
AD-A022 053

RAND INTELLIGENT TERMINAL AGENT
(RITA): DESIGN PHILOSOPHY

R. H. Anderson, et a1

RAND Corporation

V

Prepared for:

Defense Advanced Research Projects Agency

February 1976

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

■ ___^____^__

I .

Best
Available

Copy

UmXAbMHtU
SECURITY CLASSlftCATlOM OF THIS f AC (IThmn D >t» Knffd)

REPORT DOCUMENTATION PAGE
I. REPORT MUMOER

R-1809-ARPA

HEAD INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO i. RECIPIENTS CATALOO NUMBER

4. TITLE (mnd S.,bii,}9)

Rind Intelligent Terminal Agent (RITA): Design
Philosophy

5. TYPE OF REPORT ft PERIOD COVERED

interim

€■ PERFORMING ORC. REPORT NUMBER

7. AUTMOR(«;

R. H. Anderson and J. J. Gillogly

8. CONTRAC T OR G^ANT NUMBERC«)

DAHC15-73-C-0181

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The Rand Corporation
1700 Main Street
Santa Monica, Ca. 90406

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

»5. CONTROLLING OFFICE N "F AND AODRFSS

Defense Advanced Research Projects Agency
Department of Defense
Arlington, Va. 22209

:2. REPORT DATE

February [976
13. NUMBER CF PAGES

>3L
U. MONITORING AGENCY NAME ft ADORESV' dUlmrmnt Irom Controlling OiUc9) 15. SECURITY CLASS, (ot Ihlm report)

UNCLASSIFIED

»5«. DECLASSinCATION/ DOWNGRADING
SCHEDULE

I«". DISTRIBUTION STATEMENT (ol Ihlm /••porl)

Approved for Public Release; Distribution Unliniited

»7. DISTRIBUTION STATEMENT (ol th» mbifrmct »nterad In Block 20, It dltterenl Irom Report)

No restrictions

I«. SUPPLEMENTARY NOTES

'S KEY WORDS (Continue on revetee elite il neceeemry mnd Identify by block number)

Data Processing Terminals
Computer Programs
Man Machine Systems
Input Output Devices
RITA

20 ABSTRACT (Cetnilnum on revere* elde It necmeeMty and Identity br block number)

see reverse side

C^D | JA.«"»! W3 COITIOH Or I NOV6» ISOBSOLETE ?
UNfLASSIFICD

• CCUMTY CLAXSfF«C.*TrOf« OF THIS PAGE (Then Dele tnlered)

min lü^miärtiiiiiii tm irii _ , ij Müm .1 g 1MtÜ IMiiaitlMiliil MÜI m^ ■111 \\ ^.mrt-n ■r-nliüi<<iHiH%ir--<«i. i i

SECUntTY CLASSIC IC A riOW Or THIS PAOtr»^«n D»tm Bnl»r*ty

A description of the design constraints, design

requirements, and overall design philosophy guv1' g

the implementation of the Rand Intelligent Terminal

Agent (RITA). PITA is a set of computer programs

residing in a PDP-11/45 minicomputer. These pro-

grams are capable of acting as a "user agent"

which can perform a variety of tasks, under either

direct user control or semi autonomous operation

over extended periods of time. The RITA system

is designed to be widely applicable as a stand-

clone computing resource for local text manipu-

lation, as a limited heuristic modeling tool, and

as a front end to remote computing systems and

networks. Operational features in the current

(January 1976) version of RITA are described.

References. (JDD)

II

MNri A^TPirn

in ■!! Mr i^^iäM """--- ^ .„.. .-..,,:, ^Tm-im^m-\ iMl r ■ ■ i ii I llrtMfur' - ■' ^-—,i..,.-«r ^ »nnrrtT.-rm.i IM^W

085076

CO

O
<M
01
o

ARPA ORDER N'O.: 189 i

6P10 Distributed Information Systems

R-1809-ARPA

February 1976

Rand Intelligent Temiinal Agent (RITA):
Design Philosophy ^ ,.

R. H. Anderson and J. J. Gillogly ' ' n ^j
1 . ,.,■-. 18 B« ill

j'L

A

A Report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

REPROOJCED BY

NATIONAL TECHNICAL
INFORMATION SERVICc

U S. DEPARTMENT OF (OMMERCE
SPRINGFIELD, VA. 221H

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SANTA MONJCA. C A. «MUOfc

A— - - - -^. ^aiaMirnitlliaä^fc^M ilWIi^Vi |-aiMiH«i in ■ i -— —■■n ^ l MiTttMlMMMflMHiamiMiii i -—^ -■- - <irtft-filf'■■■»!■ iJ" ■■--^- ■

The research described in this Report was sponsored by the Defense Advanced
Research Projects Agency under contract No. DAHC15-73-C-0181. Reports of
The kunö Corporation do not necer.iarily reflect me opinions or policies of tho
sponsors of Rand research.

'-.•>:

X I*

l|<u

fn^ffl*^ i iiiiai ,~^j* innirtiMii i

-lli-

PREFAC^

Members of Rand's Information Sciences research program are cur-

rently implementing a set of computer programs called the Rand Intel-

1igent Terminal Agent, or RITA. This research effort is part of a

larger research program on advanced intelligent terminals which is be-

ing funded and coordinated by the Infortration Processing Tech^ques Of-

fice (1^10) of the Defense Advanced Research Projects Agency (ARPA).

The present report is one of a series documenting the design and

implementation of the RITA system. It presents the overall design

philosophy guiding the work in progress, and is intended fo^ a broad

audience. The report la neither highly technica nor dependent on other

reports in the series.

The RITA syster is designed to be widely eppllcable as a stand-

alone computing resource for local text manipulation, as a limited

leuristic modeling tool, and as a front end to remote computing «r/sterns

and networks. As such, it shoold be useful to persons involved with

the design of interfaces to comput sr networks for logistics, maintenance

scheduling and control, command and control systems. Intelligence col-

lection and dissemination, and remote accessing of large data bases.

It should also be relevant for designers of software systems supporting

administrative and command functions.

' • yrffiifltffflllliMÜWBMMliaill » ■■■■ninn.i

-v-

SUMTARY

Thü Rand Intelligent Terminal Agent (RITA) Is a set of compucer

programs residing in a ?DP-ll/43 minicomputer. These programs are ca-

pable of acting as a "user agent" which can perform a variety of tasks»

both under direct user control and operating semlautonomously over ex-

tended periods of time. AmDng these tasks are (1) filing, retrieving,

and editing of data on local storage files, (2) handling interactive

dialogs with external infermation systems available over either tele-

phone lines or the ARPANET, (3) providing local tutorial functions and

error-checking of inyut data, and (A) heuristic modeling of a limited

subjective set of relationships.

For a user agent to be helpful to persons who are not programmers

or "computer sophisticates," it musr in our opinion (1; be capable of

explaining its behavior upon request, (2) be capable of having its be-

havior modified by the user hiniself, (3) be able to be governed by sets

of heuristics stated as rules, rather than as formal algorithms, and

(4) retain a memory of tasks assigned, progress, schedules, and dead-

lines in spite of either scheduled or unscheduled system maintenance

periods or "crashes" (unplanned system failures requiring execution

of a restart procedme). Tit» RITA system meets these design objectives

primarily by using production systems: sets of predicate-action rules

operating upon a data base under ihe guidance of a rule Interpreter,

or monitor,

RT.TA's predicate-action rules are stated in an Englxsh-llke lan-

guage having a restricted set of options. The data base consists of

a set of objects, each having a set of named attributes. Each attri-

bute may in turn have either a scalar value or set of values associated

with it. The form of the rules and the data base are deliberately sim-

ple to allow understanding of their structure by "computer-naiv.:" users.

Each production rule may be thought of as a heuristic guiding the be-

havior of a user agent. The RITA monitor is capable of either a

pattern-directed scan, In which the piedlcates of rules are tested for

applicability, or a goal-directed mcje, in which the action parts of

rules are scanned for relevance in achieving a specified goal.

^^^^^^ftjl^rmfti, ' '-' ^.■^.-^lr*.,^MnmmWi., ii^lrtMHtfiiumiaii ■ -

-vl-

The RITA system design consists of (1) a kernel containing the

monitor, data base, and rules, and (2) a front-end module with text-

manipulation capabilities tor the creation and editing of rules, and

a set of commands tor the initiation, interruption, and querying of

user agents, A basic form of RITA is currently operational, but work

is still under way on several, design features discussed In this report.

Severfil examples of rule sets are given to illustrate both pattern-

directed and goal-oriented - odes of operation.

I MÜllnnürtii^i7 nn, n, m , n fcMMir—' iiianiMMMia

-vii-

ACKNOWLEDGMENTS

Robert Greenberg is responsible for many key features in the

design and Implementation of RITA's user interface module and its

syntactic analysis routines. The project has received support and

encouragement f om our prior ARPA program manager, Dr. Craig Fields,

and our current program manager, Dr. Steve Walker; this support is

greatly appreciated. Very useful suggestions on improving '..he form

of this report were made during a careful and thorough review by

Rand staff members Dr. Gabriel Groner and Ray Pyles.

--—- —- !***,~.^

CöNTENTS

PREFACE ill

SUMMARY v

ACKNOWLEDGMENTS vi i

GLOSSARY xi

Section
I. INTEL!IGENT TERMINALS 1

IT D7.STGN CONSTRAINTS 6

III. DES ION REQUIREMENTS FOR AN INTELLIGENT TERMINAL AGENT ... 8

IV. PKVniCTION SYSTEMS AS THE BASIS FOR A TERMINAL AGENT 1C
J-arign Options In the Use of Production Systems 11
Ad "in t ages of Production System Use 17
Design Oecisions in the RITA System Implementation 24

V. CURRENT PROr-^M STATUS AND CONCLUDING REMARKS 32

Appendix
EXAMPLES OF RI'' \ OPERi» i .TON 35

REFERENCES 47

1 IIWIMMM"""'"^ '"-' "-- 1 1 1 l.i-MiMrrlinriiiar
,fc-'—' ■ — --•■-

-xi-

GLOSSARY

Algorithm

ARPANET

Backtracking

Backward-
chaining

BSV

Conflict set

Context

A complete set of instructions sufficient for the
accomplishment of a task. It is usually represented
as a computer program or a set of s.itements in a
formally defined language.

A nationwide data communication netw rk using leased
telephone lines linking over 50 computers of various
types. It employs a digital "packet-iswitching"
technique allowing shared use of communication lines.

A method of operation for computer programs in which
failure to achieve a desired goal leads the program
to "bacic up" and try some other alternative at an
earlier point at which a choice was made. Back-
tracking is used by the RITA monitc when an attempt
is made no find a correspondence between objects
mentioned in the pattern part of rules and object >
in the data base. If a particular binding of data
objects to references in rules has been made by th«
monitot, and some later predicate is found to be
falsw for that particular binding, the system then
backs up b', uno'ing that binding and trying another
binding until either a successful one hes been
found or all possible bindings have been tried.

A mode of monitor op^r«ation in a production system
in which the next rulto cO be applied are chosen
because their action parts set attribute values
tested by a (sub) goal rule. Thus a chain of rel-
evant rules is created "backward" from a designated
goal rule. This mode of operation is an alterna-
tive to a pattern-directed mode.

"Backus-N c Form" — a formalism for describing
grammar rules. A set of such grammar rules defines
the syntax for a formal language. (A "foraal
language" is contrasted with a "natural language"
such as English, for which no known finite set of
grammar rules is sufficient tö describe completely
the syntax fe]t to be "correct" by a native-born
speaker.)

The sit of production rules each of whose pattern
part (LHS) evaluates to "true" at a particular time.
One or more of theje rules must be selected for the
subseq lent execution.

The data base which is part of a production system.
In RITA it contains an unordered set of data ob-
jects, each having named attributes with associated
data values.

i IHIM^-III -ii nrMiin — - -n- -^-'- -^-■——^-^--- -

-xli-

Context-free

Goal-directed

Heuristic

Level of
certainty

LHS

LISP

LR(1)

Microprocessor

A type of formal language whose f.yntax can be re-
presented by a simple grammar. 'Sec Hopcroft and
UllaiAn [1969] for a discussion rf fjrmal langucge i
and their properties

A method of operation in which the behavior of a
computer program is governed by its attempts to
achieve a specified goal. It aaually does this by
deriving a set of requisite stbgoals (and sub-
subgoals, etc.) until it reaches a set Df primitive
tasks which can be accomplished.

A "rule of thumb" to be used to guide behavior (of
a computer system or a persoi), hut which is not
guaranteed to always produce the desired soJucJon
under all or any circumstances. One method of en-
coding a heuristic to guide ß computer's behavior
might be as a RITA production rule.

A real number between -1.0 and 1.0 (Inclusive)
which can be associated with an attribute value to
indicate the degree of certainty in the correctness
of that value. The value 1.0 indicates absolute
certainty; -1.0 indicates certaintv that the given
value is not the correct one. Ir armediate values
indicate confirming (+) or discoafinning (-) evi-
dence has been amassed for a particular value.

Left-Hand Side of a production rule, consisting of
predicates to be evaluated.

A computer language and software system specializing
in the storage and manipulation of data consisting
of lists of items, Each item may be either a prim-
itive value or itself a list of items.

Minicomputer

An acronym for "Left to Right
look-ahead." This is a prope
Inning the syntax of e formal
in a LRO) language can be pa
in one left-to-righ*: scan of
that sentence by making decis
encountered based only on the
previously encountered and in
ahead" only one symbol to the
next symbol to be read.

A computer consisting of one or r^eral "chips"
containing large-scale integrated (LSI) circuits
or memory. The computer would thus probably be
extremely small (e.g., several cubic inches, ex-
cluding such components as the power supply).

A computer of modest size and cost, usuallv ranging
in price between $2000 and $100,000.

scan with i-symbol
rty of a grammar de-
lang^age. Sentences

rsed, or intarpreted,
the symbols comprising
ions at each symbol
sequence of symbols
addition by 'looking
righc — i.e,, to the

"--ttmriiiMhifiniiiii itihtefll

-xiii-

Monltor

MYC1N

iw York Times
Information
Bank

Object

Pattern-
directed

PDP 11/45

Production
rule

Production
system

A computer program which evaluates a set of prodic-
tion rules by testing predicates within those rules
and executing the corresponding actions specified
in rules that are found to be applicable.

A computer program developed by E. H, Shortliffe
and associates at Stanford University that advises
physicians regarding antimicrobial tnerapy through
an interactive dialog. It uses production rules
and a goal-directed backward-chaining mode of op-
eration; it is written in LISP. See Shortliffe
ec al. [1973, 197Aa, 1974b, 1975a, and 1975b].

An information retrieval service provided by a
subsidiary of t'.ie New Yoik Times Corporation.
Abstracts of «ri ides appearing in the New York
Times and selected other publications are available
ir f igita1 form via telephone lines through keyword-
based seüich requests.

In the RITA system, a datum consisting of a name
(or type), .md zero or more named attributes. All
attributes associated with an object must have
mutually distinct names. Each attribute has an
associater) value, which is either a character
string or a set of values.

A method of operation for production «ysttms in
v/hich the operation of the system Is governed by
testing of thff pattern part, or left-hand side,
of the production rules. Rules whose LHS evaluate
as true have their corresponding action part, or
RKS, executec.

A minicomputer produced by the Digital equipment
Corporation, with an add time of 300 nanosec and
maximum addressable storage of 131,072 16-' it
words.

A statement of the form:

If: predicate & predicate & ... predicate
12 m

Then: action & action & ... it action
1 2 n

Depending on the particular strategies incorporated
in the rule interpreter, or monitor, the actions
are (at least potentially) performed when all the
predicates are true. The predicates test various
objects and their attribute values within a data
base, or context.

A set of production rules, a rule interpreter (or
monitor), and a data base (or context).

^^^tmamtm g^m^taüt

-xlv-

Piotocol

ÄHS

RITA

Syntax-
directed
parser

UNIX

The set of commands and responses which constitute
allowable forms of communication between an infcrma-
tion system and an external user (which may be
either a peroon or another information system).

Right-Hand 31de of a production rule, consisting
of actions to be performed

Acronym tor Rand Intelligent Terminal Agent, a set
of computer programs residing in a PDF 11/A5 mini-
computer capable of acting as a "user agent" to
perform such tasks as handling interactions with
remote information systems and local text retrieval
and storage.

A computer program which receives as input the
formal grammar for a language (usually in the form
of a set of rules), and interprets strings of
characters according to the rules in that grammar.

An operating system for the PDP~11 minicomputer
developed at Bell Laboratories. See Ritchie and
Thompson [197A].

- nnte 11 irtiii m i ■< MI ■■in —

-1-

I. INTELLIGENT TERMINALS

This repent discusaes a design philosophy for a set of computer

programs expected to reside in an intelligent terminal. The programs

comprise what we call the Rand Intelligent Terminal Agent, or RITA.

What Is an "intelligent terminal agent" and why is it useful? The

answer involves many aspects of the way people interact with computer

systems as well as new alternatives becoming possible through advances

in both hardware and software technology. The following observations

concerning man/machine interaction and its supporting technologies

form the basis for our research:

1. Until recently, most users of information systems have been

either "computer sophisticates"— such as computer programmers—or else

users of systems, such as airline reservation systems, with a very lim-

ited eet of options. However, with the continuing rapid decline in ths

cost of computer hardware and data communications, many interactive

computer-based information systems are becoming cost effective for much

broader categories of users. These newer systems will greatly expand

the number of people interacting with computers in their daily activi-

tlves, and will give access to a complex variety of interactive proto-

cols, interfaces, command languages, and remote commuting systems.

People are going to need assistance in tailoring this variety of options

to their specific needs and especially in freeing them fvom routine in-

teractions and protocols which are not r14 tictly relevant to the content

of their task.

2. Projected computer hardware cost trends and advances in micro-

processor fechnology make it extremely likely that interactive computer

terminals can be produced within five to seven years cont£ining equiva-

lent processing power to a presenc-duy minicomputer, at a cost which

is reasonable^ assuming fairly intensive use of dedicated terminals by

profeseionals as part of their job.

3. It is important to have certain information storage and handl-

ing capabilities locally within the terminal itself:

-2-

Text editing and auxiliary functions such as the retrieval

and storage of textual information w.Mch is currently in

use, Thii service should be provided locally for the follow-

ing reasons:

High speed, reliable response. A local procepsor

can give "instantaneous" feedback to simple commands

(e.g., the "display next line" button) and such user ac-

tions vHS stylus pointing or dragging. A remote time-

shared computer cannot always give such immediate feed-

back, and the response time t^nds tc be somewhat erratic.

Lower cost. Through stand-alone operation for many

text-manipulation operations, use of external computers

and comnunication systems can be minimized. Also, routine

processing requiring the use of remote systems (e.g.,

for archival storage and retrieval of documents) can be

initiated by an intelligent terminal during off-peak

hours, when lower rates are usually in effect. We expect

that within about five years these sezings will more than

offset the coat of an intelligent terminal, at least un-

der conditions of intensive use.

Reliability, There are fewer serial componvnts,

each of which must be in operation, for the system to

be functional. (For example, use of a remote f.ext edi-

tor on ARPANET typically requires a local host, local

Interface Message P—.cessor (IMP), communication path,

remote IMP(8), remote host—all simultaneously opera-

tional.)

Security, A terminal with local processing power

can perform many needed data-manipulation operations in

a "locked office" stand- al&ne mode, witn no information

transmission susceptible to comprouiise.

Handling tutorial functions, answering queries for help, pro-

viding exercises, and giving local, imme Hate-feedback error-

checking on input commands and data. Inmediacy of response

(e.g., to simple input error conditions) la our piimt^y reason

for advocating that these functions be provided locally.

miMMtt ^ nii.WMfirdtr" ir "1 WaflBtÜlHH ■ I' l| I i — .r . im

-3-

If local computing power Is available within a terminal, several other

services can be provided at a small incremental cost. Such services

could include:

o Aid in Interfacing with external information systems, auch

as the ARPANET or New Y:>rk Tines Information Bank, where much

of the iiiteractlve protocol involves supplying ptandiird re-

sponses which are not directly relevant to the task being ac-

ccciplished. It should be possible to instruct an intelligent

terminal how to handle ouch interactive protocols automati-

cally, including instructions on dealing with certain error

conditions, so that these details need not be remembered and

handled manually by the us r.

o The ability to define and set in motion "user agents." Such

an agent could:

Look at a calendar cf events and start up services

for the user automatically at certain times and dates.

By manipulating calendar items, the human manager can

progressively r.odlfy the plan being executed by the ma-

chine. For example, by changing the due drte of a report,

the schedule will be automatically altered for reminders

and follow-up queries to persons making contributions.

It cfin monitor the occurrence of various types of

eventß, such as the arrival of a certain piece of net-

work "mail," or the occurrence of a certain datum in a

changing data base.

It can deliver "interactive letters" to other

users' terminals; these letters are capable of carrying

on a dialog with the recipient, while in the process ex-

tracting information from him in a standard format suit-

able for further automated processing. Figure 1 illus-

trites the possible operation of an interactive letter.

*
The idea of an interactive letter and the type of dialog shovn in

Fig. 1 art: taken from an unpublished manuscript by Thonws A. Stanclish
(U.C. Irv.'.ne), entitled "Scenarios for Use of an Intelligent Terminal,"
August U, 191U.

IrUi i i^rüi'WTYlnrl— •—■■■
-•-^^■■■Üliii,«"»! ■, i - - -w.^

-4-

Jones finds a message on Ms intelligent terminal
indicating that an interactive letter has been received
from Jane Smith. Jones Activates the terminal and it
starts to type:

Dear Billr
It is time to make plans for next year's project

budget, and Jack asked me to coordinate everything this
year. It would be helpful if you could answer a few
questions:

How many trips to the East Coast do you expect will be
required by you and members ot your staff? Number«

Here the letter stops for Jones to indicate his answer.
He places a quick telephone call to a key subordinate to
verify his plans, then adds other trips he knows will be
necessary, and types in "6". The letter continues:

Please give the names of consultants you expc to use
during tho next >ear, and the numbei of days' support
required for each of them. (When the list is finished,
respond to "Name" with a carriage return.) Name=

Rill looks at his plans for the forthcoming year, calls a
consultant whose availability was uncertain at their last
discussion, then types "A.C. Johnson". The letter responds;

//days=

Bill types "20", then repeats the cycle for several more
consultants, finally terminating with a carriage return as
a response. The letter then continues:

What is your estimate of your requirements for computer
services during the forthcoming year? Please give a
dollar amount. Answer=

Bill types "$48,000." and the letter concludes:

Thank you for your help. T hope to have a draft proj0ct
budget in your hands for review by next Wednesday.

Regards,
Jane Smith

Fig. 1 — Illustration of the iperation
of an i'-.t-'ractlve letter

fBÜi I ^ ruMinfiMir i

-5-

It could be responsible for managing transactions

between a number of ccmputerlzea services distributed

on a computer netvork, monitcrlng their successful ac-

complishment.

Ue believe that the desirability of the above list of services is

a compelling reason to explore the design of Intelligent terminal

agents capable of running in present-day minicomputers. Our work on

the RTTA system la aimed at developing a prototype agent system capable

of performing all of the above activities.

What specific system design requirements are implied by the above

discussion? The next two sections of this report list several design

constraintb wi :hin which this research is being conducted. Then, in

that context, we itemize a set of design requirements for an intelligent

termincl agent which we have distilled from the general characteristics

described above; the.0- requirements are the basis for our design deci-

sions during the implementation of the RITA system.

-■rriiwiM im-iw««»-' ^-J— m r-i-iiiMidüir ^ayimiiaiiii.aa»^^^^.^^^.^^ ,.:..„^^^-JM

-6-

II. DESIGN CÜNSTMINTS

There are a number of constraints on our design and development

of an intelligent terminal agent which are a natural consequence of

such factors as our source of funding and available computational re-

sources. Some of the most important of these are listed below.

.1. Tills research is being funded by ARP. • TPTO because of its

prospective benefits to the Department of Defense (DOD). A particular

aser group within DOD targeted by ARPA-IPTO £s an initial testbad for

intelligent rermin^l systems is analysts within the intelligence com-

munity. We therefore view our initial RITA system as an Intelligence

analyst's station, and characteristics of this user group (e.g., well-

educated and requiring text-roanipulstion tools and access to a variety

of external Information systems) have influenced our design decisions.

2. Because our concept of an intelligent terminal a^ent presup-

poses minicomputer-like power becoming locally available to a user,

the RITA system must be capable of running in a present-day minicompu-

ter. An additional reason for developing RITA in an existing mini-

computer is that the software might be capable of transfer directly

into a terminal of the future, if that terminal's built-in computer

copies, or emulates, the instruction set and architecture of RITA's

present host machine.

3. There is & POP 11/45 minicomputer at Rand for computer re-

search. It runs the UNIX operating system [Ritchie 1974] (developed

at Bell Laboratories) which supplies many relevant facilities, such

as time-sharing, interprocess communication, a system programming

language (celled "C") with many advanced facilities, a hierarchical file

systeu, and so forth. The PDP 11/45 with UNIX is the obvious choice

for th.* initial implementation of RITA.

4. An interactive man/machine interface called the Rand Editor

is under concurrent developmeut at Rand on the PDP 11/UNIX system.

This editor pro/idee excellent two-dimensional cursor-controlled text-

manipulation, editing, and storage facilities. We expect to integrate

the Rand Ecitor with the production system described in this report to

ii tMMttÜiltf iiimi

-7-

produce a more complete RITA system which will allow use of the text

editing facilities for the creation and modlficatlo.; of production

rules. The "text win low" concept embodied within t'.^e Rand Editor

should provide multiple windows for communicatior. with one or more user

agents, possibly running concurrently under the control of production

system monitors. (A recent doctoral thesis by Swinehart [1974] pro-

poses a similar but more elaborate form of inte active user interface

with mvltiple concurrent processes.)

. „jtMmm^&m^mmtmm^^mmmmmmm .mmmmm mmmmmm**

-8-

III. DESIGN REQUIREMENTS FOR Ag INTELLIGENT TERMINAL AGENT

We have extracted the following specific design requireroents from

the d^cusslon of general features in Sec. I, taking 1 ;to ccnsideration

the coridtraints listed in Sec. II.

1. Most users of such terminal agents will be computer-naive.

They will be given a terminal s>stfem which has been tailored to the

perceived needs of a cl^ss of users by application specialists who are

expected also to have programming skills. This basic system must be

capable of performing actions for the user and of explaining its be-

havior, upon request. (We feel that a computer-naive user will not

trust an intelligent terminal agent to perform complex tasks, such as

logging into remote computer systems for h^in to transfer data out of

his "mail" filest without his being able to C«K the agont what actions

were taU^n, and why.)

2. There must be a language through which the behavior of the

agent can be modified and extended by a user. Traditional programming

languages do not seem appropriate for this purpose because:

o The user will probably not be a programmer.

o The user is not expected to think in terms of algorithms as

a meais of instructing his terminal agent, but rather in terms

of sets cf rules, or heuristics, in accordance with which it

should operate. (These neurlstics w»!! be supplied explicitly

by the user, at least in initial VCVF'.W.ö of the system; in

later versicr.s, the system 'sight be capable of acquiring new

rules by example or through induction.)

o The nested control structures of programming languages are

unnatural and a source of error to computer-naive persons

(see Miller 1973 for a further discussion).

3. The agent must be capable of two-way communication both with

the user and wirh external systems (e.g., over dial-up telephone lines

or an ARPANET connection).

rr iifiiirttii^ai^MBiiittäM^i^iiii^ inn an aj^iJMgfrgMaiiMBlttlHMBM^BttBBaiMMM i- - - ■-imni. nwiimiinr i

-9-

A. It must be capable of running In a minicomputer.

5. The 8' tem must be capable of retaiuing a "memory" of tiske

assigned, schedules, deadlines, and so forth in spite of scheduled

maintenance periods or unscheduled system crashes.

6. The system should allow the retrieval, editing, and storage

of text, and have an understanding of caleadar and clock time to form

the basis for handling appointments, scheduling, and other time-

management tools.

'i^m*i:*a**milHruTi nujwmmm'mtMWrM-mur^u^timi :- «- i i i- -^~^*-i* li-JMltlflMiiaMM i n

A
-10-

IV. PRODUCTION SYSTEKS AS THE BASIS FOR A TERMINAL AGENT

The basis for our design of a systeir meeting the above requirements

is the use of prouuctlon systems. A production system consists of a

set of production rules, which operate upon a data base (which we call

a context), according to the actions of a rule ■': erpreter, or monitor.

For example, two production rules might be:

Rule 1

IF; there is a message whose status is "awaiting action" and
the Identification-field of the message is not in the set

of action-items of the user

THEN: put the identification-field of the message in the set of
action-items of the user;

Rule 2

IF: The latest-command of the user is "show action items" and
the state of the system is "command unfulfilled"

THEN: send the set of action-items of the user to the user and
set the state of the system to "command fulfilled";

These rules would be part of a larger set of rules governing a

a message-handling user agent. They might be interpreted by a monitor

that continually tests the "if" conditions in each rule of the set,

and executes the "then" actions in any rule whose conditions are all

Lrue. Assuming messages with various attribute values, such es an

identification field and status, are placed in the data b<*se by some

external (and possibly asynrvronous) process, the above rules would

update a set consisting of the identification numbers of all messages

awaiting action, and show that set to the user upon his request. Other

rules would themselves, or permit the user to, take other actions and

as a consequence change the status of the messages and remove their

identification numbers from the set of action items.

In the remainder of this section, we discuss some of the options

availible in designing a particular production system, itemize the

m^am -^..^.II i tmmm lUMllHtlill Hmmmrn, tmmm

-11-

advantages we see accruing from their use, and then discuss the partic-

ular design decisions we have made in the choice of rule fovtnat, moni-

or, and format of L context data base for the RITA system. The ap-

p*..-»dix to this report contains some examples of RITA rule sets and

traces of their operation. Our discussion generally follows that given

in the recent excellent survey article on production systems by Davis

and King [1975].

DESIGN OPTIONS IN THE USE OF PRODUCTION SYSTEMS

There is considerable variety in existing production system ap-

plications. The options available can be discussed under the headings

of their three main components: context data base, rules, and monitor.

Context Data Base

The simplest form of a context on which rules may operate is a

string of symbols. The rule tests for the existence of a substring

within the context, and supplies a replacement string to be substituted

for it if found. At the other extreme, the data base may be a complex

semantic network or other form of structured data base within which

rules test for patterns and upon which rul« actions perform operations.

The former type (i.e., string substitution) is often used by cognitive

psychologists to model low-level cognitive informacion manipulation

processes. Production systems which operate on complex daca structures

tend to have complex rules vhich are difficult for either humans or

other computer programs to decipher. This would be counter to the

spirit of the production system approach. Therefore, such systems must

be designed with great care.

An intermediate form of data complexity which has been found to

be useful, e.g., in the MYCIN system developed by E. H. Shcrtllffe and

associates at Stanford University [1973, 197Aa, 1974b, 1975a, 1975b],

is a context consisting of a set of objects, each of which has an as-

sociated set of named attvibutee, with each attribute having an as-

sociated value, or set of values. This form of data has b^en used in

innumerable LISP programs and is embodied in the property list mechan-

ism in that language. It is also a data for.n used in relational data

mMttmmimm mi i iniiHÜ mi limmliF - n-il1—-«iniiiTlMiri ! -Tr r ■» —— iriri..Tn-l -1 , -

-12-

bases, where each item of Information Is itored as a triple (attribute,

object, value). In this general data form, there are many design de-

cisions to be made which affect the resulting complexity of the data

base and the complexity of the actirns needed to operate upor t'.iat

dai:a. Some options are

o Can attributes take a single value? Or a set of values? If

a set, is it unordered or ordered, and what accessing options

are available for testing values and replacing values within

the set?

o Is an attribute value a scalar quantity? Or can it be (a

poiruer to) another object? T.l the latter, then the attribute

acts as a named relation between two objects, but without re-

strictions this feature can result in a data base having

pointers which form an arbitrarily complex di ected graph.

o Is there an external structure imposed oa the objects In the

context? The MYCIN c^ tem, for example, has found It useful

to place objects in a tree-structured context; this allows

incompletely specified object references within rules to be

bound to the "nearest" object within the tree to the location

at which the rule is currently operating.

o Can an attribute value have a probability or confidence level

associated with It?

o Do all objects have a unique Indentifler associated with them?

If not (for example, If ».here can be numerous Inscances In the

data base of an object called "block"), then how a^e specific

objects referenced9 Once a certain object has been referenced

by one rule, can that reference be passed, either explicitly

or implicitly, to other rules.;

n Can objects, and attributes of existing objects, be created

and deleted dynamically by the actions of rules?

Rules

A production rule consists of a left-hanci side (LHS) or pattern

part, and a right-hand side (RHS) or action part. The pattern part of

tfOMiftinii ■ lifBilüiiiiBMiii'iiiiri-nrr-iitiiBi-in- -i r ; — . ^-^.^ ^^^Tfr^immfflBiiw-■»■>■< 11

-1>

i rule chosen by the monitor is evaluated with resper*- to the current

cor.text. If it's true, the lorrtibpondlng action part \s executed, and

another rule is chosen tor evaluation. If it's f.-Tse, the actions are

not executed, and another rule is chosen. The simplest form cf rule

consists of symbol strings as both LHS and RHS, as mentioned above.

In this case, the context is a string, and the evaluation of the LHS

is merely a check whether the LHS is a substring of the context string.

If so, chat substring is replaced by the corresponding RHS.

The most geueral form of a rule contains arbitrary predicates on

the LHS, with oru. or na. .-e arbitrary funcuion calls on the RHS. The

predicates test -"or the existence of certain data, or relationships

among data» within the data base. The function calls on the rule's

RHS make changes to the data base (and perhaps perform other actions

as "side effects," such as emitting messages to external processes).

Several other options in the form of rules are noteworthy:

o String pattern/replacement rules, allowing variables and "don't

care" symbols as part of the pattern and replacement strings.

These rules are not unlike SNOBOL [Griswold 19 73] statements,

o Use of a stylized, limited language capable of interpretation

by a context-free syntax-directed parser for expressing predi-

cates and actions. This language might allow certain options

in testing and changing the context data base, but would not

permit arbitrary tests and actions whose effects on the data

base could not be interpreted by the monitor itself,

o An option simiJar to that above, but with L natural-language

front end capable of understanding rules - .itten by a user in

nacural English and of translating them into a stylized set of

predicates and actions. (This option Is exemplified by the

MYCIN system.)

Other options to be considered in the design of rules for a pro-

duction system are:

o Whether the rules are to be used in a goal-directed or pattern-

directed manner. A goal-directed system has a designated goal,

and the objective is to execute rules whose actions achieve

These technical terms are contained in the Glossary.

,.-■- ^^_. --. ■^^-— ., -iTi»iiitrtM*a^««aBM»MMrät^a^ w-, -■--_^.- . T,.| nrriT^rti i r->— --

-14-

that goal. A pattern-directed system, on the other hand, merely

tests the pattern part of rales chosen according to some scheme

by the monitor against the current context, and applies (one or

more of) those that match. To some extent, rules must be de-

signed to operate according to the characteristics of a particu-

lar monitor. For example, rules used in a goal-directed system

should not have act.'on clauses causing side effects. Such side

effects often cannot be undone when backtracking to try an alter-

native path in pursuit of the goal. The various monitor options

are discussed in the following subsection.

o The degree to which the rules capture discrete pieces of know-

ledge. It is advantageous in production systems to have the

rules as independent of each other as possible, since one of

the prime motivations for expressing process descriptions in

rule form is to be able to modify those descriptions easily,

and possibly even automatically. [f rules do not capture dis-

crete pieces of knowledge, JO ttiat they may be added or removed

easily without destroying the logic of the system, then many of

the advantages are lost.

o The readability of the rules. Are the rules meant for machine

consumption only, or or human readability also? An example of

the former might be:

FUN KA; h FUN 3(2) -> EXEC(G(X)) ;

An example of the latter might be:

IF: the prompt character of the remote system is "(3"

THEN: the name of the remove system . ' "tenex" (P=.7);

o What Is stored in rule for.n? It is most natural to state heu-

ristics in the for..! of rules, but it is also possible to store

data (e.g., "il he asks for x, give him y") and control informa-

tion (e.g., rules for choosing the next rule to test).

o Are all rules potentially applicable at all times, or is their

applicability limited, for example, by partitioning them (either

automatically or explicitly by the user) into sets, only one of

■BriH^SiBS^^^r i rrmmnto ■IIM »■TI.I -!-««-f iMf IN I ir ■ ■iniin \%timm ^^mm^mmli'^mM^\\mtmmm1mmitmmAi

-15-

which is applicable at any time? (Another method of limiting

the applicalility of rules is through ordered rule sets, in which

the applicability of a rule, is governed by its position within

that ordered set.)

Monitor

This discussion of monitor design options closely follows that

given by Davis and King [1975]. The basic control cycle performed by

a monitor consists of two phases: veocgnition and action. The recog-

nition phase involves selecting a single rule for execution, and can

be further subdivided into selection and conflict resolution. In the

selection process, one or more potentially applicable rules are chosen

from the set and passed to the conflict resolution algorithm, which

chooses one or more of them for execution. The options in monitor

design, then, can be discussed in terms of the above categories.

Selection. Rules can be selected by a LHS scan or a RKS scan.

In a LHS scan, each rule LHS is evaluated in turn. If this process

stops at the first successful evaluation encountered, then conflict

resolution is trivial. It is possible, however, to collect (into a

se': called the conflict set) all rules whose LHSs evaluate successfully.

(It is in fact possible to have Eultiple occurrences of a single rule

in the conflict set, if more than one set of bindings between objects

and attributes mentioned in the rule and data objects occurring in the

context make the rule's LHS evaluate successfully.) It is then neces-

sary co perform conflict resolution to choose the rule(ü) for execution

from this set.

Selection by a RHS scan can be considered a form of goal-oriented

operation. One specific item of information (an attribute of an object)

is designated as a goal. The goal of the system operation is to ex-

ecute the actions or. the RHS of rules that set this attribute value.

To this end, the LHSs of those rules are evaluated. If any such IMS

clause refers to an item of information not yet in the context data

base, obtaining that item becomes a subgosl. A RHS scan is performed

to find all rules that contain in their RHS an action clause which

creates that item of information. All rules meeting this criterion

are placed in ehe conflict set. This form of RHS scan is best

■TMiMwrrfr^m i trntmimm 1111 i ii jiM^MTIIiiiiiaMiifriirifTiiiirrM 1- ^ n— ■ ■'

-16-

exemplified by the operation of the MYCIN system of E. Shortliffe et al.

Interested readers are referred to the excellent description of MYCIN!s

operation contained in Shcrtliffe's lecent Ph.D. thesis [1974b].

Conflict resolution. If a conflict set has been created during

the rule selection process, conflict resolution is necessary to choose

which rule(s) in that set should be executed. Several possible cri-

teria for conflict resolution (suggested by Don Waterman of Rand) are:

o Rule order. There is a complete ordering of all rules in the

system, and the rule in the conflict set with the highest

priority is chosen,

o Data order. Elements of the data base are ordered, and that

rule is chosen which matches elements in the data base with

highest priority,

o Generality order. The most specific rule is chosen,

o Rule precedence. A precedence network (perhaps ccataining

cycles) determines the hierarchy,

o Recency "»rder. The most recently executed rule is chosen,

or the rule containing the most recently updated element of

the data base.

It is not necessary that only one rule be chosen for execution

fiom the conflict set. In MYCIN, for example, action clauses in rules

contain a certainty factor when creating an item of information. MYCIN

executes all rules in the conflict set, using the eorabined certainty

factors to achieve a combined judgment, which is reflected by data

values (with associated resultant certainty factors) in the context

data base.

Actiori, There are few options associated with the execution of

action clauses of successful rules by a monitor. Most actions set con-

text data values for suosequent testing by other rules. In production

systems it is conside7;ed poor for actions to have complicaced side

effects or to execute; arbitrarily complex programs, although side ef-

fects are sometimes necessary to perform such actions as communication

with an external process or system. One control-type actior. sometimes

allowed Is transfer of control to a different 32t of rules, which can

mäm^Mamäkmmaitmm n rirniiMm

~i7-

be considerad another "state" of the system, in which the behavior of

the system in each state is governed by a rule set. The VIS system of

Moran [1973] is one example of a system allowing such clustering of

rules.

Before discussing the particular design decisions we have made,

choosing from the large selection of options listed above, we will

consider next the advantages to be gained from using a production sys-

tem. The priorities we placed on certain advantages have had an im-

portant effect on our design decisions.

ADVANTAGES OF PRODUCTION SYSTEM USE

The following advantages are often cited as accruing from the use

of production systems. We have listed them in what we believe is an

approximate decreasing order of importance for the particular applica-

tion for which RITA is designed: namely, the construction of Intelli-

gent terminal agents.

1. Their explanatory capability.

P.eduction system rules are intended to be mod-
ular chunks of knowledge and to represent primi-
tive actions. Thus, explaining primitive acts
should be as simple as stating the corresponding
rule—all necessary contextual Information should
be included in i.he rule itself. Achieving such
clear explanations, however, evidently strongly
depends upon th* extent to which the assumptions
of modularity and explicit context are met.
[Davis and King 1975]

Figure 2 contains an example taken from Shortliffe [1975] of the highly

advanced explanatory capability of the MYCIN system. MYCIN is an excel-

lent example of the degree of explanatory power that can be achieved

through careful design and implementation.

2, Simple control structure. Experiments conducted by Miller

[1975] on various methods of transfer of control in programming lan-

guages have shown that ir-then-else nested conditionals and branch-to-

label control structures are serious sources of programming error.

MMMMS^Maniilii1 \wmmmi i i ^^^,, -1 „-■ „■A.nr äM^lfliMÜingii I

-18-

MYCIN: In light of the site from which the culture was
obtained, and the method of collection, do you
feel that a significant number of ORGANISM-1
were obtained?

"SER: Why?

MYCIN: [i.e.T Why is it important to determine if a
significant number of OkGANISM 1 were obtained?]

1.0] It is Important to find out whether there is
therapeutically significant disease associated with
this occurrence of ORGANISM-1.
It has already been established that

1.1] the site of the culture is not one of those
which are normally sterile, and

1.2] the method of collection was sterile.
Therefore, if

1.3] the organism has been observed in
significant numbers

then there is strongly suggestive evidence (.9) that
there is therapeu^ically significant disease
associated with this occurrence of the organism.

[ALSO: there is btrcngly significant evidence (.8)
tnat the organicm is not a contaminant.]

(RULE042)

The user may then query further about why this information
is Important (1.0]), in which case MYCIN would give a
similar explanation based on the rule that called this one.

Fig. 2—Illustratirn of the explanatory capability
of the MYCIN system

'* i iniKirMüfMMfc^ «ta.^ ... ,„_-.,. .--... . _ -rr-n i
"'- "TT iTlir ■■ i^ilinr ,

-19-

Miller also reports that a "procedure table" specification of control

led to much better performance by n dve programmers. Figure 3 illus-

trates the format of Miller's procedure table. It is very similar to

(and in fact partially derived from) produciion systems. Due "o t.\e.

simple control structure of production systems, especially of the LHS

scan type, we can imagine the following type of instructions being

nearly sufficient to introduce a user to ;:he operation of his terminal:

This terminal operates according to a set of

rules. Whenever it finds a rule that is true,

it applies thac rule. If you want to know why

it is asking you for some item of information,

or why it took some action, type "?" and it

will show you the rules It followed in tak ng

that action.

If, in addition, the rules themselves are in simple English so that

they are directly readable by a user, th«?^ •.;*.• believe he will find the

operation of this device quite understandable. Although the user will

of course not understand all the nuarces of its operation, he is at

least not bewildered at the start, and can add incrementally to his

understanding with experience. The user must realize, however, during

this initial introduction to t'ie system that there are nuances and that

he should not be overly complacent or trusting of system behavior.

A RHS scan backward-chaining system, although more complex in its

control structure, can give rational explanations of its behavior in a

manner that makes the flow of control among rules understandable.

Again, we offer the use of MYCIN by computer-naive physicians as proof

for this assertion.

3. Incremental addition of knowledge. With proper design, pro-

duction systems can allow gradual, Incremental addition of knowledge

and heuristics in a top-down manner. If the set of rules is unordered,

as is usually the case. In a RHS scan system and could be the case in

a i^HS sc^n mode, then new rules can be added to the set without concern

for their placement. Tf the mode of operation is LHS scan through an

mmmm iiunn-nn.»

-20-

jProcfcdure Table

Label Question ActionCs) Go To

Al Any card in input
box?

No: Stop

Look at next
card

Name on card has
second letter as
"Kot-L" or last
letter as "N"

Put card in box
/r(3, increase
Counter 1

Al

Put card in
BOX n

Al

Problem: Put a card in Box 3 if either the name
on the card has the second letter not "L"
or else the last letter is "N" (or both).

Count the number of cards in Box 3 using
Counter 1. Put the remaining cards in Box 2.

Fig. 3—Format of Miller's decision table,
with associated problem description

^Matfrtfrf--- aiii r-'-iiihMiiftir

-21-

ordered set of rules (choodlng the first true one encountered), then the

location of rules to be added within that ordered set becomes important.

For these reasons, we believe that unordered rule sets should be used

to implement at least those portions of intelligent terminal agents

whic^ are expected to be modified to any degree by the user.

An example of the operation of the MYCIN system shows the incre-

mental addition of knowledge. When a predicate on the LHS of some rule

in the MYCIN system needs an item of information, it searches for rules

whose RHS assign that datum. If such rules are found, their evaluation

is attempted. If there are no such rules, the system requests that

datum from ..he user. This provides a natural opportunity for the graa-

ual introriuction of knowledge and heuristics to the system. If the

user does not wish to continue supplying that datum to t'he system, he

has the option of giving the system a rule describing how to derive

that datum frnm other data within the data base. In conjunction with

this new rule, it might be appropriate for the user to give the system

other additional rules for acquiring information from external sources.

In this manner, gradual evolution of the behavior of the system takes

place to meet the needs of the user in his possibly unique environment.

4. Trainahility and learning. Assume production n.les are stated

in a constrained syntax so that their meaning Is understaadable by

machines, and that each rule is a "noninteracting chunk of knowledge

or behavior." Then it becomes possible for a computer program to create

rules in the proper format and insert them into existing sets of rules

to change the behavior of a production system. It might also modify

existing rules to change a system's behaviui.

Waterman [1970] hat. discusaed the creation of new rules from train-

ing information and the process of "blending" new rules into an ordered

set of existing rules. He has placed the trairing information a sys-

tem should receive (or extract) from a user into three categories:

a. Acceptability information: an acceptable decision for

a particular situation.

b. Relevancy inforraatjon: the situation elements relevant

to making this acceptable decision.

^^^-■^^ M ^^^ . .^^^^^-^.tTi, | I, i

-22-

c. Justification information: the reason the decision is

being made, expressed as an evaluation of these rele-

vant situation elements.

The relevancy and justification information is used to create the pat-

tern part (LHS) of a new rul*», and the acceptability information is

used to create the action part (RHS) of the new rule. The newly created

rule is called a training rule, Wateitnan gives an algorithm for decid-

ing whether to "blend" the training rule into an existing ordered set

of rules by using it to modify an existing rule or by adding it to the

existing set in an appropriate location.

In a recent paper, Waterman [1974] discusses several examples of

adaptive production systems, written in the PAS-II notation [Waterman

1973], in which all adapcivity is obtained by adding new rules to ex-

isting ordered rule sets, and training information ie generated inter-

nally rather than requiring feedback from a user.

5. Unified^ consistent structure. If a production system is con-

sidered as a programming language, it is one with only a single state-

ment type: a pattern-action rule. If, as we expect, it is as easy to

program and update intelligent terminal agents in production systems

as it is in ordinary high-level programming languages, then for this

application production systems satisfy Occam's Razor: they are the

simpler form.

In addition, it is possible co program significant portions of the

ioonitor (e.g., the conflict resolution strategy) in a production sys-

tem form, so chat the structure of the entire system becomes more uni-

fied; in that case, the monitor itself becomes amenable to modifica-

tion, and possibly to adaptive learning.

There are also some disadvantages in the use of production systems.

The two major ones are:

1. It can be difficult to code an operation in the form of a

production system, particularly for goal-oriented rule sets. Consider-

able thought must be given to the choice of objects, attributes, and

values by which a problem area is represented. (Howeverj the problem

MMi^imr-i ri'Mmmm*mm\\im'\mBmumt- ^Tmäfmmmm*mmmtämA*\im\ i i iriiiiam -

-23-

of choosing a good data representation is :ert inly not unique to

production systems; the problem lies more Ln trying to fit all appli-

cations into this particular procrustean bud.) One must also carefully

choose certain attributes uf objects to i< pre ent "state variables"

which encode the state of a computation OJI deduction. The values of

these state variables are tested by varicüj rules to trigger their

pocential applicability. In this manne., production systems encode

explicitly that which in ordinary high-level progranuning languages is

implicit in the nesting of control s.Jtements. For example, a tradi-

tional prograrrjuing language nested control structure such as;

if A then

if B then C

else if J then E; else;

else G;

might be encoded in ? production system in the following manner:

if A then state_l;

if F.ateJL and B th^n C;

ff state 1 and not 3 then state 2;

if state 2 and D then E;

if not A then G;

Su i expiicitness in a production system allows the desired relative

f tonomy of individual rule^, but at the price of requiring the pro-

grammer to create names for many intermediate statics »f his process.

In the RITA system, we hope to overcome this disadvantage by

having system experts create Initial systems and user agents having

general applicability. Individual users are expected, at least ini-

tially, to make only rather minor modifications and c .ncements to

lÜMÜI inn ! „ni,,.-—^—^^■*M^^**^"'-"-* ^--"- r. v«^-^'--rröiiTiWM

-24-

the basic system. Therefore, the vocabulary and overall design of a

user agent will .be established, providing many guidelines and examples

for the individual user,

2. Production systems are often inefficient. It is quite easy

to design systems in which the pattern parts of hundreds of rules are

tested against the data base before a successful match is found; ^.t Is

also easy in goal-oriented systems to pursue lengthy chains oi reason-

ing which are not useful. The same deductions may be recomputed re-

dundantly many times in separate logic paths, without awareness in the

-.ystem of the duplication of effort.

Our design of the RITA sy»cem has not been significantly influenced

by efficiency considerations. The simple user agents which have been

constructed to date (e.g., for handling File Transfer Protocol Inter-

actions on the ARPANET) have required only 30 to 40 rules and are not

inefficient. As more complex agents are constructed, we believe there

are a number of monitor enhancements that can be designed to Increase

efficiency (e.g., through hash-coded lookup tables to aid in finding

applicable rules) which can be added as the need arises. A system

called PSH, currentlv under development within the Computer Science De-

partment at Carnegie-Mellon University, is a testbed for a major study

of methods of obtaining efficiency In production systems.

With the above advantages and disadvantages in mind, and given

the options available in production system design and the design re-

qulre.nents derived from the particular application under discussion,

we car, now discuss the design decisioiis made to date in the implementa-

tion of the RITA system.

DESIGN DECISIONS IN THE RITA SYSTEM IMPLEMENTATION

Our design decisions in creating a production system for our par-

ticular needs are discussed under four headings: data base, rules,

monitor, and system architecture.

Data Base

The data base upon which RITA rules operate is called a context;

it consists of an unordered set of objects. Each object has a name,

-25-

or type, and there can be more thm one object In the context of the

same type. There is neither an external structure imposed on the set

of objects in the context nor a requirement that each object have a

unique identifier associated with it. Each object can have one or

more named attributes, and all attributes attached to an object must

have names which are mutually distinct. Each attribute has an as-

sociated value, which is either a character curing ov a set of values.

Objects, attributes, and values may be created or deleted dynam-

ically by tb*> actions of rules. If an attribute being tested by a

rule's LHS predicate does not exist, it is considered to be "not known.'"

It is possible by a rule action (except within a goal-oriented monitor)

to reset an attribute having a value back to the "not known" status.

Goal-oriented monitors may not reset the vc^e of any attribute; they

may only set values which were previously not known. This restriction

is necessary to preserve the integrity of infuimation upon which chains

of logical reasoning are based.

Vs an option, it is possible to attach a "level of certainty" to

a scalar attribute value as it is being set. In this case, an attribute

can have several different values arsociated with it, each with a dif-

ferent level of certainty. Levels of certainty attached to values are

adjusted as additional positive or negative certainty factors for those

values are asserted by the action of rules. Our planned use of cer-

tainty factors has been strongly influenced by their implementation

in the MYC1N system. Our implementation is expected to differ in some

details, but a discussion of those differences will not be presented

here.

Figure 4 concains examples o' object types aid associated attri-

bute names and values which mighv be used in a use r agent within the

RITA system.

The data structure we have chosen is not the most general one

possible, (An obvious extension allowing much raore generality would

be to allow references, or pointers, to objects as attribute values.

As mentioned earlier, this would give the capability for dirbitrarily

named relations among objects.) As with other iniplementation deci-

sions, we have chosen what we consider to be tiie simplest format and

jmiiltaiiliniiliiMiiiMMTirrir - • " ■■■»■rririfTilliiiiliiiTiniiir-riinrifiTii'ii ' i ' n in

-26-

object type

file

site

known_j>erson

attribute name

name
directory
site_id
size
owners name

id
operatlng_system_name
inachine_type
guest_account_name
guest account_passv;ord
known-user-set

name
primary site id
primary_directory
primary_j)as sword
secondary_slte Id
secondary_ slte_dlrectory
se^.ondary slte_password

sample value

"foo.baz"

"rar.d-isd"
20000
"gillogly"

"rand-ir1

"unix"
"pdp-il/AS"
"net^uest"
"netguest"
("jjg", "rha",
"rsg")

"gillügly"
"rand-isd"

"jjg"
"whumpus"
"cmu-lOa *
"gllSOaK"
"foo"

Fig. 4—Examples of RITA object types,
attributes, and values

^ü JiBiMiifi i -iMhiniiriiiiilülliMiiBli ij^lggUg^gl. --^-^tiTi-i-MMiaiiflätiiiiii

-27-

conceptual structure which allows the description of situations and

heuristics related to Intelligent terminal agents. With more experi-

ence in using the RITA system^ some of these decisions are almost cer-

tain to change.

Rules

RITA rules are expressed in a finite syntax (technically, parsab1e

by an LR(1) algorithm). A complete syntax chart for RITA rules as

they now stand is given in a companion document ['nderson and Cillogly,

to be published]. We have chosen a syntax patterned after the general

English output form generated to display MYCIN rules to a user. We

believe that this syntax is simple enough to be read and written by a

computer-naive user. Figure 5 contains several examples of clauses

which can be sed in RITA rules; more complete examples are contained

in the appendix.

Such facilities aü string-manipulation are provided in the RITA

system by a set of primitive functions which may be called in the pre-

dicates or actions of rules.

We note that all RITA rules, including those to be interpreted by

a goal riented monitor, are expressed in the same syntax. MYCIN, on

the other hand, uses a goal rule hand-coded in LISP which does not

follow normal K.JIN conventions.

We have decided, for simplicity, not to implement multiple, rule

sets which limit r\e applicability of a rule to those times when its

set is the "current state" of the system. From our experience to date

with the syster-, the additional mechanisms required for explicit trans-

fer of control among named rule sets does not seem justified by ad-

vantages in operating efficiency.

Monitors

We have found that different types of monitors are necessary for

various specific tasks and situations, and that no one monitor type is

sufficient for our purposes. For example, Interactions with an ex-

ternal iiiformatlon system to handle routine protocols are best handled

by a LHS scan monitor, acting in what might be called a "stimulus-

response" mode. On the other hand, '' is sometimes necessary for an

ifammm i iiiiiMMniiiii IIIIIIII MII ■«m-n i imrilffimiritTiiiririiii -^-*„.--< tw-^a»^.

-28-

Lfcft-hand-slde predicate clauses

IF; the name of ^he system is "unix"

IF: the name of the system Is the name of the
des ired__sys tern

IF: the n~~ie of the system is not known

IF: there is a response w ose arrival_time is less than
the max expected delay of the system

Righ:.-hand-side action clauses

THEN: set the name of the system to "net access program"

THEN: set the val^d_id_set of the remote_site to the
id of every site whose id is known

THEN: deduce the guest account name of the remote site

THEN: create a remote site whose id is "crou-10a"

THEN: receive the next line from the system_IO__pipe
as the value of the response

THEN: send "Which rule do you wish to see" to the user

THEN: return success

Fig. 5—Examples of RITA rule clauses

^TM1#JMMT rfr iTTri rirfU i ._ ta

-29-

Intelllgent terminal agent to make deductions (e.g., about the n»8t

likely site on the ARPANET for a particular person to have a mailbox,

given that person's attributes). Deductions are best made by a TdlS

scan, goal-driven monitor.

Consequently, we have Implemented several different monitors:

o LHS scan, with ordered rule set

o Lhb scan, with unordered rule set

o RHS scan with backward-chaining (Implicitly, a rule set is

treated as unordered)

Nothing in our Implementation precludes the development of other moni-

tors if the need arises. The top-level monitor In a user agent will

use a LHS scan with an unordered rule set; however, it is possible for

the following action clause of some rule to be executed:

DEDUCE attribute OF object.

This clause triggers the operation of the RHS scan backward-chaining

iponltor with the goal of deducing the value of the named attribute.

Only rules in the system which are designated as RHS scan rules are

used during the backward-chaining process to deduce the required in-

formation. Upon completion of a deduction, control reverts to the

action clause of the LHS scan rule following the DEDUCE clause, or if

there are none, to the next applicable rule chosen by the LHS scan

monitor. It is not possible to explicitly invoke an LHS scan »nonitor

during a goal-directed deductive operation.

The design of a goal-oriented backward-chaining monitor involves

many unique decisions not encountered in LHS-driven monitors. A« men-

tioned earlier, cur goal-directed monitor has been heavily influenced

by MYCIN, but differs from that of MYCIN primarily in the following

respects:

1. In pursuing a goal without specified levels of certainty in

rules, our search terminates when the desired information Is first

t— - rlr—^^-..■^, ^^^^B^^.,--,--., - - -^ ^^ .^a^BtfcjjBIMaMÜ

-30-

found (rather than pursuing all possible paths, as in MYCIN, before com-

bining the certainr.y factors associated with all results found).

2. The binding of objects and attributes mentioned in rules to

objects in the data base is governed in MYCIN by a data hierarchy. The

data mentioned in a rule are bound to a datum at a level in that hier-

archy dependent on the "lowest" object mentioned in the rule. From

that binding, a context is inherited from the hierarchy which can re-

solve many possible ambiguities and search requirements. In RITA, on

the other hand, our data context is not structured. Consequently, no

implied context is used to resolve searches.

3. In MYCIN, an automatic search is performed to fill in certain

values of attributes of a newly created object. In RITA, values of

attributes are searched for only if needed to satisfy a subgoal.

4. RITA and MYCIN both have a type of LHS predicate clause which

acts like an existential quantifier:

IF: there is a block whose color i»? blue ...

The RITA system performs a complete backtracking scan in an attempt to

satisfy nested i .istentials. Ultimately, if necessary, all possible

relevant data bindings will be attempted to satisfy a set of conditionals,

MYCIN does not perform such backtracking under similar conditions.

Sysuem Architecture

Our implementation of RITA has been influenced by the factors

mentioned in Sec. II: funding source, expected user community, and

available computing resources. In this ccntext, we have made the

following implementation decisions in designing the software architec-

ture of the RITA system:

1. For efficient operation on the limited resources of a mini-

computer, we have decided to "compile" English-like rule and object

descriptions into an internal list-structure form for use Ly the moni-

tor; however, corresponding "decompilers" allow a user, upon request,

to see any data In the symbolic, English-like form. Rules and object

descriptions are always stored externally (e.g., on disk) In their

English-like form.

ii n«gMü^'Bt im i- • i iii**mt>tmmmm«m i... ■»-■ .rl-iaiai tMftfjfilMMiliriEääüiwkM

-31-

2. RITA has been desigued as two cooperating modules, so that

only the currently active rcdulc need reside in the core during the

operation of a user agent. Such modularity is aided by the facilities

in the UNIX operating system for communication between separate pro-

cesses.

The user unter face module gives the user one or more windows within

which text can be displayed, with the facilities of the Rand Editor

available for text manipulation within those windows. It allows crea-

tion of rule sets and contexts in a symbolic English-like form, and

passes rules and commands to the monitor to allow user control over

its operation.

The monitor module contains facilities for cosplllng symbolic

form rules and data descriptions into an internal list-structure form

and for decompiling internal forms back into syiubolic form upon request.

It uses one of the available nonltors co apply a rule set to a context,

and emits trace information to a history file for use by diagnostic

and tutorial facilities.

3. We have chosen to use an excellent compiler-compiler, named

YACC (Yet Another Compiler-Compiler) and available on the UNIX system,

to implement our rule and object compilers. Since all compilation of

symbolic iurroa of rules and objects is governed by a BNF grammar, it

is not difficult to make changes in the surface syntax of rule and ob-

ject descriptions.

A basic form of RITA is currently operational. The following

section gives brief descriptions of the features coi.^enr.ly implemented

in RITA, enhancements planned during the next six to nine months, and

research questions raised by our work to date.

 yÜ-fMi-l -- —; 'Mr^—^ -----^ -. .-.^--.^^^i^M^n.r. t^^^ -ri .,r ^ .v. .^^^^-v^.. .,,.w^^^^

-32-

V. CURRENT PROGRAM STATUS AND CONCLUDING REMARKS

The following features are implemented in the current (January

1976) version of RITA:

Both pattern-directed and backward-chaining monitor »nodes operate

with unordered rule sets, with the backward-chaining mode capable of

being initiated by the pattern-directed mode.

The user can initiate, interrupt, resume, and terminate the monitor's

operation. During an interruption, he may add, modify, or delete rules

or objects, inspect rules or objects, and set conditions 'e.g., the

testing oZ a particular rule's predicates or execution of its actions)

upon which monitor operation should be interrupted. He may also obtain

information about the recent history of the monitor's operation, such

as which rules have been tested and have failed or succeeded, or which

object's attribute values have been set.

Attribute values may be primitive values (e.g., character strings)

or sets of values. Members of such value sets may themselves be sets,

permitting an arbitrarily deep nesting of value data.

The RITA system can interact with external information systems,

either via the ARPANET or dial-up access over telephone lines.

RITA agents may be initiated by a reminder facility added by Rand

to the UNIX system. Agents may be "reminded" to start operation at

a specific time and date (e.g., at 3 a.m. on March 17, 1976) or at a

relative time ^e.g., six hours from now, or in three days). These

facilities can also be used to awaken agents on a regular periodic

schedule (e.g., every day at 3 a.m.). The remind function allows age.its

to periodically check the status of a lengthy remote operation or to

initiate routine tasks after normal working hours. Reminders, when

created, are written on a special disk file along with such status in-

formation as whether tuey are pending or in operation and the time and

The remind function, which performs very useful functions both
for RITA and UNIX system uoers, was conceived, designed, and implemented
by Dr. Steven Zucker of the Rand computer reseaich staff.

-33-

date for initiation. Whenever the UNIX system is restarted, for example

after a power shut-down for maintenance or a system crash, a system

function automatically checks the reminder file for pending actions.

In this way, RITA agents are usually capable of operating in pursuit of

goals over extended periods of time in spite of interruptions. (An

exception is when RITA is interrupted while interacting with external

systems. It is often not possible to resume an interaction with an

external system at some midpoint in that interaction.^

Principal features discussed in this report but not yet operational

within the RITA system are

o The ability to use levels of confidence on attribute values and

o The use of the Rand Editor as part of a user's inte-face to

RITA for the creation, modification, and perusal of rules and

objects ^n a user agent.

These capabilities are expected to become available within several

months after the publication of this report.

The RITA interpreter module currently occupies a total of about

49,000 bytes of core (28,000 program and 21,000 data). The user inter-

face module is quite small (about 9000 bytes). The two modules can

grow independently to the maximum core available. In addition, about

250 bytes are required per rule stored, plus 100 bytes per object
*

stored. Therefore, our current system, with 64,000 bytes each of

program and data storage space available, can grow about 220 percent

in program size and can store in-core an agent consisting of (for ex-

ample) 120 rules operating upon a data bate having 130 objects.

User agents comprising about 50 rules are now in use, and can,

for exampl«, handle ARPANET file transfer operations. We expect to

create agents at least several times this size in thj. near future.

Many questions are still unanswered at this stage of the research

project. For example:

Assuming about 5 clauses per rule and 10 attributes per object.

-- - rr-TTTiT MI rmi i -aiirnr-hd». .r - - -.r-i -vn-, ' ii n anitliitliiil^'MiMifiiiiinrr JTiit'irriir i ninm 'M tim mt i

-34-

o Will a computer-naive user really be able to vaodlfy the opera-

tion of a user agent by adding or modifying rules? IL SO, how

long a prior familiarization period is required?

o At what level of size or complexity of a user agent will speed

of operation and efficiency become important considerations?

o What about system security? Knowledge about passwords, access

keys, data formats, and account numbers for external systems

might well reside within RITA user agents, making the intelli-

gent terminal itself a valuable target for compromise. Even

with physical security, such as restricting access to the room

containing the terminal, often there will still remain external

communication paths to the machine that allow possible access

to data. We need to understand more about the constraints which

must be placed on access to intelligent terminals containing

sensitive data in representative user environments.

In conclusion, we emphasize that this is a report on work in prog-

ress, and many questions are left unanswered. However, we are encouraged

by our initial experimentatiou in the use of production systems to rep-

resent heuristics governing intelligent terminal behavior. Their

ability to provide explanations of that behavior, to be modified and

incremencally extended by a user, and to operate In either a pattern-

directed or goal-directed manner are all potentially valuable features.

We believe the RITA system, whose design we have discussed here, pro-

vides a good testbed for the demonstration and evaluation of these in-

telligent terminal agent capabilities.

iiiiinm ■■ iirifnimiMü--.-.^^^^ ^^_ _^-^ nmnmmt F.-1. f ^-- -T . ■ -■----.-=ff-frT.fM ■ ...

-35-

Appendix

EXAMPLES OF RITA OPERATION

LKS SCAN OF UNORDERED RULE SET

As an illustration of an unordered rule set to be interpreted by

a LHS scan monitor, consider the following set of eight rules. The

purpose of t'.iese rules is to generate a telephone call to the recipient

and to notify the user when the call has been successfully placed. The

rules must deal with such exigencies of the telephone system as busy

signals and no answer. These rules assume the context contains an

object called a "recipient", who has th* following attributes:

Object Type

recipient

Attribute Name Example Value

name
pri mary_phone#
alternate_phone#
höme__phon2//

"Bob Jones"
"(213) 393-0411"
"(213) 393-0412"
"(714) 454-8812"

Comment

[ojticnal]
[optional]

[optional] means that the attribute need not exist for the recipient.

The rules create an object of type "call" whose attributes record

the current knowledge about the attempted call. This object is in

turn used by another group of rules which specializes in dealing with

the external telephone system through a dialing unit, and which sets

a "status" attribute for the call to reflect the information reported

by the dialing tnit.. The "call" object has the following attributes

and riample values:

Object Type

call status

Attribute Name

target

de8ired_placement_time

-riorlty

Sample Values

"to be initiated"
"busy"
"answered"
"not answered"
"unacceptable phoned'

"primary phone#:l

"alternate phoned"
"home phoned"

"75/7/20 1800"

"normal"
"urgent'

mmtam •'--'-^-- - i HiiiifriiT "1 i iMii'i'M Y"

-36-

The rule set is shown below; comments are enclosed In square brackets,

The particular syntax used to state the rules is indicative of the

form of RITA rules, but is subject to change. The reference manual

[Anderson and Gillogly, to be published] should be consulted for the

current formal description of allowable RITA rule forms.

[RULES FOR PLACING A TELEPHONE CALL]

RULE 1 [when to credte a ne^-r call]

IF: there is a recipient whose primary_j)hone// is known &
there is not a call

THEN: create a call whose status is "to be initiated" &
whose target is "primary phone#" &
whose desired_j)lacement_time is currenttime;

RULE 2 [when to actually dial the number]

IF: the status of the call is "to be initiated" &
the desired_placement_time of the call is less than

[i.e. earlier than] currenttime

THEN: set the status of the call to "reaay for dialing";'"

RULE 3 [what to do with a busy signal]

IF: the status of the call is "busy"

THEN: set the desired placement_time of the ca1 to
currenttime -f 2 [mlnuf ,s] &

set the status of the call to "to be i' .tiated";

We assume "currenttime" is a function v/ ich returns the current
date/time as its value.

We assume this call status triggers dditional rules, not shown
here, which interact vith a dialing unit .o physically dial a call,
then read the dialing unlt;s output sig .ils and set the "status" at-
tribute of the call to one of: "busy" "answered", "not answered",
"unacceptable phone//". These other r ies are expected to use the
"target" attribute of the call to sc .ect a phone# from one of the at-
tributes of the recipient.

tt
We. use infix notation (e.?, ,, "a+b") in these rules to express

arithmetic operations in an eas'i-y readable form, although the current
version of RITA requires the %U4 ot functional notation (e.g.,
"plu3(a,b)").

-37-

RUL7. 4 [what to do if the "^11 is answered]

IF: the status of the call is "answered"

THEN: send concat (the na^ne of the recipient,
"has been reached at his/her",
target of the call,
". Please pick up your phone.") to the user &

delete the call;

RULE 5 [what to do if primary phone// is not answered)

IF: the status of the call is "not answered" &
the target of the call is "primary phone//" &
the alternatejphone# of the recipient is known

THEN: set the target of the call tc "alternate phone//" C*
set the. status of the call to "to be initiated";

RULE 6 [what to do if alternate. phone# is not answered]

IF: the status of the call 's "not answered" &
the target of thn cell is "alternate phone!" &
the priority of the call is "normal"

THEN: set the de8ired_j)lacement_tiine of the call to
currenttime + 30 [minutes] &

set the target of the call to "primary phone#" &
set the status of the call to "to be initiated";

RULE 7 [special ^ule for an unanswered urgent call]

IF: the status of the call is "not answered" &
the target of the cill is "alternate phone#" &
the priority of the call is "urgent" &
the home_phone# of the recipient is known

THEN: set the target of the call to "home phone//" &
set the status of the call to "to be initiated";

This rule assumes the existence of a "concat" function which
evaluates its arguments, then returns a single character string con-
sisting of the concatenation of the argument values.

! i^m*im**t*rrr^rr^^^^- - ^-^..-^^.^^^m^smmmmm*-*^^ r- - r r^riiiiiin-rifrTwil ilii

-38-

RULE 8 [wh^t Co do with an unanswered home call]

IF: the status of the call is "not answered" 6>
the target of the call is "home phone#"

THEN: set the desired_jplacement_time of tue call to
currenttime + 15 [minutes] &

set the status of the call to "to be initiated";

The above rules illustrate a fragment of a complete system for inter-

acting with the telephone system. As such, they assume a considerable

amount of context and leave several questions unanswered; for example:

These rules assume the person who places the call will be avail-

able to handle the call, either now or at some arbitrary time in the

future when the call becomes completed. If this is unrealistic, Rule

2 should check for the availability of the caller before actually dial-

ng the call.

The rules for determining the priority of the call are not shown.

Presumably, they would encode a heuristic like "assume it's normal un-

less I tell you explicitly that it's urgent."

These rules might be considerably enhanced by the addition of other

rules to determine, given the area code of the target phone number,

the time zone of the recipient; it could then be determined whether

curienttime in that zone is within scheduled business hours, during

the lunch hour, or outside scheduled business hours.

This information could then be used to influence the calling strategy

in such situations as an unanswered call.

As an illustration of the relative ease of modifying and extend-

ing an existing rule set, suppose that during repeated use of the

above agent a user notices a possible flow in the logic: recipient

Steve Kramer does not have an alternate phone number, but he does have

a known home phone number. An urgent call is placed to Steve, who

does not answer his primary number. No further attempt to place the

He use this logic for simplicity in thl d illus'.ration. In prac-
tice, some area code zones cross time zone '/oundariea, HO more complex
logic is needed.

n i IM inüMVtfmiinii' niMniMiiMV im imn n mi gg|i|gägiiji^Hii^BifciBtiäiflMM^BllBMlBI| iTMilT'Trirrn i,

-39-

call is made by the agent; in particular, his home number is not tried.

By observing the rules used to arrive at this decision, the user re-

alizes that Rule 7 only sets the target of the call to the home number

if the alternate number is unanswered. He decides the following two

rules will help in this situation:

RULE X [how to handle an unanswered urgent call when there
id no alternate number but the home number is
known]

IF: the status of the call is "not answered" &
the priority of the call is "urgent" &
the target of the call is "primary phone//" &
the alternatephone// of the recipient is not known &
the homephone// of thp recipient is known

THEN: set the target of the ca ' to "home phone//" &
set the status of the call o "to be Initiated";

RULE Y [how to handle, an unanswered call if no other
phone numbers are known]

IF: the status of the call is "not answered" &
the alternate_j)honv^ of the recipient is not known &
the hoTne_phone// of the recipient is not known

THEN: set the deslred_ placement time of the call to
currenttime f 30 [minutes] &

set the status of the call to "<"o be initiated";

We note that since this is a rule set in which the order of the rules

is not Important, the user may include these rules anywhere, e.g., at

the end of the existing rule set. We believe that a computer-naive

user might well not have easily accomplished the initial eight-rule

set to handle his telephone calls, but given that set as an initial

starter package—which establishes the vocabulary and basic logic of

the appron^n—we can imagine him adding Rules X and Y by copying the

phrases of the original rules with some minor repackaging and modifi-

cation. This assumption has not yet been tested with actual computer-

naive users, but it is part of the RITA design philosophy thit this

type of incremental enhancement to existing user agents be allowed.

«TrTWiiM 11 i ■iii^m

-40-

The following is an example of a trace of the above rule-directed

user agent in operation. Although various amounts of detail of the

operation of this agent might be shown, we show here only the names

of rules whose LHS patterns were discovered to be "true," i.e,, matched

by data lu the context, during a hypothesized operation of this agent.

We assume that initially there exists in the context -i "recipient"

with the attributes and values shown at the beginning of this appendix.

Rule Applied

Rule 1

Rule 2

Rule 5

Rule 2

Rule 6

Rule 2

Rule 3

Rule 2

Rule 4

Comment

creates call object

invokes rul^s for
sending a call to
the phone system

not answered, so try
alternate number

alternate call tried
by invoked rule set

not answered, so set up
to retry primary call
30 minutes Ifxter

after 30-minute delay,
primary number tried
by Invoked rule tet

busy, so set up to
retry call 2 minutes
later

after 2-minute delay,
primary number tried
by invoked rule set

call is answered

Interaction With User

"Bob Jones has been reached
at his/her primary phone//.
Please pick up your phone."

The user could of course monitor the progress of calls by inserting

additional action clauses into those rules that set up a call to be

retried later; these action clauses could record statements such as:

"Busy signal en your call to Bob Jone'-. Will retry in 2 mln."

"No answer on your call to Bob Jenes. Will retry in 30 mm."

mtithMMimerS- . mmmm muH iHltfT^T-fi T-rJ -r-t*M

m*

-41-

If such Interaction is too verbose, the user has the option of periodi-

cally interrupting the agent and inquiring as to the current values of

the status and desired placement time of the call.

GOAL-DIRECTED OPERATION

As a:« example of goal-directed monitor operation, consider a set

of rules which performs the task mentioned in the previous subsection:

deciding whether a particular "desired placement time," within the

time zone of the recipient, for a call is within or outside scheduled

business hours, or during the lunch hour. In describing the logic

to be used in making this decision, the following objects, attributes,

and values will be used as the vocabulary:

Object

recipient

Attribute

ralIcr

call

phone*

aryacode

time ell sec

areacode

time offset

Samp I e_ Values

"(21,) l^-OAll"

"IV, etc.

"415"

"li", etc.

desi red_plai.-err.ent I in.e "75/7/20 1)4V'

time de.'iCl Iptor "within bus. hrs"

"outside bus. hrs"

"lunch hour"

recipients_local_time "7(5/7/20 IV.V

"Kastern"

"Central"

"M'- ntain"

" ac.flc"

t irae offset

ireacode set

"12", et--.

("201", "215",,

Comment

area code is charac-

ter ' 2-4 of tlu-

phone number

extracted from phone

p.umber by rules

time offset of re-

cipient's local

time zone from

Greenwich Mean Time

area code of caller

time offset of cal-

ler's local tiuie

zone from Green-

wich Mean Time

caller's local • imc

determined by re-

cipient' - local

time

translation of de-

sired placement

time into recipi-

ent's local time

NOTE:

context,

Wc assume there are multiple objects ..i type

each having speciri« data about one time zone

from Greenwich. Mean

Tlr"

set of area codes in

tha t t imo zone

"time zone" in Liu-

of int.-rest.

min üifriiiii Mi -- 1 -'-imf m-r :

-42-

For simr ir In this example, we have shown only one "phoned" for the

recipient, ; "er than the three possible numbers used in the previous

example. In practice, the area code would be selected from the target

phone number. We are also ignoring the calendar date of the call,

which might be used to distinguish weekdays from weekends, etc.

The type of deductive logic needed to derive the time descriptor

for the call from other available information can be diagrammed as

follows:

To know the call's time descriptor, w> need to know*

o the recipient's local time (corresponding to the
call's desired placement time), end to know
that, we need:

o the call's desired placement time, which is
available, and

o the caller's time offse , ^hich is available,
and

o the recipient's '■ime offset, and to know that
we need:

o the recipient's tine zone, i'.nd to know
that we need:

o the rerlplent's area code, which is
Callable.

The above type of logic, is well suited to a goal-directed approach.

The following rules encode the process. Their operation is triggered

by the action clause: DELUGE the time descriptor of ehe call.

[RULEb ^"OR DETERMINING THE TIME DESCRIPTOR FOR A CALL]

Rule A [when to set the descriptor to "lunch hour"]

IF: the recipients_local f.ime of the call Is greater than or
equal to 1200 o<

the recipients_local_time of the call is less than or
equal to 1300

THEN: set the time descriptor of the call to "lunch hour";

lftn^ll^'^ ii ii iiviMMMifmrni miffimriiiiii —^ mtmmi

-43-

Rule B [when to set the descriptor to "within bus. hrs"]

IF: tht recipients__local__tlme ot the call is greater than or
equal to 080C & '

the recipients_locai_time of the call is less than 1200

THEN; set the time descriptor of the call to "within bus. hrs";

Rule C [another "within bus. hrs" possibility]

IF: the recipients__local_j:ime of the call ie greater than 1300 &
ehe recipients__local_time of the call is less than or

equal to 1700

THEN: set the time descriptor of the call to "within bus. hrs";

Rule D [when the descriptor is "outside bus. hrs"]

IF: the recipients_local_time of the call is greater than 1700 OR
Lhe recipients_local__time of the call is less than 0800

THEN: set the time descriptor of the call to "outside bus, hrs";

Rule E [how to compute the recipient's local time]

IF: the time_offset of the recipient is known &
the time_offset of the caller la known &
the dc3ired__placem€nt_time of the call is known

THEN: set the recipient3_local_time of the call to
the deslred_j)lacement__time of the call +
(the time_offset of the caller - the time_cffset
of the recipient);

Rule F [how to compute the time offset of the recipient]

IF: the areacode of the recipient is a member of the
areac.ode_set of a timezone (T)

THEN: set the time^Jfset of the recipient to the time_offset
of the timezone (T);

Rule G [how to compute the time offset of the caller]

IF: the areacode of the caller is a member of the
areacode_set of a timezone (T)

THEN: set. the tiotejoffset of the caller to the time__offset of
the timezone (T);

ifn'liüiiiiiiimi liiiiwi^lMMMMiiiililifcMirii i tiii*uätmi*m*mmi mri liirtiinifiiirflMiiii ifrii i

-44-

Rule H [how to find the area code of the recipient]

IF: the phoned of the recipient is known

THEN: set the areacode of the recipient to 8iib8tr(2>3l phoned of
the re-.ipient) ;'

To a programmer> the above rule set may seem an excessive amount of

verbiage to encode rather simple logic. However, the rule set pos-

sesses (at least) two important features: it can be modified and ex-

tended quite easily, and a monitor can use it to give an explanation

of its behavior.

This rule set could be extended, as mentioned above, by adding

rules for determining whether a date is a weekday or a weekend. The

given rules for setting the time descriptor to either "within bus. hrs"

or "lunch hour" would then be given an additional clause requiring the

condition that the date of the call be a weekday.

Ae an example of possible trace information which could be gen-

erated from the above rule set in response to a user's requests, con-

sider the following excerpt of dialog. (RITA's responses are shown

capitalized only to distinguish them from the user's comments.)

User RITA

What did you do?

THE TIME_DESCRIPTOR OF THE CALL WAS SET TO "outside bus. hrs"

Why?

BECAUSE RULE D WAS APPLIED:

IF: THE RECIPIENTS_LOCAL TIME__ OF THE CALL IS GREATER THAN 1700 OR
THE RECIPIENTS_LOCAL_TIME OF THE CALL IS LESS THAN 0800

THEN: THE TIME DESCRIPTOR OF THE CALL IS "outside bus. hrs";

We assume the availability of a "substring" function; sub8tr(ifn,x)
extracts n characters from string x starting at location i.

■ii^MiflHIHlMJnftäiHMHiMiiiiiiiB^ iimmamuim\ i i nirni ■ ^n i ■ ■

-45-

What was the recipients__local__time of tne call?

17A5

Why? [Interpreted as: hew did it get set to that time?]

BECAUSE RULE E WAS APPLIED:

IF: THE TIME_OFFSET OF THE P.ECIPIENT IS KNOWN &
THE TIMEJ)FFSET OF THE CALLER IS KNOWN &
THE DESIRED_PLACEMENTJIIME OF THE CALL IS KNOWN

THEN: THE RECIPIENTS_LOCAL_TI.ME OF THE CALL IS
THE DLSIREDJLACEMENTJTIME OF THE CALL +
(THE T1ME_0FFSET OF THE CALLER - THE TIKE OFFSET
OF THE RECIPIENT);

What was the desired_j)lacem^nt_time of the call?

.,.etc.

We note that In additioa to building a user's confidence in, and

familiarity with, the operation of his system, the "why?" facility

also helps him create and debug new or modified rule sets. Although

at a high level, he is still programming and probably must debug in

some form whenever a significant change is made ro a rule set*.

IfcM^MMi^- -^.^ ^^^^-,-—,.i^—«^^ ---- -1rrTt-f|[8|rAlI|-|1|.|t,.^. .-^ r|1 | | gj| -^-.^^---^^^^,

-47-

REFERENCES

Anderson^ R. H., and J. J. Glilcgly, Rand Intelligent Terviinal Agent
(RITA): Reference Manual, The Rand Corporation, R-1808-ARPA (to be
published).

Davis, R., and J. King, An Overview of Production Systems> Computer
Sciences Department, Stanford University, STAN-CS-75-524, October
1975.

Griswold, R. E., and M. T. Griswold, A SN0B0L-4 Primer, Prentice-Hall,
Inc., Eaglewood Cliffs, N. J., 1973.

Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their Relation
to Automata, Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1969.

Killer, L. A., "Naive Programmer Problems With Specification of Transfer-
of-Control," Proceedings of the National Computer Conference, Vol.
44, AFIPS Press, Montvale, N. J., 1975, pp. 657-663.

Moran, T. P., The Symbolic Imagery Hypothesis: A Production System
Model, Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, Pa., December 1973.

Ritchie, D. M., and K. Thompson, "The UNIX Time-Shailng System," Com-
munications of the ACM, Vol. 17, No. 7, July 1974, pp. 365-375.

Shortliffe, E. H., S. G. Axllne, B. G. Buchanan, T. C. Merigan, and
S. N. Cohen, "An Artifical Intelligence Program to Advise Physicians
Regarding Antimicrobial Therapy," Computer's and Biomedical Research,
Vol. 6, 1973, pp. 544-560.

Shortliffe, E. H., S. G. Axline, B. G. Buchanan, and S. N. Cohen, "De-
sign Considerations for a Program to Provide Consultations in Clinical
Therapeutics," Proc. 22th San Diego Biomedical Symposium, February
4-6, 1974, pp. 311-319.

Shortliffe, E. H., MYCIN: A Rule-Based Computer Program for Advising
Phyeiciane Regarding Antimicrobial Therapy Selection, Computer Sci-
ence Department, Stanford University, Stanford, Ca., STAN-CS-74-465,
October 1974. (Also available as Stanford Artificial Intelligence
Laboratory Memo AIM-251. A condensed version will be published as
MYCIN: Computer-based Medical Consultations, American Elsevier Pub-
lishing Co., Inc., New York, 1976.)

Shortliffe, E. H., ami B. G. Buchanan, "A Model of Inexact Reasoning
in Medicine," Mathematical t'iosciences, Vol. 23, 1975, pp. 351-379,

Preceding page blank

MU r.!^ .

-48-

Shortliffe, E. H., R. Davis, S. G. Axllne, B. G. Buchanan, C. C. Green,
and S. N. Cohen, "Computer-Based Consultations in Clinical Therapeu-
tics: Explanation and Rule-Acquisition Capfibilltles of the MYCIN
System," Computers and Biomedical Research, Vol. 8, 1975, pp. 303-
320.

Swiuehart, D. C., COPILOT—A Multiple Process Approach to Interactive
Programming Systems > Computer Science Department, Stanford University,
Stanford, Ca.", STAN-CS-74-412, July 1974.

Waterman, D. A., "Generalization Learning Techniques for Automating the
Learning of Heuristics," Artificial intelligence. Vol. 1, No. 1 and 2,
1970, pp. m-170.

Waterman, D. A., PAS-II Reference Manualf Computer Silence Department
Report, Carnegie-Mellon University, Pittsburgh, Pa., June 1973.

Waterman, i). A., Adaptive Production Systems, Psychology Department,
Carnegie-Mellon University, Pittsburgn, Pa., C1P Working Paper 285,
December 1974.

— ■- -~^. -^ - -^^-* ^■.-fT77ri-nyrr„rflM^^„^^ -,,.„ | ■ ■ .Mil Ml if TM

