/":Lm N\

AD-AD22 053

RAND INTELLIGENT TERMINAL AGENT
(RITA): DESIGN PHILOSOPHY

R. H. Anderson, et al

RAND Corporation

Prepared for:

Defense Advanced Research Projects Agercy

February 1976

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Best
Available
Copy

UNCLASSEIED T R

SECURITY CLASSIFICATION OF THIS F AGCF (When D.:ta Entered)

T_ ~ READ INSTRUCTIONS
REPORT DOC'IMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBDER 2. GOYT ACCESSION NOJ 3. RECIPIENT'S CATALDG NUMBER
R-1809-ARPA
4. TITLE (end Subtiile) S. TYPE OF REPORT A PERICD COVERED
Rand Intelligent Terminal Agent (RITA): Design Tnterim
Philosophy
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e) 3. CONTRACT OR GRANT NUMBER(s)
R. H. Anderson and J. J. Gillogly DAHC15-73-C-0181
!
8. PERFORMING ORGANIZATION NAME ANMD ADCHESS . 10. PROGRAM ELEMENT, PROJECT, TASK

The Rand Corporat‘lon AREA 8 WORK UNIT NUMBERS

1700 Main Street
Santa Monica, Ca. 90406

| V1. CONTROLLING OFFICE 1. A\"1E AND ADDRESS . {2, PEPORT DATE
l Defense Advanced kesearch Projects Agency February 1976
Department of Defense 13, NUMBER CF PAGES

| Arlington, Va. 22209

i 4. MONITORING AGENCY NAME & ADDRESS(I! different trom Controlling Oltice) 15. SECURITY CLASS. (of thie report)

UNCLASSIFIED

15e. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. ODISTRIBUTION STATEMENT (of thle Feport)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i{ dlterent lrom Report)

No restrictions

18. SUPPLEMENTARY NCTES

19 KEY WORDS (Continue on reverae elde 1l necessary and Ideniify by block number)
Data Proczessing Terminals

Computer Programs

Man Machine Systems

Input Qutput Devices

RITA

20. ABSTRACT (Continue an reveree slda Il necessasy end identity by dlock number)

see reverse side

; DD ‘ ,":‘,‘,_‘"]473 EDITIOR OF 1 NOV 63 |3 OBSOLETE UNrLASSIFI[D

SECUNITY CLASSIFICATIOR OF THIS PAGE (When Dats Entered)

T e D TS D P T e e s, T W P VA T P TV

SECURITY CLASSIFICATION OF THtS PAGE(Whan Deta Batered)

’

A description of the design constraints, design
requirements, and overall design philosophy guic’ g
ihe implementation of the Rand Intelligent Terminal
Agent (RITA). PITA is a set of computer programs
residing in a PDP-11/45 minicomputer. These pro-
grams are capable of acting as a "user agent"
which can perform a variety of tasks, under either
direct user control or semiautonomous operation
over extended periods of time. The RITA system

is designed to be widely arpiicable as a stand-
alone computing reseurce for lTocal text manipu-
lation, as 2 iimted neuristic modeling tool, and
as a front end to remote computing systems and
networks. Operational features in tine current
(January 1976) version of RITA are described.
References. (JDD)

L

HNCI ACSTFTEN

085076

ARPA ORDER NO.: 189-1
m 6P10 Distributed Information Systems

Lie
-

G2
Y,

S: R-1809-ARPA
February 1976

%.H_I“m

Rand Intelligent Terminal Agent (RITA):
;‘ - Design Philosophy B

O, v £
SN | N e

R. H. Anderson and). J. Gillogly ¥ o

L SRR s

gL O L

A Report prepared for
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rzaned

REPRODUCED BY SANTA MONICA, CA. 90406

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF (OMMERCE
SPRINGFIELD, VA. 22161

APFROVED FOR PUBLIC RELEAS.; YISTRIBUTION UNLIMITED

ot oo -

The research described in this Report was sponsored by the Defense Advanced
Research Projects Agency under contract No. DAHC15-73-C-0181. Reports of

The kund Corporation do not nece<sarily reflect the opinions or policies of the
sponsors of Rand research.

, 4 o

- i

-111-

PREFACY

Members of Rand's Information Sciences research program are cur-
rently implementing a4 set. of computer programs called the Rand Intel-
ligent Terminal Agent, cr RITA. This research effort is part of a
larger reseavrch program on advanced intelligent terminals which 1s be-
ing funded and coordinated by the Inforration Processing Techrniques Of-
fice (I*.v) of the Defense Advanced Reecearch Projects Agency (ARPA).

The present report is one of a series documenting the design and
implementation of the RLTA system. It presents the overall design
philosophy guiding the work in progress, and jis intended for a broad
audience. The report is neither highly technical nor dependent on other
reports in the series.

The RITA syater 1s designed to be widely zpplicable as a stand-
alone computing resource for local text manipulaticn, as a limited
reuristic modeling tcol, and as a front end to remcte computing systems
and networks. As such, 1t should be useful to persons involved with
the design of interfaces to coupu! :r networks for logistics, maintenance
scheduling and control, command and coutrol systems, intelligence col-
lection ard dissemination, and remote accessing of large data bases.

It should also be relevant for designers of software systems supporting

administrative and command functions.

-

SUMMARY

The Rand Intelligent Terminal Agent (RITA) 1Is a set of compuver
programs residing ir a PDP-11/45 minicomputer. These programs are ca-
pable of acting as a '"user agent' which can perform a varicty of tasks,
both under direct user coutrol and operating semiautonomously over ex-
tended periods of time. Among these tasks are (1) filing, retrieving,
und editing of data on local storage files, (2) handling interactive
dialogs with external infcrmation systems available over either tele-
phone lines or the ARPANET, (3) providing local tutorial functions and
error-checking of input data, and (4) heuristic modeling of a limited
subjective set of relationships.

For a user agent to be helpful to persons who are not programmers
or "computer sophisticates," 1t must in cur opinion (1) be capable of
explaining its behavior upon request, (2) be capable of having its be-
havior modified by the user himself, (3) be able to be governed by sets
cf heuristics stated as rules, rather than as formal algorithms, ar?
(4) retain a memory of tasks assigned, progress, schedules, and dead-
lines in spite of either scheduled or unscheduled system maintenance
periods or "crashes'" (unplanned system failures requiring execution
of a restart procedure). The RITA system meets these design objectives
primarily by using production systems: sets of predicate-action rules
operating upon a data base under (ne guidance of a rule interpreter,
or monitor.

RITA's predicate-action rules are stated in an English--like lan-
guage having a restricted set of options. The data base consists of
a set of objects, each having a set of named attributes. Each attri-
bute may in turn have either a scalar value or set of values associated

with {t. The form of the rules and the data base are delib:rately sim-

ple to allow understanding of their structure by "computer-naiv:' users.

Each production rule may be thought of as a heuristic guiding the be-
havior of & user agent. The RITA monitor is capable of either a
pattern-directed scan, in which the piedicates of rules are tested for
applicability, or 4 goal-directed mose, in which the action parts of

rules are scanned for relevance in achieving a specified goal.

e s

i e i R Gl e s i o

The RITA system design consists of (1) a kernel conteining the
monitor, data base, and vules, and (2) a front-end module with text-
manipulation capabilitiex for the creation and editing of rules, and
a set of commands tor the initlation, interruption, and querying of
user agents. A basic form of RITA 1s currently operational, but work
is 8till under way on several design features discussed in this report.
Scverel examples of rule sets are given to iliustrate both pattern-

directed and goal-oriented ' >des of operation.

3 e " . AR LT L o S 2
e T SN B o, i e i i s

~-vii-

ACKNOWLEDGMENTS

Robert Greenberg is responsible for many key featuces in the
design and implementation of RITA's user interface module and its
syntactic analysis routines. The project has received support and
encouragement f.om our prior ARPA program manager, Dr. Craig Fields,
and our current program manager, Dr. Steve Walker; this support is
greatlv appreciated. Vecy useful suggestions cn improving lhe form
of this report were made during a careful and thorough review by

Rand staif members Dr. Gabriel Groner and Ray Pyles.

—-ix—-

CONTENTS

PREFACE ittt teetneeseeosasassossnsensacnsoensnsioeaessnnssessss 114
SUMMARY vttt it eetoennoeesonsnesoneosossssssssaseseasesonenses v
ACKNOWLEDGMENT S ittt iteeveneesoesseeneeesasososssnsanssenssssas vii
GLOSSARY vt ittt et eonseeneessoensassosesensansssosssnssnssnanns xi
Section

I. INTELI [GENT TERMINALS 50000000000000000000000C 1

iv DESTCON CONSTRAINTS .ottt ittnteronononenennnonesonansos 6

ITI. DE:ICN REQUIREMENTS FOR AN INTELLIGENT TERMINAL AGENT ... 8

IV. PR.NUCTION SYSTEMS AS THE BASIS FOR A TERMINAL AGENT 1C
Jerign Options in the Use of Production Systems 11
Adrantages of Production System Usecocvevvvns 17
Desigu Decisions in the RITA System Implementation 24

V. CURRENT PRCU™AM STATUS AND CONCLUDING REMARKS 32
Appendix

EXAMPLES OF RINA OPERAIION t1iiitintineintiineineinneennnns 35
REFERENCES ... i it i it ittt it ittt et et e eeeennnns 47

-xi-

GLOSSARY

Algorithm A complete set of instructions sufticient for the
accomplishment of a task. It is usually represented
as a computer program or a set of s.atements in a
formally defined language.

ARPANET A nationwide data communication netw rk using leased
telephonie lines linking over 50 compu:ers of various
types. It employs a digital "packet-switching"
technique allowing shared use of communication lines.

Backtracking A method of operation for computer programs in which
failure to achieve a desired goal leads the program
to "back up" and try some other alternative at an
earlier point at which a choice was made. Back-
tracking is used by the RITA monito- when an &attempt
is made to find & correspondence between objects
mentioned in the pattern part of rules and object:
in the data base. If a particular binding of data
obiects to references in rules has been made by the
monitor, and some later predicate is found to be
fals. ior that particular binding, the system then
backs up b, una-ing that binding and trying another
binding until either a successful one hes been
found or all possible bindings have been tried.

Backward- A mode of monitor operation in a production system

chaining in which the next rule. o be applied are chosen
because their action parts set attribute valiues
tested by a (sub) goal rule. Thus a chajn of rel-
evant rules is creafred "backward" from a designated
goal rule. This mode of operation is an alterna-
tive to a pattern-directel mode.

BNF "Backus-N="r Form" -- a formalism for describing
grammar rules. A set of such grammar rules defines
the eyntax for a formal language. (A '"formal
language' 18 contrasted with a '"natural language'
such as English, for which no known finite set of
gramnar rules is sufficient tu descrive completely
the syntax felt to be "correct" by a native-born
speaker.)

Conflict set The scc of productlon rules each of whose pattern
part (LHS) evaluates to 'true' at a particular time.
Cne or more of these rules must be selected for the
gubgequent execution.

Context The data base which is part of a production system.
In RITA it contains an unordered set of data ob-

Jects, each having named attributes with associated
data values.

Context-free

Goal-directed

Heuristic

Level of
certainty

LHS

LISP

LR(1)

Microprocesso=~

Minicomputer

=xi=

A type of formal language whose syatax can be re-
presented by a simple grammar. Sce Hoperoft and
Ullman |1969] for a discussion cf formal languege
and their properties

A method of operation in which the behavior of a
computer program is gnverned by its attempts to
achieve a specified goal. It usually deoes this by
deriving 1 set of requisite subgoals (and sub-
subgoals, etc.) until it reaches a set >f primitive
tasks which can be accomplished.

A "rule of thumb" to be used to guide behavior (of
a computer system or a persoa), hut which 1is not
guaranteed to always produce the desired solucion
under &ll or any circumstances. One method of en-
coding a heuristic to guide & computer's behavior
might be as a RITA production rule.

A real number between -1.0 and 1.0 (inclusive)
which can be assoclated with an attribute value to
indicate the degree of certainty in the correctness
of that value. The value 1.0 indicates absolute
certainty; -1.0 iudicates certaintv that the given
value 1s not the correct one. In ermediate values
indicate confirming (+) or discoanfirming (-) evi-
dence has been amnassed for a particular value.

Left-Hand Side of a production rule, consisting of
predicates to be evaluated.

A computer Janguage and software system specilalizing
in the storage and manipulation of data consisting
of 1lists of items. Each item may be either a prim-
itive value or itself a list of 1items.

An acronym for "Left to Right scan with l-symbol
look-ahead." This 1is a property of a grammar de-
{ining the gyntax of a formal langrage. Sentences
in a LR{}) language can be parsed, or interpreted,
in cne left-to-righ~ scan of the svmbols comprising
that sentence by making decisions at each symbol
r:acountered besed only on the sequence of symbols
previously encountered and in addition by '"looking
ahead" only one symbol to the right -- i.e., to the
next symbol to be read.

A computer consisting of one or several 'chips"
containing laige-scale integrated (LSI) circuilts
or memory. The computer would thus probably be
extremely small (e.g., several cubic inches, ex-
cluding such components as the power supply).

A computer of modest size aand cost, usuallv ranging
in price between $2000 and $100,000.

Monitor

MYCIN

2w Yovrk Times
Information
Bank

Obiect

Pattern-
diracted

PDP 11/45

Production
ruvle

Production
system

-xiii-

A computer program which evaluates a set of prodic-
tion rules by testing predicates within those rules
and executing the corresponding actions specified
in ruies that are found to be applicable.

A computer progran developed by E. . Shortliffe
and assoclates 4t Stanford Uriversity that advises
physicians regarding entimicrobial tanerapy through
an interactive dialog. It uses production rules
and a goal-directed backward-:chaining mode of op-
eration; 1¢ is written in LISP. See Shortliffe

ec al. [1973, 1974a, 1974b, 1975a, and 1Y75b].

An information ratrieval service provided by a
subsidiary of tlie New Yoirk Times Corporation.
Abstracts of sriiclies appearing in the Few York
Times and selected other publications are available
ir ¢ igital form via telephone lines through keyword-
based sesaich requests.

In the RITA system, a datum consisting of a nama
(or type), and zero or more named attributes. All
atvributes sssoclated with aun object must have
mutually distinct names. Each attribute has ar
associated value, which is either a character
string or a2 set of values.

A method of operavion for production systems in
which tie opzration of the system is governed by
testing of the pattern part, or left-hand side,

of the production rules. Rules whose IHS evaluate
as true have their corresponding sction part, or
RES, executec.

A minicomputer produced by the Digital _quipment
Corporation, with an add time of 3UC nanosec &nd
maximum addressable storage of 131,072 16— it
wcrds.

A statement of the form:

If: predicate & predicate & ... predicate
1 2 m
Then: action & actica & ... & action
1 2 n

Depending on the particular strategies incorporated
in the rule interpreter, or monitor, the &ctions
are (at least potentially) performed when all the
predicates are true. The predicates test various
objects and their attribute values within a data
base, or context.

A set of production rules, a rule interpreter (or
monitor), and a data base {(or context).

Protocol

RHS

RITA

Syntax-
directed
parser

NIX

B Gitod I S it 2 s s i ol e T s S S i

-xiv-

The set of commands and responses which constitute
allowable forms of ccmrunication between an informa-
tion system and an external user {which may be

e .ther a pergon or another information system).

Right-Hand 5ide of a2 production rule, consisting
of actions to be performed.

Acronym ror Rand iIntelligent Terminal Agent, a set
of computer programs residing in a PDP 11/45 mini-
computer capable of acting as a ''user agent' to
perform such tasks as handling interactions with
remote information systems and local text retrieval
and storage.

A computer program which receives as input the
formal grammar for a language (vsually in the form
of a set of rules), and interprets strings of
characters according to the rules in that grammar.

An operating system for the PDP-11 minicomputer
developed at Bell Laboratories. See Ritchie and
Thompsen (1974].

e

I. INTELLIGENT TERMINALS

This repoirt discusses a design philoscphy for a set of computer
programs expected to reside in an intelligent terminal. The programs
comprise what we call the Rand Intelligsnt Terminal Agent, or RITA.

What is an "intelligent terminal agent' and why is it useful? The
answer involves many aspects of the way people interact with computer
svstems as well as new alternatives becoming possible through advances
in both hardware and software technology. The following observations
concerning man/machine interacticn and its supporting technologies
form the basis for our research:

1. Until recently, most users of information syat.ms have been
either "computer sophisticates''---such as computer programmers--or else
users of systems, such as airline reservation systems, with a very lim-
ited eet of options. However, with the continuing rapid decline in the
cost of computer hardware and data communications, many interactive
computer-based information systems are becoming cost effective for much
broader categories of users. These newer systems will greatly expand
the nuwoer of people interacting with computers in their daily activi-
tiveg, and will give acceas to a complex variety of interactive proto-
cols, interfaces, command langunages, and remcte computing systems.
People are going to need assistance in tailoring thig variety of options
to their specific nceds and especially in freeing them from routine in-
toractions and protocols which are not c¢!i2ctiy relevant to the content
of their task.

2. Projected computer hardware cost trends and advances in micro-
processor technology make it extremely likely that interactive computer
terminals can be produced within five to seven years conteining equiva-
ient processing power to a present—-duay ainicomputer, at a cost which
i8 reasonable, assuming fairly intensive use of dedicated terminals by
profeseionals as part of their job.

3. It 1is important to have certain information storage and handl-

ing capabilitiees locally within the terminal itself:

Text editing and auxiliary functions such as the retrieval
and storage of textual informatio~ wiich is currently in

use. This service should be provided lecally for the follow-
ing reasons:

High speed, reliable response. A local processor
can give "instantaneous" feedback to simple commands
(e.g., the "display next 1line" button) and such user ac-
tions as stylus pointing or dragging. A remote time-
shared computer canuot always give such immediate feed-
back, and the response time tends tc be somewhat erratic.

Lower cost. Through stand-alone operation for many
text-manipulation operations, uase of external computers
and communication systems can be minimized. Also, routine
processing requiring the use of remote systems (e.g.,
for archival storage and retrieval of documents) can be
initiated by an intelligent terminal during off-peak
hours, when lower rates are usuallv in effect. We expect
that within about five years these ssvings will more than
offgset the cost of an intelligent terminal, at least un-
der conditions of intensive use.

Reliability. There are fewer serial compon.nts,
each of which must be in operation, for the system to
be functional. (For example, use of a remote text edi-
tor on ARPANET typically requires a local host, local
Interface Message P-~cessor (IMP), communication path,
remote IMP(8), remote host--all simultaneously opera-
tional.)

Security. A terminal with local processing powar
can perform many needed data-manipulation operations in
a "locked office" stand alcne mode, with no information
transmission susceptible to comprouise.

Handling tutorial furnctions, answering queries for help, pro-
viding exer-ises, and giving local, immelfate-feedback error-
checking on input comnands and data. Immedfacy of response

(e.g., to simple input error conditions) 18 our p:imevy reason

for advocating that these functions be provided locally.

-3-
If local computing power 18 available within a terminal, several other
gervices can be provided at a small incremental cnst. Such services

could 1include:

o Aid in interfacing with external information systems, such

as the ARPANET ovr New York Times Information Bank, where wuch
of the iateractive protoccl involves supplying etandurd re-
‘ spoenges which are not directly relevant to th« task being ac-~
coeplished. It should be posaible to instruct an intelligent
terminal how to handle such interactive protocols automati-
cally, including instructions con desling with certain error
conditions, so that these details rieed not be remembered and

handied manually by the us r.

o The ability to define and set in motion "user agents.' Such
an agent could:
i Look at a calendar cf ewvents and start up services
for the ugser automstically at certain times and dates.
By manipulating ralendar items, the human manager can
. progressively rodify the plan being executed by the ma-
chine. For example, by changing the due dr:te of a report,
the scheduls will be automatically altered for remindervs
and folloi-up queries to persons making contributions.
It can monitor the occurrence of variouz types of
evente, such as the arrival of a certain plece of net-

work 'mail,"

or the occurrence of a certain datum in a
changing data base.

It can deliver 'interactive letters" to other
users' terminals; these letters are capable of carrying
on a dialog with the recipient, while in the process ex-
tracting information from him ir a standerd format suit-
able for further automated processing. Figure 1 11llus-

*
trates the possible operation of an interactive letter.

*The idea of an interactive letter and the type of dialog shcwn in
Fig. 1 arc taken from an unpublished manuscript by Thomas A. Standish
(U.C. Irvine), entitled "Scenarios for Use of an Intelligent Terminsl,"
August 12, 1974,

Jones finds a message on iis intelligent terminal
indicating that an interactive letter has been received
from Jane Smith. Jones ictivates tne terminal and 1t
starts to type:

Dear Bill,

It is time to make plans for next year's project
budget, and Jack asked me to coordinate everything this
vear. It would be helpful if you could answer a few
questions:

How wany trips to tne East Coast do you expect will te
required by you and members ot your staff? Numbor=

Here the letter stops for Jones to indicate his answer.
He places & quick telephone call to a key subordinate to
verify his plans, then adds other trips he knows wiil be
necessary, and types in "6'". The letter continuecs:

Please give the names of consultants you expe to uase
during the next year, and the number of days' support
required for each of thiem. (When the list is finished,
regpond to '"Name" with a carriage return.) Name=

Bi11 looks at his plans for the forthcoming year, calls a
congsultant whose availability was uncertain at their last
discussion, then types "A.C. Johnsor'. The letter responds:

Bill types "20", then repeats the cycle for several more
consultants, finally terminating with a carriage return as
a response. The letter then continues:

What 1s your estimate of your requirements for computer
services during the forthcoming year? Please give a
dollar amount. Answer=

Bi11 types ''$48,000." and the letter concludes:

Thank you for your help. 7T hope to have a draft project
budget in your hauads for review by next Wednesday.

Regards,
Jane Smith

Fig. 1--Tllustration of che Zperation
of an intoractive letter

It could be responsible for managing transaccions
betveen a number of ccmputerized services distributed
cn a computer network, monitcring their successful ac-

complishment.

We teiieve that the desirability of the above list of services is
a compellirg reason to explore the desiga of intelligent terminal
agents capable of rumning in present-day minicomputers. Our work on
the RITA system i3 aimed at developing a prototype agent system capable
of performing all of the above activiries.

What specific system design requireuwents are implied by the above
discussion? The next two scctions of this report list several design
constraints wi hin which this rzsearch 1s being conducted. Then, in
that context, we 1lterize a set of design requirements for ar intelligent
terminel agernt which we have distilled from the general characteristics

described above; theez reaquirements are the basis for our design deci-

sions during the implementation of the RITA system.

II. DESIGN CONSTRAINTS

There are a number of constraints on our design and development
of an intelligent terminal agent which are a natural consequence of
such factors as our source of funding and available computational re-
gources. Some of the most important of these are listed below.

1. This research is being funded by ARP.-TPTO because of 1its
prospective benefits to the Department of Defens» (BOD). A perticular
aser group within DOD targeted by ARPA-IPTO zs an initial testbad for
intelligent rermincl systems 1s analysts within the intelligence com-
munity, We thecvefore view our initial RiTA sysfem as an intelligence
analyst's statlon, and chiaracteristics of this user group (e.g., well-
educated and requ.ring text-manipulation tools and access to a variety
of external informatlon gystems) have influenced our design <ecisions.

2. Becauge our coucept of an Intelligent terminal agent presup-
poses minicomputer-llke power becoming locally svailable to & user,
the RITA system must be capable of running in a present-day minicowmpu-
ter. An additional reasocn for developing RITA in an existing mini-
computer ig that the sofiware might be capable of tranafer directly
into a terminsl of the future, 1f that terminal's built-in computer
coples, or emulates, the instruction set and architecture of RITA's
present host machine.

3. There is 2 PDP 11/45 minicomputer at Rand for computer re-
search. It runs the UNIX operating system [Ritchie 1974] (developed
at Bell Laboratories) which supplies many relevant facilitles, such
as time-sharing, interprocess communication, a system programming
language (cclled "C") with many advanced facilities, a hierarchical file
system, and so forth. The PDP 11/45 with UNIX is the obvious choice
for tha initial iwplementation of RITA.

4. An interactive man/machine interface called the Rand Editor
18 under concurrent development at Rand on the PDP 11/UNIX system.
This editsr provides excellent two-dimensional cursor-controlled text-

manipulation, editing, and sturage facilities. We expect to integrate

the Rand Ecitor with the production systcm described in this report to

-7-

produce a more couplete RITA system which will allow use of the text
editing facilities for the creation and modificatic. of producticn
rules. Tha "text winisw" concept embodied within the Rand Editor
should provide multiple windcws for communicatior. with one or more user
agents, possibly running concurrently under the control of production
system menitors. (A recent doctoral thesis by Swinehart [1974] pro-

poses a similar but more elaborate form of inte active user interface

with meltiple cencurrent processes.)

IITI. DESIGN REQUIREMENTS FOR Al INTELLIGENT TERMINAL AGENT

We have extracted the following specific design requirements from
the diecussion of general features in Sec. I, taking %.to ccnsideration
the constraints listed in Sec. II.

1. Most users of such terminal agents will be computer-naive.
They will be given a terminal system which has been tailored to the
perceived rnieeds of a clcss of users by application specialists who are
expected also to have programming skills. This basic system must be
capat le of performing actions for the user and of explaining its be-
havior, upon request. (We feel that a computer-naive user will not
trust an intelligent terminal ageat to perform complex tasks, such as
logging into remote compurer systems for him to transfer data out of
his '"mail" files, without his being able to cex the agint what actions
were tax.n. and why.)

2. There must be a language through which the behavior of the
agent can be modified and extended by a user. Traditional programming

languages do not seem appropriate for this purpose because:

o The user will probably not b¢ a programmer.

o The user is not expected to think in terms of algorithms as
a meaas of instructing his terminal agent, but rather in terms
of sets cf rules, or heuristics, in accordance with which it
should cperate. (These heuristics will be supplied explicitly
by the user, at least in initial ve:s'i..s of the system; in
later vergicns, the system might be capable of acquiring new
rules by example or through induction.)

o The nested control atructures of programming lunguages are
unnatural and a source of error to computer-naive persons

(see Miller 1975 for a further discussion).

3. The agent must be capable of two-way communication both with

the user and with esternal systems (e.g., cver dial-up telephone lines

or an ARPANET counection).

-9~

4. It must be capable of running in a minicomputer.

5. The s* tem wust be capable of retaiuing a "memory" of taisks
assigned, schedules, desdlines, and so forth in spite cf scheduled
maintenance periods or unscheduled system crashes.

6. The system should allow the retrieval, editing, and storage
of text, and have an understanding of caleadar and clock time to form

the basis for handling appcintments, scheduling, and other time-

manageuent tools.

g e 3 R oy TS

e

-10-

iIV._PRODUCTION SYSTEMS AS THE BASIS FOR A TERMINAL AGENT

The basis for our deeign of a syster meeting the above requirements
is the use of production systems. A production system consists of a
set of production rules, whicn operate upon a data base (which we call
a contert), according to the actlons of a rule ‘. .erpreter, or monitor.

Fer example, two production rules might be:

Rule 1

IF: there is a message whose status is "aw.iting action' and
the identification-field of the message is not in the set
of action-items of the user

THEN: put the identification-field of the -.essage in the set of
action-items of the user;

Rule 2

IF: The latest-command of the user is ''show action items' and
the state of the system is '"command unfulfilled"

THEN: send the set of action-items of the user to the user and
set the state of the system to 'command fulfilled";

These rules would be part of a larger set of rules governing a
a message-handling user agent. They might be interpreted by a monitor
that continually tests the '"if'" conditions in each rule of the set,
and executes the 'then' actions in any rule whose conditions are all
true. Assuming messages with various attribute values, such es an
identification field and status, are placed in the data base by some
external (and possiblv asynchronous) process, the above rules would
update a set ccnsisting of the identification numbers of all messages
awaiting action, and show that set to the user upon his request. Other
rules would themselves, or permit the user to, take other actions and
as a consequence change the status of the messages and remove their
identification numbers from the set of action items.

In the remainder of this section, we discuss some of the options

1 available in designing a particular production system, itemize the

advantages we see accruing from their use, and then discuss the partic-
ular design decisions we have made ip the choice of rule foimat, moni-
:or, and format of & context data base for the RITA system. The ap-
p.dix to this report contains some examples of RITA rule sets and
traces of their operation. Our discussion generally follows that giver
ir the recent excellent survey article on production systems by Davis

and King [1975].

DESIGN OPTIONS IN THE USE OF PRODUCTION SYSTEMS

There 1s consideratle variety in existing prcduction system ap-
plications. The options available can be discussed under the headings

of their three main components: context data base, rules, and monitor.

Context Data Base

The sinplest form of a context on which rules inay operate is a
string of symbols. The rule tests for the existence of a substring
within the context, and supplies a replacement string to be substituted
for it 1f found. At the other extreme, the data base may be a complex
semantic network or other form of structured data base within which
rules test for patterns and upon which rulz actions perform operations.
The former type (i.e., string substitution) is often used by cognitive
psychologists to model low-level cognitive informarion manipulation
processes. Production systems which operate on complex daca structures
tend to have complex rules which are difficult for either humans or
other computer prograsms to decipher. This would be counter to the
spirit of the production system approach. Therefore, such systems must
be designed with great care.

An intermediate form of data complexity which has been found to
be useful, e.g., in cthe MYCIN system developed by E. H. Shcrtliffe and
associates at Stanford University [1973, 1974a, 1974b, 1975a, 1975b],
is a context consisting of a set of objects, each of which has an as-
gociated set of named attrilutes, with each attribute having an as-
sociated value, or set of values. This form of data has been used in
innumerable LISP programs and is embodied in the property Jist mechan-

ism in that language. It is also a data forwn used in relational data

~12-

bases, where each item of inforuation is stored as a triplie (attribute,

object, value). In this general data furm, there ave many design de-

cisions to be made which affect the rnsulting complexity of the data

base and the complexity of the acticns needed to operate upor tlat

daca.

Rules

Some options are

Can attributes take a single value? Or a set of values? If

a set, 1s 1t unordered or ordered, and what accessing options
are available for testing values and replacing values within
the set?

Is an attribute value a scalar cuantity? 9r can it be (a
poirier to) another object? T{ the latter, then the attribute
acts as a named relation between twn ohjects, but without re-
strictisns this feature cen resulc in a data lrdase having
pointers which form an arbitrarily compiex directed graph.

Is (hiere an external structure imposed on the objects in the
context? The MYCIN sy-tem, for exampie, has found 1t useful
to place objects in a iree-structured context; this allows
incompletely spec.fied object references within rules to be
bound to the ''mearest' object within the tree to the location
at which the rule is currently operating.

Can an attvibute value have a probability or confideunce level
associated with 1t?

Do all objec.s have a unique indentifier assoclated with them?
If not (for example, if chere can be numerous inscances in the
data tase of an object called 'block"), then how are specific
ohjects referenced? Once a certain object has been referenced
by one rule, can that reference be passed, either explicitly
or implicitly, to other rules!

Can objects, and attributes of existirg objects, be created

and deleted dynamically by the actions of rules?

A production rule consists cf a left-hand side (LHS) or puttern

part, and a right-hand side (RHS) or a’tion part. The pattern part of

-13-

1 rule chosen by the monitor is evaluated with respert to the current
context., 1If it's true, the :orvesponding action part 's executed, and
another rule is chosen for evaluation. If it's f.'se, the actions are
not executed, and another rule is chosen. The simplest form cf rule
consists of symbol strings as both LHS and RHS, as mentioned above.

In this case, the cc-text is a string, and the evaluation of the LHS

is merely a check whether the LHS is a substring of the context string.
If so, that substring is replaced by the corresponding RHS.

The most gereral form of a rule contains arlL,itrary predicates on
the LHS, with on. or m e arbitrary funciion calls on *he RHS. The
predicates test :or t'e existence of certain data, or relationships
among data, within the data base. The functlon calls on the rule's
FHS make changes to the data base (and perhaps perform cther actions
as "side effzacts," such as emitting messages to external processes).

Several other optiias in the form of rules are noteworthy:

o String pattern/replacement rules, allowing variables and ''don't
care' symbols as part of the pattern and replacement strings.
These rules are pnot unlike SNOBOL {Griswold 1973] statements.

o Use of a stylized, limited language capabl. of interpretation
by a context-free syntax-directed parser* for expressing predi~
cates and actions. This language might allow certain opticns
in testing and changing the context data base, but would not
permit arbitrary tests and actions whose effects on the data
base could not be interpreted by the monitor Itself.

o An option similar to that above, but with z natural-language
front end capab.e of understanding rules - itien by a user in
nacural Eanglish and ot translating them into a strlized set of
predicates and actions. (This optlon 1is exemplified by the
MYCIN system.)

Other options to be considered in the design of rules for a pro-

duction system are:

o Whether the rules are to be used in a pgoal-directed or pattern-
directed manner. A goac-directed system has a designated goal,

and the objective is to execute rules whose actions achieve

*
These technical terms are contained in the Glossary.

=3 gns o oo o Gy e s

¥
SORETTe———
¥

~14-

that goal. A paitern-directed system, on the other hand, merely
tests the patiern part of rules chosen according to some scheme
by the monitor against the current context, and applies (one or
more of) those that match. To some extent, rules must be de-
signed to operate according to the characteristics of a particu-
lar monitor. For example, rules used in a goal-directed system
should not have act'on clauses causing side effects. Such side
effects often cannot be undone when backtracking to try an alter-
native path in pursuit of the goal. The various monitor options
are discussed in the following subsec* _on.

o The degree to which the rules capture discrete pleces of know-
ledge. It is advantageous in production systems to have the
rules as independent of each other as possible, since one of
the prime motivations for expressing process descriptions in
rule form is to be able to modif:' those descriptions easily,
and possibly even autematically. [f rules do not capture dis-
crete pieces of knowledge, 30 that they may be added or removed
easily without destroying the logic of the system, then many of
the advantages aire lost.

o The readahility of the rules. Are the rules meant for machine
consumption only, or for human readability also? An example of

the former might be:

FUN L{a) & FUN 3(Z) = EXEC(G(X));

An example of the latter might be:
IF: the prompt character of the remote system is "@"

THEN: the name of the remote system .- "tenex'" (P=.7);

o What is stored in rule form? [t is most natural fro state heu-
ristics in the forw of rules, but it is also possible to store
data (e.g., "if he asks for x, give him y") and control informa-
tion (e.g., rules for choocing the next rule to test).

o Are atl rules potentially applicable at all times, or is their
applicability limited, foc example, by partitioning them (either

autematically or explicitly by the user) into sets, only one of

S LT e

~15-

which 1s applicable at any time? (Another method of limiting
the applicab1lity of rules is through ordered rule sets, in which

the applicability of a rule is governed by its position within
that ordered set.)

Monitor

This discussion of monitor design options closely follows that
given by Davis and King [1975]. The basic control cycle performed by
a monitor consists of two phases: reccgnition and action. The recog-
nition phase involves selecting a single rule for execution, and can
be further subdivided into selection and conflict resolution. Ia the
selection process, cne or more potentially applicable rules are chosen
from the set and passed to the conflict resolution algorithm, which
chooses one or more of them for execution. The options in monitor
design, then, can be discussed in terms of the above categories.

Selection. Rules can be selected by a LHS scan or a RES scan.

In a LHS scan, each rule LHS 1s evaluated in turn. If this process
stops at the first successful evaluation encountered, then conflict
resolution 1is trivial. It is possible, however, to collect (into a

set called the conflict set) all rules whose LHSs evaluate successfully.
(It is in fact possibtle to have multiple occurrences of a single rule
in the conflict set, if more than one set of bindings between objects
and attributes mentioned in the rule and data objects occurring in the
context make the rule's LHS evaluate successfully.) It is then neces-
sary co perform conflict resolution to choose the rule(z) for execution
from this set.

Selection by a RHS scan Ean be considered a form of goal-oriented
operation. One specific 1item of information (an attribute of an object)
is designated as a joal. The goal of the system operation is to ex-
ecute the actions or the RHS of rules that set this attribute value.

To this end, the LHSs of those rules are evaluated. If any such LHS
clause refers to an item of information not yet in the context data
base, obtaining that lItem becowmes a subgoal. A RHS scan is performed
to find all rules that contain in their RHS an action clause which
creates that item of informaticn. All rules meeting this criterion

are placed in the confiict set. This form of RHS scan is best

p————]

-16-

exenmplified by the operation of the MYCIN system cf E. Shortliffe et al.

Interested readers are referred to the excellent description of MYCIN's

operation contained in Shortliffe's recent Ph.D. thesis [1974b].
Confliet resolution. 1f a conflict set has been created during

the rule selection process, conflict resolution is necessary to choose

which rule(s) in that set should be executed. Several possible cri-

teria for conflict resolution (suggested by Don Waterman of Rand) are:

0 Rule order. There is a compiete ordering of all rules in the
system, and the rule in the confiict set with the highest
priority 1is chosen.

o Data order. Elements of the data base are ordered, and that
rule is chos:n which matches elements in the data base with
highest priorlity.

o Generality order. The most specific rule 1is chosen,

o Rule precedence. A precedence network (perhaps containing
cycles) determines the hierarchy.

o Recency order. The most recently executed rule is chosen,
or the rule containing the most recently updated element of

the data base.

It 1s not necessary that only one rule be chosen for execution
fiom the conflict set. 1In MYCIN, for example, action clauses in rules
contain a certainty factor when creating an item of information, MYCIN
executes all rules in the conflict set, using the combined cert-inty
factors to achieve a combined judgment, which is reflected hy data
values (with associated resultant certainty factors) in the context
data base.

Action, There are few options associated with the execution of
action clauses of guccessful rules by a monitor. Most actions set con-
text data values for suosequent testing by other rules. 1In production
systems 1t 1s censidered poor for actions to have complicaced side
effects or to execute arbitrarily complex programs, although side ef-
focts are sometimes necessary to perfocrm such actions as communication
with an external process or system. One control-type action sumetimes

allowed 1s transfer of control to a different set of rules, which can

-17-

be considerzd another '"state' of the system, in which thke behavior of
the system in each state is governed by a rule set. The VIS system of
Moran [1973] 1is one example of a system allowing such clustering of
rules.

Before discussing the particular design decisions we have made,
choosing from the large selection of options listed above, we will
consider next the advantages to be gained from using a production sys-
tem. The priorlties we placed on certain advantages have had an im-

portant effect on our design decisions.

ADVANTAGES OF PRODUCTION SYSTEM USE

The foliowing adventages are often cited as accruing from the use
of production systems. We have listed them in what we believe 1s an
approximate decreasing order of importance for the particular applica-
tion for which RITA is designed: namely, the construction of intelli-

gent terminal agents.
1. Their explanatory capabiiity.

Production system rules are intended to be mod-
ular chunks of knowledge and to represent primi-
tive actions. Thus, explaining primitive acts
should be as simple as stating the ccrresponding
rule--~all necessary contextual information should
be included in the rule itself, Achieving such
clear explanations, however, evidently strongly
depends upon th: extent to which the assumptions
of modularity aad explicit context are met.
[Davis and King 1975]

Figure 2 contains an example taken from Shortliffe [1975] of the highly
advanced explanatory capability of the MYCIN system. MYCIN is an excel-
lent example of the degree of explanatory power that can be achieved
through careful design and implementation.

2. Simple control structure. Experiments conducted by Milier
{1975] on various methocds of transfer of control in programzing lan-
guages have shown that ii-then-else nested conditionals and branch-to-

label control structures are serious sources of programming error.

TR ————————ves

-18~

MYCIN:

""SER:

MYCIN:

In light of the site from which the culture was
cbtained, and the method of collection, do you
feel that a significant number of ORGANISM-1
were obtained? ’

Wuv?

{1.e., Why 1s it imvortant to determine if a
significant number of OKGANISM-1 were obtained?]

1.0] It is {mportant to find out whether there is
therapeutically significant disease associated with
this occurrence of ORGANISM-1.
Tt has already been established that
1.1} the site of the cuvlture 1is not one of those
which are normally sterile, and
1.2] the method of collection was sterile.
Therefore, 1f
1.3] the organism has been observed in
significant numbers
then there 1s strongly asuggestive evidence (.9) that
there 1s therapeutically significant disease
assuciated with this occurrence of the organism.
[ALSO: there 18 strengly siguificant evidence (.8)
tnat the organiem 1s not a contaminant.]
(RULEQ42)

The user may then query further about why this information
is {mportant (1.9]), in which case MYCIN would give a
similar explanation based on the rule that crlled this ome.

Fig. 2--Illustraticn of the explanatory capability

of the MYCIN system

—— —

-19-

Miller also reports that a ''procedure table'" specification of control
led to much better performance by n.lve programmers. Figure 3 illus-
trates the format of Miller's procedure table. Tt is very similar to
(and in fact partially derived from) produc:tion systems. Due o tt=z

simple control structure of production systems, especially of tne LHS
scan type, we can imagine the following type of instructions being

nearly sufficient to introduce a user to the operation of his terminal:

This terminal. operates according to a set of
rnles. Whenever it finds a rule that 1s true,
it applies thac rule. If you want to know why
it 1s asking you for some item of information,
or why it took some action, type "?" and it
will show you the rules it followed in taking

that action.

If, in addition, the rules themcelves are in simple English so that
they are directly readable by a usex, ther ¢ believe he will find the
operation of this device quite understandable. Although the user will
of course not understand all the nuarces of its operation, he is at
least not bewildereu at the start, and can add incrementally to his
understanding with experience. The user must realize, bhowever, during
this initial introduction to the system that there are nuances and that
he should not be overly complacent or trusting of system bekavior.

A RHS scan backward-chaining system, although more complex in its
control structure, can give rational explanaticns of 1its tehavior in a
marne; that makes the flow of control among rules understandable.
Again, we offer the use of MYCIN by computer-naive physicians as proof
for this asserticn.

3. Incremental addition of knowledge. With proper design, pro-
duction 3systems can allow gradual, incremental addition of knowledge
and heuristics in a top-down manner. If the set of rules is unordered,
as 1s usually the case in a RHS scan system and could be the case in
a uHS sc.un mode, then new rules can be added to the set without concern

for their placement. Tf the mode of operation is LHS scan through an

: o e

==

Procedure Table

Label Question Action(s) Go To
Al Any card in input Look at next
box? card /
No: Stop
Name on card has Put card in box Al
accond letter as #3, increase
"Not-L" or last Counter 1

letter as "N"

__________ > Put card in Al
Box {2

Problem: Put a card in Box 3 1f eilther the name
on the card has the secondi letter not "L"
or else the last letter its "N" {(or both).

Count the number of cards in Box 3 using
Counter 1. Put the remaining cards ia Box 2.

Fig. 3-~Format of Miller's decision table,
with associated problem description

=21~

ordered set of rules (choosing the first true one encountered), then the
location of rules to be added within that ordered set becomes important.
For these reasons, we believe that unordered rule sets should be uaed

to implement at least those portions of intelligent terminal agents
whicl are expected to be modified to any degree by the user.

An example of the operation of the MYCIN system shows the incre-—
mental addition of knowledge. When a predicate on the LHS of some rule
in the MYCIN system needs an item of information, it searches for rules
whose RHS assign that datum. If such rules are found, thkeir evaluation
is attempted. If there are no such rules, the system requests that
datum from .he user. This provides a natural opportunity for the graa-

ual introcduction of knowledge and heuristics to the system. 1If the

user does not wish to continue supplying that datum tc the system, he
has the option of giving the system a rule describing now to derive
; that datum frrm other data within the data base. In conjunction with
this new rule, 1t might be appropriate for the user to give the system
other additional rules for acquiring information from external sources.
In this manner. gradual evolution of the behavior of the sysf:em takes
place tc meet the needs of the user in his possibly uniqie environment.
4. Trainability and learming. Assume production rules are stated
in a constrained syntax so that their meaning is understandable by
machines, and that each rule is a "noninteracting chunk of know.ledge

or behavior."

Then it becomes possible for a computer program to create
rules in the groper format and insert them into existing sets of rules
to change the behavior of a production system. It might also modify
existing rules to cha~ge a system's behavius.

Waterman [1970] has discussed the creation of new rules from train-
ing information and the pinocess of '"blending' new rules into an ordered

set of existing rules. He has placed the trairing information a sys-

tem should receive (or extract) from a user into three categories:

a. Acceptabjiity information: an acceptable declsion for
a particular situation.

b. Relevancy informatinn: the situation elements relevant

to making this acceptable decision.

R T WP TP Ay

22—

c. Justification information: the reason the decision is
being made, expressed as an evaluation of these rele-

vant situation elements.

The relevaucy and justification information is used to create the pat-
tern part (LHS) of a new rule, and the acceptability information is
used to create the action part (RHS) of the new rule. The newly created
rule is called a training rule. Waterman gives an algorithm for decid-
ing whether to "blend" the training rule into an existing ordered set
of rules by using it tc modify an existing rule or by adding it to the
existing set in an appropriate location.

In a recent paper, Waterman [1974] discusses several examples of
adaptive production systems, written in the PAS-II notation [Waterman
1973], in which all adaptivity is obtained by adding new rules to ex-
isting ordered rule sets, and training information i¢ generated inter-
nally rather than requiring feedback frcm a user.

5. Unified, consistent structwure. 1If a production system is con-
sidered as a programming language, it is cne with only a single state-
ment type: a pattern-action rule. If, as we expect, it 1is as easy to
program and update intelligent terminal agents in production systems
as it is in ordinary high-level programming languages, then for this
application production systems .atisfy Occam's Razor: they are the
simpler form.

In addition, it is possible to program significant portions of the
inoultor (e.g., the conflict resolution strategy) in a production sys-
tem form, so chat the structure of the entire system becomes more uni-
fied; in that case, the monitor itself becomes amensble to modifica-

tion, and possibly to adaptive learning.

There are also some disadvantages in the use of production systems.
The two major ones are:

1. It can be aifficult to code an operation in the form of a
production system, particularly for goal-oriented rule sets. Consider-

able thought must be given te the cheoice of objects, attribuies, and

values by which a problem area is represented. (However, the problem

Sp——

-23-

of choosing a good data representaticn is :ert inly not unique to
production systems; the problem iies more (n trying to fit all appli-
cations into this particular procrustean tid.) One must also carefully
choose certain attributes of objects to repre-ent '"state variables"
which encede the state of a computation or deduction. The values of
these state variables are tested by varic.ss rules to trigger their
potential applicability. 1In this manne', production systems encode
explicitly that which in ordinary higl-level programming languages 1s
implicit in the nesting of control s itements. For example, a tradi-

tional prvogramming langntage nested rontrol structure such as:

if A then
if B then C
else if D then E; else;

else G;

might be encoded in ¢ production system in the following manner:

if A then state_1;

if siate 1 and B then C;

77 state 1 and not B then state_ 2;

if state 2 and D then E;

if not A then G;
Su-a explicitness in a production system allows the desired relative
¢ tonomy of individual rule-, but at the price of requiring the pro-
srammer Lo create names for many intermediate states ~f his process,

In the RITA system, we hope to overcome this disadvantage by

having system experts create initial systems and user agents having

general applicability. Individual users are expected, at least ini-

tially, to miake only rather minor modifications and e .ncements to

—~24-

the basic system. Therefore, the vocabulary and overall design of a
user agent will be established, providing many guidelines and examples
for the individual user.

2. Production systems are often ineffilcient. It is quite easy
to design systems in which the pattern parts of hundreds of rules are
tested against the data base before a successful match is found; it i3
also easy in goal-oriented systems to pursue lengthy chains vt reason-
ing which are not useful. The same deductions may be recomputed re-
dundantly many times in separate logic paths, without awareuncss in the
~ystem of the duplication of effort.

Our design of the RITA syscem has not been significantly influenced
by efficienczy considerations. The simple user agents which have been
constructed to date (e.g., for handling File Transfer Protocol inter-
actions on the ARPANET) have required only 30 to 40 rules and are not
inefficient. As more complex agents are constructed, we believe there
are a number of monitor enhancements that can be designed to increase
efficiency (e.g., through hash-coded lookup tables to aid in finding
applicable rules) which can be added as the need arises. A system
ralled PSH, currently under development within the Computer Science De-
partment 4t Carnegie-Mellon University, is a testhbed for a major study
of methods of obtaining efficiency in production systems.

With the above advantages and disadvantages in mind, and given
the options available In production system design and the design re-
quiremnents derived from the particular application under discussion,
we can now discuss the design decisions made to date in the implementa-

tion of the RITA system.

PESIGN DECISIONS IN THE RITA SYSTEM IMPLEMENTATION

Qur design decisions in creating a production system for our par-
ticular needs are discussed under four headings: data base, rules,

monitor, and system architecture.

Data Base
The data base upnn which RITA rules operate is called a contexi;

it consists of an unordered set of objects. Each object has a name,

-25-

or type, and there can be more thian ome object in the context of the
same type. There is neither an external structure imposed on the set
of objects in the context nor a requirement that each object have a
unique identifier associated with it. Each object can have one or
more named attributes, and all attributes attached to an object wmust
have names which are mutually distinct. Each attribute has an as-
sociated value, which is either a character scring ov & set or values.

Objects, attributes, and values may be created or deleted dynam-
ically by the actions of rules. If an attribute being tested by a
rule's LHS predicate does not exist, it is conaidered to be 'mot known.'
It is possible by a rule action (except within a goal-oriented monitor)
to reset an attribute having a value back to the 'not known' status.
Goal-oriented monitors may not reset the vo'ue of any attribute; they
may only set values which were previously not known. This restriction
is necessary to preserve the integrity of infuimation upon which chains
of logical! reasoning are based.

\s an op.ion, it is possible to attach a "level of certainty" to
a scalar attribute value as it 1s being set. 1In this case, an attribute
can have several different values associated with 1it, each with a dif-
ferent level of certainty. Levels of certainty attached to values are
adjusted as additional positive or negative certaint: factors for those
values are asserted by the action of rules. Our planned use of cer-
tainty factors has been strougly influenced by their implementation
in the MYCIN system. Our implementation 1s expected to differ in some
details, but a discussion of those differences will not be presented
here.

Figure 4 contains examples n’/ object types aad associated attri-
bute names and values which migh. be used in a uscr agent within the
RITA system.

The data structure we have chosen Is not the most general one
possible. (An obvious extension allowing much more generality would
be to allow references, or pointers, to objects as attribuie values.

As mentioned earlier, this would give the capability for acbitrarily
named relations among objects.) As with other fmplementation deci-

sions, we have chosen what we consider to be the simplest format and

EE R i PR = T

-2h-

object fype attribute name sample wvalue
file name "foo.baz"
directory "jig"
site_id "rand-isd"
size 20000
owners_name "gillogly"
site id "rand-11"
operating_system name "unix"

! machine type "pdp-11/45"
guest_account_name "netquest"
guest account password "netguest"
known-user-set (*'jig", "rha",

"rsg")
known person name "gillogly"
primary site id "rand-1sd"
primary directory "iig"
primary password "whumpus"'
secondary site 1d "cmu-10a"
secondary site directory ''gl50al2"
secondary site password 'foo"
Fig. 4--Examples of RITA object types,
attributes, and values

conceptual structure which aliows th2 description of situations and
heuristics related to intelligent terminal agents. With mcre experi-
ence In using the RITA system, some of these decisions are almost cer-

tain to change.

Rules

RITA rules are expressed in a finite syntax (technically, parsat'e
by an LR(1) w«lgorithm). A complete syntax chart for RITA rulss as
they rnow stand is given In a compairion document [‘nderson and Cillogly,
to be published]. We have chosen a syntax patterned after the general
English output form generated tc display MYCIN rules to a user. We
believe that this syntax is simple enough to be read and written by a
computer-naive user. Flgure 5 contains several examples of clauses
which can be used in RITA rules; more complete examples are contaiued
in the appendix.

Such facilitles ac string-wanipulation are provided in the RITA
system by a set of primitive functions which may be called in the pre-
dicates or actions of rules.

We notz that all RITA rules, including those to be interpreted by
a goal sriented moualtor, are expressed in tie same syntax. MYCIN, on
the other hand, uses a goal rule hand-coded in LISP which does not
follow normal M. IN conventions.

We have decided, for simplicity, not to implement multiple rule
sets which limit t%e applicability of a rule to those times when its
set is the 'current state" of the system. ¥rom our experience to date
with the syster:, the additional mechanisms required for explicit trans-
fer of control among named rule sets does not seem justified by ad-

vanfages 1in operating efficiency.

Monitors

We have found that different types of monitors are necessary for
various specific tasks and situations, and that no one monitor type {is
sufficient for our purposes. For example, interactions with an ex-
ternal i1nformation system to handle routine protocols are best handled
by a LHS sgcan monitor, acting in what might be called a ''stimulus-

response'’ mode. On the other hand, ' Js sometimes necessary for an

-28-

iF:

IF:

IF:

I1F:

THEN:

THEN:

THEN:

THEN:

THEN:

THEN:

THEN:

Left-hand-side predicate clauses

the name of rhe system is "unix"

the name of the system is the name of the
desired system

the nrne of the system is not known
there is a response W' ose arrival time is less than

the max_expocted delay of the system

Right-hand-side action clauses

set the name of the system to ''net access program"

set the val.d_id_set of the vemote_site to the
id of every site whose id is known

deduce the guest_account_name of the remote_site
create a remote_site whoce id is "cmu-10a"

receive the next line from the system IO pipe
as the value of the response

send "Which rule do you wish to see' to the user

return success

il i 2 Sl

Fig. 5--Exauples of RITA rule clauses

intelligent terminal agent to make deductions (e.g., about the most
likely site on the ARPANET for a particular person to have a mailbox,
glven that person's attributes). Deductions uare best made by a WilS
scan, goal-driven monitor.

Consequently, we have imp.emented several different monitors:

o LHS scan, with ordered rule set
o Lk> scan, with unordered rule set
o RHS scan with backward-chaining (implicitly, a rule set is

treatad as unordered)

Nothing in our implementstion precludes the development of other moni-
tors 1f the need arises. The top-level monitor “n a user agent will
use a LHS scan with an unordered rule set; however, it is possible for

the following icuion clause of some rule to be executed:

DEDUCE attribute OF object.

This clause triggers the operation of the RHS scan backward-chaining
monitor with the goal of deducing the value of the named attribute.
Only rules in the system which are designated as RHS scan rules are
used during the backward-chaining process to deduce the required in-
formation. Upon completion of a deduction, control reverts to the
action clause of the LHS scan rule following the DEDUCE clause, or if
there are uone, to the next applicable rule chosen by the LHS scan
monitor. It is not possible to explicitly invoke an LHS scan monitor
during a goal-directed deductive operation.

The design of a goal-oriented backward-chaining monitor involves
many unique decisions not enccuntered in LHS-driven monitors. As men-
tioned earlier, cur goal-directed monitor has been heavily influenced
by MYCIN, but differs from that of MYCIN primarily in the following

respects:

1. 1In pursu’ng a goal without specified levels of certainty in

rules, our search terminates when the desired information 1s first

-30-

found (rather than pursuing all possible paths, as in MYCIN, before com-
bining the certainty factors associated with all results found).

2. The binding of objects and attributes mentioned in rules to
objects in the data base is governed in MYCIN by a data hierarchy. The
data mentioned in a rule are bound to a datum at a level in that hier-
archy dependent on the "lowest' object mentioned in the rule. From
that binding, a context is inherited from the hierarchy which can re-
solve many possible ambiguitlies and search requirements. In RITA, on
the other hand, our data context is not structured. Consequently, no
implied context 1s used to resolve searches.

3. In MYCIN, ap autonatic search is performed to fill in cervaiu
values of attributes of a newly created object. 1In RITA, values cf
attributes are searched for only if needed to catisfy a subgoal.

4. RITA and MYCIN both have a type of LHS predicate clause which

acts like an existential quantifier:

[F: there is a block whose color is blue ...
The RITA system nerforms a complete backtracking scan in an attempt to
satisfy nested ¢ .istentials. Ultimately, if necessary, all pussible
relevant data bindings will be attempted to satisfy a set of conditionals.

MYCIN does not perform such backtracking under similar conditions.

Sysiem Architecture

Our implementation of RITA has been int:iuenced by the factors
mentioned in Sec. II: funding source, expected user community, and
available computing rescurces. In this ccniext, we have made the
following implementation decisions in designing the software architec-
ture of the RITA system:

1. For efficient operation on the limited resources of a mini-
computer, we have decided to '"compile'" English-like rule and object
descriptions into an internal list-structure form for use Ly the moni-
tor; however, corresponding 'decompilers' allow a user, vpon request,
to see any data in the symbolic, English-like form. Rules and object
descriptions are always stored externally (e.g., on disk) in their

English-like form.

~31--

2. RITA has been desigued as two cooperating modules, so that
only the currently active modulc need reside in the core during the
operation of a user agent. Such modularity is aided by the facilities
in the UNIX coperating system for communication between separate pro-
cessges.

The user :nterface module gives the user one or more windows within
which text can be displayed, with the facilities of the Rand Editor
available for text manipulation within those windows. It allows crea-
tion of rule sets and contexts in a symbolic English-like form, and
passes rules and commands to the monitor to allow user control over
its operation.

The monitor module contains facilities for compiling symbolic
form rules and data descriptions into an internal list-structure form
and for decompiling internal forms back into sywbolic form upon request.
It uses one of the available monitors to apply a rule set to a context,
and emits trace information to a history file for use by diagnecstic
and tutorial faciliries.

3. We have chosgenr to use an excellent compiler-compiler, named
YACC (Yet Another Compiler-Compiler) and available on the UNIX system,
to implement our rule and object compilers. Since all compilation of
symbolic ivrms of rules and objects 1s governed by a BNF grammar, it
is not difficult to make cihianges in the surface syntax of rule and ob-
ject descriptions.

A basic form of RITA 1s currently operational. Thc following
section gives brief descriptions of the features cu..ently Implemented
in RITA, enhancements plenned curing the next six to nine months, and

research questions raised by our work to date.

=32~

V. CURRENT PRCGRAM STATUS AND CONCLULING REMARKS

The following features are implemented in the current (January
1976) version of KITA:

Both pattern-directed and backward-chaining monitor modes operate
with unordered rule sets, with the backward-chaining mode capable of
being initiated by tne pattern-directed wuode.

The user can initiate, interrupt, resume, and terminate the monitor's

| operation. Duriang an interruption, he may add, modify, or delete rules
or objects, inspect rules or objects, and set conditions le.g., the
testing of a particular rule's predicates or execution of its actions)
upon which wonitor operation should be interrupted. He may also obtain
information about the recent history of the monitor's operation, such
as which rules have been tested and have falled or succeeded, or which
object's attribute values have been set.

Attribute values may be primitive values (e.g., character strings)
or sets of values. Members of such value sets may themselves be sets,
permitting an arbitrarily deep nesting or value data.

The RITA system can irteract with external information systems,
either via the ARPANET or dial-up access over telephone lines.

RITA agents may be initiated by a reminder facility added by Rand
to the UNIX system.* Agents may be 'reminded" to start operation at
a specific time and date (e.g., at 3 a.m. on March 17, 1976) or at a
relative time (e.g., six hours from now, or in three days). These

facilities can also be used to awaken agents on a regular periodic

schedule (e.g., every day at 3 a.m.). The remind fuunction allows age.ts
to periodically check the status of a lengthy remcte operation or to
initiate routine tasks after normal working hours. Reminders, when
created, are written on a special disk file along with such status in-

formation as whether tiuiey are pending or in operation and the time and

* .

The remind function, which performs very useful functions hoth
for RITA and UNIX system users, was conceived, designed, and implemented
by Dr. Steven Zucker of the Rand compuier reseaich staff.

-33-

date for initiation. Whenever the UNIX system is restarted, for example
after a power shut-down for maintenance or a system crash, a system
function automatically checks the reminder flle for pending actions.
In this way, RITA agents are usually capable of operating in pursuit of
goals over extended periods of time in spite of interruptions. (An
exception is when RITA 1s irterrupted while interacting with external
gystems. It is often not possible to reosume an iateraction with an
external. system at some midpoint in that interaction.)

Principal features discussed in this report but not yet operatiounal

within the RITA system are

o] The ability to use levels of confidence on attrirute values and
o The use of the Rand Editor as part of a user's inte-face to
RITA for the creation, modification, and perusal of rulcs and

objects ’n a user agent,

These capabilities are expected to become available within several
months after the publication of this report.

The RITA interpreter module currently occuples a total of about
49,000 bytes of core (28,000 program and 21,000 data). The user inter-
face module is quite small (about 9000 bytes). The two modulas can
grow independently to the maximum core available. In addition, about
250 bytes are required per rule stored, plus 100 bytec per object
stored.* Therefore, our current system, with 64,000 bytes each of
program and data storage space available, can grow about 223 percent
in program size and can store in-core an agent consisting of (for ex-
ample) 120 rules operating upon a data bace having 130 objects.

User agents comprising about 50 rules are now in use, and can,
for example, handle ARPANET file transfer operations. We expect to
create agents at least several times this size in th: near future.

Many questions are still unanswered at this stage of the research

project. For example:

*
Assuming about 5 clauz:es per rule and 10 attributes per object.

RS A

-34-

¢ Will a computer-naive user really be able to modify the opera-
tion of a user agent by adding or modifying rules? 1. so, how
long a prior familiarization period 1s required?

o At what level of size or complexity of a user agent will speed
of operation and efficlency become important considerations?

o What about system security? Knowledge about passwords, access

keys, data formats, and account numbers for external systems
might well reside within RITA user agents, making the intelii-
gent terminal itself a valuable target for compromise. Even
with physical security, such as restricting access to the room
contailning tne terminal, often there will still remain external
communication paths to the mdchine that allow possible accesus

to data. We need to understand more about the constraints which
must be placed on access to intelligent terminals containing
sensitive data in representative user environments.

Ir conclusion, we empnasize that this is a report on work in prog-
ress, and many questions are left unanswered. However, we are encouraged
by our initial experimentation in the use of production systeums to rep-
resent heuristics governing intelligent terminal behavior. Theilr
ability to provide explanations of that behavior, to be modified and
incremenially extended by a user, and to operate in either a pattern-
directed or goal-directed manner are all potentially valuable features.
We believe the RITA system, whose design we have discussed here, prc-
vides a good testbed for the demonstration and evaluation of these in-

telligent terminal ageut capabilities.

‘-x. iiiiiii,. e " e A-i . e - o P "‘""'!m ﬁ“" F e AN e

-35-

Appendix
EXAMPLES OF RITA OPERATION

LHS SCAN OF UNORDERED RULE SET

As an 1llustration of an unordered rule set to be interpreted by
a LHS scan monitor, consider the following set of eight rules. The
purpose of tliese rules is to generate a telephone call to the recipient
and to notify the user when the call has been guccessfully placed. The
rules must deal with such exigencies of the telephone system as busy
signals and no answar. These rules assuwe the context contains an

object called a '"reciplent", who has th2 following attributes:

Object Type Attribute Name Example Value Comment
recipient name l "Bob Jones''
primary_phoned "(213) 393-0411"
alternate_phone "(213) 393-0412" [o>ticnal]
home phonef "(714) 454-8812" Tzptionall

[optional] means that the attribute need not exist for the recipient.
The rules create an object of type "call" whose attributes record

the current knowledge about the attempted call. This object is in

turn used by another group of rules which specializes in dealing with

the external telephone system through a dialing unit, and which sets

a '"status" attribute for the call to reflect the information reported

by the dialing utnit. The "call' object has the following attributes

and sample values:

Object Type Attribute Name Sample Values
call status "to be initiated"
Ilbusyﬂ
"answered"

"not answered"
"unacceptable phonei"

target "primary phone#
"alternate phonef"
"home phonef"

desired placement_time '"75/7/20 1800"

~riority "pormal"
"urgent"

s EEad aag it mo o = =

=i e

-36-

The rule set is shown belcw; comments are enclosed in square brackets.
The particular syntax used to state the rules is indicative of the
form of RITA rules, but is subject to change. The reference manual
[Anderson and Gillogly, to be published] should be consulted for the

current formal description of allowable RITA rule forms.
[RULES FOR PLACING A TELEPHONE caLL)

RULE 1 [when to create a new call]

IF: there is a recipient whose primary phone# is known &
there is not a czll

THEN: create a call whose status is '"to be initiated" &
whose target is "primary phone#" & N
whose desired placement time is currenttime;’

RULE 2 [when to az:tu2lly dial the number]

IF: the status of the call is "to be initiated" &
the desired placement_time cf the call is less than
[i.e. earlier than] currenttime

THEN: set the status of the call to ''reszay for dialing”'F

]

RULE 3 [what to do with & busy signal]
IF: the status of the call is ''busy"

THEN: set the desired placement time of the cal’ to
currenttime + 2 [minu’ .8} & ++
set the status of the call to "to be iv.tiated";

&
We assume ''currenttime'" is a function v ich returns the current
date/time as its value.

¢We assume this cell status triggers .dditional rules, not shown
here, which interact with a dialing unit .0 physically dial a call,
then read the dialing unit’s output sigv.ils and set the "statug" at-
tritute of the call to one of: 'busy" 'answered'", ''not answered",
"unacceptable phone#''. These other 7. ies are expected to use the
"target' attribute of the call to sr'ect a phone# from one of the at-
tributes of the recipient.

++We use infix notation (e.s., "a+b'") 1n these rules to express
arithmetic operations in an eas’.y readable form, although the current
version of RITA requires the v /e ot funct‘onal notation (e.g.,
"plus(a,b)").

e e g

e

RULI 4

IF:

THEN:

RULE 5

IF:

THEN:

RULE 6

THEN:

RULE 7

IF:

THEN :

the

37~

[what to do if the ~2!l is answered]

status of the call is "answered"

send concat (the name of the recipient,

"has been reached at his/her”,
target of the call,
', Please gick up your phone.") to the user &

delete the call;

the
the
the

set
set

the.
the
the

set

set
set

the
the
the
the

set
set

[what to do if primary phone# is not answered]

status cf the call is "not auswered" &
target of the call is '"primary phone#" &
alternate_phoneff of the recipient is known

the targe: of the call te "alternate phoneif"
the status of the call to "to be initiated";

{what to do if alternate phoneff is not answered]

status of the call is '"not ansvered" &
target of the czll 1s "alternate phone#" &

an

priority of the call is '"normai

the desired placement_time of the call to
currenttime + 30 [minutes] &

the target of the call to "primary phone#" &

the statns of the call to '"to be initiated";

[speclal rule for an unanswered urgent call]

status of the call is 'not answered" &
target of the cill is "alternate phone#" &
priority of the call is "urgent" &
home_phone# of the recipient is known

the target of the call to "home phone#" &
the status of the call to "to be initiated";

t .

This rule assumes the existence of a "concat' function which
evaluates its arguments, then returns a single character string con-
sistiag of the concatenation of the argument values.

38—

RIJLE 8 [whst to do with an unanswered home call]

IF: the status of the call is '"not answered' &
the target of the call is '"home phonef"

THEN: set the desired placement time of the call to
currenttime + 15 [minutes] &
set the status of the call to "to be initiated";

The above rules illustrate a fragment of a complete svstem for inter-
acting with the telephone system. As such, they assume a considerable
amount of context and leave several questions unanswered; for example:

These rules assume the person who places the call will be avail-
able to handle the call, either now or at some arbitrary time in the
future when the call becomes completed. If this is unrealistic, Rule
2 should check for the availability of the caller before actually dial-
_.ang the call.

The rules for determining the priority of the call are not shown.
Pre wumably, they would encode a heuristic like "assume it's normal un-
less I tell you explicitly that it's urgent."

These rules might be considerably enhanced by the addition of other
rules to determine, given the area code of the target phone number,
the time zone of the recipient;* it could then be determined whether
curirenttime in that zone 1is within .cheduled business hours, duriug
the lunch hour, or outside schedulied business hcurs.

This information could then be used to influence the calling strategy
in such situations as an unanswered call.

As an illustration of the relative ease of modifying and extend-
ing an existing rule set, suppose that during repeated use of the
above agent a user notices a possible fiaw in the logic: recipient
Steve Kramer does not have an altermate phoue number, but he does have
a known home phone number. An urgent call is placed to Steve, who

does not answer his primary number. No further attempt to place the

*

He use thie logic for simplicity in thje illus’.ration. In prac-
tice, some area code zones cross time zone '.oundaries, <0 more complex
logic is needed.

PRETR e CIEOE e A R e b e =

-39~

call is made by the agent; in particular, his home number is not tried.
Bv observing the rules used to arrive at this decision, the user re-
alizes that Rule 7 only sets the target of the call to the home number
if the alternate number 1is unanswered. He decldes the following two

rules will help in this situation:

RULE X [how to handle an unanswered urgent call when there
i3 no alternate number but the home number is
known]

IF: the status of the call is 'not answered" &
the priority of the call is "urgent” &
the target of the call is '"primary phone#" &
the alternate_phone# of the recipient is not known &
the home phone# of the recipient is known

THEN: set the target of the ca ' to "home phone#" &
set the status of the call “o "tc be initiated';

RULE Y [how to handle an unanswered call if no other
phone numbers are known]

IF: the status of the call is "not answered" &
the alternate_phone#f of the recipient is not known &
the home phonef of the recipient is not known

THEN: set the desired_ placement time of the call to
currenttime + 30 [minutes] &
set the status of the call to '"to be initiated";

We note that since this 1s a rule set in which the order of the rules
is not 1important, the user may include these rules anywhere, e.g., at
the end of the existing rule set. We believe that a computer-naive
user might well not have easily accomplished the initial eight-rule
set to handle his telephone calls, but given that set as an initial
starter package--which establishes the vocabulary and basic logic of
the appron_n--we can imagine him adding Rules X and Y by copying the
phrases of the original rules with some minor repackaging and modifi-
cation. This assumpiion has not yet been tested with actual computer-
naive users, but it is part of the RITA design philosophy that this

type of incremental enhancement to existing user agents be allowed.

-40-

The following is an example of a trace of the above rule-directed
user agent in operation. Although various amounts of detail of the
operation of this agent might be shown, we show here only the names
of rules whose LHS patterns were discovered to be '"true," i.e., matched
by data 1n ihe context, during a hypnthesized operaticn of this agent.
We assume that initially there exists in the context 4 "recipient"

with the attributes and values shown at the beginning of this appendix.

Rul: applied Comment Interaction With User
Rule 1 creates call object
Rule 2 invokes rulies for

sending a call to
the phone system

Rule 5 not answered, so try
alternate number

Rule 2 alternate call tried
by invoked rule set

Rule 6 not answered, so set up
to retry primary call
30 minutes later

Rule 2 after 30-minute delay,
primary number tried
by invoked rule et

d

Rule busy, soc set up to

retry call 2 minutes
later

Rule 2 after 2-minute delay,
primary number tried
by invoked rule set

Rule 4 call is answered "Bob Jones has been reached
at his/her primary phoref.
Please pick up your phone,

The user could cf course monitor th2 progress cf calls by inserting
additional action clauses into those rules that set up a call to be

retried later; these action ciauses could record statements such as:

"Busy signal cn your call to Rob Jonee. Will retry in 2 min."

"No answer on your call to Bob Jcmes. Wili retry in 30 min.”

1f such interaction 1is too verbose, the user has the optior of periodi-

cally interrupting the agent and inquiring as to the current values of

the status and desired placement time of the call,

GOAL-DIRECTED OPERATION

As an examle of goal-directed monitor operation, consider a set
of rules which performs the task mentioned in the previous subsection:
deciding whether a particular 'desired placement time,' within the
time zone of the recipient, for a call is within or outside schedulcod
business hours, or during the lunch hour. In describing the logic
to be used in making this decision, the following ohjects, attributes,

and values will be used as the vocabulary:

Object Attribute Sample Values Comment
recipient phone# "(217) 393-0411" area code is <harac-

ters 2-4 of the
phone rumber

areacode 215 extracted [rom phone
nunber by rules

time ctiset 15", etc. time offset of re-
cipient's local
time zone from
Greenwich Mean Time

caller areacode 418" area code of ealler

time of fset 13", etc. time offset of cal-
ler's local tiue
zone from CGreen-
wich Mean Time

call desired_placement time "75/7/20 1345" caller's local time

vime desciiptor "within bus. hrs' determined by re-

"cutside bus. hrs" ciplent': locai
"tunch hour" time
recipients local_time "75/7/20 1545" translation of de-
sired placement
time invo recipi-
ent's local time
timezone name "Eastern"
"Central"
"M~ atain"
"acifie"
time offset Y12, ete. from Creenwich Mean
Tire
areacode set ("201", "215",...) sct of area codes in
that time zone
NUTE: We assume there ave multiple objects . type "time zone' in the

context, each having specivic dara about one time zone of interest,

RS TR

e L

-42-

For simr ir i1 this example, we have shown only one "phoneft'" for the
recipient, : “er than the three possible numbers used in the previous
example. [n practice, the area code would be selected from the target
phone number. We are also ignoring thc calendar date of the call,
which might be used to distinguish weekdays from weekends, etc.

The type of deductive lecgic needed to derive the time descriptor
for the call from other available information can be diagramwmed as

follows:

Te know the call's time descriptor, w: need to know*

o the recipient's local time (corresponding to the
call's desired placement time), end to know
that, we need:

o the call's desired placement time, which 1is
available, and

) the caller's time offse , which 1s available,
and

o the recipientis *ime offset, and to know that
we need:

o the recipient's tine zone, znd to know
that we need:

o the rerlplent's area code, which is
available.

The above type of logic is well suited tc a goal-directed approach.
The fnllowing rules encode the process. Their operation is triggered

by the actlon clause: DELUCE the time descriptor of the call,

[RULES FfOR DETERMINING THE TIME DESCRIPTOR FOR A CALL]

Rule A [when te s~t the descriptor to "lunch hour"]

IF: the recipients local *ime of the call i{s graater than or
equal to 1200 «
the recipients local_ time of the call is less than or
equal to 1300

THEN: set the time descriptor of the call to "lunch hour";

Rule B

IF:

THEN:

Rule C

IF:

THEN:

Rule D

IF:

THEN:

Rule E

1F:

THEN:

Rule F

1F:

THEN:

Rule G

IF:

THEN:

~43-

[when to set the descriptor to "within bus. hrs']
the reciplents_local_ time of the call is greater than or
equal to 080C &
the reciplents_local_time of the call is less than 1200

set the time descriptor of the call to "within bus. hrs";

[another "within bus. hrs" possibility]
the recipients local_time of the call is greater than 1300 &
the recipients_local_time of the call is less than or
equal to 1700

set the time_descriptor of the call to "within bus. hrs";

[when the descriptor is "outside bus. hrs"]

the reciplents local_time of the call is greater than 1700 OR
tne recipients_local time of the call is less than 0800

set the time_descriptor of the call to "outside bus, hrs';

[how to compute the recipient's local time]

the time offset of the recipient is known &
the time offset of the caller is known &
the desired_placement time of the call is known

set the reciplents_local_time of the call to
the desired placement_ time of the call +
(the time offset of the caller - the time cffset
of the recipient);

[how to compute the time offset of the recipient]

the areacode of the reciplent 1s a wember of the
areacode_set of a timezone (T)

set the time ~ifset of the recipient to tt2 time offset
of the timezone (T);
[how to ccmpute the time offset of the caller]

the areacode of the caller is a member of the
areacode_set of a timezone (T)

get the time offset of the caller to the time offset of
the timezone (T);

bl

Rule H [how to find the area code of the recipient]
IF: the phone# of the recipient is known

THEN: set the areacode qf the recipient to substr(2,3, phone# of
the re~ipient);T

Tc a programmer, the above rule set may seem an excessive amount of
verblage to encode rather simple logic. However, the rule set pos-
sesses (at least) two important features: 1t can be modified and ex-
tended quite easily, and a monitor can use 1t to give an explanation
of its behavior.

This rule set could be extended, as mentioned above, by adding
rules for determining whether a date is a weekday or a weekend. The
given rules for setting the time descriptor to either "within bus. hrs"
or "lunch hour" would then be given an additional clause requiring the
condition that the date of the call be a weekday.

As an example of possible trace information which could be gen-
erated from the above rule set in response to a user's requests, con-
sider the following excerpt of dialog. (RITA's responses are shown

capitalized only to distinguish them from the user's comments.)

User RITA
What did you do?

THE TIME DESCRIPTOR OF THE CALL WAS SET TO "outside bus. hrs"
Why?

BECAUSE RULE D WAS APPLIED:

IF: THE RECIPLENTS_LOCAL TIME OF THE CALL IS GREATER THAN 1700 OR
THE RECIPIENTS LOCAL TIME OF THE CALL 1S LESS THAN 0800

THEN: THE TIME DESCRIPTOR OF THE CALL IS "outside bus. hrs";

+
We assume the availability of a "substring' function; substr(i,n,x)
extracts n cheracters from string x starting at location {i.

What was the recipients local_ time of tne call?
1745

Why? {interpretea as: hcw did it get set to that time?]
BECAUSE RULE E WAS APPLIED:

IF: THE TIME OFFSET OF THE PECIPIENT IS KNOWN &
THE TIME OFFSET OF THE CALLER IS KNOWN &
THE DESIRED PLACEMENT TIME OF THE CALL IS KNOWN

THEN: THE RECIPIENTS LOCAL TIME OF THE CALL IS
THE DkSIRED PLACEMENT TIME OF THE CALL +
(THE T1ME_OFFSET OF THE CALLER - THE TIMT OFFSET
OF THE RECIPIENT);

What was the desired placement time of the call?

..stcC,

We note that in additioa to building a user's confidence in, and
familiarity with, the operation of his system, the "why?" facility
also helps him create and debug new or modified rule sets. Although
at a high level, he is still programming and probably must debug in

some form whenever a significant change is made to a rule sef.

e e am—

REFERENCES

Anderson, R. H., and J. J. Gillegly, Rand Intelligent Terminal Agent
(RITA): Reference Manual, The Rand Corporation, R-1808-ARPA (to be
published).

Davis, R., and J. King, An Dverview of Production Systems, Computer
Sciences Department, Stanford University, STAM-CS-75-524, October
1975.

Griswold, R. E., and M. T. Griswold, 4 SNOBOL-4 Primer, Prentice-Hall,
Inc., Eaglewood Cliffs, N. J., 1973,

Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their Relation
to Automata, Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1969.

Miller, L. A., "Naive Programmer Problems With Specification of Transfer-
of-Control," Proceedings of the National Computer Conference, Vel.
44, AFIPS Press, Montvale, N. J., 1975, pp. 657-663.

Moran, T. P., The Symbolic Imagery Hypothesie: A Production System
Model, Computer Science Departmwent, Carnegie-Mellon University, Pitts-
burgh, Pa., December 1973.

Ritchie, D. M., and K. Thompson, "The UNIX Time-Sha.lng System,' Com-
mmications of the ACM, Vol. 17, No. 7, July 1974, pp. 365-375.

Shortliffe, E. H., S. G. Axline, B. G. Buchanan, T. C. Merigan, and
S. N. Cohen, "An Artifical Intelligence Program to Advise Physicians
Regarding Antimicrobial Therapy,’ Computers and Biomedical Research,
Vol. 6, 1973, pp. 544-5€0.

Shortliffe, E. H., S. G. Axline, B. G. Buchanan, and S. N. Cohen, ''De-
sign Considerations for a Progrum to Provide Consultations in Clinical
Therapeutics,'" Proc. 13th San Diego Biomedical Symposiwm, February
46, 1974, pp. 311-319.

Shortliffe, E. H., MYCIN: A Rule-Based Computer Program for Advising
Physicians Kegarding Antimicrobial Therapy Selection, Computer Sci-
ence Depertment, Stanford University, Stanford, Ca., STAN-CS-74-465,
October 1974. (Also available as Stanford Artificial Intelligence
Laboratory Memo AIM-251. A condensed version will be published as
MYCIN: Computei’-based Medical Consultations, American Elsevier Pub-
lishing Co., Inc., New York, 1976.)

Shortliffe, E. H., and{ B. . Buchanan, "A Model of Inexact Reasoning
in Medicine,'" Mathematical tiosciences, Vol. 23, 1975, pp. 351-379.

Preceding page blank

—48-

Short1iffe, E. H., R. Davis, S. G. Axline, B. G. Buchanan, C. C. Green,
and S. N. Cohen, '"Computcr-Based Congvltations in Clinical Therapeu-
tics: Explanation and Rule-Acquisition Capabilities of the MYCIN
System," Computere and Biomedical Research., Vol. 8, 1975, pp. 303-
320.

Swinehart, D. C., COPILOT--A Multiple Process Approach to Interactive
Programming Systems, Computer Science Department, Stanford University,
Stanford, Ca., STAN~CS-74-412, July 1974.

Waterman, D. A., "Generalization Learning Techniques for Automating the
Learning of Heuriatics," Artificial ntellijence, Vol. 1, No. 1 and 2,
1970, pp. 121-170.

Waterman, D. A., PAS-II Reference Manual, Cﬁmputer Science Department
Report, Carnegie-Mellon University, Pittsburgh, Pa., June 1973.

Waterman, 0. A., Adaptive Prcduction Systems, Psychology Department,
Carnegie-Mellon University, Pittsburgn, Pa., CIP Working Paper 285,
December 1974.

