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inertia matrix 

elements of the inertia matrix 

damping coefficient for the hinges 

elements of the stiffness matrix 

spring stiffness in hinges 

denominator in reduced frequency expression 

divergence region 

flutter boundary 

m' g«7c 

acceleration of gravity 

stiffness of horizontal springs 

length of a bar in the double pendulum 

concentrated masses 

a mass parameter 

positive integer 

numerator in reduced frequency expression 

magnitude of the applied circulatory force 

coefficients in equation (29), j = 1 ,2,3,4 

PA/C 

critical flutter loads in the presence of arbitrary and 
very slight damping, respectively 

critical loads of divergence of the first and second 
types, respectively 

difference of critical loads 
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time 
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<J>1 ,<J>2 

constants of integration 

tangency coefficient 

characteristic determinants, j = 1 ,2,3 

b/oc, dimensionless damping parameter 

k.£2/c,    1=1,2 

characteristic exponent 

real and imaginary parts, respectively, of X 

a dimensionless mass parameter 

(m'ji2/c)1/2 

dimensionless time 

angles specifying the configuration of the double 
pendulurn 

(ij 1 (N /DT)1/2. 
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INTRODUCTION 

The differential equations of motion of a non-dissipative, 

non-gyroscopic system whose configuration is specified by N 

generalized coordinates q, ,q£,* • • ,qN are generally of the form 

N 
I  (Amn^n + Cmn^) = °»     m,n = l ,2 , • • • ,N , 

n = l 
(1) 

"2 ? where qn = d q /dt  and Amn and C  denote respectively the elements 

of the inertia and stiffness matrices for the system.  Upon per- 

formance of equivalent operations such as multiplying the individual 

equations of motion by constants and adding the resulting equations 

to one another, the form of the set of equations in (1) can be 

modified.  Ku  calls the system in (1) a purely dynamic system if 

the number of second order differential equations in (1) remains 

unchanged under the application of any sequence of equivalent 

operations.  If, however, apposite equivalent operations degenerate 

one or more of the second order differential equations into purely 

algebraic equations, Ku calls such a system a quasi-dynamic system. 

Indeed, if the matrix A=(Amn) is non-singular, the system is purely 

dynamic, whereas if det (A) = 0, then the system is quasi-dynamic. 

In subsequent investigations, Ku2»^»^ determined that a quasi- 

dynamic system consisting of a double pendulum composed of two 

elastically hinged weightless, rigid bars carrying only a single 

concentrated mass and subjected to a tangential force applied at 

its free end could lose stability only by divergence.   Furthermore, 

In the present investigation the term "divergence" means that 
characteristic displacements of the system grow monotonically and 
exponentially with time. 



he showed that the onset of divergence for this particular quasi- 

dynamic system is characterized by its sole natural frequency of 

vibration becoming infinite.  But, as will be demonstrated herein, 

these observations shed light on only one aspect of the possible 

stability behavior that quasi-dynamic systems are capable of 

exhibiting.  In the present study, Ku's applied tangential force 

is replaced by a force whose orientation 1s specified by a cer- 

tain tangency coefficient.  It will be demonstrated here that 

such a system can become unstable only through divergence with 

the onset of instability being signaled either by the vanishing 

of the frequency or by the frequency becoming infinite.  In 

addition, it will be shown that stability maps for a quasi-dynamic 

system often possess multiple regions of stability and divergence. 

It is also of interest to investigate the influence of damping 

on the stability of discrete systems that have singular inertia 

matrices.  For lack of more suitable terminology, the term "quasi- 

dynamic", which was applied originally only to non-dissipative 

systems, will be retained throughout the present discussion, where 

it will be understood that any non-gyroscopic system for which 

det(A)=0 may be called quasi-dynamic independent of the presence 

or absence of damping that is linearly proportional to velocity. 

The results reported here for the non-conservatively loaded double 

pendulum having a singular inertia matrix and viscoelastically 

hinged joints indicate, as one should expect, that internal damping 

has no effect whatsoever on the value of the critical load of 

divergence, whose onset is characterized by a vanishing frequency. 

In marked contrast, however, it will be shown that, for certain 

values of the tangency coefficient, the damped system loses 



stability by flutter, whereas its non-dissipative counterpart 

becomes unstable by a form of divergence whose onset 1s 

characterized by a frequency becoming infinite.  Furthermore, 

for arbitrarily small, positive internal damping, the value 

of the critical flutter load 1s observed to be less than the 

value of the critical divergence load for the corresponding 

undamped quasi-dynamic system. 

EQUATIONS OF MOTION 

The double pendulum depicted in Figure 1 consists of two 

rigid, weightless bars of length a.     A concentrated mass n^ 

is attached to the upper bar at the point B, and the weight 

n^g of this mass, where g denotes the acceleration of gravity, 

acts vertically downward.  Frequently, in studies of the 

stability of a double pendulum subjected to a non-conservative 

force, a second mass m-| is affixed to the lower bar, often at 

the point B.  In this study, however, it will be assumed that 

m,=0, which implies immediately that the inertia matrix of the 

system will be singular.  Thus, the system will herein be 

called quasi-dynamic.  At the joints Oand A, the double 

pendulum has viscoelastic hinges that exert linear restoring 

moments ccj^+b^ and c(4>?-<f>-| ) + b(<L-<f>-| ), where c, b>0 are a 

stiffness coefficient and an internal damping coefficient, 

respectively.  The system's configuration is specified by the 

(assumed small) angles $-\   and <j>2 formed between the vertical 

and each of the bars.  The points A and B are supported by 

horizontal linear springs of stiffness k-j and k^, while a 



compressive force P oriented at an angle OK}^ relative to the 

vertical, where a  denotes the tangency coefficient, 1s applied 

at the end B. 

The equations of motion for this system may be shown to be 

i2£
2<t>, + 2b 4> + (2c-PJl+k «,2+k £2-m2g£)({)1 + m2£

2$, 

- b $9 - (c-k_Ji2-aPJl)<}>9 = 0, (2) 

m2t
2$1 - b ^ - (c-k2£

2)<j)1 + n^jt2^ + b $2 + [c - 

- PJl(l-a) + k2£
2-m2g£]<t>2 = 0, (3) 

where <L=d<f>,/dt, etc.  To facilitate the analysis of these 

equations, it is expedient to render them in dimensionless 

form.  Defining m2=y2m', Q=P£/c, K. = kj£2/c, G=m'g£/c, n.=b/ac, 

and t=ax, where j = l,2 and a  =m'Jl2/c, one finds that (2) and 

(3) become 

y^-j   +   2TI   <j>-|   +   (2-Q + K-|+ic2-y2G)(j)1   +   y2<J>2   -   n   <}>2   - 

-   (l-aQ-K2)<j>2   =   0, (4) 

y2*i  " n }-|  -  (l-K2)*I  
+ v24>2 + n 4>2 + 

+   [1+Q(a-1)   +   <2   -   y2G]<j>2   -   0, (5) 

where now 4>-i =d 4>-i / dx etc.  The elements of the inertia matrix A 

associated with (4) and (5) are, clearly, Amn=y2 for m,n=l,2. 

Hence, fa  is singular. 



THE NON-DISSIPATIVE SYSTEM 

If no damping is present in the hinges, then ni=n.2 = 0 and 

(4) and (5) reduce to 

y2<})1 + (2-Q+K1+K2-y2G)((.1 + y2$2 - (1 -otQ-K2)4>2 
= °»  <6) 

y201-(l-K2)<()i+y2^2 + [l+Q(a-l ) + <2-y2G]<j>2   =   0 (7) 

If   (7)   1s  subtracted  from   (6),   one  finds  that  the   inertia  terms 

y2<j>1   and  y2<£2  cancel   and   that  a   purely  algebraic   relationship, 

namely, 

(J»2 = (3 + K1-y2G-Q)4)1/(2-y2G-Q) (8) 

1 
exists between <J>-| and <J>2-  Ku  calls a relationship of the type 

in (8) an internal constraint. 

Inserting (8) into either of the differential equations in 

(6) or (7), one obtains the following reduced equation of motion 

for the quasi-dynamical system: 

where 

<K  + W-|<}>-|  • 0, (9) 

with 

ID: VDI (10) 

0-a)Q2 - [(l-a)(3 + <1-y2G) - y2G + 2<2]Q + 

+ 1 + K1 + K2^5+Kl)-y2G(3+K1+2<2) + (y2G)' 

(11) 



and 

i.j = y2(5 + K1-2y2G-2Q) (12) 

It is obvious from (9) that the motion of the system is characterized 

by a single natural frequency w-j . Consequently, the occurrence of 

flutter, which ensues upon the coalescence of two natural frequencies 

when the loading conditions are suitable, is impossible in the quasi- 

dynamic system considered here even if Its purely dynamic counterpart 

is flutter prone for a given circulatory force. Therefore, the state 

of stability of the given quasi-dynamic system can now be determined 

from the algebraic sign of u>|. 

If co?>0, it is evident from (9) that the motion of the system is 

stable since it consists of a bounded simple harmonic oscillation. 

2 
On the other hand, if w-|<0, the motion grows exponentially in time; 

hence the system is unstable through divergence.  In view of (10), 

it can now be stated the given quasi-dynamic system will be stable 

whenever N-| and D-j have the same algebraic sign and unstable by 

divergence whenever N-j and D-j have opposite signs.  The boundaries 

of the regions of stability and instability in stability map can be 

obtained from the conditions 

Nl = Dl (13) 

For certain combinations of parameters, however, it happens that N-j 

cannot vanish. In such cases, the stability boundary is determined 

from only one of the conditions in (13), namely, 

'1 0. 

6 

(14) 



If D^ is persistent in sign while N-i changes sign as Q is 

increased, the system becomes unstable by divergence and the 

critical divergence load may be computed from the condition 

of vanishing frequency, i.e., u)f- = 0, which implies that N,=0. 

Instability whose onset is characterized by the vanishing of 

u>$  will be called here divergence of the first type.  It may 

also be remarked that a rather unusual feature of the present 

quasi-dynamic system is that its motion can become divergent 

even though to;" does not vanish when the sign of OJ| is changed 

from positive to negative as the value of the load parameter 

Q is increased up to and beyond its critical value.  Specifically, 

suppose that, for a given value of Q, both N. and D-| are positive. 

If, upon increasing Q, N, remains positive while D, becomes 

negative, then H-,   and D, have opposite signs.  Thus, the 

motion of the system must be divergent.  Clearly, the value 

of w? does not vanish at the onset of instability, but it does 

become infinite.  This phenomenon is termed di vergence of the 

second type.  If both N-. and D-j vanish for some value of Q, 

then the value of to? must be obtained with the aid of 

L'Hospital's rule.  In references [2]-[4], Ku discussed only 

divergence of the second type since the system that he studied 

was subjected to a tangential force which cannot produce 

divergence of the first type. 



SPECIAL CASES OF THE NON-DISSIPATIVE SYSTEM 

The following special systems will be considered in some detail: 

(a) G=<i=K2=°t the effect of weight 1s Ignored and the two horizontal 

springs are absent; (b) K..=K2 = 0, the effect of weight is retained but 

the horizontal springs are absent; (c) G = K-I=0, the spring at B In 

Figure 1 is included in the system but the effect of weight 1s ignored 

and the spring at A 1s absent; (d) G=K =0, the spring at A 1s present 

in the system, whereas the effect of weight is Ignored and the spring 

at B is absent. 

For Case a, (11) and (12) become 

N1 = (l-a)Q2 - 3(l-a)Q + 1, (15) 

D, = U2
(5-2Q) (16) 

so  that   (10)   can  be  expressed  as 

w2  =   CO-cOQ2  -   3(l-a)Q+l]/y2(5-2Q) (17) 

Let Q.  and Q0  denote the critical loads of divergence of the 
el     e2 

first and second types, respectively.  Then, to determine the 

stability boundaries, the conditions 1n (13) in conjunction with 

(15) and (16) yield 

2 
!1 cl 

and 

(l-cOQe;   3(l-a)Qe  +1=0, (18) 

5/2, (19) 



Equation (18) was first studied by Herrmann and Bungay , and (19) 

was obtained 1n references [2]-[4] 1n the special case of a=l. 

To Identify the regions of stability and Instability for the 

given system, one need only examine the elgencurves obtained from 

(17).  Representative eigencurves prepared with y2=1 (with no loss 

of generality are shown in Figure 2 for four values of the tangency 

coefficient a.  These elgencurves consist of two branches which 

asymptotically approach the horizontal line Q= 5/2 as wj-->-+«>.  For a 

given value of a, these elgencurves reveal the possibility of 

multiple Intervals of stability and instability relative to the load 

parameter Q.  The case of a=l/5 1s exceptional, however, because (17) 

assumes the rather simple form u>? = —(1-2Q).  Hence, it 1s clear that 

2 
oj-j decreases linearly in Q and the system loses stability by divergence 

of the first type at Q-l/2.  A stability map 1n the Qa-plane that is 

obtained from (18) and (19) appears 1n Figure 3.  The various stable 

regions (SR) and divergence regions (DR) have been identified with 

the aid of the elgencurves shown 1n Figure 2. 

As a second example, consider the double pendulum in a gravity 

field (G4o), case b.  In the discussion that follows, both positive 

and negative values of G, referring to either a vertically upright 

and a vertically hanging double pendulum, respectively, will be 

considered.  Under the assumptions that <•• = <2 = 0 and y2 
= 1 » 

(11)-(13) yield 

0-a)Q * - [(1-ct)(3-G)-G](L  + 1 - 3G + G2 = 0,  (20) 
el el 

Qe  " T (5-2G), e2   2 
(21) 



the latter being a straight line having a slope of -1 1n the 

QG-plane.  When a=l, (20) leads to 

1 
- (1-3G + G2)/G, (22) 

In Figure 4, stability maps in the QG-plane, as obtained 

from (20) - (22) are presented for ct=0, 3/4, and 1.  In Figure 

4a, all the stability boundaries are parallel straight lines, 

namely, that given 1n (21) as well as Q = - (3 + /5~ - 2G), 

which are obtained from (20) when a=0.  Upon examining the 

appropriate eigencurves for the given system, one can conclude 

that the stability maps shown 1n Figure 4 possess multiple 

regions of stability and divergence, whose boundaries depend 

strongly upon the weight parameter G and the tangency 

coefficient a. 

For a non-conservatively loaded double pendulum whose 

motion (case c) is constrained  by the presence of a horizontal 

linear restoring spring acting at its upper end B, as depicted 

in Figure 1, the stability boundaries are derivable from 

2 
(l-a)Q, 

l 
[3(l-a) + 2K„]QQ  + 1 + 5K? = 0, 

2J^e 1 
(23) 

Qp  = 5/2. (24) 

Equation (23) was previously given by Sundararajan , and (24) is 

identical to (19) which was obtained for the system in which the 

end support was absent.  The stability boundaries found from (23) 

(24) are plotted in Figure 5 for ot=0, 1/4, 1, and 3/2.  It is 

evident that the forms of these curves are very significantly 

10 



influenced by the values of the elastic constraint parameter <2 

and the tangency coefficient a. 

In the case just described, the stability boundary obtained 

from (24) 1s merely a horizontal straight line which 1s Independent 

of K .  By contrast, 1f the spring 1s removed from the end B (see 

Figure 1) and 1s instead attached horizontally at the hinge A 1n 

the double pendulum, (11)-(13) yield, for case d, 

2 
(l-o)Q   - (l-a)(3 + K )Q   + 1 + <, 

el 1  el        ' 
0, (25) 

and 

Q  = - (5+K. ). we0  2    1 •2       2 

It should be noted that when a=l, (10) becomes 

(26) 

to* = (l+K1)/y2(5+K1-2Q) 

Consequently, in the case of a tangential force, stability 1s 

lost only through divergence of the second type with the 

critical divergence load being obtainable from (24). 

The stability boundaries obtained from (25) and (26) have 

been plotted in the stability maps 1n Figure 6 for five values 

of a, where multiple regions of stability and divergence, whose 

extents depend strongly upon a, are shown.  The secondary (upper) 

stability regions appearing 1n Figure 6 change their character in 

the sense of separating from each other as the value of a is 

increased through and beyond ct=l/2.  Indeed, for ot=l/2, (25) 

assumes the form 

Qe,   (3+K-|)Qe, + 2(1+*,) = 0, 

11 

el   "  '^el 



whence 

\  (3+Kl + |.cr1|) (27) 

Selecting the negative sign in (27), one finds 

1+<1     If   0<<i:<l, 

if   l<<r 

whereas, upon choosing the positive sign, 

if   0^ <1, 

1+K 1 if 1 <K-| 

Therefore, these two expressions lead, in essence, to a pair of 

intersecting straight lines, as shown in Figure 6c, which form 

the boundaries of the secondary region of stability. 

THE DISSIPATIVE SYSTEM 

A solution of the set of homogeneous equations (4) and (5), 

in which the damping terms have been retained, will be sought 

in the form 

<j,n(x) = Xne
Xx,     n = l,2, (28) 

where the X 's are constants and the characteristic exponent A is, n 

in general, a complex number, i.e., A=X^+1A j, where i = (-l) 1/2 

12 



Substitution of (28) Into (4) and (5) leads to a set of linear 

homogeneous equations from which 1s derived 1n the familiar 

manner the frequency equation 

P]X
3 + p2X

2 + p X + p4 0, (29) 

where 

p = 5y2n, p2 = \i2{5+K-[-2\i2Gi-2Q)   + n' 

p  = n[2+K1+5K2-3y2G+3Q(a-l)] (30) 

p4 = 1 + <1 + 5K2 
+ <-\<z   "   y2

G^3 + <l+2K2^ + (y26'  + 

+ Q[(3+<1)(a-l)-2K2 + (2-a)y2G] + Q2(l-a). 

In view of the form of equation (28), 1t is clear that the 

motion of the system will be stable 1f all three values of X 

obtained from (29) are such that XR<0.  On the other hand, 1f 

X >0 and XT=0 for at least one of the three characteristic R       I 
roots, the system will be unstable by divergence, whereas, 

if XR>0 and X^O, for at least one of the roots of (29), the 

motion consists of an oscillation with an exponentially 

increasing amplitude, and the equilibrium configuration of 

the system 1s said to be unstable by flutter. 

The Routh-Hurwltz criterion states that the necessary and 

sufficient conditions for all the roots X., j=l,2,3, of (29) 
J 

to have negative real parts is that p-j >0 and all the determinants 

13 



h = p2 

be positive, i.e., 

P2  P] 

P4  p3 

P2 

P4 

0 

H 

P3 

0 

p2 

0 

Pl>0,   p2>0,   P2P3-P1P4>0,    p4>0, (31) 

since A =p4A2.  In view of (30), the inequalities in (31) 

become 

P1 = 5y2n>0, 

p2 = y2(5 + K1 - 2y2G - 2Q) + n2>0, 

P2p3-Plp4 = n{vi2[(2-y2G)
2 + (1+Kl)

2] + H2[2 + K1+5K -3y2G] 

[4+2K1-y2G-(l-ct)(2K1+u2G-3n
2)]Q + 

+ y2(l-a)Q
2}>0, 

P4   =   1   +   <]   +   5<2  +   <-\<2   "   U2G(3 + K-|+2IC2) + (y^G)' 

(32) 

- [(3+K )(l-a) + 2<2 - (2-a)y2G]Q + (l-a)Q >0. 

In the present case, the critical flutter load Q^ is determined 

from the condition p2P3-p-| P4 = 0, which, in view of (32), becomes as 

long as n>0 

O-cOQj   -   [4 + 2K1-G-(l-a)(2K1+G-3i1
2)]Qd   +   (2-G)'  + 

+   (l+K^2   +  TI2[2K1+5K2-3G]   =   0, (33) 

upon   setting  y2 = l ,  with  no  loss  of  generality  for  present  purposes 

14 



In the case of a tangential force (a=l), (33) yields 

2._2 Qd = [(2-G)^+(l+<1)^+nM2+K1+5<2-3G)]/(4 + 2K1-G). (34) 

SPECIAL CASES OF THE DISSIPATIVE SYSTEM 

In analogy with the special cases (a)-(d) of the non-dissipative 

system discussed 1n an earlier section, attention may now be turned 

to the corresponding situations for the dissipative system, namely, 

Case a.  G = K^ = <^ 0: 

(1-oOQj " [4+3n2(l-a)]Qd+5 + 2n2 = 0 (35) 

Case   b, K,   =   Kp   =   0 

(l-o)Qj   -   [4-G-(l-ct)(G-3n2)]Qd  +  1   + 

+   (2-G)2   +   n2(2-3G)   =   0; (36) 

Case  c.     K     =   G  =   0: 

(l-a)Q2   -   [4+3n2(l-a)]Qd   +   5  +  n2(2+5<2)   -   0; (37) 

Case  d.     K„   =   G  =   0 

0-a)Qd   -   [4+2aic1   +  3n2(l-a)]Qd   +  4  + 

+   (l'+K,)2  +  nZ(2+<]) 0. (38) 
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In the event that the applied load is a tangential force (a=l), 

(35)-(38) yield 

Qd = (5 + 2n/)/4, (39) 

Q, = [1 + (2-G)2 + n2(2-3G)]/(4-G), (40) 

Qd = [5 + n2(2 + 5<2)]/4, (41) 

Qd = [4 + (1 + Kl)
2 + n2(2 + Kl)]/2(2 + K}) (42) 

respectively. 

In Figure 7, the stability map, i.e., a plot of the variation 

of the critical load Q versus the tangency coefficient a, has been 

prepared for the case of a double pendulum for which G = K^   = <2 = 0, 

case a.  The solid curves form the divergence boundaries (DB) 

associated with divergence of the first type, and these boundaries 

are completely independent of the value of the damping parameter n. 

The dot-dash curve, associated with instability due to divergence 

of the second type, also represents a divergence boundary which, 

however, is obtained only in the complete absence of damping (n=0). 

If damping is present (n>0) in the system, divergence of the second 

type no longer occurs, but now instability due to flutter appears 

in its place.  The dash-dash curve, which provides the flutter 

boundary (FB), is obtained from 

(l-a)Q*2 - 4Q* + 5 = 0 
a     d 

(a+1) (43) 
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which results from (43) in the case of slight damping, i.e., 
* 

0<n<<l , or from Q. = 5/4 when ct=l which is found from (39) upon 

neglecting n. 

If n=0, the stability region (SR) is bounded by the solid 

and dot-dash curves.  For the slightly damped system (0<n<<l). 

the solid curves are still pertinent, but now the dot-dash 

curve, corresponding to divergence of the second type, is not 

since the dot-dash divergence boundary must be replaced by 

the dash-dash flutter boundary.  Upon examination of (18) and 

Figure 7, it 1s evident that flutter 1s possible only when 

a>5/9 and n>0.  If a<5/9, the system becomes unstable by 

divergence of the first type.  Furthermore, it 1s obvious 

that Qd<Qe • 

In Case b, (40) becomes 

(l-a)Qj2 - (4-G)Q* + 1 + (2-G)2 = 0 

when 0<n<<l• Stability maps in the QG-plane are shown in Figure 8 

for a=3/4 and a=l. In both cases, the stability boundary consists 

of a flutter boundary and a divergence boundary which Intersect at 

a point in the first quadrant. 

If the upper end of the spring is supported by a spring (K.^O), 

then, with K.=G=0, (41) is appropriate, and for very slight damping 

this equation becomes identical to (43).  Therefore, in the presence 

of slight internal damping, the value of the critical flutter load 

is independent of the spring stiffness parameter <~-     The flutter 

boundaries, consequently, are identified by the horizontal dash-dash 

lines in Figures 9a-c, which have been prepared for a=l/4, 1, and 3/2, 

respectively. 
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Finally, the flutter boundary for a slightly damped double 

pendulum supported by a spring at the central hinge may be 

determined from 

(l-a)Q*2 - 2(2+a<1)Q* + 4 + (1+t^)2 = 0 

which is obtained from (42) upon neglecting the terms containing 

n.  Two stability maps in the QK,-plane are presented 1n Figure 10 

for a=0.504 and a=3/5. 

SOME COMPARISONS 

In the case of a tangential force, a=l, (34) becomes 

Qj = [(2-G)2 + (1+K1)
2
]/(4+2K1-G) (44) 

for very slight damping, i.e., 0<n<<l.  For the corresponding 

undamped system, one has 

»e2 
= 7 <5 + Kl " 2G>« (45) 

upon setting D-| = 0 and U2 = "l in (12).  The difference of these 

quantities is easily shown to be 

AQ - Qe2 - Qd 

5(1+<1)(2-G)/2(4+2K1-G) (46) 

If G=0, then (46) becomes AQ=5(1+K,)/2(2+KJ), which is always 

positive for K,>! 

then (46) yields 

positive for K-.>0.  Thus, Qd<Qe •  If. on the other hand, K-|=0, 

AQ = 5(2-G)/2(4-G), (47) 
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which is meaningful only for G<2/3.   Thus, it follows from (47) 

that AQ_>1 for G<2/3.  Consequently, QJ<QP .  Therefore, one may 
a     e2 

conclude, in the case of a tangential force, that the value of 

the critical flutter load for the slightly damped quasi-dynamic 

system is always less than the value of the critical load of 

divergence of the second type for its undamped counterpart. 

In the other extreme of very large damping, it follows from 

(34) for a tangential force that an approximation for the 

critical flutter load is 

Qd * n (2+<1+5K2-3G)/(4+2K1-G) (48) 

from which it is clear that the value of Q. is essentially 

proportional to the square of the internal damping parameter 

n.  In contrast, one can show that the two solutions of (33) 

behave as Qj^3n  and 

Qd *   (2+<1+5K2-3G)/3(1-CX) (49) 

as l-i"1"00. provided that a^l •  Equation (49) yields the critical 

flutter load for very large n. and, in addition, 1t also yields 

the maximum critical value of Q. when Qj is treated as a function 

of T\. 

_ __ 

This value of G 1s obtained from 3G -8G+4=0 which results when Qd 
in (44) with K^O is equated to Qe  in (22).  Thus, G = 2/3 is the 

abscissa of the point in the QG-plane in Figure 8b at which the 

flutter boundary and the divergence (of the first type) boundary 

intersect. 
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It is obvious from (48) that, for a double pendulum subjected 

to a tangential force, sufficiently large damping raises the value 

of Qd beyond that of Qe  as given in (45).  However, it should be 

remarked that, under certain circumstances, even very large damping 

may be of a destabilizing nature when a^l .  For example, suppose 

that <2=G=0, so that the difference of (49) and (45) is 

AQ = [11 + K1 - 30(5+^)3/6(1-0) (50) 

In the event that a=3/5 (for the sake of being specific), (50) 

becomes AQ=(5-2<-| )/6.  Hence, for sufficiently large n» Qdl^e 

whenever K-I<5/2 and Q0 <Q. whenever K >5/2. 

CONCLUSIONS 

By means of example, 1t has been shown that a non-dissipative, 

quasi-dynamic system composed of a certain double pendulum subjected 

to a circulatory force and some conservative forces can lose 

stability only by divergence.  Two modes of onset of divergence have 

been identified:  one associated with a vanishing natural frequency 

and the other with a natural frequency becoming infinite.  Multiple 

regions of stability and instability were observed in apposite 

stability maps.  However, if frictional forces are acting in the 

hinges of the double pendulum, the secondary stable regions disappear 

and the second mode of divergence is replaced by loss of stability 

due to flutter.  Furthermore, if the damping forces are arbitrarily 

small, the value of the critical flutter load Q. was found to be 

always less than the critical divergence load Qe  for the corresponding 

undamped system.  In addition to the results reported here, still other 

aspects of certain quasi-dynamic systems have been discussed in refer- 

ences [7]-[10]. 
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Figure 1.  A double pendulum. 
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Figure 4a.  The influence of weight on the stability of 
a quasi-dynamic system for a = 0 (k-j=k2 = 0). 
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Figure 5a.  Stability map for the system with an 
end constraint for a = 0 (G = k -j = 0 ). 
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Figure 5b.  Stability map for the system with an 
end constraint for a = 1/4 (G = k-j =0). 
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Figure 5c.  Stability map for the system with an 
end constraint for a   = 1 (G = k-|=0). 
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Figure 5d.  Stability map for the system with an 
end constraint for a = 3/2 (G=k]=0). 
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Figure 6a.  Stability map for the system with a central 
constraint for a = 0 (G=k2=0). 
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Figure 6b.  Stability map for the system with a central 
constraint for a = 2/5 (G=ko=0). 
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Figure 6e.  Stability map for the system with a central 
constraint for a • 3/5 (G=k2=0). 
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Figure 8a.  The influence of weight on 
slightly damped system for a 

the stability of a 
= 3/4 Ul=k2 = 0). 
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Figure 9b.  Stability map for the slightly damped system 
with an end constraint for a = 1 (G=k-|=0). 
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