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PREFACE 

This technical report is the final report documenting the results 

of a two year effort at Case Western Reserve University. This effort 

produced a mathematical model of security in computer systems. The mod- 

el mathematically represents the Department of Defense Information Se- 

curity Program and establishes sufficient criteria for security controls 

to prohibit the unauthorized disclosure of information contained in com- 

puter systems. 

The modeling effort provides the technical foundation for the multi- 

facited Automatic Data Processing (ADP) Security Program sponsored by the 

Air Force's Electronic Systems Division. The model guided the implemen- 

tation of security enhancements for a now operational Air Force computer 

system, the Honeywell Multics system at the Air Force Data Services Cen- 

ter. Use of this system to process information of multiple classifica- 

tions requires operation of the system in a "non-malicious" environment 

because the controls were not analytically proven to be totally effec- 

tive. A separate, on-going phase of the Security Program has the goal 

of developing a secure general purpose prototype computer system with 

security controls which are similar to those of the operational system 

but which have been proven effective a priori. The security of the 

prototype system will be proven by demonstrating the correspondence of 

the implementation (through a series of intermediate design representa- 

tions) to the model. 
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1.     INTRODUCTION 

1.1    Motivation 

The Air Force, as well as many other government agencies, have 

already accumulated a great deal of national security as well as other 

sensitive information in computer systems throughout the world. It is 

likely that the use of computerized systems for information storage 

and retrieval will become even more pervasive in the near future. Pro- 

tecting this computerized information from unauthorized disclosure is 

a problem because traditional security measures are not always direct- 

ly applicable to computer systems. In fact, dealing with this new en- 

vironment necessitates a reexamlnation of the purposes of the Department 

of Defense Information Security Program governing classified information. 

Dedicating a separate computer facility to a particular classifi- 

cation of Information would solve many security problems in Air Force 

applications. However, 1t 1s more feasible as well as financially pre- 

ferable to combine a number of small computer installations Into a 

single large Installation. Unfortunately, current computer operating 

systems lack sufficient certifiable correctness of design needed 

to provide sophisticated security to their users. This lack of provable 

soundness would even concern small installations where it would be de- 

sirable to enforce "need-to-know" restrictions on the dissemation 

of information. 

In addition, there are operational requirements in the military 

which necessitate the sharing of large computer data bases among many 

subgroups. This sharing is used to promote coordinated and efficient 



operation of a computer system as well as reduce the cost of maintenance 

and other system overhead. 

1.2  The Multics System 

Multics is a sophisticated time-sharing system with a large shared 

file data base. This system was developed at Massachusetts Institute 

of Technology in cooperation with Bell Labs and General Electric and 

is currently supported by Honeywell on a 68/80 machine. Multics has 

evolved with several features which are of interest from a security 

point of view. For example, the access control lists on the user files 

certainly appear sufficient for the military's "need-to-know" security 

requirements. 

The 68/80 hardware also provides several protection mechanisms 

which keep the run-time cost for security checking from being prohibi- 

tively high. The access control bits on each entry in the segment ta- 

ble of a process allow selective access restrictions to be enforced 

on each instruction execution. The eight protection rings of Multics 

provide nested domains which can be used to separate the security sy- 

stem and more vital portions of the operating system from users as well 

as the remaining less reliable parts of the operating system. 



1.3  The General Goal 

The overall objective of the current A1r Force project, of which 

we are a part, is to develop a certifiably secure computer system using 

a Multics-like machine thereby providing the Air Force with a useful 

as well as secure system. In the process it is important to develop 

design techniques which can be used in developing secure operating 

systems for other machines and other applications. Arriving at a pre- 

cise definition of Computer Security for military purposes is a parti- 

cularly significant part of this second goal. The design technique 

used in this effort should ultimately lead not only to a system which 

is secure, but also to a system which can be proven secure. 



1.4  The Proposed Approach 

Because of its enormous size and complexity, it is difficult and 

tedious to analyze an operating system while considering it as a whole. 

Fortunately, however, it has proven feasible to isolate the security 

related portions of an operating system in a comparitively small soft- 

ware module which we call a Security Kernel, in essence, the security 

kernel will consist of the elements of an operating system needed to 

verify and monitor the transfer of information around the system. Pro- 

tection hardware will be used to completely isolate the security kernel 

from external programs. The implementation of this security kernel 

will provide the user with a virtual machine which will have somewhat 

different memory, 10 control, and instruction set than those provided 

by the bare hardware of the 68/80. (E.g. the virtual machine will not 

appear to have a disk memory, but rather a "directory structured" me- 

mory.) This virtual machine is referred to as the Security System. 

To facilitate certifying the correctness of the security kernel 

it must be kept as small as possible. However, all security related 

aspects of the entire system must be considered in the design of the 

security kernel. Accordingly, the current Multics operating system 

must be very carefully disected to determine the portions which must 

go inside the security kernel and those which can remain outside in 

the residual operating system. 

Our task then, is to develop a sound set of specifications for 

the security kernel. These specifications should take into account 

the security features of the hardware which will be available to the 

actual implementors of the security kernel. 



1.5  A Short History of Work in the Area 

In 1969 Butler Lampson [7]  presented an abstract framework 

within which to discuss computer security. He identified and described 

the concepts of subjects and objects as the active and passive elements 

in a computer system. His subjects and objects were used as prototypes 

for our work and correspond roughly to our agents and repositories. 

The privileges of the subjects to manipulate objects was determined by 

an access matrix which was maintained by the security system. 

Weissman, in a subsequent effort, attempted to apply governmental 

security restrictions to a computer system in his Adept 50 system 

I  16 1   . The Adept 50 system was an operating system designed for 

an IBM 360 model 50 which included some features of governmental security. 

In 1971, the Air Force Electronic Systems Division formed a se- 

curity panel to discuss Air Force needs and responsibilities in the 

area of computer security. Anderson  [ 2 ]   reported the conclu- 

sions of this panel. Two of the recommendations of this panel are of 

particular significance to the current project. First, the panel con- 

cluded that the Air Force should invest in an effort to develop secure 

operating systems. Secondly, the panel recommended that such an ef- 

fort should begin by developing sound mathematical models of the de- 

sired system. The research reported in this paper represents a portion 

of this modeling effort. 

In 1973, Schell, Downey, and Popek [ 12 ]   articulated their 

preliminary views on how the mathematical models of a security system 

should be formulated. Bell and LaPadula [ 4 ]  followed up these 

preliminary views with considerably more elaborate versions of the 



proposed mathematical models. 

Our efforts on this project began in the spring of 1973. We 

soon discovered certain necessary security requirements of the system. 

We realized that a major component of the problem was to develop a 

language in which to discuss the solution. We found that this langu- 

age was necessary both to describe the desired system and eventually 

to carry out the proofs that the implementation was correct. We quick- 

ly found that discussing the rationale behind certain design decisions 

necessitated the use of certain auxiliary concepts which would have no 

specific realization in the final implementation. 

Our first attempts resulted in a rough model corresponding approxi- 

mately to the present Sp specification in this paper. In formulating 

this model, we discovered two design principles which evolved into the 

acquisition and dissemination axioms of the SQ specification. We 

developed SQ to emphasize the importance of these principles and to for- 

mulate a firm foundation for future development. We then developed 

the S, specification to discuss tree structured file systems and to 

explain our somewhat surprising conclusion that the classification of 

files must not decrease as you progress away from the root of the tree. 



1.6  Structured Specification 

One of the more important results of our work has been the develop- 

ment of a design technique which we call structured specification. In 

brief, this technique consists of systematically developing detailed 

specifications from an initial general specification by introducing addv 

tional system details through a sequence of refinement steps. 

This technique has the advantages of allowing system analysis to 

take place in an environment less cluttered with irrelevant system de- 

tails, as well as allowing large problems to be broken into smaller, 

more tractable tasks. In addition, structured specification encourages 

the discovery of similarities between different parts of the system 

and of system wide principles. 

The structured specification technique initially involves formu- 

lating a simple specification for the system (in this paper SQ). Next, 

a more detailed level of specification, usually having somewhat dif- 

ferent sets, functions, and relations, is created. It must then be 

established that the new specification is simply a refinement of the 

previous specification. This is accomplished by identifying the old 

sets, functions and relations within the new specification and then 

proving that the axioms of the old specification are consequences of 

the axioms in the new specification. This process of creating and 

proving levels of specification continues until the newest specifica- 

tion can be implemented in software on the hardware of the available 

computer. 

The axioms of the final level of specification constitute the 

assertions which must be proved about the implementation in order to 



establish that it is "correct". Since each level of specification 

has been proven to be a refinement of its predecessor, the final 

implementation will be accurately described by each level of specifi- 

cation (in particular, the first level, SQ). 



1.7  An Outline of the Report 

The second through fifth chapters of this report have been organized 

in accordance with the structured specification methodology discussed 

previously. Chapter two is devoted to the SQ specification which con- 

stitutes our basic definition of an uncompromisable computer system. 

Chapter three discusses the S, level of specification which intro- 

duces the concepts of mailboxes for interprocess communication and 

directories for file system organization. The Sp level of specification 

discussed in the fourth chapter of this report, introduces some of the 

dynamic aspects of the security system. The S~ specification abstractly 

describes the manner in which the access control bits in the Multics 

segment descriptor tables are to be used to enforce security. This 

chapter also contains a discussion of the relation between "dynamic" 

and "static" models of security. 

The fifth chapter presents the S3 specification which gives a 

considerably more detailed account of the proper handling of the file 

and process attributes. It includes an extensive list of security 

system commands which must be developed  when developing the security 

kernel.  In the sixth chapter these commands are related to a set 

of prototype Multics commands similar to those being developed by the 

MITRE Corporation. 

The seventh and final chapter serves as a summary of our work to 

date and discusses some problems which remain to be solved. In addi- 

tion, there is a discussion of several issues related to the larger 

project of which this effort is a part. 



2.   THE BASIC STRUCTURE, SQ 

2.1  Introduction 

In this chapter we present SQ, our most abstract level in the 

structured specification process. In this specification, the details 

of the target operating system are abstracted away to enable us to 

inspect the most basic objects and actions of the system. By looking 

at these system fundamentals we were able to formulate the necessary 

axioms to restrict the flow of information and guarantee that there 

can be no unauthorized disclosure of information. Because of its 

generality, SQ has become our definition of manditory security satis- 

fying the military requirement that it "permits access to information 

only as defined by the rules governing dispersal of classified infor- 

mation" [13], SQ further serves as a guide for the subsequent struc- 

tured specification refinements. 

Following the pioneering work of Lampson [ 7 ] and others 

we present SQ as an abstract system in which the information store is 

partitioned into a set of disjoint repositories (objects) and the pro- 

cessing of and transferring of information is accomplished by a set of 

agents (domains or subjects). The repositories are viewed as passive 

information storing elements. The information stored in a repository 

can only be changed by one of the agents, and such modifications can 

only be detected by other agents through an observation. Since in this 

structure all transfers arp from repository to repository through an 

agent, it is possible to control information flow by controlling the 

observation and modification privileges of each of the agents. 

10 



Since the repository is the smallest unit of information storage 

to which observation and modification access is controlled, all infor- 

mation stored 1n a repository is considered to be of uniform 

sensitivity. As a measure of this level of sensitivity, a security 

class is associated with each repository.  The set of repositories 

is subdivided into disjoint subsets of repositories with the same 

security class; each subset will therefore have the same mandatory 

access restrictions. 

Rather than keep lists specifying which agents can access which 

set of repositories, we associate a security class with each agent. 

The security class then becomes the common measure which makes the 

set of agents and set of repositories comparable and which can be used 

to determine what observations and modifications are to be permitted. 

For motivation of the method of solution and of the terminology, 

let us consider the Air Force regulations and procedure for preventing 

compromise of classified information. For this purpose, repositories 

are documents, and agents are personnel. The security class of a 

document is its classification, and the security class of an indivi- 

dual is his clearance. An individual may read (observe) a document 

only if its classification is less than or equal to his clearance. 

Notice that this is a necessary but not a sufficient condition. It 

gives a basis for controlling observations, but there must also be a 

basis for determining which modifications should be allowed. Recall 

that our objective is to prevent unauthorized disclosure. 

Therefore, though not explicitly required by the Air Force regu- 

lations information must not be transferred to a repository with a se- 

curity class lower than that of the source repository. To prevent agents 

11 



from transferring information to a reposity with insufficeint se- 

curity class, an agent will not be allowed to modify a repository 

unless its security class is greater than or equal to that of the agent. 

In order to discuss this comparison between elements we must 

define a relation on the set of security classes. Let us consider 

what properties the relation must have. Certainly an agent with a 

given security class (clearance) should be allowed by the mandatory 

security system to observe or modify any repository with the same 

security class (classification). Then since every security class 

must be less than or equal to itself, the relation must be reflexive. 

In order to allow possible information transfer from one repository 

to another through one or more intermediate repositories, it is ne- 

cessary that the relation be transitive. 

According to Popek [  10  ] in his general treatment of access 

maps using restriction graphs, the relation on the set of security clas- 

ses can be a partial ordering. However, antisymetry is not essential 

for the basic theorem of this chapter and it 1s sufficient to assume 

that the relation on the set of security classes is a pre-ordering. 

Conceptually a repository is any information storing element 

in the system. More practically, however, a repository can be looked 

upon as any object in the system which can be modified in such a way 

that this modification can be subsequently observed. The proposed 

SQ specification is intended to be sufficiently general to include 

all possible information channels. We believe that to leave large 

classes of potential information channels to be haphazardly discovered 

and dealt with by the system implementer is to circumvent the very 

idea of design through structured specification. 

12 



2.2   Basic Elements, Functions, and Relations 

We now introduce some notation and formalize the ideas discussed 

in the preceding section. 

The mathematical structure for mandatory security in an informa- 

tion processing system is an 8-tuple: 

where 

R    is a set of repositories. 

A    is a set of agents. 

C    is a set of security classes. 

Oc A x R    is the "observe" relation, (a 9 r_ means that agent 

<a can observe the information stored in repository 

r_.) 
y c A x R    is the "modify" relation. (a_ y r_ means that agent 

a_ can modify the information stored in repository 

r.) 

< c f! x C    isa pre-ordering of the set of security classes. 

Cl6:  R •* C    is the "classification" function which associates 

a security class with each repository. (Informally 

C&6(r) will be referred to as the classification 

of repository jr.) 

Cln:  A •+ C    is the "clearance" function which associates a 

security class with each agent. (Here again 

C£*(a) will be referred to as the clearance of 

agent a^.) 

13 



The structure SQ can be illustrated by the following picture: 

14 



The mathematical structure SQ has four axioms. The first two 

are technical axioms which simply state explicitly that the relation 

* is a pre-order1ng of the set C of security classes. 

A0.1    (Reflexivity): For all c e C, c j c. 

A0.2   (Transitivity): For all c, d, e e C, c <d and d <e 

implies c _f e. 

The second two axioms state the rules governing the acquisition and 

dissemination of information by agents. 

A0.3   (Acquisition): For all a e A and r e R, a 0 r implies 

C£a(r) < C£t(a). (That is, if agent a_ can observe repo- 

sitory r_, then the clearance of a_ must be greater than 

or equal to the classification of r.) 

A0.4   (Dissemination): For all a e A and r e R, a y r implies 

Cln(&) < Cl6(r).    (That is, if an agent a_ can modify re- 

pository jr, then the clearance of a_ is less than or equal 

to the classification of r_. Agent a_ can modify only those 

repositories with equal or higher security class.) 

Using these four axioms, we now prove that in SQ no information 

can ever be transferred to a repository in which it can be observed 

by an agent that does not have sufficient clearance to observe the 

source repository. 

In preparation for the formal statement and proof of the basic 

security theorem about SQ, we make the following definitions. Define 

the "transfer" relation icRxRbyrisif and only if there 

is an agent a_ such that a 0 r and a_ y s_, where r and s^ are reposi- 

tories. Thus r x s means that there is an agent which can trans- 

15 



fer information from repository r_ to repository s_. It is actually 

the transitive, reflexive closure x* of T which is needed in the 

theorem, since r_ T* s^ means that information can eventually be trans- 

ferred from r to s_. Specifically r T* s means a sequence of agents 

and repositories exists through which information could be transferred 

from r_ to s_. Accordingly, we say an information transfer path exists 

from r to s when the relation r x* S holds. 

THEOREM 

T0.1: 

PROOF: 

If there is an information transfer path from repository 

r_ to repository s^ in SQ, then Cl&(r) < CU(s), 

By definition, if there is an information path from repo- 

sitory r_ to repository s^, then £ x* s^ We first establish 

that r_ x s_ implies Clt,(r) £ Cl&(s).    For if r x s_, then 

there 1s an agent a_ such that a^flr and a_ y s_. By axioms 

A0.3 and A0.4, Ce*(r_) < CU{a)  and C£*(a) < Cl&(s).    By 

transitivity of ±, Cl6[r) <Cli>{s). 

Now define a new relation x c_ R x R by r_ x £ if and 

only 1f Cl6[r) < C£A(S). (That is, r X s_ means the se- 

curity class of jr is "less than or equal" to the security 

class of s^.) Notice that x is a reflexive and transitive 

relation. For any r_ e R, axiom A0.1 states that Cl&(r)  «. 

C£s(r_), and son r (i.e., x is reflexive) by the de- 

finition of the relation x.  If r_, s_, t e R, such that 

r x s_ and s. X t, then, by the definition of x, C£6(r) < 

Clt> (s.) and CU (s_) ± Clt> (t). 

16 



By axiom A0.2, Cl6(r) < Cl6(t)s  and, again by definition 

of x, r x t  (i.e., x is transitive). 

The relation X contains the relation x, since r_ x s_ 

implies C&s(jr) < CJU{S), which implies r_ x £. Recall that 

by definition of the transitive closure, the relation T* 

is the minimal transitive, reflexive relation containing 

the relation T. It follows that the relation T* is con- 

tained in the relation x. This proves the theorem, since, 

for r, s_ e R, r_ T* s^ implies r_ x s_, which implies Ct6(r) 

<i Clt>(s). 

17 



2.3  The Air Force Security Lattice 

In this section we hope to demonstrate the applicability of SQ to 

a system which enforces the Air Force clearance/classification and corn- 

par tmentalizati on restrictions. We do this by showing that these two 

schemes (Clearance, Compartments)  can be combined to give a single 

set of security classes. Air Force "need-to-know" restrictions have 

not been included because, as will be discussed later, strict mandatory 

enforcement of need-to-know gives a system of limited usefulness, and 

it does not model the actual military use of need-to-know. 

Let us now write out the details of the security lattice which 

describes the Air Force classification system. Let Szn be the set of 

sensitivity levels (i.e., unclassified, confidential, secret, etc.). 

Szn is a lattice because it is linearly ordered. 

Let Cmp  be the set of compartments of subject matter (China, nu- 

clear, etc.). Generally the information stored in a given repository 

may be included in more than one compartment; hence, the component of a 

security class concerned with compartmentalization will actually be a 

subset of compartments to which the information belongs. Although all 

possible subsets of Cmp may not be needed in practice, our formal 

treatment will use the entire power set ?(Cmp)  of Cmp.    P(Cmp)  is a 

lattice naturally ordered by set inclusion. The two lattices Szn and 

?[Cmp)  can be combined to form the product Szn x ?[Cmp)  which is itself 

a lattice  [ 8, p. 489 ] with order relation defined as follows: 
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for (c,D),(e,F)eSen x ?{Cmp),   (c,D) ± (e,F) if and only if c <. e in Sen 

and D c_ F in P(Cmp).    Thus an agent may observe a repository only if 

the classification level of the repository is less than or equal to the 

clearance level of the agent and_ the set of compartments associated 

with the repository is a subset of the set of compartments associated 

with the agent. 

Since the set C • Sen x P(Cmp)  is a lattice, under the ordering ± 

defined above, axioms A0.1 and A0.2 will be satisfied. Being a lattice, 

CQ has stronger properties than required for mandatory security as de- 

fined by S . While not necessary, those additional properties may be 

useful in practice. For example, given any two classes in C , there 

is a minimal class which is greater than or equal to either one. Also, 

C has a greatest and a least element. 

The basic theorem T0.1 then states that, in a system which uses 

the Air Force security lattice C to restrict the observe and modify 

relations according to axioms A0.3 and A0.4, there can be no transfer of 

information from a repository with one sensitivity and set of compart- 

ments to a repository with lower sensitivity or smaller set of compart- 

ments. Also, since the only access to repositories is through agents, 

there can be no unauthorized disclosure of information. 

The modeled system is quite similar to the real world except for 

axiom A0.4 which states that an agent may not modify a repository with 

lower security class. Under that restriction, if agents are acting on 

behalf of system users, a user who has, say, secret clearance could not 

send any information to an uncleared user through the system. This is 

necessary since the system cannot interpret which information is clas- 
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sified and which is not. 

To realistically apply the basic theorem to the Air Force security 

procedure, we might suggest that a person be allowed to operate as an 

agent with any clearance up to and including his actual clearance. This 

places the responsibility on the user to decide at which level he should 

operate. In making the decision to operate at a reduced clearance, the 

user relinquishes the right to observe any material classified higher 

than his "working level." In this way axiom A0.4 can be satisfied and 

the result of the theorem ensured. 
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2.4  Need To Know Security Enforcement 

The Air Force further ensures the privacy and integrity of infor- 

mation by requiring that to access information one must not only 

have proper clearance but must also have established a "need-to-know" 

for the information. The fact that Jones is cleared to see material 

in a given security class does not mean he can read a document with 

that classification written by Smith, unless he has been extended the 

proper need-to-know authorization. 

Initially we attempted to include the need-to-know security scheme 

in the basic security model by incorporating it into a lattice struc- 

ture. However, this security structure proved much too rigid to be of 

any use, except perhaps in the special case of a small environment. 

As an alternative to this lattice type structure we present a less 

strict   need-to-know security system in which the responsibility for 

protecting the contents of repositories is left to the individual users. 

We will refer to this system as the Discretionary Security System. 

This system involves attaching to each repository a list of users 

who are allowed to observe the contents of that repository. There is 

a major disadvantage to this system: if we let user Smith observe one 

of our repositories, we cannot be certain that he will not pass the 

contents along to user Jones. This is similar however to the real 

world situation. 

An advantage of the discretionary security system is that we only 

have to check whether one user is on a need-to-know list rather than 

having to check whether one list of users is contained in another list 

of users. Checking for individual membership is usually much faster 

than checking for containment. 
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There is another security problem which the discretionary security 

system should confront, and that is the problem of sabotage. We could 

construct a strict "need-to-modify" security system to deal with this 

problem, but it would be just as cumbersome as the strict "need-to- 

know" system. The proposed discretionary security system will deal with 

this problem by attaching to each repository a list of users who are 

allowed to modify the contents of that repository. 

Since the discretionary security is not as strict about control- 

ling access to repositories as the mandatory security is, we will pro- 

vide the user with additional mechanisms for controlling his agents. 

These will take the form of agent privileges which the user may se- 

lectively revoke. 
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2.5  The Relationship Between Successive Levels of Structured 

Specification 

SQ has both intuitive appeal and formal simplicity. The major 

design requirement that the system permit no compromise of information 

has been achieved and controlled sharing of multi-level information 

has been accounted for. All that is needed is to look at an actual 

computing system, show that the specifications which completely de- 

fine its operation can be formulated into a precise mathematical 

structure, demonstrate that these formal specifications are consistent, 

and that the four axioms of SQ hold under the interpretation. 

This procedure is trivial for a trivial system, however it is not 

at all clear how it can be applied directly to a complex operating 

system such as Multics. The formalism of axiomatic systems has been 

used to concisely formulate the intuitively obvious in precise terms, 

but the power and effectiveness of the method have not been demon- 

strated. The concept of SQ is thought to be sufficiently general to 

describe a broad class of information security problems including ap- 

plications which use the Air Force sensitivity-catagory classification 

lattice as their set of security classes and to permit software imple- 

mentation in a segmented architecture. However it gives little direc- 

tion towards actual implementation. 

The technique of structured specification will now be illustrated 

by giving a second level structure which will satisfy the security re- 

quirements in SQ plus further design requirements to describe a file 

system structured as a tree of arbitrary depth and a mechanism for 

"inter-agent" communication which does not require accessing a shared 

file. These additional restrictions make the design more implementa- 
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tion specific. We note further that such additional structures are 

not required for prevention of compromise Of security but 

are to analyze certain design decisions at an abstract level of dis- 

cussion before formal specifications for implementation are attempted. 

At each new level of specification, additional restrictions will 

be imposed. Difficulties in formulating a consistent axiomatic system 

which validly interprets the preceding structure and satifies the new 

restrictions can indicate two different problems. Either the newly 

added restrictions are not compatable with a secure design or the pre- 

vious level was not appropriate. The first case demands a change in 

design decision at the new level; the second calls for a reformulation 

of the preceding level. The technique is thus one of successive, pos- 

sibly reiterated, refinements of design requirements each followed by 

a consistent formal specification which validly interprets the pre- 

vious structure and which incorporates the new design concepts. The pro- 

cess is complete when at some level the mapping between formal symbols 

and actual system objects is a trivial identification and all desired 

restrictions have been incorporated. At this point, formal proof of 

the security of the final structure is a relatively straightforward result 

of composing the several one-to-one correspondences between levels to 

yield a single correspondence between it and the S* specification. 

Proving the entire system will also require establishing that all the 

axioms of the final level Ho ir. fact hold in the implementation of 

the system. 

As noted before, because of its generality and intuitive obvious- 

ness it is not expected that it will be necessary to reformulate SQ. 
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Beyond that it is hoped that reiteration can be minimized by informally 

weighing the expected consequences of design decisions before their 

formalization. The possibility of the need to backup and modify a pre- 

vious level should not be construed to be a weakness of the method in 

the sense that the formal system at any level is at sometime not se- 

cure. The machinery of the axiomatic method precludes this. The 

need to reiterate indicates a weakness in the designer in that he is 

unable to comprehend a complex operating system and to make all the 

correct decisions in one step. Structured specification then is a tool 

which allows the designer to proceed a step at a time toward his ul- 

timate goal. Each step is guided by previous steps, by previous mis- 

taken steps, and by general intuitive notions about the final goal. 

Since the designer does not know precisely where he wants to go he 

must accept the probability of making a few wrong steps along the way. 

Incorrect steps may provide further insight about the system design. 

Also, since no code will have been written nor logic built, the cost 

of a mistaken step will be minimal. 
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3.   THE S1 STRUCTURE: FILE AND MAILBOX STRUCTURES 

3.1  Introduction 

The SQ structure defined information security with an abstract, 

presumably intuitive, description of a secure system. This chapter 

presents a structure, S,, relating the SQ definition of security to 

computer system design. The development of two basic features of 

modern computer systems, file systems and processes, will be initiated. 

The repository concept of SQ is refined by subdividing the set of 

repositories into two distinct subsets. One subset is explicitly 

structured as a tree of files. The other subset of repositories pro- 

vides a mechanism for communication between agents. 
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3.2  File and Mailbox Structures 

A subset of SQ repositories is identified in S, as files (called 

segments in Multics). To reflect the Multics directory naming scheme 

of addressing segments we organize these files into a tree structure. 

To store or retrieve information in a given file, the file system must 

be searched from the root until the file has been found; therefore, 

restrictions must be imposed on the relationships between files' lo- 

cations in the tree and their classifications. These restrictions are 

developed in the axiomatic iescription of section 3.3. 

Agents can communicate through the Modification and subsequent 

observation of files. This method of communication however would be 

subject to all the restrictions imposed on the file structure. It is 

desirable to provide a less cluttered mechanism devoted to communica- 

tion between agents; therefore, we introduce a non-file communication 

path between agents. The mechanism modeled will be sufficient to im- 

plement those features which Multics provides. 

Objects such as Multics' event channels and semaphores could be 

named globally and referenced through the file system. Instead we de- 

signate as mailboxes a subset of the set of SQ repositories. Mailboxes 

are not files and are not restricted by file considerations and usages. 

Being repositories, mailboxes do have classifications, and agents can 

in the SQ sense observe and modify them. Two new relations, send and 

receive, provide agents the ability to communicate through mailboxes. 

Sending to and receiving from mailboxes rill be restricted with the 

necessary assertions governing the use of them. The mechanism thus 

designed should be general enough to supaort more refined mechanisms. 
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Since an agent's passing information to another agent of higher 

classification does not compromise security, agents may send to mail- 

boxes of equal or higher classification but not to lower classifica- 

tions. Receiving from a mailbox may constitute both an observe and a 

modify in the S« sense depending upon the implementation of the mailbox 

mechanism. A mailbox mechanism is likely to be implemented as a mes- 

sage queue; an agent's receiving a message would involve observing 

the message and removing it from the front of the queue. This removal 

can be observed by another agent if the mailbox has classification equal 

to or lower than the agents clearance. (See[14, appendix B] for further 

explanation.) By the SQ observe restrictions, receiving must be from a 

mailbox of equal or lower classification than the agent receiving; how- 

ever, the modify restriction disallows receiving from a lower classifi- 

cation. Agents therefore may receive only from mailboxes having clas- 

sification equal to their clearance. Communication between agents of 

unequal clearances can occur since sending to higher classifications is 

allowed. As necessitated by S« an agent may not communicate information 

down to an agent of lower classification. 

The restrictions on the send and receive relations are applicable 

whether the implemented operations are strictly simple synchronizing 

signals or whether the operations permit the transmission of a message 

with the signal. These restrictions are stated explicitly in the axioms 

which follow. 

In more refined structures communication between agents, interagent 

communication, will be refined. When processes are introduced, mail- 

boxes will provide the means for interprocess communication. 
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3.3  The Mathematical and Axiomatic Structure of S, 

The structure for mandatory security in an information processing 

system with hierarchically structured files and inter-agent communica- 

tion is the following: 

S-|    = (M,AfC,ppap,pw,cH,<,6,C£6,C£fc) 

where 

F  is a tree of files (directories and segments) 

M  is a set of mailboxes 

A  is a set of agents 

C  is a set of security classes 

Pp c A x F  is the "retrieve information" relation. 

(a Pp f means that agent a can retrieve information 

from file f.) 

a_ c A x F  is the "store information" relation, (a a_ f means 

that agent a can store information in file f.) 

Pjj c A x M  is the "receive" relation, (a p., m means that agent 

a can receive information through mailbox m.) 

a^ c_ A x M  is the "send" relation, (a a,, m means that agent a 

can send information to mailbox m.) 

±S.C x c     1S a pre-ordering of the set of security classes. 

{ cf xF  is the "dominate" relation on the set of files. 

(It defines the "tree" structure on the files.) 

C£a:F uM + C  is the "classification" function for files and mailboxes, 

Cln.:    A •*• C  1S the <,clearance" function for agents. 
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M-i can be illustrated by the following diagram: 

We now list the axioms for S,. 

Al .1:   For all c e c> c ^ c (<_ i s reflexive). 

A1.2:    For all c, d, e e C, c < d and d < e implies c <_ e 

(f. is transitive). 

The next four axioms impose restrictions on the store, retrieve, send, 

and receive relations in order that S-, nay validly interpret SQ. The 

retrieve and receive relations correspond to observation and the store 

and send relations to modification. 

A1.3:   For all a e A and f e F, a PF f implies CJU(f)  < C£*(a). 

(An agent can only "retrieve" information from a file 

with equal or lower classification.) 

A1.4:    For all a e A and m e M, a Pw m implies Clt>(m) =  Cfct(a), 
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(An agent can only "receive" information through a 

mailbox with classification equal to its own clearance.) 

A1.5:    For all a e A and f e F, a ^ f implies Cln{a) ± CU(f). 

(An agent can only "store" information in a file with 

equal or greater classification.) 

A1.6:    For all a e A and m e M, a a,, m implies C£t.(a) < C£<s(m). 

(An agent can only "send" information through a mailbox 

with equal or greater classification.) 

The tree structure on the set of files is asserted by the following: 

A1.7:    For all f e F, f 6 f (6 is reflexive). 

A1.8:    For all f, g e F, f 6  g and g 6 f implies f = g. 

(6 1s antisymmetric). 

A1.9:    For all f, g, h e F, f 6  g and g 6 h implies f 6 h. 

(6 is transitive). 

A1.10:    For all f, g, h e F, g 6 f and h 6 f implies g 6 h or 

h 6 g $ has the "tree" property). 

The remaining axioms formailize the use of tree structure on the files 

as a directory. 

Al.11: For all a e A, and f, g e F, a p, g and f 6 g implies 

a pF f. (In order to retrieve information from a file, 

an agent must be able to retrieve from (i.e. search) every 

file which dominates it. This axiom recognizes certain 

implicit information paths which result from the nature 

of the directory system. To illustrate the difficulty, 

suppose that an agent aj deletes a directory f_ which 
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dominates a file oj then another agent a_ can tell that 

the file g_ is no longer observable. This constitutes 

a potential communication path between a_' and a_. In 

effect, a_ can make a limited observation of directory 

f_ by determining whether file g_ is still observable. 

(See Lampson [6] for a discussion of similar problems.)) 

A1.12:   For all a e A, and f, g e F, if a aF g and f 6 g and f f  g 

then  a pp f. (In order to store into a file, an agent 

must be able to retrieve from or search every file which 

strictly dominates it. Note that it is possible for an 

agent to store into a file which he is not allowed to 

read; thus/writing-up" to a higher classification is 

allowed. Any implementation which permits such "writing- 

up" must be careful to avoid introducing any implicit 

information paths. For example, if an error occurs in 

writing to a file of higher classification, no error 

message may be given; otherwise, this would provide a 

method of communication from higher to lower classifi- 

cation.) 

Proposition 3.0: For any agent in A and any files f and g in F, 

if a or g and f &  g, then C£a(f) ±Clt>{g). 

(A file which can be modified by some agent must have 

a classification which is greater than or equal to the 

classification of any directory which eventually con- 

tains it.) 
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The proof of Proposition 3.0 follows from previous axioms: 

Axiom A1.5 says that, if a ap g, then C£A(a) _< C£a(g). Now note that 

A1.12 asserts that, 1f a a^g,  then a ppf. By axiom A1.3 Cl&{f) 

<  C£t(a). Using the transitivity of <  (Ax2), C£6(f) « Clnia) < C£a(g) 

implies CU{f)  « C&tgl as desired. 

The implications of Proposition 3 are clearer if we state it in 

contrapositlve form. 

Corollary 1:  For any agent a in A and files f and g in F, if f { g 

and Ct6(f) 4 C£6(g), then not a CTp g. 

(No agent can modify a file g_ which is 

contained in a directory whose classifi- 

cation is not less than or equal to the 

classification of the file g_.) 

This corollary motivates us to introduce another axiom in order not to 

have a file system which is cluttered with useless, unmodifiable files. 

AT.13   For any files f and g in F, if f j g, then CU(f) <_ 

c-^(g). (Every directory has an equal or lower classifv 

cation than any file it eventually contains. The root 

of a directory tree must nave the lowest classification 

existing in the tree; furthermore, the sons of any node 

in the tree can be classified no lower than that node.) 
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3.4  The Consistency of S-j and its Relationship to SQ 

An S-, structure has been described and the formal axioms of the 

structure have been stated. It is necessary to formalize the relation- 

ship between the S-i structure and the SQ structure; Si must be proved 

to be a refinement of SQ. The formal statements and detailed proofs of 

this assertion are in appendix B of this report. 

All objects in the S-. structure must be shown to be Instances of 

objects in the more abstract SQ structure. A proposition is stated 

and proved that a one-to-one mapping from S-. to SQ exists so that the 

relations of SQ are preserved. To complete the proof of refinement, 

it is formally shown that every valid interpretation of S-j (S-| type 

structure) is a valid interpretation of S« and consequently any theorem 

of SQ is true in S-| also. 

Although it is not necessary in proving that S-j is indeed a refine- 

ment of SQ, a proposition states that S-j is consistent, that 1s, that 

no self contradictions exist within it. The proposition is proved by 

constructing a specific S, type structure which satisfies the axioms. 

If S-, was not consistent no such example could be constructed. Although 

S-j need not be consistent to be an interpretation of SQ, this proposi- 

tion is proved first since an inconsistent structure would be of no value 

in the structured specification process. 
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4.    FORMALIZATION OF DYNAMIC SECURITY 

4.1   Introduction 

As we progress from the very abstract description of controlled 

information sharing to a more complex structure which can serve as a 

formal specification for the implemented system, we must make certain 

design decisions. For example, the file concept introduced in S-. was 

an abstraction of an information bearing object. Beyond the facts that 

each file had an associated classification and that files were organized 

hierarchically nothing was assumed about other attributes of the files. 

A further simplification in S, is the lack of any consideration of 

time-variant aspects of an actual system. At this point it is time to 

look at available technology and make some decisions about feasible 

ways of implementing the relationships asserted in S-.. 

It was demonstrated in chapter 2 that the intended application 

of SQ theory to the Air Force classification/compartmentalization 

scheme was possible. If the resultant lattice of security classes is 

stored directly as a bit vector (value) rather than in some encoded 

form (name) it will take at least 19 bits, e.g. 16 compartments and 7 

clearance levels for each security class. In such a case parallel 

hardware could be used to check the permissibility of each attempted 

access without significant time overhead. However, if the files (re- 

positories) had only say 36 bits of information this would cause an 

intolerable storage overhead. Because of fixed storage requirements 

for each security class value, storage overhead will be minimized by 

making the repository as large as possible. 
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On the other hand to obtain the total mediation required in a 

secure system there must be some mechanism which efficiently does the 

equivalent of checking current access privilege at every attempted ac- 

cess of a repository (file). 

In a conventional system in which all accesses to the file system 

are under the control of a file system manager it would be reasonable to 

assign classification/compartment values to each file and to interpret 

the controller observe and modify type accesses of S-j to be reading 

and writing into the file system under the auspices of the file system 

manager. The security of information contained in the files could in 

theory be ensured by including security checking mechanisms in the file 

manager itself; e.g., a file could only be opened for reading by a pro- 

cess with clearance equal to or greater than the classification of the file. 

A major problem with this approach is that the security of information 

in files depends directly upon the continued integrity of the file 

system manager,the operation of which would have to be verified to be 

correct and to be guaranteed unmodifiable by malicious or errant pro- 

grams. A second problem is the fact that after information was read 

into core the secure file system manager would have no control over 

sharing of information by processes in core. 

The Multics approach appears to offer a feasible alternate solu- 

tion in which mediation is rigorously imposed on all attempted acces- 

ses by the dynamic address computation mechanism built into the hard- 

ware. Under the Multics virtual memory all processor accesses to me- 

mory can be considered to be accesses to the file system and vice versa. 

There is no logical distinction between accessing a word in core, on 
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disk, or in the paging device. All accesses to storage in Multics 

are indirected through a segment descriptor word (SDW) in a segment 

descriptor table which 1s maintained for each process. Among other 

things the SDW contains the access privileges of the process for the 

segment to which it points. Correct operation depends upon maintain- 

ing the validity of the segment descriptor table for each process and 

upon the proper functioning of the supporting segmentation and paging 

control mechanisms. At this level we will concentrate on formalizing 

the behavior of the segment table, leaving the underlying mechanism 

as problems of implementation to be addressed in later more detailed 

specifications. 

In the current Multics the segment descriptors are maintained on 

the basis of the access control lists (i.e. lists of permitted users) 

which are kept for each segment. We propose a similiar procedure where- 

by decisions to update the segment descriptor table are based upon 

mandatory security restrictions. The present use of access control 

lists could be retained to provide discretionary "need-to-know" 

security. 

In the following the term executor will be used to refer to the 

abstraction for process. Since we are considering only the problems 

of maintaining information security, the only aspects of the segment 

descriptors which we will discuss are the "read" and "write" bits 

which control the observe and modify type operations. These bits 

will be abstracted to two relations the view and alter relation which 

can be roughly interpreted to indicate whether or not a given file 

(segment) has been connected (i.e, a segment descriptor word has been 
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prepared for it and entered into the segment table of the appropriate 

executor). In order for information to move from a file to an execu- 

tor the view relation must hold. This fact will be asserted as an 

axiom below. Upon the first attempt to view a given file a  missing seg- 

ment-condition" will be raised which will cause explicit checking of 

mandatory security restrictions. If the attempted view is permissible 

then the view relation is set and thus any subsequent views are allowed 

without explicit checking. In this way total mediation can be effected 

with no additional overhead in time or storage except at initial at- 

tempted access. A similar argument applies to the "write" or alter 

type operation. While it is not clear how interprocess communication 

will be implemented, we have proposed similar constructs for accessing 

of mailboxes. 

The dynamic or time-variant nature of an information processing 

system will be treated by considering the system to be a sequence of 

states. During each state the system will remain static as far as the 

security relevant conditions are concerned.  Thus during a state 

there will be no new files or executors created, nor any connection 

etc. changed. Ordinary computation and movement of data will 

proceed as usual during the state. A transition to a next state will 

occur whenever some security relevant change in the system is required. 

By the nature of the transitions it cannot be expected that S, type 

axioms will hold from one state to the next. What we can hope to show 

is that if we start in a state which is S,-secure and if we restrict 

the transition to a subset of security preserving transitions then 

every  state which can be reached through, a sequence of secure transi- 
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tions will leave the system in a secure condition, that is, no unauthor- 

ized disclosures will ever be allowed. 

Intuitively, the method of attack is to consider the several states 

with their component objects and relations to be combined with appropriate 

Inter-state relationships into a single S, structure. Then it must be 

shown that with reasonable interpretation this new construct is secure 

and that the security thus displayed applies not only to data transfer 

paths within individual states but also to extended dynamic transfer 

paths between states. 
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4.2  A Formal Description of a Dynamic Secure System 

In this section we shall propose an axiomatic system which allows 

us to describe the time-variant behavior of a secure information pro- 

cessing system. At any given time we assume the new system has a 

structure similar to S-j in that it has sets of files, mailboxes and 

executors (agents) with corresponding relationships and functions, but 

with the additional flexibility that the said relations and functions 

may vary with time. We shall assume only that the set of security 

classes and its pre-ordering is constant. Thus we will allow additions 

or deletions to any of the sets of files, mailboxes and executors. 

Also the view, alter, block and wakeup relationships may be enlarged (i.e. 

new connections made) or diminished (disconnections). The classifica- 

tion and clearance functions will also be allowed to change. 

In order to describe the current "s';ate" of the system at any gi- 

ven time we shall compose all security relevant, time variant informa- 

tion about the system into a substructure called the state of the 

system. 

For convenience we introduce the auxiliary set, states, and re- 

cord the state information through use of additional relation and func- 

tions. Rather than to give an extensive list of axioms for S2 we pre- 

fer to describe it as a nondeterministic automaton, that is, in terms 

of possible state values,, and transitions from state to state. We will 

define a class of permissible transitions with the property that if the 

Sp- system starts in an initial state which is "secure" and makes only 

permissible transitions then it will always stay in a "secure" state 
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and furthermore any "dynamic" information transfer paths will be secure 

in the sense of S-.. This latter property will be established by show- 

ing that the structure formed by all states which are reachable by 

permissible transitions from some initial secure state is in fact an 

example of S,. 

Finally, an example set of primitive permissible transitions (se- 

curity events) will be given from which, we claim, any permissible 

transitions can be composed. It will be possible to derive formal 

specifications for the primitive transitions, and it is these specifi- 

cation along with a definition of an initial secure state which will 

be used in subsequent formalization. 

At this level of abstraction we are not addressing the conco- 

mitant problems involved when the transitions are assumed to occur at 

the request of executors within the system. To the extent that state 

information is stored in classified files (or mailboxes) the state 

changes are modifications and must be governed by the usual restrictions 

on acquisition and dissemination of information. The solutions to 

those problems depend upon additional design decisions which are not 

necessary to answer the more general question raised in this chapter, 

namely, just what state conditions are necessary before a given transi- 

tion is to be permitted. 

The formal description of a dynamic secure system consists of the 

following structure: 
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S2    = <E,F,M,C,S,T,<_,6,v,a,B,w,c£A,c£A,F,F,tf,6,v, 

a,J,u,clA,cl6 > 

E 

F 

M 

c 

s 

TC S x S 

_4 C C x C 

6C F x F 

vC E x F 

aCExF 

gC E x M 

is a set of executors. 

is a set of files. 

is a set of mailboxes. 

is a set of security classes. 

is a set of states. 

the transition relation; thus, if s t t 

we will say there is a transition from s to 

t where s and t are states. 

pre-ordering of C. 

the dominate relation on files. 

the view relation, (e v f means executor e 

is connected to file f for viewing or reading 

information in the file. 

We assume that under no other circumstances 

can an executor acquire information from a 

file.) 

the alter relation, (e a  f means executor 

e is connected to file f for writing , that 1s, 

the write bit is set.) 

the block relation, (e S m means that executor 

e can interrogate mailbox m and if no message 

is available wait until one is received. In 

current implementation there is no counterpart 
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to the segment descriptor word for mail- 

boxes (or event channels);  it is con- 

sidered sufficient to have the "name" of a 

mailbox in order to use it. For security 

it will be necessary to check classification/ 

clearance restrictions before disclosing the 

"name" or else explicit checks will be ne- 

cessitated at each requested access.) 

to £ E x M   the wakeup relation, (e u m means executor 

e can send a message to another executor 

which is blocked on mailbox m or will block 

on m at some later time.) 

CIA   C E X C   the clearance relation. (Since any executor 

may have different clearances in different 

states clearance is no longer a functional 

relation. For security it will be necessary 

to demonstrate that each executor has at any 

single time exactly one clearance.) 

cZi    c FU MxC   the classification relation. (Similar to 

ctn. above, it relates each file or mailbox to 

a set of security classes which it may have 

at different times.) 
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In addition to the foregoing sets and relations which are static 

throughout the life of the system we must also have relations which 

will indicate what the system looks like in each state. While this 

could be described by a single function from the set S into a set of state 

values each of which would be a fairly complex substructure we prefer 

to decompose the function in the following way: 

r.-S •*•   P(E)   gives the subset of executors which exist 

in each state. (Thus, E (s) is the 

set of executors in the system during 

state s. We shall frequently use the 

notation E  for the set E (s). Note 

E - U Es.) 
SeS 

T:S -v P(F)   gives set of files current in each state. 

Again we shall use Fs to denote the set F(s). 

M:S •*•   P(M)    gives the set of mailboxes in each state. 

7:S •*• P(F x F)   gives the dominate relation in each state. 

"Z:S   * ?[E x F)   gives the view relation in each state. 

cT:S •* ?[E  x F)    gives the alter relation in each state. 

p":S ->- ?(E x M)    gives the block relation in each state. 

aiS   •*• P[E  x M)    gives the wakeup relation in each state. 

C£A:S   •*• P(E x C)    gives the clearance function in each state. 

ciI:S  •+ P(FU M X C)    gives the classification function in each 

state. 
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We now claim we have a framework in which state changes can be 

effeciently discussed. Let us illustrate this claim by a simple example. 

Suppose there is an S2-system which passes through the following states: 
2  3   4 

In "1" there is one executor e and one file f - no security classes 

in this example. In "2" e has been connected to f for viewing. Then 

in "3" a new file g has been added, and finally in "4" e has been dis- 

connected from f. Let S = {S-J.S^S-J.S,} be a set of states for the 

system. Then T:S -> P{F) where F = {f,g} is defined so that F(S1) = {f}, 

F(S2) = {f}, F(S3) = {f,g} and F(S4) = {f,g}. Thus F gives all infor- 

mation about the set of files in each state, v" :s •*• P({e} x F) is defined 

by \T(S-|) = v(Sj,)  = 0 and \T(S2) = \T(S3) ={< e,f>}. Now since all the sets, 

relations and functions are static, the only effect of a state change is 

that the "current" state changes. Hence, in discussing the dynamic be- 

havior of the system we need only be concerned with the set S and the 

transition relation x which indicates which state changes can occur. 

For a given s e S we shall define the 10-tuple <F(s),F(s),W(s), 

T(s),v(s),a(s),?(s),w(s),cT*U),cTA"(s)> to be an S2-state and shall 

usually write it as <ES>
F
S,MS, 6S, vs,as, 3s,o)s,c£6s,c£&s> or even as 

<E,F,M,4, v,a,3,6,cZt.,a&5>  . 

An S2-transition is an ordered pair of S-j-states «E_,F ,M ,6 , 

vs,as,es,u>s,c£As,ceAs> <Et,Ft,Mt,<t,vt,at,3t,a)t,cXAt,cX6t» such that 
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Sit. 

The S2-state gives a complete picture of the condition of all time- 

variant elements of the system at any time. We note that each S^-state 

has a structure similar to S-, with the exception of the set of security 

classes and its accompanying preordering. We make use of the similarity 

to get the definition: 

An S2-state is statically secure if and only if it satisfies the 

following axioms: 

A2.1    For all e e E , f e F , e v. f implies cJU  [f)<   cJU [e). 
J o        3 J      o      o 

A2.2    For all e e E$, m e *L, e es m implies c£as'm) = c£*s(e). 

A2.3    For all e e Es, f e Fs, e «s f implies clA^ie) <    c£*s(f). 

A2.4    For all e e E$, m e Mg, e Us m implies c£As(e) « c&s(m). 

A2.5    For all f e Fs, f 6g f. 

A2.6    For all f, g e F_, f 6 g and g 6 f implies f = g. 

A2.7    For all f,g, h e F$, f «s g and g <5$ h implies f 6g h. 

A2.8    For all f,g, h e F$, f 6S g and h 6$ g implies f 6 h or 

h 5S f. 

A2.9    For all e E Es, f, g e Fs, e vs g and f 6S g implies 

e v$ f. (That is, in order to be connected for viewing 

a file, an executor must be connected to view all files 

which dominate it.) 

A2.10 For all e e Ej, f, g e Fs, e as g and f <5S g and f t g 

implies e vs f. (To alter a file, an executor must be 

connected to view all files which strictly dominate it.) 

A2.ll    For all f, g e Fs> f 6 g implies cZ&s(f) +  c£as(g). 
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Definition   An S2~transition <s,t> is called preserving if and only 

if s is statically secure implies t is statically se- 

cure. We further define the relation t to be preserving 

if and only if for all s, t e S, s T t implies <s,t> is 

preserving. Hence, if T is preserving, s is statically 

secure and s x t, then t is statically secure. 

In the following we shall be concerned with the security preserving 

properties of sequences of transitions. In general the relation x is 

not transitive, in particular, for the set of primitive transitions to 

be introduced later it is not true that the composition of two primi- 

tive transitions is a primitive transition.  The next lemma will show 

that compositions of preserving transitions are preserving. 

Lemma 4.2.1:  If x is security preserving, s is a statically secure 

state, and s x* t, then t is a statically secure state. 
oo 

(x* = U xn is the transitive, reflexive closure of x.) 
n=0 

Proof:       (Using induction) Let N be the set of natural numbers, 

and let P(n) be the property "x11 is preserving". Then 

we let M = {M e N | P(n) is true}, and use induction to 

prove M = N. 

First:   0 e M since P(0) holds i.e. x is preserving 

because s x t implies s = t. 

Second:   suppose N e M then xn is preserving, but 

xn+1 = xn o x. Then if s xn+1 t and s is 

statically secure there exists a u e S such 

that s x11 u and u x t. By inductive hypothesis 

xn is preserving; thus, u is statically secure 

and since x itself is preserving t is also 
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n+1 
statically secure. Hence x   is preserving, 

P(n+1) holds, and n+1 e M. By induction N=M 

and P(n) holds for all n, or xn is preserving 

for all n. 

Last:    Suppose s is statically secure and s T t; then, 

s x11 t for some n so that t is statically 

secure. MB 

We shall say that a state t is reachable from a state s if and 

only if s x* t. Immediately we have: 

Corollary 4.2.1: If x is preserving, and state s is statically se- 

cure, then every state reachable from s is stati- 

cally secure. 
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4.3  An Informal Discussion of Some Dynamic Problems 

It might appear that this last result gives a sufficient restric- 

tion on the transitions to ensure a "secure" S«; however, this is not 

the case as is shown in the following example. Consider the system 

with executors {e,,e2) and files ^T»^2*^3 W1t^ security classes 

{c,,c2,c3.c.,c5,Cg} such that c-, _< c2 « c3> c4 _« c5 <_ cg; c3 and c4 are 

not comparable. Now suppose that the following state occurs: 

"before"     / J      L \      dUie 

cX6(e2) 

dU{f2) 

c£i(f3J 

We claim this "before" state is statically secure because e2 v f, 

implies c£6(f-i) ± c£t(e2), c-i <j, c2 holds; and e2 « f2 implies 

c£t.(e2) <_ c£4(f2)» c2 ± c3 holds. The only information transfer path 

is from f, to f2, and this does not allow unauthorized disclosure since 

c£4(f-|) < cZ6(f2)' 

Then suppose there is a transition to the state: 

"after" dU[ a] 

cJU[f}) 

cJU&2 ) 

cXi(f2) 

cZi(f3) 

w5 

cl 

Co 

** 
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We claim this "after" state is also statically secure because 

e1 a f3 implies cU(e^) ± c£6(f3), c5 <  cg holds; and e.| y f2 implies 

c£6(f2) l c£A.(e-|) , c^ < Cc holds. There is a transfer path from f2 

to fo but this is allowed since c£6(f2) ic^lfj). 

Both the "before" and "after" states are statically secure, the 

transition is preserving, and everything seems to be in good order. 

But if we look more carefully we see that information which may have 

been transferred from f-, to f2 in the "before" state may now be trans- 

ferred from f2 to f3  while cU[f^)  is not comparable with c£a(f3). 

Although both states are statically secure, the temporal composition con- 

tains an information transfer path from f-, to f3 while it is not true 

that cM^) i c£6(f3). 

What we have just seen is an examplo of a preserving transition 

which leads to a possible non-secure condition; hence, the restriction 

to preserving transitions is not sufficient for a system which is 

"dynamically secure". Before we attempt to further qualify the transi- 

tions, we need a formal definition of what it means to be "secure". 

S,-security is precisely a formalization of security which prohibits 

unauthorized disclosures by controlling implicit data transfer paths. 

We will be satisfied that S2 is secure if it can be shown to be an ex- 

ample (or valid interpretation) of S,, and this is the next step in our 

development, that is, to show that with some additional restrictions on S?- 

transitions we get a structure which is S-,-secure. 

We need a treatment in which the "dynamic" data transfer path in 

our preceding example is detected. A fundamental problem is that file 

f2 in the example forms a link in two different information transfer 
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paths, the existence of which depend upon two different states.    A 

possible so.lution is to flag the elements in the two states so that 

fb in the "before" state is logically distinct from fa in the "after" 

state* so also for the other elements.    With this distinction it is pos- 

sible to picture the two states together as in the following figure. 

ciA(ei
D 

Mez
b 

c£i(f2
b 

ciAfe^ 

c£A(e2
a 

c£a(f2
a 

c£i(f3
a 

L5 

cl 

Co 

=    c. 

• Cy 

Figure    4.3.1 

While in the earlier presentation c£6(f2) = c3 or c, depending on 

state, classification is now a function as is required in S-.. Files 

f-| and fa are incarnations of the same "real" file. From what we know 

about real files we believe that any information stored in f, will remain 

in it through the transition and can be retrieved from fa. But since 

there is no formal connection between f, and fa, additional structure is 

necessary. A file to file transfer is needed but this is not provided 

for in S,, and clearly there is no actual transfer of data since f-. and 

fa are merely two names for the same file. 
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Before proposing our solution let us digress slightly to present 

a possible alterative. It is the function of executors to transfer in- 

formation; thus, one way to maintain the information content across tran- 

sitions would be to hypothesize a new class of agents, perhaps called 

quasi-executors, whose function is to retrieve information from files 

in the "before" state and store into the corresponding file in the 

"after" state. The file-to-file transfer logically becomes an infor- 

mation transfer path which can be handled in S-| theory. An interesting 

result is that if we require quasi-executors to conform to the normal 

classification/clearance restrictions, then the classification of a 

file in the "after" state must be greater than or equal to the classi- 

fication of Its counterpart in the "before" state. Incidentally, the 

failure to satisfy this requirement is the source of the insecurity of 

the previous example. The quasi-agent treatment was rejected because 

it also leads to quasi-files and quasi-mailboxes and it appears to be 

rather unnatural or nonintuitive. We now return to the mainline of 

development by introducing a device which if. both easier to formalize 

and we hope more natural. 

Refering to Fig.4.3.1 we note that if executor e~ alters file fp» 

the effect of the alteration should persist in file f| so that any 

executor which can view f« should thereby be able to "view" the effects 

of the alteration of e2- The resulting principle of "persistence of 

information" will be generalized to imply that if an executor can al- 

ter a file, then since the alteration persists potentially as long as 

the file exists it can effectively alter every  subsequent incarnation 

of that file. This principle implies that classifications of files 
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must increase or remain constant since alteration must always act upon 

a file of equal or higher security class than that of the acting exe- 

cutor. 

On the other hand, e^'s being able to alter f! does not Imply that 

it can also alter f3 for this would mean that an executor could effect 

a change in a file in a state which no longer existed. We shall, how- 

ever, permit executors to carry information through transitions. Hence, 

in the example, ea can alter f? in ways which reflect information ac- 

quired in state "before"  by e,.   In this manner e, can alter fa. 

This may sound counterintuitive, but all we are saying is that 

there exists the possibility of transfer of information from e, to ft 

without an intervening file or executor. 

Similar arguments show that it is reasonable to assume that in the 

case of the view relation an executor cannot view a file in a future 

state-principle of "non prescience of executors" - but can in effect 

view files in past states.  By persistence of information, once 

an executor has "viewed" a file the action of any successor of that 

executor may reflect the viewed information. 

Another principle is that if an executor and a file do not both 

exist in at least one common state there can be no direct transfer of 

information (neither view nor alter). 

In Fig. 4.3.2 we have a representation of an executor e and two 

files f and g which exist through several states. The horizontal 

transition lines can be thought of as cutting the executor into a se- 

quence of entities each of which carries the name of the executor it 

represents and the name of the state in which it occurs. The files 
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are similarly decomposed. The names transient-file and transient-exe- 

cutor have been suggested for these new constructs. If we suppose that 

e is connected to alter f in state "4" then the effect of possible al- 

teration of f will persist until f is deleted after state "7". Also, 

information available to e in states "2" and "3" may be transferred 

into f. Furthermore, if e is also connected to view g in state "4", 

we get the additional direct transfer path so illustrated. We claim 

that we thus include all possible such paths. That is to say that if 

information moves at all it must move along the lines shown. This pro- 

cedure will be formalized later after some additional notation has been 

introduced. For now let us review the example of Fig. 4.3.1. 

In Fig. 4.3.3 the "before-after" picture is repeated with implied 

inter-state relations added. We now see that there is an information 

transfer path from f, to f~ namely: (f,, e2, fo» e?, f*)  (also <f,, 

e2, fjj, e^, f* >). And since it is not true that clt>(f^) ^ ci^f*) 

we better not be able to show that such a structure is an example of 

Sj. Clearly, additional restrictions on the transitions are necessary. 

Although the explicit view relation between ef and f« is allowable, the 

implied view between e? and f« should be prohibited since it is not 

true that cJU{fJ ± c£>i(e?). After all this, it turns out that it is 

sufficient to require that if classifications (and clearances) change 

they must increase. Thus in the example we should require that 

c£Mf2' <_ cl&lf?) or else not permit the transition. Of course under 

such requirements we have cl&(f 1 ) « c£6(f2 ) 1 c&s(f2
a) 1 c£i(f3

a) 

and we are in good shape. We will next show that by generalizing the 

preceding arguments we can show that all possible dynamic information 
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transfer paths behave in proper S, fashion. 

4.4  The Dynamic Security of S2 

Given an S^-structure we shall by the following construction form 

an associated structure of transient-executors, transient-files etc. 

in which each So object is fragmented into logically distinct compo- 

nents in each state. The term transient is used to indicate the transi- 

tory existence of the new object. The temporal decomposition is accom- 

plished by forming for each object in S2 the cartesian product of it- 

self and the set of states in which it exists. While some of the rela- 

tions between the transient objects are natural and straight-forward, we 

shall have to elaborate upon the information moving relations to be sure 

that all possible S2 dynamic information transfer paths are included. 

(4.4.1) Es •  {<e,s>|s e S and e e E$}. 

We begin with the set of transient-executors; 

thus,<e,s> e E~ means that e is an executor 

in state s. Should <e,t> also belong to E<,, 

then e is also an executor in state t. 

(4.4.2) F^ = {<f,s>|s e S and U  Es> 

The set of transient files. 

(4.4.3) JUy = {<m,s>|s e S and m e M } 

Transient mailboxes. 

(4.4.4) ss Q T3 x F^      is the dominates relation on transient-files. 

In terms of the S~ dominates relation it is 

defined by <f,s> <5 <g,t> if and only if s=t 

and f 6 t. We do not extend the dominates 
s 

57 



relation across transitions. Thus we 

shall not allow one transient file to 

dominate another in a different state. 

(4.4.5) c&V F„ + C     is the clearance function defined by for 

all <e,s> e E^, cl6s(<e,s>)  = ct&s(e). 

To have S-,-security we must demonstrate 

that it is indeed a function. But this 

follows from the definition and from the 

fact that for each s e S, cln. :E   -*• C  is 

a function—part of the requirement for 

a statically secure state. 

(4.4.6) CXA«
:
F« U M_ •*• C  is the classification function defined by 

fo r all <x,s> e F. u M , ct6,j(<x,s>) 

cUs(x), 

It will be convenient to introduce some additional notation in 

the form of a relation defined on the transient objects as follows. 

For all <x,s>, <y,t> e E u F u M we shall say <x,s> -n  <y,t> 

(i.e. <x,s> is perpetuated by <y,t>) if and only if x=y and s T t. 

Thus a transient-file <f,s> <f,t> is perpetuated by a transient- 

file if there is a transition from s to t, and f exists both in states 

s and t. This provides a means for discussing the passing along of in- 

formation from transient-file to transient file and also for transient- 

executors and transient-mailboxes. 

The relations view, alter, block and wakeup must be constructed 

on the transient-objects so that all possible information transfer 
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paths are included. A simple example was given in sec. 4.3. For example, 

the view relation must encompass all direct transfers from transient-files 

to transient-executors.  By "direct" we mean the information does 

not pass through any intervening file or executor; thus, we see that 

there can be no direct transfer unless the file and executor coexist 

in some common state. Furthermore, information can be transferred only 

if in that common state the executor is view connected to the file. 

We formally state this as the 

Principle of Concurrency: If <e,s> v <f,t>, then there must be a state 

u e S such that e e Eu» f e Fu» and e vu f. 

Note the notation v»c E„ x F<, for the trans- 

ient view relation. 

We also have the 

Principle of persistence of information: we assume that information in 

a file may persist as long as the file exists; 

thus, if <e,s> vs *f»t> s <f,u> TT <f,t>, 

then must have <e,s> v <f,u>. Furthermore, 

the repeated application of this principle 

leads to a similar statement in terms of 
oo 

TT* = u ir  the transitive, reflexive closure 
n=0 

of ir. Finally we state the 

Principle of nonprescience:  an executor cannot perceive (and thus pass 

on or make decisions on the basis of) information 

in a file before the transition at which the view 

connection is made. We are saying that views also 
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move information forward in time. Similar 

arguments apply to alter, block and wakeup. 

On the basis of the foregoing we make the following defintion. 

v„ c £   x F„    the transient view relation defined by 

(4.4.7) <e,s> v„ <f,t> if and only if there exists 

u e s such that e e Eu> f e Fu» e vu f, and 

<f»t> -n* <f,u> and <e,u> v*  <e,s>. Thus 

for information to be transferred from f 

in state t to e in state s it is necessary 

that e and f exist in state u, that eV(Jf 

and that state u be reachable from state t 

and state s reachable from state u. 

Similarly for other relations we have: 

cto £ Eg x F5    the transient alter relation defined by 

(4.4.8) <e,s> a   <f,t> if and only if there exists 

u e s such that e e EU> f e Fu» e au f, and 

<f,u> Tr*<f,t> and <e,s> •„* <e,u>. 

35 £ E« x M«    the transient block relation defined by 

(4.4.9) <e,s> e_ <m,t> if and only if there exists 

u e s such that e e Eu, m e Mu> e gu m, and 

<m,t> Tr*<ii.u> and <e,u> v* <e,s>. 

u 5 £ Ec x M0 the transient wakeup relationship defined by 

(4.4.10) <e,s> u„ <m,t> if and only if there exists 

u e S such that e e E . m e Mu, e Uu m, and 

<m,u> 7T* <m,t> and <e,s> 7r*<e,u>. 
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To show that the system of transient-objects is S,-secure we will 

need to show among other things that: 

for all <e,s> e Eg, and <f,t> e F_, <e,s> \>   <f,t> implies that 

c£6s(<f,t>) <  c£t.s(<e,s>). 

The proof breaks into three parts. By (4.4.7) we have an inter- 

mediate state u in which e v f. Now if we restrict the set of states 

to those which are statically secure, u being statically secure implies 

C£A (f) _< c£^(e) which under defintlons (4.4.5) and (4.4.6) yields 

c£*s(<f,u>) <  c£*5(<e,u>). Secondly if we can be sure that <f,t>ir* 

<f,u> implies c£4«(<f,t>) *  c£6<,(<f,u>) and that <e,u> IT* <e,t> implies 

ciA5(<e,u>) «_ cLn.J<e,t>)  and thirdly, if we know *  is transitive, then 

we can conclude that c£a5(<f,t>) ^ ct*5(<e,s>). With this motivation 

we make the following definitions. 

An S« transition <s,t> is permissible if and only if it is pre- 

serving and satisfies the following axioms: 

A2.12      For all e e E, e e Esn Et implies c£*s(e) « c£tt(e). 

(That is if e exists in states s and t and s T t, 

then the clearance e can only increase if it changes.) 

A2.13      For all f e F, f e Fsf) Ft implies aUs(f)  < cZ*t(f). 

A2.14      For all m e M, m e MS<1 Mt implies c£*s(m) < c£6t(m). 

(These three axioms were shown to be necessary in the examples). 

T is permissible if and only if for all s, t e s,s x t implies <s,t> 

is permissible. 
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An Sg-structure (see p.48) will be called S2-secure or dynamically 

secure if and only if it has the following properties: 

1. x is permissible. 

2. There is an initial state sQ in S which is statically secure. 

3. s e S implies s is reachable from sQ. 

(A2.15) 4.  For all c e C, c <_ c. (< is reflexive.) 

(A2.16) 5.  For all c,d,e e C, c * d and d < e implies c _< e. 

(_< is transitive). 

(A2.17) 6.  For all f, g e F, s, t eS, f 6 g and g eF, implies f e F 

and f 6. g, which states that while a file g exists all of 

the files which dominate g must continue to exist and continue 

to dominate g. 

The major result of the chapter is showing that the system of 

transient objects constructed in an S2-secure structure is an example 

of S-|. The resultant properties of the transients allow us to make 

assertions about information transfer paths in S2 itself. Since the 

transient-structure lies between S, and S2 it might well be called S-, 5. 

Sl 5 = <ES' PS' ^S' C' —i5S' VS' aS'   eS' US' Q^JlS'  cJ^S'   7r> wnere 

the components are as defined above. 

Proposition 4.4.1:  The S-, 5 structure associated with an Sp-secure 

structure is an S,-secure structure. 

Proof: The details of the proof are given in Appendix C. 

An interpretation of the basic theorem of SQ is provable in S-, ,-• 

Thus we have: 

Theorem 4.4.1:     In an S-. r-structure associated with an So secure 

structure if there is an information transfer path 
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from transient-file (or mailbox) <f,s> to transient- 

file or (mailbox) <g,t>, then c£6s(<f,s>) <_ c£45(<9»t>). 

In the language of S2 this can be stated as 

Corollary 4.4.1:   In an S^-secure structure if there is a dynamic 

information transfer path from file f in state s 

to a file g in state t, then the classification of 

f (in state s) is less than or equal to the classi- 

fication of g (in state t). 

In conclusion, if we have an S2-structure which has an initial 

statically secure state, and if we allow only transitions which pre- 

serve static security, maintain classification from state to state, 

then there will be no implicit information transfers which could lead 

to unauthorized disclosure. 
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5.   THE SECURITY EVENTS IN S3 

5.1  Introduction 

In the foregoing chapter, we evolved a set of axioms which are 

sufficient to ensure a dynamically secure system. The S~- structure 

is described as a system of S-j-1 ike states with an accompanying set 

of permissible transitions which indicate what sequences of states 

may be allowed in a secure system. The representation is highly ab- 

stract in that files, mailboxes, and executors are considered to be 

points without internal structure. However, if we look at our goal, 

a formal specification of a Multics-like system, we see that each of 

these elements is by itself quite complex. To move towards this more 

complex representation, we will now present a state space which more 

accurately depicts the real target system. The behavior of the new 

system will be formally described by a set of security events or ele- 

mentary operations. After the events have been presented it will be 

shown in the next section that the events constitute a set of permis- 

sible transitions because all Sp-axioms are satisfied. 

As in the more abstract description the state of the system in- 

cludes the sets of files, mailboxes, and executors which are current, 

their classification (or clearance) and the view, alter, block, and 

wake up relations in effect at the time. Now, the classification and 

status (present or not) of a file are only two of many attributes. A 

file also has length, location, authorship, and so forth. To the extent 

that these secondary attributes can be changed by executors and those 

changes perceived by other executors, they must be considered possible 

information channels. In general the attributes of a file will be kept 
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in another file — usually the dominating file in the file hierarchy 

— so that the information will be naturally protected by the security 

mechanism. 

Since we cannot hope to anticipate all conceivable file attributes, 

we introduce a new set. 

l/p-'       the set of all possible file attributes. (These 

attributes will include such things as length, con- 

tents, classification, etc.) 

To indicate which value pertains at any given time we introduce a 

time-variant function. 

Fav:  F—»l/p is the file attribute function. 

A change in any file attribute is then reflected by a change in 

Fav.    Present value of a particular attribute, such as classification, 

will be singled out by a function defined on V*.,  such as dU>:  l/p->C 

for file classification. Thus cU (Fav (f)) would give the value of the 

classification attribute of file f, or in notation of Chapter 4 

c£6s(f) = ct6{¥av[f))  where s is the current state. In this chapter 

where we need be concerned only with the current state and the next 

state (or old and new states) we shall drop state subscripts and adopt 

the convention that primes indicate next state. For example Fav(f) = 

Fau'(f) means there was a change to a new state, but the file attributes 

of f remained the same. 

Similar sets and functions are introduced for mailboxes and execu- 

tors . i 

Vtft the set of possible values of all mailbox attributes, 

(classification, contents, etc.) 
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?A.I the set of all possible values which all the properties 

of an executor might have. (For example, clearance, 

priority, etc.) 

Mav: M—^ Vy,       is the mailbox attribute value function. 

E : E—h?n       is the executors property function. 
r 

There are also several functions which return specific properties (or 

attributes as they will be called in the next chapter). 

tf.t  l/p > {USED, UNUSED} is the "status" function. It will often 

be used in conjunction with Fav and hence we define the 

following shorthand: 

ST:  F » {USED, UNUSED} and is equivalent to Fav o it,  a composite 

function. In a similar vein, the "classification" func- 

tion: 

CLS: F—>C is equivalent to Fau o cLi. 

CLR: Ep—»C the "clearance" function is equivalent to Fav  o dUi. 

Vat:  PA.  * Info the "data" function returns information which has 

been obtained by the executor. 

Con:  IA. > info the "contents" function returns the information 

held by the specified mailbox. 

In the following section we shall catalogue the security events in the 

system. 
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5,2  Event Descriptions 

El   Executor e  becomes view-connected to file f. 

This event establishes permission for executor e  to view file f. 

However, before this operation is allowed to have any effect, certain 

conditions must hold. 

Cl.l   ST(f) = USED. 

That is, file f_ must be in use since it doesn't make sense to 

connect to a nonexistant file. 

C1.2   CLS(f) < CLR(e) 

The clearance of the executor must be greater than or equal to 

the classification of f. 

C1.3  e v d 

File f_'s parent must be view connected since the directory hier- 

archy must be searched 1n order to find f. This condition is suf- 

ficient to guarantee that all dominating files can be viewed. 

Now we must assert exactly what the operation does. 

Pl.l  ST'(f) = ST(f) 

The file's status must remain USED. 

PI.2  For all f] in F, CLS'ff^ = CLS{f}) 

That is, the classifications of all files are unchanged. 

PI.3  For all f] in F, rav'(f^) = Fav(f^) 

All other file attributes remain unchanged. 

PI.4  For all e-| in E, f-j in F, e-j 6' f-j if and only if e-, 6 f,. 

In other words, the "dominates" relation remains constant. As 

will be seen, only the "create" and "delete" events have an effect 

upon 6. 

67 



PI.5  For all e., in E, f-j in F, e-j <* f-j if and only if e-j a f -j. 

The "can-alter" relation is unchanged, i.e. any executor can alter 

exactly those files which it could alter before the event. 

PI.6  For all e, in E, fn in F, e-, v"f-, if and only if e-j v f-| 

OR [e1 - e A f1 = f A Cl.l A C1.2 A C1.3] 

That is, the requested addition is made to the "can-view" relation 

if the conditions are met. Otherwse, the "can-view" relation is 

unchanged. 

PI.7  For all m1 in M, M-CLS'(m-|) = M-CLS(m,) 

All mailboxes' classifications remain the same. 

PI.8  For all m-j in M, Mav' {m^)  = Mav(m-i) 

The other mailbox attributes are also unchanged. 

PI.9  For all e, in E, m, in M, e, &' m, if and only if e, 3 m-j. 

The "can-block" relation is unchanged. 

PI.10 For all e-j in E, m-j in M, e-j to' m, if and only if e-| u m-j. 

The "can-wake" relation is unchanged. 

PI.11 For all e1 in E, CLX'fe^) = CUHej). 

The executors' clearances do not change. 

Note: it will be seen that only cne event - "Raise Clearance" 

can change this property. 

PI.12 For all e] in E, Ep'^) = Epie^). 

All other executor properties are also unchanged. 

As can readily be seen, iTost properties in this event were un- 

changed. For the remainder of this chapter, only those properties 

which are changed by the event in question will be listed. However, 

the properties will always be presented in the same order, and numbers 
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will be skipped for those properties not discussed. For example, 

the "can-wake" relation will always be presented as property Px.10, 

where "x" corresponds to the event number. 

E2   Executor e_ becomes alter-connected to file f_. 

The second event is similar to the first one except that it is 

the "can-alter" relation which is changed. 

C2.1 ST If)  • USED 

The file must exist. 

C2.2 CLR(e) <CLS[f) 

In order for executor e_ to be able to alter file f_, the informa- 

tion-dissemination axiom must be true; that is the file's classi- 

fication must be greater than or equal to the executor's clearance. 

C2.3 e v d 

That is, e must be able to view file d_ - (f's parent directory). 

Note: this condition guarantees that the directory hierarchy can 

be searched. 

P2.5 For all e1 in E, f^ in F, e-\  a' f-j if and only if e-j a f-j 

OR [e1 = e A f1 = f A C2.1 A C2.2 A C2.3] 

If the conditions are all satisfied, the requested addition is 

made to the alter relation, otherwise there is no change. 

All other properties remain as they were before the occurrence 

of E2. 

Note that a file can become "view and alter connected" if both 

events El and E2 occur successfully. As we have shown, any serial 

combination of events can occur consecutively without endangering 

security. 
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E3   Executor e_ becomes disconnected from file f. 

This event is used to reverse the effects of the two previous 

events. It would generally occur when a user logs out although it 

might also be invoked in the middle of a run to protect a data file 

from an undebugged program. 

C3.1 ST If)  = USED 

P3.5  For all e-j in E, f-j in F, e^ a' f-j if and only if e-j a  f-j 

A—i ((e1 = e) A (f 6 f,) A C3.1) 

In other words, all files 1n the subtree dominated by f_w1ll be 

"alter" disconnected from executor e_. 

P3.6  For all e-| in E, f-| in F, e-, v' f1 if and only if e-| v f, 

A —, ((e1 = e) A (f 6 f^ A C3.1). 

Similarly, the view relation is changed to disallow viewing of 

file f or its subtree by executor e_. 

All other properties are unchanged. 
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E4   Executor e_ creates file f_ in directory d_ with attribute values 

V.and classification c. 

C4.1  ST(d) = USED 

File f/s parent directory is currently in use. This is necessary 

to guarantee that we have a tree structure. 

C4.2  CLR(e) < CLS(d) 

To avoid an illegal flow of information, the executor must be at 

a clearance which is less than or equal to the classification of 

the directory since creating a file includes making an entry 1n the 

directory. 

C4.3  d 6 f and for all f-| in F—i(d 6' f-| A fj 6' f A f, • d) 

File f is in directory d_. 

C4.4  ST(f) = UNUSED. 

File f is not currently in use. 

C4.5  CLS(d) < C 

The classification specified for the new file must be greater than 

or equal to d's classification. (This is a consequence of the 

tree-structure axioms of S-j). 

C4.6  4*(V) = USED 

The requested value for status must be "USED". 

P4.1  For all f] in F, C4.1 A C4.2 A C4.3 A C4.4 A C4.5 A C4.6 

A f] = f implies ST' (f) *6*(V) while i(C4.1 A C4.2 A 

A ... A C4.6 A f1 = f ) implies ST'(f^)  = ST(f^). 

If the conditions are satisfied, the status of f becomes "USED". 

P4.2  For all f] in F, CLS'(f})  -  \ CLS(fl > if ^(f= f 1 A C4J 

A C4.2 A... A C4.6) 

c&(V)if f  f1 A C4.1 A... C4.6 
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The specified classification is assigned to file f if the condi- 

tions are met. Note that CLS(f] (that is f's classification be- 

fore the event) is undefined. 

P4.3  For all f., in F, 

Fav'(f ] ={Fav(fi' if —'(fl = f A C4J A ••• C4-6) 

[V if f1 = f A C4.1 A ... / C4.6 

Provided that the conditions are satisfied the other attributes 

are assigned as designated. 

P4.4 a) For all f-j, f2 in F, f-, 6' f2 if and only if f1 6 f2 OR 

(f1 6 d A (f2 = f) A C4.1 A ... A C4.6) OR 

((f-\  = f2 = f) A C4.1 A ... A C4.6) 

b) For all f. in F, f 6 f1 *•* f = f] 

The tree structure is changed to include f. Also, f_ dominates only 

itself. 

E5   Executor £ destroys file f in directory d_ 

This event allows the deletion of unwanted segments and directories. 

Note that we do not want dangling subtrees due to A2.17. Therefore, if we 

wish to delete a directory, we insist that any file it dominates is also 

deleted. 

C5.1 ST(d) = USED. The parent directory must be in use. 

C5.2  CLR(e) « CLS(d) 

We must be able to alter d_, since the directory hierarchy will no 

lonaer have a pointer to f. 

P5.1      For all f]  in F, 

ST'(f ]    »    I UNUSED    if   f 6 fi A    C5J A C5-2 

ST(f^}  if   —i (f 5 f1 A  C5.1   AC5.2) 
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Given that the conditions are satisfied, the file's status will 

become "UNUSED". 

P5.2  For all f1 in F, 

CLS'ff^ • UNVETWEV  if f 6 f, A C5.1 A C5.2 

CLS(f^)  if—i(f 6 f1 A C5.1 A C5.2) 

The file destroyed (and any descendants) no longer has any 

classification defined (assuming of course that the conditions 

are all satisfied). 

P5.3  For all f1 in F, 

Fav'Cf-,) UNVEVINEV  if f 6 f1 A C5.1 A C5.2 

Favff^if—i(f 6 f1 A C5.1 A C5.2) 

All other attributes in the affected files will now be undefined 

also. 

P5,4  For all f,, fg in F, f}  <s' f2 if and only if f] 6 f2 

A —»(C5.1 A C5.2 A f 6 ^) 

For all files that remain in use after the event occurs, the 

"dominates" relation still holds. Note that if some condition 

is not satisfied, the event is unsuccessful and no change is made 

to the files or the dominates relation. 

P5.5  For all e-, in E, f-j in F, e-, a1 f-i if and only if e-| a f-i 

A —.(f 6 f-| A C5.1 A C5.2) 

Any of the deleted files can no longer be altered.  Access 

remains unchanged if the event is unsuccessful. 

P5.6  For all f, in F, e-j in E,  e-| v' f-| if and only if e-j v f-| 

A—i(f 5 f, A C5.1 A C5.2) 

If the conditions are met, file f and any of its ancestors may no 

longer be viewed. 
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All other properties remain uncharged. 

E6   Executor e_ changes the attribute values of f to V^ 

Most of the state changes in the system will involve changing the 

value of some file attribute - usually its contents. In subsequent, 

more detailed models, this general event will be broken into a number 

of more specialized operations. Not all attribute values will be con- 

tained within the file itself. Some will be located in the directory 

which immediately dominates the file, end some may be located else- 

where. An executor will have to have the proper capability to access 

an attribute. As a result, additional restraints will appear in the 

next chapter. For the present, the classifications of attributes are 

ignored. 

C6.1  5T(f) = USED 

The file must be in use. Otherwise, it would make no sense to 

change its attributes. 

C6.2 U[V)        - USED 

The file remains in use after the event occurs. 

C6.3  efc(V) = (f) 

The classification of file f also must not change. 

P6.3  For all f1 in F, 

Fau'(f) =   V if f-| = f A C6.1 A C6.2 A C6.3 

Tav  (fj) if —>(f] = f A C6.1 A C6.2 A C6.3) 

If the conditions are met, file f s attributes are changed as 

requested. All other properties ire unchanged. 
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E7:   Executor e_ raises classification of file f to C_. 

C7.   57(f) = USED 

The file must be 1n use. 

C7.   For all f1 in F such that f 6 f1, CLS(f) ± C * CLS(f1) 

The new classification must be greater than or equal to the old 

one. Furthermore, the new classification for f must be less than 

or equal to that of any file which f dominates. This guarentees that 

the classifications increase as you get further from the root. In the 

next chapter, however, we will see that a practical implementation will 

necessitate an even more constraining condition which will still gua- 

rantee increasing classifications in the tree (see operation 10 in 

Section 6.8). 

P7.2  For all f}  in F 

CLS'   (f )    =    C if f-i = f AC7.1 A C7.2 A C7.3 

CLS(f1) if —t(f-, = f A C7.1 A C7.2 A C7.3) 
X 

File f is raised to the new classification if permitted. All 

other files are unchanged. 

P7.5  For all e-j in E, f-j in F e^j a' f^ if and only if e-| a f-| 

A [—i(f 6 P1 A f = f-, A C7.1 A C7.2 A C7.3) OR 

C iCLRfe^] 

The "can-alter" relation may have to be changed to disallow any 

file whose ancestor is f, if f can no longer be viewed (see next 

property). 

P7.6  For all e,  in E, f-j in F, e^ v' f-j if and only if e^ v f-j 

A [—»(f - f. A C7.1 A C7.2 A C7.3) OR 

C * CLR^)] 

In order for some executor, e- to be able to view some file fj, 

the information acquisition axiom must be satisfied, that is 
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CLS'(f.) < CLR'(e.). If the new classification is no longer less 

than or equal to exdcutor e^'s classification, then the "can-view" 

relation must change. Also, if f can no longer be viewed, any 

file dominated by f can no longer be viewed. However, the condi- 

tions guarantee that these dominated files could not have been 

view-connected before the event. Therefore, only file f need be 

checked. 

All other properties remain unchanged. 

E8:   Executor e_ views file f_ 

This is a passive event, in the sense that no visible changes to 

the state occur. We do however define a "contents" function 

on the executor-properties function. This might correspond to some 

register in an actual machine receiving some information. 

C8.1  e v f 

The only condition necessary is that executor e is able to view 

file f. 

f. info if C8.1 

Pa*(Ep(e)) if—>C8.1 

If allowed, information moves from file to executor. 

P8.12  p«*'(Ep(e)) 

We have finished describing the events which involve files and 

now move on to the other type of repository, namely mailboxes. 
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E9:   Executor e_ becomes "receive-connected" to mailbox m. 

This event allows an executor to receive messages from (and block 

on) a mailbox. 

C9,l  CLS(m) = CLR(e) 

Both mailbox and executor must have the same security classifica- 

tion since blocking involves both a view and an alter. 

P9.9  For ail e-| in E, m-j in M» e-\   e' m-j if and only if e-j g m-| 

OR [e-j = e_ A m-! = m A C9.1] 

If permitted, the specified mailbox is "block-connected". 

All other properties are unchanged. 

E10:   Executor e_ becomes signal-connected to mailbox m. 

C10.1 CLR(e) < CLS(m) 

Executor e_must be allowed to alter m and hence it must have a lower 

security class. 

P10.10 For all e^ in E, m-j in M, e^ w' m^ if and only if e-j u m, 

OR Ie-| = e. A m-| = m A C10.1] 

The "can-wake" relation now includes e can-wake m if the condition 

has been satisfied. 

Ell:   Executor e_ becomes disconnected from mailbox m. 

P11.9  For all e-.  in E, m-j in M, e-j 6' m-j if and only if 

e-j 6 m^j A (e-j f  e_ v n^ f m) 

P11.10 For all e-j in E, r^ in M} ei a' m1 if and only if e1 w m, 

(e^ f  e v m-j f m). 

Executor e can not be waked via the disconnected mailbox. 
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El2:   Executor e_ raises classification of mailbox m to C. 

C12.1  M-CLS(m) < C 

A mailbox's clearance may only increase. 

C12.2  CLR(e) < M-CLS(m) 

Since the classification change is a modification, it must be 

a writeup. 

P12.7  M-CLS'(m)- J C 1f C12.1 A C12.2 A •, • • 

M-CLS(m) if .(C12.1 A C12.2 A m-, = m) V 
Mailbox m acquires the new classification. 

PI2.9  For all e-j in E, m-j in M* ei e' m-j if and only if e-| g n^ 

and CLR'Ce-,) = CLS'Cm^ 

The "can block" relation is changed so that m cannot be blocked 

upon any longer (if the condition is satisfied) since the classi- 

fication of mailbox is no longer equal to the clearance of any 

of the executors which previously blocked on it. 

All other properties are unchanged. 

El3:   Executor e changes the attribute values of m to V. 

This event is used to change any other attributes that a mailbox 

might have. 

C13.1  CLR(e) £M-Ci.S(m). 

The information dissemination axiom must be obeyed. 

C13.2  c£6(V) = M-CLS(m) 

The mailbox's classification must not change. 

P13.8  For all m-, in M, 
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Mav'On,).    fVifml =m AC13J AC13'2 

| Mav(m-,) if—i (m1 = m A C13.1 A C13.2) 

All other properties are unchanged. 

E14:   Executor e_ signals via mailbox m 

An actual signal is sent by executor e. 

C14.1  e to m 

Executor e can signal via m. 

P14.8     For all m1 in M» 

Con(Mau(m-j)) u e.message if m-| • m 

A C14.1 

Con(Mau(mi)) if—i (m, = m A C14.1) 

A new message (in addition to those already there is placed in 

the mailbox. 

Con'[Mav[m^))  = 

< 

All other properties are unchanged. 

El5:   Executor e_ blocks on mailbox m. 

C15.1  e e m 

Executor e "can-block" on m. 

P15.8  For all m^ 1n M 

Con' [Hav(m,)) =  f Co^av(m^ A —, m, .message If •, = m A 
'1 

1 

Con(Mau(m^)) if—»(m-j = mA C15.1) 

If the condition is satisfied, a message is removed from the 

mailbox. 

All other properties are unchanged. 
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E16:   Executor e_ raises its own clearance to C_. 

An executor may raise its clearance, however we must make sure 

that its capabilities are changed to be compatible with the new 

clearance. 

C16.1  CLR(e) ± C « MAXCLR(e) 

The change in clearance can only be an increase. In addition, 

the new clearance must be less than or equal to the user's clea- 

rance, i.e. each executor has a maximum clearance. 

P16.5  For all e-j in E, f-j in F, e-| a' f-j if and only if e-| a f-j 

A [C ^CLS(f1) v—'C16.1] 

In order for e_ to continue to be able to alter a file, the file's 

classification must be greater than or equal to the new clearance. 

PI6.9  For all e-j in E, m-| in M, e-j a' m-i if and only if e-j e m-| 

A —,(e1 = e A C16.1) 

Since executors can block only on mailboxes at the same classi- 

fication, all presently connected mailboxes must be disconnected, 

if the event is successful. 

P16.10  For all m-| in M, e-j in E, e-| w' m, if and only if e. w m-j 

A [ i(e1 = e A C16.1) OR C < M-CLS(m-,)] 

If the condition is satisfied, then a mailbox can remain signal 

connected only if the executor's new clearance is still lower 

than the mailbox's classification. 

P16.ll For all e^  in E, 

CLR'(ei) = ''C if e1 = e A C16.1 

CLRie^)  if—i(e1 = e A C16.1) 

The clearance of executor e is changed as specified provided that 

the condition is met. 
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All other properties are unchanged. 

El7:   Executor e_ changes its properties to P. 

This event is used to change properties other than "clearance" 

and "user". 

C17.1 cM(P) 

The clearance requested must be the same as the present clearance. 

C17.2 IUVLI?) * USER(e) 

The executor still belongs to the same user. 

P17.13 For all e] in E 

Ep>(e})    = ( 

Ep(e})  if i(C17.1 A C17.2A e]  = e) 

If the conditions are satisfied, the executor acquires a new set 

of properties. 

All other properties remain unchanged. 

P if C17.1 A C17.2 Ae;=e 
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5.3  The Connection to the Previous Specification 

Now that the S3 specification has been presented, our methodology 

requires that we show that it is an example of the specification pre- 

sented in chapter 4, and hence that the system is still uncompromisable. 

Specifically, we must use the axioms of S3, (primarily the conditions 

and properties which accompany the various events) to prove that the 

axioms of the S2 specification are satisfied. 

Formally this requires us to prove seventeen axioms about each of 

the seventeen events in the S3 specification. This would be a rather 

formidable task except that most of the events only change a few parts 

of the state of the system and most axioms at S« only refer to a few 

portions of the state. Thus, each event can only effect a few axioms. 

The proofs can be found in Appendix D. 
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6.    S4 - COMMANDS AT THE SECURITY PERIMETER 

6.1  Introduction 

In the previous chapter, we presented a set of prototype operations 

for the Security System. These prototypes can be thought of as equiva- 

lence classes of operations (where all operations belonging to the same 

class have identical security considerations). The purpose of this chap- 

ter is to describe the Security Perimeter - a group of primitives which 

comprise the virtual machine seen by users (and the operating system). 

In addition, the mapping between these primitives and the prototypes 

(of the last chapter) will be shown. 

At this point in the specification, it is necessary to introduce 

further details about the Security System, particularly those details 

concerning the properties of processes and files. The properties of a 

process are (for the most part) kept in the Process Segment table, while 

the properties of a file (its attributes) can be stored within the file 

system itself. 

One file attribute which is of particular interest from the military 

security point of view is the Access Control List which is used to imple- 

ment "need-to-know" security restrictions. Since processes can only ac- 

cess attached files, it is only necessary to check the Access Control List 

attribute when performing the "GET ACCESS" operation (see operation 3 in 

section 6.8) or the "REMOVE from ACL" operation (see operation 8). 
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6.2  Processes 

In this section we begin to introduce some of the structure of 

user processes; and in particular we will be interested in the follow- 

ing process attributes. 

1) the user to whom the processor belongs 

2) its clearance (security class) 

3) kinds of access permitted to the files in the file system; 

i.e. read, write or both. 

The first two pieces of information are stable in the sense that 

the amount of information is constant; the user always remains the 

same and only one clearance is associated with a process (though it can 

be raised). In contrast, access information can change in several 

ways. First, the type of access to files can change. More signifi- 

cantly, the number of files to which a process has access can change 

(thereby changing the amount of information about a process). To keep 

track of its access rights to files in the file system, each process 

has a table called the process segment table (PST). 
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6.3  The PST 

The Process Segment Table is a local representation of the file 

system and as such, it contains only those files which are known to 

the process, (See Biba, et. al [3]) However, the structure of the PST 

must clearly be related to that of the file system. 

PST (conceptual) 

0 
PST 

index name  parent pointer 

1 R 

2 B 1 

3 Dl 2 
4 El 3 
5 h 2 
6 JL. 4 

7 E2 5 

8 G2 7 

9 h 5 

0 

File System 

Fig. 6.3.1 PST Representation of the File System 

In order to contain sufficient information to represent the struc- 

ture, each PST entry contains a pointer to its parent (in the PST) and 

its relative position or entry-number in the parent directory. At first, 

one might suspect that a process' PST would be a subgraph of the file 

system; however, in order to reduce the amount of checking which must 

be done by the security system, we do not insist upon it. We ensure 

only that there is a homomorphic mapping from the nodes in the process 

segment table to the nodes of the file system. In other words, for any 

node in the PST, there is only one node in the File System. There is 

however, a possibility that two or more nodes in the PST correspond to 
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the same node in the file system. 

In Fig. 6.3.1, E, and E2 map into node e. More will be said about 

the PST in the section about operations. In particular, we will show 

how the initiate operation allows more than one PST entry to correspond 

to a single file. It is also possible that there are files in the file 

system which are unknown by a process; i.e. there is no entry in the 

PST corresponding to a node in the File System. In fig. 6.3.1, files 

a and c are such files. 

It seems appropriate now, to give some insight into the implementa- 

tion of the process segment table. As its name suggests, the PST is a 

table whose entries represent nodes of the file system. Each node has 

an implicit name - the index into the table. Information about thp tree 

structure of the PST is contained in links. In particular, each entry 

contains a pointer to its parent in the PST. Additional information in 

an entry would include the entry-number (as explained above), a mapping 

to the file system (see the GET ACCESS operation), an indication of the 

type of file (directory or segment) and whether the entry is in fact in 

use. One last piece of information, the childcnt, is used in directory 

files to keep track of the number of attached offspring it has. This 

is necessary because in order to remove ACCESS from a file, it must not 

have any descendents INUSE. Fig. 6.3.2 summarizes the contents of a 

PST entry. 

Parent Link 

Ptr. to file system 

Type/Inuse 

Entryno. 

Childcnt 

Fig. 6.3.2 
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6.4  Files 

Files were introduced in the S-j model and in a sense, they are 

the atomic unit in the information storage system. As in the case of 

the atom, the file can be broken into smaller pieces, but these smaller 

pieces (called attributes) have no function by themselves. Just as 

there are different types of atoms, there are different types of files; 

in particular there two types - directories and data-segments. Data- 

segments, represented by the boxes in Fig. 6.3.1, hold the information 

within the system while the directories provide the means for organiz- 

ing and finding this information. 

Each file consists of a set of attributes and there appear to be 

two types of attributes (which should be considered separately for spe- 

cification purposes). The first type consists of attributes which re- 

strict access to a file. This group of attributes consists of CLS 

(classification), ACL (Access Control List), TYPE and RINGBRACK. The 

second type includes CURLEN, MAXLEN, NAME, DTM (Date & Time Modified) 

etc., and in a sense they represent physical characteristics of the 

file. The important difference lies in the fact that modifying arbi- 

trarily one of the access attributes could have disasterous effects; 

e.g. changing CLS(f) to a lower classification would be equivalent to 

moving the contents of f to another file with a lower classification 

which is clearly illegal. 

The second type of attribute does not by itself pose a security 

threat (even if tampered with) however the attributes must be given 

classifications at which they can be read from and stored into when 

necessary while satisfying the SQ axioms. We have intuitively decided 
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upon the classifications of these attributes (See Ames [1974]) and later 

when we discuss the primitive commands of the system, we will show that 

there are no violations of the security axioms. 

6.5  Access Attributes 

CLS (classification) 

This attribute indicates the security level of the file. 

A file's classification may be altered by three different 

commands - CREATE FILE, DELETE FILE and WISE CLASS. Each 

of these commands must allow the executor to view and alter 

the file's directory and hence the executor's clearance must 

be the same as the classification of the file's directory. 

Since the executor must be able to alter "CLS", it must be 

at a clearance less than or equal to the classification of 

the attribute. Thus the classification of CLS could con- 

ceivably be either that of the directory or that of the da- 

ta segment. There is however, one more factor which con- 

trains the attribute's classification: The RAISE CLASS 

operation must check that the new classification is greater 

than or equal to the old one. Since it must view CLS, we 

stipulate that the "CLS" attribute for file f has a classi- 

fication which equals the classification of d (file f's 

parent directory). 

ACL (Access Control List) 

An ACL is the means of providing discretionary security. By 

this, we mean that a user A can specify who may have access 

88 



TYPE 

privileges to any of his files. For a user to access such 

a file, he must have both the proper clearance and A's per- 

mission. Since it is essential that a user find out whether 

he may access a file f before actually accessing the file, we 

stipulate that f's ACL is associated with (and at the same 

classification as) f's parent directory. 

Although it is not obvious, this attribute also serves to 

restrict access to a file. A file's type may be: DIRECTORY, 

DATASEGMEMT 0r UNUSED. If a file's TYPE is DIRECTORY, or UN- 

USED the following special restrictions are placed on access 

privileges: A directory can only be accessed by system com- 

mands (for integrity reasons), while an unused file just 

doesn't exist and cannot be accessed at all. A file's type 

must be viewed if its classification is to be changed. Since 

it must be viewed and altered by operations working at the 

directory's classification, TYPE must also be at that clas- 

sification. 

RINGBRACKETS 

This attribute is used as an integrity mechanism in Multics. 

Ringbrackets provide the means for restricting the access 

of directories to ring-0 (privileged system) routines and 

facilitate a distributed operating system whereby another 

user's interrupts may be handled without switching process- 

es. RINGBRACKETS must be viewed before access to a file is 

permitted and is necessarily at the directory's classification. 
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6.6   Characteristic Attributes 

AUTHOR 

There is no apparent necessity for maintaining this attri- 

bute which designates the user who originally created the 

file. If desired, it should be located in the directory 

since it will only be altered upon creation and deletion. 

BITCNT (bit count) 

This attribute specifies (with single bit granularity) 

how much of a data-segment is being used. (It is not appli 

cable to directories). It is useful for printing files 

etc. but is ignored by the security system. (It is some- 

what analogous to the unofficial clock at a football game). 

The attribute must be at the same classification as the 

data-segment so that the user can view and alter it while 

working on the file. We use the terminology "logically lo- 

cated in the data-segment" to express the notion that con- 

ceptually, the attribute is located with (and at the same 

classification as) the contents of the file. However, it 

is expected that in the actual implementation, this attri- 

bute will physically reside in the directory. Still, the 

use of system routines to interperatively access items in 

a directory allows the system to "make believe" the attri- 

bute is really ir. the data-segment; that is it will obey 

the security restrictions as if it were at the classifica- 

tion of the data-segment. 
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CURLEN (current length) 

This attribute is an integrity mechanism (though not the 

only line of defense) to prevent exceeding a data-segment's 

boundary and illegally accessing another file. See 

Schroeder and Saltzer [ 11 ] for a discussion of how Multics' 

virtual memory hardware also performs this function. Since 

the current length changes as the file is altered, it must 

be logically-located in the file itself. (Refer to BITCNT 

for a discussion of "logical-location"). Note: this differs 

from the present Multics implementation. 

CONTENTS 

The contents attribute (only for a data-segment) is the in- 

formation which is kept there. Unlike directories, a data 

segment may be filled arbitrarily and directly by users with 

appropriate access privileges and likewise may be directly 

viewed by users. The contents of a file, by definition, 

reside in the file and at the file's classification. 

COPYSWITCH 

This attribute (used only for data-segments) assures each 

user his own copy of the file. This is necessary for seg- 

ments containing non-reentrant code. The user need not 

know about this attribute, however, for security purposes, 

it should be located in the directory so that it may be 

viewed during the "GET ACCESS" command which operates at 

the directory's classification. 
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DTD (Date/Time Dumped) 

This attribute is used by the file system's backup mechanism. 

All files are saved regularly so that restoration can be 

achieved in the event of a system failure. Presumably, some 

process at the file's clearance must view the file, copy it 

elsewhere and set DTD. Since the DTD attribute must be al- 

tered, it should be logically-located with the file. 

DTEM (Date and Time Entry Modified) 

This attribute is presently used in Multics to indicate when 

any of a file's attributes (besides contents of a data-seg- 

ment) was last changed. Since some attributes are logical- 

ly-located with the file itself, while others are logically- 

located with the directory, the DTEM would have to be logi- 

cally-located with the file. Alternatively, the DTEM could 

be separated into two attributes - DTFEM and DTDEM. The 

first would reflect changes to attributes logically-located 

with the file while the second would represent those of the 

directory. Each would be logically-located with the attri- 

butes it monitors. 

DTM (Date/Time Modified) 

This is similar to DTEM (above) but is modified when the 

contents (of a data-segment) are altered. It too must be 

logically located with the file. 

92 



DTU (Date/T1me Used) 

In present Multics, DTU keeps track of when a file has been 

accessed (in any manner). It is useful for determining the 

secondary storage medium on which a file should be kept. 

For example, a file accessed in the last few seconds should 

probably be swapped to bulk core or fast drum since it is 

likely to be used again, while a file that hasn't been re- 

ferenced in several months might be moved from disk to tape 

in order to save disk space. Despite its usefulness, DTU 

poses a security threat. This is because a file may be 

viewed from any clearance which is greater than the classi- 

fication of the file. Since the DTU attribute is altered 

as a result of this observation, it must be at a higher clas- 

sification than the agent which viewed the file. To satisfy 

the most general case, it cannot be stored in the directory 

or file and in general, it cannot be viewed by the owner of 

the file. These serious restrictions indicate that this 

attribute should be maintained within the security system 

and hidden from the user. For alternative schemes, see Biba, 

et. al [ 3]. 

IACL (Initial Access Control List) 

Specifying an ACL each time a file is created could become 

annoying, especially if the ACL is complex. Multics has 

given the user the capability of specifying a default ACL 

known as the Initial Access Control List or IACL. An IACL 

is associated only with directory files and stipulates that 

all files created in it (without an ACL specified) will use 
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a copy of the IACL as their ACL. Since in Multics, the IACL 

can be changed by anyone with modify access to the (directory) 

file with which it is associated, the IACL must be logically- 

located in the (directory) Itself. 

NAMES 

To paraphrase a famous poem, "A file with any other name would 

still contain the same information". One of the features of 

Multics is that a file can have any number of names by which 

users can refer to it. In order to simplify the security 

system a file is accessed as an index into the Process Seg- 

ment Table (see sec. 6.3). However for convenience, the 

operating system will provide users with reference names for 

the file. Since the NAMES attribute must be viewed by the 

operating system's "Delete" command, and altered by the 

system's "Create" command (both of which occur at the direc- 

tory's classification), the NAMES attribute must be logical- 

ly-located with the directory. 

QUOTA 

INFQCNT (Inferior Quota Count) 

SPUSED  (Space Used) 

TACCSW  (Terminal Account Switch) 

These four attributes are involved with the file system quota 

mechanism. As the name implies, quotas are used to limit 

secondary storage allocation. Only directories may have 

quotas in present Multics, and not all directories need 

quotas. A file attribute called the Terminal Account Switch 
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(TACCSW) determines whether the directory may have a quota. 

When more storage space is needed by a file, this space is 

charged against the quota of the first directory encountered 

(going up the tree towards the root) which has its TACCSW 

set on. (As will be explained later in more detail, this 

presents a security problem). The "Space Used" (SPUSED) 

attribute indicates the amount of storage charged against 

the quota of a directory. The difference between QUOTA 

and SPUSED gives the amount cf storage space that may still 

be assigned. 

A security problem occurs if a user is writing in a data- 

segment and additional space becomes necessary. The pro- 

cess must be capable of altering the file and of viewing 

and altering the QUOTA, SPUSED and TACCSW attributes of 

some superior directory. Clearly the process would have 

to be at a clearance equal to the classification of the 

directory file which contains these attributes, and unless 

blind writing of the data-segment were being done, the 

classification of the segment would have to be the same. 

In other words all data-segments would have to have their 

parent's classification. Alternatively, data segments 

could be given their own quota which might be embodied in 

the MAXLEN attribute. SPUSED would then be taken care of 

by CURLEU. Clearly the space usage would have to be anti- 

cipated and MAXLEN set ahead of time. Also, in the direc- 

tory structure, TACCSW would have to be set at each direc- 
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tory file which had a classification different from its 

parent's. 

One restriction still necessary is that quota may only move 

down the tree (away from the root) except in the case of DE- 

STROY SUBTREE (see sec. 6.8). Quota may only be sent down 

the tree - never requested and it may only be taken back in 

its entirety. Thus no information is passed downward in the 

form of a quota request or encoded in a quota return. 

RECUSEO (Records Used) 

This attribute indicates how much storage space is used by 

an individual file. Since RECUSED must be modified when the 

file is modified, it must be logically-located with the file. 

Thus, RECUSED may only be observed if the file can also be 

observed; it may not be observed from the directory containing 

the file as is the case with the present Multics implementation. 

SAFSW (Safety Switch) 

In present Multics, the SAFSW attribute is used as a lock to 

prevent a file from being deleted. This attribute is useless 

since the "Delete" command will have to allow blind deletes. 

(See Delete, sec. 6.8) 

DID (Device Identifier) 

This attribute tells what type of storage device the file is 

stored in. It would have to be at the classification of the 

file itself so that when a file is moved from one device to 

another the DID attribute can be observed and modified. Al- 

ternatively, this attribute could be hidden from the user. 
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UID (Unique Identifier) 

The purpose of the UID in present Multics is to assure that 

any file (possibly accessed by more than one name) appears 

in core only once. Since a file's UID may not change (it is 

view-only) it can be logically located with the directory. 

6.7  Process Attributes 

Associated with any process will be three basic attributes: Pro- 

cess Clearance (PCLR), Process Segment Table (PST) and Process User 

(PUSER). These attributes will be described here. 

PCLR (Process Clearance) 

This attribute gives the clearance of a process (which must 

be at a security level attainable by the owner of the pro- 

cess). Furthermore, restrictions must be made on how a 

process' clearance can change. We will stipulate that it 

can be changed only by the "CHANGE CLEARANCE" operation 

(see sec. 6.8) and the clearance can only increase. 

PUSER (Process User) 

A process can belong to exactly one user and that user will 

remain the same throughout the life of the process. Hence 

the PUSER attribute may not be altered. 

Though the PST is an attribute of a process, it is both unusual 

and complex. As mentioned before, it is the process1 "picture" of the 

file system. Each known file will have at least one PST entry, al- 

though some redundancy is possible. The subentries of the PST will be 

summarized here. 
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ALPAR (Alleged Parent) 

When an entry is created in the PST, a pointer indicating 

the parent is created. Since no information about this 

entry (or the entry pointed to) has been verified with the 

information in the file system, we use the term "alleged 

parent". As long as the PST is not attached to some file, 

information in the entry may be invalid. 

CHILDCNT 

ATTACHED 

MAP 

(Childcount) 

This attribute reflects the number of entries which have 

been initiated directly inferior to this entry. It is 

useful in making sure that a directory has no offspring 

still attached to the PST. This is necessary since there 

are no downward pointers in the PST, and CHILDCNT is re- 

lied upon to determine whether a file can be detached. 

To be of any use, an entry in the PST must be associated 

with or ATTACHED to some file in the file system. The 

ATTACHED attribute is the boolean which indicates whether 

the GET ACCESS operation has in fact taken place. When 

ATTACHED is true, the information in the PST can be re- 

garded as being accurate. 

This is the internal pointer in the PST entry which pro- 

vides a handle on the file system. It can be used only 

after the file has been attached and is set up during the 
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GET ACCESS operation. 

PENTRYNO (PST Entry Number) 

The file system can be thought of as an ordered tree (see 

Knuth vol. I, sec. 2.3.4.2) since the order of the branches 

is Important. As a result, any file can be uniquely des- 

cribed by two pieces of information: 1) its parent and 

2) the particular branch or Entry Number within the parent 

directory. Given that all processes are attached to the 

root, all desired files can be described by working down 

the tree. In general, the ALPAR and PENTRYNO attributes 

will provide enough information to access a file, since 

PENTRYNO corresponds to the Entry Number of the desired 

file within its parent directory. 

6.8  Primitive Operations 

We are now ready to discuss a set of primitive operations for the 

system. Our goal Is to provide a minimal set of primitives which can 

be certified and which will support a Multics-like system. 

Basically, each of the operations manipulates one or more of the 

previously described attributes. By placing appropriate restrictions 

on critical attributes (those listed as "Access Attributes") and mak- 

ing sure that the process has appropriate access permission to all 

attributes used to carry out a primitive, we feel that a primitive can 

be certified. 

Before jumping into the descriptions of these primitives, a dis- 

cussion of our notation might be helpful. We have chosen script let- 

ters to represent functions, e.g. alpon, type., kl.    They return the 

value of the attribute with the same name. Functions beginning with a 
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capital letter return several values, e.g. \)l  (view-list) which re- 

turns a list of users. Conversely those beginning with a small letter 

return a single value such as a file's type or classification. Com- 

posite functions will often be used to simplify notation and will be 

represented by capital script letters. For example in the GET ACCESS 

primitive, while attempting to attach a PST entry to some file, the 

TYPE of the file must be ascertained by the composite function: 

p-typz' (F) = type, [blanch  (pznOiyr.) (F), map  (alpar(F)))] 

using shorthand, we will write: 

p-jfetf>e'{F) *   TYPE(f] 

A function's arguments will typically consist of file names or 

PST entries. We will use capital arabic letters for PST entry names 

though the reader should keep in mind that it is actually an index 

into a table. Files will be represented by small arabic letters though 

in actuality, files can only be referred to by a pointer (from the PST) 

to the file's parent directory and an tntry number within the direc- 

tory. For our descriptions, the letters in the PST will match those 

in the file system (see fig. 6.3.1) however there is really no rela- 

tionship between them. 

The primitive operations will be described in terms of conditions 

and properties. A condition will have a value of TRUE or FALSE, while 

the properties will represent the end result of the operation. Note 

that a property may depend on various conditions being true. 

Each of the properties has been given a number for organizational 

purposes. The descriptions in the next section list these properties 

as P x.n where x stands for the operation number and n represents the 
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property number. Table 6.8.1 summarizes the properties and their numbers: 

Px.l Cli, (classition) 

Px.2 mayvlwo, mayaJUzA.  (These correspond to discretionary view and 

alter permission. See ADD ACL, and the 6ETACCESS 

operations, sec. 6.8.) 
Px.3 type. 

Px.4 Zing (ring brackets) 

Px.5 d-chaA. (characteristics or attributes logically 

located in the directory) 

Px.6 1-chaA. (attributes logically located locally or 

with the file). 

Px.7 p-vj>QJi (process1 user) 

Px.8 p-cJUi (process' clearance) 

Px.9 p-typz (process1 type) 

Px.10 alpaji (alleged parent) 

Px.ll ckiZdcnt (childcount) 

Px.l2 attachzd 

Px.l3 map 

Px.14 p-eatyno (entry number) 

Table 6.8.1 

The conditions for each operation are also assigned numbers which 

begin with the letter "C", however, the number has no implicit meaning. 

One additional piece of information is given to indicate the ac- 

cess privileges needed to test a condition or satisfy a property. It 

is located near the right margin in parenthesis and has the form 

(p y PST) or (p 9 f) etc. where 9 and y stand for observe and modify 

respectively while "PST" or "f" indicate the repository being accessed. 

The "p" indicates that the process is making the access. Also, "No 
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access required" is indicated by a hyphen, i.e. (-). 

1.)  INITIATE PST entry f_ as entry number eno_ in p_ with type T 

The INITIATE operation is used to place an entry in the Process 

Segment Table. In keeping with the Multics philosophy that a file 

doesn't become attached until it is accessed, INITIATE does no more 

than build the entry. This information is not considered valid until 

the GET ACCESS operation has attached the file. 

Cl.l p-type.{F)    = UNUSED (p 0 PST) 

First, the PST entry must not be in use since information which is 

presently valid would be destroyed. 

C1.2  p-^t/pe(D) = DIRECTORY (p 9 PST) 

Since we are initiating a file in D, we must be certain that D is 

expected to be a directory. If not, the modification of CHILDCNT 

(see Pl.ll) would be invalid. 

PI.1-6 There are no changes made tc the file system. ( - ) 

PI.7  Vp-jeP p-U6eA' (p-j) = p-adeA.(pi) ( - ) 

The USER who owns the process cannot be changed. One assumption which 

has been made is that a PST is created with P-USER correctly established, 

PI.8  VPleP p-c£V(Pl) = p-eJU(p}) ( - ) 

The clearance of the process remains the same. Recall that only one 

operation, CHANGE CLEARANCE, is able to change a process* clearance. 

Again, it is assumed that a PST's P-CLR attribute is properly initiated. 

PI.10 VF]ePST aJLptUi'iF^)  = TD if (F] = F) A Cl.l A C1.2 

la£pa/!.(F,) otherwise   (p y PST) 
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The process sets up a pointer to the PST entry it thinks is the de- 

sired parent, (see explanation of PST sec. 6.3) 

PI.11    VF^PST cfutedcitC'(F1) = [o if (F-,=F)  A Cl.l  A C1.2 

I ckildcnti?-|) otheriwse (p y PST) 

The CHILDCNT attribute must be initializad to zero reflecting the 

fact that no files have been initiated inferior to F. 

chUdcwt'iD) =  LtuMcnt (D) + 1  if (F,=F) A Cl.l  A C1.2 

chUdcnt (D) otherwise (p v PST) 

The CHILDCNT attribute of D must be altered to reflect the fact that 

a new file has been INITIATED below it. 

PI.12    VF^PST cuUach&d* (F]) = (FALSE if (Fj-F) A Cl.l A C1.2 

| attac/ied(F-|) otherwise    (p y PST) 

The ATTACHED attribute is made TRUE by the GETACCESS operation and 

must be FALSE until  that time. 

PI.13    VF,ePST map'CF,) =    NULL if  (F,=F) A  Cl.l A Cl.2    (p v  PST) 

map(F,) otherwise 
v. 

The MAP attribute is the process' handle on the file, however it is 

not considered valid until the file has been attached. 

PI.14 VF^PST p -ent/urnc^) = | eno if (F^F) A Cl.l A Cl.2 
« 

p-en£>u/tto(K,) otherwise (p y PST) 

The Process Entry Number is set to specify the file within the direc- 

tory (in the file system) which is desired. 

PI.15 VFf PST, VneN 

branch* {map(F,),n) = bAjcmch(map(F-, ),n) ( - ) 

This property states that the structure of the file system is unchanged 

or, more specifically, that each directory file keeps the same files 

as offspring. 
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2.)  TERMINATE PST entry F. 

This operation can be thought of as the opposite of INITIATE. Its 

purpose is to remove an entry from the PST, However, several checks 

must be made before the operation occurs. 

C2.1    ckUdant(F)  = 0 (p 8 PST) 

The file must have no files initiated beneath it. i.e. it must be 

either a directory with no offspring initiated or a datasegment (which 

obeys this condition by definition). 

P2.1-6  No file attributes are changed. 

P2.7   Vpiep-a4eA'(p,)  • p-oaeA(p-|) ( - ) 

P2.8   p-ceV(p) = p-c£/i(p) ( ~ ) 

P2.9   VFlePST p-^pe'fFj) = ^NUSED if C2.1 A (F^F) 

1 p-^pe(F-j) otherwise     (p y PST) 

The purpose of this operation is to make an entry available (which 

amounts to setting the P-TYPE attribute to UNUSED). 

P2.10   VFiePST alpaA'it^  = [UNDEFINED if (F-,=F) A C2.1 

la£pa*(F-|) otherwise       (p y PST) 

P2.ll        VF]ePST duZdcnt' (F]) = Jo if (F^F)  A C2.1 

[ckUdant (F-j) otherwise      (p y PST) 

P2.12       VF1£PST cuttack&d' (F^ = JFALSE if (F^F)  A C2.1 

\aXtackzdiJ•>) otherwise        (p y PST) 

P2.13       VF^PST map'i?^) = J NULL if (F^F) A C2.1 

| map (F-,) otherwise (p y PST) 
v. . ' 

P2.14       VFlePST p-ZYvUiynol{?^) = [ NULL if (F^F) A C2.1 

p-zn&iyno (F-j) otherwise (p y PST) 

104 



These attributes are all set to some "safe" value. Although they 

could just as well be "Don't Care" since INITIATE initializes them, 

as a precaution, they should be set to NULL. 

P2.15       VF^PST, Vne&l branch' (mop^Jn) ( - ) 

= branch (map (F-,),n) 

The file system structure is not changed. 

i 
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3.)   GET ACCESS a for F 

The Purpose of this operation is to give the process a handle on 

the file system. This involves checking all the information in the PST 

for correctness and setting the ATTACHED and MAP attributes to appro- 

priate values. Actually, the ATTACHED attribute consists of three 

parts; VIEW-ATTACHED, ALTER-ATTACHED, and ATTACHED. The last of these 

indicates that the file is attached in some manner, while the first two 

describe the process' capabilities for a given file. When the GET ACCESS 

operator has successfully occurred, we know that mandatory security 

(classifications), discretionary security (ACLs - ma.yvi.ew, ma.yoJU.eA)  and 

ringbrackets have been checked. In appendix E, we show that the value 

of the "ATTACHED" attributes remains consistent with the security axioms; 

in otherwords we can assume that we do indeed have the access capabilities 

specified by these attributes. 

The argument a_ specifies the privileges desired by the process for 

file F. Formally a. £ {view-desire, alter-desire}. Note that a_ has been 

specified during the initiate operation and is an implied argument. 

C3.1    viw)-cutfachzd(alpaA{F))  = TRUE (p 0 PST) 

For this operation to take place, the parent directory for F (in the 

file system) must be viewed. Note that this is equivalent to: 

viw-cuttackzd(\)) =  TRUE 

where D is F's alleged parent. This shortened form of notation will be 

used throughout this section although D is not specified and must be 

ascertained during the operation. 

C3.2   p-type{D) =  DIRECTORY (p 9 PST) 

Since D is allegedly F's parent, we would like to make sure that D 

is a directory. 
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C3.3   TVPE(f) e {DATASEGMENT, DIRECTORY}        (p 8 d) 

This condition is necessary to make sure that there is something to 

which this PST entry can be attached. 

C3.4   [ling <_ acceA&bound  (f) V  -1 a.alter] A 

[ftlng <_ cAlibound  (f) V  -7 a.view] 

The ring bracket accessing requirements must be met. See Organic, [ 9 ] 

for details about ring brackets. 

P3.1-6  All file system attributes remain unchanged. ( - ) 

P3.7.8 p-uAeA,p-cZn   remain constant. ( - ) 

P3.9   VF^PST p-typttf)) TVPE(f) if (F^F) A C3.1 A...A C3.4 

p-tijpzif-^)  otherwise (p y PST, p 9 d) 

The P-TYPE attribute (in the PST entry) is set to the TYPE attribute 

of the file 1n the file system. 

P3.10  VF^PST alpan} (F]) = alpari?^) 

Since this function was used to locate f in the file system, it is 

correct by definition in the sense that f_ is some specific offspring 

of d_, £ is the corresponding offspring of p_ and p_ corresponds to (or 

maps into) d_. 

P3.ll   VF^PST chlidcnt'i?^)  = 0 if (F^F) A C3.1 A... A C3.4 

ckildcn£{?-,) otherewise (p u PST) 

A newly attached file cannot yet have any offspring attached.    Note 

that with proper restrictions on other operations (namely INITIATE, 

TERMINATE and REMOVE ACCESS) we could have: 

VF^PST chUdcnt* (F-,) = chUdcntiF^) ( - ) 

P3.12       \)l<w-cuttach<Ldx (F]) = (a.view A [l/IEW-ACCESS(f ,U)~|A 

(F^F) A C3.1 A ... A C3.4 A (p y PST) 

CLS(f-\) lp-ct*(p)] v view-cU£a.che.d{F-\)  (p 9 d, PST) 
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This property will give a process the "can view" capability if per- 

mitted and desired. The term, "a.view" is a boolean used to indicate 

that "view desire" is true. Besides satisfying C3.1-3, user u_must 

have view permission in file f_'s Access Control List (denoted by the 

function VIEW-ACCESS), and the "information acquisition" property con- 

cerning Security Classifications must hold. (See ACL attributes. Section 

6.5)- 

VF-,ePST CUUZA-attacked'[F^) = (a.alter A (p 9 d, PST) 

A (r\,=F) A C3.1   AC3.2  AC3.3 A C3.4 A (p  y PST) 

[ALTER-ACCESS(f.u)] A \_p-cll(p) 4 ClS(f-,)]) 

V aUeA-attache.d(F}) 

This property is similar to the previous one, except that it gives 

"can alter" capability to the PST.    Again ACL and CLS attributes must 

be checked. 

VF^PST attached'(F^ = f TRUE if (F^F)  A C3.1   A C3.2  A C3.3 A C3.4 

attackcd(F.) otherwise (p v   PST) 

Note that the case where a file is attached with no access privileges 

is taken care of. 

P3.13       VF-jePST, map'(F-.) =    bhxmch\_map{oJLpasi{F-|), p-e.ntsiyno{F-\)] 

if (F.j=F)  A C3.1 A...A C3.4 

(p 9 c.PST) 

map(F-|) otherwise        (p y PST) 

The purpose of this property is to give the PST a handle of some sort 

on the actual file. (In the implementation, this would be a secondary 

storage address or pointer). Note that both the entry number and alleged 

parent which were specified in the INITIATE operation were used to ac- 

complish this operation, and there is an automatic correspondence (as 

described in sec. 5.3) between the PST and the File System since the 

attributes P-ENTRYNO and ALPAR cannot be tampered with. 
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P3.14       VF ePST, p-ewtnyno'(F-\) = p-ew^u/no (F-|) ( - ) 

The P-ENTRYNO   attribute must not be changed. 

P3.15 VF-jePST, Vn^N.  bnanck1 (map(F1 ),n) = b;uMcft(map(F-|),n) 

There is no change to the file system. 
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4.)  REMOVE ACCESS for F 

The purpose of this operation is to invalidate an entry in the 

PST. It might be called upon if an error were made, the process ter- 

minated, space in the PST were scarce or there were some cost involved 

maintaining an (unneeded) PST entry. In general, we would like this 

operation to place us in a state which followed the INITIATE operation 

but preceeded the GET ACCESS primitive for file f_. 

C4.1   attachedif) =  TRUE (p 9 PST) 

We must check that f_ is indeed a valid entry. At first one might con- 

jecture that no checks are necessary since if it were an invalid (un- 

attached) entry before the operation, it would still be invalid after- 

wards. However, as indicated by the next condition, we want to keep 

the CHILDCNT attribute accurate (for both f_ and f_'s alleged parent) 

and thus we must do checking. 

C4.2   chMd&ntiF)  - 0 (p 9 PST) 

As noted previously, a file can be detached from a process only if 

none of its offspring is attached. 

P4.1-8  unchanged 

P4.9 VFiePST, p-typi'{?]) = p-typz(?^) 

Since a TYPE may be specified by the INITIATE operation and we know 

that it is presently correct, we can leave it as is. 

P4.10        VF-^PST, alpaJL'i?^) = alpaJi{?^) 

This also is specified by INITIATE. 

P4.12       VF^PST, viw-attaohid1^}) = (FALSE if (F^F)      (p u PST) 

JA C4.1  A C4.2 

\jiew-cUtacke.d(f-\) otherwise 
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VFiePST aUtA-cuttadted'(*)) = (FALSE if (F^F) A C4.1AC4.2 

aZWx.-oJJjXQ.k<iii{^y) otherwi se 

attached* (F.,) = |FALSE if (F^F) A C4.1 A C4.2 

attachndi?-,) otherwise 

This property represents the operation's purpose - to remove access 

privileges from (i.e. detach) the file. 

P4.13       VF^PST, map'CF^ = J^NULL if (F^F) A C4.1 A C4.2 

1 map(F-j) otherwise 

The handle to the file system is no longer valid. 

P4.14   VF-jePST p-eR#u/no'(F-|) = p-znfrtyno(F-\) 

Since this is specified by INITIATE, it must remain unchanged. 

P4.15  The file system structure is unchanged. 

5.)  CREATE file f as entry eno in directory D^ with attributes V^ 

This operation causes a new file to come into existence in the 

file system. The new file can have almost an arbitrary set of attri- 

butes (with the exception of CLS which must be greater than or equal 

to c£4(d)  ). 

C5.1   vlew-attachadid)  = TRUE (p 9 PST) 

Some attributes in d_ must be examined (e.g. type(f)  ). Hence, 

view privilege is required. 

aJUVL-attachediD) =  TRUE (p 9 PST) 

The operation of creating a file f_ involves setting of attributes 

which are kept in d_. 

C5.2    p-type.(D)  = DIRICTORY (p 9 PST) 
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A file can be created only in a directory. 

C5.3   TVPE(f) = UNUSED (p 0 d) 

Only one file can occupy any given entry in a directory. This condi- 

tion precludes the existence of such a file before this operation is 

carried out. 

C5.4   p-cZ6(D) < c£6(V) (p 0 PST) 

Since the CLS attribute of a file must be greater than or equal to 

its parent's classification, this check must be done. 

C5.5   Afl>e[V) e {DATASEGMENT, DIRECTORY} 

A valid type must be requested. 

C5.6   -toig(V) > ring (p) 

In present Multics, a process may not create a file with a ring num- 

ber less than its present ring number. This is a "restriction to prevent 

a Trojan Horse (see Anderson [10]). 

P5.1      YfjeF, CLS'Cfi) = f^Mlf f] = bAanch(d,eno)A C5.1A ...AC5.6 

|CLS(f.|) otherwise (p y d) 

P5.2      Vf-,€F, ACL'(f^) = faCv£(V)1f f]  = bAancfe(d,eno)A C5.1   A...AC5.6 

]ACL(-f1) otherwise (p y d) 

P5.3     Vf]eF, TYPE'{f}) = 

P5.4     Vf^F, RINGS'(f.,) 

P5.5     Vf^F, P-CtfAR'(f,) = 

£ypz(V)  if f1«fa^oncfe(d,eno)A C5.1 A...AC5.6 

TYPECf-,) otherwise (p y d) 

••   -tcng(V)if fybnanch{d,er\o)/\ C5.1 A ...A C5.6 

RINGB (f-|) otherwise (p y d) 

d-duw(V) if f.  =bM.nch (d,eno) 

A C5.1  A  ...  A C5.6 

V-CHAR (fj) otherwise (p y d) 

P5.6     Vf^F,  L-CHAR'ff^ =(l-cha/i{\l) \f f] = 6Aancfi(d,eno)AC5.1 A..A C5.6 

I L-CHAR(f1) otherwise 
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The attributes for f are set if the conditions are met. 

P5.7-14 p-uu>eA., p-ct&  and the PST attributes remain untouched 

since the file has not yet been initiated. 

P5.15       Vd-jeF, VneN, bunch' (d1 ,n) f if d-i = map(D) A n=eno 

A C5.1  A ... A C5.6 

bnanch(d^t n) otherwise 
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6.)  DESTROY SUBTREE whose root is F 

This operation is used to delete files from the file system. A 

trivial case occurs when F_ is a data segment (the subtree consists of 

a single node). Due to restrictions involving ring brackets and quo- 

ta, this is in general the only permissable way to delete files. 

In the present implementation of Multics, a user may not delete 

a file with a lower ring bracket. However suppose (as illustrated in 

fig. 6.8.1) there is a subtree of files which increase in classifica- 

tion and decrease in ring number. Obviously, the process cannot view 

the ring attribute for file h.    Furthermore, file g_, which dominates 

h could be destroyed. Thus we have the undesirable possibility of a 

loose subtree. 

Another problem is the return of quota from a more classified 

directory to one with lower classification. As noted in sec. 6.6, 

the only way to prevent flow of information is to return the full quo- 

ta allotment. 

These two reasons force the DESTROY SUBTREE operation to ignore 

ring brackets. Although there could be more restricted forms of this 

operation under favorable circumstances (e.g. a subtree at a single 

classification with high enough ring brackets) the operating system 

could itself enforce the restrictions by walking the subtree and hence 

the security system need not be complicated further. 

Although this operation is unaesthetic, without it, a file system 

with more than one classification would be unworkable. Various other 

alternatives were explored by people at the MITRE Corp. (See Biba, et.al, 

[ 3 ]) 
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Q 

Uncl eared (d)r4 

Secret (7) r4 

Top Secret 

ro 

Fig. 6.8.1 - Ring brackets could not be checked when an uncleared 

user tried to DELETE SUBTREE with root d. 
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C6.1 viw-cuttack&d (D) = TRUE (p 0 PST) 

aUeA-attcLch&d (D) = TRUE (p G PST) 

The directory file which contains the root of the subtree must be 

viewable and alterable. 

C6.2        p-typz CD) = DIRECT. D must be a directory 

P6.1 Vf1 CLS'(f) = UNDEFINED if C6.1   A C6.2 

f,  e bnanck  (map(F)) (p u pcuilf^)) 

CLS(f|) otherwise 

The classifications of all files in the subtree must be set to UNDE- 

FINED. Note that the Sn axioms guarantee that all files f* which are 

in the subtree are at classifications greater than or equal to d_ and 

thus may be altered. 

P6.2 Vf1.ACL'(f1) = 

P6.3 Vf1 TV?V (f^ = 

UNDEFINED if C6.1  A C6.2A 

it 
fn e  bttamh (map(F)) 

ACL (f •x) otherwise 

* UNDEFINED if C6.1  A C6.2A 

* 
J f-j e   bsumch  (map(F)j 

(p y paA[f-\)) 

(p  y pa*(f|)) 

TyPE(f, ) otherwise 

P6.4 V^ RINGS'(f^ =( UNDEFINED if C6.1 A C6.2A 

* 
'   f-i e  blanch (map(F) ) 

„ RlMGB(f^) otherwise 

(p y patffj! 

P6.5 Vf1 t?-c^w'(f1) = UNDEFINED if C6.1 A 

f-j  e otumcJi  (map{F) ] 

IPv f^) 

P6.6 Vf1    L-chaA'tf}) = UNDEFINED if C6.1  A (p y ^) 

[3N s.t. fybhanch  (map(F),N)] 

L-ckaA(f^)    otherwise 
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iptuad' U'chaA[mp{D)))  = 0 (p p paa(d)) 

All other attributes in the subtree are set to UNDEFINED, however, 

we have to be careful about QUOTA since it must move back up the tree. 

Actually, it is the SPUSED (spaced used) attribute that is affected 

and as shown in Section 6.6, SPUSED for file d_ can be set to zero 

without transferring any information. 

P6.7-8     Unchanged 

Clearly, all processes which are ATTACHED to any of the files 

in the subtree must be TERMINATED. One thing that must be demon- 

strated is that having the Security Kernel detach all processes 

attached to the tree does not result in a downward flow of information, 

Clearly, any process p,, attached to some file F, in the subtree 

with root F must be at a clearance greater than or equal to the clas- 

sification of D; i.e., CLS(D) <  p-c£t(p,). This is a result of the 

fact that 

map(F) 6 map(F,) 

that is F, is in the subtree. 

Therefore: 

nup(D) E map(a£paA(F)) 6 map(a£p<w.(F,)) • 

CLS(D) <  CLS(a£pcw.(F1)) 

where D is F's parent. 

Also: 

CLS(o£paA.(F.j)) < p-cln(p^) 

that is, p-. must be able to view F,'s parent. In order for p to 
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perform "DESTROY SUBTREE whose root is F," it must be able to view 

and alter D, hence p-cM(p) = CLS(d). 

Combining these restrictions, we have: 

p-c£t(p) = CLS(D) < CLS{alfxvi{F^)) «  p-cZ*(p.,) 

Thus changes to another process' PST will not result in a security 

compromise. 

P6 ,9       VF^PST, p-typz'tf]) = < 

UNDEFINED if C6.1AC6.2A 

map(F-,)  e bnanch (map(F)) 

(p v PST) 

mp-£ypt(F-t) otherwise 

P6.10     VF^PST, alpaA'i?^) 

UNDEFINED if C6.UC6.2A 

map(F,)  e btULnch. (map(F)) 

alpaA(F-,) otherwise 

(p ii PST) 

P6.ll     VF^PST, ckUdcnt' (F]) = 

UNDEFINED if C6.1AC6.2A 

A map(F,)  E branch, (map(l-)) 

(p II PST) 

_ckitdcn£{F-,) otherwise 
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P6.12    VF^PST, attacked' (Fj) = < 

UNDEFINED if C6.1AC6.2A 

map (F.|)  e branch [map {F)) 

(P v PST) 

. attacked^,) otherwise 

F,ePST, vim-attacked' (F,) iff wLew-a£tac/ied(F,) 

A attached'(F,) 

F^ePST, alten.-attacked'{*^) iff aUen-attacked {¥•,) 

A attacked'(F,) 

P6 

UNDEFINED if C6.1 

TO    wc    DCT ./c  \    J nap'IFJ  e taancft (map(F)) 13    VF.,ePST, map  (F,) =< ' 

(P |i PST) 

jnap^F,) otherwise 

P6 
*.    _,. , ,^ x mapMF-,) e bxanck (map(F)) 

14    VF,ePST, p-znttpioi?})   H 
(P y PST) 

[p-e*tti/no(F-]) otherwise 

UNDEFINED if C6.U 

All of the process1 information about the deleted files are set 

to UNDEFINED. Actually, this isn't necessary as long as the attached 

attributes become false, iiowever, it is an additional precaution for 

reliability. 
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P6 15      Vf-ieF.V eU,bfianch' (f,,n) = 

* 
UNDEFINED if f]  e bnanch  [map{F),N 

A C6.UC6.2 (p y po^lf.) 

_b/umch(f-] ,n) otherwise 

All files in the subtree have these attributes set to null. 

7.)  ADD to ACL for file F[user U_. with permission A. (for i = i,n)] 

This operation deals with the discretionary controls for a file. 

Using this operation, one or more users with view and/or alter per- 

mission can be added to the Access Control List of a file. 

C7.1   olteA-attachadiU) =  TRUE (pePST) 

Since d_ contains file f's ACL attribute, we must be able to alter d_. 

C7.2   p-typz{D)  = DIRECT (pePST) 

Only directories can contain the ACL attribute. 

P7.1   V^eF, CLS'(f,) = CLS(f,) (-) 

The file's classification does not change. 

P7.2      Vf.eF, mayvlew' (ACL(U. ,f 1)      = mayviw(ACL(\}. ,f,)) 

v [A. .alter A C7.UC7.2] (pud) 

If desired, view permission is given to user U. for file f,. 

Vf-jeF, myaJUeA1 (ACL(Uyf^)) = myaJUeA{ACL{\}^,f^)) 

v [A. .alter A C7.UC7.2] (pud) 

Similarly, alter permission can be given. 
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P7.3-14 No change. 

8.)  REMOVE from ACL_ for file F_ [user U- permission A. for i = 1, n] 

The REMOVE ACL operation is used to terminate access privileges for one 

or move users to the specified file. 

C8.1   vlzia-attachid  (D) = TRUE 

aUeA-tvttackzd  (D) = TRUE 

The operation requires that a file be checked for a given user and the 

specified access and that it be changed. 

P8.1    VF]ePST, CLS'fF,) = CLSfF^ 

P8.2   Vf^F mayvlw'[ACL [Uitf))  » mayvleia[ACL[\i^,f)) (p u pox{f)) 

n—i[A-.view A C8.1 A f, = map(F)] 

Vf^F myaJUex' (ACUU^.f)) = maycuUeA(ACL[U.,f))      (p y pa*(f)) 

n—i[A-.alterA C8.1 A f, = map  F] 

Changes are made to a file's ACL as requested. 

P8.3-8  Unchanged. 

In a manner similar to that used for DESTROY SUBTREE, various 

users of file £ must be forcefully detached in order to guarantee that 

a user can't get access due to an obsolete capability. 

P8.9-11 Unchanged. 

P8.12   Vp-|eP, VF-|ePST p1 vlm-atiaahzd'p^i?^)  = vlm-cuUache.dp-^ (F^) 

n—i[A^.view A C8.1 A (p-oAeA(p, )eU.j) A F-|=F] 

(pyPST^ 

Vp-jep, VF^PST p-| aLteA-cutta.chzd'P](F^)  = al£&i-crf£ackzdp-\(F-\) 

n—i[A.j.alter A C8.1 A (p-o6eA(p-| )eUi) A F-|=F] 

(p y PST) 
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Vp-jfiP, VF-|ePST p-j, attached'p^iF^) = view-attached'^(V]) 

u aJttzA-attached'p A? ^) 

All processes which are attached to file F and are affected by the 

operation are changed as specified above. 

P8.13   VFiePST, V p-,eP, map'p^F^ (p y PST) 

map  Pn(F-j) if attached'p-i (F,) 

UNDEFINED otherwise 

This property uses the same conditions as the "attached"  function to 

determine whether there is a mapping into the file system. 

P8.14   Vp.|eP, p-entnyno' (p,) = p-entJiyno [p^) 

P8.15   VF^PST, VNeN bunch' [map(F^.N) (p y PST) 

blanch [map (F-i )»N) if 

 \[map[F,)  e htumch* (map(F)) 

UNDEFINED otherw se 
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9.)  RAISE CLEARANCE to C 

This operation allows a process to raise its clearance. It is impor- 

tant to note that this is the only operation which may do that. We 

have made (perhaps unnecessarily) the assumption that a user has a 

maximum clearance that cannot be exceeded by any of his processes. 

C9.1   p-cZt(p) <C<maxclA  {puaatfp)) (p 9 PST) 

A user may not exceed his highest clearance. 

P9.1-6  No change to file system. ( - ) 

P9.7   Vp-|eP p-u&eA' (p-j) =p-oaeA(p) ( - ) 

P9.8 VpeP p-c^L'tp.,) = rC if (p-,=p) A C9.1 (p p PST) 

p-c£t(pi) otherwise 

The clearance is set as specified. 

P9.12       VFp aJtoeA-attached'tf-)) = (p 0 PST 

aJUxA-attached(F}) A  (C ± p-cl&iF^)) p y PST^ 

v—iC9.1 

The new clearance must be less than or equal to the classification of 

any file which remains alter-attached. 

P9.13.14 map, p-zntnyno  are unchanged. 

P9.15   blanch    unchanged. 
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10.) RAISE CLASS of file F to C 

This operation is used to raise the classification of a file. As will 

be pointed out, there are several restrictions on the possible classifi- 

cations for files in a user's subtree. 

C10.1   viw-cuttacke.d(Q)    =    TRUE (p 9 PST) 

aJUeA-cvttack<>.d{d) =   TRUE (p 0 PST) 

p-type-(f)  = DATASEG OR vx'.ew-a£tacfied(F)=TRUE (p 9 PST) 

The process must be able to view and alter the file's directory. Also, 

in the case where £ is a directory, £ must be viewable. However, fur- 

ther examination of this condition reveals that it is a serious con- 

straint since file f and its parent, d, must be at the same classification. 

Briefly, this is because 

1) the process p must be able to view and alter file d 

and hence CLR(p) = CLS(d) 

2) p must view file f and thus CLS(f) <_ CLR(p) 

3) and finally, the tree axiorm of S, force the clearances 

to increase going away from the root, giving CLS(d) ^ CLS(f) 

Combining all this information, we have: 

CLS(f] « CLR(p) = CLS(d) « CLS(f) or CLS(f) = CLS(d) 

CIO.2   VneN, Z^cJU,   [bmnch{map(?) ,n)) OR p-typz(F)  = DATASEG 

P10.1   VF^PST CLS'^) = Jc if ClO.l A CIO.2 A F^F 

|^CLSCF1 ] otherwise 

The classification of the file specified is changed if the conditions 

are met. 

PI 0.2-11 Unchanged. 
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P10.12  Vp-jeP, VF-jePST vleu)-attachedp-\(F})  = 

{ view-attached?-, (F,) if  , [C < p-cU    (F)] 

( FALSE otherwise 

Vp^P, VF^F oUeA-attachedp^' (F-|) = 

aUeA-attachedp-,(?^)  if view-attached' (D) 

FALSE otherwise 

In order to remain alter attached all ancestral files must be viewable. 

(It is sufficient to show that the parent is viewable). 

P10.13  VpieP, VF]eF map'p-,^) = 

I map'p^F^ if attached'?-^ (F1) 

[ NULL otherwise 

The "map"  function has the same constraints as the "attached"  function. 

PI0.14 p-ent/iyno  is unchanged 

P10.15 blanch  is unchanged. 
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7    CONCLUSION 

7.1   Introduction 

We have demonstrated the use of a series of mathematical struc- 

tures to yield the specifications of a software system to supply 

what we term security of information. The use of this technique yields 

both the definition of the global properties the system is to have 

and the local assertions which must be proven about the implementa- 

tion of the system. This technique is used to specify a complete 

protection system so that mistakes in the design can be avoided. The 

advantage of this approach is that the assertions are obtained before 

the implementation and thus can be used as a guide. This approach is 

likely to result in a provable implementation since the proof develop- 

ment can proceed concurrently with the implementation. 
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7.2  Summary 

Chapter 2 presented SQ, the first in a series of mathematical 

structures^whose purpose is to give a systematic presentation of the 

specification for a secure computing system based on military require- 

ments. This first structure defines security at an abstract level. 

Since it is devoid of actual system implementation considerations, 

it is simple enough to be accepted intuitively as a definition of 

security. A basic security theorem was then proven in order to show 

the design of the structure was sound. 

Chapter 3 presented structure S, as a refinement of the original 

structure SQ. Structure S-i is  one step closer to specifying an 

actual system. A tree structured file system and a mailbox mechanism 

for interprocess communication were introduced. The assumptions about 

S-| were used to logically determine the relationship between classifi- 

cations of objects and their positions in the file system tree. It 

was then shown that S-. is an interpretation of SQ by proving that all 

theorems true in S« were also true in Si. 

Chapter 4 specified a dynamic structure Sp to describe changes 

in the state of the system. With proper constraints S« was shown to 

be an example of an S-, structure by use of an intermediate structure 

SI.5. The requirements of primitive commands changing the state of 

a Sp system were specified and proved. 

Chapter 5 developed a further refinement of S2 as Sg to allow 

specification of attributes of objects in the structure. Attributes 

were logically located inS2 objects for the purpose of security but 

may be actually implemented differently.  A primitive set of 
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Multics-like events that would be supported by a system were given 

together with the assertions and proofs necessary for security. 

Chapter 6 defined and outlined proofs of commands to be provided by 

a secure system. These commands forming S* provide all the attributes 

and operations necessary for the construction of a Multics-like operating 

system. 
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7.3 Further Work to be Done 

Our work thus far has shown it is feasible to completely specify 

a security system. Sg is not complete: there are ways yet to be 

specified to affect and observe effects on the system. These include 

billing, input/output, file backup and recovery, and paging. 

7.3.1 More Structures 

The next difficult problem is not the addition of more structures 

but the implementation of what has been specified. This development 

process would then become structured programming and we would be con- 

cerned with the assertions necessary to prove the implementation cor- 

rect with respect to the assertions given by the previous level or 

the last structure. 

7.4 Other Problems 

Construction and proof of a software security system is not the 

entire problem. Ultimately the implementation depends on the hardware 

which may have unforseen affects under certain conditions. Accurate 

specifications of what actually happens must be used in proofs about 

the implementation. In particular, the security system depends on 

some ad hoc integrity mechanism supplied by hardware to protect it- 

self. This mechanism must be checked co make sure there is no way 

in which it can be bypassed by those ojtside the security system or 

bypassed by incorrect use by the security system. 

Second, the computer must be physically safe from external tam- 

pering so that the system cannot be altered and its communications 

lines are safe. 
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Another problem is that the security system depends on correctly 

determining the privileges of a user. Some reliable means of authen- 

ticating the users identity or determining his clearance is therefore 

necessary. 
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7.5  Future Topics 

This project was constrained to yield a system as much like 

Multics as possible. The attempt was to secure Multics with as few 

changes as possible, although some changes not visible to the user 

were made in order to make the system smaller. An alternative would 

be to design a new system concentrating on minimizing its complexity 

and thereby making the proof of correctness of the implementation 

more managable. 

Another extension to the structures could allow the set of 

classifications to vary. Our current design which assumes a fixed 

set of classifications is suitable for individual users like the 

Department of Defense which have a permanent set of classifications. 

However, a computer utility needs something more flexible so that a 

customer can protect his information from other customers and also 

control security between his various projects. 

As mentioned previously, implementation would use an ad hoc in- 

tegrity mechanism to protect itself from external interference. The 

concept of integrity could be formalized and combined into the struc- 

tures to yield the required properties of a consistant integrity me- 

chanism. 

Another use of structured specification could be to formalize 

the ideas of domains and capabilities and develop the required pro- 

perties of the mechanisms rather than simply to propose various 

mechanisms as is now done. Domains, in particular, have the advantage 

of partitioning the implementation of a security and integrity system, 

simplifying its proof. 
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Appendix A: A General Specification for Information Passing 
Systems, S_, 

Last moment reflections upon the overall structure of the sequence 

of specifications developed in this report led to the discovery that 

there is still a more primitive underlying conception of the system 

than even the S« specification presents. Its existence is hinted at 

by the "information passing" theorem proved in Chapter 2. 

A.l  A Formal Description of S •• 

In the information passing specification there is only one under- 

lying set: 

Ac is the set of Accessories to information passing. 

There are two relations involving information passing between accessories. 

a c_ Ac x Ac is the "allowed to pass information" retlation 

between Accessories. (x_ a y_ means that accessory x_ is 

allowed to pass information to accessory y_) 

P c_  Ac x Ac is the "might pass information" relation between 

accessories. (x_ p y_ means that accessory x_ has some pos- 

sible way to pass information to accessory y_.) 

There are three axioms in this specification, and the first two reflect 

obvious facts about possible information passing. 

A-l.l (reflexivity):  For x_ e Ac, x_ p x.. (Accessory x_ may remember 

information that it already knows). 

A-1.2 (transitivity): For any x_, y_, z  e Ac, if x_ p y_ and y_ p z,  then 

x_ p z. (If accessory x_ might pass information 

to accessory y_ and y_ in turn might pass infor- 

mation to accessory z,  then we must take into 
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account the possibility that x. may be passing 

information to z_. ) 

The third axiom connects possibility with permission. 

A-1.3 (conformity):    For x_,  y_ e Ac, x^ p y_,^2L a 1. (I* should only 

be possible for accessory x_ to pass information 

to accessory y_ if x_ is allowed to pass informa- 

tion to y_.) 

This last axiom 1s perhaps most perspicuously stated in contrapositive 

form: 

Corollary:   If accessory x  is not allowed to pass information to ac- 

cessory y_,  then there must be no way for x^ to pass in- 

formation to y_. 

The "might pass information" relation P in this specification em- 

phasizes the importance in subsequent specifications of identifying all 

possible paths by which information might pass from one point to another. 

The "allowed to pass information" relation a will be specified precisely 

by the Clearance/Classification scheme introduced in SQ. 

Our next task is to show how the S, and SQ specifications fit 

together. 

A.2  Proving That SQ is a Possible Interpretation of S . 

First we must identify the set Ac end the relations a and p of the 

S i specification using the sets, functions, and relations of the SQ 

specification. Recall that in S« we have: a set of agents A, a set of 

repositories R, a set of security classes C, a "can observe" relation 

9, a "can modity" relation y, an "of lower security class" relation <_ 

a clearance function CVit  and a classification function C£A. 

135 



The information passing accessories are clearly the agents A and 

the repositories R. So we let AcQ • A u R. 

We clearly need the clearance and classification functions to 

define the "allowed to pass information" relation a. The definition 

will be simpler if we define an auxiliary "Classing" function 

Cl:  A u R •+ C according to the following definition: 

|c£>i(x)  if x e A 

Cl6(x)      if x e  R 
ce(x) =< 

Now we can define the "allowed to pass information" relation aQ on the 

accessories AcQ by x aQ y 4=$  C£(x) ± Cl(y).    The definition of the 

"might pass information" relation p must involve the "observe" and 

"modify" relations 9 and y in SQ. In fact, the proper definition is 

most easily given it we first define an auxiliary "information can 

directly transfer" relation T on AcQ by 

x T y £=* x e A and y e R and x y y or 

x e R and y e A and y 8 x 

The "might pass information" relation pQ is just the reflexive, transi- 

tive closure T* of the relation x. 

To show that, with these definitions, S« is a valid interpretation 

of the S_i specification, it is necessary to verify that the three S_, 

axioms hold. The first two axioms are trivial to verify, since PQ is 

by definition the reflexive, transitive closure of a relation T. 

Theorem 1 (reflexity):    For x. e ACQ, X_ PQ X_. 

Theorem 2 (transitivity):  For x., y_, z e  ACQ, if x_ pQ y_ and y_ pQ z_ 

then x_ PQ Z_. 
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Verifying the third axiom, however, requires the use of the axioms 

of S0. 

Theorem 3 (conformity): 

Proof: 

Lemma 1 (reflexivity): 

Proof: 

Lemma 2 (transitivity): 

Proof: 

Lemma 3 (containment): 

Proof: 

For x_, y_ € AcQ, if x_ PQ y_, then x CQ y_ 

The result is obtained by showing OQ is a 

reflexive, transitive relation which in- 

cludes the relation x. Since T* is by 

definition the smallest reflexive, transi- 

tive relation which includes the relation 

must be included in the relation 

ou, which is what this theorem asserts. 

X,  X* =  PQ 

For x. e ACQ, X_ CX0 X_. 

C£(x) j*C£(x), since <_ is reflexive 

,'. x «g x by the definition of OQ. 

For x, y_, z_ e AcQ, if x aQ y_ and y_ aQ z_, 

then x_ ag z. 

assume x_ aQ y_ and y_ ag 1 

Cd(x) 1 C£(y_]   by definition of aQ 

Cl[y]  < ct[z)        by definition of aQ 

C£(x) « Ctiz)   by the transitivity of < 

x_ an z_        by the definition of aQ 

x£ aQ. (That is, for x_, y_ e ACQ, if x x y_, 

then x ctQ y_) 

assume x_ x y_ 

either x_ e A and y_ e R and xy^ 

or   x_ e R and y_ e A and y_ 9 x_ by defini- 

tion of x. 
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Case 1: x. V y_ 

C^t(x| ^C£^(y) by the dissemination 

axiom. 

CIM <Cl[y)      by definition of C£ 

Case 2: y_ G x. 

ClsM *Cln[y)    by the acquisition 

axiom 

CZ(x) 4 Cl[y)    by definition of C£ 

Cl[x] <Cl[y)        since this is true in either 

case. 

x_ <XQ y_      by definition of aQ. 

x xy^xa.y    as desired 

The SQ specification has now been shown to be an example of the 

S_i specification, and, by our general methodology, we know that all 

subsequent specifications will be examples of S« and hence of S_-,. 

Accordingly we know that all of our specifications will carry along 

this basic, very simple idea that information must not go where it is 

not allowed (by regulation) to go. 
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Appendix B: Formal Description of S-| Consistency and the S-,-S0 Relationship 

This appendix contains the propositions and proofs which are neces- 

sary to establish the relationship between the structures S-. and SQ. 

PROPOSITION 3.1: S1 ts consistent. 

PROOF:   Consider the relational structure S-,' consisting of the set 

{a1, b*, c1, d1} with relations p*p a\,  P'M, <J'M, ±*>  s* 

defined so that d' «' d1, b' 6b1, a' oV b' hold, and these 

are the only relationships which hold, and functions CI&' 

and CVt  defined so that ceVCb1) =C^'(c,)=C^'(a,)=dl. 

Let 1 denote the one-to-one correspondence between the set 

{a', b', c', d'} and any subset of four of the formal object 

symbols of S^. Further define the subsets A,F,M,C such that: 

A = {i(a')}, F = {i(b')}, M = {i(c')} and C = {i(d')h Also 

define the predicates in S-|' so that for x, y e {a', b', c', d'}, 

if x p 

if x P 

if x a 

if x a 

if x ^ 

if x 6 

F* 

F* 

y 

then 

then 

then 

then 

then 

(x) PF i(y) 

(x) PMi(y) 

i(x) ap 1(y) 

1(x) aM 1(y) 

i(x) i My) 

C*(1(X)) * 

C^(1(x)i • 

then   i(x) 6 i(y) 

KceA'(x)) 

i(C£V(x)) 

It will now be shown that the axioms of Sn hold true in Sn'. 

Al.l     For all c e C, c = i(d'), but d* <_' d' in S-|' and thus 

c < c . 
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A1.2    For all c, d, e e C, c = d = e = i(d') but d' «' d' in S]' 

and thus c <_ d and d <_e implies i(d') <_ i(d') or c <_ e. 

AT.3    For all a e A, f e F, a • i(a') and f = i(b'), but 

CM(a) • CfctCKa')) = i(0£V(a')) = i(d') and ct&(f) = 

Ct4(1(b')) = i(C^'(b')) = 1(d) thus a Pp f implies 

Clttf) ± C£t(a). 

A1.4    For all a e A» TI e M a = i(a') and m = i(c'), but 

CViL*)  " 1(d') and CI&W  = i(d') as for A1.3, thus 

a pM m implies C£&(m) = CVM* 

A1.5    Similar to Al.3. 

A1.6    Similar to A1.4. 

A1.7    For all f e F> f = 1(b') and b' $' b' in S] thus i(b') 6 

i(b') and so f 6 f. 

A1.8    For all f, g e F, f = g = i(b') thus f 6 g and g 6 f 

implies f = g. 

A1.9    For all f, g, h e F» f • 9 = h • i(b') and since b' 6 b' in 

$-.', i(b') 6 i(b'), thus f 6 g and g 6 h implies f 6 h. 

A1.10   For all f, g, h e F» f = g = h = i(b'), thus g 6 f and h 6 f 

implies g § h or h 6 f. 

Al.ll   For all a e A and f, g e F» and f = g = 1(b') thus a p g 

and f 6 g implies a p_ f. 

AT.12   For all a e A and f, g e F» f = g = i(b') thus the hypothesis 

in the implication a a g and f 6 g and f = g implies a p f 

can not hold true in Sn'. Therefore the implication holds no 

matter whether a p f or not. 
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AT.13   For all a e A f, g e F, f *  g = i(b') thus a ap f and f 6 g 

implies a ,ap g. 

AT.14   For all f e F, f = 1(b') and a' a' b' in S]' thus there exists 

a e A namely a • i(a') such that a ap f. 

Because of the similarity between the axioms of S« and S, it would 

be simple to prove the counterpart of the basic theorem of SQ directly 

in S-|; however, we prefer to prove the stronger result that every 

theorem of SQ is a theorem of S,. To do this we will exhibit a mapping 

from the formal symbols of S, to the formal symbols of SQ which preserves 

relationships. Informally we might view this as showing that S, is a 

valid interpretation of SQ. 

Proposition 3.2:  There exists a one-to-one correspondence h from 

S, to SQ which preserves relationships. 

PROOF:   Since the sets of formal symbols may be assumed to be equi- 

potent, there will be a one-to-one correspondence h from the 

symbols of S, to the symbols of S«. We will show that the 

relational symbols in SQ may be defined so that h preserves 

the relations. First, the subsets A, R, C, in S are defined 

as follows: 

AQ = h(A.j), R = h(FuM), and CQ = h(C^).    (The use of sub- 

scripts 0 and 1 to indicate elements of SQ and S-j respective- 

ly should be clear. This convention will be maintained through- 

out the following.) 

Second, the binary relational symbols 6, y, ^ in SQ are de- 

fined so that for ag e AQ, rQ 
£ RQ, cQ, dQ 

e CQ, 
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(3.2.1) aQ 9 rQ if and only if h
_1(a0) Pf \\"]{rQ)  or h"1^) PM h"

1^), 

(3.2.2) aQ y rQ if and only if h
-1(a0) oF h"

1^) or h"1 (aQ) aM h"
1^), 

(3.2.3) cQ £dQ if and only if h"
1 (c0) ^ h"1^). 

(3.2.4) And finally, U*Q{rQ)  = C^Ch"1^)) and c%(aQ)= ^(h'^a) 

(Note that since h is a one-to-one correspondence it has an 

inverse h  which is also a one-to-one correspondence.) 

Proposition 3.3. Every valid interpretation of S, is also a valid 

interpretation of SQ. 

PROOF:   Let the relational structure S be a valid interpretation of S-.; 

then there is a one-to-one correspondence i-i from s to a subset 

of S-. which preserves relations and such that the axioms of S, 

hold true in S under the interpretation. We claim that the 

composite function 1Q • hQ o i, (where h is the function produced 

in Proposition 3.2 — actually the restriction of h to the image 

of S under i, in S,) from S to SQ can be used to validly inter- 

pret SQ in S. iQ is a one-to-one correspondence since it is the 

composition of two one-to-one correspondences. Also the relation- 

ships in S are preserved under i, and h and thus under iQ. It 

remains to be shown that the axioms of S0 hold true in S. 

It will be useful in the following to make the observation 

that if a = iQ(m) = h(i-,(m)) then since the one-to-one correspon- 

dence h has an inverse h" it is true that 

(3.3.1) h_1(a)  =  i^m). 

A0.1    For all c e C there exists an m e M such that iQ(m) = c. 

Since axiom Al.l holds true in S, i-,(m) <{, i-i(m); thus, since h 

preserves «, h(i^(m)) <Q h(i-j(m)). But this is equivalent to 
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saying iQ(m) ^ iQ (m) or c ^ c. 

A0.2    For all c, d, e e CQ there exist m, n, p e S such that 

i0(m) = c, 1Q(n) • d, and iQ(p) = e. 

c < 0 d implies i-j Cm) «^1i(n) in S^ and d «Q c implies 

1,(n) ±-i  i-i(p) in S-,. Then since axiom A1.2 holds true 1n 

S, i^m) *j i^p). Thus h(i-,(m)) «g h(i-,(p)) or c <Q e. 

A0.3    For all aQ e AQ> r e R there exist m, n e S such that 

a0 = 1n^m^ and r = n0^; thus, if aQ 9 r then two cases 

are possible:(l) i-,(m) p_ i-i(n) and (2) i-,(m) p_ i-i(n). 

Case 1.  By axiom A1.3, C£4-| (i-j (n)) <-| ce*|(1j(m)); 

thus by 3.3.1, ce^OfV)) ^ce^Ch'1 (aQ)), 

and by 3.2.4 ci6Q(r) ^ cuQ(aQ). 

Case 2.  By axiom A1.4, C£6-|(i-|(n)) = ce^O-j (m)) 

which implies CJU^ (i-|(n)) «.•, C^d'^m)) 

and the rest follows as in Case 1. 

A0.4    For all aQ e AQ, r e R there exist m, ne S such that 

a0 = Wm) and r = Wn^; tnus» lf an u r then tw0 cases 

are possible (1) i-j (m) 0-  i-j (n) and (2) i-j(m) 0   i-j (n). 

Case 1.  By axiom A1.5, C£A-|(i-|(m)) ±^  C£xi-j(i-j(n)), 

thus by 3.3.1, ce^h"1 (aQ)) ±]  c&^h"
1 (r))> 

and by 3.2.4, CU0  (aQ) <Q Cl&Q(r). 

Case 2.  By axiom A1.6 ce^ (i-j (m)) ^ C£^1 (i-| (n)) 

and so fort!-, as in Case 1. 

We note that one direct result of Proposition 3.3 is that the con- 

sistency of S. implies consistency of SQ, Of more interest is the 

Corollary: 
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Corollary 2.4:   Every theorem of SQ holds true in every valid 

interpretation of S,, 

PROOF:       By Proposition 3.3 every valid interpretation of S-j 

will also be a valid interpretation of SQ in which 

every theorem holds true. 

Specifically, the fundamental theorem T0.1 of SQ holds true in 

every valid interpretation. Thus we can say that in any valid inter- 

pretation of S, if there is an information transfer path from a given 

mailbox or file to a second mailbox or file then the security class of 

the first mailbox or file is less than or equal to the security class 

of the second. 
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Appendix C: A Proof of Proposition 4.4.1 

To show that every S-j c is an S-j, we must identify all elements 

in S, in terms of the elements of S-, 5 and then demonstrate that the 

S,-axioms are satisfied by the S-| 5 structure under the identification. 

This will show that every S-, 5 structure is a logically valid interpre- 

tation of S-i. 

Given S, g = <E^,F^,^,C,<,S^,y„,av,^,ta^,cZn.^,cLi>^,v> 

where the components are defined as 1n lines (4.4.1) through (4.4.10; 

in terms of the underlying S2-structure, let 

S' = <F\M\A\C\pp\oF',pM\0M',<\S,c£6\cZ*'> where the sets and re- 

lations are identified below. 

P' " »> M' = Ms, A' = E 

i 

- •- 

»F'- vs, 

"«'* ws, 

and ct&'  = ct&s, and dUC = dUs. 

We will then show that this S' satisfies the axioms of S,. In 

order to do this the following lemmas will be needed: 

Lemma  C.l:   For all <e,s^, <e,t> e E$,  <e,s> ir*<e,t> implies 

c^s(<e,s>) ±dins  (<e,t>). 
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Proof:      (By induction) Let M = {n e N|<e,s>irn<e,t> implies 

c£/Ls(<e,s>)  * ciAS(
<e,t>) for all <e,s>, <e,t> e E$} 

First:      0 e M since <e,s>ir <e,t> implies <e,s>=<e,t> and we have 

clAs{<e,s>) = ci^s(<e,t>). 

Second:    Suppose n e M, then consider n + 1,  If <e,s> and <e,t> 

e E« and <e,s>ir     <e,t^then   there     exists   an 

<e,u> e E« such that <e,s>Trn<e,u> and <e,u>ir<e,t>.    By. 

the inductive hypothesis the first implies a£A<,(<eiS>) 

< ciA<,<e,u>, and by definition the second implies u T t. 

In an S,-secure structure x is permissible.    Hence, by 

axiom A2.12, oJUi (e) <. att.(e); therefore by (4.4.5) 

C1A„ <e,u> <_ c£A5(<e,t>).    The transitivity of < (A2.16) 

gives the desired clnA<e,s>) < ci^5(<e,t>).    Thus, n+1 

e M.    By induction M=N, and the property holds for all 
*       °° 

n £ 0.    Hence the implication   holds for TT   =   U     tr . 
n=0 

The proofs of the next two lemmas are analagous and are omitted. 

Lemma  C.2   For all <f,s>, <f,t> e F<,> <f,s> TT*<f,t> implies 

c£4s(<f,s>) <.c£4s(<f,t>). 

Lemma  C.3   For all <m,s>, <m,t> e M<,> <m,s> ir*<f,t> implies 

c£6s(<m,s>) ;«c£4s(<m.t>). 

We now turn to the rasults needed to show S, r is an example of S-i. 

Axioms Al.l and A1.2 are immediate consequences of axioms A2.15 and A2.16. 

A1.3:     For all <e,s> e E$,  <f»t> e Fs> <e,s> v5 <f,t> implies 

cZ&s(<f,t>) <   clx-s  (<e,s>). 
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Proof:  By (4.4.7),<e,s> v <f,t> implies there exists u  e s 

such that e e F , f e FU, e ^ f, <f,t>Tr*<f,u> and 

<e,u>Tf*<e,s>. By S2-security the state u is reachable 

from some secure state through permissible and (hence 

preserving) transitions; thus, u is statically secure, 

and e v^ f implies c£6u(f) * c-tftyte) or equivalently 

cZt>~{-zf*u>) < c^i<,(<e,u>). Also by lemma C.l  we have 

c£/u(<e,u>) _< ci;   {<e,t>)  and by lemma C.2  we have 

c£4c(
<f»t>) < c^ic(

<^r»u>)' Those results and axiom 

A7.16 (transitivity) gives ^ (<f,t>) < QJ^  (<e,s>). 

The analogous proofs of the next three lemmas are mercifully 

omitted. 

A1.4: 

A1.5: 

A1.6: 

A1.7: 

Proof: 

A1.8: 

For all <e,s> e EC» <ro»t> e M«» <e,s> g <m,t> implies 

cX4s(<m,t>) = d£t5(<e,s>). 

For all  <e,s> E E„, <f,t> e F<,, <e,s> cu <f,t> implies 

ciAs(<e,s>) j^c£6s(<f,t>). 

For all <e,s> e E5, <m,t> e M„, <e,s>u>_ <m,t> implies 

ciAs(<e,s>)< cZ6s  (<m,t>). 

For all <f,s> e FS, <f,s> 6S <f,s> 

By (4.4.2) f eF.i and since every state in S2 is 

statically secure, axiom A2.5 holds and implies f 6    f. 

Hence, by (4.4.4) we get <f,s> <55 <f,s>. ^_ 

For all <f,s>, <g,t>, e F5, <f,s> s   <g,t> and <g,t> 

6„ <f,s> implies <f,s> = <g,t>. 

Proof:        By (4.4.2) f e Fg and g £ F« and by (4.4.4) s=t, 

f 6S g, and g 6g f.    But in the statically secure state, 
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A1.9 

Proof: 

AT .10 

Proof: 

A1.ll 

axiom A2,6 implies that f=g; hence,<f,s> = <g,t>. 

For all  <f,s>, <g,t>, <h,u> e F5> <f»s> 6<, <g,t> and 

<g,t> 6- <h,u> implies <f,s> 6„ <h,u>. 

Briefly, (4.4,4}'implies s=t=u, f $s g,  and g <s+ h, 

5s 

<f,s> 6^ <h,u>. 

and axiom A2.7 implies f a h which by (4,4,4) yields 

For all<f,s>, <g,t>, <h,u> e F5» <f.s> 6 <g,t> and 

<h,u> 6„ <g,t> Implies <f,s> 6_ <h,u> or <h,u> 6 <f,s>. 

By (4.4.4) s=t=u, f 6$ g, and h <5S g, and in the stati- 

cally secure state this means by axiom A2.8, f 6S h or 

h 6g f. Thus, ^f,s^ $s <h,u> or <h,u?> $5 <f,s?>. 

For all <e,s> e E<,» <f»t>, <g,u> e F5 <e,s> v <g,u> 

and <f,t> 6_ <g,u> implies <e,s> v <f,t>. 

Proof:   (4.4.4) and <f,t> 6 <g,u> implies t=u and f 6t g. 

<e,s> vq <g,t> implies by (4.4.7) there is a v e s such 

that e e Ev, g e Fv, e vy g, 

<e,v>ir*<e,s> and <g,t>ir*<g,v>. By A2.7 g e Fy 

and f 6. g implies f e Fv and f 6y g. Then since state 

v is statically secure we have A2.9 e v f. Thus v 

is a state in which e E Fy, f e F , e vy f and <e,v>ir* 

<e,s>. If we can show that <f ,t>ir*<f ,v>, we will have the 

desired result <e,s> vs <f,t>. By axiom A2.17, f exists 

in every state which contains g. If <g,x>ir<g,y> for states 

x, y e S, it must be true that f e Fx and x T y; thus, 

<f,x> TT <f,y>. By induction this extends to TT*; therefore, 

<g,t> TT <g,v>, and f 6. g implies <f,t> TT* <f,v>. 
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The same technique gives: 

A1.12    For all <e,s> E E<,, <f,t>, <g,u> e F<>, <e,s> c^ <g,u>, 

<f,t> 6„ <g,u>, and <f,t> f  <g,u> implies <e,s> v„ <f,t>. 

And finally we have: 

A1.13    For all <f,s>, <g,t> e F<,, <f,s> 6« <g,t> implies 

clt>si<fyS>) <cZi>s(<q,t>). 

Proof:   By (4.4.4) <f,s> <$„ <g,t> implies s=t and f 6 g. Also, 

an Sp-secure structure state s is statically secure; thus. 

c£is(f) <_ c£as(g) which by (4.4.6) gives c£65(<f,s>) ± 

dt&s(<gts>). 
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Appendix D:  Proofs Concerning the S- Events 

We must show that the events presented in chapter 5 have suffi- 

cient conditions and properties to guarantee that security is not 

compromised. We will demonstrate that the axioms presented in sec- 

tions 4.2-4 are satisfied. In other words, based on the assumption 

that the computation is in a secure state before the event, we will 

prove that the event occurs in accordance with the transition axioms 

(A2.12 - A2.17) and that the new state is locally secure (axioms 

A2.1 - A2.ll). 

Thus there are seventeen axioms to be proved for each of the 

seventeen events. Fortunately, however, it has been found that often, 

a given event has no effect on several of the axioms. For example 

the "Connect file" event in no way affects the mailboxes or the axioms 

concerned with them. In addition, a proof for some axiom from event 

x may be identical or extremely close to the arguments used for prov- 

ing the same axiom from event y. We have therefore chosen to prove 

that each axiom holds for all events rather than prove that each event 

satisfies all axioms. In effect, there is a two dimensional array of 

proofs to be made (see figure D.l ) and we have chosen to traverse 

rows first. 

axiom 2.1 

axiom 2.2 

axiom 2.17 

evl ev2 ev3 • * • evl 7 

Figure D.l 
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Axiom A2,l     For all e^  € E, f1 e F, e] v f}  =} CLS (f}) < CLR(e^) 

We shall assume that the system is in some secure state. As a 

result, we can assume that axiom A2.1 is true before the event occurs. 

We must now show that after the occurence of any event, we have: 

e1 v' f] =4 CLS'if^  « CLR'{e}). 

Case 1        El (e_ becomes view-connected to f).    By PI.6 - 

e-j v' f-j only if e-j v f-| OR e-j = e  and f, » f and 

the conditions are met. 

1)  e1 v f 

CIR'^) = CLR(eT) and CLS'(f})  = CLS(f]) by PI.2 

and PI. 11. Using the assumption, CLS'(f-,) = 

CLS(f^) < CLR(e})  = CLR'^). 

ii)  e, « e, A f, * f A C1.1 A C1.2 A ci.3 

CLS'Cf^ < CLR'ie^)  due to C1.2. 

Case 2       E3 e is disconnected from f. By P3.6 

If e] v' f] then e] v f ]. But CLS'(f-\)  = CLSif^)  and 

CLR  '(e-,) = CLRie^)  by P3.2 and P3.ll. However, we 

obtain CLS'Cf^ = Ci.S(f]) < CLRie^)  = CLR' (e]), using 

the assumption. 

Case 3       E5 (destroy file f). By P5.6 

We have e-| v' f-| only if e-| v f-j and -» (f 6 f-| 

A C5.1 A C5.2). But this information means that 

CLS' (f-|) = CKSif^)  and CLR' (e^ = CLR^) by P5.2 

and P5.ll respectively. Using the assumption as 

in the previous case, CLS' (f-|) ^CLR'(e-|). 

Case 4       E7. (raise classification of f to C)   By P7.6 

We have e-, V f., only if e-jv f1 and [ |(f-, = f 

A C7.1 A C7.2A C7.3)  OR C + CLR(e])] due to P7.6. 
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1)   |(f, = f A C7.1 A C7.2 A C7.3). 

In this case CLS' (f-|) = CLS(f-|) and arguments 

for Case 2 apply, 

ii)  C _« CLR(e,), conditions are satisfied. 

CLS'(f-|) = C from P7.2 . Thus CLS'Cf^ = 

C < CLR(e-\)  • CLR'^). 

Case 5       All other events. 

Px.2 and Px.ll guarantee CLS'(f-j) = CLS(fj) and 

CLR'(e-|) = CLRCe^). See Case 1 i for proof. 

Axiom A2.2     For all e1 e  E, m, e M, e1 6 m-| =^ c/.R(e-,) =M-CLS(m1) 

We must show e1 g' m-|    ) CLR'(e-|) = M-CLS'(m,). 

Case 1        E9 (e_ becomes receive-connected to f).  By P9.9: 

e-| g' m only if e-j g m-j OR (e-j = e_ A m-| = m A C9.1). 

i)  e-| g m-j. 

But from the assumption CLR(e-|) = M-CLS(m.|). 

Using P9.7 and P9.ll we find that M-CLS and 

CLR are unchanged. Hence: M-CLS'(m-|) = M-CLS(m-j) = 

CLR^) = Ci.R'Ce-j). 

ii)  e-| = e A m-| = m A C9.1. 

From C9.1 we know CLR(e.j) = M-CLS(m). Using the 

arguments in part i), M-CLS'On-j) = CLR^). 

Case 2        Ell (e_ becomes disconnected from mailbox m). 

From e-| g' m-| we know e-j g m-^  by using P11.9. In a 

manner similar to the previous case we show M-CLS'(m-,) 

= M-ClSb^) = CLR{e-\)  = CLR'^). 

152 



Case 3 E12    (raise classification of m to C_) By P12.9: 

e^  3' m-, only if 1 (m-| = m A C12.1 A C12.2) 

From PI2.7 we find M-CLS'Cn^) = M-CLS(m-j). The argument 

proceeds as in case 1. 

Case 4       E16 (e raises its own clearance to C). 

e-i 3' m-j only if ((e-j = e_ A C16.1) due to P16.9. 

But this means CLR' (e-j) = CLR(e-|) due to P16.ll. As 

in previous cases M-CLS'(m-|) = CLR(e.|). 

Case 5       All other events. 

By Px.7 and Px.ll M-CLS' (n^) = M-OSOn-,) and CLR' (e-,) = 

CLR(e,). See case 1 i. ^^ 

Axiom A2.3    For all e-, e E, f-, e F, e-, a^ =^CLR(e1) ^CLS(f1). 

We must show e-| <*' f1   y  CLR'Ce^ « CLS't^). 

Case 1        E2 (e becomes alter-connected to f).    By P2.5: 

e-, «' f-j only if e1 a f-| OR (e1 • e. A f 1  • f A C2.1 

A C2.2 A C2.3). 

ij e1 a f1 

From P2.2 and P2.ll we get CLS'(f-|) = CLS(f-|) 

and CLR'(e-|) = CLR(ei). Using the assumption 

we obtain: CLR1 (e]) « C/.R(e-|) ± ClS(f,) = CLS'if^). 

ii) e, • e A f1 " f A C2.1 A C2.2 A C2.3. 

From C2.2 we get CLR(e1) < CLS[f]).    The rest of 

the argument follows i). 

Case 2       E3 (e becomes disconnected from f_). 

If e-, a' f, then e-j a f-i due to P3.5. But as in pre- 

vious cases, classifications and clearances don't 

change. Therefore CLR' (e-j) <_ CLS'(f-.). 
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Case 3       E5 (destroy file f). 

If e] a' f1 then 1 (f 6 f1 A C5.1 A C5.2) by P5.5. 

But this neans CLR'Ce^ = CLR^) and CLS' (f-,) = 

CLS(f-j). By th< same reasoning as previous cases, 

Case 4       El6 (e_ raises its own clearance to C_) 

From P16.5 we know e-j a' f^ only if e-| a f^ and 

[C«CLS(f-,) OR -*(C16.1 A e] = e)] 

i)   1 C16.1 OR ie1 = e 

In this instance the clearance doesn't change 

and previous arguments apply. 

11)  CiCLS^) 

By PI6.11 Cl.R'(e1)=C for e-| = e. By transitivity, 

CLR'^) = C^CLSC^), but P16.2 guarantees that 

CLS'Cf^ - CLS(f-j) 

Case 5       All other eve ts. 

From Px.;: and Px.11 we know CLS'C^) = CLS(f-|) and 

CLR' (e.|) = CLR(e.j). Arguments follow Case 1 i. 

Axiom A2.4     For all e-| e E, m-j £ M, e1 u m-j =4cLR(e1) 4 M-CiS(mi), 

We need to show that e-j to' m-|    ^ CiR'Ce-j) ± M-CLS' (m-|), however, 

since the proofs are similar to those in axiom A2.3, they are omitted. 
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Axiom A2.5     For all f-, in F, f1 6 f-j. 

We must show that: 

For all f1 in F', f-j 6' f] 

Case 1        All events except E4 (create file f in d_) and E5 

(destroy file f in d_) 

In each of these events we have, due to property X.4, f-, &  f« 

implies f-j 6' f,,. Substituting f-| for f2 gives: f.j <s' f,. 

Case 2        E4 (create file f in d.) 

Clearly by P4.4, if f-, &  f then f] 61 fi. The other 

possibility is that f, = f - the newly created file. 

But also f-| = f2 = f. implies f-j s'  fo which in turn 

implies by substitution f^ 61 f-j. Hence for all 

f}  c F', f1 6' fv 

Case 3        E5 (destroy file f in d_) 

By definition, only those files which exist after the 

event are members of F'. Thus "ST'CfO = USED" is 

equivalent to f, e F'. Using this, property P5.1 

(contrapositive) yields —if 5 f, (assuming that the 

conditions are satisfied). 

If some condition is not satisfied then by P5.4 

fI 6 ' fo if and only if f-, 6 fo- By substitution, 

f} &'   f, iff f-| 6 fr 
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Continuing, from P5.4 we also get: if f-| 6 f and—if 6 f-| then f-| a' f-| 

Thus we have for all f-| e F', if f-j 6 f-| then f-| 6' f-j. 

Axiom 2.6     For all fi, f« e F, f, i f» * f« 4 fi =£ f-i • fo« 

Show that:   for all f], fg e F'  f-, 6' f2 A f2 6' f1 2=^ f-j = fg. 

Case 1       E4 (create file f in d_) 

By property P4.4 if f-j 6' f2 then either f-| 6 f2 OR 

(f1 6 d and f2 = f) OR f, = f2 = f. Similarly f2 61 f-| 

implies f2 6 f, OR (f2 6 d_ and f-| = f) OR f2 = f1 = f. 

i) Clearly if f-| 6 f2 and f2 & fy  then f1 = f2 by the 

assumption. Furthermore, by definition, ST(f,) • 

ST(f2) = USED. Since by C4.4 ST(f) = UNUSED we know 

that f1 f  f A f2 f f for this subcase, 

if) f-| = f2 = f satisfied trivially 

iii) Finally we can show that the last subcase 

f1 6 d A d 6' f2 and f2 = f implies |(f2 6' f 1) 

For a proof by contradiction, suppose f2 6' f-i. 

Then since d 6 f2 we find by transitivity d 6' f•>. 

Now f-| 6 d implies f-j &'  d by P4.4. Using this 

fact with d 6' f2 we get f-| 6' f2. However by 

C4.3 we have—i(d 6' f, A f 5' f) or substitu- 

ting  i(d <5' f-| A f^ 6' f2) - a contradiction. 

Thus if f-, 6' f2 and f2 6' f, then either f1 = f2 = f 

OR f] 6 f2 and f2 6 f-, and f-! = f2. 
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Case 2       All other events. 

If f-j 6' f2 then fj 6 f2 because of property PX.4. 

Similarly f2 6' ^ implies that f2 6 f 1. But f2 6 f-j 

and fn <5 f2 yield the result f-| = f2 by the assumption. 

A2.7 fj, f2, f3 e  F, f1 6 fg A f2 6 fga^f, 6 fg 

Show that   f-j, f2, f- e F', f^ 6' f2, f2 <S' f3=^f-| 6' f3- 

Case 1        E4 (create file f in d) 

i)  fi» f2> 
f3 e F - By the assumption, f-j 6 f2, 

A f2 6 f3 frf-j 6 f3. Thus f1 6' f3 by P4.4. 

11)  f-,, f2 e F, f3 = f, f e F\—i(f £ F). By P4.4, 

f2 6' f3 only if f2 6 d. By transitivity fi { d. 

But f-| 6 d means that f-| 6' f3 also due to P4.4 

(assuming all conditions are met). 

Lemma 1       if f, = f A f1 6 f2 then f-| = f2 = f. By P4.4b 

f 6 f2 implies f = f2. 

iii)  f-| e F, f2 = f. 

Clearly if f2 = f and f2 <5 f3, then by lemma 1 

we must have f2 = f3 = f.    Thus f-j 6' f3 since 

f] 6' f2. 

iv)  f1 = f 

By lemma 1, f-| = f2 = f3 = f. By axiom A2.5 

fl 6' f3- 

Case 2       all other events. 

From f-i 6' f? and f2 6' f3 we obtain f-| 6 f2 

and f? 6 f3 from properties Px.4. Furthermore, the 
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transitivity assumption assures that f, 6 f3- But 

using Px.4 again we get f, 6' f3. ^^ 

Axiom A2.8    For f,, f2, f3 e F, f-j 6 f3 and f2 6 f3 =$  f2 6 f-j 

OR f-j 6 f2. 

We must show f1 6' f3 A f? j1 f3 =^ fi fil f2 0R f2 6' fT 

Case 1       E4 (create file) 

i)  fi» fo» *3 e ^ 1S true by the assumPt'ion- 

1i)  Given, f-., f2 £ F, f, = f_ and all conditions are 

met then f-j 6' f3 implies f-j 6 d by P4.4. Simi- 

larly, if f2 6' f3 then f2 6 d. But combining 

these, we get f-| 6 f2 or f2 6 f-| by the assumption. 

From P4.4 we know f1 6' f2 or f2 6'  f1 

111)  f2 « f 

Using Lemma 1, we know also that f3 = f. Since 

f-j 6' f3, we must also have f-j &'  f2. 

Similar arguments apply if f, = f or both f-i and 

f2 are equal to f. 

Case 2       E5 destroy file f in d. From f-] 6' f3 and f2 6' f3 

we know f1 6 f3, f2 6 f3, i(C5.1 A C5.2 Af jf ) 

and |(C5.1 A C5.2 A f { y due to P5.4. From the 

assumption we know either f] 6 f2 OR f 2 6 f •,. Knowing 

this along with |(C5.1 A C5.2 A f $  f.)and   (C5.1 

A C5.2 A f 6 f2) gives us f1 6' f2 OR f2 5' f1 using P5.4. 

Case 3       All other events. 

From f-| 6' f3 and f2 6' f3 we know f-j 6  f3 and f2 6 f3 

by Px.4. From the assumption we know either f-| 6 f2 
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OR f2 <5 f,. Now using Px.4 we obtain f-| 6' f2 OR 

f2 6' fr 

Axiom A2.9    For e-| e E, fp fj < F, e-| v f2> f-j 6 f2 implies 

el vfT 

We must show e1 v' f2, f-j 6' f2 implies e-j v' f.. 

Case 1        E, e_ is view-connected to f_. 

From PI.6 we get two possibilities. 

i)  e-| v' f2,  |(e-j v f2) 

From C1.3 we know e v d, e can-view f_'s parent. 

And by the assumption, f-j 6 d implies e v f^. 

We must show that if f-, 6'f then f-, 6 d. When 

f was created, condition C4.3 guaranteed 

 |(d 6 f-, A f-, 6'f) for any f 1. Hence f-| 6' f 

A d 6' f means that f, <S d because of C4.3 and 

Axiom A2.8. Thus for all f2 = f and e-, = e, 

f-j <5 f2 and e v f imply e-i v f, and hence e-| v' f] • 

11)  e1 v f2.  1 (ci.l A ci.2 A ci.3 A e] = e A ^ = f) 

For all e-j e E, f-| e F, e-, V f„ only if e-, v f2 

due to PI.6. But if e1 v f. and f-j 6 f then 

e-| v f by the assumption and hence e-| v' f-j 

Case 2        E3 (disconnect file f) 

From P3.6, we know that e-j V f_ only if e-. v f2 and 

 1 (e-j = e A f 6 f2 A C3.1). But since f-| if-, 

if r(f 6 f2) then 1 (f 6 f ). Hence |(e-, = e 

A f 6 f•]    A C3.1) must also be true.    This along with 
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the assumption that e-i v fn means e-j v1 f-j by P3.6. 

Case 3.       E5 (destroy file f) 

Using P5.6, e-i v' f2 assures e-| v f2 and  1 (f 6 f2 

A C5.1 A C5.2). Using reasoning similar to that in 

Case 2, we know  1 (f 6 f-j A C5.1 A C5.2) is also 

true. Also, e-, v f2 only if e^ v f-i because of the 

assumption. But now, e, v' f-, also due to P5.6. 

Case 4.       E7 (raise classification of f) 

i) —i(f 6  fp) (neither file is in f's subtree) 

—r(f 6 f2) only if f f  f2- But this and e, v fp 

means e-, v' fo due to P7.6. Since f-, 6 fo> we 

know e-. v f-i from the assumption. Furthermore, 

we can show e-, v1 f-i by similar reasoning. Since 

f-| 6' f2 only if f-| 6 f2, we have shown that 

f-, 6' fp and e-j v' fp implies e-j v' f-j where f-, 

and fp are not in f_'s subtree, 

ii) f 6 fp (at least one of the files is in f_'s subtree.) 

From e-| v' f-|, P7.6 guarantees i(f = f-j  A 

C7.1 A C7.2 AC7.3) OR C <CLR(e,) 

We know from P7.2 that CLS'(f2) = 

CLS(fp). But by the data acquisition axiom (A2.1) 

CLS'(f2) < CLR(e^).    And by axiom A2.ll CLS(f-!) 

^.CLS(fp). Furthermore, C7.3 guarantees that 

CLS' (f.j) 4 CLS(f2) if f] happens to be f. 

Therefore for any f, such that f-i 6 f2, CLS' (f-,) 

± CLS(fp) £ CLR(e-j). But this is sufficient (using 

property P7.6) to show e-| v' f-,. 
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Case 5       All other events. 

Properties Px.2 and Px.ll guarantee CLS'(f-|) = 

CLS(f1), CLS»(f2) = CLS(f2) and C1R' (e^ = CLR^). 

See case 1 ii for proofs.   

Axiom A2.10    For all e-j e E, f •,, f 2 e F, e a f2> f•. 6 f2 and f-| f  f2 

=4e, vfr 

We must show that e-j a' f2, f, 6' f2 and f-| f  f2 =$ e-| v' f-j. 

Case 1 E2     (e_ is alter connected to f.) 

From property P2.5, we know that e-| a f2 OR (e-j = e_ A 

f« • f A C2.1 A C2.2 A C2.3) if e1 u{ f2> 

i)  e1 af2 

By the assumption, for all f-, 6 f2, e-i v f i. 

But we know e-i v' f-. also, 

ii) e-| = e A f2 = f A C2.1 A C2.2 A C2.3. From C2.3 

we know e v d,   (We defined d: d s f2 and 

V f1 6' f2, f-j <5 d, that is all files which do- 

minate f2 also dominate d. ) But using axiom A2.9 

we prove e-, v f-i given e-i v d. But if ei v f-. 

then e-, v' f••. 

Case 2        E3 (disconnect e_ from file f). 

From P3 5, e-, a' f2 implies e-| a f2 and |(e-j = e A 

f 6 f2 A C3.1).  Now e-j a f2 and f-| 6 f2 and f-. t  f2 

means e-j v f-. because of the assumption. But since 

 1 (e-| = e A f s f2 A C3.1) and f-^  6 f2 only if 

 r(e-j = e A f 5 f^ A C3.1), we know e-j v" f-j due 

to property P3.6. 
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Case 3        E5 (destroy file f)  By P5.5 

e-| «' f2 implies e1 
a f2 and |(f 6 f-| A C5.1 A C5.2). 

Using arguments similar to those in case 2, we find 

e-,  v f, and furthermore e-, v' f-, using P5.5 and P5.6. 

Case 4       E7 (raise classification of f_). 

From P7.5 we know that e-| a f2 and [ |(f 5 f2 
A 

f = f2 A C7.2 A C7.3) OR C <_ CLR[e^)}.    The arguments 

closely follow those for axiom A2.9 and shall only be 

summarized: If neither file is in f's subtree, the 

view relation remains the same. In fact as long as 

f-j is not in the subtree "e-| can-view f-|" is unchanged. 

If f-j is in the subtree (but it is not f) the change 

in classification can not exceed f-,'s classification 

so e-i still can-view f-j. If f^j = f, then P7.5 guaran- 

tees that f-i remains at a compatible classification. 

Case 5        El6 (e raises its own clearance) 

e^j a' fp implies e-i a fo and hence for f-| 6 fp. e-j v f•,. 

But the "can-view" relation is unchanged hence e-| v1 fi. 

Case 6        All other events. 

Properties Px.2 and Px.ll guarantee CLS' (fj) = CLS(f-|), 

CLS'(f2) = CLS(f2) and CLR' (e]) = CLR(e-,). See case 

1 i for proof. 
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Axiom A2.1V    f-,, f2 e F, f1 6 f2 =$ CLS{f-\)   < CLS(f2). 

We must show f-j 61 f2 •—*> CLS  ' (f 1) .< CLS'(f2). 

Case 1       E4 (create file f in dj. 

From P4.4, f-, 6 f2 OR (^ 6 d A fg = f A C4.1 

A ... A C4.6) OR (f1 = f2 = f A C4.1 A ...  C4.6). 

i)  ^ 6 f2 

CLS'C^) = CLS(f})  < CLS{f2)  = CLS'(f2). 

11)  f-j 6 d A f2 * f A C4.1 A ... A C4.6. From C4.3 

 1 (f-j 6' fo A d 6 fi). But this means f-> 6 d 

due to axiom A2.4. We know CLS(f-j) <  CLS(d) and 

from P4.2, CLS'(d) = CLS(d) and CLS'tfj) = CLS(f1). 

Furthermore C4.5 and P4.2 guarantee that CLS(d) 

±CLSl  (f2). Hence CIS'(f^ ^ CLS'(f2). 

111)  f] = f2 = f 

CLS'lf^ = CL5'(f2) and hence CLS^f^ < CLS'   (f2) 

trivially. 

Case 2       E5 (destroy file f). 

For all files f2 in use (ST(f2) * UNUSED), ,(f 6 f? 

A C5.1 A C5.2). But also, |(f 6 f, A C5.1 A C5.2). 

Hence CLS'ffj) = CLS(f^)  and Cl5'(f2) = CLS(f2) by P5.2. 

Thus CLS'Cfj) = CLS(f1) « CLS{f2)  = CLS'(f2). 

Case 3       E7 (raise classification of f_). 

1)  f-i = f and conditions are met. 

CLS'(f) - C due to P7.2. But for all f2 such that 

f^  <5 f2 C i CLS(f2) due to C7.3. Thus CLS'tf-j) < 

CLS'(f2). 
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ii)  t-, = f and conditions are met.CLS'^) = CLS^) 

and CLS'(f2) = C due to P7.2. From the assumption, 

CLSCfj) < CLS(f2).    From C7.3 and P7.2 we know 

CLS(f2)  < CLS'(f2) = C. Thus CIS' (f-,) < CLS'(f2). 

iii)  Conditions are not met. By P7.2 CLS'(f,) - CLS(f,) 

and CLS'(f2) = CLS(f2). Using the assumption we 

can show CLS'if^)  < CLS'(f2). 

Case 4       All other events. 

Px.2 guarantees CLS'(f})  = CLS(f})  and CLS'(f2) = OS(f2) 

See case 1 i for proof. 
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Axiom A2.12    For all e-| e E, CLR(e-j) j^CLR'^). 

Case 1        E16 e_ raises its clearance to C_. 

Property PI6.11 guarantees that either CLR'(e-|) = 

CLP(e.j) and the axiom is satisfied trivially or 

CLR*(e-,) = C. But C16.1 assures us that CLR(e-,) < C. 

Case 2       All other events. 

From property Px.ll we know CLR'(e-|) = CLR(e-,) and 

thus the axiom is satisfied trivially. 

Axiom A2.13    For all f-| e  F, ClS(fi) < CLS'Cf]). 

Case 1        E4 (create f in d_). 

i)   |(f 6 f] A C4.1 A ... A C4.6). 

From P4.2 we find clS^f-j) = CLS(f-i) and thus 

the axiom is satisfied trivially. 

11)  f 6 f1 A C4.1 A ... A C4.6.    (f = f.) 

From P4.2 we get ClS'(f-j) = V.cls, but C4.5 

guarantees that CLS(f-|) 1 V.cls. 

Case 2        E5 (destroy file f). 

In order for CLS'(f) not to be undefined, 

 1 (f fi f, A C5.1 A C5.2) must hold. In that case 

CLS'(f.j) = CLS(f-,) and the axiom is satisfied trivially. 

Case 3        E7 (classification of f_ is raised to C_). 

There are two possible outcomes for f_'s classifica- 

tion. 

1)   ((f1 = f A C7.1 A C7.2 A C7.3). 

CIS*(fi) = CLS(f-j) from P7.2 and the axiom holds 

trivially. 
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ii)  f1 = f A C7.1A C7.2 A C7.3. 

From P7.2 we know CLS' (f.) = C. But from C7.3, 

CLS(f.,)«C. Thus CLS(fj) < CLS  (f-,). 

Case 4.       All other events. 

Property Px.2 assures us that CLS'(f-|) = CLS(f-i) and 

hence the axiom is satisfied trivially. 

A2.14        For all m] e M, M-CLS (m-,) <  M-CLS'^). 

The proofs are similar to those for axiom A2.13 and are omitted 

here. 

A2.15        V c e C, c < c 

A2.16        V c,d,e e C, c <; d A d ^ e     c <_ e 

Since the set of security classifications remains unchanged, 

there is nothing to prove. 
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A2.17 For all f], f2 <   F, f] 6 fg    A    f   ,   F'    e=£ 

f1 <   F'. 

Case 1       E5 (destroy file f) 

We know f~ e F' or equivalently ST'(f«) = USED. 

But this can be true only if ST(f2) = USED and 

-i(f 6• f2 A C5.1 A C5.2) by P5.1. However 

this implies -i(f 5 f, A C5.1 A C5.2) since 

if -t(f 6 f2) then -i(f 6 f^) due to the tran- 

sitivity of the "6" relation on the set of files. 

But this along with P5.1 tells us that ST'(f,) = 

STtf^).    This means ST' (f^ = USED; i.e. f. £P, 

Case 2      All other events. 

From Px.l we know ST(f,) = USED implies ST'(f«) = 

USED. 

167 



Appendix E: Mappings and Proofs 

In this appendix, we will establish the connection between S4 and 

Sg. First we will present the mapping between levels by showing what 

the objects and functions of S, correspond to in the previous level of 

specification. Next we will demonstrate (for a representative sample 

of operations) that the S, conditions and properties are sufficient to 

guarantee that the corresponding event in S- can successfully occur. 

It should be noted that there are cases where the Sg event could occur 

but the corresponding S* operation would fail. This is because S« has 

more restrictions and hence we will show that the S. operation implies 

the S3 event. Table E.l lists the correspondences. 

S4 
s3 

CIS 
ACL 

CIS 
Fav 

TVPE sr 

RING Fav 
P-CHAR Fav 

L-CHAR Fav; 

p-cln. CLR 
p-type EP 
OJJOCJI EP 
clvildcnt EP 
alien.-attacked " 
view-attacked Y 
attacked FP 
map w3 

p-ent/iyno FP 
bnanck* & . 
p (process) e (executor) 

Table E.l    Mapping from S4 to S3 
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Since we have given the specifications in terms of functions and the 

values they return, we will continue to do so. However it should be 

remembered that these functions correspond to values in repositories 

and we are in actuality presenting a mapping between repositories with 

one exception. The status of a file (whether it exists or not) is a 

physical property and there is no actual repository for each non-existant 

file to specifically say that it doesn't exist. We assume that the 

system has some way of knowing that a file exists and returns UNUSED 

when the status of some non-existant file is requested. 

Also, several functions in S^ may map to a single function in 

S3. For example, "Ac£", "Zing", "d-chan"  and "1-chtvi"  all correspond 

to the So function, "Fav". Thus if in some S3 event, "Fau" remained 

unchanged, we would have to show that all of the functions in S* which 

were just mentioned also are unchanged. 

An interesting mapping concerns the tree-structure of the file 

system. In S3, the "dominates" relation (&)  is shown to obey axioms 

A2.5, A2.6, A2.7 and A2.8. These four axioms guarantee that the struc- 

ture of the file system is a tree*. In S4, we have a function called 

"branch" which when given some integer i, returns the i  offspring of 

the specified file. Now we say that: 

f 6 g   iff  g = f     (g is the same as f) 

OR      3 n s.t g = branch (f,n)   (n e fcl) 

(g is one of f's offspring) 

OR      g = f.j and f = f -j and 3 "T »"2 n1 

and _j^i» f?» ••• ^i    s.t. 

f2 = branch (f-|,n-|) 

f3 = branch (f*^) 

•Actually, the structure is a forest, however the distinction is unimportant. 
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fj , = branch (f.j_2 ni_2^ 

g   = branch (fj , n-j_-|) 

In other words "blanch"  can be thought of as the "immediate offspring" 

relation and 6 is the transitive reflexive closure of that relation. 

Note that substitution and composition can be used with the "blanch" 

function so that: 

f3 = blanch  (f2»n2) = branch (bianch{f-\ »n-j) ^2) 

and 

fj = branch. {bianch{.... {biamch{f^ ,n-, J^) )ni-i) 

For shorthand we will say: 

fj = blanch* (f-i.N) where N is the sequence <n-j .rig.. .n^>. Fur- 

ther, we define the transitive reflexive closure nn branch: 

f1 e blanch {f^ )  iff f]=fi and N • <  >, or N e N1 and 

f.  = branch.    (fi,N) for some i > 0. In the proofs to follow we will 

assume that f 6 g £±> g e blanch  (f)  and will show that f «' g (z—> 

g e blanch*'(f)   that is the equivalence will exist after each opera- 

tion. One additional point "blanch"  is only defined on files which 

are in use. 

Finally, we can talk about information which the process has. 

As was detailed earlier in the chapter, each process has information 

about the file system in the PST. The information contained about a 

file in the PST is considered accurate if the PST is attached to the 

file. One of the things we must show is that information in the PST 

agrees with actuality. Again, we assume correctness before the opera- 

tion takes place (if the file is attached) and show that the PST is 

correct after the operation is complete. 
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Show that S4 operation #3, GETACCESS (view) 

for F 

implies Sg-El e becomes view-connected to file f. 

S4-C3.3  TVPEtfU {DATASEGMENT, DIRECTORY} £=3 

S3-C1.1   ST(f) = USED 

The "TYPE"  function in S4 corresponds to the "ST"  or "status" function 

in S3. Since TYPE returns a value different from "UNUSED" it corresponds 

to the "USED" value for "ST" 

S4-P3.12^=}CLS(f) <  p-c£t(p)*=* 

S3-CI.2    CLS(f) <  CLR(e) 

The CLS function in S4 corresponds to the CLS  function in S3, p-cJUi 

corresponds to CLR and executor e corresponds to process p. Note that 

an S4 property is used here to guarantee an S3 pre-condition. The rea- 

son is that "GETACCESS" is more general than "view-connect" since it 

also corresponds to "alter-connect". However in order to get view 

access the above property must be true and it is in essence a condition. 

S4-C3.1   vlew-attachzd(d) *=$ 

So-Cl.3  e v d 

In the mapping, the function "view-attacked"  corresponds to the "can- 

vim"  relation (v). Also, D maps to d. 

S4-P3.3   Vfp TVPE'lf))  = TVPtlf^)  £=} 

S3-PI.I   Vfp ST'tf]) • STff^ 

Since TYPE corresponds to ST,  we show that both are unchanged. 

S4-P3.1   Vf , CLSM^) = CLSif^ 

S3-PI.2   Vfp CLS'(f^)  = CLS(f^) 
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Again, both sides of the mapping are unchanged, 

P3.2 

P3.4 

P3.5 

P3.6 

i 

S3-PI.3 

Vfn        f ACL' (f-j)        - ACK^) 

RING'ffj)      = RWG(f}}     I / ^ 

fl-CHAR'Jf-j)   = fl-CHARff^ 

L-CHAR1(f,)  =  L-CHAR(f,J 

Vfv Fav'tf,] = Fowtf,) 

Here, all S4 attributes which map to "Fav" are unchanged and hence 

we merely show that "Fav" also is unchanged. 

S4-P3.15    Vf,, Vn^ blanch' (f^.n^) = bHanch[f^,n^) 

This says that all "fotandi" functions are unchanged.    But we also know 

that any set of them (in particular those that form a transitive re- 

flexive closure) are all  unchanged.    Thus [Vf, ,VNe N bnanch}   (f-j ,N) 

= bAandi^fpn)] £=} Vf blanch      (f) = bnanch(f) {==$ g e branch  '(f) 

<f > g E blanch (f) {—r) S3-P1.4    Vf,g, f 6'  g <—^ f 5 g 

S4-P3.12 '*—.a.alter £=}  , alter-attached'(F-|) 

= altcfi-attachzd{F^)   {      > 

S3-PI.5  Ver V^ e] «' f1f=^e1 - f1 

For this operation the "alteA-attached"  function is unchanged which 

agrees with the fact that the "can-alten."  relation is also unchanged. 

S4-P3.12 VF-,, u^.ew-attacfeMf'(F1)<=z^(a.view A [VIEW-ACCESS 

(f-|,u)] A F-,=F A C3.1 A C3.2 A C3.3 A [CLSffj) < 

p-ciA(p)]) v view-attached[?-,) 
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S3-PI.6  [ej v fi {==}  (e^e A f^f A Cl.l A C1.2 A C1.3) v ei v f] 

Several mappings are used for this step. First,if F, was previously 

view-attached then the S3 "can-view" relation held, and both still hold 

after the operation/event takes place. The more interesting case occurs 

when the process did not formerly have view access to the file. Again, 

we see that in both S4 and S3 the file in question is the object of the 

operation. Furthermore the process (implicitly) and the executor (ex- 

plicitly) are also the object of the operation. We showed above that 

the conditions for "GETACCESS" implied the conditions for "view-connect". 

Thus, we have shown that S^-P3.12 implies S3-P1.5. It should be noted 

that the implication goes only in one direction since S4-P3.12 has the 

additional restriction that user u (to whom the process belongs) is on 

file fj's access control list (ACL). The concept of an ACL is unknown 

at the S3 level, and hence there is no function to which it maps. 

Many of the properties of mailboxes are similar to those for files, 

and presumably the proofs would be similar. This paper does not cover 

mailboxes at the S4 level and hence S^ properties P1.7-P1.10 are ignored. 

S4-P3.8  Vpp p-ctn.'{p})  = p-ciA(p1) 4=^ 

S3-P1.11 CLR'^) = CLR(e-\) 

S^ and S3 guarantee that all processes and corresponding executors 

do not change clearance. Finally S4-P3.9 p-typz,  P3.10 atpax,  P3.ll 

ckiidzrvt,  P3.13 map,  P3.14 p-zntnyno  are all made to conform to their 

respective values in the file system. This and the fact that P3.12 

attackzjd{?)  = TRUE ensure that the values can be taken as correct. 

Show that S4-#5 CREATE FILE f as entry eno in d with attributes V 

implies 

S3-E4   executor e creates file f in d_with attributes _V 
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S3-P4.1  VfyF, ST(f})  = 

USED if C4.1 A...A C4.6 A f, = f 

ST  (f-j) otherwise 

If the S4 conditions are met, the operation will occur and hence 

S4-P5.15 is valid. This is sufficient to guarantee that the S3 condi- 

tions hold. The mappings are obvious. 

S4-P5.1  Vf-,, CLS'C^) = 

Je&(V)  if C5.1 A C5.2 A...A C5.6 A f1=f) =$ 

CLS(f^)  otherwise 

S3-P4.2  Vfp CLS'Cf^ = 
( 

< 
ctA(V) if C5.1 A C5.6 A f,»f 

CL5(f1) otherwise 

Except for one difference in the mapping, this proof is the same as 

the last one 

S4-P5.2  Vf^F, ACL'C^) = 

[ acJLW)  if f1=f A C5.1 A... 

ACLCf^ otherwise 

S4-P5.4  Vf]eF, RIWG'C^) = 

fUngiV)   if f^f A C5.1 A.., 

RIWG(f-,) otherwise 

S4-P5.5  Vfv P-CHAR'^) = 

\ d~choA[\l) if f1=f A C5.1 A. 

V-CHAR(f^)      olherwise 

S4-P5.6  Vf1t l-CHAR't^) = 

l-chaA(M)   if f,= f A C5.1 A 

/.•CHARC^) otherwise 

N 

t } 
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S3-P4.3  Vfp Fav'ffj) = 

V if fi=f A C4.1 A... 
<      — 

Fau(f-|) otherwise 

As was pointed out before, Fav in S3 corresponds to several attributes 

1n S^. if we also assume that V in S3 is appropriately partitioned, 

then the proof is similar to the two preceeding proofs. 

We must now show that S3-P4.4 f-| 6' f2 iff f-| 6 f2 OR 

(f-| 6 d A f2=f A C4.1 ...) OR (f-|=f2 " 1 
A C4.1 ...). From S4-P5.15 

we know: f2 e branch,    (f^) iff 

i)  f2 e bnanch  (f-|)   OR 

* r 1i)  d e bnanak  (f-|)   (where N^ is the same as N except for 

the final integer in the sequence) and f2=f and C5.1 etc OR 

111)  fi • f2 • 1 and C4.1 etc. 

i)  [f2 e b/wnc/i*(f-|)=*f2 e bunch*' (f])] =>[f-|6 f2=4(f1 6' f2) 

A C4.1 ...] 

11)  [d e b*a«e/i*(fi)   A f2=f =$ f2 e faandi*'^)   =} 

[f1 6 d A f2=f =^(f1 6' f2) A C4.1 ...] 

111)  [f-, • f2 - f =} f2 = bMMC&*(f]•{})] =4 [f^f^f —^ 

^ 6' f2 A C4.1 ...] 

We can also show that the S3 conditions will be satisfied as in previous 
it 

proofs. Now since [f2 e bnanch  (f-|)  £=^i, ii or iii] we know 

[f1 6' f2£=? fj 6 f2 OR (f1 6 d A f2=f A C4.1 ...) OR (f^f^f A 

C4.1 ...)] 
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S4-C5.1: vluo-abtach<id(Q)  A C5.2 p-typz[D)  = DIRECT 

=*S3-C4.1  ST(d) = USED 

The fact that D is attached means that 1) we can assume D corresponds 

to d and 2) we can assume that p-type.  is correct; i.e. it is equiva- 

lent to TyPE(d). Since TZPE(d) is not UNUSED, it agrees with "ST". 

S4-P5.15 Vne N,Vd-|eF s.t. d1 f map(D), blanch'(d-\ ,n) = bnanck 

(d^n). Hence VNe N* Vd-^F-d}, 6/umch*1 (d-, ,N) = 

oHonch  (dpN). That is d is the only file which affects 

the structure of the file system. Thus 3d2 e F and 

jNe N s.t f_ = branch    (dp.N) only if f • bnanch 

(d2,N). But since C5.3 type (f) = UNUSED this is 1m- 

possible. Thus we know Vf-jeF, VN 1f f = b>umc.k  '(f-j.N) 

then d = bnanch    (f-|,N-|). This proves S3-C4.3 d 6 f 

A Vf^F, —i(d 6' f-j A f1 6' f A f1 f  d) 

S4-C5.3 £ype.(f)  = UNUSED =} S3-C4.4 ST(f) = UNUSED. This 

comes directly from the mapping. 

S4-C5.4  p-c£6(D) <  C£J(V]A C5.1 euttackuHD)  * TRUE=^ S3-C4.5 

CLS(d)  < UilV) 

Since D is attached, we can accept p-c£a(d) as correct. The rest is 

just a matter of mapping. 

S4-C5.5 type.(V)  e {DATASEGMENT, DIRECTORY} 

S3-C4.6 A-C(V) = USED. 

Since DATASEGMENT or DIRECTORY indicate that a file is in use, the above ar- 

gument specifications correspond. 

S4-P5.3  Vfl£F, type.1^^)  = type.[V) if C5.1 A C5.2 A ... A C5.6 

* fi •f =* 

£ypt(f-i)  otherwise 
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S4-P5.12   VF-|ePST   aJUeA-attackeAi' (F]) = cuUeA-attached?{F^) $=} 

[S3-P4.5   Ve^E, f1 e F   e] « f 1 $=3 e] « ^] 

Again, this 1s merely a result of the mapping where map(F,) corresponds 

to f-j, the processes correspond to executors and "attzn-attached" cor- 

responds to "«". 

[S4-P5.12   VF^PST, viw-attackzd'iF^) = vlm-aUachzd(?-])1 

[S3-P4.6     Vel£E, f, e F, ei Y' f (=^6, Y r,] 

This is almost identical to the previous proof. 

Again, the S3 mailbox properties, P4.7 - P4.10 are ignored. 

[S4-P5.8   Vp^P, p-cJUl(p}) = p-ciA(p1)]   £=* 

[S3-P4.ll Ve^E, CLR'(ei) = CLR(e«,)] 

The mapping 1s straight forward. 

S4-P5.9     VFieF,    p-type.'[F}) = p-typc (F^ 

P5.10   VF-jeF,    atpo*'^] • oepo^. (F^ 

P5.ll    VF]fF,    cfccedcwt'tF^ = chMdcYVt (F^ 

P5.13   VF^F,    map'fF-,) = map (F-|) 

P5.14   VF-jrF,    p-en^tt/no'(F'j)  = p-ZYvOujno  (F,) 

S3-P4.I2   Ver   Ep»(ei) = Ep(ei). 

Show that S4-#6 DESTROY SUBTREE whose root is F implies 

So-Er-   executor e destroys file f in directory d_. 

S4-C6.1 viw-<vttadted{d)  A C6.2 p-typc{D)  = DIRECT 

 ^  S3-C5.1 ST(d) = USED 

Here, the fact that D is attached allows us to assume that "p-typz"  is 

correct; i.e. it agrees with TVPE(D). Again we use the correspondence 

between "TV?E"  and "ST"  for the proof. 
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S4-C6.1 al£eA-cut£achejd{D) =7 e ad. But due to axiom 

A2.3 we get S3-C5.2 CLR(e) ± CLS(d) 

[S4-C6.1 A C6.2 A P6.3 Vf1 e F, ]N e M*. f1 e bnxrn.dk  (map(F )) 

^(TYPE'Cf,) = UNDEFINED)] =^ [S3-P5.1 Vf 1, f 6 f., A C5.1 A 

C5.2 =} SVif^  = DELETED] 

The satisfaction of the S4 conditions certainly guarantees that the S3 

conditions are true. We have also seen that "bnaneh "  corresponds to 

the "dominates" relation (6). Finally "TYPE"  corresponds to "ST"  and 

the value "UNDEFINED" corresponds to "DELETED". Again we have a case 

where the S4 operation is more restrictive than the S3 event. For ex- 

ample C6.1, viw-atta.ch<td(D), may not happen to be true, though e v d. 

However if the S3 conditions are false, the corresponding S4 conditions 

will be false and neither the operation nor the event can take place. 

In other words,  1 S3 - >—|S4 

S4-P6.1 [Vf-jeF, 3 He U*  f1 £ branch  (map(F))  A C6.1 A C6.2 =4 

CLS'Cf^ « UNDEFINED] =4 [S3-P5.2 Vf^F, f 6 f 1 A C5.1 

A C5.2 =$ CLS'(f^)  = UNDEFINED] 

The obvious mapping exists between "CIS" in S4 and S3. The remainder 

of the argument follows the previous proof. Again, the operation has 

stronger restrictions than the event. 

S4-P6.2  (ACL), P6.4 (RING), P6.5 (P-CHAR), P6.6 (L-CHAR) =^ 

[S3-P5.3 Vf|cr, f 6 f, A C5.1 A C5.2 =4Fav'(f1) = UNDEFINED] 

Without belaboring the issue, we will just state that all S* attributes 

which correspond to S3's "Fav" become undefined if conditions are met. 

Arguments for proof are similar to the previous ones. 

178 



[S4-P6.15 Vf^F, "BNeN , fy hunch (mop(F))     A C6.1 A C6.2 

=^VneN btiancM.'(f 1 ,n) = UNDEFINED] =9 [f2 = fouwcfi '(fpN-,) 

•f2 = fcwindi (fpN-jjA     (C6.1 A C6.2)] (C6.1 A C6.2 

A f1 E bfumch    (map(F)i=^[f1 6' f2«* -»(C5.1 A C5.2 A fsf^/v f^^ 

In other words, if one of the conditions is false, then the "bnanch*" 

relation will still hold.    If we assume C6.1 $==} C5.1, that is if d can 

be viewed, it will be view-attached, then this implies the f-. 6' f2 part 

of E5.    Certainly 1f C6.1 and C6.2 are true, "blanch. " will be undefined. 

Furthermore, C5.1 and C5.2 will be true and hence —i(f-| 6 f2) for f2 

in the subtree. 

[S4-P6.12   VF^PST, altex-attached' (F1) = 

UNDEFINED if C6.1 A C6.2 A 3N£ fclVt. map(F}) = 

branch [map(F),N) 

alten.-attached (F-|)   otherwise 

[S3-P5.5     e-| ot' f-\      iff   e1 o ^ A —,(C5.1 A C5.2 A f 6 fj)] 

This proof closely follows the previous one. 

S4-P6.12      {cdtten-attached) =} 

S0-P5.6        [can-vtew] 

This again 1s too similar to go into more detail. 

Show that S4-#9 Raise Clearance to C implies 

S3-E16        Executor e_ raises its own clearance to C_ 

S.-C9.1       p-cJU 5   C<_maxcln (p-aae*.(p))  £=3 

S3-C16.1      CLR (e) < C « MAXCLR(e) 

The mappings are straightforward.   Some maximum is assumed to exist for 

each user. 
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S4-P9.1 - P9.6     unchanged     ^ 

S3-P16.1 - P16.3   "ST", "CIS", and "Fav" unchanged. 

This 1s just a simple mapping 

S4-P9.15     Vf^F, Vne N,branch' (f] ,n) = b*anch(f^ ,n) 

VNeN\  bnanck V(f]tH) = b^ndiVpN) 4 

S3-PI6.4     Vfp f2eF   f1 6 f2 ^zr^ f 1  6' f2. 

Again, a simple correspondence. 

S4-P9.12     VF^PST, tvUeA-cuUachzd' (Fj) • aZteA-attached (F-,)A 

(C « p-c£4 (F^) v —iC9.1] 

=*[S3-P16.6     Vf-jer, Ve^E   e] «' f1^=d>e1 - f] 

A (C iCLSC^) v IC18.1) 

The mapping is fairly straightforward, however one must note that "cutteA- 

outtachzd"  is more restricted than "a". 

S4-P16.12 "vlzuhcuttachzd"  unchanged =? 

S3-P16.6 "can-vim"  unchanged. 

S4-P9.8  Vp^P (the set of processes), p-c&t'Cp^) = 

£ if p-j = p A C9.1 

p-cZn(p)   otherwise 
< 

S3-PI6.H CLRCej) =  I C if e^e A C16.1 

CLR(ei) otnerwise 

Since the conditions for S4 and S3 correspond, both will take on a new 

classification C under comparable circumstances. 

S4-P9.9, P9.10, P9.ll, P9.13, P9.14 unchanged 

^==$ S3-PI6J2 Ep unchanged. 

Again we have a straightforward mapping. 
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