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SYNOPSIS

This ~eport presents a system for syntactic anal;sis

in the context of a computer system for the understanding

of spontaneously spoken English.

When people speak, they make certain assumptions
about the ability of their listener to understand them.
Human listeners are very good at understanding even very
noisy, incomplete, and ambiguous speech when it is
presented in a2 context which allows the listener to draw
on his knowledge of the topic under discussion, general
knowlaedge of the world, knowledge of the speaker and of
the previous dialogue, and other non-acoustic information.
Presuriably because of this assumed capability, speakers do
not produce an acoustic signal which carries enough
information to be decoded into unique phonemes or words on

the basis of acoustic information alone.

This implies that no matter how good the acoustic
processor of a speech understanding system is, it will not
bhe able to uniquely identify all the words of the
utterance, and some other processors will be required to

use non-acoustic knowledge, such as syntax and semantics,

to fill in and disambiguate the utterance. This report is

ii
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concerned with the role of syntax is such a process.

A syntactic processor for speech must be constructed
quite differently from one for text input. Given %Zhat the
words produced from the acoustic information may not be
unique, adjacent, or all correct, we will argue that
strict left to right. processing is precluded. The
syntactic processor must be able to predict words or
syntactic classes which may fill the gaps in the
utterance. It must also identify syntactic structures
which may be formed from the partial information which is

available.

The syntactic analysis <system presented in this
thesis 1is romposed of two parts, a grammar ard a rarser.
The parser uses the grammar to process a partial utterance

and to make predictions about missing words.

The grammar for the system is written in a
modification of the Augmented Transition Network (ATN)
formalism developed by Woods [91-93]. The grammar itself
began as a modified subset of the previously existing ATN
grammar for the LUNAR text question-answering system [97]
but has been expanded to include constructions not
accepted by the LUNAR grammar such as dates and compound
number expressions. The expressive power of the modified

ATN formalism is well beyond the finite state, context
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free, or augmented ~ontext free grammars used by other

-

current speech understanding systems (see Chapter Two for

a review of such systems).

The parser for the system is completely different in
bt design from Woods  parser and is the primary contribution
of thic work. It uses a judicious mixture of top down,
bottom up, depth first, and breadth first parsing
strategies to take advantage of local information which is
available in the input without being drawn into long,
erroneous paths which must later be abandoned. It also

saves all the information gained while following

alternative parsing paths so that any two (cr more) parse
paths which have a common portion can share the common

part without reparsing it. This is true even if the parse

paths split before and/or after the common section, and
ever if the common section analyzes only part of a

complete syntactic constituent.

One of the most severe problems faced by a speech
parser 1is the combinatorial explosion of partial parse
paths resulting from input in which not all the words in
the sentence are available. This system controls the
explosion by several methods: the use of a
vell-formed-substring table to store constituents which
have been parsed so that they never need to be

re-processed, merging of partial parse paths, attempting

!
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to ex'end only the best (i.e. most likely) parse paths,
building a data base of parse paths which can be shared
from one .nvocation of the parser to the next, and using
other sources of information such as semantics wherever

possible to help identify most likely paths.

Chapter One describes the nature of speech and the
speech understanding process, concluding with a
description of the input, output, and processing
characteristics which a speech parser must have. Chapter
Two reviews several methods for parsing formal languages
and English text, and surveys current work in speech
understanding with particular emphasis on syntactic

capability.

In Chapter Three we detail the ATN grammar formalism
and the modifications which have been made to it, and
describe the index into the grammar which provides
information needed for some right to left processing and
for making predictions. A small sample grammar is also

given.

Chapter Four gives an overview of the operation of
the speech parser, with illustrations, and Chaptzr Five
presents more details of the process, particularly the

scoring mechanisms. Annotated examples of the system in

operation are given in Chapter Six. Chapter Seven

il
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evaluates the work and suggests extensions and areas of

interest for further research.

The appendices present in detail two grammars used by
the system and give the vocabulary currently in use, with

a breakdown by syntactic categories and features.
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Chapter 1

Introduction

1.1 OVERVIEW

Understanding speech is an extremely complex process
which requires the use of many types of knowledge, one of
which is syntax, This thesis presents a system called
SPARSER which is designed to provide and use the syntactic
knowledge necessary to support an artificial speech

understanding system.

The remainder of this chapter discusses the nature of
the problem and presents the assumptions about other
components of the system which will necessarily interact
with syntax. Chapter Two discusses various parsing
strategies used for formal languages and text

undzrstanding systems, and surveys previous and current

work in the area of speech understanding. Chapter Three

describes the grammar, and Chapter Four presents SPARSER,
a specch parser. Chapter Five details the operation of
the system, and Chapter Six gives sample results and

Statisties. The final chapter discusses the strengths and
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weaknesses of SPARSER and indicates directions for further

research.

1.2 THE NATURE OF SPEECH

There are many types of speech. Words may be spoken
in isolation, with 1long pauses between them. Sentences
may be read, usually with strong inflections. Natural,
spontaneous speech where the words are spoken together
without many pauses may fall anywhere on a continuum from
very formal, slow, grammatical speech to very informal.
rapid, wungrammatical, conversational speech. We will
assume for the remaincder of this thesis that unless
explicitly stated otherwise "speech" means grammatical
speech spoken at a moderate rate with natural inflections
and pauses, spontaneously produced but similar to the type

of speech produced by reading text.

It is a well documented fact [17, 34, 35, 57] that
there 1is not enough information in the speech signal to
uniquely identify the phonemes or words in a normally
spoken utterance. This is not due just to the occurrence
of homonyris, but to a large number of other factors. Even

in speech produced =zt & normal rate of speed, word and
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sentence boundaries are usually obscured (as in "team
eating", "team meeting”, "tea meeting”), the pronunciation
of phonemes is influenced by the surrounding context,
phonemes are inserted, deleted, or altered (e.z. "give
me" becomes "gimme"), and there is often very iittle
acoustic difference between sounds whic'. are quite

different in the ideal phonetic representrcion,

Besides the ambiguity and erro: inherent in the
acoustic signal, we may safely assume tha* the acoustic
processing component of any ~rtificial speech
understanding system will introduce additicnal errors and
ambiguity because of the uncertainty in the process of
segmenting continuous spzech into wunits (phonemes,
transemes [20], APEL’s [89], syllables, words, etc.) and

in the identification of those units.

Much of the current knowledge of acoustic-phonetics
(which relates acoustic properties of the speech signal to
the phonemes which underlie them) consists of rules which
are generaive in nature, not analytic. 1In addition, it is
usually not possible to uniquely identify a portion of
acoustically processed data as a single phoneme; instead,

classification into sets of possible phonemes is all that

can be done (see, for example, Schwartz and Makhoul [75]).

g TrnT .-
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For example, it may be possible to determine that a given
segment is a nasal without being able to say whether it is
an /m/ or an /n/. If such a segment were followed by a
segment which could only be classified as a front vowel,
and that were in turn followed by an unvoiced stop (either
/t/, /k/, or /p/), a schwa, and an /1/, the the word
represented by that segmentation and 1labeling could be
either "metal" or "nickel". Determining the segment
boundaries themselves is not easy, since a sound like /1/
may appear t~o be the sequence /d8/ /1/ and vice versa. The
recognition of small function words such as "the", g™,
"of", "have", "did", etc, is particularly difficult
because there 1is frequently no more than the very
slightest acoustic cue to their presence, and such a cue
may not be sufficitent to determine the identity of the

word.

Lexical retrieval and word matching, the process of
scanning an acoustically processed utterance to determine
(with the help of a dictionary) what words seem to be
there is a non-trivial task which has been discussed in
detail elsewhere (42, 71]. Basically, the process of
comparing the ideal phonemic representation of a word
against a portion of the output of an acoustic processor

results in (at least) a score which indicates how well the

-
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expected pronunciation matches the acousties.

Because of the errors produced by segmentation and
labeling, we cannot assume that the correct words will
always score best or even high. Special matching rules
which attempt to compensate for particularly poor acoustic
information at the beginning or end of an utterance may
result in matching such phonetically diverse words as
"did", "give", and "been" in the same portion of the

utterance while missinyy the correct word "have'.

The lexical retrieval process could return the result
of matching every word in the system’s vocabulary at every
point in the utterance but this time-consuming process
would produce a vast amount of information, most of it
useless. Clearly a better approach would be to limit the
number of words returned by discarding all those which
score below some given threshold. If the threshold is set
too low, a great many spurious words will be found, and
there is no guarantee (unless the threshold is zero) that
all the correct words will be found in their proper

places. The higher the threshold is set, the fewer words

(both correct and incorrect) will be found. The optimal

threshold will achieve a balance between accuracy and

precision. It should not be necessary to retrieve all the
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: correct words, as 1long as those which are found are

sufficient to suggest those which are missing.

Preliminary results of the BBN speech understanding
system (reported by Woods in [94]) indicated that the
ratio of correct to incorrect words found can be expected
to be range between 1:20 and 1:50, with about 55-60% of

the actual words found. More recent results using a

different word matching scheme on acoustic data which was
segmented and labeled by hand rather than by machine [41]
show that this ratio can be lowered to about 1:3 with 63%
of the words found if that level of acoustic segmentation

can be reached automatically.

We conclude that acoustic and lexical processing of a
spoken utterance will result in the discovery of a number
of likely word candidates at many places in the utterance.
Most of these words will be spurious. This is illustrated
in Figure 1.1 by a structure called a word lattice which
shows schematically that many words may initially appear
to be present in a simple utterance. In this
representation the numbers along the horizontal scale are

segment boundary points in the utterance which roughly

correspond to points in time (but not exactly, since two

or more boundary po.nts may be used for the same instant
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in time in order to prohibit phonologically incompatible

segments from appearing to be juxtaposed).

This word lattice was produced by the lexical
retrieval component of the BBN speech understanding system
from an utterance which had been segmented and labeled by
hand under conditions designed to simulate the performance

of an automatic segmenter and labeler.

0 5 10 15 20 25 30 35
[ [ i Tl [ O =L = ol R e e RS i L i s
ten people |ord glass | sample Is] [ with | mognetite ]
| _been | moon lead | been
diu mode not did
give lunor | somple ] ond
we greoter does done
give deoling dash did
ore metol percent ] done
ord  nickel | tess | hod |
ony |
anyone 1
ond |
greoter
deoling
metol
nickel
Figure 1.1

A Word Lattice

Sentence: Give me all glass samples with magnetite.
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1.3 THE NATURE OF THE SPEECH UNDERSTANDING PROCESS

We do not attempt here to say that the way a
particular artificial system works implies something about
the way that people understand language. Nor 1is there
enough known about the way peosle understand language to
say that SPARSER is modeled after the human process,
However, human beings have been engaged for millions of

years in the process of oral communication and presumably

have gradually optimized themselves for the task (or

perhaps have optimized the task to suit themselves). It
is reasonable to suppose that any effective speech
understanding system would have some features in common
with the way people process speech., We shall therefore
Justify some of our assumptions concerning the nature of
the task and the relation of the syntactic component to
the rest of the system by reference to human behavior,

without, however, claiming any further similarity.

When people speak naturally and infcrmally they
frequently make grammatical mistakes, yet they are easily
unierstood. This would indicate that a syntax-driven
system for speech understanding (which would accept only
input meeting rigid syntactic requirements) might tLe

adequate for a limited application, but would not be
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extendible to more natural, conversational speech. Since
a number of word candidates are 1likely to be found
throughout the utterance, it may ve fruitful to be able to
select a subset of them on semantic, pragmatic, or
prosodic grounds as well as syntactic, depending on which
cues seem most robust. A system in which syntax w's one
of a number of equally important comoponents contributing
Lo the understanding of a sentence wculd be more flexible

than one which was totally or primarily syntax driven.

People use extensive knowledge in order to comprehend
spoken utterances and it is now generally accepted *hat
any successful speech understanding system must also use a
number of knowledge sources in combination [22, 57]. It
is not enough to follow the paradigm of '"segment the
acoustic signal into phonemes, then identify the phonemes
and words, then parse the sentence, then interpret the
structure." Acoustics alone cannot be depended upon to
provide a unique (or even only slightly ambiguous)
segmentation of the input stream into words. Also, all
the words in the wutterance will not necessarily be

discovered by acoustic informatica alone.

P TE
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Why, in particular, is syntax needed to wunderstand
speech? Clearly, it is the grammatical structure of "John
hit Bob" which differentiates its meaning .rom that of
"Bob hit John"™ or "John was hit by Bob"™. Similarly,
consider the syntactic case difference between "he" and
"him" in "The man who knew him was going left" ard "The
man who knew he was going left," [3] where the case of the
pronoun immeciately signals whether it is simply the
object of "knew' or the subject of an embedded complement,
Working from the premise that one is more likely to make a
grammatical statement than an ungrammatical one, 1in a
situation of lexical ambiguity one may use syntactic
consistency to decide between "the cat sin the tree" and

the cat’s in the tree". And finally, the existence of
two or more syntactic structures indicates ambiguous
sentences or constituents such as "He gave her cat food"
and "the boy with the cat in the tree"™ (who 1is in the
tree?). It may be necessary for some syntactic structure
to be built for these ambigucus strings in order for some
other knowledge source to choose between them. If the
syntactic ambiguity cannot be resolved, it means that the
utterance is truly ambiguous, in which case the system
should perhaps ask for clarification in the same way that

a human listener would do.

< fi0=
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Syntactic consistency should not be the only factor
in determining the utterance however, since it is possible
(even 1likely) to be able to find a syntactically
consistent interpretation of the utterance which is wrong.
Because there will be many possibie words for many
portions of the utterance, there would be too many
syntactically correct but nreaningless combinations of
words to Justify requirins a complete parse of the input
befcre any semantic processing is done. In order to
obtain a word lattice complete erough to parse (i.e. with
at least all the content words present) curr ent experience
indicates that about 80 words would have to be considered
for an average 7 word sentence [41]. Even in the much
smaller word 1lattice of Figure 1.1 it can be seen that

there are numerous short sequences which are syntactically

but not semantically valid (e.g. "Ten people are glass
samples with magnetite", "glass samples give magnetite",
"lunar samples give magnetite”, "samples give lead",

"people are percent", etc.).

-11-
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1.4 THE NATURE OF THE SYNTACTIC COMPONENT

As a consequence of the nature of speech and speech
understanding, the syntactic component of a speech
understanding system must deal with input of a different
nature than text parsers and must have different

operational characteristics as well.

1.4.1 The Input

The input to a parser for speech cannot be a string
of uniquely determined words but must be something like a
lattice of words (see Figure 1.1). When the parser wants
the '"next word" of the input it must be able to deal with
a list of possible words and must be prepared to cope with
the possibility that the correct word is not included in
that list. It may also be the case that one or more words
that the parser has accepted are wrong. Frequently no
usable word can be found at one or more places in the
utterance, so the barser must also be able to deal with
gaps in its input, for example by predicting one or more
words which would be syntactically consistent with the

current interpretation of the utterance,

-12-
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When processing text, a parser can reasonably take
advantage of a number of typographic indicators such as
punctuation marks (a period to delimit a sentence, commas
to disambiguate czrtain complex conjunction construstions,
etc.), capitalization (to indicate the start of a sentence

or to distinguish proper nouns such as "Pat" from other

words such as the noun or verb "pat"), italics,
underlining, quotation marks, and parentheses. (To
illustrate the importance of these factors to
comprehension, consider the unpunctuated string: "that

which is is that which is not is not is not that so" which
if correctly punctuated 1is a grammatically correct
sequence of sentences [3].) All of these cues are missing
in speech. They are compensated for by the use of pauses,
stress, changes in duration, pitch, and loudness, and

other prosodic features.

Unfortunately the current lack of knowledge about the
acoustic correlates of prosodic features makes it almost
impossible to use this rich source of information in
speech understanding systems. Current speech parsers must
cope with the increased ambiguity resulting from this lack
of information, and if designed with foresight, should be
easily extendible to use prosodic information when it

becomes available. Section 7.2 discusses the issue of

s13=
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prosodies in more detail.

1.4.2 The Qutput

In most systems which work with natural language the
purpose of the parser is to provide a representation of
the cyntactic units of the input and their relationsnhips
to one anothker. This representation is freq-'ently a '"deep
structure" tree which may then undergo semantic analysis
or interpretation. The creation of a self-contained
syntactic structure is not absolutely mandatory if enough
semantic and interpretive processing is done together with
the parsing, but in any case the syntactic component must
be able to confirm that the input 1is grammatically
correct, to detect ambiguities, and to identify syntactic
relationships between syntactic groupings of words. We

will assume that some structure for it is also produced.

A parser for speech, however, must do more than this,.
It must aid in selecting a syntactically well-formed
sequence of words from the many sequences of words which

are possible in the word lattice. It must be able to ask

questions of and 21swer questions from other knowledge

sources. For example, upon discovering that a certain

sequence of words can be a complete constituent such as a
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noun phrase, it may ask for semantic analysis to determine
whether the constituent is meaningful. On the other hand,
semantics may have already made a supposition about the
relationship between two words and the syntactic componerit
may have to determine whether or not that relationship is
borne out by the syntactic structure. For example, if the
words "analysis" and "iron" are found in the utterance
with a small gap between them, a good semantic hypothesis
would be that this portion of the sentence is ééout an
analysis of :omething to see if it contains iron. If

after the gap between the words is somehow filled, the

semantic hypothesis is boerne out: if it produces

syntactic component parses "analysis for iron" the !
"analysis in iron", it is not. }
|

Text parsers are usually designed on the assumption
that the words given as input will form a grammatical i
sentence, so the duty of the parser is merely to determine |
the structure(s) of the sentence. A speech parser, i
however, must know that some (in fact, many) of its
potential 1input sequences will be unerammatical, not
because the original utterance was ungrammatical but
because some combinations of words which appear to be
recognized from the acoustic signal are in~orrect. The

speech parser should be able to detect and re ject those

-15- ;
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sequences as early as possible.

Another goal of any speech parser must be to predict
words or syntactic categories which could fill gaps in the
word lattice. The tywe and correctness of the predictions
which can be made depend on the nature of the grammar
being used and the amount of context which is taken into

account when making the predictions.

1.4.3 The Processing

Due to the 1lexical uncertainty inherent in any
acoustic analysis and the fact that important words may
not be retrievable by acoustics alone, it cannot be
assumed that syntactic processing can process strictly
left to right (or right to left) through the utterance.
Long content words are more reliably identified by
acoustics and more easily verified by semantics or
pragmatics than short words or function words or words
which are garbled at the beginning or end of the
utterance. Peculiar phonological behavior occurs at the
beginning and the end of an utterance, as a result of the
speaker "tooling wup" to speak or "tailing off"., This

makes those portions of the utterance particularly

vulnerable to error in lexical recognition. The usually

-16-
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a good advice: "Begin at the beginning and go on till you

come to the end: then stop." [13, p.158] does not apply
I to speech understanding. Thus syntactic processing must
begin with whatever reliable anchor points can be found

bl and work "middle out" to fill in the gaps.

J | The control structure of a speech parser must be a

combination of the conventional top down and bottom up
l- approaches: top down in order to make predictions and
F bottom wup 1in order to minimize errors propagated by
dependcnce on incorrect context. (This issue is discussed
3 { in further detail 1in Chapters Two and Five and in Woods

, [95].)

If a complete, connected sequence of words could be

I Ll given to a parser, the number of syntactic alternatives

which must be considered is limited by the fact that the

et surrounding context (particularly the 1left context, if

processing is left to right) limits the number of ways in

which an element can be considered. If there is no

surrounding context, the possibilities increase. For

example, consider the sequence "man eating" which can be

part of a number of different constructions:
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A man-eating shark.
A man eating an omelet.
A snow man, eating utensils, and several frogs.

In the sky I saw a cloud man, eating lunch on a hill.

If all syntactic possibilities were considered for
every small bit of the possible utterance, the resulting
combinatorial explosion would preclude obtaining the
correct analysis in any reasonable time. Thus the
syntactic component must limit the number of syntactie
alternatives generated, or at least appropriately factor
them or treat them implicitly rather than explicitly, and

it must develop the correct alternatives early.

The body of this thesis presents a syntactic system

which has the above-mentioned characteristics.

-18-




Chapter 2

.
l, Review of Parsing Methods and Systems
ia

i' 2.1 INTRODUCTION

[ B §

This chapter reviews a number of parsing methods
which have been dcveloped ror formal languages, natural
i language in text form, and spoken language. The main body

=

of this thesis 1is concerned only with the analvsis of

3- speech, but since much of the terminology and some of the
= techniques which are wused in the other two areas can be
e

carried over to Lhe speech domain, they are of interest

i here.

»

an

i 2.2 FORMAL LANGUAGES

am

L For the hierarchy of formal languages -~ finite
=n state, context free, context sensitive, and recursively
r enumerable -- there have been developed a large number of
o parsing algorithms (see for example [1, 33]). We will
: concentrate here on context free languages (since,
. interestingly, they are more adaptable to natural language
L 95 than forma. context sensitive languages, partly because of
T the efficient parsing algorithms which are available for

-19-
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them). Specifically, we will co..3ider two basic

approaches to parsing them: top down and bottom up.

It is usually said that top down means building a
deep structure tree by starting at the root node and
working down, and that bottom up means starting from the
leaves of thne tree and building up to the root, but this
is somewhat misleading because it does not distinguish
between the flow of control of the parser and the order in
which the parse tree is constructed. (A recosnizer which
does not build a structure at all may still be said to be

top down or bottom up.)

Virtually all systems actually construct the tree by
forming the smallest constituents (near the leaves) first
and then conbining them in larger and larger groups until
the entire tree 1is built. The basic process which any
parser or recognizer goes through 1is to determine the
sequence of rules in the grammar which were applied to
generate the string. For our purposes, we will say that
if the parser discovers this sequence in the generation
order, it is top down, if it discovers it in reverse
order, it is bottom up. We will now describe typical top
down and bottom up algorithms and discuss their potential
advantages and disadvantages with regard to speech

processing.

=20<
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2.2.1 Top Down

Top down parsers are usually left to right (that is,
they process the input string from left to right),
predictive, and either breadth or depth first. A parser

which is depth first attempts at each step 1in the

derivation to choose one rule of the grammar which was
used to generate the input string. When an error
indicates that the derivation sequence obtained thus far
is wrong, the process must "back up" to the last cheice
point and chocse another rule. A breadth first processor
applies all possible rules at each step and thus finds all
possible derivations in parallel. A predictive algorithm
uses the information gained by processing part of the
input string to predict what symbol(s) of input will cone
next . In other words, the next symbol of input is
processed only in the context of the previous input, so
the context can actually influence the way in which the

next symbol is seen.

A strictly top down, depth first, 1left to right

parser begins with the root node S of the grammar and

chooses a ruie S ~~> X.X....X . If X ...X, are terminals,
172 n 1 i

they must match the first i characters of input., Ir XJ is

the first nonterminal in X1X2...Xn, a rule

Xj -—> xj1...xjk is chosean. The process repeats,

expanding the leftmost nonterminal in the current

s@21=
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sentential form and matching the input against initial
terminal symbols until either (a) the entire input  has
been matched and there are no more nonterminals to expand
or terminals to match, in which case the parse has been
successful orr (b) the input does not match the initial
terminal characters. In case (b), the process backs up to
the previous sentential form and tries to choose a
different rule to replace the leftmost non-terminal. If
none 1is available, it backs wup another step and tries
again. The parse fails if all backup possibilities are

exhausted.

This method is somewhat wasteful in that it may
require re-parsing a constituent several times if it is
"backed over" several times in order to ccrrectly parse
input to the left of the constituent. One way to remedy

this is by the use of a Well-Formed-Substring Table (WFST)

in which all constituents and their boundaries are placed.
Then, whenever the parser begins to parse a constituent of
a given type, the WFST can be checked to determine if this
has already been done, and if so, the constituent can be
used directly from the WFST without re-parsing. (An
example of this type of analysis as applied to natural
language 1is contained in the Harvard predictive analyzer

(u31).

-2P-
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Earley s algorithm [21, ! p.320] for context free
languages is an example of a basically top down, breadth
first, left to right, predictive parser which incorporates
the idea of a WFST. It constructs, for each position in
the input string, a state set of items which represent all
the states in which a non-deterministic pushdown automaton
could be at that position in the string. That 1is, it
carries in parallel all possible paths of the derivation.
In place of a push down stack to keep track of recursion,
each state contains a pointer to the state set containing
the state ‘or states) which caused the last push. (This
method incidently allows left recursive grammars, which
are usually the bane of top down parsers, to be handled
gracefully.) When all the entries which can be made in the
current state set have been made, one or more states show
which terminal and non-terminal symbols can appear in the
input at that point. Since the process is breadth first,

all possible next symbols are predicted.

In an efficient implementation of Earley’'s algorithm,
the top down process need not be strictly followed since
it is possible to compute in advance for each non-terminal
symbol the set of allowable initial terminal symbols which
can result from expanding that non-terminal. Then it is
possible to leap down any number (possibly infinite) of

levels of recursion to the input, and once a bottom-most
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rule is completed it can be used, bottom up, to select the
rules which could have produced that constituent.
Earley’s algorithm illustrates an important principle:
the merging of information in parse paths so that if there
are alternative derivations (as for ambiguous strings)
which have a number of steps in common, the work required

to process the common part need only be done once,.

The ability to predict one or more acceptable next
symbols of input based on what has already been processed,
and then go to the actual input to verify the prediction,
is one of the strongest advantages of a top down system.
In an environment (such as spoken English) where the "next
symbol" is not uniquely determined but is a set of
possible symbols, this predictive ability may be used to
screen out some or all of the erroneous next symbols or to

predict symbols to fill a gap.

Unfortunately, the other side of this coin is a big
disadvantage for top down systems, With errorful input,
if an error has been made in choosing one of the elements
of the context, the prediction depending on that context
may screen out the correct symbcl from the set of possible
next symbols, This may cause the parser to waste
considerable time thrashing around in the wrong input, and
little if any useful information about the correct string

will be gained,

=gl




Report No. 3116 Bolt Beranek and Newman Inc.

2.2.2 Bottom Up

Bottom up techniques begin with the leaves of a parse
tree and find the derivation sequence in reverse, ending
with the root node. Such an aporoach is typified by
Cocke’s algorithm [1 p.314). It processes the input by
first considering all possible substrings of 1length one,
forming all possible one-word constituents and placing
them in a table. Then, using this information, all pairs
of adjacent words (and constituents) are considered aud
all two-word constituents are formed and put in the table,
Then all adjacent three-, four-, five=; ... word
substrings are considered until the length of the string

is reached.

This method is neither left to right nor right to
left and has the advantage of working with isolated
sections of the input so that an error at one point will
not prevent a correct analysis of another portion of the
string. Although each constituent need tbe parsed only
once because the tabular method of parsing builds up a
WFST, the process unfortunately recuires that all possible
crarsings of all substrings of the input be found in
parallel ~- a procedure which is enormously wasteful of
space and time even when a single string is Dbeing

processed.

=28
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For speech, the multiple words produced by an
acoustic analyzer together with the multiple syntactic
categories for many of those words and the multiple ways
they can be syntactically combined when only very local
context is used, exacerbate the problem to such an extent
that a totally bottom up speech parser would be

unreasonably slow.

If every word had only one part of speech we could
get some idea of how small word groups are liwn.ly to
combine by looking at small groups of syntactic classes.
For example, taking all possible pairs from a reasorable
set of 20 parts of speech, are there any pairs which
cannot occur in some grammatical sentence? The answer is
no, and in fact most pairs can be used in several ways.
For many, if not all, triples, the same situation holds.
In fact, one can even dig up pathological examples to
illustrate wunlikely combinations such as having five
prepositions in a row: "What did you bring that book I

didn’t want to be read to out of up for?" [3].

-26-
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2.3 SYSTEMS FOR ENGLISH TEXT

A large number of systems have been developed which
either parse, or parse and interpret, English sentences
(especially quections) in printed form. No attempt will
be made here to review them all, since a number of
excellent reviews are available elsewhere "9, 39, T i Tl
86]. Instead, a few systems have b:en chosen for
discussion which represent widely different approaches to
the problem, and they are described and discussed with
particular emphasis on their possible adaptability to

speech input.

2.3.1 The Iransformational Approach

The most popular model of English in modern
linguisties is that of transformational grammar [14-16].
There are many schools of transformational grammar and
much dissent on the details of the various approaches, but
they basically agree that a transformational grammar
consists of at least two parts, a base component and a
transformational component. The base component is a set
of context free (or sometimes context sensitive) phrase
structure rules which operate to produce a deep structure
tree. This tree is then processed by the transformational
component which 1is a sequence of structure changing

transformations. Each transformation has three parts: a

=2T»
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Structural description which is a template to match the
tree to be transformed, a set of conditions which must
also be satisfied (for example, that two subtrees
specified by the template be identical), and a structural
change which may insert or delete branches and nodes in
the tree and move subtrees from place to place. The
transformations are ordered in cyclic sets and may be
obligatory, optional, repeatable, or non-repeatable.
After some number of transformations, the surface string

is formed by reading the leaves of the final transformed

(surface structure) tree from left to right.

This approach is primarily a generative one.,
Attempts have been made to reverse the process, but they
have not been particularly successful, in part because o~
their slowness and inefficiency. Petrick s
transformational parser [61-64] uses a specially written
context free grammar to parse the input string into one or
more possible surface structure trees. Then a series of
inverse transformations are applied to undo the effects of
the transformational component, Finally any tentativ-
deep structures produced are verified by the
transformational phrase structure component. The system
is fairly slow, wusing 38 and 129 seconds to parse
sentences which were generated by 14 and 31 forward

transformwations, respectively.
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Another attempt at transformational parsing was

! developed by Mitre Corporation [54, 99]. It is sirilar to
Petrick s but is even more ad hoc. The surface structure

sal grammar generates all but not only valid surface
structures, so some of the original trees obtained may be
wrong and cause wasted effort in the inverse
transformation phase. The surface structure grammar
F cannot be derived from the original grammar, nor are the
St inverse transformations exact inverses of the original
I transformations -- they were written taking advantage of

3 the grammar writer’s knowledge of the overall system.

Neither system would be adaptable to the kind of
fuzzy, partial input available in the speech domain
because of the number of levels involved (each of which
must operate on an entire string or tree) and the
. combinatorial problems, which are extreme even when the
' input 1is known exactly. Tt all the complete tentative
surface structure strings arre enumerated and for each one
all possible inverse transformations applied at each step,

the number of paths being followed can grow exponentially.

Any transformation which may have been applied in the

generation of the sentence must cause the analysis to

split into two paths, one which inverts the transformatiocn
and one which does not. The inherent ambiguity of speech

input would enormously increase the number of possible
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inverses at every step because of the much larger number

of possible strings.

2.3.2 String Analysis :

String analysis was formulated first by Harris ([32],
formalized by Joshi [36], and further developed by Sager
(73, 31]. The system to be discussed here is Sager s
since it embodies the most complete and best documented

system using the technique.

Linguistic string theory defines a number of
elementary strings in terms of syntactic categories, for
example "Noun Tensed-verb" forms an elenentary string
which can be realized as "Dogs bark." Any sentence string ..
can be made more complex by inserting an ad junct 1=

(modifier) string to the left or right of an element of

the sentence. (e.?. "Little" can be a left-adjunet to
"dogs" and "at mailmen" can be a right-adjunct to "bark.")
These rules can be formulated as context free rules. To
allow checks fc* number agreement and other context
sensitive effects, each syntactic category may have a
number of sub-categories which represent attributes or
features such as "plural" and "human", In addition,
Sager’s system has associated with each rule one or more
restriction tests which may look at the sub-categories of

the words in the phrase structure tree and test the well

~50
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formedness of the tree.

Sager s parsing system consists of three parts: a

dictionary, a set of context free rules, and a set of
restriction tests. The dictiornary has 8000-9000 entries,
but contains all inflected (regular as well as irregular)
forms, so that the base vocabulary of root forms is
actually much smaller. There are 25 major syntactic
categories (such as Noun, Verb, Verb with "-ing" Suffix,

Past Participle, etc.) and 120 sub-categories.

The 200 grammar rules are used to segment the input
string 1into elementary word strings. Whenever a node is
added to the parse tree, the relevant restrictions are
interpreted (pro icing the necessary context sensitive
checks) and the path is continued or aborted depending on
the success or failure of the restrictions. The parser is
top down, left to right, and depch first, but
automatically does all backup so that all possible parses

of the input are found.

The system has been applied to random sentences taken

from 1literature in the field of pharmacology and is

reported to be 60-80% successful, parsing reasonably long

sentences in the order of seconds. No general

characterization of the scope of the grammar is given and !

it 1is difficult to assess whether the success rate given
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above results from the somewhat limited style in which
most scientific publications are written. It should be
possible to adapt this model to speech parsing if a way
were worked out to apply the restrictions in an ambiguous,

incomplete environment.

2.3.3 Chart Parsing

The MIND system [38] is a set of tools for linguistic
processing. The parser for the system is a modification
of Cocke’s algorithm, which was Zfescribed in Section 2.2.2
above. It wuses a data object called a chart to record
possible transitions from one point in the input to
another. The chart is a directed graph witi, vertices and
labeled edges. Edges represent mutually exclusive
alternatives, each of which represents a transition from
one vertex to another and is labeled with an analysis of
the portion of the input spanned. See Figure 2.1 for an
example of the parsing of the ambiguous string "high

o) D A

The method of parsing is right to left (!) and bottom
up. Like Cocke’s algorithm, it finds not only all
possible parses of the whole sentence in parallel but also
all possible parses of all substrings of the sentence,

whether they can be used in a larger constituent or not .

On the positive side, the chart acts like a built-in WFST |
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and provides automatically for sharing of constituents

once they are built so no re-parsing is ever necessary.
|
ae
s (CAT NOUN)
: Ae _
; (WORD highball)
: |
1 o
(CAT NOUN)
l i T
in (WORD high) (WORD ball)
R (CAT ADJ) (CAT NOUN)
18
me
(CAT NP)
?‘
or
™ Figure 2.1
- Sample Chart for "high ball"
om
e The technique of using a chart was expanded upon by
P Kaplan [37], resulting in a system for writing parsers
" called GSP, a general syntactic processor. GSP can still 1
o find all parsings in parallel but is not limited to
'l strictly bottom up processing. In fact, Woods  top down 1
L R J
|
parser for transition network grammars (see Section 2.3.4 ’:
- below) has been implemented in GSP, as has Kay’s '
] algorithm,

L gaie mi A bl
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Kay “s strictly bottom up method would not be useful
for speech input for the reasons given in Section 2.2.2
above, but Kaplan’s system might provide a framework for
writing a =speech parser. The complexities which would
have to be represented in the chart are mind boggling,
however, and it is difficult to assess the combinatorial

problem involved.

2.3.4 Transition Network Grammars

Augmented transition network grammars (ATN's), the
grammar model wused as a basis for this thesis, were
developed by William Woods [91-93], although similar but
less well developed models appear in earlier work by
Thorne, Bratley, and Dewar [80] and Bobrow and Fraser
{10]. A transition network grammar looks like a finite
state transition diagram in that it is a directed graph
with labeled states and labeled arcs, a distinguished
start state, and a set of distinguished final states. The
label on an arc indicates the type (usually syntactic
category) of input which will allow a transition to be
made to the next state. However, the network permits
recursion. That is, the label on some arc may call for a
structure (constituent) created by recursively re-applying

the network beginning with an indicated initial state.

=Jlke
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A basic transition network grammar as described above
is equivalent to a context free grammar or a pushdown
store automaton. To give it additional power (up to the
power of a Turing machine), each arc is augmented with a
test and a sequence of actions to produce an Augmentec
Transition Network (ATN). Thne test associated with an arc
must be satisfied (in addition to the label) for the arc
to be taken, and the actions are to be executed as the arc
is traversed. These actions construct pieces of tree
structure and keep them in registers, which may be thought
of as local variables. Register contents are available on
subsequent arcs and can be combined, copied, changed, and

added to, as more of the tree structure is built.

This very general mechanism provides a
transformational capability which can produce deep
structures of the same sort as those of a transformational
grammar. While the arrangement of states and arcs
reflects the surface structures of possible utterances,
the actions on the arcs permit elements of input and
constituents to be re-arranged so as to produce a deep
structure. Figure 2.2 gives a diagram of an ATN for

simple passive sentences.

In this diagram, the states are represented as
labeled <circles (double circles for an initial state) and

the arcs as directed arrows between the states. Above

=35
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each arc 1is an indication of the condition which must he
true for the arc to be taken (e.g. a word of category
Verb or a constituent obtained by applying the grammar
beginning at state NP/ to obtain a noun phrase). Below
each arc (or in the indicated footnote) is a description
of the tests and/or structure building actions on the arc;
the symbol ¥* represents the current item of input -- a
word or constituent, and structure building functions are
replaced by a schematic representation of the structure
produced. A more detailed description of ATN grammars

will be given in Chapter Three below.
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It should be noted that the type of structure built
is relatively independent of the sequence of states and
transitions in the grammar. An ‘TN could be written to
produce case frame descriptions, stratificational

analyses, or dependency structures.

The transition network may be viewed as a grammar, as
a non-deterministic parser, or as a non-deterministic
generator. When viewed as a parser, it is left to right,
depth or breadth first, and top down, but bettom up
information 1is easily accessible. When viewed as a
grammar, however, it becomes an almost neutral description
of a language. Additionally, the distinction betwecen the
arc type and the arc actions leads to an easy separation
of local information (pertaining to the current word) from

context sensitive information.

Another characteristic of ATN grammars, one which
strongly suggests its suitability for wuse in speech
understanding, is its efficient merging or factoring of
portions of an analysis common to several paths. One can
look at a ATN as a model of a context-free grammar in
regular expression form (with conditions and actions added
to extend the power of the model). Thus a regular
expression rule such as X -> (A)BC*D can be represented by

an ATN as shown in Figure 2.3.
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Figure 2.3
Another Simple ATN

Woods says [92 p. 600]:

The merging of redundant parts of rules not only
permits a more compact representation but also
eliminates the necessity of redundant processing
when doing the parsing. That is, by reducing
the size of the grammar representation, one also
reduces the number of tests which need to be
performed during the parsing. In effect, one is
taking advantage of the fact that whether or not
a rule is successful in the ordinary
context-free grammar model, information is
frequently gained in the process of matching it
(or attempting to match iE 3 which has
implications for the success or failure of later
rules. Thus, when two rules have common parts,
the matching of the first has already performed
some of the tests required for the matching of
the second. By merging the common parts, one is
able to take advantage of this information to
eliminate the redundant processing in the
matching of the second rule.

efficient merging can be achieved for various
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parsings which are not identical but are merely similar.
That is, information can be stored in registers (and
subsequently tested by conditions on other arcs) which
would otherwise have to be remembered implicitly by the
state of the network. This factoring makes ATN's
extremely attractive as a possible grammar form for a
speech parser, since some of the combinatorial problenms
are iwmediately reduced by taking advantage of the merging

capabilities of the grammar.

2.4 SYSTEMS FOR SPEECH

In the past few years there has been a flurry of
activity in the field of automatic speech understanding,
resulting in a number of different systems. Several of
these systems are briefly described here with particular
attention to their syntactic -capabilities. A more
complete survey of these and other systems can be found in

Woisf [90].

2.4.1 Vicens-3eddy

The first really workable system ¢to understand
continuous speech was develcped at Stanford University in

the late 1960°s [82]. There were several different

versions of this system designed for various vocabularies
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(carefully selected for content and size) and different
numbers of speakers. It achieved 85% correct
interpretation (95% correct word recognition) for speakers
(for whom the system was specifically tuned) who uttered
short sentences composed from a carefully chosen

vocabulary of 16 words.

The highly constrained context free grammar would
admit only 192 sentences. The controlling program also
capitalized upon particular semantic constraints imposed
by the limited task domain of block movement, such as "If
the sentence starts with ‘PICK-UP" then ‘BLOCK’ must
appear somewhere in the sentence", and "Werds indicating

location can occur orly after the word “BLOCK~ ",

Although this system was extremely 1limited in all
dimensions, it has served to inspire many of the current

researcn efforts in speech understanding.

2.4.2 Carnegie-Mellon’s Systems

A speech understanding system has been developed at
Carnegie-Mellon University [66-68, 56] for understanding
chess moves (in the context of a real game so that
semantic support can come from a chess-playing program).
The context-free grammar is small (18 rules) and is

capable of generating only a finite number of sentences
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(about 5 million) using a 31 word vocabulary. The role of
the parser is to predict the next element of input, not to
build a syntactic structure for +tiie utterance. It 1is
mostly bottom up but operates in a top down mode to verify
or reject hypothesies made by other components of the

system.

This system is not syntax-driven, that is, syrtactic
analyses and predictions do not necessarily take
precedence over other independent processes such as
semantics, but it wuses syntax in conjunction with
semAntics and acoustics to make decisions about the

content of the utterance.

It operates in 5-10 times real time with about 99%
word accuracv. It has been expanded to other data bases,
but without fundamental change in scope or complexity of
the grammar. (Although without comparable semantics, the

performance in these other domains is relatively poor.)

Another speech understanding system, called DRAGON
[4,5], has been implemented at Carnegie-Mellon. DRAGON
models knowledge sources (acoustic-phonetic, lexical,
phonological, svntactic-semantic) as probabilistic
functions of Markov processes and uses an optimal search
strategy to, in effect, search all possible sentences

allowed by the (finite state) grammar, all pronunciations
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of each sentence, and all matches of the phonetic strings
to the acoustic observations in order to arrive at the
best intepretation. When tested on 102 utterances with
vocabularies ranging from 24 to 194 words, Uu49% of the
utterances (and 83% of the 578 words) were correctly

recognized in 48 to 174 times real time.

2.4.3 SDC’s System

A speech understandiag system at SDC is designed to
handle queries ard commands to a data management system
with a data base of information about submarine fleets (6,
69]. Examples of typical input are "Print manufacturer
where product equals automobile" and "Total quantity where
type equals nuclear.”"” When such unnatural sentences are
spoken by humans the words tend to be pronounced almost as
if they were in isolation rather than in the continuum one
expects from conne-zted speech, thus making the problem of

acoustic analysis much easier.

The system is basically syntax-driven and uses a
small context free grammar. Semantic constraints are
built into the "syntactic" categories of the grammar. The
system does not vrequire that the utterance be processed
strictly from left to right, but there is no bottom up
processing from the word 1level (initial words are

predicted by the discourse level controller). Syntax then
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predicts words to either side which acoustics must verify.

Preliminary statistics indicate a 52% comprehension
rate with a vocabularv >f 150 words and a grammar of 35
rules. The strict context freeness of the grammar Iis
critical, however, and it would be difficult to extend the

system to allow more natural input.

2.4.4 SRI s System

A syntax-driven system to understand speech in thc
domain of a person requesting help with repairing a
mechanical object such as a leaky faucet is under way at
Stanford Research Institute [5G, 60, 84, 85, 87]. The
system operates from left to right through the utterance
using a top down, nighly predictive syntactic component
which is aided in making predictions of the next word by
semantic restrictions embedded in the parsing procedure.
The acoustic component 1is wused only to verify the

predictions.

In this case, <the grammar and parser are not
separable but are represented together as a program whose
execution results in a parse. The parser is not strictly
depth first, but is "best first"™ in the sense that
alternative parse paths are scored, the best one is

extended one step and re-scored, and the process is
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repeated. There 1is some effort made to minimize
re-parsing due to altering one or more words of input by
remembering successful paths previously encountered and

following them again as far as possible.

Since an acoustic word matching function must be

written for every word in the vocabulary, the current

vocabulary of the system is effectively 54 words although

E the parser could handle up to 300. When the system was
tested with 71 utterances, it responded to 51; 86% of the
1 responses were correct. It required on the order of 200

times real time for the analysis.

1 , The system’s principal 1limitations are its strict
i | left to right approach and the 1lack of bottom up
techniques. This means that the syntactic and semantic
expectations 1influence the direction of the analysis more
than the acoustic component, so that no advantage can be

] taken of really robust acoustic information.

i 2.4.5 Lincoln’s System

A speech understanding system was develoned at MIT

Lincoln Laboratory (see Forgie [24-26]) using the task

domain of a retrieval, analysis, and display system for
acoustic-phonetic data. Several 1linguistic processing

modules have been written for the system (see [23-25]).
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The primary one, called VASSAL, uses a context free
grammar with 111 rules which are capable of generating
only a finite language. Semantic information is embedded
in the grammar by having the nonterminal symbols of the
grammar be sewantic rather than syntactic categories.
Using a 250 word vocabulary, the linguistic processor
operates top down, left to right through the utterance to
hypothesize word strings to be compared against the

acoustic analysis of the utterance,

2.4.6 LPARS

LPARS, a locally organized parser for spoken input
written by Miller [53], 1is not a complete speech
understanding system because it lacks an acoustic front
end, but it is discussed here because it claims to provide

all the higher level processing needed for such a system.,

A program to accept the correct phonemic description
of an utterance and output a scrambled version of it by
making random substitutions and deletions is wused to
simulate an acoustic front end for LPARS. lUnfortunately,
the scrambler never inserts spurious phonemes as a real
acoustic processor is likely to do, nor does it induce any
fuzziness in the input in the sense of assigning more than
one possible phoneme to a segment, A word matching

program then matches the phonetic spelling of each word in
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the dictionary at each position in the input to determine
how likely the word is to occur there. When a word which
matches above a given threshold is found in the input, a
process to predict other words which may occur nz2arby is
invoked, but this is very ad hoc and uses no general
semantic or even syntactic guidance. Using a modified
transition network grammar as a guide, LPARS then
constructs, bottom wup, all possible syntactic paths
through each group of adjacent words. The system then
syntactically proposes words or word strings to fill the

gaps.

Unfortunately the form of the grammar is so
restricted that it no longer possesses the full capability
of an ATN but is really closer to context free. It
includes a mechanism to check semantic feature agreement
between parts of the sentence but does not have general
register setting and checking capabilities. It handles
only regular verbs, and only the present tense so that
affixes and auxiliary verbs are minimized. Only singular
NP’s are permitted, so no number agreement checks need be
made. Since general register setting and structure
building actions are prohibited, the parser finds only a
surface structure parse for the utterance, not a deep

structure.

7
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The reduction of the combinatorial possibilities was

achieved not by clever heuristics or merging of

representations but by legislating out troublesome data

o

I

and input. For example, every word has only one part of

speech in the lexicon, and for purposes of word matching

| C—

and proposal, clusters such as "on the 1left of" are

considered to be one word.

The system works on a limited vocabulary (72 words,
most of them quite long) and a small grammar (24 states,
3 ares). Because it processes, bot tom up, all
possibilities in parallel it would explode if given a
large grammar or vccabulary. It would also be difficult
to modify the system to do the actions on arcs

characteristic of a ATN.

2.4.7 BBN SPEECHLIS =
-

The speech understanding system under development at 53

Bolt Beranek and Newman Inc. [F, 12, 55, T8, 10y 75; 94, -4
96] has used two task domains; that of :.e LUNAR text ij

question-answering system [97] which deals with chemical

¢

s d

analyses of Apollo 11 moon rocks and oae dealing with

14

travel budget management.
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The overall design of the system ‘is illustrated in
Figure 2.4. There are seven basic components of the
system. The acoustics component analyzes the acoustic
signal to extract features and segment the utterance into
a lattice of alternative possible sequences of phonemes
(Schwartz and Makhoul [75]), phonological rules augment
the output of the acoustic component to include sequences
of phonemes which could have resulted in the observed
phonemes; the lexical retrieval component retrieves words
from the lexicon on the basis of this information (Rovner,
et.al. [71]); the word matcher determines the degree to
which the ideal phonetic spelling of a given word matches
the acoustic analysis at a particular location [T71]. All
of these components structure their output in such a way
as to represent the ambiguity which is inherent in their
analyses. For example, they can be used to produce word

lattices such as that which was shown in Figure 1.1.

The syntactic component is SPARSER, the system
comprising the body of this thesis (see also Bates [T7]).
Acceptable utterances are not restricted to context-free
syntax, since the grammar which SPARSER uses is a modified
ATN grammar, capable of handling a large, natural subset
of English. The remaining chapters of this thesis detail

the structure and operation of SPARSER.
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The semantic component uses a semantic network to
associate semantically related words and to judge the
of a bypothesized interpretation (See

(55]). This semantic formalism is much more

of the previously discussed systems,

network must be constructed for each new

SYNTAX
MATEH (SPARSER)
g
LEXICAL T SEMANTICS
RETRIEVAL CONTROL
ACOUSTICS PRAGMATICS

Figure 2.4

Design of BBN SPEECHLIS
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The pragmatics component is not yet implemented, but
is projected to contain information about the past
dialogue, a model of the user, and other pragmatic data

(see Bruce [12]).

A control component contains an overall strategy for
employing the other components in order to obtain an
interpretation of an utterance (see Rovner, et.al. [70]).
It decides which component is to be called, what input it
is to be given, and what is to be done with the output.
It sets thresholds on word match quality. It combines the
scores produced by the other components in order to rank
competing hypothesies, and is the primary interface to all

other components.

2.5 CONCLUSIONS

All but two of the speech understanding systems
described above are syntax-driven. This is understandable
because syntax is the best understood and most
fcrmalizable aspect of language analysis. However, that
does not mean that it should provide overall guidance for

the entire understanding effort.
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When pecple speak naturally and inforwally they
frequently make grammatical mistakes and seldom make
semantic ones, yet they are easily understood. An
automatic system driven by a syntactic processor which
could handle only syntactically correct input would fail
to understand such utterances, and would likely be
difficult to modify to accept them. A system in wnhich
syntax was one of a number of equally important components
contributing to the understanding of a sentence should be
able to do a better job, since a bad report from syntax
could be overridden by acoustics, semantics, or some other
Source of knowledge. It shovld be noted that none of the
systems just described attempt to deal with ungrammatical

utterances at the current time.

With one exception, all the speech understanding
systems described above separate the parser from the
grammar which drives it. This allows grammars which have
been previously developed for text processing to be used,
though modifications are usually necessary. The grammar
can then be written in a meta-language which is convenient
to the task and which is as different from the language of
the parser which processes it as a high-level programming
language is from machine code. It also allows a potential
user to 1learn to construct grammars without having to

learn to write programs =-- a distinet advantage in

-52-
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motivating 1linguists without programming experience to

contribute to the development of the systen. It also

reflects the principle (held by some but not all
linguists) that a grammar should be a neutral description
of a language, biased as 1little as possible toward
generation or analysis, thus maintaining the potential for
the same grammar to eventually be used in a system to both
understand spoken input &nd produce natural language
output. The separation of parser from grammar also allows
the grammar to be examined and modified without risk of
introducing bugs into the parser, it permits various
parsing processes to be developed for the same grammar,
and it usually permits easy experimentation with vAarious

control structures within the parser.

With the exception of BBN SPEECHLIS, all of the
systems above work with either a small vocabulary (which
lessens the degree of lexical ambiguity in the input) or a
limited grammar, or both, and so do not deal effectively
with the combinatorial explosion of syntactic
possibilities which wculd arise given a 1large (>1000

words) vocabulary and a reasonably general grammar.

What is needed in the syntactic component of a speech
understanding system is a scheme which can:
(a) blend top down techniques with bottom up ones to

combine directed predictive analysis with immunity to
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errors in non-local context

(b) merge common information on alternate paths as much as
possible to avoid re-parsing and facilitate decision
making

(c) pursue most likely paths first while holding
alternatives for further processing if necessary

(d) take advantage of the constraints which may be

supplied by other sources of knowledge, such as acoustics,

semantics, pragmatics, and prosodics.
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Chapter 3

The Grammar

3.1 INTRCDUCTION

We have chosen the Augmented Transition Network
formalism for the grammar which drives SPARSER because, as
was mentioned in Section 2.3.4, it 1is a vrepresentation

A which allows merging of common portions of the analyvsis,
it is amenable to both bottom up and top down parsing
techniques, it fairly clearly separates the use of local

information from information which was obtained from a

distant portion of the utterance and, the author’s

="

1 previous experience with a large ATHN grammar for parsing
i text laid the groundwork for the development of a similar

grammar for speech.

. We have tried as much as possible to keep the
formalism which was developed by Woods [91-93] intact, but
some changes have been necessary. The following section
describes Woods ™ original fornialism, concentrating on
those areas which have been changed for the speech

: grammar. It assumes most of the information presented in

Section 2.3.4 and it may te skipped by readers already

familiar with ATNs. Section 3.2 describes the
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modifications which have been made to Woods® formalisnm,
and the final section describes the pre-processing which
is performed on the grammer so that the speech parser can

use it.

3.2 AUGMENTED TRANSITION NETWORK GRAMMARS i

The concept of an Augmented Transition Network (ATN)
Grammar was introduced briafly in Section 2.3.4 as 3 oo
finite state network which has been extended to allow

recursion, tests on arcs, and structure-building actions

on arcs. The sequence of arcs which s taken during N
parsing reflects the surface structure of the input ﬁi
string, but the actions allow the creation »f a deep o
structure which may b2 quite different from the surface pon

structure.

The form of an ATN gremmar is as follows. Each state
of the network has a uniaue name. Associated with each
state 1s an ordercd list of arcs. There are eight types
of ares, which follow the schemas below. (An arc is a
list of elements which is enclosed in parenthesies. An
element may be a single word or another list. Capitalized
words are actual elements, lower case words in brackets
are descriptions of elements which will be described

below, and * is the Kleene star operator which indicates
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zero or more occurrences of the previous element.)

(CAT <category> <test> <action>* (TO <nextstate>))
(WRD <word> <test> <action>* (TO <nextstate>))
(MEM <1list> <test> <action>¥* (TO <nextstate)))
(TST <label> <test> <action>* (T0 <nextstate>))
(PUSH <state> <test> <action>¥* (TO <nextstate>))
(VIR <category> <test> <action>* (TO <nextstate)>))
(JUMP? <nextstate> <test> <actiond>%)

(POP <form> <test>)

The first element of each arc indicates its type.
The interpretation o1 the second element depends on the
type ot the arc and will be explained below. Th2> third
element is an arbitrary test which must be satisfied in
order for the arc to be taken. Actions, whiech may occur
in any number on all arecs but POP ares, generally
manipulate information that is stored in registers. (A
register 1is like a temporary variable which may contain a
value.) The register contents are constants (flags) or
pieces of syntactiec structure which are built using
previous register contents and/or the current item of
input and/or the features of the current item. The last
element of every arc type except JUMP and POP indicates

which sta.e of the grammar is to be considered next.

S
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A CAT arc may be taken if the current input word 1is
of the syntactic category specified by the second element
of the arc. A WRD arc specifies the exact word which 1is
required, rather than a syntactic category, and a MEM arc
is exactly like a WRD arc except that the input word must

be one of a list of words specified on the arc.

A TST arc performs just the test to determine whether
the arc may be taken; the second eclement of this arc is a
dummy label which is never used by the parser. A JUMP arc
specifies the state to which a jump transition is to be
made without "consuming" anvthine from the input string.
Notice that TST and JUMP arcs are very similar, but the
fcrmer is intended to test some feature of the input and
move the input pointer over it while the later performs a

similar test but dres not move the pointer.

A VIR arc checks to see whether a constituent of the
named category has been placed on the HOLD list by a HOLD
action of some previous arc (see below). A PUSH arc
initiates a recursive call to the network, beginning in
the indicated state, to look for a constituent,. A POP
arc, which has no destination state, marks the state which
it leaves as a terminal state for some level o0f the

network; it also indicates the form (syntactic structure)

which is tc be returned as the result of the analvsis of

that portion of input parsed by the current level.
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When the parser is operating, a number of registers
are active. Whenever a PUSH occurs, this register list,
along wiph other information, is saved on a stack while
the parser recursively operates on the new (lower) level
beginning with an empty register list. When a POP arc is
taken, the stack 1is popped, wiping out the current
register list and restoring the register 1list which was
current Dbefore the last PUSH. The constituent which was
POPed then becomes the current input item for the PUSH

arc.

Several types of actions may occur cn the arcs. The
most common is (SETR <reg> <form>) which sets the
indicated register to the value of the forn. The action
(SENDR <reg> <form> which may be used on a PUSH arc,
causes the register to be set to the value of the form at
the 1lower level of recursion about to be initiated by the
PUSH, i.e. the register value will 1initialize the
register list after the PUSH. (LIFTR <reg> <form>
<where>) is the inverse of SENDR in that it sets the
register to the value of the form at the level specified
by the <where> form. The <where)> specification can be an
integer indicating the number of levels up or it can be a
predicate, in which case the nearest level at which the
predicate 1is true 1is chosen. Thus LIFTR and SENDR are

used to communicate b~tween 1levels of recursion; an
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analysis may send information from part of one constituent
into the process which parses a sub-constituent, and
information which is not necessarily part of the structure
of a constituent can be given to the process which will

continue after the parsing of the constituent is complete.

For example, when parsing the noun phrase "the person
who travels to Washington" the grammar may PUSH for a
relative clause following "person". It is necessary, at
some point, to check for number agreement between the rioun
"person” and the verb "travels" since "* the people who
travels to Washington" must not be allowed (and of course
must be rejected by a speech parser as early as possible).
SENDR carn be used to send down the head of the noun phrase
to the relative clause level so that the agreement test

can be made as soon as the verb is encountered.

The action (HOLD <constit>) places the indicated
constituvent on the HOLD list, a global variable which is
accessible at all levels. This action together with the
VIR arc constitute a mechanism for dealing with the
phenomenon called left extraposition in transformational
grammar theory, which moves a sub-constituent from an
embedded constituent up and to the left of its deep
structure position. An examples of this is the fronting
of questioned noun phrases ("Which doctor did he send vou

™). Since the extracted constituent can be moved only
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to portions of the deep structure which dominate its
original position, once an item has been put on the HOLD
list it must be removed (by using a VIR arc) before a POP
is done from the level at which it was placed. However
the VIR arc which picks it up may occur many levels below

where it was found.

The actions RESUMETAG and RESUME are used to handle
the structures produced in ‘ransformational grammar theory
by the transformation known as right extraposition. For
example, the sentence "The place I went to which wias on
the VWest Coast" has a deep structure constituent for "the
place. which was on the West Coast" but the relative clause
has been moved from its original position in the founted

noun phrase to the right in the surface structure.

The function (RESUMETAG state), when used as an
action on an arc, creates a marker combinine the named
state (at which parsing could continue at some later time)
with the current register list. Then at some later time,
if the action (RESUME) is encountered on an arc the marker
is retrieved and the configuration the parser was in when
the RESUMETAG was executed is re-established. The
extraposed text can be parsed as usual, and when a POP is
done the completed constituent is used for the inpu*t item

on the arc containing the RESUME.
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3.3 MODIFICATIONS

A number of modifications have been made to the ATN

formalism just described in order to make it more amenable

to use by a parser for speech. None of these changes
reduce the power of the grammar, and some, as will be
shown, may even clarify some points. We call the
resulting formalism a Modified Augmented ITransition
Network (MATN).

3.3.1 Tests on the Arcs

Every arc of an ordinary ATN has a test component ,
which may be any predicate. It 1is usually a boolean
combinaticon of tests on the current input word (its
features, etc.) and the contents of registers which have
been set by actions on previous arecs. In the MATN
formalism, the test component of each arc is, on all but
the PUSH arc, a list of two tests. The first is a test on
the current word and its features, 1i.e. a local,
context-free test. The second is a test on the register
cuntents, i.e. a context-sensitive test. Both tests must
succeed for the arc to be taken. In the rare case where a
disjunction of current word information and register
contents 1is required, it may appear in the context
sensitive slot. (Experience with the LUNAR grammar [97]

and the speech grammar has shown, however, that such tests

2fi2.
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are rarely used.)

The reason for splitting up the tests in this way is
that register checking tests cannot be made unless the
registers are set, and in many situations in the speech
environment there may not be enough 1left context to
guarantee that the proper registers would be set. Thus it
is useiul (as will be seen in the next chapter) to be able
to evaluate the context-free test on an arc at a different
time in the parsing process from the context-sensitive

one.

On PUSH arcs, there are three types of tests which
are used. It 1is useful and efficient to test the next
word of input before actually doing the PUSH, to see, for
example, if the next word can begin a constituent of the
type being PUSHed for. This test is called a look-ahead
test, and takes the place of the normal context-free test
in the test component of the arc. Tnere is also the usual
context-sensitive test on registers which were set before
the PUSH arc was encountered. And finally, when the PUSH
arc returns with a constituent, another context-free tecat
may be done on the structure of the entire constituent,
Therefore, the test component of a PUSH arc is a list of

the three tests just described.
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3.3.2 LIFTR s

The action LIFTR has been removed from MATN grammars,
but the ability to send information to a higher level has

been preserved in another form.

There is a special register called LIFTLIST which may
be set by the normal SETR acticn. When a constituent is
POPPed, the contents of the LIFTLIST register is attached
to the constituent in the WFST in such a way that it
becomes the features list on the PUSH arc which picks up
the constituent. Actions on the PUSH arc can then access
the features 1list in any way and manipulate the

information there, for example, to attach it to the

LIFTLIST register at this level so it will be passed up

again.

Originally LIFTLIST was conceived of as a way to
attnch features to a constituent which did not really have
a place in the syntactic structure. For example, one
might want to pop a number as the structure
(NP N NUMBER 105) with the feature DIGITS to indicate that
it had teen parsed from '"one oh five" instead of "a
hundred and five". However, LIFTLIST can be generalized
to a mechanism for passing any information up to the
higher level, as long as the actions on the PUSH arc can

interpret the information.
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3.3.3 SENDR s

because they allowed tests

There are several reasons

which involved information obtained

Bolt Beranek and Newman Inc.

SENDR s were an efficient mechanism for text parsing

to be made on a lower level

somewhere (possibly

far) to the left in the input string -- information which
would normally be inaccessivle because it would be hidden

on the stack during the parsing of sub-coastituents.

for not allowing this

mechanism in the speech parser.

that looks like "... the person

who

Suppose,

travels

in the input

..."’ the

word "person" is not the word which was really uttered.

If it were allowed to be passed down it

would

become an

integral part of the analysis at the lower level, and if

another word were to be hypothesized

in its

place, the

lower 1level the analysis would have to be redone even if

none of the words in the relative clause had been changed.

This 1is a process which would

be extremely wasteful,

esp cially in the speech environment where one wants to be

able to take as much advantage as possible of

which was gained at one point

another. In particular, it is advantageous to

constituents such constructions

and

as

slightly

relative

information

altered at

consider as

clauses so

that they can be p’aced in a well-formed-substring table

for use by other processes.
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Another reason is that some types of verifications
(semantic, prosodic, and pragmatic, at least) can be done
most conveniently or. portions of an utterance which have
been assigned a syntactic structure, ives on
constituents. If a portion of an utterance 1is parsed

(e.g. "that I gave you" from the complete utterance "The

book that I gave you") but does not form a complete
constituent because it is missing a piece of information
from a higher constituent to the 1left which would have
been sent down had it been available, then these
verifications may not be made until the missing word or
words are identified. Yet it may be important to build
and verify the conctituent in order to predict the missing
word to the 1left. Therefore, it 1is better to allow
constituents to be built without information which would
normally have becen passed down. When parsing possibly
incorrect fragments with little cr no left context, it is
best to keep constituents as small and as ‘ndependent as

possible.

Sirce SENDR’'s are nct permited in the MATN grammars,

it 1is reasonable to investigete the problem of converting

a regular ATN grammar to MATN formalism in this respect.
(Of course, starting over from scratch to build a new

grammar is also an acceptable, and perhaps a more

reasonable approach, but for purposes of comparison a

ab6s
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method of conver sion will be discussed.) We will first
discuss a general method for performing the conversion,
and then show that in some cases it can be considerably

simplified.

Instead of sending down information on a PUSH are to
state X, the PUSH is made to a new state Y which then has
a JUMP arc to state X. On this JUMP arec, the registers
which would have been sent down are set. They may be set
to a constant value if they are merely flags (e.g. (SENDR
TYPE (QUOTE REL)) can be replaced by (SETR TYPE (QUOTE

REL)) at the lower level). If a register was meant to

contain other information, ir is set to a distinctive

dummy symbol (e.g. (SENDR SUBJ (GETR NP)) can be replaced

by (SETR SUBJ (QUOTE #%Np##))), The PUSH arc wnich

originally contained the SENDR's must be changed beyond

removing them and replacing the state; it must have an

accion which will take the constituent returned, do any

agreement checks which are necessary (aborting the arc if

the check fails) and perhaps replace the dummv node by the

ay nropriate structure. The structure returned by the PUSH

for a relative clause on the fragment "-hat I gave you"

might look 1like Figure 3.1 (where the structure is shown

in boch the usual tree diagram form and a corresponding

form more amenable to computer output).
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S REL
S NP PRO I

FEATS NU SG

AUX TNS PAST

VP V GIVE
NP #%Np##%
PP PREP TO
NP PRO YOU

FEATS NU SG

Figure 3.1

Two Representations of a Parse Tree

The PUSH arc may or may not replace the dummy node after
making the necessary tests. In addition, tests on the

lower level must know about the dummy nodes so that they

will accept them.

This procedure may seem excessively complicated, but
is actually quite straightforward. Because it is not
always necessary to create a n'w state and arc every time
a PUSH arc 1is modified (since in practice many of the
registers se1t down are rnnstants -- nearly 40% of the
SENDR s in the LUNAR grammar were ot this tvype , the size
of the grammar increas: only slightly. The resulting
grammar is still clear and compact, and may even give a
more explicit picture of the parsing process than the

original, since the network for each constituent is self
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contaired and has no references to registers set elsewhere

in the grammar.

3.3.4 The HOLD List

The HOLD list, along with HOLD actions and VIR arcs,
has been eliminated from MATN grammars. The HOLD list can
be replaced in ordinary ATN grammars by using SENDR to
send down items being held every time a PUSH is done and
testing for that item in place of a VIR arc. S‘nce the
SENDR can also be removed by the process described above,

the HOLD list can be eliminated in the same way.

It is not really necessary to go through this two
level process in order to eliminate HOLD s from an ATN,
In many cases, instead of holding a constituent to be
picked up at some lower level, the grammar may simply put
the constituent in a register and then after some lower
level constituent has been parsed, embed the held item in
the proper place. This eliminates the use of a dummy

register, and is usually feasible,

3.3.5 RESUMETAG and RESUME

Several things may be noted about right extraposition
which can be wused to simplify the way it is handled.

Firstly, the portion of the sentence which is extraposed
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must be a constituent, such as a relative clause or a
prepositional phrase. Secondly, the portion of the
constituent which is lert behind when such a
sub-constituent is extraposed still forms a 2omplete
constituent. Thus we can have "How many samples were
there which were analyzcd" or "How many were there which
were aralyzed" where "how many" can be considered a noun
phrase with an elided noul , but we cannot have *"How many
were there samples which were analyzed." Finally, the
constituent which is extraposed is always moved up, out of

the original constituent.

The function (RESUMETAG state) is still allowed in
MATN grammars, but it has a slightly modified e{'fect.
Using the LIFTLIST mechanism, it performs the equivalent
of (LIFTR RESUMESTATE state) and (LIFTR RESUMEREGS REGS),
i.e. on the next higher 1level it sets the register
RESUMESTATE to the named state and the register RESUMEKZGS
to the vregister 1list which was curreat  just before

RESUMETAG was called.

Instead of calling the function RESUME on some later
arc, the MATN grammar writer must have a PUSH arec which
PUSiles to the state named by the RESUMETAG and has a test
to guarantee that the PUSH is c-ne only if the regis*ter
RESUMESTATE is .et to the same stat- to which the PUSH 1is

to be made. The actions on the FUSH arc can then use the
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register irformatior stored in RESUMEREGS together with
i* the constituent returned from the PUSH to build the entire

I deep structure constituent.
1

By eliminating the RESUME action and requiring a PUSH
arc with a confirming test, we have reguired a little more
work from the grammar writer, but once the grammar 1is
written it 1is weasier to see what is happening in the
parsing process. It also simplifies the automatic
indexing of the grammar (see Section 3.4) since the state
! in which the parsing is to resume is explicitly named in

the grammar at the point it is to be used, rather than

held in a register which is available only during the

actual parsing process.

| = 3.3.6 Weights on Ares

The fourth element of every arc in a MATN is a small

integer which 1is called the weight of the are. This

weight was originally conceived of as a rough measure of
either (a) how 1likely the arc is to be taken when the
parser is in that state or (b) how mnmuch information is

likely to be gained from taking this arc, i.e. whether

the parse path will block quickly if the arc is wrong.

That these two schemes are not equivalent can be seen by

the following example. In a given state, say just after

the main verb of the sentence has been found, the arc

=7 1
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which accepts a particle may Le much less likely than the
arc which iumps to another state to look for complements.
However if a particle which agrees with the verb is found
in the input stream at this pcint, then the particle arc

is more likely to be correct.

Since it is not at all clear how to measure or even
intuit how much information is likely to be gained from
taking an arc, it was decided that the weights would
reaflect relative 1lilkelihoods. Tre actual weights which
rave been used in the speech grammar reflect an intuitive,
though experienced guess as to how likely the arc is to be
correct if it is taken, assuming the state itself is on

the correct path.

3.3.7 Minor Changes

Several minor changes have been made to allow more

concise representation of i.formation in the grammar.

First, MEM arcs have been eliminated and their
function taken over by allowing WRD arcs to have a list of
words as the second element. In cases where this list is
long, especially if it is to be used at several points in
the grammar, an indirect pointer to the list may be used.
That is, the second element of a WRD arc may consist of an

atom surrounded by slashes (/’s), provided that the

=1 2
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slashed atom is a global variable which s bound to the

list of words which would normally appear in this pusition
on the are. Thus arces of the form WRD (WHICH THAT) ... )
or (WRD /MONTH/ ... ) where /MONTH/ z (JANUARY ...
DECEMBER) are allowed.

Another minor change is the inclusion of actions on
POP ares. This is useful to allow the LIFTLIST regiater
to be set just before the POP occurs. If actions were not
permitted on the POP arc, they might have to be duplicated

C ' each arc entering ;he final state.

3.3.8 Summary and Sample Grammars

The form of the arcs of a MATN grammar are:
(CAT <category>» (<cftest> <cstest>) <weight> <action)>*¥
(TO <nextstate>))
(WRD <word>|<list>|<pointer> (<cftest> <cstest)) <weight>
<action>® (TO <nextstate>))
(TST <label> (<cftest> <cstest>) <weight> <action>*
(TO <nextstate>))
(JUMP <nextstate> (<cftest> <cstest>) <weight>
<action>#¥)
(PUSH <state> (<look-ahead> <cstest> <constittest>)
<weight> <action>¥* (TO <nextstate>))

(POP <form> (<cftest> <cstestd) <weightd> <actiond>¥)
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Two grammars which will figure predominantly in the
remainder of this thesis have been written in the MATN
formalism. One is an extensive grammar which can handle
many questions, declaratives, noun phrase utterances,
imperatives, active and passive forms, relaiive clauses
(reduced and unreduced), complemeits, simpile guantifiers,

noun-noun modifiers, verb-particle construc..uns, numbers,

and dates (but not conjunctions). It began as a

modification of the grammar for the LUNAR system [97] but
has been considerably adapted and expanded. This grammar
is called SPEECHGRAMMAR, and is 1listed in Appendix 1II.
Many of the examples in Chapter Six were produced using

this grammar.

For some illustrative purposes, SPEECHGRAMMAR is too
big and complex, so we have produced a MINIGRAMMAR which
will be used to show the basic operation of the speech
parser. A detailed 1listing is given in Appendix I, but
the diagram in Figure 3.2 probably shows the structure
more clearly. Two copies of Figure 3.2 are given, so that
one may be torn out for easy reference when reading the

following two chapters.
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! CAT PREP —""~~_PUSH NP/ POP
- PP/PREP \

Figure 3.2

MINIGRAMMAR

=78
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CAT_ART CAT QUANT

CAT PREP PUSH NP/ POP
@ PP/PREP PP/ NP

Figure 3.2 :
MINIGRAMMAR i
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3.4 THE GRAMMAR INDEX

When an ATN parser begins to parse a sentence, it
i knows that it has to begin in the initial state of the
7 grammar with the first word of the sentence. A  speech
parser, however, may not be able to parse left to right
through the utterance. This implies that given a word

somewhere in the middle of an utterance the parser must be

Ll abi= to figure out the state (or states) in which to
. begin. Then in order to move from right to left (to

predict what could precede that first given word) the
parser must be able to determine for any state which ares
can enter it, and for any arc which state it comes from.
Since the grammar is organized for normal parsing in just
= the opposite fashion, i.e. for any state one can
R determine what arcs leave it aid for any arc (except POP)
one can determine which state it terminates on, it is

necessary to build an index into the grammar.

This index consists of a number of tables which
9 contain pre-computed information about a rumber of aspects
of the grammar. For example, cne table associates with

each state of the grammar the list of pcp ares which can

- be reached on that 1level. When accessing information

"backward”" in the grammar, i.e. looking for an arc which

has some property relative to the state on which it

terminates, it is always necessary to know the state frcm

=7 7=
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which the arc originated in order to extend the parse path
from right to left, so in all such cases not just the arc
alone but a state/arc pair is returned. Such a state/arc
pair 1is hereafter called a starc and is endowed with the
properties of the arc it contains (so that we can talk

about a starc which PUSHes or JUMPs, for example).

The indexing function operates by walking recursively
through the grammar, filling in various tables as it goes.
For example, if A is a PUSH arc from state S1 which
terminates on state S2 and PUSHes to state S3, then the
following actions are performed:

1) The starc (S1 A) is associated with the entry S2 in a
table which shows for every state the starcs with PUSH
arcs which terminate there.

2) The starc (S1 A) is associated with the entry S3 in a
table which shows for every state the starcs which can
PUSH to it.

3) The state 83 is added to the global list PUSHSTATES, if
it is not already there. (The parser can use this list
when processing right to left to determine when it has

come to the beginning of a constituent.)

Once these tables are set up, they are used to

produce another table which shows for any state all the

possible paths (sequences of starcs) which can terminate

on that state without ising the previous word of input.
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The utility of this taL.c .1 be shown in the next

chapter.

The retrieval functions which return the pre-computed
values stored in the tables are the following:
(ARCSJUMPTOS state) -~ returns a list of starcs which Jump

to the given state without 1looking at the current
input.
(ARCSJUMP*TOS state), -- returns a list of starcs which

jump to the given state and perform some test on the

input on the way.

(ARCSPUSHTOS state) which returns a list of the starcs
which can PUSH to the given state.

(ARCPOPSTOS arc) -- for a POP arc, returns the 1list of
states which terminate PUSH arcs where there is a path
from the state PUSHed to to the POP arc given.

(ARCSPUSHJUMPTOS state) -- returns the starcs with PUSH
arcs which terminate on the given state.

(ARCSTOS state) -- returns the iist of input-using starecs
which terminate on the given state,

(ARCSUSING wrd/cat) -- returns the 1list of WRD or CAT
starcs which will accept the given word or syntactic
category.

(STATESSTARTPUSH state) -- returns the 1list of states
which have PUSH arcs to the given state.

(POPSTOS arc) -- returns the 1list of states which

79
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terminate PUSH arcs, where the lower 1level path

initiated by the PUSH can end with the given POP arc.

The following chapter will show how these retrieval
functions are used to guide the parser and to make

syntactic predictions to fill in gaps in the utterance.

‘ll l’w.,

| ama




Chapter 4

Overview of SPARSER

4.1 INTRODUCTION

SPARSER is composed of two main parts, a parser and a
grammar, The form of the grammar has already been
discussed in Chapter Three. This chapter will outline the
operation of the parser and will describe the data

structures it constructs and uses.

4.2 INPUT

The input to the parser is assumed t¢ be a set of
i words together with their boundary points (which may or
* may not be related to points in time). A word tegether
with its boundaries is termed a word match. A word match

also includes a score which indicates how well the ideal i

phonemic representation of the word matched the acoustic i
analysis of the utterance (but as we shall see the parser
has little need of this information). Since the same word

may match at several sets of boundary points or may match

in several ways between the same boundary pecints, each

word match is also given a uriique number to help identify
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it. Thus the structure for a basic word match is:

(number word leftboundary rightbouniary lexicalscore)
e.g. (4 TRAVEL 5 11 94), or (4 TKAVEL 5 11 (94 110))
where the score is given as a pair of numbers representing
the actual and maximum scores, or (4 TRAVEL 5 11) where

the score is omitted.

How is the input to the parser to be constructed? We
assume that acoustic nprocessing and lexical scanning
components can operate on a digitized waveform to produce
a number of word matches such as previously shown in the
word lattice of Figure 1.1. (That this is pcssible has
been demonstrated by Woods [94]). Allowing the parser to
operate unrestr: cted on the c¢ntire word 1lattice would
probably nct be fruitful hecause of the large number of
locally syntactically correct combinations of words, but
one possibility for input to the parser would be to take a
set of the best-matching, non-overlapping word matches in

the lattice, such as those in Figure 4.1.

A set of non-overlapping word matches is a hypothesis
abcut the content of wLh- utterance. In order to avcid

creating large numbers of such sc¢ts which are put together

combinatorially with no basis except local acoustic match,

semantic or pragmatic procecses can be used to group word
matches based on what is meaningful or likely to be heard.

For example, if a dialogue has been about various nickel
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compounds, the combination "nickel analyses" may be mcre

likely than "chemical analyses" cven though the word match
for "chemical" has a higher score than hat for "nickel"",
We will not attempt to devail here how this semantic
grouping could be done and how the sets could be scored,

since it has beer described elsewhere [%5].

DO MANY PEOPLE DONE CHEMICAL ANALYSES ROCK i
0 2 3 n 14 22 30 35 38

oGIVEsEIGHTY PEOPLE DONE TEN MODAL
€ 21

DETERMINATION ROCK
" 14 18 18 33

26 38

{ WERE ANY PEOPLE METAL SEVEN

l ) 3 6 n 17 21 27 32

4 -

. Figure 4.1

N Sample Word Match Sets

= Borrowing some more terminology firom the BBN speech
‘ system, we will wuse the word theory to denote a set of

word matches such as we have just descrited together with
(possibly empty) slots for information from each of the
possible knowledge sources in the system. i.om the point
of view of SPARSER, usually only the word match portion of
a theory is of interest, hence we shall fall into the
hab.t of wusing tle vord "theory" to refer to the word

match sec "t contais. When speaking of the syntactic

«B3=
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component of a theory, however, we are refering to the
information slot for syntax which accompanies each word

match set.

Theories have the following charactceristies:

1) They contain a set of basic, non-overlapping word
matches.

2) They tend at first to contain long content words
and not many short function words. This is because 1long
words are more reliably acoustically verified and content
words are easier to relate semantically and pragmatically.
Since small words such as "am", "do", "the", “*one",
Yhave™, Tof%, Wip®  ato, may be represented by very
little acoustic information, they would tend to match at
many places in the vutterance where they do not really
occur. Consequently they are not searched for by the
initial word match scan, nor are they proposed in the
semantic stages of hypothesis formation.

3) They need not (and generally do not) completely
span the utterance, but have numerous gaps of varying
sizes (e.g. for the function words).

4) They tend to contain some sequences of contiguous

word matches. Such a sequence is called an island.

That such a set of theories can be created has been

demonstrated by the BBN SPEECHLIS system. The syntactic

component, SPARSER, is expected to process these theories

-8l
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one at a time. In certain circumstances which will be
detailed later, the input to SPARSER will be a theory
together wi'h one or more word matches which are to be
added in order to create a new larger theory which is then

. to be syntactically analyzed.

We will assume that there exists a control component
= like that described in Section 2.4.7 and in [70] which
2- presents SPARSER with theories to process and to which

SPARSER can communicate predictions and reuults.

-‘.L el 4.3 OPERATION |
| L .
|
2 4,3.1 Preliminaries
i i
N Given a theory, what is to be done with it? We begin
e by considering a subset of the question: Given an island
:' of werd matches, what is to be done with it? The answer
L &

is to create one or more parse paths through the island

]
?

and to predict what words or syntactic clausses could

surround the island. A parse path is the sequence of arcs

parser to process the words in the island, if the island

were embedded in a complete sentence.

1
- in the grammar which would be used by a conventiongl ATN V ]
|
1
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For example, consider the way a parser mighL process
an 1island of word matches such as (1 CHEMICAL 14 22)
(2 ANALYSES 22 30) using the MINIGRAMMAR of the previous
chapter. Beginning in state NP/ of the grammar (omitting
for the moment the problem of how it is known that NP/ is
the right place to begin) the sequence of arcs which would
be taken to parse "chemical analyses" as a noun phrase is

that shown below in Figure 4.2.

Figure 4.2

Portion of MINIGRAMMAR needed to parse "chemical analyses"

Let us define a configuration to be a representation
of the parser being in a given state (say NP/QUANT) at a
given point in the utterance (say 14). We will write
configurations as STATE:POSITION in text (e.g.
NP/QUANT:14) and schematically as a box within which are
written the state and the position. If a configuration
represents a state which is either the initial state of

the grammar or a state which can be PUSHed to (i.e. a
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state which can begin the parsing of a constituent), if, is
called an initial configuration, and 1is indicated
schematically by a filled-in semi-circle attached to the
left edge of the box. Note that a configuration
NP/QUANT:14 is quite distinect from a configuration
NP/QUANT:.22 since they are at different positions in the
input. In SPARSER, each configuration is also assigned a

unique number which is a convenient internal pointer.

The process of traversing an arc of the grammar using
a particular word is represented by a transition from one
configuration to another. A transition can be made only
if the arc type is compatible with the current item of
input and if the context-free test on the arc is
satisfied. (The context-sensitive tests are evaluated
later.) A transition carries with it information about the
arc which it represents and the item of input it uses.
The item of input is usually the word match which the arc
uses, but it is NIL in cases such as JUMP arcs which do
not use input, and it is a complete constituent for PUSH
arcs. A unique identifying number and the 1list of
features, if any, which is associated with the input word
or constituent are also recorded on the transition in
SPARSER, but they are not shown schematically. A
transition 1is represented schematically by an arrow from

one configuration to another with an abbreviated form of

. P —— - e L b '__m‘——-#
R e e i i s e L e E Lo fm g a ammoies  VEemh 4 r
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the arc written above the arrow and the item of input

under it.

The syntactic part of any theory which SPARSER
processes contains, among other things, 1lists of the
transitions and configurations which are created or used
by the theory. Thus when we talk about creating a
configuration or transition it is implicitly understood
that SPARSER also adds it to the appropriate list, and
when we talk of adding an existing configuration or
transition to a theory we mean adding it to the
appropriate list. Therefore, removing a configuration or
transition from a theory means removing it from the
syntactic part of the theory, not removing it entirely

from SPARSER s data base.

Like configurations, transitions are unique, so only
one transition is ever constructed from point A to point B
for arc X and input Y. We will frequently speak of
creating a transition or a configuration, but the reader
must bear in mind that if such a configuration or
transition already exists, this fact will be recognized
and the pre-existing configuration or transition will be
used. (Timing measurements indicate that it takes about
.052 seconds to create a configuration and only .01
seconds to test if a particular configuration already

exists. For transitions, creation takes about .54 seconds
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and recognition .012 seconds.

The sequence of configurations and transitions which

would parse the above example is displayed in Figure 4.3.

NP/ JUMP_|NP/ART {JUMP |NP/QUANT |JuMP | NP/ADJ | CAT N NI"/ADJW CAT N NP/N| POP

14 ['NIL 14 NIL 14 NIL 14 CHEMICAL 22 {aNALYSES | 30 [NiL

Figure 4.3

Path for parsing "chemical analyses"

I8 connected sequence of transitions and
configurations is called a path. If the sequence begins
with an initial configuration and ends with a transition
representing a POP arc, it is a complete path, otherwise
it is a partial path. Paths are assumed to be partial

unless otherwise specified.

The following two sections describe how SPARSER

creates paths such as that in Figure 4.3.
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4.3.2 Beginning to Parse an Island

SPARSER processes an island of words by beginning
with the leftmost word and determining its possible parts
of speech. (This determination is currently made solely
from a dictionary lookup but it could be modified by
information provided by some other source such as
semantics or pragmatics which knows, for example, that
"budget" is more likely to be used as a noun than as a
verb.) Then the arcs of the grammar which can process the
word are found (by looking in the previously constructed
index via the ARCSUSING function described in Section
3.4)., For each arc, two configuralions are constructed,
one for the state at the tail of the arc and one for the
state at the head, using the 1left and right boundary
positions of the word match, respectively, and a
transition for that arc using the current word match is
also built, Schematically, we have for our example a
situation which looks like that of Figure U4.4 (such a
display of all or some of the transitions and
configurations which the parser has constructed is called
a map). Notice that a configuration may have any number

of transitions entering or leaving it,
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NP/ADJ
AT ?ch‘— =
Al
NP/ADY | E%
14
c
SN
Ay
CQ
NP/N
22
Figure 4.4

Initial map for parsing "chemical analyses"

The idea of this process is to begin to set up paths
which may be used to purse the island. However it is not
necessarily the case that the only configurations which
could start paths through the island are those which have
Just been obtained, since it may be possible to create
transitions which enter them via JUMP arcs or TST arecs.
For each state, the sequence of arcs which can reach it
without wusing the previous word of input have been be
pre-calculated by the grammar indexing package and are
retrievable by the functions ARCSJUMPTOS and ARCSJUMP*TOS,
so the appropriate configurations and transitions may be
constructed. These transitions are c¢alled 1lead-in

transitions. Thus the map becomes that in Figure 4.5
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Figure 4.5

Lead-in transitions for parsing "chemical analyses™"

Note that any of the configurations (except for
NP/ADJ:22 and NP/N:22) could actually be the correct
leftmost configuration for this island, depending wupon
what the (currently unknown) left context of the island

51180

By looking in the grammar index, SPARSER can
determine, for each configuration which could start the
island, just what sort of lerlt context could be
appropriate. For example, the CAT ADJ arc in MINIGRAMMAR
which enters state NP/QUANT 1implies that an ad jective
could precede the island and, if it did, the transition
which would process it would terminate on configuration

NP/ADJ : 14,

Because the initial configuration NP/:14 could start
the 1island, anything which could precede a noun phrase

could occur to the left; again the crammar iniex provides
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the information that the CAT PREP arc could lead to a
configuration which could accept a noun phrase (via the
PUSH NP/ arc), so a preposition could also prefix the
island. If the index functions indicate that e
constituent could be picked up by a PUSH arc which could
terminate on the configuration under consideration, an
indicatiion is made in the WFST so that any time a
constituent of the desired type is built which ends at the

proper location, it may be tried here.

Because of the highly recursive nature of A™N
grammars, it is very likely that as we chain back through
the possible sequences of PUSHes whiech could lead to the
beginning of the current constituent (or the sequence of
POPs which could be initiated by the completion of the
current constituent) a large number of predictions will be
made. Rather than make all these predictions
automatically, wvefore we are even sure that there is in
fact a constituent at the current 1level, the possible
configurations which could make predictions on other
levels are saved to be activated later if the predictions
from the current set of active configurations are not

sufficient.

The predictions which are made (not saved) are not
acted upon at this time, but are kept internally by

SPARSER until all the isiands of the theory have been
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processed. We shall see in Section 4.3.5 what then

becomes of the predictions.

4.3.3 Parsing Through an Island

Once processing has proceeded this far, we can go
back <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>