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1.0 INTRODUCTION

The description of nonequilibrium phenomena in gases is of impor-
tance to the aerospace sciences because these phenomena are present
in such diverse applications as hypersonic flow fields, rocket exhaust
plumes, and low density, high enthalpy wind tunnels. Experimental
and calculational techniques to study the physical mechanisms contri-
buting to the nonequilibrium situation are at best difficult because of
the complexity of the necessary mathematical system as well as a
lack of knowledge of many of the fundamental constants. Although
still present, these drawbacks are reduced in decaying low density
plasmas and such plasmas can be used for studying the fundamental
manifestations of the nonequilibrium phenomena. This study usually
proceeds through interpretation of measured spectral line intensities,
electron densities, etc. in terms of recombination rates and other
useful properties of the plasma. Proper and complete interpretation
of these data requires knowledge of the distribution of population
densities among the different energy modes of the plasma, and in
the nonequilibrium environment, this is generally not describable by
a Boltzmann distribution.

The majority of the work in recent years has been concerned with
electron-ion recombination and the distribution of the population den-
sities of electronic states in atomic plasmas. In most of this work,
the assumption that the population densities of excited states are
quiescent was required in order to make the calculations tractable.
This agssumption, called the quasi-steady-state (QSS) assumption,
although apparently reasonable, results in the masking of the transient
physical mechanisms that contribute to establishing the final distribu-
tion. Implicit to the QSS is the assumption that the occurrence of
atomic collisional processes is sufficiently rapid that macroscopic
phenomena, such as gas dynamic effects, are negligible.

The intent of this study is to remove the QSS assumption so that the
detailed processes establishing the transient behaviour of the popula-
tion densities can be studied during the establishment of the final
distribution. The present study is confined to helium plasmas because
the helium atom has been extensively studied both experimentally and
theoretically so that the fundamental quantum mechanical structure is
well known. The study further ignores the possible effects introduced
by gas dynamical and other macroscopic effects. Including these
phenomena at this point would only complicate the problem without
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materially adding to the fundamental description of the necessary mi-
crosopic processes,

1.1 BACKGROUND

The following review of the wealth of literature available on the
subject of electron-ion recombination in atomic hydrogen and helium
plasmas is not an exhaustive one, and the bibliography is not complete
by any means. There have been a large number of investigations of
recombination in helium, and enumeration of each would not illuminate
the subject materially beyond those which are reviewed. Rather, the
events and highlights leading to the present study are indicated.

Early experiments on recombination in ionized gases provided
recombination rates which were about two orders of magnitude greater
than theoretical values obtained by considering only two-body encoun-
ters (i. e., radiative recombination) (Ref. 1). Early in 1961, D'Angelo
{(Ref. 1) examined the recombination rates obtained by considering
three-body encounters (two electrons and an ion), resulting in a neu-
tral atom and a free electron for hydrogen plasmas. The captured
electron was considered to be in a bound energy state, and the excited
atom subsequently decayed radiatively to the ground state. The results
of D'Angelo's calculations showed that considerations of three-body
collisions yield recombination rates appreciably larger than for radia-
tive recombination, Thus, it was believed that three-body collisions
would explain the large recombination rates observed in plasmas. This
appears to have been the first work in which the three-body collision
theory was applied to recombination studies. )

Byron, Stabler, and Bortz (Ref. 2) subsequently (1962) further
refined the calculative procedure. They considered three-body
recombination along with collisional de-excitation and radiative de-
excitation and calculated recombination rates for hydrogen plasmas.
Their work was based on the simplification that at equilibrium there
is a minimum in the total rate of de-excitation of excited atoms with
increasing quantum number. This minimum results because the
collisional de-excitation rate increases with increasing quantum num-
ber, caused by the lower energy difference between states, while the

radiative de-excitation rate decreases with increasing quantum number
due to the smaller transition probabilities for states of larger quan-

tum number. They then solved the problem for the total recombi-
nation rate by obtaining the quantum level at which the minimum
occurs and finding its net rate of de-excitation.

10
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During this time, Bates, Kingston, and McWhirter published sev-
eral papers concerning recombination. Their work, based upon a
statistical approach to the problem, culminated in two comprehensive
papers in 1962 on collisional-radiative recombination {(Refs. 3 and 4).
They included ail the salient processes which contribute to level pop-
ulations of a hydrogenic plasma in a set of rate equations. The result
of these studies was a model which could be generally applied to decay-
ing plasmas; the model is usually termed the ''collisional-radiative
recombination'" (CRR) model. In this model a Boltzmann distribution
of population of upper excited states is maintained which is in equili-
brium with the free electron density.

The aforementioned studies form the basis of the present day theo-
ries of electron-ion recombination in atomic plasmas. The primary
emphasis in each has been to obtain recombination rates which were
more consistent with experiment. In each it was necessary to invoke
the QSS assumption, and thus information as to the mechanisms for the
establishment of a final distribution of excited state population densities
was lost.

Before the establishment of the CRR model, it was generally nec-
essary to revert to two basic models for the analytic study of excited
state population densities. One of these, the local thermodynamic
equilibrium (LTE) model (Ref. 5} is useful when the densities are
sufficiently high to maintain strong collision dominance and Boltzmann
distributions of excited state densities are maintained. The other
model, the corona model, applies to the low density situation (Ref. 5)
where radiative rates are competitive with collisional rates and the
distributions are non-Boltzmann. McWhirter and Hearn (Ref. 6) cal-
culated the instantaneous population densities for the excited levels of
hydrogenic plasmas based upon the CRR model for a variety of plasma
conditions. Their results are in basic agreement with the LLTE and
corona models and provided validity for the QSS calculation at interme-
diate conditions when the simpler models were not valid, There was no
way in using these models for excited state density determinations that
the validity of the QSS assumption applied to a real plasma could be
checked. Rather, all that was known was that the various theories,
based upon the QSS assumption, agreed.

The feeling that apparently has prevailed since about 1964 is that
the recombination rate problem has been solved for hydrogenic plasmas.
There are occasional papers in which the CRR ionization and recombi-
nation coefficients are computed using later and more accurate cross-
section calculations (Ref. 7) or introducing another class of collisions

11
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(Ref. 7), or including estimated relaxation times to the steady state
(Ref. 9). This work all depends on the QSS, however.

The difficulties encountered in studies of recombination in helium
plasmas largely paralleled those for hydrogen plasmas. A wealth of
experimental data from microwave and spectroscopic measurements in
decaying afterglows was available which indicated significant differences
in the calculated and measured recombination rates. Indeed it was just
such discrepancies that prompted the analytic work in the hydrogenic
plasmas. Shortly after D'Angelo (Ref. 1) published his work, Hinnov
and Hirschberg (Ref. 10) applied the three-body theory to helium recom-
bination experiments in the B-1 Stellerator at Princeton. By also includ-
ing inelastic electron collisions for excitation and superelastic collisions
between bound atomic states they obtained good correlation between
theory and experiment. In later work Hinnov and Hirschberg (Ref. 11}
extended the interpretation to locating a "critical level” which is defined
as the lowest principal quantum level in equilibrium with the free elec-
trons. This critical level serves as an upper bound on the quantum
levels affecting the electron density decay. They refer to favorable
comparisons of their work to the preliminary studies which led to the
CRR model of Bates, Kingston, and McWhirter (Refs., 3 and 4).

Robben, Kunkel, and Talbot (Ref. 12} made a spectroscopic study
of the freely expanding recombining plume of a helium arc jet in 1963
They determined population densities of upper excited states including
substates for each principal quantum level greater thantwo. Their
measurements showed that the sublevels within a principal quantum
state exhibited Boltzmann distributions at the same excitation tempera-
ture. Recombination rates based upon the QSS were approximately
determined and were in reasonable agreement with the CRR models of
Bates, et al. (Refs. 3 and 4) and Hinnov and Hirschberg (Ref. 11).
Their population density measurements were not compared to
calculation.

One of the recurring problems of experimental studies of helium
recombination was the role of the molecular helium ion He'b. In 1964
Collins and Robertson {Refs. 13, 14, and 15), with a series of selective
excitation experiments on a flowing afterglow, and Niles and Robertson
(Refs. 16 and 17), using a series of interference filters to study the
spectral emission, found that Het recombination dominated the after-
glow at low pressures (less than about 20 torr) and above this the mo-
lecular recombination quickly dominated the afterglow. Both species
were found to follow CRR, although at different rates, even in the

12
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presence of the other. At about the same time, Rogers and Biondi (Ref.
18) published the results of experiments on the helium afterglow in
which the attempt was made to reconcile the observed large electron-
ion recombination losses. Although the goal was not fully realized, they
argue that dissociative recombination appeared to be the most likely
candidate for the line shapes observed in the late afterglow,.

Collins and Hurt (Ref. 19) report on helium afterglow spectral line
measurements made in 18967 from which they determined population
densities of eigenlevels through principal quantum number 25. They
found that there were three separate groups of quantum levels charac-
terized by decay times. A lower group and an upper group exist whose
quantum levels within the group decay withthe same lifetimes, although
the lifetime is different between the two groups. The other group is an
intermediate one in which the quantum levels within the group all deocay
with different lifetimes. They found excitation temperatures of 300 K
for the upper group and 2, 000K for the lower group. The upper group
was determined to be in equilibrium with the free electrons by compar-
ing exponential decay constants of the levels, the free electron density,
and a calculated decay constant for Het. By a similar comparison it
was .determined that the decay rate of the lower group is proportional
to the square of the electron density and the first power of the concen-
tration of He. In a follow-up analysis, Collins (Ref. 20) computed the
logarithmic derivative of excited state populations as functions of
logarithmic electron density. These calculations, based upon the quasi-
steady-state approximation, yielded recombination rates in semiquanti-
tative agreement with experiment (Ref. 19).

Recent studies of helium recombination of some significance are
those of Chen (Ref. 21} and Johnson and Hinnov (Ref. 22), both published
in 1969, Chen appears to have made the first direct calculation of helium
recombination rates, as well as those of other atoms, based on the Q@SS
assumption. Chen's approach was the same as that of Byron, et al,

(Ref. 2) and Bates, et al. (Ref. 23) for hydrogen, in which the minimum
in the total rate of de-excitation of atoms as a function of the energy
level of the excited states is found. Chen also made experimental mea-
surements of recombination rates in a discharge tube and found more or
less satisfactory agreement with calculation.

Johnson and Hinnov (Ref. 22) made spectroscopic measurements of
excited state population densities in the C-Stellerator at Princeton and
compared them to quasi-steady-state calculations of the densities using
various assumed formulations for collisional cross sections and at

13
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various excitation temperatures. These measurements were at quite

low pressures so that the presence of molecular helium could be discount-
ed. The comparison between their calculated and measured recombina-
tion rates was quite good for moderate times in the afterglow. At early
times, however, the calculated rates were noticeably smaller than the
measured rates.

The aforementioned studies of helium recombination have assumed
the QSS a physical as well as a mathematical reality, just as in the
analytic studies of hydrogenic recombination. Little of that previously
cited work was concerned with comparison of measured and calculated
excited state densities in the region of nonequilibrium. The work of
Johnson and Hinnov (Ref. 22) is an exception to this but they also use
the QSS and this leads to discrepancies. This is discussed further in
Section 7. 0.

The solution to the original system of rate equations from which
Bates, et al. (Refs. 3 and 4) obtained the CRR model does not demand
the QSS assumption, although the calculations are made much easier by
its use. A solution of the complete set of Eigenstate Rate Equations
(ERE) is possible using modern computational methods, and makes
possible a more detailed examination of the approach to the QSS and
permits estimates to be made of the time to reach the QSS solution to
the ERE.

Since 1967, two groups of investigators (Refs. 24, 25, 26, and 27)
have attacked the problem of removing the QSS assumption for hydrogen
plasmas. Limbaugh, Carstens, McGregor, and Mason (Refs. 24, 26,
and 27) were primarily concerned with the pure afterglow problem in
which the electron temperature remains constant. The purpose of that
investigation was to examine the fundamental consistency of the collision-
al-radiative recombination model to the full transient solution and to
determine quantitatively the differences in the decay of plasmas in ,
which a radiative metastability existed. Among the findings was that
the metastable state definitely affected the decay and that under reason-
able conditions, there could be a physically significant time before the
QSS is established. Gordiets, Gudsenko, and Shelepin (Ref. 25) were
primarily concerned with the effects of sudden changes in the plasma
parameters, such as excitation temperature or free electron density
upon the plasma decay. They show that in such cases the parametric
changes could have an appreciable effect upon the plasma decay. Al-
though detailed quantitative comparisons between the results of the two
studies are difficult because of the different problems being solved, they
do show qualitative agreement with each other.
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1.2 APPROACH AND GOALS

The relative success of those earlier studies illustrated the potential
of the ERE to provide a detailed accounting of the interaction between
free electrons and the various energy states of the afterglow plasma.
This success, along with the realization that only through use of the ERE
rather than CRR theory could the acquisition of the QSS be studied, and a
curiosity about the processes which bring a plasma to the QSS, provided
the underlying motivation for the study reported here.

For these purposes, it was decided to extend the earlier work,
summarized in Ref, 26, to the helium atom. Helium is next to hy-
drogen in simplicity and has been investigated extensively experimental-
ly. In addition, its electronic structure seems to promise more interest-
ing study since the low-lying energy levels are farther apart than those
of hydrogen and contain both singlet and triplet states. The larger energy
spacing causes the collisional effects to be less effective than for hydro-
gen., To the author's knowledge, this is the first application of the ERE
to helium and the present computer program is the only one in existence
which can obtain the transient solution to the ERE.

The purpose of this study is to investigate the basic mechanisms by
which the QSS is established and to attempt to assess the validity of CRR
theory as applied to physically realizable plasmas. To achieve this, the
transient solution to the ERE with the restrictions and assumptions to be
discussed below will be obtained for several plasma conditions. These
studies break into two groups: (1) pure afterglows and (2) perturbations.
The pure afterglows are studies in which the plasma is allowed to relax
from an initial LTE distribution toward the QSS distribution. The pertur-
bations are studies in which certain plasma parameters are perturbed
from the acquired QSS and the relaxation of the plasma is observed.

In the realization of the final goal of this study there are several
significant objectives:

1. To determine the mechanisms by which the QSS is
established for helium plasmas.

2. To observe the decay characteristics of both the
excited state distribution and the free electron
density in He plasmas and to determine the
applicability of the results of CRR theory to
helium in the early portion of plasma decay.
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3. To observe the variation in the time for QSS to be
established in He plasmas for different values of
electron temperature, electron density, and
total number density, and to cbserve the systematic
trends.

4. To gain insight into the total coupled processes by
which plasmas decay.

In the following pages, Section 2.0 contains the theoretical model and
indicates those physical processes which are ignored and the physical
assumptions which are made in setting up the theoretical description of
the plasma. Section 3.0 includes a brief examination of the various rate
coefficients and transition probabilities used in the ERE and indicates the
accuracy of the specific technique used to evaluate the collisional cross
sections. In Section 4.0 the numerical techniques used to effect the
solution to the ERE are described and the limitations of the present
computer program are indicated. In Section 5.0 and 6.0 the results of
the computations are reported, and in Section 7.0 the data are inter-
preted in terms of effects on measurements and application to decaying
helium afterglow plasmas. The findings of this study and comments
upon their impact on the interpretation of existing measurements and
the design of future experiments are summarized in Section 8.0. Also
included in Section 8.0 is a discussion of recommended future research
using the ERE, and certain simplifications which should be incorpor-
ated in further work are pointed out,

2.0 TRANSIENT PLASMA BEHAVIOR

This section examines the development of the system of equations
which will describe the transient properties of the population density of
the various internal energy states available to a singly ionized mona-
tomic plasma. In the following subsections a generalized description of
the physical problem shows the role of the separate processes contri-
buting to the excitation or de-excitation. Subsequent to this discussion
each of the phenomena will be discussed separately leading to a detailed
mathematical description of each process. Included in this discussion
will be the simplifications and approximations which are necessary to
make the mathematical system tenable to the physical problem at hand.
Finally the detailed descriptions are combined to illustrate the full
description of the physical problem and the development of the CRR
model is described.
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2.1 THE GENERALIZED PROBLEM

To provide a detailed description of a plasma which may not be in
equilibrium it is necessary to include each energy state available to
each plasma constituent. By considering some arbitrary control volume
in space and examining each energy state within the control volume it
is possible to arrive at a simple model for the plasma. The dimensions
of the control volume will be assumed to be small with respect to the
total extent of the plasma yet large enough that there are a sufficient
number of particles contained within it for statistical properties to be
meaningful. Any property measured or ascribed to the constituents of
the plasma within the control volume is assumed constant throughout
the control volume. If the plasma exists in field-free space, then the
population density of a given energy state will be affected by local
interactions between the constituents of the plasma contained within the
control volume and by a net flow of the plasma constituents across the
boundaries of the control volume,

The time rate of change of the population density of some specific
energy level within the control volume can be written symbolically:

dn(p) _ on (p) on (p)
ol (TE& i (1)

micro space

where n is population density, p symbolically represents the set of
guantum numbers necessary to describe the particular energy state,

t is time, and the subscripts "micro" and "space'' refer to the micro-
scopic processes and spatial variation described above. An equation of
this general type must be written for each of the energy states available
to each plasma constituent and the solution of the resultant system of
equations will yield a time-dependent function for the population

density of each state.

Including that portion of Equation (1) which refers to the spatial
variation of n (p) will generally necessitate including the statements of
conservation of energy and momentum as well as the statement of con-
servation of mass. As discussed earlier, the effort here is an examina-
tion of the mechanisms by which the QSS is obtained and an assessment
of the importance of including the transient coupling in analysis of helium
plasmas., The present work is to be considered a first step leading to
eventual modeling of plasma phenomena, and inclusion of the spatial
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variations, although necessary for final realization of the goal, is
inappropriate at this stage of development. Hence, subsequent dis-
cussion will consider all of space as being filled with the plasma, with
no sources or sinks, and with no gradients present.

2.2 THE EIGENSTATE RATE EQUATION (ERE)

The physical phenomena comprising the contributions to the tran-
sient description of the population density on the microscopic level can
be treated by examining the plasma within the control volume as if
there were no convective variations. Within this control volume, the
monatomic plasma consists of neutral atoms in each of the possible
electronic energy states, ions, and free electrons. For this work which
will be concerned with the helium atom single ionization will be assumed
so that the concentration of ions and free electrons will be identical.
Further, the electrons will be assumed to exhibit a Maxwell-Boltzmann
velocity distribution independent of the kinetic temperature of the atoms
or other heavy bodies.

Each of the mechanisms causing a change in the population density
of a particular eigenstate can be characterized by a rate coefficient.
The instantaneous rate by which the level is being populated or depopu-
lated by a given mechanism is the product of the rate coefficient and
the concentrations of the reaction partners. The microscopic processes,
the instantaneous rates, and the rate coefficients included in this
study can be listed as follows:

1. Inelastic and super-elastic electron-atom collisions.
For inelastic excitation, the necessary energy to
effect the transition is supplied by the kinetic energy
of the free electron. For the super-elastic de-exci-
tation, the excess energy increases the kinetic energy
of the free electron. The rate coefficient for this reac-
tion is K(p;q) where p and q represent initial and final
energy states of the bound electron. The instantaneous
rate for this process is given by

a8p) = -n_ n(p) x(piq) (2)
for depopulating of state p to state gq. In the above, n
represents population densities and the subscript e

refers to the free electron density. Obviously the same
expression with a plus sign will describe populat-

ing of state q from state p. Units of K(p;q) are cm3/sec.
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Electron-ion encounters in which a single ion captures

a free electron into some bound energy state with an
attendant emission of radiation. This is more commonly
called radiative recombination and is described by

the radiative recombination coefficient, 8 (p). The
instantaneous rate of filling of state p is given by

ap) - o n* sip) (3)

where n' is the ion concentration. Units of 8 (p) are
cm3/sec.

Electron-electron-ion encounters resulting in a

neutral atom with one electron in a bound energy state
and the excess energy contributing to the kinetic energy
of the free electron. This three-body recombination
reaction is characterized by K (c;p) where c symbolizes
the electron continuum as the initial state of the reaction
partners. The instantaneous rate is given by

%Pl = ne2 n* K(c:p) (4)

Units of K (c;p) are cmb/sec.

Ionization collisions in which a free electron impinges upon
a neutral atom with sufficient energy to ionize the atom
resulting in a singly charged ion and two free electrons.
This reaction might be thought of as the equilibrium

partner of the three-body recombination described above and
is characterized by K (p;c). The instantaneous rate is

d—a—&né ) - -n_ n(p) K(p;c) (5)

Units of K (p;c) are cm3/sec.

Spontaneous radiative transitions in which a bound
electron relaxes spontaneously to a lower bound state
with an attendant emission of radiation. This mechanism
can contribute to both populating and depopulating a level
and is characterized by the Einstein transition probability
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A (p;q). The instantaneous rate for depopulating state p
to some lower state q is

T&dné Y - -n(p) A(p;:q) (6)

while the instantaneous rate for populating state p from
some higher state m is

d%épl = n(m) A(m;p)

Units of A (p;q) are 1/sec.

In addition to the above processes other phenomena which must be
considered for their effect upon the population densities are: atom-atom
and atom-ion collisions, photon absorption, induced emission, and the
molecular ion effects. This study will involve pressures sufficiently
low that the molecular ion can be ignored (Ref. 14).

Heavy body collisions can be ignored for this application also
because of the low densities and heavy body temperature examined in this
study. For example, for a total particle density of 1019 1/em® and a
heavy body temperature of 3,000°K, an elevated state population density
typical for an electron velocity distribution at 10, 000°K is of order 106
1/ cm3. Considering collisions between excited state atoms and assuming
an atomic radius of 1 A, one finds the collision frequency to be of order 102
encounters/sec/cm3 for these atom-atom collisions. The electron-atom
collision frequency, assuming an electron temperature of 10, 000°K and
1-percent ionization, is of order 1010 encounters/sec/cm3. Obviously
the atom-atom encounters are insignificant in this study compared to
electron-atom collisions.

Absorption and stimulated emission can also be discounted for the
purposes of this study. Since the stimulated emission and absorption
coefficients differ only by the ratio of statistical weights, only absorp-
tion of resonance radiation can be significant. Accurate accounting of
absorption requires including geometry considerations, and this is
beyond the scope of this study. An estimate of absorption effects is
obtained from Robben, Kunkel, and Talbot (Ref. 12) who found that for
a heavy body temperature of 1,000°K and particle density of order 1017

1/cm3 the mean free path of the helium 11S - 21P resonance radiation
was about 0.2 mm. This distance, although small enough to make it
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. hecessary to consider resonance radiation absorption in many physical
experiments, is sufficiently large that there will not be appreciable ab-
sorption in the small control volume on which the present study is based.
Further, as will be seen, the particle density used in the estimate (Ref.
12) is near the ui)per bound of the total densities of the plasmas studied
here. Thus, absorption can be neglected for the purposes of this study
and the plasmas are considered to be optically thin. For one set of
plasma conditions, comparative calculations are made at different
optical thicknesses to examine the effect upon the mechanisms by which
QSS is acquired.

The total time rate of change of the population density of state p is
just the algebraic sum of the five basic processes described above:

Bnég) - _nen(p)[ I K(p:q) + K(pic)l-n(p) £ A(p;q)

q=1 ga<p
+n, I n(q) K(g;p) + I n(qg) A(g;p)
q=1 a>p
+ne2 nt K(c;p) + ng n* B (p) (7

In the formulation of Equation (7) all K(p;p) are zero and any A(p;q)
is zero if the dipole selection rules are violated.

In Eq. (7) thefirst three terms express the rate with which state p
is depopulated due to collisional internal transitions (Eq. (2)), collision-
al ionization (Eq. (5)), and spontaneous radiative transitions (Eq. (6)),
respectively. The remaining terms express populating rates due to col-
lisional internal transitions (Eq. (2)), radiative transitions (Eq. (6)),
three-body recombination (Eq. (4)), and radiative recombination
(Eq. (3)).

There will be a similar equation for each eigenstate avilable to the
atom. In addition, the continuum density ng enters into each equation
as a product with each of the other bound state densities. Hence, the
resultant system of equations is a rectangular non-linear system of in-
finite extent. However, by requiring that there by no loss or gain of
atoms by diffusion or convection, the total concentration will be constant.
Thus, taking advantage of single ionization so that the electron and ion
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densities are identical, the conservation of heavy particles is expressed
by the equation

00

pi;l (p) +n, =ng (8)

where np is the total heavy particle concentration. Equation (8) added
to the system causes the system to become square and in principle de-
terminate.

The system of equations has the capability of yielding a complete
description of the instantaneous population density distribution for those
monatomic plasmas in which there are electronic transitions only be-
cause of reactions between the microscopic constituent particles.
Additional processes, such as those ignored in this study, can be account-
ed for by expressing them functionally the same way as processes 1
through 5,

Although the system is infinite in extent, thus making the solution
impossible, it may be truncated at some finite energy level as a reason-
able approximation. This is because for progressively higher energy
levels the population densities decrease monotonically with energy for
an equilibrium plasma. Hence, there will be an upper energy level
above which all levels have population densities insignificant with respect
to the lower energy levels and the continuum. Also, reactions between
plasma constituents causing a transfer to bound electrons between the
low-lying states and upper states will be insignificant compared to
transfer rates between energy states lying close together. Finally,
because of the close-lying energy levels of the upper states and their
close proximity to the ionization potential, reactions with the free
electrons will estdblish-an-equilibrium configuration among these upper
states as well as with the continuum. Hence, because of the relative
insignificance of the densities of the high-lying levels, the relative un-
importance of reaction rates between the low-lying and high-lying energy
levels, and because there will be some upper energy level which is
assuredly in equilibrium with the continuum, the system of equations
can be truncated at this upper level with minimal loss of accuracy.

The minimum energy level for which this is true, of course, depends
upon the kinetic temperature exhibited by the free electrons. It should
also be noted that this is in effect postulating the existence of the so-
called critical level, which has been described as the lowest-lying
energy level in equilibrium with the continuum. For the purposes of
this study, the upper level considered was dictated more by available
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computer size than by physical considerations and thus the critical
level will be indicative of limits on plasma conditions which can be
studied with the present program.

23 THE COLLISIONAL-RADIATIVE RECOMBINATION {CRR} MODEL

The system of Egs. (7) and (8), with the truncation considerations
discussed above, provides the starting point for the development of the
CRR model (Refs. 3 and 4) which previous investigators have used to
study plasma decays. This model for optically thin plasmas utilizes
the QSS approximation which assumes that the time rate of change is
zero for all bound states other than the ground state. The CRR model
is applied to those plasmas in which the ground state density and free
electron density are much larger than excited state densities and in
which the electronic kinetic temperature is much less than the first
excitation energy so that collisional transfers from the ground state are
small. These conditions lead to the assumption that a quasi-equilibrium
distribution is established "almost instantaneously' without appreciable
effect on the continuum density and that collisional excitation and de-
excitation rates will so largely dominate the decay rate for the plasma
that the QSS configuration is maintained. Consequently, the deriva-
tives for the time rate of change of these excited levels can be set to
zero. In such a situation the time rate of change of the ground state is
the algebraic negative of the time rate of change of the free electrons,
n (1) = -n e- The excited state densities are constant and the system,
Egs. (7) and (8), becomes a single differential equation and a system
of algebraic equations. The only-variables are the ground state
density and the continuum density so that Eq. (7) for the ground state
can be written

dn(l)
dt

= 2 _
= an_ S n(l) ng (9)

where o and S are defined as the collisonal-radiative recombination and
collisional-radiative ionization coefficients, respectively. The @ and S
can be expressed as functions of Ng, electron temperature, and atomic
parameters by reduction of the algebraic portion of the system. The
determination of @ and S under these approximations was the problem to
which Bates, Kingston, and McWhirter (Refs. 3 and 4) addressed them-
selves.

Although the values of @ and S for various plasmas are periodically

improved and updated as knowledge progresses, the basic model utiliz-
ing the QSS assumption and depicted by Eq. (9), or some variations of
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Eq. (9), has become the standard model by which plasma decay and
growth phenomena are analyzed. Even in applications where the physi-
cal problem supports transient density or electron temperature changes
the QSS condition is assumed to establish itself in infinitesimal times
compared to other characteristic times for the plasma.

In most applications, as in the case here, the collisional-radiative
ionization coefficient, S, is an ignorable quantity. In this case the
recombination of the free electrons depends only upon the CRR coeffi-
cient, a,

2

= = an
ne e

The very assumption of QSS is alien to a detailed study of the
mechanisms by which a plasma decays. The only way to examine this
is to actually solve the transient problem with all the non-linearities
and coupling between states for several plasma conditions and this is
the subject of this study.

24 THE CRITICAL LEVEL AND EQUILIBRIUM CONFIGURATION

The concept of the so-called critical level is very important to
simplified methods of obtaining recombination rates (Refs. 11, 21, and
22). The concept is used here only to provide a bound on the plasma
conditions for which the present computer program is valid.

Physically the critical level is that lowest energy level which is
maintained in equilibrium with the free electron density. This equili-
brium density is given by the modified Saha equation:

> 3/2
- Ip h
n(p) =n; ng 2g; | 2™mkT_ exXp (Ip/kTe)

where nj and n, are the ground state ion and electron densities, respec-
tively, and I is the ionization potential of quantum level p. All quantum
states aboveghe critical level will also be in equilibrium with the free
electrons. Thus the net rate with which bound electrons above and
including the critical level fall to energy levels below the critical level
is immediately taken up by recombination of the free electrons into
these upper levels and this is the recombination rate.
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The critical state in other studies (Ref. 2) is found by formally
minimizing the recombination coefficient with respect to energy state.
Because of the form of the collisional rate coefficients Section 3.0,
evaluation can become quite tedious.

Rather than attempt a formal analysis for the critical level in this
study, the approach will be to observe the population densities of the
various quantum levels in relation to the value which would be in theo-
retical equilibrium with the free electron density calculated from the
modified Saha equation. In this manner the critical level can be empi-
rically observed independently of problems attendant with evaluation
of complicated expressions.

A term which is used in this study which merits explanation is
"equilibrium configuration." This term applies to any two or more
excited states whose densities satisfy the Boltzmann relationship

n(p) _ % “(E -
n_(RTq = 3 exp [ (Ep Eq)/kTe]

The densities of states which are in an equilibrium configuration
satisfy the above equation regardless of their relationship to the rest
of the distribution.

3.0 TRANSITION PROBABILITIES, RATE COEFFICIENTS,
AND CROSS SECTIONS

Although the detailed rate coefficients and transition probabilities
are not in themselves the object of this study, they are critical compo-
nents of the full ERE and CRR models. The magnitude of each of the rate
coefficients and transition probabilities indicates to what extent a parti-
cular type of transition will occur and the relative importance of the
various mechanisms. This dependence of the results of either of the ERE
or CRR models upon the various coefficients and probabilities makes it
desirable to look at the detailed evaluation of these parameters.

3.1 EINSTEIN TRANSITION PROBABILITY

The Einstein spontaneous transition probability is the rate with
which atoms radiatively decay from an excited electronic state to a
lower electronic state. The value can be obtained from time-dependent
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perturbation theory if one has at hand the wave functions of the various
bound states. The transition probabilities presently available have
been compiied in several publications (e.g., Refs. 28 and 29) but neither
these nor any other reported results found in the literature include much
detail concerning transitions involving high principal quantum numbers
(p > 5). However, for these higher energy states the wave functions
will be sufficiently similar to hydrogen wave functions that transition
probabilities for hydrogen and helium will be approximately equal. Care
must be exercised as this approximation will only be valid for interac-
tions among upper states with some unspecified lower bound.

Niles (Ref. 28) has tabulated most of the radiative transition proba-
bilities available at that time (1967). The compilation includes data
for all transitions from levels with principal quantum number p < 15
to states with principal quantum number p < 3. In addition to these, the
compilation includes transitions terminating on quantum level 4 except
for the 41,3 F - p1= 3 G transitions. The transitions listed include the
interactions of those lower eigenstates where strong departure from the
hydrogenic approximations should be observed. Hence, for these transi-
tions to the lower energy states, the values reported by Niles (Ref. 28)
were used.

Transition probabilities for the 41,3 F - p1= 3 G and all higher
transitions were computed using the hydrogenic approximation. These

values for the transition from state (p, £) to state (p” £°) are given by
(Ref. 30)

-4.3 - 2
A(p,2;p°L”) = 62. v3 mg.:; 4(_2,],-2. ) e26102 < p°L” r pt >l
h ¢

where v is the frequency of emitted radiation and ag is the Bohr radius.
The matrix elements,

oo
<p“L7 x| pL > = fR(p',IL') r R(p,%) r dr
o

where R(p, £) represents the hydrogen radial wave function, are listed
by Green, Rush, and Chandler (Ref. 30) for angular momentum values
through a principal quantum number of 20. Detailed results of these
calculations will not be given because of the large bulk of the data and
the relative availability of the values in the literature. The detailed
transitions among the upper levels are relatively unimportant for

this investigation because the conditions will be restricted to those
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cases for which the plasma is strongly collision dominated among the
upper levels. Under these conditions, the population density of the
angular momentum states within a principal quantum level can be char-
acterized by a Maxwell-Boltzmann distribution and the entire set of
states is thus adequately described by a single state which has proper-
ties represented by an average of the detailed properties of the indi-
vidual substates. In low density applications where radiative terms
are important, the approximations made here would not necessarily be
valid, and care must be exercised in applying the hydrogenic
approximation,

3.2 RATE COEFFICIENTS

As mentioned earlier, the rate coefficients are related to the
probability that a particular transition will occur upon collision. It is
in fact the probability that a collisional transition will occur when an
atom encounters an electron with kinetic energy between E and E+dE
integrated over the kinetic gnergy distribution of the electrons.

If f(E) is the fractional number of electrons with energy in the
range E to E+dE, v, is the kinetic velocity of these electrons, and ng
is the concentration of these electrons on a volume basis, then the
and a hypothetical unit area per unit time along a velocity vector
traveled by the electron, Now if Q(E) is the effective area the atom
presents to the electrons in this energy range for a particular transi-
tion, the number of encounters with thig area per unit time is given
simply by the product

Q(E) RV fe (F)

Hence, if the concentration of atoms with cross section Q(E) is n,
the total time rate of change of atoms due to collisions with electrons
with all energies is

dn _ -
gt - "o, [Q(E) fe(E) vedE
o

Defining the rate coefficient as the integral

K = fQ(E) fe(E) VedE
o]
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noting that

and requiring the electron distribution to be Maxwell-Boltzmann,

1/2

E

3/2
) exp (-E/kT)

_ 2 1
fe(E) = F'n {RT—e

yields

00

K = 87 1 32 Q(E) (-E/KT) E dE
= exp (-
/o, | 2T

o)

for the rate coefficient.

The development to this point has been general, requiring only the
assumption of Maxwell-Boltzmann statistics for the electron energy
distribution and a delta function distribution in energy space for the atoms.
Hence, if one has Q(E) for each of the various processes, the evaluation
of each of the rate coefficients will proceed straightforwardly. It is this
evaluation of Q(E) to which subsequent discussion is turned.

3.2.1 Two-Body Internal Transition Rate Coefficient, K{p;q)

The two-body internal transition rate coefficient is given by

3/2
M8T 1
K{p:iq) = — T Q0 (E) exp (-E/KT)EAE (9)
Vg (ﬂ Te) f Pd
|55
P g

In the above equation, p and q symbolically represent sets of quantum
numbers describing initial (p) and final (q) states, M is a parameter
giving the number of electrons available for excitation (M =2 for p =
ground state, m = 1 for p > ground state), qu (E) is the energy-
dependent cross section for collisional transitions from the pth to

the qth bound states, E is the kinetic energy of the bombarding
electron, and Ep and E(1 are kinetic energies of the bound electron

in the p and q states.
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There are many techniques for the evaluation of qu (E) for tran-
sitions between bound states utilizing various approximations. Moisei-
witsch and Smith (Ref. 31) give a comprehensive review of the various
techniques and results from both theoretical calculations and experimen-
tal measurements available in 1968. The most extensive tabulation they
give for helium excitation was first calculated by Ochkur and Bratsev
(Ref. 32) and is based upon quantum mechanical considerations.

Rather than use the more satisfying quantum mechanical calculations,
however, it was decided to use the simple classical Gryzinski method
(Ref. 33) for these determinations. This choice is motivated primarily
by the ease with which these cross sections may be evaluated, the
observation that most previous investigators of CRR also used the
Gryzinski method, and the fact that the method appears to be as accurate
as other techniques.

Gryzinski's method is based on a classical analysis describing the
collision as a two-body coulomb interaction between the orbital and
incident electrons. In earlier work (Ref. 34) he assumed that the orbital
electrons had a certain fixed energy. In later work (Refs. 33, 35, and
36) this was extended to the specific case of atomic collisions in which
the bound electron has a velocity distribution

3

f =

v exp ( -v/vm)

5
m

where v, is the mean electronic velocity.

The choice for this distributjon appears to be arbitrary, being based
on phenomenological observation of results rather than developed from
first principles. However, the relative success of the technique is suffi-
cient to justify its use.

The cross sections obtained by the Gryzinski technique yield a result
for a transfer of energy equal to or greater than some value qu from
the incident electron to the bound electron. Expressed in terms of a para-
meter x, the Gryzinski cross section is written

4 A+l
_ Te A X x-11 "7 1 2 [2x-1 x-1
qu(X) - u 2 X |AFx X ) [K 3 T3x ln(et‘} A )]
pPq

(10)
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where

b4 E/U

pa’

A E /U
P/P

q

In the above, E is the kinetic energy of incident electron, Ep is the
kinetic energy of bound electron, e is the electronic charge, and ¢ is the
natural logarithm base.

Identifying Upq with the threshold energy for excitation to the gth
state from the pth state, the expression above gives the cross section
for an energy transfer which not only is sufficient to excite the bound
electron to the state Eq, but may be large enough to excite to the state
Eq+1. Hence, in the determination of qu(x), it is necessary to form
the difference:

E E
Q_(x) = Q ‘—) Q41 (—— (11)
Pq pa (T, | Tpatl {T

Note that Q pg+1(E/U,,,) is vanishingly small for E < qu+1.

pa+

Using the parametric form of qu(x), the rate coefficient K(p;q) is

[}

3/2 U_x
M8Tw 1 Pq 2
Ki{p;:q) = — —) Q. (x) exp |- U xdx (12)
'/‘Te 2'rrkTe jolef kTe jolef

1

Thus far there have been no applications of the results of quantum
mechanics. The above discussion centered on a straightforward energy
transfer from an incident classical electron impinging upon an orbital
electron, the orbital electron receiving enough energy from the incident
electron to raise it to some higher energy state. Now from quantum
mechanics it is known that some transitions will be allowed and that
other transitions are forbidden. Hence, the dipole selection rules AL =
1, AS = 0 must be applied so that Eqs. (9) and (11) are used only for
those transitions between energy states satisfying these rules.

Another process in these excitation collisions which can occur is

that of an exchange collision in which the orbital electron is ejected and
the impinging electron is captured by the nucleus in some higher energy
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state. For these collisions, Gryzinski's development assumes that the
orbital electron has zero velocity and results in the parametric form

x-1 _ x < B
1 1re4 J A(x+A) (x+A-1)' -
Opg® =32 2

(13)

B-1 <> B
Pq Tx+AY (x+A-1) (x+A-B)’' ~ =

a

where
X = E/qu
A = Lb/qu
B = Upq+1/Upq
qu = IEP - qu
and
qu+1 = |Ep - Eq+1|

The factor of 1/2 in the expression is the probability that an imping-
ing electron has the proper spin orientation to effect the transition. The
rate coefficient will have the same fuiictional form as Eq. (12), the only
real difference being the functional form of the cross section (Eq. (13)
as opposed to Eq. (10)) and the restriction of its application to those
transitions whose initial and final states violate the dipole selection rules

AL = 1, AS = 0.

There is some judgment required in determining precisely what
state to use for U,,4+1. For those transitions which are dipole allowed,
it is obvious that the state to use for U g+l is the next higher state
which will also satisfy the selection rufes. For dipole-forbidden transi-
tions, however, the choice is not quite so obvious. The exchange cross
section is applied to any transition which is dipole forbidden. This means
any transition which has AL # 1l or AS # 0, For a particular tran-
sition, there is a specific AL or AS, This implies specific conditions on
the impinging electron. The next higher excitable state will be that one
which is compatible with the AL or AS involved in the specific excitation of

-
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-interest. Hence, the q + 1st state will be the next higher state with

the same AL or AS value as the qth state. Dugan and Sovie (Ref. 37)
examine the behavior of the Gryzinski cross sections with various choices
of Upg+1 and this choice is in accord with their findings.

Because of the large bulk of the data involved in these calculations,
a detailed accounting of the values for the rate coefficients will not be
given here but rather the results of using the cross section expression
applied to selected transitions will be discussed.

Figures 1 and 2 illustrate the results of the Gryzinski cross section
calculations as well as calculat1o_n_s__ based on the Ochkur approximation
compiled in Ref, 31 and experimental data (Refs. 38 and 39) for the
115 - 31P and the 115 - 33S transitions, respectively. Results of
ground state excitation are assumed to be representative for the other
excitations. A scarcity of data in the literature prevents comparisons.
of excitations among the higher states. As can be seen, the calculation
based upon the Ochkur approximation gives more satisfying comparison
with experimental data for both the direct excitation and the exchange
excitation. However, use of the Ochkur approximation is in itself an
adaptation of the Born-Oppenheimer method and is thus theoretically

applicable only for the high-energy collisions. The electronic kinetic

10717
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Figure 1. 11S - 3P excitation cross section.
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Figure 2. 11S - 33P excitation cross section.

energies with which this study is concerned will peak at about 1 ev or less
so that the low energy region of the cross section is the most important.

In examining the lower energy region of Fig. 1 it can be seen that
the Gryzinski cross section will overestimate the experimental work of
St. John, et al. (Ref. 38) by at most about a factor of two in the energies
close to threshold (x = 1). It is difficult to be more precise in these
comparisons because of the scarcity of experimental work in these re-
gions close to threshold. Calculations of the rate coefficient for the
235 - 33P transition using the Gryzinski technique and the Ochkur approx-
imation for cross sections yield results which agree well within a factor
of two. It is thus reasonable to expect the calculated rate coefficient to
overestimate the true rate coefficient by no more than a factor of two
and in fact probably to be better than this because of the underestimation
of the cross section at higher energies by the Gryzinski method.

In examining the exchange cross section (Fig. 2) one can see that the
comparison between calculation and experiment is not as good as that
for direct excitation, although there does appear to be a convergence of
sorts between the Ochkur approximation and the later experimental work
of Moussa, et al. (Ref. 39). The Gryzinski cross section overestimates
the other work by several orders of magnitude at the sharp peak and
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underestimates the work of Moussa by typically a factor of two at the high
energies. Hence, because of the sharp peak in the region of lowest energy,
it is anticipated that the calculated rate coefficient will underestimate the
true rate coefficient by somewhat less than the factor of two. At any rate
the exchange cross sections will be somewhat less important than the

cross sections for direct excitation because the rate coefficients for direct
excitation are much larger than those for exchange excitation. For example,
at an electronic kinetic temperature of 10, 000°K, the rate coefficient for
the 21S - 31P direct excitation is about 10-10 cm3/sec, whereas for the
exchange excitation to the adjacent 31D level (21s - 31D) the rate coeffi-
cient is about 10-13 cm3/sec. This is not necessarily true for transitions
among sublevels of the higher excited states where the energy levels are
quite close together., However, these upper level rate coefficients will

be large and the population densities will rapidly establish an equilibrium
configuration among the sublevels. Requiring a detailed accounting of

each sublevel is unnecessary for all but the earliest stages of the
computation,

The preceding discussion has been concerned only with inelastic ex-
citation between bound states of the atom. The inverse process, a super-
elastic collision resulting in de-excitation of the atom, is also included
in this study. The rate coefficients for these processes come quite easi-
ly from equilibrium considerations.

At collisional equilibrium between two states, the rates of change of

the two states will be equal. Further, detailed balance requires that
rates due to individual processes be equal. Hence, one can set

nenpK(p;q) - nean(q;p) =0
Thus,

n
K(q:p) = HP- K(piq)
q

and, since this is an equilibrium condition,

i e ) | T I
= exp -(E -E )/k
Hence,

K(g:;p) = o 4 exp [—(Ep-Eq)/kTe] K(p:q)
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3.2.2 Collisional lonization and Three-Body Recombination
Coefficients, K(p;c) and K{c;p)

The collisional ionization cross section is very readily obtained from
the two-body internal transition cross section. This is accomplished by
noting that the Gryzinski formulation for the cross section, Eq. (9), is
inversely dependent upon the square of energy difference between the
initial and final states, qu. For the final state being the continuum,
this qu just becomes the ionization potential for state p. Hence, the
parametric cross section for collisional ionization Qpc(x) is

3
4 = .
_ Tme 1l (x-1)2 2 [2x-1 =T !
Qpc(x) - I 2 X x+1) [l + 3 2x ) In (€ + /x )]
pm
= E/I__
X / pe

and Ipm is the ionization potential of the pth quantum level. Hence the
collisional ionization rate coefficient is written

3/2
ﬁ)pc (x) exp(-I  x/kT) e
1 (14)

2

xdx

K(p:ic) = M8~ ( 1

21rkTe

e

In this case again, M =2 for the ground state atoms since there are
two electrons available for ionization from the ground state and M =1
for atoms in higher energy states.

Figures 3 and 4 show results of the Gryzinski calculations for the
ionization of the 11S and 238 levels, respectively, compared to experi-
mental results reported in the literature (Refs. 40,41,42, and 43), The
Gryzinski cross section overestimates the ionization cross section for
the ground state atom by about 25 percent compared to the experimental
data. Further, the peak of the calculated cross section occurs some-
what earlier than the experimental peak but for the purpose of this study
the calculations can be considered to give satisfactory results.

The calculated cross section for the 23S ionization does not agree as
satisfactorily with experiment as is shown in Fig, 4. For this the data
of Long and Geballe (Ref. 42) are to be considered superior to those of
Fite and Brackmann (Ref. 43) since the former data were taken from a
source known to be the 23S atom, whereas Fite and Brackmann's source
was an indeterminant mixture of the 23S and 21S atoms.
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Figure 3. 1S ionization cross section.

For the purposes of this study, the agreement is considered satis-
factory. It is expected that the characteristics of the ionization cross
section calculations will follow the same pattern for the higher excited
states.

The inverse of collisional ionization, three-body recombination, is
described by the rate coefficient K(c;p). This coefficient is also obtained
from equilibrium considerations. When equilibrium between state p and
the continuum is established by these two processes, the rate of filling
state p due to three-body recombination exactly balances the rate the state
is depopulated via collisional ionization, or

_ 2
nenpK(p,c) = n, niK(c,p)
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Figure 4. 23S ionization cross section.

where n, is the population density of positive ions. Hence,

n
K(c;p) = ﬁ K(p;c)
e 1

Since only single ionization is considered here, ng = nj. Further,
this is an equilibrium relationship between state p and the continuum so
that np and n, are related by the modified Saha equilibrium relationship
so that

K(c;ip) n’ ’p (I__/KT ) K(pic)  (15)
c;p) = exp p;c
(2mm kT _)3/% 9e93 p='Te
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3.2.3 Radiative Recombination Rate Coefficients, 3(p)

The radiative recombination rate coefficient describes the filling
of state p due to two-body encounters between electrons and ions in which
the ion captures the electron into energy state p with the attendant emis-
sion of radiation. It is obtained in much the same way as the other rate
coefficients although there is some difference in the physical analysis.
The basic functional form for the rate coefficient is written as before,

g 1 3/2
B(p) = E (m";) Qr(p) exp (-E/kTe) EdE (16)

e

where B(p) is the radiative recombination rate coefficient for state p,
and Qp.(p) is the cross section for the capture.

The evaluation of Qy(p) does not proceed as straightforwardly here,
however. To obtain this cross section it is necessary to use the prin-
ciple of detailed balance for the relationship between the radiative
recombination cross section and the photoionization cross section (or
absorption coefficient) thus (Ref. 44),

(17)

_ 1 (hv}
9, (p) = T c_ mE- 2y (P

where gp and gjon are the statistical weights of the atom and ion, res-
pectively, E is the kinetic energy of the electron, hv is the photon
energy emitted (or absorbed) in a photoelectric transition between the
continuum and the state p, and a,, (p) is the absorption coefficient for
state p.

Noting that the energy of an emitted photon in the capture will include

both the ionization potential of state p and the kinetic energy of the
electron before capture,

hv

|

(]
+
td

poo
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Substituting, one obtains with this change in variable

1/2 | 3/2 g
1 2 1 2
B(p) = =5 (_) (_) —P_ exp (I__/kT) (hv)
c m mkTe 9ion P
I
p

exp (-h\)/kTe) av(p) d (hv) (18)

The photoionization cross section is given for hydrogenic atoms by Sea-
ton (Ref. 45):

2
64aﬂao

@ = 2 B (g s (e

where a is the fine structure constant, a, is the Bohr radius, Z is
the nuclear charge, u is the ratio E/ I'pm, p is the principal quantum
number, and gyy is the Gaunt factor:

2
-1 u"+4/3 u+l
g.. =1+ 0.1728 L - 0.0496 +
II p2/3(u+l)2/3 plf/3 (u+1)4/3
(20)
Noting that
hyv = Ipw (1 + u)
and substituting,
exp (-Ipmu/kT)
B(p) = B(p) 7o 911 du (21)
o
where
a g
B(p) = 64vmo o P P_ 7y 3 (22)

3/3 ¢ (mekTe)3/2 9ion 22 P”
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The expression is based upon a hydrogenic approximation in which p
is the principal quantum number of the energy level. Because of this
hydrogenic approximation, one would expect the calculations to give their
worst results for the lower quantum levels and to converge to correct
values for the upper levels. Figure 5 shows the results of the calcula-
tion of the absorption cross section for the ground state helium atom
compared to the experimental results of Lowry, Tomboulian, and Ederer
(Ref. 46). In this figure, in which the abcissa is wavelength, energy
increases to the left, threshold energy (electronic velocity of 0) occurring
at about 505 A, Inthis case, a l-ev electron would be ejected at an
abcissa very near this threshold wavelength. Thus, for the rate coeffi-
cient calculation, the rightmost portion of the curve is most important,
and as can be seen, the calculations reproduce the experiment in this
region to within a factor of two or better. Thus, one would expect the
radiative recombination rate coefficient to be correct to within a factor
of two or better for the ground state and become progressively better
for the higher quantum levels,

17
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Figure 5. 11S absorption cross section.
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4.0 TECHNIQUES

This chapter summarizes the various approximations and techniques
which were utilized in obtaining the solution to the ERE. A detailed
listing of the computer programs will not be included since the techniques
are quite straightforward. Rather, a short discussion of programming
considerations will be given; since the solution to the ERE is obtained
numerically, certain approximations and compromises were necessary
and these are discussed in detail.

4.7 ENERGY LEVELS

The helium energy levels used in this study were obtained from
Moore (Ref. 47), who gives all the energy levels from which spectral
lines have been observed. The precise energy values of all the detailed
substates considered in the program are not known, or are so closely
adjacent to other substates of the same quantum level that they have not
been resolved. The energy differences between these states will be so
small that they are negligible.

Evaluation of the rate coefficients required different substates to
have different energies, however. This is because in the course of
evaluation, differences in energies of the states are taken and a zero
energy difference causes machine errors to occur. To prevent this
condition simple linear interpolation was used to generate different
numerical energies for the substates not given explicitly in Moore (Ref.
47). A listing of the energy levels used in this study is given in Table 1.

The size of the computer core dictated that not all energy states
listed in Table 1 be used. For.the higher principal quantum states the
distribution of densities among the substates will be maintained in a
Boltzmann configuration. The total density of the level immediately
gives the density of any desired substate.

To meet the computer core requirement, the a priori assumption of
the Boltzmann configuration among the substates of quantum levels 7 and
8 was made. These quantum levels were described by a single energy
state chosen to be the lowest energy exhibited by any of the substates of
that level. This assumption was used only for the final determination of
states considered by the ERE. The rate coefficients were determined
using detailed energies of the substates of these quantum levels, and av-
erage rate coefficients for the total quantum level were then determined
from these values.
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Table 1. Helium Energy Levels

State g E (1/cm) State g E (1/cm)
1ls 1 0.0 536 27 193921.0
23g 3 159850.3 s51p 193936.8
21g 1 166271.7 63s 194930.5
23p 9 169081.1 6ls 195109.2
21p 3 171129.2 63p 195187.2
33s 3 183231.1 6%p 15 1952544
3ls 1 184859.1 61D 5 195255.0
3% 9 185558.9 61F 7 195256.7
33p 15 186095.9 63F 21 195256.8
31p 5 186099.2 6lc 9 195258.0
alp 3 186203.6 63G 27 195258.5
a3s 3 190292.5 61 11 195260.0
alg 1 190934.5 6%H 33 195260.5
43 9 191211.4 6lp 3 195269.2
43p 15 191438.8 735 195862.6
alp 5 191440.7 715 195973.2
43p 21 191446.6 7%p 9 196021,7
alp 7 191447.2 7% 15 196064.0
4lp 3 191487.0 71D 196064.3
535 3 193341.3 7'F 7 196065. 4
sls 1 193657.8 73F 21 196065.5
53p 9 193795.1 e 9 196066.5
53 15 193911.5 73¢c 27 196066.6
51p 5 193912.5 7 H 11 196067.5
5lF 193914.3 73H 33 196067.6
53p 21 193915.8 711 13 196068.5
sic 9 193920.0 731 39 196068.6
71p 3 196073.4 8l 11 196591.6
83s 3 196455.8 83H 33 196591.7
8ls 1 196529.0 8l1 13 196592.2
83p 9 196561.1 831 39 196592.3
g3 15 196589.4 8la 15 196592.8
glp 5 196589,7 833 45 196592.9
glr 7 196590. 3 slp 3 196595.6
83F 21 196590. 4 9 324 196856.4
8lc 9 196591.0 10 400 197139.8
8¢ 27 196591.1 11-15 3420 197347.0
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Quantum levels 9 through 15 have very small energy widths and a
progressively larger number of substates with each principal quantum
level. Consequently each was considered as a single energy level for all
rate coefficient determinations.

The criterion for truncating the system of equations comprising the
ERE is that some upper level will be in equilibrium with the free electron
density. In order to maintain a correct description of the rate of this
upper level, states above it must also be considered in order to have
approximately correct values for collisional and radiative processes.
Quantum level 10 was chosen to be the maximum quantum level for the
critical level for this study. Since quantum levels 11 through 15 will
therefore be in an equilibrium configuration, they were averaged together
to form a reservoir for the various processes for quantum level 10.

An additional phenomenon which relates to the energy levels in
partially ionized plasmas and must be taken into account is that of the
lowering of the ionization potential. This arises because when a bound
electron is in a sufficiently high energy state it can exceed the Debye
shielding length for the plasma and thus becomes indistinguishable from
the free electrons. However, at typical conditions encountered in this
study, ng = 1015 1/em3, T, = 104 K, the expression for the lowering
of the ionization potential given by J. Richter (Ref. 48) gives a value
of 74 1/cm, which is insignificant,

In summary, plasma conditions are restricted to such that at least
quantum level 10 is in Saha equilibrium with the free electrons. A
detailed accounting of all singlet and triplet states is maintained through
quantum level 6. Principal quantum levels 7 through 10 are maintained
separate from each other although a Maxwell-Boltzmann density distri-
bution of the substates of each of these principal quantum levels is
assumed.

4.2 PROGRAMMING CONSIDERATIONS

As indicated above, one important consideration in the development
of the computer program is available computer core size. Arrays for
each of the rate coefficients must be maintained as well as a work area.
Utilizing a two-dimensional array for the K(p;q) and A(p;q) with the
other parameters necessary in the solution, 47 separate energy states
could be considered in approximately 116, 000 bytes of core in the IBM
S360/50 computer_at the Arnold Engineering Development Center.
Although more core was available at the time of this work, scheduling of
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error bounds. These calculations were performed for precisely the

same plasma, Case C to be presented later, with the error bound the

only difference. The first of these, 10'8, is typical of the error bognds
used in the other studies. The other error bound, 10-12 for t < 10-10 gec
and 10”11 for t > 10-10 gec, is an extremely tight bound. Some experi-
mentation was conducted at significantly lower .error bounds and it was
found that the solution would begin to oscillate if the bound was relaxed
too much, although a subsequem tightening of the error bound would cause
the solution to become stable again,

The repeatability of the solution under the two bounds indicated above
illustrates the stability of the solution at the 10~8 bound which was used
during the early part of the solution. It was found that after the earty
transients had died out the error bound could be relaxed substantially
with no loss of stability. This stability along with numerical agree-
ment with other independent calculations of the CRR coefficients, as will
be indicated in Section 5.0, shows that the numerical technique used in
these studies yields valid results.
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Quantum levels 9 through 15 have very small energy widths and a
progressively larger number of substates with each principal quantum
level. Consequently each was considered as a single energy level for all
rate coefficient determinations.

The criterion for truncating the system of equations comprising the
ERE is that some upper level will be in equilibrium with the free electron
density. In order to maintain a correct description of the rate of this
upper level, states above it must also be considered in order to have
approximately correct values for collisional and radiative processes.
Quantum level 10 was chosen to be the maximum quantum level for the
critical level for this study. Since quantum levels 11 through 15 will
therefore be in an equilibrium configuration, they were averaged together
to form a reservoir for the various processes for quantum level 10.

An additional phenomenon which relates to the energy levels in
partially ionized plasmas and must be taken into account is that of the
lowering of the ionization potential. This arises because when a bound
electron is in a sufficiently high energy state it can exceed the Debye
shielding length for the plasma and thus becomes indistinguishable from
the free electrons. However, at typical conditions encountered in this
study, ng = 1019 1/cm3, T_ = 10= °K, the expression for the lowering
of the ionization potential given by J. Richter (Ref. 48) gives a value

of 74 1/cm, which is insignificant.

In summary, plasma conditions are restricted to such that at least
quantum level 10 is in Saha equilibrium with the free electrons. A
detailed accounting of all singlet and triplet states is maintained through
quantum level 6. Principal quantum levels 7 through 10 are maintained
separate from each other although a Maxwell-Boltzmann density distri-
bution of the substates of each of these principal quantum levels is
assumed.

4.2 PROGRAMMING CONSIDERATIONS

As indicated above, one important consideration in the development
of the computer program is available computer core size. Arrays for
each of the rate coefficients must be maintained as well as a work area.
Utilizing a two-dimensional array for the K(p;q) and A(p;q) with the
other parameters necessary in the solution, 47 separate energy states
could be considered in approximately 116, 000 bytes of core in the IBM
S360/50 computer at the Arnold Engineering Development Center.
Although more core was available at the time of this work, scheduling of
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core partitions dictated that the system requirements be kept within 133K
bytes to expedite the work. Extension of the program to include signifi-
cantly more detail would have caused the core requirements to exceed
the optimum 133K bytes.

Also, because of available core, it was impractical to calculate the
rate coefficients in the same program that obtained the solution to the
ERE. Consequently, these calculations were accomplished in a separate
program and rate coefficient data were preserved on magnetic tape in
binary form to expedite I/O overhead.

The rate coefficients requiring integration are evaluated using 32-
point Laguerre-Gauss quadrature and double precision arithmetic. This
is a standard technique which is readily available; details of the integra-
tion are included in Appendix A.

The solution to the ERE was obtained by using the modified Euler's
technique, which is an implicit method. Details of the application of this
technique to the ERE are also included in Appendix A, A result of the
technique is control of the increment of calculation based upon the desired
relative error bound. The calculations presented here used various
bounds, usually as high as 106 to 1078 in the portion of the solution in
which adjustments were taking place rapidly. After the rapid transients
had died out, error bounds as low as 10~4 were used.

All calculations were performed with double precision arithmetic and
with the program compiled with the IBM Fortran H-level compiler using
full optimization so as to generate the most efficient machine code. In
addition, variables and calculations were arranged in storage so as to
take as full an advantage as possible of the optimization. 7T'o conserve
compiler time, which is a minor consideration except for programs which
are run many times, as this one was, the compiled program was preserv-
ed in machine language on disk pack for immediate recall at execution
time, These efforis to reduce execution time realized an approximate
reduction of 25 to 35 percent compared to an earlier version of the pro-
gram. Even with the efforts to reduce program execution time, the
run times can become quite long, Typical run times for each case stud-
ied here were 45 minutes to one hour. Subsequent computer system
improvements have reduced these computer run times typically an or-
der of magnitude.

Consequently, to conserve total machine time and insure that a
solution that was invalid for some reason would not waste an inordinate
amount of machine time, the program was setup to preserve important
solution parameters. Thus one can restart the calculations at the point
in time the parameters were preserved.
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The preservation of these parameters occurred at selected clock
time intervals and plasma time intervals so that an inadvertent machine
or program failure would not cause the loss of a large amount of compu-
ter time. In addition the parameters were preserved at the last calcu-
lation each time the program was run so that if more calculations were
necessary, the program could be restarted at the last calculation with a
minimum of overhead. A desirable consequence of this is that external
judgment control can be exercised over the execution of the program.
Hence, the error bound can be changed as the solution indicates and the
number of calculations judged necessary to effect the solution are
under external control so that unnecessary calculations are minimized.

4.3 PROGRAM STABILITY

As indicated above and shown in Appendix A, the time step size in
the solution is controlled by the desired error bound. Figures 6 and 7
show the results of obtaining a solution to the ERE under two desired

| q"g O Error Bound = 1078
D Error Bound = 10713,

10—11

° Error Bound = 10711

L 8
n{l) 2} Error Bound
- 10712

<1} %

L el 1 Ll 1 gl i il
10710 10°° 10”
Time (sec)

-12 8

10

Figure 6. ne/n{1) versus time for two error criteria.
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Figure 7. n{21P}/n{Saha) versus time for two error criteria.

error bounds. These calculations were performed for precisely the

same plasma, Case C to be presented later, with the error bound the

only difference. The first of these, 10"8, is typical of the error bounds
used in the other studies. The other error bound, 10-12 for t < 10-10 gec
and 10'11 for t > 10-10 sec, is an extremely tight bound. Some experi-
mentation was conducted at significantly lower error bounds and it was
found that the solution would begin to oscillate if the bound was relaxed
too much, although a subsequent tightening of the error bound would cause
the solution to become stable again,

The repeatability of the solution under the two bounds indicated above
illustrates the stability of the solution at the 10~8 bound which was used
during the early part of the solution. It was found that after the early
transients had died out the error bound could be relaxed substantially
with no loss of stability. This stability along with numerical agree-
ment with other independent calculations of the CRR coefficients, as will
be indicated in Section 5.0, shows that the numerical technique used in
these studies yields valid results.
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5.0 PURE AFTERGLOWS

The transient solution to the ERE under the restrictions and assump-
tions discussed above was obtained for several plasma conditions. This
chapter is devoted to the study of the pure afterglows in which the plasma
was allowed to relax from an initial distribution.

5.1 REPORTING OF DATA

Because of the large bulk of the data from the calculations, the
majority of the data will be presented in graphical form as continuous
functions. Actual points from the calculations will not be shown since the
lines are drawn to connect the points. Additionally, detailed plots from
all calculations will not be presented but rather cases will be selected to
illustrate trends of the plasma decay. The cases not shown in the detailed
studies will be used for completeness in illustrating certain gross trends
of the decay characteristics. Tabular information and precise numbers
from the calculations will be used only as needed for detailed comparisons
or when description of some phenomenon requires resolution beyond that
of a graph.

5.2 PLASMA CONDITIONS

Transient solutions to the ERE under the restrictions and assump-
tions discussed above were obtained for several afterglow plasma condi-
tions summarized in Table 2. The lower limits of electron temperature,
degree of ionization, or total number density represent approximate
lower bounds to the plasmas which could be solved with the present com-
puter program because of the critical level limits described earlier.
Although conditions above the upper limits of the parameters have not
been investigated, it is believed that extension will not yield notably
different data on the mechanism by which the QSS is established.

From Table 2 one can see that cases A through G compare plasmas
at different total densities with the same degree of ionization and electron
temperature and cases H through K compare plasmas at similar selected
densities but at a higher electron temperature, 14,000°K, Cases L
through O compare plasmas at constant density and electron temperature
but different degrees of ionization. Cases C, I, P, and Q compare
plasmas with the same total density and degree of ionization but different
electron temperatures. By quantitative comparisons of the results for
these conditions, insight into the trends of the processes by which QSS
is established will be obtained.
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Table 2. Summary of Plasma Conditions for Afterglows
Studied with ERE

Case n, ne/n° Te
1/cm3 °K

A 1.6317° 0.01 1.04
B 4.416 0.01 1.0%
c 1.516 0.01 1.0%
D 6.591 0.01 1.0%
E 5,014 0.01 1.04
F 1.5%4 0.01 1.04
G 5,013 0.01 1.0*
H 1.63%7 0.01 1.44
I 1.516 0.01 1.44
J 5.014 0.01 1.4%
K 5.013 0.01 1.4%
L 2.69%3 0.2 1.04
M 26913 0.01 1.04
N 2.69%5 0.001 1.04
o 2.69153 0.0001 1.04
P 1.516 0.01 8.03
Q 1.516 0.01 6.0°

aSuperscnpts denote powers of 10 by which the
numbers are to be multiplied.

The initial distribution for each of these cases was chosen such that
all excited state densities were in Saha equilibrium with the free electron
density. Consequently, the excited state densities exhibit a Boltzmann
distribution. In most laboratory plasmas, the excited state distribution
does not exhibit this Boltzmann distribution in its entirety. Rather, there
can be significant deviations from this equilibrium distribution for the
first few excited states. In this sense then, the initial conditions chosen
for the afterglow studies are at variance with nature. However, the
intent is to examine the mechanisms by which the QSS distribution is
established and thus to determine the important phenomena required to
maintain the QSS in an actual physical situation. In a physical plasma
various of the plasma parameters will be changing and the QSS is not
a static condition. By studying the pure afterglow phenomena with the
perturbational studies the effect upon the QSS because of a change in
the plasma parameters can be examined for valid application to physical
plasmas.
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6.2.1 Quasi-Steady-State Recombination Coefficients

As a final check of the numerical validity of the computer program
the collisional-radiative recombination coeffieients @ were obtained.
These results were obtained by allowing the transient solution to
develop until n, and n(1) agreed to within five percent and then cal-
culating o with the instantaneous values of 1, and nez, @ =-ng/n.°.

Table 3 shows the value of @ obtained from the ERE and results
reported by Chen (Ref. 21) using the QSS approximation. As is seen
in Table 3, the present results compare favorably with those of Chen,
being consistently slightly lower except for cases P and Q. No signifi-
cance is placed upon the variance of case P, being less than ten per
cent. Case @ will be discussed in more detail below. Chen also used
Gryzinski's technique for obtaining collision cross sections but used
a different source for the radiative transition probabilities. Chen did
not include all collisional transitions, as this work does, and he used

Table 3. Quasi-Steady-State Collisional-Radiative Recombination Coefficients
from the Eigenstate Rate Equations Solution

a

Case T, ng ) a(?RE) 3a
°K 1/cm 1/cm™/sec 1/cm™/sec
4P 15 -12 -12
A 1.0 1.63 5.9 7.0
B 1.0 .44 3.04712 3.4712
c 1.04 1.s14 2.16°12 2.25712
D 1.04 6.5913 1.62712 1.8712
E 1.04 5.012 8.04"13 9,5713
F 1.0% 1.5l2 6.77713 g.1713
G 1.0¢ 5.0%1 a.58713 6.5°13
H 1.44 1.63%3 1.91712 2,1712
I 1.4% 1.514 7.98713 1.05712
J 1.44 5.012 3.69713 5,6713
K 1.4% 5.0t 2.48°13 3,7713
L 1.04 5,384 3,32712 3,7712
h 1.0 2.6913 1.267 12 1.35712
N 1.0% 2.6912 6.86 13 g.5”13
0 1.0 2.691! 3.97713 6.0713
P g8.03 1.5%4 4.43712 41712
0 6.03 1.5t 1.25711 g.5”12

8Chen (Ref. 21)

bSuperscripts denote powers of 10 by which the
numbers are to be multiplied.
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the simplified technique of obtaining the minimum in the total rate of
de-excitation as a function of the energy levels of excited states (Refs.

2 and 23). These differences can easily account for the slight differ-
ences in Table 3. It is believed that the inconsistent behavior of case
Q is due to explicit inclusion of exchange exc1tat10ns from the metas-
table 23S level to the adjacent metastable 2 15 jevel. This has the effect
of maintaining a higher collisional rate to the adjacent 2° P level (rapid
direct excitation) so that a higher rate of radiation to the ground state is
maintained, This rate at QSS is communicated back through the bound
states to the free electrons, thus resulting in a high rate of recombina-
tion. Other workers (Ref. 49) have also calculated recombination co-
efficients but their conditions and resolution of their data make compar-
isons difficult.

It is notable that these recombination coefficients are typically a
factor of two less than those reported for hydrogen by Bates, et al,
(Ref. 3). This corresponds to a general trend in reported experimental
values for helium recombination rates to be less than hydrogen recom-
bination rates (Refs. 12, 22, 50, and 51). The true value will be some-
what in doubt because of the inability of the Gryzinski cross sections to
predict accurately the true collision rates. However, the use of a
consistent set of cross sections for both hydrogen and helium will
indicate relative differences.

The favorable comparison of the results of the transient ERE
solution and the QSS calculations shown in Table 3 indicates that the
numerical technique used for the ERE will yield physically correct
results. This observation coupled with the stability considerations
described in Section 4.0 constitutes proof that the numerical results to
be presented in the following pages do represent physical processes
to the limit of the accuracy of the parameters used in the calculation.

5.2.2 Location of the Critical Level

The initial distribution for each of the plasmas was a Boltzmann
distribution in equilibrium with the free electrons from the 23S level
through the upper states considered. As the ERE solution develops in
time, the levels below the critical level adjust to the final QSS distri-
bution while those levels above and including the critical level remain
in Saha equilibrium with the free electrons.

Although the concept of a critical level is not used in the present
computations, the observation of the development of such a level in the
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transient solution and the location of it is of interest as it pertains to the
internal consistency of the calculations. The location of the critical
level is useful for experimental determinations becuase it indicates

that lowest level whereby spectral intensity measurements can be used
to ascertain the kinetic temperature of the free electron distribution.

Table 4 lists the critical levels found for each of the plasmas. Two
criteria were used for identification of the critical level: 3 percent and
10 percent, referring to the maximum deviation from Saha equilibrium
with the free electrons for any of the substates in a principal quantum
level for that principal quantum level to be considered as the critical
level. The critical levels found for the high electron density, high
temperature cases with the 10-percent criteria compare favorably with
predictions by Hinnov and Hirschberg (Ref. 11) who indicate that at those
conditions quantum number 4 will be the lowest level in Saha equilibrium
with the free electrons. No comparisons were made at the low densi-
ties and temperature other than that they qualitatively show expected
behavior.

Table 4. Total Number Density, Electron Density, Electron
Temperature, and Location of Critical Level for
Each of the Plasmas Studied

case %o 3 "e 3 "e (Pringii:icgigL:velﬂ mb.
1/cm 1/cm oK SoF ntum T er)
A 1.3t 16315 1 o4 4 4
B 4.416 g.q%4 1.04 5 4
¢ 1.516 1.514 1.04 5 4
D 6.591%  6.5913 1 0% 6 5
g 5.0 5.012 1.04 8 6
F 1.5 1.512 1.08 9 7
¢ s5.013 5.0t1 1.0% 10 7
B 1.6317 1,635 1.4% 4 3
I 1.5 1.514 1.44 5 4
J 5.0 5,012 1.44 8 6
x s5.0%3 5.011 1.44 9 7
L 2.69%%  s5.381% .04 5 4
M 2.6913 2,693 1 ot 6 5
N 2.69%° 2,692  1.0% 8 6
o 2.691% 2,691l 1 4 10 8
P 1.516 1.514 8.0° 5 4
o 1.516 1.544 6.03 6 5

aSuperscripts denote powers of 10 by which the
numbers are to be multiplied.
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5.3 TIME DEVELOPMENT OF THE ERE SOLUTION

The time development of selected quantum level densities for eight
of the cases listed in Table 2 are presented on the following pages.
The ordinate for each plot is the ratio of the instantaneous population
density to the density required to be in Saha equilibrium with the free
electron density. Thus, att = 0.0 sec, each quantum level would have
an ordinate of 1.0. The substates of only quantum levels 2 and 3 are
shown. Those quantum levels between quantum level 3 and the critical
level will show characteristics similar to the triplet and singlet states
of quantum level 3, and any quantum level above and including the
critical level will show a constant ratio of 1.0.

The two quantum levels are displayed together because substates
of quantum level 3 are characteristic of the other upper levels while
substates of quantum level 2 are in general quite different from each
other and any of the other levels. The ground state density is not
included since it shows nothing more than a slow, steady increase
throughout time. The study of the rate of change of the ground state
density is more pertinent and studies of certain of these will be
presented later,

Figure 8 shows the time development for Case A, a high density
plasma which is generally collision dominated. Figure 8 does not
include any of the substates of quantuén level 3 since their values fall
into the same region as the 2“S and 2¥P levels and would just clutter
the plot.

This plasma is sufficiently collision dominated that the only signifi-
cant change is due to the radiative depopulation of the 21P level, The
metastable 21S and the 21 P levels are coupled together strongly by two-
body collisional processes so that as the 21p 1evel de cays radiatively,
it is depressed below the equilibrium configuration. Consequently, the
collisional excitation rate from the 21S level is greater than the super-
elastic de-excitationfrom the 21P to the 218 level, and there is a net
transfer of atoms from the lower to the upper state. The 21P level con-
tinues to decay radiatively and thus causes the 21s level to decay also.
At about 1 x 1078 gec, the 2P density has depressed sufficiently that
the radiative depopulation rate has decreased to the point that the
collisional population rate will.balance the total rate of change towards
zero, or the QSS, There are other collisional processes possible,
namely exchange collisions, so that as the 2lp density decreases, the
other quantum levels in the vicinty of the 21P level are also depressed by
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Figure 8. n(p)/n(Saha) versus time for quantum level two, case A.

collisional transfers to the 2lp and 21s levels, and they all show a
slight depression below the equilibrium value. All of the singlet states
of quantum level 3 show a tendency to be populated slightly less than
the triplet states, reflecting the more efficient collision processes to
the 21P state from the other singlet states, However, the difference
between the singlet and triplet states is only about 10 percent, and
graphical distinction is not justified.

Figure 9 shows the time development of the substate of quantum
levels 2 and 3 for case C. The 33P and 33D as well as the 31S, 31D,
and 31P levels are close enough together energetically that at this
density they are coupled together strongly and decay together. Thus,
the two triplet states are plotted together as a single curve as are the
three singlet states of quantum level 3. Case C is at a lower total
density than case A and Fig. 9 illustrates this through the larger spread
in the various densities. Again the 21P level tends to depopulate radi-
atively from t = 0.0 sec. The depression of the 2lp density tends to
depress the density of the other singlet states adjacent to it because of
collisional transfer to the 21P state. The largest effect is on the 21g
level because the 2 1S and 21P levels are closer together energetically
than the 21 P and 31S levels.
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Figure 9. n{p)/n{Saha) versus time for quantum levels two and three, case C.

The metastable 23S level has a large radiative population rate so
that from t = 0.0, it is increasing in density. Even though the 23S level
is collision dominated, the radiative rate is of comparable magnitude
at this density. Since the initial condition for this plasma was a Boltz-
mann distribution, the collisional population and depopulation rates
balance each other so the net effect on the total rate for the 23S level
is radiative. At about 3 x 10'8 sec, the 23S and 23p densities (the
23P increases because of strong collisional coupling to the 23S 1evel)
have increased in density enough that exchange transitions to the 21S
and 21 P levels balance the radiative rate from the 21P level and then,
as the triplet states continue to increase in density, the collisional
rate dominates and the densities of the singlet states increase until
the plasma achieves QSS and computations are terminated.

Figure 10 shows the time development of the 2lp radiative rate,
two-body collisional rate, and total rate for case C. Each quantity is
the algebraic sum of the populating and depopulating processes. As
can be seen, the major contributor to the total rate for short times is
radiative depopulation.
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Figure 10. 2P collisional, radiative, and total rates
versus time, case C.

Throughout this early time period, the radiative rate dominates
sufficiently that the 2lp density decreases. Thus, the radiative rate
also decreases. This decrease in density causes a net depopulation of
adjacent states so the c0111s1or§al rate decreases In the region 1 x 10~
sec <t< 3 x10°8 sec the 2°S and 23P levels attain a high enough
density that the collisional rate begins to increase. Although the scale
of Fig. 10 is too large to provide visual resolution, at about 3 x 10~
sec the total rate becomes slightly positive, reflecting the balance be-
tween the radiative and collisional rates. Subsequently, the collisional
rate continues to increase because of the continuing increase in density
of the adjacent levels. Reflecting the increase in the 21P density, the
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radiative depopulation rate also tends to increase. Finally, at about
1 x 10-6 sec the collisional rate begins to flatten because QSS is being
attained by the other levels and the collisional-radiative processes
strike a final balance for the 21P level.

Figure 11 shows the two-body collisional depopulation rate, the
two-body collisional population rate, and the radiative rate for the 218
level of case C. The radiative rate has been increased an order of
magnitude for plotting purposes, and the collisional depopulation is
plotted as a positive quantity.

15 x 10%° ' : '
14} n, = 1.5 x 1016-1/cm3
n, = 1.5 x 1014 1/cm3
i T, = 10,000°K
12r 2-Body Collisional

Depopulation
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_~— 2=Body Collisional
Population

218 Rates (1/cm3/sec)

Radiative
Population A
x 10

2t J
L
o) S s r 5
107 10~ 107 10~ 10”
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Figure 11. 21S radiative population, two-body collisional
population and two-body collisional depopulation
rates versus time, case C.
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The decay of the 21S level is dominated strongly by the collisional
depopulation rate until about about 3 x 10-8 gec. The collisional popu-
lation rate shows a marked decrease through the early portion of the
decay, primarily because of the decrease in the 21P density. By about
2 x 10-8 sec, however, the 2lp density has decreased enough, and the
23S and 23P densities increased enough, that the exchange collisions
from the 23S and 23P levels are an appreciable factor in the 21S colli-
sional population rate. Subsequently, as these triplet states increase,
so does the collisional population rate of the 21S level. The collisional
depopulation rate shows a very steep decrease until about 3 x 10-8 gec
reflecting the rapid decrease of the 21S level because of this process.
At 3 x10-8 sec, however, the radiative rate and the collisional popula-
tion rate are sufficient to dominate the total rate, so the 218 density
increases. With the increase in density, the collisional depopulation
rate also increases. The noticeable difference between the collisional
population and depopulation rates reflects the fact that the 2 lp density
is below the equilibrium configuration with the 218 density, and colli-
sional processes are attempting to bring the 2lp density into this con-
figuration. The flattening of the rates at about 10-6 sec shows that QSS
for the entire distribution is being achieved. At 10 -6 sec, the 21S total
rate is 6 x 1011 atoms/cm3/sec, significantly less than any of those
rates plotted, and this shows the collisional radiative balance which is
maintained at QSS.

Figure 12 shows the time development of the substates of quantum
levels 2 and 3 for case E. This plasma is at the same electron tempera-
ture and degree of ionization as cases A and C but the total density is
lower. Hence, the plasma is more radiation dominated and the spread
of the various quantum levels is more dramatic. Becausethe plasma
is less collision dominated, the 218 density tends not to decrease as
far as in the previous cases. The triplet states of quantum level 3
show some separation at the early and the later times and the 21P level
shows a very dramatic decrease in density.

The separation of the singlet and triplet states of quantum level 3
is much more evident here. The P and D states are quite close together
energetically and thus are collisionally coupled together quite strongly,
The 31P state is influenced by the large radiative rate to the ground
state and hence the 31P and 31D levels show a noticeable reduction in
density compared to the 31S state. In the early stages of decay the 33p
rate is determined principally by the radiation to the 23S level so that
the 33P and 33D levels decay rapidly. ’ghe 335 level rate is also
largely determined by radiation to the 2°P level but this proceeds at a
slower rate than the 33P, 33D decay. At about 2 x 10-7 sec, the
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Figure 12. n(p)/n({Saha} versus time for quantum levels
two and three, case E.

density of the 23S level has increased enough that collisional transfers
to the 23P cause its density to begin to increase., During the period

of balancing of collisional-radiative rates between the triplet states

of quantum levels 2 and 3, 6 x 10-8 sec < t< 3x 107 sec, collisional
processes between the triplet states of quantum level 3 can bring these
states into a Boltzmann configuration with each other. After about

3 x10-7 sec, the 23S and 23P densities have increased to the point that
the triplet states also start to increase in density. Because of the

larger radiative rate from the 33p level, and the fact that as it adjusts
it must also maintain the 33D state in a Boltzmann configuration, the

33P and 33D states do not show as marked an increase in density as
the 338 state.
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Figure 13 shows the same quantum levels for case J at the same
conditions as case E except the electrontemperatureis 14, 000°K. As a
result the collisional processes for this plasma are stronger than case
E and the curves do not show quite as much spread. The 338 density is
separated somewhat more from the 33P and 3°D densities because of
the stronger coupling between the 23P and 33S state at the higher temper-
ature. The 23S level tends to rise to a higher density for case J than
for case E. This is because collisional processes are more efficient at
the higher temperature so that the collisional population and depopula-
tion rates remain closer together, tending to cancel each other. Thus,
the 23S level must rise to a higher density in order for collisional
depopulation to dominate collisional population sufficiently to also
cancel the radiative population rate.

100.0 v - —
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o 12 3
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Figure 13. n(p)/n(Saha) versus time for quantum levels
two and three, case J.
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Figure 14 shows the time development of substates of quantum levels
2 and 3 for case N, This plasma is at a different total density than case
E (5.0 x 1014 atoms/cm3 for case E and 2. 69 x 1019 atoms/cm3 for

10.0
1.0
n{p)
n(Saha)
0.1
n, = 2.69 x 1015 1/cm3
12 3
n, = 2.69 x 10 1/cm
T, = 10 ,000°K
0.01 "
10~° 1078 10~7 10°% 1073 10~%
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Figure 14. n(p)/n(Saha) versus time for quantum levels two and three, case N.

case N), but the electron densities are nearly the same (5 x 1012 for
case E compared with 2,69 x 1012 for case N), and the electron tempera-
tures are the same. The character of the curves is about the same in
Figs. 14 and 12, with the slight differences reflecting the slight
decrease in the magnitude of collisional processes due to the lower
electron density. This is well Jllustrated by the fact that the 2 1s density
tends to be slightly greater than the 23 P level until about 3 x 10-7 sec.
This is due to the small decrease in the collisional coupling of the

215 to the 21P level while the radiative transitions from the 23P to the
23S level play a proportionately greater role for the early portion of the
decay. The 21P and 23S levels are not included in their entirety in

Fig. 14 since their characteristics are now well documented by the
previous figures. The 21P level reaches a minimum ordinate of 0,0023
at about 5 x 10~7 sec and returns to about 0,01 at QSS. The 235 1evel
has a peak ordinate of 96.2 at QSS, t=4 x 10-° sec.

Figures 15, 16, and 17 show the time development of the substates of
quantum levels 2 and 3 for cases I, Q, and P, respectively. These
plasmas are all at the same densities and degrees of ionization but have
electron temperatures of 14,000°K, 8,000%, and 6, 000°K, respectively.
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Figure 16. n(p)/n(Saha) versus time for quantum levels two and three, case P.
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Figure 17. n{p)/n(Saha) versus time for quantum levels two and three, case Q.

Figure 9 (case C) showed the development of a plasma at the same den-
sity and degree of ionization with an electron temperature of 10, 000°K.
Comparison of Figs. 15, 9, 16, and 17 shows the steady decrease of
importance of collisional processes and the steady increase of radia-
tive processes as temperature is decreased.

The interplay of these collisional-radiative processes is quite com-
plex and subtle, Detailed study of the change in the decay characteris-
tics will be taken up later in this study. At this point, it will suffice to
say that at the low temperature, Fig. 17, collisional processes are
sufficiently inefficient that the radiative transitions of the 21P level
depress it far enough that adjacent levels are also depressed in attempt-
ing to bring the 2lp density back to the equilibrium configuration. This
depression of adjacent leyels in turn lowers particularly the radiative
transition rate into the 2°S level so that it does not show a marked in-
crease in density. Without this increase in the 238 density, there is no
subsequent increase in the other quantum levels because of collisional
transfers from the 23S level. Thus, the entire distribution in the low-
lying states is drawn below the equilibrium with the free electrons.
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5.3.1 Acquisition of Quasi-Steady State

A consequence of the QSS for the optically thin plasma is the condi-
tion that the rate of change of the ground state density and the continuum
density are equal in magnitude but opposite in sign (Section 2.0). Hence,
observation of the time development of the ratio ne/rfi(1) will provide
graphit illustration of the time development of the plasma as a whole to
the QSS. At QSS, this ratio has a value of -1,

The initial conditions used for the calculations will certainly have a
significant bearing upon the time development of ng/fi(1). However, as
described on the preceding pages, the initial conditions were such that
the metastable 2¥S level density had to increase to reach the QSS and
the other levels were both directly and indirectly affected by the metas-
table levels. Thus, if a physical plasma suffers a parametric change
such that the densities of these levels are below their QSS value, the
initial conditions chosen for this study do give realistic results.

Figure 18 shows the time development of 1ig/1i (1) for cases A through
G and case M. These plasmas all have an electron temperature of
10, 000°K, one percent jonization, and progressively lower total densities.
As one would expect, as conditions progress such that the plasma is less
collision dominated, the time to ggggiré QSS becomes progressively

1 T

' '5"}'@!9999}5; 1% Ionization
.63 x 1017 1/cm®
0x 1/c
.50 x 106 1/cmd
9 15 1/cm3 .
1/::1113
1/1':|||.3
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Figure 18. n./n(1) versus time, cases A, B, C, D, E, F, G, and M.
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longer. These times range from 3 x 108 sec for case A to 3.5 x 1074
sec for case G. The criterion used for these and subsequent cases is that
when n e and 1 (1) agree within 5 percent (-1.05 < n. /1 (1) < -0. 95) the
plasma is considered to be at the QSS. A consistent (case A the only
exception) characteristic is the overshoot of the QSS condition early in

" the decay of each plasma and then the subsequent slow recovery back to
the QSS conditions. This phenomenon will be studied in detail below.

Figure 19 shows the time development of ne/n(l) for cases H through
K. These plasmas are at similar densities and degrees of ionization as
cases A, C, E, and G, respectively, except that the electron tempera-
ture is elevated to 14, 000°K. The character of the curves in Fig. 19
compared to those in Fig. 18 is quite similar, except that the QSS is
achieved slightly sooner (2.5 x 10-8 sec for case H compared to 2.5 x
10-8 sec for case A, 2.3 x 10-4 sec for case K compared to 3.5 x 10-4
sec for case G) and the magnitude of overshoot is slightly greater.

0

-1}

n(l)

-2} o
'l‘e = 14,000°K
1% Ionization

H: n, = 1.63 x 10]'7 1/cl|l3

16 3

I: n_=1.50x 10 1/cm’

° 14 3

=31J: n_=5.00 x 10°* 1/cm

° 13 3

K n, = 5.00 x 10 1/cn

L AL Llilll L b b AL Il i L LLLll L Ll lallil L Lt ailitl
10710 10~° 1078 10”7 107 1073 10-4 1073
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Figure 19. ng/n(1) versus time, cases H, I, J, and K.

Figure 20 shows the time development of ne/n(1) for cases L
through O. These cases are all at the same total density and electron
temperature but at different degrees of ionization. The character of
these curves is also consistent with those in Figs. 18 and 19.

Figure 21 shows the time development of ﬁe/ﬁ(l) for cases C, I, P,
and Q. These plasmas are all at the same density and ionization but

64



AEDC-TR-76-b

1 T T T T T

2.69 x 105 1/cn°®
10,000°k

5.38 x 10" " 1/cm
2.69 x 10" 1/cm
2.69 x 10'2 1/cn°
2.69 x 10 1/en’

14
13

3
3 -

2
-] -]
Qﬂ (D= (Du o (l.-]O

-1 |

] A1 L L L

108 10°7

10-?

Time (sec)

Figure 20. n,/n{1) versus tima, cases L, M, N, and O.
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Figuré‘ 21. ne/n(1) versus time, cases C, |, P, and Q.
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each is at a different electron temperature. This again shows the con-
sistent behavior that as collisional rates get larger (increasing tempera-
ture) the time for the plasma to achieve QSS gets progressively smaller.
One can also see the tendency for the overshoot to become progressively
larger as the electron temperature becomes larger. Case Q, the lowest
temperature case, does not show the overshoot and will be discussed in
more detail below.

Regardless of the character of the decay, the time to achieve QSS
was not extremely sensitive to the electron temperature, ranging from
2 x 10~ 7 sec for case I (Te = 14,000°K) to 1.2 x 106 sec for case Q
(Te = 6,000°K),

5.3.2 Overshoot of Quasi-Steady State

A consistent character of the n/ n(l) curves is the overshoot of
the QSS early in the decay of most of the plasmas (cases A, H, and Q
the only exceptions) and then the slow recovery back to the QSS. This
could be due to an overshoot of Q@SS conditions of either ng or ri(1) but
in fact both quantities show the character to a greater or lesser degree.
It is also tempting to ascribe the overshoot to numerical inaccuracies
in the program but it is in fact a physical phenomenon depending upon
the initial conditions.

The precise balancing between the various processes included in
the ERE. induces large time gradients in the excited state densities
during the early stages of computation. However, these numerical
requirements are satisfied very early (t < 10™ " sec) in the decay with
no appreciable changes in the excited-state densities. The subsequent
plasma decay is attributable to the physical imbalance of the terms in
the ERE because of the initial distribution. Thus physical plasmas
which suffer parametric changes which require a significant 233 density
increase to achieve QSS will also be subject to the overshoot phenomenon.

Case C was chosen to examine the overshoot phenomenon in more
detail. This case shows the phenomenon quite well yet does not require
such large times to re-establish QSS that study can become unwieldy.

Figure 22 shows the detailed time development of the rates of
change of the continuum as well as the 118, 2YS, and 23P bound states
for case C. This shows that both the ground state and free electron
rates overshoot their QSS values and converge back toward their QSS
value slowly. Of specific interest in this context is the 23P level. By

66



AEDC-TR-76-56

1018 T T T T T T T T LI ) T T T L. r 1 T T 1 T T T T
o =1.5x 106 1/cm3
° 14 3
n, = 1.5x 10 1/cm
T, = 10,000°k

1017

1016

Total Rate of Change (1/cn3/sec)

10~
Time (sec)

-9

10 8

10”8

Figure 22. Total rate of change of 118, 23S, 23P quantum levels and free
electron density versus time, case C.

comparing the shape of the curves for the time development of the 23p
and continuum rates, it is seen that the continuum overshoot follows

the sudden growth of the 23p rate from about 5 x 1079 sec through about
3 x 10~7 sec and then slowly falls to the QSS value with the fall of the
23S and 23P rates to the QSS. In this region of time some of the other
quantum levels will also show a similar variation in their rates for the
reasong described below. The early part of the continuum rate curve,
t <10 " sec, follows the adjustment of the other quantum levels toward
their QSS value.

Figure 23 examines the time development of the 23P rate in more
detail illustrating both the collisional and radiative contributions to the
net rate. Initial conditions for this plasma were such that the 23p
density is less than its QSS value so there is a tendency for the 23p
level to populate radiatively in the early portion of the decay. As the
level continues to populate radiatively, the density increases so that
radiative population consequently increases and collisional depopulation
decreases.

Hence, as time progresses, the radiative rate becomes progressive-

ly smaller and the collisional depopulation rate becomes larger for
t <5 x 109 sec. At this point, however, the collisional rate reverses
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Figure 23. 23P collisional rate, radiative rate, and
total rate versus time, case C.

directions from a depopulating effect to a populating effect. With the
subsequent increase in the population density, the radiative rate serves
to increasingly depopulate the state until about 1075 sec when the colli-
sional and radiative rates balance each other and the state approaches
QSS. By referring to Fig. 22 one sees that throughout this oscillation of
the 23P rate the metastable 23S level has been populating radiatively at
a high rate. At about 5 x 10~9 sec the 23S level has become sufficiently
populous that direct excitation 23S - 23P collisions with the continuum
can begin to have a discernible effect upon the 23P rate. Collisional
transfers out of the 23S level to all levels, however, are not sufficient
to balance the radiative rate into it so that the 23S level continues to
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populate, and thus the transfer rate to the 23P level becomes larger
until QSS is reached. As the collisional rate from the 23S to the 23P
rate becomes large enough to begin to balance the radiative rate, the
235 level rate decreases to its QSS value. As its total rate decreases
toward zero, the collisional rate to the other quantum level flattens

out so that the other collisional radiative processes can balance the
total rate for each individual quantum level to the QSS value. The slow
equilibration of the collisional and radiative rates for the 2°S and 23P
levels is communicated by collisional processes back through the bound
states to the electron continuum., Thus as these rates fall to their QSS
value, they have a decreasingly important contribution to the continuum
rate, and the continuum rate can also slowly subside to the QSS value.

Figure 24 illustrates the time development of the population densi-
ties of the 23S, 23P, 218, and 2lp levels for case C. This shows the
slow increase of the triplet states to their QSS value while examination
of the singlet states reveals the cause of the ground state rate overshoot
shown in Fig. 22. The 21P level has a large radiative transition proba-
bility to the ground state. Hence, its population density shows a very
rapid decrease through the early part of the decay. As its density falls
below the equilibrium configuration, collisions have a tendency to fill it
and especially collisional transfers from the 218 state. Hence, the 218
state also shows a reduction in density but lags slightly behind the 21lp
level. At about 1 x 10-8 sec, the 21P level has lowered in density

10”7 | [ .
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Figure 24. 23S, 23P, 218, and 2'P population densities versus time, case C.
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sufficiently that collisional rates can begin to balance radiative rates,
so the density curve begins to flatten. However, the triplet states are
continuing to increase in density so that exchange transfers between the
triplet and singlet states become more numerous and serve to elevate
the population densities of the singlet states. The largest single contri-
butor to the ground state rate is radiative transitions from the 21P
state. By comparing the ground state rate in Fig, 22 to the 2lp popula-
tion density in Fig. 24, one sees that as the 21P density decreases, goes
through a minimum, and slightly increases, so does the ground state
rate. This effect of the 21P level upon the ground state rate is preva-
lent for all cases which show overshoot.

In summary, those cases that show an overshoot of ne/n(l) do so
basically because of the need of the 2 S density to increase to its QSS
value. This increase in density causes the continuum rate overshoot
because the collisional transfers between the 23S level and adjacent
quantum levels induce time rates of changes in these levels which are
significant with respect to the continuum and ground state rates. The
ground state rate overshoot is caused specﬁlcally because the increase
in the 238 density mduces an increase in the 21P density with an atten-
dant increase in the 115-21P radiation.

5.3.3 No Quasi-Steady-State Overshoot

As indicated previously, three of the plasmas studied showed no
overshoot of the QSS condition but rather decayed directly to QSS. Two
of these cases, A and H, are high density cases which are strongly
collision dominated. Little needs to be said for these two as to why they
do not show the overshoot characteristics. Since they are strongly colli-
sion dominated, slight changes in any quantum level's density is quickly
communicated to the other levels so that the QSS distribution is quickly
reached. No single process, e.g., 21P radiation, can cause one quan-
tum level to over-depopulate but rather all levels approach QSS together.

The other case which shows no overshoot, case Q, is somewhat
different in nature, however. In this low temperature situation (T
6, 000°K) the collisional processeq are sufficiently inefficient that the
radiative decay of the 21P density acts as a sink for the rest of the
distribution.

Table 5 shows the radiative population rate for the 23S level for each

of the cases C, I, P, and Q at initial conditions and at QSS. Inspection
of this table shows that of these cases, case Q is the only one which
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Table 5. Comparison of 23S Radiative Rates at Initial Conditions
and Quasi-Steady State for Cases, C. |, P, and Q

3

Case Te 2°Ss Radiative Rate
°K atoms/cma/sec
Initial ass
a

I 1.44 7.9815 1.1016
c 1.04 2.9116 4.1116
p 8.03 g8.9716 1.0417
Q 6.03 6.1417 3.77%7

aSuperscr:lpts denote powers of 10 by which the
numbers are to be multiplied.

shows a decrease in the rate with which the 23S level increases because
of radiative transitions. This implies that particularly the 23P level
has suffered a significant decrease in density (at QSS for case I, the
23P contributes 55 percent of the 23S radiative rate). To understand.
how this comes about, it is informative to examine the rate coefficients
for collisional transitions between the sibstates of quantum level 2.
These are shown in Table 6 for electron temperatures of 6, 000°K and
10, 000°K for comparison. Included in the table for discussion purposes
is the minimum temperature the prOJect]le electron must exhibit to
effect the transition.

Table 6. Comparison of Collisional Rate Coefficients for
Quantum Level Two Transitions at 10,000°K
and 6,000°K

Transgition Rate Coefficients om3/sec Minimam
4 3 Temperature
r = 1.0k T = 6.07°K oK
-] e .
. a
235 - 21s 7.0379 3.107? 9.23
23s - 2% 1.5877 3.9878 1.3%
235 - 2lp 3.76~? 1.1777 1.6*
2ls - 23 1.4278 8.98~? 4.03
2ls - 21p 1.2176 4.7977 6.9°
23p - 21p 1.7778 1.2478 3.03

aSupex:scr:ipt:s denote powers of 10 by which the
numbers are to be multiplied.
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Examination of the rate coefficients at 10, 000°K shows that, as
would be expected, the direct transitions, 23S - 23P and 218 - 21P,
are the most important by at least an order of magnitude. However, at
6,000°K the 23P - 21P transition is competitive with the 235 - 23P
transition. This is because at 6, 000°K most of the electron distribution
is still available to effect the transition (a 3, 000°K electron has suffi-
cient energy) and even though it is an exchange transition, the magnitude
of the rate coefficient is not significantly altered. For the direct 23S -
23 P transition, a 13, 000°K electron is required and at 6, 000°K an appreci-
able portion of the electron distribution has insufficient energy to effect
the transition. Hence, the rate coefficient is markedly reduced. Simi-
lar arguments hold for the 2lg - 23p transition, which requires a
4,000°K electron for the transition.

Thus at 6,000°K, as the 21P level depresses radiatively, the other
levels attempt to bring it back to the equilibrium configuration and are
also depressed. The details of this depend upon the following coupling
processes.

The 21S level and the 23P level are the major contributors to
repopulating the 21P level. The 21P radiation'dominates this repopula-
tion so that these two contributors are also depressed. At the high
temperatures, the 23S - 23P rate coefficient dominates the 2°P - 21P
rate coefficient by an order of magnitude. Thus, the 23P level is
prevented from being depopulated by 23P - 21P transitions. At the low
temperature, the 23S - 23P rate coefficient is of the same order of
magnitude as the 23P - 21P rate coefficient and as a result, the 2°P -
21 P transition forces the 23P density significantly below the equilibrium
configuration. The 23S level is consequently depleted in attempting to
fill the 23P level. This depletion of the 23S density in turn affects all
the other level densities and thus, at 6,000°K, the entire distribution
decays below equilibrium.

The foregoing discussion of overshoot has shown the specific mecha-
nisms by which overshoot is established for the various plasmas. It
has been shown that the overshoot characteristics are determined princi-
pally by the 23S state and the 21P state. The overshoot of the quantity
/1 (1) is caused by the overshoot of both the continuum rate and the
ground state rate with the overshoot of the ground state rate showing a
somewhat more consistent trend with varying plasma conditions. This
is illustrated in Table 7, which has reordered the various plasmas
studied in order of increasing overshoot of fig/1i (1). Included in the
table are the ﬁe(max)/ 1 (QSS), 1 (1){min)/ni (1)(QSS), the ratio of the
238 collisional depopulation rate to the radiative population rate at
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Table 7. Maximum Value of n./n(1), ne/n {QSS), Minimum Value of n{1)/n(1) (QSS),
and Ratio of Collisional Rate to Radiative Rate at Initial Conditions for the
238 and 21P Quantum Levels for Each of the Afterglow Plasmas Studied

Case n, n, T, Rg/R (1} hg (max) R(L) (min) Initial Conditions
l’qu 1/6'!3 ox maxioum !'lelOSS) n(l) (gss) conhim;al Rate / Radl.ative Rate
overshoot 2°s F 4

A 1.6337 1,635 1.0t 1.0 1.0 .0 17.12 0.9

B 1.6317  1.631% 1.4 1.0 1.0 1.0 15.04 1.21
L 2.6915 5,384  .0¢ 1.10 1.06 0.98 5.67 0.29
B 41 g 1.0% 1.15 1.08 0.95 4.64 0.2¢

P 1536 1.5l 8.0} 1.30 1.11 0.84¢ 1.67 0.06
c 1.5 g5 1.0* 1.50 1.23 .82 1.57 0.08

I 1.516  1.s1¢ 1.44 1.65 1.43 0.87 1.44 0.10
b 6.5015  g.5913 104 1.75 1.26 0.73 0.69 0.036
n 2.69%% 2,691  1.0% 1.95 1.22 0.63 0.28 0.013
B 5.0l 5,012 1.04 2.10 1.09 0.52 0.05 0.002
v 151 3 512 1.0% 2.15 1.06 t.48 0.016 0.0008
N 2.69%% 2,692 10! 2.15 1.07 0.50 0.028 0.0015
G s.0}? 5,0 1.0% 2.25 1.0¢ 0.46 0.005 0.0002
o 2.6915 2,691t 1,04 2.35 1.04 .44 0.003 0.0002
g 5.014 5012 1.44 2.45 1.27 0.52 0.046 0.0046
x 5,013 5.plt 1.44 2.26 115 0.35 0.0046 0.0013
e 1.516 ) slé 6.0° 1.0 1.0 1.0 1.64 0.05

aSuperscripts denote powers of 10 by which the numbers

are to be multiplied.
the initial conditions, and the 21P collisional population rate to the
radiative depopulation rate at the initial conditions. Case Q has been
included at the bottom of the table for completeness. Table 7 shows
that for those cases (A and H) which have strong collision dominance
in the 23S level and competition between collisions and radiation in
the 21P level there is no overshoot for any of the parameters. In
general, as radiation becomes more important, the overshoot of n / n(1)
becomes greater. The ground state overshoot tends to follow a more or
less consistent trend with changing plasma conditions whereas the con-
tinuum rate overshoot appears to go through a maximum in the region of
conditions in which there is no clearcut domination of the 23S collisional
or radiative rates, Cases J and K appear to be the principal inconsistent
cases in the table but the better communication between the lower level
rates and the continuum rates have already been discussed for these
higher temperature cases. It should also be noted that cases J and K
are consistent with cases H and I, which are also at an electron tempera-
ture of 14, 000°K. The reason for no overshoot for case @ has also been
discussed previously.
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54 VALIDITY OF CRR

The preceding discussion of the mechanisms by which QSS is estab-
lished showed that, except for a limited range of plasma conditions, the
continuum rate does not deviate drastically from its QSS values. Thus
one would expect the results of CRR_ theory to be applicable to the free
electron density even though the QSS is not a physical reality. This in
turn implies that CRR can occur physically independent of the QSS and
indeed, the QSS may be unnecessary except as a mathematical conven-
ience or in studying the quantum levels below the critical level.

This is exactly the situation as is shown in Figs. 25, 26, 27, and
28. Each of these figures displays the time-dependent CRR coefficient,
a(t), based upon the electron density decay, a {t) = -ne/ne”, referred
to its value at QSS. Each of the Figs. 25 through 28 shows results for
the same plasmas shown in Figs. 18 through 21. As expected, only
those cases which showed significant continuum overshoot (Table 7, cases
C, D, I, J, and M) show significant overshoot of the QSS. Even so the
departure from the QSS is less severe than one would expect from exam-
ination of ﬁe/ﬁ(l) shown in Figs. 18 through 21.

al(t)
a(Qss) A o
Te = 10,000 K; 1% Ionization
A: n_=1.63 x 1017 1/cm3
° 16 3.
) B: n_=4.40 x 10 1/cm J
° 16 3
C: n_=1.50x 10 1/cm
° 15 3
D n =6.59 x 10 1/cm
° 14 3
E n_ =5,00x 10 1/cm
° 14 3
F n_=1.50 x 10 1/cm
° 13 3
G n.=5.00 x 10 1/cm
=1 Il 1 . O
10710 10~ 10”8 1077 10~6 10”3

Time (sec)

Figure 25. a(t)/a(QSS) versus time, cases A, B, C, D, E, F, and G.
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Figure 26. a(t)/a(QSS) versus time, cases
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Figure 27. al(t)/a(QSS) versus time, cases L, M, N, and O.

that CRR can be applied to the continuum
1/ cm3), low excitation temperature

(Te < 10, 000°K) plasmas before QSS is acquired is inescapable. The
reason for this applicability of CRR to the continuum decay is fairly
straightforward. If one writes the ERE equation for the rate of change
of the ground state and factors out ne2 to put it into the proper form for
identifying the CRR coefficient, one sees that the dominant contributors
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Figure 28. a(t)/a(QSS) versus time, cases C, I, P, and Q.

to the ground state rate are those terms involving the low-lying energy
levels, particularly radiation from the 21P level. Because of the ener-
getically close proximity of the 21P level to the 23s, 23P, and 218 levels
and the significant times required for them to reach their QSS value, it
will require significant times for the QSS to be reached, so far as the
ground state is concerned. However, for the 'less collision dominated"
plasmas, the upper quantum levels are the most important so far as

the transfer of electrons between the continuum and the bound states are
concerned. The lower levels populate by radiation from the upper levels.
Hence, the continuum develops equilibrium with the upper states very
rapidly and decays with them according to CRR as they radiatively fill
the low levels until QSS for the entire plasma is obtained.

A dominant feature of the analysis of these plasmas has been the
effect of the metastable levels upon the time required to reach QSS.
The other levels adjust to some value near or below their QSS value
early in the decay, typically at times of order 1078 sec which is
characteristic of radiative decay times. Then, as the metastable levels
continue to populate radiatively, collisional processes from the metas-
table levels to the adjacent levels and subsequent excitation to higher
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levels serve to raise the densities of these levels to their final QSS
values. The amount of adjustment is dictated by the energy proximity
to the metastable levels and whether the collisional excitations were
governed by direct or exchange calculations. The importance of these
metastable levels upon the time for a plasma to achieve QSS should not
be neglected.

6.0 PERTUBATIONS

The study of the QSS development for the pure afterglow cases has
provided a great deal of insight into the important mechanisms in a
decaying helium plasma. Actual physical phenomena will more realis-
tically involve the plasma changing from the QSS at one set of plasma
conditions to the QSS at another set of plasma conditions. The study of
the reacquisition of the QSS after a perturbation of existing QSS condi-
tions will enhance the insight gained in the study of the pure afterglow
plasmas for extension to the physical situation. For this, the QSS
distribution was subjected to various perturbations, and these are
summarized in Table 8.

Tablé 8: Suimary of Pérturbations of Case C

Case Initial Conditions

CA All excited-state densities doubled

CB All escited:state densities halved

cc Principal quantun ievel 3 density
inctéased one order of magnitude

D Principal duahtum ievel 3 density
doubled

CE Principal quantum level 6 density
increased one order of magnitude

CF 33P density increased one order of
mdgnitude

CG 63P dengity ihcteéased one order of
magnitude

CH T, from 10,060°K to 9,500°K in one step

CI T_ from 10;000°K to 9,500°K in 100°K
ifictements

cJ Te from 10,000°K to 9,900°K in 10°K
increments

CK All K(piq) halved
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6.1 PERTURBATIONS OF ENTIRE DISTRIBUTION, CASES CA AND CB

Cases CA and CB, in which the entire excited-state QSS density
distribution from case C was doubled and halved, respectively, is the
largest perturbation since it affects the entire distribution. The quan-
tities ne/n (1) and a(t)/a(QSS) for these plasmas are illustrated in
Fig. 29 along with the same parameters from case C for comparison.
Figures 30 and 31 show the time development of quantum levels 2 and 3
population densities normalized to their Saha values for cases CA and
CB, respectively. Included in Figures 30 and 31 is the time develop-
ment of quantum level 6, which lies above the critical level.

1 T U TTTTTE ULRLARI T T T T1TTTTrTT T I T TTTITT1T 1 LB BRI
C
1 -
a(t)
a(Qss) C: Boltzmann Dist.
CA: Double QSS Dist.
CB: Half QSS Dist.
of n_=1.5x 10'% 1/cm3 .
° 14 3
n, = 1.5 x 10 1/cm
T, = 10,000%k
ne
h(1l) ]
2 L L 1 1 1341 1 1 10 11113 1 1] J 1]
10710 1072 108 1077 1076 10”5

Time (sec)

Figure 29. n,/n{1) and a(t)/a{QSS) versus time, cases C, CA, and CB.

The comparison shows that the time to acquire QSS is quite similar
for both conditions in spite of the fact that the initial conditions are
quite diverse. Case C started with all excited states in equilibrium with
the continuum, and the approach to QSS is primarily determined by the
lower states. Cases CA and CB have as their initial conditions the den-
sities of all excited states either double or half their QSS value, re-
spectively, and again QSS is determined by the lower levels.
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Figure 30. n{p)/n{Saha) versus time for quantum levels two, three, and six, case CA.
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Figure 31. n(p)/n{Saha) versus time for quantum levels two, three, and six, case CB.
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For case C the continuum rate and thus @ are determined by recom-'
bination into the upper levels which then depopulate by radiation to the
lower levels. For case CA these levels uce overpopulated by a factor of
two and because of ionization collisions the upper levels reach equilibrium
with the free electrons early (t < 1072 sec) in the return to QSS. The
lower levels are overpopulated and depopulate principally through colli-
sional excitation to a higher level and then subsequent ionization. Thus,
in this case the continuum rate is held towards a more positive value
until QSS is obtained and there is no overshoot.

For case CB the levels are all underpopulated by a factor of two.
Again the upper levels establish equilibrium with the free electron den-
sity earlier (t < 1079 sec) than the time required for the lower levels but
the actual QSS is not obtained until considerably later (t m 5 x 10-7 sec).
The similarity in the decay characteristics of cases C and CB for 1 x
10-8 sec < t< 5x107" secis worth noting. For case C the energy
states above the critical level were in equilibrium with the free electron
density from t = 0.0 sec. For case CB the initial conditions were
just half the initial conditions of case C for the states above the critical
level and near the same for the quantum states below the critical level,
Consequently, the decay characteristics of the two cases are quite
different during the early part of the decay when the upper states can
appreciably affect the characteristics. However, by t = 1 x 10-8 gec,
all levels with the exception of the metastable levels have established a
collisional-radiative balance among themselves and subsequent develop-
ments are a result of the coupling with the metastable levels. Thus,
because of the similarity of the initial density of the 23S level, the decay
characteristics for t > 1 x 108 sec are quite similar,

6.2 PERTURBATIONS OF PRINCIPAL QUANTUM LEVEL DENSITY,
CASES CC, CD, AND CE

Cases CC, CD, and CE each suffered somewhat smaller perturba-
tions, having but one principal quantum level affected. Cases CC and
CD have the QSS density of quantum level 3 (below the critical level)
increased a factor of 10 and 2, respectively. Case CE has the QSS den-
sity of principal quantum level 6 (above the critical level) increased by a
factor of 10. Figure 32 summarizes the results for these cases with
the ordinate the values of the ratios ﬁe/n' (1) and o (t) / o (QSS) as
before. The plots show the not unexpected trends that case CE, in
which quantum level 6 was increased an order of magnitude, comes to
QSS very rapidly in both derivatives and CRR coefficients. Cases CC
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Figure 32. n,/n{1) and a(t)/a{QSS) versus time, cases CC, CD, and CE.

and CD, which had quantum level 3 increased factors of 10 and 2, res-
pectively, take longer - only slightly for case CD but an order of mag-
nitude for case CC. The ng/n{l) curve for case CD shows an interest-
ing character illustrating the role of bound states above the critical level
as a communicator between the lower level and the continuum. Early

in the decay (t < 10-10 sec) few collisions have occurred which transfer
electrons from quantum level 3 to some quantum level adjacent to the
continuum. Thus, there is not sufficient ionization from the_ upper levels
to aé)preciably affect the continuum rate. However, for 1010 <t< 3x
107" sec there are sufficient numbers transferred to these upper levels
that ionization overbalances recombination and the continuum rate act-
ually goes positive for a short period of time before driving rapidly to
the QSS by t ~ 1078 sec. Case CC exhibited this same character but
because of the higher initial overpopulation of quantum level 3, the
ratios could not be included on the scale of the plot. Case CE differed
in this respect in that the continuum rate showed a very large positive
derivative from t = 0,

Figures 33 and 34 explore cases CC and CE a little farther, showing
the time development of the normalized population densities of the per-
turbed and two adjacent levels. In each the ordinate is the ratio of the
time-dependent population density to the density in equilibrium with the
free electrons. Figure 33 shows that the singlet and triplet states have
slightly different decay .characteristics for quantum level 3. This is
primarily because of an initial difference in population densities. The
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Figure 33. n{p)/n{Saha) versus time for 33P, 3P, and 41P quantum levels,
case CC.

trans:ent coupling to other states is illustrated by the development of
the 41P density which shows an increase in density peaking at t = 10-9
sec before falling back to the QSS value. All higher levels in fact show
the same general nature as the 41P level, and the QSS values are not
reached until times of order 10”7 sec.

Figure 34 illustrates the transient coupling between quantum level
6 and the adjacent levels. Because quantum level 7 is closer to 6
energetically than quantum level 5, it shows a rise in population density
before quantum level 5 and then, because ionization is more efficient
from quantum level 7, it has a tendency to return to QSS before the
others. This is also why quantum level 5 tends to lag behind both quan-
tum levels 6 and 7 in returning to QSS.

6.3 PERTURBATIONS OF DENSITY OF ONE EXCITED STATE, CASES CF AND CG

Figure 35 illustrates the character of the decay of cases CF and CG
in which the densities of the 33P and 63P states, respectively, were
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Figure 34. n{p)/n{Saha) versus time for quantum levels
five, six, and saven, case CE.

perturbed upwards by a factor of 10. The ordinate again gives the values
of the ratios neg/n(1) and a (t)/a(QSS).

These plasmas _show characteristics similar to cases CC and CE by
coming to QSS quite rapidly with the CRR showing the QSS value slightly
before the rate ratio. Comparison with Fig. 32 shows that these plasmas
achieve the QSS typically an order of magnitude before cases CC and CE
which had the entire quantum level elevated by a factor of 10. Figures
36 and 37 illustrate the time deveiopment of selected population densities
in the same manner as Figs. 33 and 34. Again the transient coupling is
evident between the affected states and adjacent states with those lying
energetically below the 3_P__ states lagging slightly. Although exchange
collisions are included in the calculations, these rate coefficients are
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Figure 35. n,/n(1) and a(t)/a{QSS) versus time,
cases CF and CG.

very small and the effect of these perturbations upon singlet states,
though resolvable in the calculations, is insignificant compared to the
effect on the triplet states. Figure 37 does not show the effects upon a
higher level because, although a slight increase is observable in these
higher levels, it is fractional and would only tend to clutter the figure.
This figure illustrates the strong coupling between the sublevels of the
high quantum levels in that the 63P level and the other triplet states of
quantum level 6 converge to the same relationship with the continuum at
about 3 x 10~12 sec and then decay to QSS together.
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Figure 36. n{p)/n(Saha) versus time for 33P, 338, and 43S quantum
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Figure 37. n(p)/n(Saha) versus time for 63P quantum level and triplet states of

quantum levels five and six, case CG.
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6.4 ELECTRON TEMPERATURE DECAY, CASES CH, Cl, AND CJ

Most experimental studies of plasmas are subject to a decaying
electron temperature. If the acquisition of the QSS under these
conditions requires times in excess of the observed gradient times, then
application of CRR theory may be inappropriate. The effects of a
relaxing electron temperature were initially studied with the ERE with
two cases, CH and CI. Each case used the QSS distribution from case
C for the initial distribution but a different lower electron temperature.
Although the present computer program will not support a variable
electron temperature, the effect of an electron temperature change can
be approximated by replacing the rate coefficients at the QSS tempera-
ture by rate coefficients calculated at some other temperature. Case
CI investigated the approach to QSS by stepping the electron temperature
from the 10, 000°K of case C to 9, 500°K in 100°K steps. The calculation
was continued at each temperature until 11 /1 (1) indicated the plasma
was within five percent of QSS. Case CH repeated the same conditions
except the 500°K drop was made in one step.

Comparison of the two cases is made in Table 9. The first four
columns refer to case CI with the first column indicating the electron
temperature of each succeeding calculation. The second column is the
time at which the ratio ng/ri(1) came within the five percent criterion
indicated above. Since provisions were not made to halt computations

Table 9. Times for QSS to be Established for Cases CH and CI

T,  t(-n /f(l) < 1.05) t (computations n /(1) t(-n/R(1) < 1.05)
stopped)
°K sec sec t stop
a
9.93 4.27° g.172 -1.03
9.8% g.g~8 g.8"8 -1.05
9.73 1.477 1.877 -1.04
9.6° 1.0”7 3,377 -1.02
9.5 6.078 3.077 -1.02
Sum = 3.9277 3,177

aSuperscripts indicate powers of 10 by which the numbers are to be
multiplied.
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as soon as the five percent criterion was met, the third column indicates
the time at which computations were stopped at each temperature with
the fourth column showing the ratio ng/n(1) at the time computations
were stopped.

The QSS distribution at each of these temperatures was used for
the initial distribution at the next lower temperature. The last entry
in the second column is the sum of times to reach QSS at the five percent
criterion and is to be compared to the single entry in column five, which
is the time required for case CH, the single 500°K drop, to reach QSS
at the five percent criterion. Comparison of the second and fifth columns
of Table 9 shows that approximating the Te change by a series of small
changes will result in the plasma requiring longer to achieve QSS at the
final T¢ than if the change is made in one large jump.

An interesting feature of the decay, comparing columns four and
two of Table 9, is that the farther away from QSS the initial conditions
are, the longer the time required for the plasma to reachieve the QSS.
Thus, for T = 9, 900°K, it only required 4.2 x 109 sec for ng/n (1)
to come within five percent of QSS (with fig/n(1) = -1,000 at Te =
10, 000°K) but it required 1.4 x 10-7 for Te =9, 700°K (ne/n(l) = -1,05
at Te = 9,800°K). This suggests that the instantaneous rates are quite
sensitive to the value of the rate coefficients even though final QSS
rates may not be appreciably different., This is supported by noting that
a @SS, the instantaneous total rate of change of a quantum level will be
several orders of magnitude below the instantaneous rate of change of
either collisional population or collisional depopulation. Hence, a
very slight change in the rate coefficient will cause appreciable changes
in the ne/n (1) characteristic. Because of this, small changes in Tg
will contribute significantly to the ratio ne/ni(1).

With the electron temperature decaying continuously, as in a phys-
ical plasma, in the time following a T change and with the plasma
approaching the QSS, there will be another T change, albeit slight,
with the attendant deleterious effect upon the rates and the QSS. These
observations lead to the hypothesis that in an environment in which
the electron temperature decays ‘continuously, the Q@SS will continually
""chase' the T, change and the plasma will never satisfactorily achieve
QSS until the Tg time gradient becomes ''sufficiently' flat.

These observations prompted the last temperature perturbational

study, case CJ. The initial conditions were again the same as for
cases CH and CI. This time, however, the plasma was subjected to a
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constant temperature gradient, -9 x 109°K/ sec, and the temperature.
increments were 10°K drops from 10,000°K to 9,900°K. The rate
coefficients were assumed linear over the 1U0°K temperature range.
Note that this gradient is only about one third that indicated in Table 9
for the first 100° K drop.

Figure 38 displays the ratio ne/n(l) at the point the computations
were terminated at each temperature. The points at 9, 990°K and
9, 980°K are plotted at their respective plasma times of 1.1 x 10~9 sec
each since those decays were inadvertently allowed to continue to a
plasma time of 1 x 10-8 sec. The terminal distribution at each temper-
ature provided the initial conditions for the next lower temperature.
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10,000 Joso | ! ' L
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99080 8970 o AT = 10°K
o L. X e 16 3
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n{1) °° a 9940
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1.06 1 1 L 1 1 | 1 1 i o | 9900
1. -8
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Figure 38. ne/n(1) at times computations terminated, case CJ.

The figure shows that if the QSS plasma of case C is subjected to
the constant temperature gradient of -9 x 109°K /sec, it will still
not be to the QSS after a one percent temperature drop at a plasma
time of 1.15 x 10~8 sec. This time is almost three times that indicated
in Table 9 for the same temperature drop.

This case CJ reinforces the hypothesis just presented that in an
environment in which Te is continuously changing, the QSS will
"chase' the T change. Although the conclusions must be based upon
phenomenological observations, it is apparent that in the 10, 000°K to
9, 900°K temperature range, the maximum temperature gradient which
will allow application of the QSS is less than -9 x 1010 °K /sec. Exten-
sion of these observations to the cases in which the plasma suffers a
500°K electron temperature decay indicates that the time for the plasma
to return to the QSS would be considerably in excess of the 3.92 x 10-7
sec reported in Table 9.
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6.5 PERTURBATION OF RATE COEFFICIENTS, CASE CK

The discussion of the rate coefficients in Section 3.0 indicated that
they should be overestimated by no more than a factor of two. In
order to investigate the effect of this possibility, the transient decay
of case C was recomputed with all rate coefficients, K(p;q), reduced
by a factor of two. The time development of the population density of
quantum levels two and three ratioed to the Saha equilibrium value for
this case CK is shown in Fig. 39.

Comparison of the plasma decay illustrated in Fig. 39 to case C
illustrated in Fig. 9 shows that the population densities are spread out
more for case CK than for case C. For example, the 23S level has
a QSS ordinate of 4. 9 for case CK and only 2.7 for case C. This would
be expected since lower rate coefficients would physically mean poorer
collisional efficiency, and thus radiation will have a greater effect. An
interesting consequence of this is that the 21S density has a larger QSS
value for case CK than for case C while the 21 P level has the same QSS
density for both cases. Thus the CRR coefficient will have approximate-
ly the same value for both case CK and case C. Quantum level 3 states

10.0

E a1l K(p;q) Reduced by Half 3
o 16 3 2°s
n.=1.5x 10" 1/cn
- ° 14 3 1
- n, * 1.5 x 107" 1/cm J
- T = 10,000°K |
-]
33s )
§ .5 3% 3
n(p) [ als, alp.3lp )
n{Saha)
0.1
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1079 1078 10”7 1078 1073

Time (sec)

Figure 39. n(p)/n{Saha) versus time for quantum levels two and three, case CK.
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generally show lower densities for case CK than for case C, as one would
expect, with collisions being less important. The other quantum levels
below the critical level will also show slightly lower densities for case
CK than for case C. Those quantum levels above the critical level will
show the same densities for both cases. The critical level for case CK
with the 10 percent criterion was five; that for case C was four,

Figure 40 shows the ng/n (1) and a(t)/a(QSS) curves for case CK and
case C, This shows that case CK, with the collisional coefficients cut
in half, requires approximately twice as long to acquire QSS as does
case C. Further, the overshoot of case CK is larger than that of case C.

This is all because, with lower collisional coefficients, particularly
the 238 level must achieve a higher density at QSS, This causes the
larger -overshoot because the 2*P density is allowed to depopulate
further before collisional processes balance radiative processes.

A consequence of these observations is that the results for the
other cases studied will generally be conservative. If the Gryzinski
cross sections used in this study are too large, as anticipated, the true
times for the acquisition of the QSS will be larger.
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Boltzmann Dist.
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Figure 40. ne/n{1) and a{t}/a(QSS) versus time, case CK.
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6.6 ABSORPTION

Although absorption phenomena require precise knowledge of geo-
metry for explicit study, the effects can be accounted for by simply
reducing the appropriate Einstein transition probability. Thus, if the
blasma absorbs half of the radiation of a specific wavelength, this is
the same as if only half the radiation were emitted and this is described
by simply reducing the transition probability for the emission by 50
percent.

The effects of absorption were studied in this way for a plasma at
Te = 10,000°K, no = 1.5 x 1016 1/cm3, one percent ionization, and
an equilibrium distribution from the first excited state, the same initial
conditions as case C. Four plasmas were studied in which all radiative
transition probabilities from an elevated bound state to the ground state
were reduced. The plasmas were assumed optically thin to continuum
radiation, a minor constituent at these conditions. The identification
and amount of reduction for each case is given below:

Case C25: 25 percent.
Case C50: 50 percent.
Case CT75: 75 percent.
Case C100: 100 percent.

BwWw N~

Figure 41 summarizes the decay characteristics of these pPlasmas.
The ordinate is the ratio ne/n(l). With increasing reduction in tran-
sition probability the overshoot of QSS of both ne and n(1) increases
slightly through the 75 percent reduction. These plasmas all reach
QSS in very near the same times, again progressively longer with
increasing reduction. The trangition from the ‘75 percent to the 100
percent reduction shows a dramatic increase in the overshoot of the
ne/n{1) curve. The scale of Fig. 41 does not permit showing the point
at which ne/n(l) reaches its minimum, which is -30 att = 1 x 10-8
sec. Even with such an increase in the overshoot, however, the plasma
achieves QSS within five percent at t = 1.6 x 10~6 gec, just slightly
greater than the other conditions,

The sudden change in the neg/n (1) characteristic is easily explained
by observing the change in the transition probabilities. The spontan-
eous transition probability for the 21P - 11S transition for example is
1.8 x 109 1/sec. In going from optically thin to the 75 percent reduc-
tion, the transition probability is reduced to 4.5 x 108 or approximately
one order of magnitude. In going from the 75 percent to the 100 percent

91



AEDC-TR-76-5

CTTaprT 1 LR AL T T TTYTITIT T T T TTTTT 1 T TrrremT

C: No Absorption
C25: 25% Absorption
C50: 50% Absorption
C75: 175% Absorption

Cl00: 100% Absorption

=1.5x 10 l/cm3
ne = 1.5 x 101% 1/cn® -
T, = 10,000°K

n(l)

100

-2 4

[l L L i 1 1 L il 1lll 1 1 L1 111}k 1 ] 3 1 15111l 1 1 1 111
10~2 1078 1077 -6
Time (sec)

Figure 41. a(t)/a{QSS) versus time, cases C, C25, C50, C75, and C100.
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reduction, the probability is reduced to zero, or eight orders of magni-
tude, a much greater change. Hence, with absorption less that 100
percent, there will still be appreciable depopulatmn of the 21P 1evel
and then a subsequent increase in the 21P level as the metastable levels
increase in density. For case C100, however, the 21p level does not
have this mechanism to depopulate and hence there is no ground state
rate overshoot.

Nlustrated in Figs. 42, 43, 44, and 45 is the time development of
substates of quantum levels 2 and 3 for cases C25, C50, C75, and C100,
respectively, in the same manner that Fig. 9 illustrates case C. These
show the lessening 2lp depopulation w1th increasing absorption with the
somewhat dramatic development of no 2lp depopulation for case C100
in Fig. 45. The substates of quantum level 3 show an initial decrease in
density in Fig. 45 because of radiative transitions to substates of
quantum level 2, Another interesting observation is the gradual increase
of the 23S QSS density. This is because the 21p 1evel provides a pro-
gressively smaller sink to the various substates of quantum level 2,
Hence, collisional depopulation of the 2 3S level is smaller and the state
must reach a higher QSS density to balance radiative population with
collision depopulation.
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Figure 42. n(p)/n{Saha) versus time for quantum levels two and three, case C25.
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Figure 43. n{p)/n{Saha} versus time for quantum levels two and three, case C50.
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Figure 44. n(p)/n{Saha) versus time for quantum levels two and three, case C75.
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Figure 45. n{p}/n(Saha)} versus time for quantum levels two and three, case C100.

The overshoots of ﬁe/ﬁ(l) for case C, C25, C50, and C75 were
all due to overshoot of both ne and n(1). However, for case C100, the
overshoot is due entirely to overshoot of the continuum density. This
is because for case C100, the ground state rate is determined princi-
pally by super-elastic collisional populating from all the higher levels.
There is no way for these levels below the critical level to depopulate
rapidly to a density less than their QSS value and then to fill collision-
ally with the growth of the metastable level as in case C. Instead the
ground state rate follows the collisional rate from the upper levels as
they fill to their QSS value. The large value of the overshoot of case
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C100 is in part due to the value of the ground state rate which is an order
of magnitude less than the cases which allow some radiative transitions.
For those cases which allow at least some radiation to the ground state,
this radiative rate contributes to the ground state rate as well as even-
tually determining the electronic rate. For case C100, this radiation is
not allowed, so that the QSS rate is determined by collisions and for
these conditions is approximately one order of magnitude slower, Hence,
through the development of the QSS, the electronic rate is principally
determined by radiative transitions downward to the metastable levels.
This proceeds at a rapid pace until QSS is approached yielding an inordi-
nately high continuum rate. As the QSS is approached, the low-lying
levels become sufficiently populated radiatively that they collisionally
feed back to the continuum and slowly reduce its rate. The low levels
continue to fill and reduce the continuum rate until approaches the rate
with which the ground state is filling, which is significantly smaller than
when 1P transitions are allowed. Thus, the large overshoot of QSS for
case €100 is due to the comparatively low QSS rate,

The effect of partial absorption has little effect upon a (t)/a(QSS)
characteristics of the plasma showing the same general character as
the ng/ni (1) curves. Case C25 showed a rather significant overshoot,
as would be expected from the overshoot of the electronic rate. The QSS
values of the CRR coefficient for each of the cases C, C25, C50, C%75,
and C100 is given below.

Case C: @ = 2.16 x 10-12 cm3/sec
Case C25: a = 1.90 x 10-12 cm3/sec
Case C50;: o = 1.68 x 10:}3 cem3/see
Case C75: a = 1.43 x10 cm”/sec
Case C100: a = 1.01 x 10”13 cm3/sec

The effect of absorption thus has noticeable effects upon the decay
characteristics of an afterglow plasma. A consequence of these results
is that a plasma which is 100 percent absorbing to these transitions
will have an afterglow lasting more than 20 times as long as one which
is completely optically thin.

7.0 EFFECTS ON MEASUREMENTS

As has been demonstrated in the previous chapters, the QSS can
require physically significant times to be established. This was
particularly illustrated by cases CA, CB, CH, CI, and CJ. J
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The cases CH, CI, and CJ are perhaps the most meaningful of the
perturbation studies made since these examine changes in the electron
temperature which affects the entire distribution. Experimental after-
glow studies are invariably subjected to changes in the electron temper-
ature. The present studies have shown that if the plasma conditions
are such that the metastable levels are increasing in density, the
recombination rates based upon the electron density will be higher than
recombination rates based upon the excited state density distribution,
Further, it was shown that, depending upon the temperature gradient
and the amount of temperature change studied, the QSS might never be
reached even from a pragmatic standpoint.

Although there has been considerable investigation of helium recom-
bination, little of that reported contains sufficient detail to examine the
results critically with the ERE. Also, much of the reported work is at
high enough pressures that the molecular helium ion is present and must
be accounted for. An exception is the work of Johnson and Hinnov (Ref.
22) in which the excited state densities and electron densities are studied
as functions of time for low density (5 % 10-4 torr -1 x 10~3 torr) helium
plasma produced in the C-Stellerator. During the early time periods
of their studies the temperature gradient was quite steep, typically of
the order of -1 x 107°K/sec, but flattened to only about -2 x 104°K/sec
near the end of their studies.

The goal of their work wasto determine a semi-empirical formula
for collisional cross sections for helium that would reproduce experi-
mental observations so as to allow compa—ison of experimental and
theoretical predictions. Their technique was simply to use an assumed
cross section functional form with certain adjustable parameters for
the collisional transitions and then to use the QSS assumption to calcu-
late excited state densities and compare them to measured densities.
They include exchange collisional transitions between singlet and trip-
let states with the same principal quantum number and orbital angular
momentum for LL > 2 and also have introduced cross sections for
optically forbidden (AL # 1) transitions for '"some' of their calcula-
tions. This is in contrast to the present work which simply assumed
Gryzinski's form.of the exchange calculation for all transitions which
are optically forbidden, In either case these transitions are not partic-
ularly important except for those substates of quantum level 2,

Their work was successful in that they were able to obtain fairly

good agreement between measured and calculated population densities
at low electron temperatures (Tg < ~ 3,500°K). They make little
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reference to the higher temperature data except to note that it was
necessary to include the 235 - 215 collisional transition to obtain agree-
ment for the low-lying levels. They do not report any population densi-
ties below quantum level 3.

Although the bulk of their reported analysis is carried out on data
whose conditions lie below those which can be conveniently examined by
the present ERE program, they do report one set of data which can be
examined. The electron temperature versus time for that set of data
is shown in Fig. 46.

13,000 T T T T
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11,000 - -1
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Figure 46. Electron temperature versus time.
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In an effort to examine this work with the ERE solution, a QSS
distribution was obtained at an electron temperature of 7, 500°K.
to compare to their measurements at 7,543°K. They do not report the
accuracy of their population density measurements except through
reference to some earlier work (Ref. 52) which reports an accuracy of
within 20 percent for ''reasonably strong signals'' for the absolute
intensity measurements. Electron density measurements were estimat-
ed accurate within 15 percent. Considering the uncertainty in their
electron density measurements and since the states above the critical
level can be described by the Saha relation, which has quadratic electron
density dependence, there is an immediate uncertainty of 30 percent in.
comparing their results to the ERE. Table 10 shows the ratio of the
computed or measured population density to the corresponding density
which would be in Saha equilibrium with that state at 7,500°K,

Table 10. Ratio of Excited State Population Densities to Saha Equilibriu.n
Values for ERE Calculations and Measurements, n, = 2.5 x 1013
1/em3, T, = 7,500°K.

State n(p) /n(Saha) n(p) /n(Saha)
ERE measurementd
3'p 0.18 0.24
slp 0.18 0.26
33 0.50 0.42
3% 0.40 0.63
3% 0.40 0.46
als 0.72 1.00
alp 0.74 0.68
alp 0.74 0.92
a3s 0.83 1.15
4% 0.87 1.00
a3 0.87 1.04
slg 0.92 1.19
slp 0.93 1.30
sip 0.93 0.96
s3s 0.95 1.10
53 0.96 1.10
5% 0.96 1.05
6ls 0.97 0.87
6lp 0.94 1.05
élp 0.98 0.74
6%s 0.98 0.96
63p 0.99 0.92
6°p 0.99 0.87
olp 1.0 1.22
93p 1.0 1.22

3geasurements from Johnson and Hinnov (Ref. 22)
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Their data and the ERE calculations show good agreement for
quantum levels 5 and 6 if allowance is made for the uncertamtles in
the1r data and one ignores the occasional flyers such as the 51P and
61D levels. For these calculations the critical level with the 10 percent
criterion would be quantum level 5. Since their electron density was
used for both the calculations and measurements and the ratios for the
high levels show reasonable agreement, the electron density measure-
ment is satisfactorily accurate for these comparisons.

Comparison of the levels below the critical level show that in
general the measurements and calculations are st:ll within exper1men-
tal error with the exception of the 33P, 4l8S, 43 S, 5 S and 51P states.

Some interesting observations can be made about the distribution.
The ERE calculatmns show the results of very strong coupling between
the 1P and 1D states as well as the 3P and 5D states as evidenced by
their relationship to the free electron density. This is not necessarily
evident in the measurements except for the singlet states of quantum
level 3 and the triplet states of quantum levels, 4, 5, and 6. The
coupling is, however, evident within the experimental error for all the
levels. The calculations show a generally flatter distribution than do
the measurements, which may be indicative of an overestimation of
the cross sections by the Gryzinski technique. Although Johnson and
Hinnov refer to entrapment of resonance radiation being present, they
account for it in an approximate way and 1ts presence is not well indi-
cated by the measurements except for the 5} P and 61P levels If
resonance radiation entrapment were present, the 1P and 1D measure-
ments should show significantly higher relationships to the continuum
than the calculations, which assumed no absorption, but the converse
is true.

The above observations have been directed at the absolute densities
themselves which, because of uncertainties in both rate coefficients
and measurements, are quite difficult to use for reliable analysis of
plasma conditions. Of a somewhat more sensitive nature is an examina-
tion of recombination rates. Johnson and Hinnov also investigated this,
using the cross sectional forms they deduced from their measurements
for calculations assuming QSS and comparing to direct measurement
for the electron density rate. A characteristic of their results is a
lower recombination rate from calculation than from measurement for
the early periods of measurements.

One feature of early transitions already noted is that when the
lower-lying levels are increasing in density, as with a decaying electron
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temperature, the ground state rate will underestimate QSS conditions
while the electron density rate will overestimate the QSS condition. As

‘was shown earlier, the response of the system to changes in the electron
temperature is quite nonlinear with respect to the time scale of the
temperature gradient. The time to maintain QSS conditions for a
series of small temperature changes was significantly longer than when
the temperature change was made in one step.

To examine the possibility that the QSS had not been established
during the early states of the measurements of Ref. 22, three cal-
culations were performed. The first of them subjected the QSS dis-
tribution of case M reported above (ng = 2.69 x 1013 1/cm3) to a sudden
electron temperature drop of 2,500°K to 7,500°K. The second calcula-
tion involved suddenly dropping the electron temperature from 7, 500°K
to 7,000°K in one step for the QSS distribution reported in Table 10,

The third calculation dropped the electron temperature from 7, 500°K

to 7,000°K in 10°K increments with the plasma being allowed to come

to the QSS before each succeeding drop. The time for QSS to be estab-
lished at the terminal conditions for each of the above calculations

was: 8 x 1076 sec (AT = 2,500°K, one step), 7 x 1078 sec (AT =500°K,
one step), and 1.4 x 1072 sec (AT = 500°K, 50 steps). From Fig. 46,
page 173, the experimental temperature gradient for this period was
about -2.1 x 107 °K/sec. Thus, it required 2.4 x 1072 sec for the
electron temperature to decay from 7, 500°K to 7,000°K in the experi-
ment,

The obvious non-linearity of the response of the ERE to tempera-
ture changes, the close proximity of the time calculated with the 10°K
increments compared to the experimental times, and the qualitative
agreement of the predictions of this study with their results for the
early afterglow makes it inescapable that the QSS had not been establish~
ed during the early portions of their work. Further, their observed
discrepancies between the measured and computed recombination rates
are in direct qualitative agreement with the predictions of this study.

To be more quantitative will require development of an ERE computer
program with a continuously variable electron temperature,

Since the data (Ref. 22) used to obtain cross sections were taken at
a later time in the afterglow when the electron temperature was lower
and the gradient smaller, their work will probably give adequate pre-
dictions for most cross sections. The ERE should be used for at
least the early portion of their studies. This will affect their reported
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_results for the 238 - 21S cross section which were obtained in the
early portion of their studies with the QSS approximation.

8.0 SUMMARY

The system of rate equations describing the transient behavior of
a singly ionized, optically thin, monatomic helium plasma has been
solved numerically for various plasma conditions.

The objectives of this study, as outlined in Section 1, 2, were
achieved by studying the early decay characteristics of plasmas which
were initially in a Boltzmann distribution for all excited states and
also by examining the time to reacquire the QSS following an instan-
taneous perturbation of plasma parameters. To the author's know-
ledge, this is the first study of these early plasma decay characteris-
tics or of the perturbational effects upon the plasma which includes the
transient coupling between the various energy states.

8.1 NUMERICAL VALIDITY

Because these studies necessarily involve very short time periods
which are generally beyond experimental technique, the validity of the
solution was examined by comparing the collisional-radiative recombi-
nation coefficients determined after the transient solution had developed
to the QSS with the calculations of Chen (Ref, 21), who determined recom-
bination coefficients based upon assuming QSS conditions, These com-
parisons (Table 3) showed favorable agreement, Stability of the calcu-

lations, an important consideration in investigations of this type, were
examined under two criteria on the time increment allowed for the

calculation. The solution was found to adequately reproduce itself under
the two criteria, Hence, it is concluded that the numerical results
presented herein do represent physical processes to the limit of the
accuracy of the parameters used in the calculation.

8.2 PURE AFTERGLOWS

The study of the pure afterglows, in which the plasma relaxes from
an initial LTE distribution, given in detail in Section 5.0, provided a
response to the specific objectives outlined in Section 1,2. These may
be summarized as follows:
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1. There is no single common mechanism by which the
QSS is established. However, the establishment of
the QSS is principally controlled by the time-depen -
dent characteristic of the 23S density and its effects
on the densities of the several adjacent quantum levels.

2. Generally, the results of CRR theory can be applied
to helium plasmas before the QSS condition for ex-
cited atomic state densities is in fact reached. This
is becaused the continuum rate is largely determined
by recombination into the high-lying quantum levels
and the QSS configuration is established rapidly for
these. The ground state rate, however, is largely
determined by the low-lying quantum levels and the
QSS distribution for these requires a comparatively
appreciable time to be established.

3. The time required for the QSS to be established varied
with the plasma conditions, being shortest for those
plasmas which were strongly collision dominated and
surprisingly long for those which were least collision
dominated. A summary of these times for each plasma
to achieve the QSS as well as the time at which CRR
could be applied to the electron density decay is listed
in Table 11,

4. The processes by which plasmas decay are indeed
complex and subtle. The study ot the ERE solutions
has illustrated this because of the ability to examine
each individual process singly as well as its coupling
effects with other mechanisms in the plasma decay.
Very rarely in low density helium plasmas such as
were studied here can one mechanism (e.g., 23S -21lp
collisional transfers) be singled out as a dominant
feature of the decay but rather, the total coupled fea-
tures of the decay must be considered in the transient
mode. Steady-state theories largely mask the inter-
play between the various states and cannot account for
such phenomena as, say, the momentary radiative
overdepopulation of the 21P density and then the sub-
sequent rise in the 21P density via 23S - 21p, 233 -
23p - 21p, 235 - 215 - 21P, etc. collisional transfers.
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Table 11. Summary of Plasma Conditions, Time to Acquire Quasi-Steady
State, and Time at Which Collisional-Radiative Recombination
Theory Applies to Free Electron Density

Case Te ng ng Time (QSS) Time (CRR)

°K l/cm3 l/cm3 sec sec
A 0t 163t 1.631° 2,078 1.878
B 1.0%  4.40%® 4,40 7.078 2,078
c 1.0 1.50%® 1.5014 8.077 3,077
b 1.0% .59 6.5913 1.37° 1.278
e 1.0% .00 5,0012 3.17° 5.07°
P 1.0 1.50%% 1.5012 1.274 6.578
¢ 1.0% 5.00%3 5,001t 3,574 2.277
B 1.4%  1.637 1.63%° 2,779 1.77°
1 1.4% 1.50%® 1.50%4 2,077 2,077
J 4% 5,00 5.00%2 1.87° 1.07°
K 44 5,001 5,000t 2.174 1.074
L 1.0%  2.69%7 5.3814 3.078 2.57°
M 0% 2,691 2.6913 4.376 3.07°
N 0% 2,690 2.6912 6.07° 6.07°
0 0 2,601 2.69%1 6.674 2,577
P 8.0° 1.50%0 1.50%4 6.677 3,077
Q .03 15016 1.50t4 1.278 3.078

In addition to the listing above, the pure afterglow studies showed
an additional unexpected phenomena.
plasma decay would overshoot QSS conditions and then return to the QSS
at a later time. It was found that this phenomena was physical rather
than artificial. The study of overshoot can be summarized thus:

This was overshoot, in which the

1. Plasmas which are strongly collision dominated at
their initial conditions will not show overshoot of the

QSS.

2. Plasmas whose initial conditions are such that there is
no clearcut domination of radiation or collisions show
the strongest continuum rate overshoot.

3. As excitation temperature increases in the range 8,000°K
< Tg < 14, 000°K, overshoot of the continuum rate becomes
progressively greater because of improved collisional

efficiency.
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4. For lower electron temperatures T, < 8,000°K, overshoot
becomes progressively less, and there is no overshoot
of the continuum rate at T, = 6,000°K because of poor
collisional efficiency.

5. The ground state rate shows generally greater over-
shoot as the collision dominance decreases although
there are inconsistencies in this behavior for increas-
ing electron temperature.

The plasma conditions and the magnitude of overshoot encountered
in this study were summarized in Table 7.

8.3 PERTURBATIONS

The perturbational studies, Section 6.0, in which the plasma relax-
es after a perturbation of some plasma parameter, reinforced the con-
clusions drawn from the pure afterglow studies. They additionally
indicated that an environment supporting a transient electron tempera-
ture could have a significant effect upon the QSS. The findings of the
perturbational studies may be summarized as follows:

1. Parametric changes affecting the entire distribution
require significantly longer times to achieve the QSS
than if the perturbation affects the density of just one
quantum level.

2. Perturbations of the density of a single quantum level
will induce a ripple effect through the rest of the distri-
bution because of the transient coupling to the density
of the selected level.

3. Errors in the rate coefficients will have noticeable
effects upon the transient decay of the plasma. There
can be an appreciable effect upon the QSS distribution
of densities for those levels below the critical level
but no discernible effect upon the densities of levels
above the critical level. The location of the critical
level can be affected. It was estimated that the rate
coefficients used in this study were too large; hence,
the times calculated in this study will be short when
compared to the physical situation.
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4, The mathematical and thus the physical system show
a strong non-linear response to changes in the electron
temperature. The effects of a continuously changing
electron temperature were approximated by a series
of step function changes. For a series of small changes
of electron temperature the plasma required appreci-
ably longer times to reacquire QSS than for a single
step with the same total change. The studies led to
the observation that in an environment with a continuous-
ly changing temperature the QSS may never be reached.

5. Absorption of resonance radiation has a calculable
but not significant effect on the times to achieve the
QSS. Absorption of resonance radiation can have
effects on the QSS density distribution, causing the
1P and the adjacent states to maintain higher popula-
tion densities.

8.4 EFFECTS ON MEASUREMENTS

The studies of the various plasma conditions indicated that when
the conditions were such that the metastable states are increasing in
density, the recombination rates based upon the electron density will
be significantly higher than recombination rates based upon population
densities. This predicted effect was observed in data published by
Johnson and Hinnov (Ref. 22). In calculations with the ERE at their
conditions a QSS distribution was established which agreed with their
measurements, within experimental error. Their work was subjected
to severe temperature gradients and because of the qualitative agree-
ment of their results with the findings of this work, it is believed
that they did not have QSS conditions, at least in the early stages of the
decay.

The findings of this study have shown that the concept of the plasma
passing from one QSS to another QSS as the plasma decays is not as
"almost instantaneous'' as is usually assumed. However, the results
of CRR theory can generally be applied to electron recombination rates
without the QSS being physically necessary. In studies in which plasma
parameters are changing rapidly, great care must be exercised in
relating density measurements of quantum states below the critical
level to the electronic recombination rate via the QSS assumption. This
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will be particularly true in apparata in which severe electron temperature
gradients are present or when there are short time scales present.

8.5 CONCLUDING REMARKS

The study has provided detailed information and insight into plasma
decays and the mechanisms by which the nonequilibrium eigenstate
population density distribution function is established. These mechanisms
have important fundamental implications for future work in plasma
decays and their effects cannot be fully assessed without a transient solu-
tion to the ERE.

Several implications for future applications beyond the original
intent of the work may also be drawn. Under proper experimental con-
ditions and with an analytic approach similiar to that used here, a very
critical detailed examination of rate coefficients may be made. This
work would not have to necessarily be restricted to plasmas but the
approach is applicable to other chemical processes. The ripple effect,
discovered in the calculations concerned with perturbations of a specific
energy level, suggest mechanisms by which specific rate coefficients
may be determined through a selective absorption experiment. Another
application which suggests itself is the study of the processes involved
in population inversions with a view toward prediction of possible last-
ing transitions.

Of a more immediate nature, the approach of this study should be
put to a critical test for comparison of calculations and experiment,
Because physical plasmas are generally characterized by a spatial
density variation and invariably by electron temperature variations,
the work reported here must be considered as a first approximation to
actual physical processes, and correct modeling will need to account
for the effects of these additional transient phenomena. The need to
consider continuous variations in density and electron temperature as-
sumes added importance in light of the observations of the effects of
step function electron temperature changes and the physically significant
times for the QSS to be established. The development of these capabili-
ties and completion of the critical evaluation will provide a basis for
extension to more complex species, such as diatomic molecules, so
that the internal energy distribution function development in the non-
equilibrium environment may be studied.
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APPENDIX A
NUMERICAL TECHNIQUES

1. RATE COEFFICIENTS

The rate coefficient integrations indicated in Section 3.0 were per-
formed using 32-point Laguerre-Gauss quadrature. Quadrature tech-
niques are described in most numerical analysis books (Ref. 53, for
example) and derivation will not be given here, The basis of the tech-
nique is to use a weighting function so that

b
fw(x)f(x)dx =

a

w(xi)f(xi) (A-1)

I~

i=1

where w(x) is the weighting function and w(xj) is the value of the weight-
ing coefficient at the point x;.

It turns out that if a weighting function

wix) = e % (A-2)

is used, the weighting coefficients are a function of the Laguerre polyno-
mials (Ref. 53)

(n!)2 X,
wix;) = — (A-3)
[Ln+l(xi)]

where the x; are the roots of the nth Laguere polynomial.

Further, use of Laguerre-Gauss quadrature is valid on the interval
(0, ©), The integrations in Section 3.0 do not extend to ©, but the lower
limit is one. Compatability with the interval (0, ©) is accomplished by
a simple transformation of coordinate.

Various quadrature techniques are generally part of the library in
numerical analysis laboratories. The particular one used here was
generated by K. R. Kneile, Analyst, Central Data Processing, Arnold
Engineering Development Center (AEDC), and is in subroutine form for
ease of use. The 32 abcissas and the values of the weighting coefficients
are given in Table A-1,
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Table A-1. Abscissa and Weighting Coefficients for 32-Point Laguerre-Gauss Quadrature

i X, w(xi) i X, wix,)

1 0.04448936583326702 0.1141871057681048 17 22.63088901319677 2,884392092922042
2 0.2345261095196185 0.2660652168976152 18 25.62863602245925 3.113261327039586
3 0.5768846293018864 0.4187931373248530 19 28.86210181632347 3.356217692595803
4 1.072448753817818 0.5725328464998047 20 32.34662915396474 3.615869856484269
5 1.722408776444645 0.7276487883809713 21 36.10049480575197 3.895513044948550
6 2.528336706425795 0.8845367193402497 22 40.14571977153944 4.199394104711585
7 3.492213273021994 1.043618875892077 23 44,50920799575494 4.533114978534362
8 4.616456769749767 1.205349274152353 24 49.22439498730864 4.904270287611245
9 5.903958504174244 1.370221338521781 25 54.33372133339691 5.323500972023666
10 7.358126733186241 1.538777256468645 26 59.,89250916213402 5.806333214233621
11 8.982940924212596 1.711619352686457 27 65.97537728793505 6.376614674159653
12 10.78301863253997 1.889424063449484 28 72.6876280906627 7.073526580707242
13 12.76369798674273 2.072959340246534 29 80.18744697791352 7.967693509295901
14 14.93113975552256 2.263106633996964 30 88.73534041789240 9.205040331278190
15 17.29245433671531 2.460889072488236 31 98.82954286828397 11.16301309076787
16 19.85586094033605 2.667508126397117 32 111.7513980979377 15.39018041526064

2. TRANSIENT ERE

The numerical technique used to effect the solution to the ERE was
the modified Euler's method. This technique has enjoyed some success
in solution of reacting flow problems at AEDC and, because of the simi-
larity in the mathematical systems, the use of the technique was sugges-
ted.

To describe the application of the method to the problem at hand,
it is convenient to attack the problem in more general form. Thus,
the various quantities will be described in functional form and as
independent or dependent variables rather than closely tied to physical
interpretation, The system of Eas. (7) and (8) can thus be written

= £(y) (A-4)

%<

where the single bar denotes a vectoral quantity, y is the dependent
variable, x is the independent variable, and £(y) is the functional form of
the ERE.

The modified Euler's method proceeds straightforwardly from dif-
ference formula considerations and is written

- Ax

Vi1 = Y3 T oo LE(y)) + £(yy,)] (A-5)
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where the subscript i denotes some point, xj, at which the solution is
known, i+ 1 the next point, x;4+1, at which the solution is desired, and
Ax is the difference in the points, xX;4; - X;. This is obviously an im-
plicit method since a function of the unknown solution, ¥;+1, resides on
the right-hand side of Eq., (A-5).

The £(y;;{) in Eq. (A-5) can be approximated by expanding f(y) in
Taylor's Series in terms of the solution and keeping the first two terms,

f(y) = f({rO) + f! (170) (y - §O) (A-86)

where f' (§,) is the Jacobian

_ SE(V
£'(y,) = (—%}’i) (A-17)
l - - .
Yy = Y,
Thus, £(F;+1) can be written
Defining the constant matrices
A= f(yi) - £! (-Yi) Y; (A-9)
and
B =f'(y,) (A-10)
f(§1+1) is written
f(yi+l) = A+ By, (A-11)

Note that with the definitions of A and B, f(yi) can be written in the same
manner: '

f(y,) = A + By, (A-12)
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Substituting Eqs. (A-12) and (A-11) into Eq. (A-5) and solving for Vit
one has
Ax

Yigp = -3 B

1 Ax

[§7i + 3= (2A + B y,)] (A-13)

where I is the unit matrix. Thus, the unknown solution, ¥j+1, is known
as a function of the solution of the previous point, y;, and the indepen-

dent variable increment, Ax. The B matrix is readily evaluated analy-
tically if the function £(y) is known, as it is in this case,

Relatively simple considerations of the approximations involved in
establishing Eq. (A-13) yield a relationship between the approximate
error and Ax and has been worked out by Mr. F. C. Loper, of AEDC,
The error associated with expressing ¥i+; in the manner of Eq. (A-5)
is of order Ax3. The error associated with expressing £(¥) in the man-
ner of Eq. (A-8) is of order (¥i+1 - ,71)2' which is of order Ax2. This
error in f(y,, ;) substituted into Eq. (A-5) shows the subsequent error
in ;41 because of the local linearization of £(y;+1) is thus also of order
Ax3, Hence, the error in Yi+1 is of order Ax? and the error can be
written

3
E, = g, Ax (A-14)
i+l T T4l OF
where g;4; is some unknown function. Relating this to the error in
y; and solving for Ax;4]1 yields

1/3
9i Bia
9i+1 B3

Ax

Assuming the g function does not vary rapidly, g;41 =~ gji; then

1/3

E.
n i+l
Ax; 41 v A%y E,

(A-16)

So, with a desired accuracy in ¥i+1 and a known accuracy in ¥j, which
can be evaluated from

E, 853y - [yy1 + 55 (E@y ) + £GN)] (A-17)
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where f(yi) is evaluated exactly, a Ax ;41 yielding the approximate
accuracy can be obtained. It should be noted that E; in Eq. (A-17) is in
fact a vector. In practice, one uses the largest element of E; from Eq.
(A-17) for the estimation of Axjyq in Eq. (A-16).

The identification of the elements of the y with the population densi-
ties n(p), x with time, and £(y) with the right-hand side of Eqs, (7) and (8)
in Section 2.0 complete the description of the technique in terms of the
physical parameters.
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