(»/Ez(t) + nz(t)> . (I-2)

ol




Notice that in equation (I-2), v{t) is not taken to depend on the relative bearing of the
target. While not a necessary assumption, it certainly is a very reasondble one for most
detec ion hardware.

Once v(t) is given, the probability of detection for continuous looking through time
t is given by:

t
fo dty (1)

p(t) =1 - e . (1-3)

In principle, equation (I-3) provides the probability of detection for relative tracks of any
given complexity. In practice, one is limited, of course, by one's capability of estimating
the exponent in (I-3) along the track. In fact, the task of evaluating the integral in question
is more often than not a Juite formidable one, and correspondingly, soluticns are difficult
to get for all but a few instances which, in virtue of their simplicity, are hardly realistic,
It is also evident, that a solution to equatjon (I-3) is less than realistic in that it fails to
take into account the random nat-re of target arrival.

A somewhat more significant result obtains if one is willing to restrict the Koopman
treatment by making the following strong assumptions:

O

® The target's position is uniformly distributed over some region of size A in
the ocean.
® The searcher’s path is random in A in the sense that it can be thought of as

having its different (not too ncar) portions placed independently of oue another
in A,

Then, the probability of detection is given by the Koopiman random search ({on. ula,

- WL/A
p(L)y =1 - ¢ , (1-4)

where W stands for the effective search width of the detection law and L represents

the total length of the searcher's path within A ., Let us emphasize, however, that while
this developmunt does indeed eliminate the Jdifvicultv of integrating +(t) ulong the relative
track of the target, it only does so at the expense cf sacrificing the realistic and cften
crucial concept of correlation aleng the path of the searcher.

2. THE KOOPMAN APPROACH MODIFIED

The Koopman framework has proved quite successful in a large variely of naval war-
fare problems, and has served as a guideline to many, more sophisricated later treatments.
It is within the nature of our stated purpose, however, to investigate the shortcomings of




the formulation rather than emphasize its virtues., Correspondingly, we shall corcentrate
in the following upon tl.e major limitations of the Koopman framework.

As will be recalled, the Koopman theory takes the a posteriori view of the search and
detection problem whereby both target and searcher trajectories are assumed known. More
often than not, however, such is nct the case, In fact, the path of a military unit is well
represented by a juxiaposition of acterministic pieces of path, the nrocess of passing from
one tc any other in time peing a r adom onc to be sampled from some given distribution
dependent oa both ta:tical and physical parameters. The question to be answered, then,
is one cencerning the manner in vhich the probabilistic description inherent to the arrival
procers is to be incorporated in the Koopman equation, While we do recognize that an
an attempt at addressing this giiestion exists in the Koopman tkeory, it is important to note
that limitadions in the mathematical formuiation thereof do not allow the preservation of
correlations alcung the path of the searcher.

It is also worth noticing thit the twe par:s of the game as envisioned in the Koopman
formalism are no. really independent of each other, in that looking can produce feedback
on the trajectories of voth players, Ir this sense, the framewcrk is void of dynamics.

The formulation that "we wropose and deveiop to some extent in this work is designed
to hopefully handle each and ail of the points raised against the Koopman framework, [t
essentially consists in determining variouvs physical quantities relevant to the search and
detection game fc - any of a family of siraple target paths, each one of which is assigned
a given probability of havi:.g been chesen from the famiiy. The actual value of the physical
quantity of intcrest is then obtained by averaging over the family parameters.

The main conceptua’ virtue cf this framework is that it is more responsive to the
actual restrictions that realit' imposes upon the search and detection game. This added
responsiveness gets reflecied not only in the possibility of choosing the path probabilities
to suit the real case at hand, but aiso in the freedom .f choosing the family in such a man-
ner that it be {.”cative of the operational features of the actual setup while still simnle
enough to allow, 1n principal at least, for tractable solutions to equation (I-3). It is inter-
esting to note thar, unlike the Koopman formulation, all of these conceptual adve-  ges are
available without the 1nss of corzrvlation along the path of the szarcher. In fact, as we
shall discuss later on in some detail, most of the relevant correlations are properly “aken
into account by the theory. Statements co.cerning the less conceptual advartages the frame -
work offer. are relegated ta conclusions when the reader shall be more familiar with
the langiage.

3, OUVLINE

For reasons »f simplicity we have chosen to break the presentation to follow up into
two purts. Inthe first chapter we shall address the relatively independent question of
determining realistic probabilities of arrival, koth because they are relevant in them-
selves and because, as it turas out, they are the necessary building blocks for calculating

-3-
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probabilities of detection, The second chapter of this paper will shcw how nonuniform di.; -
tributions of target arrival cau be incorporated inte the detection problem. Since we suc-
ceed in doing so without breaking up the searcher path in independent pieces, correlations
along the path of the searcher are fuily preserved in the formalism,
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PART 1. NONUNIFORM FROBABILITIES OF ARRIVAL

A, THE GENERAL FRAMEWORK

We pursue the program outlined in the Introduction o this pape~ by addressing first
the relatively independent question of calcuiating realistic probability densities of target
arrival, We thus let,

F(T,w) = 0 (A-1)

be an arbitrary family of curves parameterized by the set w and define the probability
a(w) that the target has chosen to approach the searching area zloig some path w .
Naturally,

[ do a(w) =1 .
F

Now, if le (p,t] 'p’o , tO) repressnts the probability density of arriving at (3,1t)

(A-2)

from ('50 , tn) along path w , we write for the probability density of arrival at (5 , 1)

having started ac (30 , tO) ,

+> -+ v _f ) e -+ : (A-3)
G(B,t]B0.tg) = [do alw)G (B,t1F,t0)
To proceed, we now specify
- -+ v o= of2/. _r .
Gm(p,tlpo,to) = o(r(w,t) e ) (A-4)

where T (w, t) describes the position of the moving target along the path @ . Corres-
pondingly,

> : . - - A-5
G, el ,t) = [do atw) 6(Fw,00-5 ) (A-5)

In fact,

<;>t5[dw a(w) ;(m,t) = fdm a(w) fdb> 3 6(?(m,t)-b’)

< [dg _5 /dw alw) 6(;(m,t)"—5 ) »




> e ; . . .
which identifies G(p.,t | 09> to) giveninequation (A-5). Fox the reader who is not im~
pressed with the rigor oi our derivation, we note that one can easily continue the argument
to show that (A-5) also has the appropriate higher moment,

quq the pruperties of the Dirac delta function, on: immea adiately shows that
G(p,t | po,to) is properly normalized at all times if a(w) satisfies equation (A-2). Indeed,

using equation (A-5), we have:

A} _> -— .
Ja 68,118t = [do atw
and hence,

-> > -+
_/dp G(p,tloo,to) =1 .

It is noteworthv that the global correlation expressed in the requirement that the tarpet
reach (p t) having started at (9 0t )ic‘ here automatically translated into puraly geo-~

metrical restrictions to be imposed upon the family,
- >
F(w,ty) = Py

as well as upon the integration in equation (A-5). This interesting feature of the formalism
shall prove of some imjiortance later on in that it »ffers a convenient way of including cor -
relations into the framework.

B. THE CASE OF THE ISOTOPIC WALK

To start the framework off, a sensibi.. choice v the family of paths is made, Fcr
purposes of illustration and because they are indic. .ive of many re listic cases, we analyze
the family of all v lom walks starting at the origin and parameterized by

oy \, ]
2l n,{6.;,v.;1. .
’ l (.1 1l/i=1,2,...,n J (B-1)

Here, as displayed in figure 1, the set {8 (2 Vial ;) stands for the angle, speed along, and

time interval of the ith step in the walk, wrule n represents the number of steps con-
sidered, Specnlcﬂlv, for a randrnm walk of n steps the family equation reads:
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In this section we specialize t- the simple case

a. = a ; v, =V ; i=1,2,...,n

1 1

and correspondingly measure time inunits of T = a/v

Yy
\e
[y
0, \
_ : a 6.
a, -
(O8] — 02
8, .
0 X
FIG. 1: TI0 FAMILY OF RANDOM WALKS

Therefore, the asscciated quantity a(w) becoines the joint probability density
a(#o L 0 EERRE en) ‘that the family parameters take onthe setof values (6 1’ )

respectively, and

g9 e

(B-2)

(B-3)

(B-4)

(B-5).
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2m 2n 27

o _ ; r
G(3,t]0,0) -f d()]j a,, e ) den 8(61;02,--n:6n)* (B-6)
0 0

-
for (g, n) the cartesian components of P

We now make the simplifying assumption that the decision of choosing any particular %
value for some given g  is independent of the past,
i

. a(61,92,...,9n) = al(el)az(ez) an(en) . (B-7)

Py

Because (B-7) 1is tantamount to assuming that the probability distribution for any given
angle 6  is independent of the point in the ocean at which the walking urit finds itself, we
i

shall refer to (B-7) as the "isotopic walk case," We hasten to add, however, that while

of some methodological importance here, the isotopic walk assumption is by no means
necessary. In fact, realistic correlations along the path of the walk will be properly taken
into account in a later chapter of this paper.

bl

Finally, to make matters as simple as possible, we specify;

ai(ei) = 1/2% 1i=1,2,...,0n (B-8) .
while mentioning that the minor restriction impesed by (B-8) can be lifted with no difficulty
G at all,
E
Hence,

. s n 2w 2m '
G(3,t]0,0) = (fL> Joaey [ e, [ de (B-9) |
0 0

n /n
S{ £ acos 0,~0}8 I « sin 8.-p
i=1 t i=1 !
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To cast equation (B-9) into a more manageable form, we make use of the spectral repre-
sentation for the Dirac deita function,

o0

6(x) = o [ dk M (B-10)

~oo

and have:

n+2 = . o
G(r;:tl—(;,O) =<5%> fdge-lgo fdne e«

(B-11)
b ]
2m ) in 6 n
j dﬂelga cos eelna sin
4
Recognizing that
2m EoCO5 S
cfaq COS i i Ve
deel gt s 0. 27 J lav/E + n
0 0 (B-12)

|
/ 2 2
where ]0\01‘/& +n ) denotes the zeroth Bessel function of the corresponding argument,

. , s = )
6(5,t18,0) = (ﬁ) [ age™ [ aneine a <a/g2 - ) _ (B-13)

We shall find it conveniznt to pass to polar coordinates in (£,n) ,

E = x cos ¢ ; n =x sin ¢

and explicitly perform the angular integration,

6(p,t|0,0) = ?17;] dx xJ0<x.’02 + p—?’_>J0“(ax) . (B-14)
0

s i,y e A e iy 0 g1+ e, 4




An immediate offshot of (B-14) is thar

-+ > ~ 2 bed
G(p,t|0,0) =0 1f o+ > na (B-15)

as cxpected,

Wc can now start the simple but lengthy job of calculating G(; ,t] 0 ,0) for various
values of n . Thus, for n=2, (see figure (2),

y lr

FIG. 2: GEOMETRY CONCERNING THI: ARRIVAL
PROBABILI'TY FOR n=?

6(p,2t18,0) = 2 (B-16)
4ﬂ2A

/2 7
where A represents the area under the triangle formed by the triplet {0 * 0 ;a;¢

Naturally, in accordance with equarion (B~15), the probability density of arrival for n=2

vanishes whenever the triplet fails to form a triangle, We also note that for the marginal
case of measure zero,

where A=0 , the probability deusit of arrival becomes infinite,

=10~

at

n A AL
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To handle the case n 52 , we could make repeated use of the equality

n 2 2
f de JO</ZY + ¢ - 2Lt cos 9) = Jp(2)J,(z) (B-17)
0

to reduce the power of the Bessel function to n=2 , and then employ (B-16), but restrain
from doing so here. Rather, we develcp in the next section a more general technique of
handling the calculational problem that shall providz answers at a much smallex expense,
and at the same time, indicate the manner in which generalizations to the simple example
considered here are to be approached,

C. THE EQUIVALENT ITERATIVE FORMULATION

Tc begin with, recall the result (B-13) from the previous section,

2 7 L% ,
G(#,n710,0) = <21—,"> J dge o[ aneing g0 (a/€2+n2 ) (C-1)

-0

but avoid explicit integration on (£,n) . Instead, make use of the convolution theorem
for the Fourier transform,

® o -ikx ci e Segna
fdxe £(x)g(x = X fdz £(2) g (k-2)

- oo

where

£(2) =f dxe 1Y £(x)

and

E(Z) = f dxe_iﬂ'x g(x)

2 2 _
onto the product Jo(a,/gtn ) JOn 1 (a,/gzﬂ]z ) to have:
/

il

-




G(p, nT|U 0) =

fdge ifa fdy e[a -(p y) ]

Vo '(o )’)

(Zﬂ)

@ ) i
cos (E/az-(p')’f)f dve 1VY JOn 1 Ka»’&zwz )

and continuing,

G(pmlOO)—-- fdy_a (QY) fd\)ei *

(em3
= 2 ey
fdx <S<o-x-/a2~(p-y)2)+ 6<o-x+/a2-(p-_y?> *

f due” 11X Jon'1<a/p2+uz ) .

-0

Hence, recognizing that
-— e\
2 2 2 2
Gi(o-x)z * (p-y) - ] = 1 - 6<o-x-/a -(p-y) )

/2 2
240 -(p-y) L

)

-12-

[y
+ 6<%-x+ a -(p-y)

o e it .




2 2
and correspondingly dropping the step function 8{a - (p-Yy) ]whose value is always one
on the circle

2 2 2
(0-x) + (p-y) = a

>
the probability density of arrival at p in n steps becomes:

> -5 ] o« 2 2 2
G(p,nt|0,0) = “_5 f dxdy 6[(0-1) + (po-y) -a *
(2m)~ -
@ . ® . 2 2
f dpe” 1HX [ dve " 1VY JO“'1 (a»{ +V ) .

Finally, since in virtue of equation {(C-1),

- /2 2
nl(au +v >

-Z due-iux .f dve 1YY Iy

= (zn)z G(%,(n-l)r|6,0 >,

-+ . .
for r the two-dimensional vector of components ( x,y) , our main result reads:

. N ~ f 2 2 1
G(p,nt|0,0) = jd? §|8-7

B-) -0 |6(F,im-17]8,0) (C-3)

R

A quick glance at (C-3) will now convince the reader that the physical content em-
bodied therecin is surprisingly simple: the probability G(p,nt [6, 0)1dp of arciving at p
in n stens Having started at the origin is given by the probability G (T, (n-1) 1 [ 7,0

dT of
arriving at r in (n-1) steps having started at the origin folded into the probability

-~ »_ 2 2 —
%r_ S[(p-r) -a ] dp of teking the lagt step from rto 3 and integrated over all intermediate
oints T . "
P ~13- }




(o-x)% + (p-y)% = o?

FIG. 3: GEOMFIRY OF THE TITRATIVE SOLUTION
FOR AN UNTFORM 1S0TOPIC WALK

Also note, that since the one step probability identified above is properly normalized,
2 2
[ a3 % §[(B-T) -al=1 , (C-4)
as one can easily ascertain by explicit integration, the normalization condition

J at G(?,(n~-1)r|3,e) =1 (C-5)

implies via (C-3),

[ & 6@.n)8,0) =1

as expectad.

The very reasonable physical interpretation that we have just given equation (C-3),
suggests the possibility of guessing at the results to be expected for cases that are some-
what more complex than the simpie uniform isotopic case analyzed so far, Thus, to lift
the restriction of equation (B-8), we allow aj (p;) to be any arbitrary,+properly normal -
ized set of functions and write for the probability density of arrival at p in n steps,

-14-
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G(g,nt|0,0) = [at 2, (3-T) 51D 0] c(?,(nqmb',o)(c-n

where (see figure 4):

n
)
v}
—
@D
= =]
Nt
n
[ s
=
@
1

- >
a,(p-T1)

a2

FIG. 4: GEOMITRY OF THE I'IERATIVE SOLUTION
FOR A NON-UNIIORM 1SOTOPIC WALK

That (C-7) is, in fact, the correct answer can be checked, of course, with the tech~

nique that led to (C-3), but in view of the transparent physical coentent of (C-7) that is
hardly warranted

Needless to say, the few cases mentioned above as illustrative instances do not exhaust
the set of configurations that can be handled by the itevative technique, but we shall leave it
to the patience of the interested reader the job of looking through thein, The one configura-
tion, however, that involves relaxing assuiption (B-7) as well as the ensuing discussion
are considered sufficiently delicate to warrant a separate later section, As to the manner
in which actual numbers can pe obtained from the rather formal results of this secticn, we
shall have little to say at this time, but note that quite powerful Monte Carle methods are

-15-




a-ailable for handling exactly this kind of iterative equaticns. Correspondingly, when

needed, solutions for any value of n can be obtained at much less expense than experi-
enced in the previous section.

D. THE CASE OF THE CORRELATED WALK

For all their value, the results that have been obtained so far suffer from che overall
constraint embodied in (B-7). We shali now show that the main features of what under-

standing has been gained fur the case of the isotopic walk survive the introduction of
correiations,

Consider again,
T, = oa vi TV i=1,2,...,n
and make the following assumption of nonisotopy:
( n i-1 i-1 (D-1)
2(0,,8,,...,8 ) = a;(8,) 7 a {6.] £ acos 6.; I a sinb, D-
-2 n oS i j=1 3 =1 J
to replace (B-7). Here
i-1 i-1
a.{o. I o« cos 98.; ¥ o sin 9.
1\ 1 j=1 J j=1 ]

represent the conditional probability distributions for sampling 6 ; given that the walking
unit is at the point in the ocean of coordinates,

o
=
"
"o
[=3
0
o]
0
@
<
i
oA

g sin 8.

=16~

R - -




i-1 i-1
a. (9. 2: a cos 0., 2 a sin 6, > * (D-2) !
1( =1 J j=1 J j
‘_IL Iy i
8{ 2, acos 6,-g )8l £ o sin 6, -p 1
K=1 k k=1 k ;

or, rather,

> + n 1-1 : i
G(p,nt|0,0) =f T do; dx; d;vi a; (ei|xj,yi) 6lx; - ¥ ocos ej>* !
i=1 j=1

(D-3) )

i-1 ) n n
8{v: - ¥ asin6.} 8] X acos o8 -o 6(2 o sin 8, -p o
(1 j=1 ) <k=1 k ) k=1 k ‘

and using again the spectral representation of the Dirac delta function together with the
convolution theorem for Fourier transfor ns, we obtain

- > > > 5 32 2 > >
G(p,nt|D,0) =jdr 2a_(p-r|F) 81 (5-1)-a | G(r,(n-l)«rlo,o)

L

where

.~17_
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It then follows that all conceptual as well as calculational advantages that go along with
the iterative type solutions of section C, remain also valid for the correlated configuration
considered here. It is perhaps worth noticing at this time that while (D-1} is not the most
general correlation along the path that can be envisioned, it should account for the majority
of realistic situations one might be concerned with. Correspondingly, we shall pursue the
question of correlations no further.

E. THE CASE OF THE BOUNDED WA LK

In many realistic cases of interest to us, intelligence information is available con-
cerning the existence of a bounded region in the ocean within which the approaching enemy
vessel is most likely to be found. Correspondingly, the study of the arrival probability
density in the presence of given boundary conditions becomes relevant. Within our frame-
work, the question of boundary conditions can be treated with relative ease in the same
spirit the question of correlations along the path of the walk has been, i.e., by translating
the physical vestrictions imposed therein into geometrical constraints for (A-5).

To illustrate the basic concepts invo'ved, consider the following simple boundary
conditions,

0 <x,y <L (1i-1)

corresponding to a square shaped limitation upon the walk of the target. To ensure that
(E-1) ie respected, it shall suffice to limit the set of paths on which the integration in (A-5)
is performed to include only those that independently satisfy (E-1). Therefore, if the case
of the uniform isotopic walk with constant speed and step is chosen again,

- - 1 \0 n 1 A
Gon(pont|0,0) = — r d6. o(L - ¥ ocose, |* -
BC 2T i=1 1 j=1 J ‘

i i
8/! o CoS 0_.) 8(}: o sin 8.) 8(1,
\j=1 J j=1 J

{

|

N ]

{ ¥ asin 6.-p . ‘
j=1 J 3
;

o sin 0, > * (E-2)
1 J

LN o BaE

[
-~
(SN

/
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We can now attempt to reduce (E-2) t an iterative solwion, employing the techniques
developed in Section C. In fact, using the spectral representation for the step function.

_1 =
8(x) = 57 [ dw

iwx
¢

w+1€

one can show that:

GBC(E,nTla,O) = g(L-0) 6(0) 8(L-p) 6(p) *

(E-3)
..;l~+—+2 2 7 > >
jﬂdr = 6[(p-1) -a ] GBC(r,(n-1)1|0,O)

which displays vthe same intuitively simple content that its predecessors have.

The attentive reader will have noticed the little swindie that has been perpetrated in
the definition of Gpe (B,HT ] a, 0) « Specifically, since,

- ey > F = oo
Ky * [dB Gpe(on7]8,0) = [dw ale)
where the right hand side integral extends only over those w paths that satisfy (E-1), the

probability density is not normalized to unitv. In fact, one can easily argue that

{ }(_n<1

To compensate for the swindle, let us define,

-+ Y . P
K (T)) = [ab apeBartl#y,0 (E-4)

and use the symmetry praoperty

Gyt D) = Gyelrg,ntle, 0 (E-5)

-19-
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to write
-»> -»> -+ >
K (1tg) = j‘do Ppe(rg,nt|f,0)

Hence, in virtue of (E-3)

Ko(¥g) = 1
K (Fg) = 8(L-xp) 0(xg) 6(L-yy) elyy) * (E-7)

2 2
Ty ] > -+
j dar = §[(ry-T)-a ] Kn_l(l’) »
au.l for each value of n, the properly normalized probability density is ohtained dividing
through the appropriate solution or (E-3) by the corresponding solution of (E-7) taken at
_'

¥0=0 ,

~ Gy (e, nt]0,0)
GBC(p,nTla,O) - _BC i :l (E-~8)
K (0)




PART "I. DETECTION PRGBABILITIES

Having modifie ! the Koopman approach to account for non-uniform probalilities of
arrival, we are now prepared to address in some detail the problem of target detection
within the framework of a search and detection game. As the reader will recall, the
main point of our proposal is to allow the target to arrive in the vicinity of the searcher
along any one of a family of possible paths parameterized by the multidimensionat set w ,

-5
F(r; w) =0 .

Each path within F is subsequently assigned a given probability a(w) of having been
chosen by the approaching target, and

fdma(w) =1
F

Hence, if f)(w , t) represents the probability of no detection through time T tor a tar-
get approaching the searcher along path w, we write for the probahility of no det:ction
through time t,

pt) = [ dwa(@)pw, t)
F

A. THE DETECTION ROBABILITY FOR A SPECIFIED SEARCH PATTERN
Let the searcher proceed along the specified search pattern,

Ty = rg(t) . (A-1)

Then, as indicated in Koopman's book, the probability of no detection through time t is
obtained by solving the following differential equation:

d

oy

t) [T (w

"3
=

(w;t) = -

5

(w,

t)y - (£Y1 4+
b4 -7 \vJ 1 hadihd

’ 3
subject to the initial condition

p(w,0) = ﬁo
Heze, and everywhere else, —I':T (w,t) represents the position of the target along its
trajectory at time t .

2]




To proceed, we take ;30 = 1, write equation (A-2) as,

t
Plu,t) =1 - [ dt ¥[F(w,1) - To(1)] Plu,) (A-3)
0

and Newman iterate (A-~3) into the form,

- kit t T T
w,t) =1 + 3 -" 1 n-1
P(w, ) 2: (-1) f dTl f dT?- . e jr d'[n *
n=1 0 0 0 (A-—4
)

> > .. + > -+ >
T[’Y(rT(m,Tl) *rst'rl;) Y(rT(w,Tz)-rs(Tz)) .. .Y(rT(w,Tn) -rs(Tn))! .
In equation (A-4) we employ the symbolic notation T to represent the time ordering

of the product of Y's within the square brackets, i.e.,

T=>(0511512§...51n5t) .

We make use of the symmetry cf the time-ordered expression upon interchange of
any of the coordinates t 10 Tpres Tn , to symmetrize the integration interval with

respect to the n indices. For n =2 we recognize

[ dt, [t dr, TlY(?T(w,Tl)';S(Tl))Y(;T(w,'fz)';s("fz))}
0 0 -

o [ a Ty T r
VAR [r(rplormp-r )y ()T ()] -
1 ~t t N - N

2, fo dig TG ) F v (Frwn ) 7 1))
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P For general n we can similarly carry out the nl permutations cf the n indices and
extend the Integration region over the a-dimensional cube from zerc to t . Each of the
n] permuted time-ordered regions contributes equally, and we therefore write

- © .\ t t t
: pwe <1 TEE [ e (e s
n=1 : 0 0 ' 0

T[Y(;T(w,rl)-;shl)) Y(;[(w:‘fz)“;s(’fz)) Y(:T(wﬂn)-

-+

“s(Tn))}

Next, we employ the identity
-+ -»> +> > \ > _§>
Y rT(w,ri)-rs(-ri)) = fdri y(ri-rs(ri,) $ (r.l,(w, ri] T,

to write for the probability of no detection,

- _ @ (-1) t -+ t > t -+
Plw,t) =1 + ): - f dr, dry / dr,dr, / dr dr = *

> + -+ 2> -+ . >
T[y(rl rs(—rl)> 5(TT((U,T1)'I‘1)... y(rn-rs(rnj) s (rT(w,rn)—rn) l
bility of nu detection,

p(t) = [du a(w) plu,t)

be:comes:




() =1+ El f—rll%f [‘drl dr; ( dr, dr, ... {t dr, dr
le(;f;s“l)) y(?2-¥s(r2)) y(;n-; (Tn)) % (A-6)
fdm a(w) 5(?T(w,~cl)-¥l) 5(;,]:,((1),’[2)*;2} a(;T(w,rn)-;n)]' :

where, of course, in obtaining (A-6) we have had to assume that the infinite suin over
n in equation (A-S) has the necessary convergence properties to justify our piecewise

application of the integral operator j do a(w) .
In equation (A-6), the w integration extends only over the family of solutions to the
simultaneocus set of equations,
-9

Folw,t,) =T, (i =1,2,..

L 1 1 "n)

as ensured by the Dirac delta functions appearing there. Within this family, however,
the probahility corresponding to any given path is exprassable as the product,

‘ n
a (U.)) = 7 ai (UJ)
i=1
where a, represents the probability of selecting from all trajectories connecting

(;i 177 1) th (i:i s Ti) the particular one that coincides with the segment of the
- i-]
w-path that is contained therein.
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. . i
® If the Markovian type assumption is made, whereby a, (w) depend only on the set w,
-
parameterizing the family of curves connect:ing(r1 1° 1)to (ri, Ti) , it can be
easily shown that,
- -+ + + -+ + >
a ( - ‘ r -
. fdl.u a(w) G(thw,Tl) rl)é(rTLw,Lz) 12) 6(rT(w,1n) rn)
n
. > +
== .ﬂ G(ri, Ti ri-l’ Ti—l)
i=1
<>
f T, the initial target position = 0, and where G(-xt T T T
or T initial target p on, Ty , ] i Ty i-1° i-l)

are the probability densities of arrival discussed in Part I of this paper.
Consequently,
| -+

By =1+ X (_Il\ﬁft Foaedt v(F, T ) 6Tty g) - @D

n=1 0 i=1
It is perhaps worth noticing that the disappearance of the symbolic time ordered
product in equation (A-7) is only formal in that each G( ] 1Ty 1\7
]

irnplicitly carries with it a causal step function, ¢ ( T,y ) ensuring that all propa-
gation takes place forward in time, 4

One way to render equation (A-7) useful, would be to define:

) wn(;mlﬂml o 0) f dT dr [t d»(nd;n *
U (A-8)
|
6 (s o) T (i) ofFpns[fy ) |
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and correspondingly write for the probability of no detection,
o - t : s
Do) = G S A i ’ A-9
p(t) =1+ E = f dcndxn Y(rn rS(Tn)) UJn_l(rn,rn rO,TO) (A-9)
n=1 0

Although not necessarily transparent, there is virtue in having written E(t) in the
form of equation (A-9). The advantage is contained in the observation that b, thus defined
satisfy an iterative type equation of the foxrm

T

n+1
> -+ -+ + -+ *
= 3 T ,T
wn(rn+1’Tn+1 rO’TO) f drpdry (’(rn+l’Tn+1l n’ n)
0
(A-10)
> . > . | =>
Y(‘rpn-rﬁ (Tn)) 4'n-l(rll’ ‘ner’TO)
with,
-»> > - - >
wo(rl)Tler’ 10> = G(Tl,Tl I‘O,Tu) . (A-10")

In fact, if we choose to identify Lpn(?

- N -
n+1’ T]h_’ 1 Y TO) with the probability of tar

get arrive?! at ( _I:n +1°Tq +1) in the presence of an n-uple attempt at detection, equation

(A-10) ohtains tk_le following simple physical interpretation (see figure 5): the probability
of arrival at Toe12 Tasl ) in the presence of an n-uple attempt at detection,

-+ "’ + - 2 s
yn( rn +1° Tn+1 ITO s T 0 ) dr AT is obtained by multiplying the probability of arrival at

some point [/ * , T ) in the presence of an (n-1)-uple attempt at detection,
v N n

s>

Fond | > > e s - . . R .
; 4 . v N
(7 1( s Tn , Tys TO) drn' with the instantaneous probability of detection (rn T, (Tn)) dTn

by one glimpse at Tn , propagating the product thus described from (?n , Tn) to

/>

3
(rn+1’Tn+1) via the "propagator” G<rn+1,"rn+1

over all the allowed intermediary points ( 'r*n VT )

¥ ar d then i ti
n’Tn) r .7 and then integrating

26—
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Scarcher path

—

7..(0)

FIG. 5: GEOMETRY OF THE ITERATIVE SOLUTION FOR DETECTION
ALONG A SPECIFIED SEARCH PATTERN

It is quite important to recognize the crucial role that the propagator plays in the
formalism discussed above; it is precisely the presence of G( n+17 Toel \ n* T )
in equation (A-10) that properly accounts for whatever correlations there exist along the
path of the searcher, in that the propagator is responsible for the target arriving at the
sight of the (n+l)th attempt at detection with full memory of the point < ?n T ) where

the nth attempt at detection took place.

th In fact, if one were to arbitrarily break the corre-
lation by replacing ( T

: > -
n+1’Tn+1 rn’Tn ) in equation (A -10) with G<rn+1’rn+1ir0’10 )

the entire framework would automatically collapse into a Koogman-~type result for E(t) .
Indeed, upon defining

¢ gft dr df_ 'y(rn I'S(Tn)) wn_l(;n,rnl;o,ro) , (A-11)

Y

and performing the indicated rep)s ~ement, equation (A-10) becomes:

t '
¢n(t) = ‘Pn_l(t) / drdr y(?—?s(T)) ('(?,T
0

+
f0r7p) (A-12)
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and correspondingly,

po=1+F CLY o (v . (A-13)

n:l n! n- 1
But, in virtue of equation (A-12)

t N . > n+l
¢n(t) = f dtdr y(r~rS(T)> G(I‘,T‘I‘O,TO) (A~14)
0

so that

P(t) =1 + &21 1;%%3 .[t drdr Y(;—;S(t» G(;’Ti;O,TO) " (A-15)
0

or, rather,

[T it y(2,00) ofFalion,) >
p(t)

u

e

(A-16)

to be compared with equation (I-3). If one is further willing to assume that G(? s T )?O s 1‘0)

represents uniform arrival within an ocean region of area A, equation (A-16) simply 3
reduces to (equation (I-4)) as expected.

Returning to the general formalism as comprised of equations (A-9) and (A-10), we
finally note that it displays the appropriate stricture to render the Monte Carlo numerical
methods mentioned in Part I equally useful to the detect’on problen: studied here. 3

B, GLOBAL DETECTION PROBABILITIES

and the principle of biasing the set of possible paths in accordance with a(w) used only in
the description of target motion., The distinct advantage of doing so lies in the possibility
of using the formalism thus developed for analyzing search pattern optimization problems,
Semetimes, however, there is value in calculating global probabilities of detection, where-
by both the searcher and the target motion are treated via the biasing princip! ., When such
is the case, we shall use N -

df)(o,tu y Tf.) = - P(U,w; t) Y [rT(w’ t) - rS (01 t) ] dt (B-}‘)

-28-
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to replace equation (A-2), where ¢ and w represent the family of trajectory parameters
for the searcher and target, respectively. Therefore,

t +
Plo,wit) = 1 - [ dt y[Fpw, )T, 1)15(0,051) (B-2)
6

and Newman iterating (B-2),

- -1 t t
plo,w;t) =1 + X 1) dt d *
’ n=1 M f 1 f “n
0 0
(B-3)
3 -+ -+ >
T[Y<rT(m’Tl)-rS(c’Tl)), y(rT(w,rn)—rs(c,'rn)) ]
Just as before, we now use :
-»> -+
Y(rT(w’Ti)—rS(o’Ti)) =
> - - -+ >
fdridpi Y(ri- pi) 6(rT(w,Ti)—ri> é(rs(o,"ri)-pi)
to wiite equation (B-3) in the form:
p(o,w;t) 1+;'L_—1)—n ’t(d dr.dp.) t’d dr dp ) *
}w’ = » e
p I | (@ dride [ tdn dr do)
0 0 i
i
-4 |

T[y(?l-gl) 6(?11[11),1]7‘.-?1) 6(;5(0,11)-51) e

. Y(;n-;n) G(;T(w,Tn}?n) 6(?‘8(0,111) _;n )] .
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Hence,
- o° )t Y . .
p(t) =1+ X L—l—n, j (dvydFydp) ... (drpdrydp,)
n=1 : 0

(B~5)

> > R %
Tiy(rl-pl) y(rn~pn) fdwdo Alo,w)

(Pt )b S e(F (001 By ) o 8(Fplont)To(F o) By )]

x

where A(o,w) stands for the joint probability that the searcher follow path o amna the
target path w ,

We shall assume for simplicity that:

A{o,w) = Al(o) Az(w) (B-6)

which is tantamount to ignoring the dynamics of the search and detection game,
Correspondingly,

* n t t + >
- -1 > o
p(t) =1+ g l—n)!“ f (drldrldpl) f (dTndrndon) *
n=1 0 0 (B"7)

i=n

o + -+ L &+
T[.” Y(r;7p;) GT(;)'."ri.lri—l’Ti—l) 6pirtiloipty g ) J
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Again, we i ttroduce:

-+ - l—> -+ -
wn(rnﬂ'pn’“l’Tml ro"’o’To) -

t -5 > -> >
A
f (dTldrldpl) (dT dr dp ) 6 ( n+l’ n+1l n)Gs< pn+1'Tn+1‘pn’1n)

=]

n - -+ +
i T G t.lr. 1. )(:( oy . )
i= ( p) ( i’ 1| i-17 -1/ s\ Py 1lpi~1’Ti-1 ’

to write,
o 1 n t -+ A
- g- ) > > > >
P (t) =1+ nE]_ h n! —g (dTndrndpn) Y(rn-p‘n) wn_l(rn’pn’-rnlroypor’ro) (B—g)

and notice that Y satisfy the iterative equation, (see figure 6).
n

~» >

T ,p,T
w]l(rn.(-l’ n+1!‘[n+1| pO 0)

T
n+l - -+ (B-10)

=
r *
f (dTndl dp ) G ( n+1 n+1| n) GT(rn+1’Tn+1l n’Tﬂ ’}
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FIG. 6: GEOMETRY OF THE ITCRATIVE SOLUTICN
FOR GLOBAL DETECTION PROBABILITIES

Naturally, equation (B-10) contains physical information similar to that identified in
equation {A-10) and therefcre most of the discussion following equation (A-10) should apply
here too. Also, by the nature of (B-10), some generalization of the Munte Carlo methods
suggested there for the solution to the specified search pattern problem ought to be useful
in finding global probabilities of detection.
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DISCUSSION

Moutivated by the need for developing a framework of larger breadth and flexibility than
the Koopman one, we have succeeded in delireating a train of thought that holds the promise
of successfully accounting for the modern scphistication of the search and detection game.

Thus, a principle of biasing has been employed, whereby given probabilities are
assigned to all possible patbs of a military unit, and the probability of arrival of that unit
at any point in the vcean expressed in terms of them. Tt then becomes possible, as shown
in Section C, to formulate the resulc in terms of iterative solutions whese phy.ical cnntent
is interestingly simple and whose calculational advantages are many fold. In fact, a full
sulution can be obtained numerically, if the input prohabilities per path are given. Whether
they reflect our total ignorance concerning the unit's motion or the highly correlated nature
of the parh, a choice of such inputs is always possible, in that the inputs merely represent
our actual data bace ¢ ad not some restrictive mode! nssumption that might not correspond
to the reality we want to describe. The flexibility that this imparts to the formalism is such
that one might approach within the same framewnrk problems that have varving amounts of
input information.

Let us also note, that by the very nature of the iterative solutions we propose, a con-
nection can be establishod between the search and detection problem on one hand and the
well studied mathematical theory of Green's function on the other, thus opening a door for
the influx or a whole family of numerical methodologies that have proven useful elsewhere.
Although much might still be said about the hidden or obvious dimensions of this frame-
work, we stop our discussion here for we wish merely tv enlighten our reader's judgement,
not to influence it.
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