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Preface

The utilization of optical pointing and tracking de-
vices in various areas of aircraft operations is of con-
tinuing interest to the USAF and NASA. A unique aero-
dynamic problem that has been identified with such airborne
optical systems is the unsteady torque exerted on the
mirror surfaces that are exposed to high velocity airflow.
The investigation I conducted was one of the first aimed
at finding various methods of reducing this torque opn large,
second generation pointing and tracking devices, The suc-
cess I achieved in this endeavor was in two forms., First,

I did find some configurations that reduced unwanted torques
and second, I found that other suggested configurations were
totally ineffeciive as torque reducers. Hopefully, both
results will be (.f assistance to future researchers,

I would like to extend my sincerest thanks to Dr.
Harold Wright of the Air Force Institute of Technology for
his invaluable assistance in helping me throughout this
investigation., I also acknowledge my frequent reliance upon
the counsel of Dr. James Van Kuren and Capt William Conner
of the Flight Dynamics Laboratory. Additionally, I would
like to make special note of the professionalism of Mr. Wolfe
and Mr. Brohas of the AFIT machine shop who prepared my model.

Lastly, I submit that the patience, love, and under-
standing of my wife were key ingredients in the completion

of this work,
Richard M, Mullane
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Abstract

Various methods of reducing the unsteady torque
exerted on the upper tufning mirror (UTM) of a coelostat
turret were exverimentally evaluated. The effect of an
aft fairing and the turret aperture on the pressure dise
tribution across the turret was also measured., Are.s of
flow separation were determined from oil flow patterns.,

A coelostat model with a turret diameter of five inches

"and capable of rotating 120° in azimuth was wall mounted

in a transonic wind tunnel, Data was collected for Mach
numbers of .7, .85, and .95. Passive methods, consisting
of external fairings and active methods, consisting of
blowing and suction, were employed to reduce UTM torque.
The passive methods were totally ineffective in this re-
gard. Mass flow injection at tﬁe rear of the bottom
light pipe and aperture lip were found fo lower base line
torque values by approximately 50% and 67% respectively.
Static pressures recorded on the turret revealed that the
aft fairing had little effect on the pressure distribution.
The apert&fe was noted to produce a higher local Cp in
the downstream direction, 0il flow patterns showed that
the point of flow ssparation from the turret was velo-
city dependent, being near the 90° meridians for veloci-

ties above Mach = .85 but further aft for Mach = .7.
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AN EXPERIMENTAL INVESTIGATION Of METHODS OF SUPPRESSING
THE UNSTEADY TORQUE EXERTED 9N THE UPPER TURNING MIRROR
exert= OF AN AIRCRAFT MOUNTED COELOSTAT TURRET

Cturmes e o : , o o
Saohls T ey I. Introduction
Qgckggound

" In recent years the United States Air Force (USAF)

ﬁii-identifiod numerous missions for aircraft mounted

'obtical radiation devices (Ref 1:52j. For example, air-

borne lasers have been earmarked for roles as reconnais-
sance sensors, communication devices, and target illum-
inators for guided munitions, In many of these appli-
cations it is desirable to house the optical radiator

in a traversable, fuselage-mounted turret which contains
a viewing port. With this arrangement, the narrow light
beam of the device can be aimed at an object independently
of the aircraft head;ng and/or attitude., In some laser
lpﬁlications however, a 3tringent requirement for an
unimpeded optical light path, demands that the turret
viewing port contain no protective window. Previous re-
lélrchers have found that high velocity flow over such
windowless turret configurations produces pressure fluct-
uations within the open cavity of the turret (Refs 2:1,

3:17). These unsteady pressures, in some cases amplified
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Top Light Pipe Upper Turning Mirror (UTM)
Aperture ‘ \
S | J

Light Path—

— — gy —— af—

Lower Turning Mirror (LTM)

Bottom Light Pipe —

Fig. 1. Coelostat Nomenclature

by the process of acoustic resonance, act upon none
rigid mirror surfaces to produce vibrations that degrade
the performance of the device.

Large, second generation airborne lasers will be
particularly vulnerable to flow induced mirror vibrations.,
Therefore, the USAF and NASA have jointly conducted two
wind tumnel tests in a search for a windowless turret
design that will minimize the vibration problem for these
larger devices, The first study, involving an evalua-
tion of four basic designs, highlighted the coelostat
turret configuration as the most promising (Ref L:l).

The second wind ctunnel test, hereafter referred to
a8 the Ames II test, was a detailed evaluation of the
unsteady pressures being exerted on the mirror train in
a coelostat turret (Fig. 1.). Additionally, the response
of the pressure amplitude and frequency to changes in

the internal cavity geometry were measured. Results

2
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from this most recent test have indicated that the un-
steady torgue around the elevation axis of the movable
upper turning mirror (UTM) is the primary contributor to
vibration (Fig. 3.). Tnis torque, althcugh reduced in

magnitude by some design modifications, remained at such

high levels at forward aperture azimuth angles as to make
it questionable if the device was usable at these angles
(Ref 4:30). (See Fig. 2. for definition of coelostat roll
and azimuth angles.,) Obviously, such a viewing restric-
tion severely limits the mission capability of a partic-

ular aircraft/laser combination.,

Objective

The major objective of the research project described

herein is to find a modification to thz best Ames II
coelostat design that will reduce the torque on the UTM
at forward azimuth angles, It should be emphasized at
this point that the actual level of torque that would

be acceptable in a second generation airborne laser/
turret arrangement is still an unknown., This lim:ting
value will be a function of the size of the mirrors and
the capability of the mirror stabilization and position-
ing system, both of which are not yet precisely defined.
However, any torque reduction that can be achieved now
will undoubtedly enhance the airborne mission capability

of future, large scale lasers,

S . T ST
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Scope
The Ames II test indicated that the unsteady pres-

!9#0 »esponse of the open cavity of a coelostat was pri-
ﬁ;ﬁily a function of the azimuth angle of the open port,
défined as 6, and only weakly dependent upon the roll
‘ﬁgie. Adiitionally, a zero degree roll angle was found
to produce the most adverse unsteady pressure upon the
UTM (Ref 4:30, L42). For these reasons this investiga-
tion utilized a model fixed at zero degrees of roll and
capable of traversing 120° in azimuth.

The other test variables that define the scope of
this investigation include the free stream Mach number
and the model configurations. Mach numbers of .7, .85,
and .95 were selected to determine the speed dependence
of the cavity unsteady pressures. Model variations that
were selected for the experiment are discussed in Chapter

II1I,

Supplemental Data Collection

Although the sole objective of this test was to
suppress UTM torque, the experiment also provided an
excellent opportunity to survey some properties of the
flow across the turret, Toward the exploitation of
this opportunity, pressure taps were added to ths model
and deta was collected on the local pressure distribu-

tion and velocity of flow over the external surface of
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the .coelostat, Also, through oil visualization techniques,
the attached/separated pattern of this flow was recorded,
The results of this data collection effort are given in
Appendices D and E and aiscussed in Chapter V. Conclu-

sions drawn from the data are given in Chapter VI,
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II. Theory

Past wind tunne). testing has shown there are several
nerodinamic processes responsible for the unsteady pres-
sures that occur within a cavity open to free stream air-
flow. Rossiter (Ref 5) and bunham (Ref 6) reported that
vortex shedding off the upstream eage of an open cavity
was one such process, Van Kuren concluded that unstable
shock waves formed in the vicinity of a blunt protruding
turret being propelled at transonic speeds were an addi-
tional source of cavity pressure fluctuations (Ref 2:2).
Belik (Ref 7) noted the formation of a strong vortex at
the forward base of a circular cylinder mounted to a flat
plate., Van Kuren surmises such a vortex also contributes
to unsteady pressures within the open cavity of a coel-
ostat %urret (Ref L:30).

The net result of any or all such processes is to
produce a time varying pressure field acrosg surfaces
within the open cavity. If such a surfaces is a movable
mirror, the resultant unsteady force acts through a mo-
ment arm about the axis of movement to produce unsteady
torques, Obviously mirror vibration will result if its

positioning system is incapable of withstunding such

varying torque.

e aae ko g
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UTM Unsteady Torque

; Azimuth Axis

Top b

o =X Elevation
View into top Axis
top light pipe .

Fig. 3. UTM of Coelostat with Pressure Transducers

If the UTM of a coelostat is instrumented with
four pressure transducers as shown in Fig. 3. and if
it is assumed the pressures recorded by these trans-
ducers act over one half of the mirror surface, then

the torque about the elevation axis (X-axis) is

'rqx(t) = P1(t)‘{/gydA+P2(t)Af/£(-y)dA (1)

where l/ (2)

b
T
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Similarly, the torque about the azimuth axis (Y-axis) is

e e g e 8

2(t) = Ph(t)ﬂxw%(t)[,{(-x)u (3)

where : *6 TCEY )
" Por comparative analysis the root-mean-square torque
given by E
- :
2
= 2 ='\/_1T_ ,oqu(t)dt ()

'3
- \

is a more meaningful figure.
Figure i} gives a pictorial display of how the ele-
vation Trms would be determined from the output of pres-

sure transducers 1 and 2 in Fig. 3.

Non-dimensionalizing Terms

To facilitate future comparative analysis, the data
given in this report has been non-dimensionalized, Root=-
moanésquare pressures, Prms’ have been made dimensionless
through division by the free stream dynamic pressure, q.

Root-mean-square torques, T » have similarly heen non-

ras
dimensionalized by the factor (ﬂVh)qD3, where D is the
diameter of the turret aperture. Mass flow injection
rates, h, have also been made dimensionless through div-
ision by a factor equal to the mass flow rate of free

stream flow through an area the size of the turret aper=

~ ture, eﬂDZU“/h. In this text a bar above a symbol will

be used to denote non-dimensionalized terms.
' Y
8-
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II1I., Description of Apparatus

Model
The coeloatat model utilized in this test dupli-

cated, in one-sixth scale, the major internal and exter-
nal features of the model utilized in the Ames II test
(Ref L4:7). The device was fixed at zero degrees of roll
and could be remotely positioned at azimuth angles from
zero degrees (forward) to 120° aft (Fig. 2). A 27 VDC
motor was employed to turn the coelostat thru these an-
gles, Attached to the azimuth gear drive of the model
was a 10 turn rotary potentiometer, the output of which
defined the open port position, 6., Four Kulite high
frequency response pressure transducers were mounted on
a fixed plane surface that simulated the UTM., The pat-
tern of installation was as depicted in Fig 3. The phy=-
sical dimensions of the model prevented the emplacement
of move than four transducers on this surface, Addition-
ally, 11 static pressure taps were positioned on top of
the model as seen in Fig. 5.

The test model was built into a plate, which, when
mounted in the wind tunnel, projected 1% inches away from
the inside wall of the tunnel and into the plenum (Fig. 6).
This arrangement was adopted so as to allow a thin boun-

dary layer to form and impinge upon the model.

10
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Top View of Turret

Azimuth t
Rotation
from 0° to 120°

--——-—Um

Upstream side of
turret aperture
as coelostat is
turned counter
clockwise to 120°

8 gre?gure $$ps
—— 9 & et s~me
Pressure taps —~f‘* r;speétive "h" as
1=8 eoually \\\\ 10 2, 4, & 6.

spaced % \\"——

Side View 2£ Pressure Tav YMeridian

Fig. 5. location of static pressure taps placed in
turret. The 70° meridian wss the closest
the taps could be positioned to the aperture
because of spece limitations on the inside of

the turret.
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Model Configurations

Model configurations are depicted in Appendix A.
The rationale behind the design of each model change 1is

"discussed in the figures. - It should be noted that all

iodel variations were empirically designed to eliminate
the sources of cavity pressure fluctuations that were
iden{ified in Chapter II. Tables I and II give a
reference summary of model modifications. These tables
divide the model configurations into two functional cat-
egories, passive and active. This is done to distinguish
between modifications that are complete in themselves
such as fairings and fences and those that employ acces-
sories tﬁ operate such as blowing and suction mod{fica‘
tions. Models 4, 7, and 13, near duplicates of other
liated configurntions,were deleted from the report in the
interest of brevity.

Wind Tunnel
The USAF Flight Dynamics Laboratory Trisonic Wind

Tunnel configured with 2 15 inch X 15 inch slotted tran-
sonic test section was utilized in this investigation.

Complete details on this facility can be found in Ref 9.

Pressure Tr-nsducers

Kulite-model XCCL~14-093-25 high freauency response,

vﬁrieble reference pressure transducers were installed in

13
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Table I

Passive Model Configurations

Model No. P Description
1 ) Coelostat turret without aft £
- fairing. . |
@ Base line, turret with aft N
fairing.
3 Configuration 2 with bottom __%__
light pipe truncated.
s Configuration 2 with forward L /N
porus fence 8 in. from turret center,
é Configuration 2 with forward L /S
porus fence 5 in. from turret center,
8 Configuration 2 with forward ____o/ N~
eonical fairing.
9 Configuration 2 with .33 in. o N
. sperture lip fence.
10 Configuration 2 with bottonm —"/:\ -
light pipe relief. L::‘_‘LX?
-1 Configuration 2 with large SR 7/ A
forward splitter plate.
1111 Cenfigurntion 2 with non-porus AN

- top light pipe.

2 12
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Table II

Aotive Model Configurations
Doscription_

12

15

17

18

19

Configuration 2 with mass flow _===/5 N\
injection at rear of bottom oo - o -
light pipe. .

Configuration 2 with

blowing through bottom per-
imeter holes and first 2 rows of
holes in top light pipe.

Configuration 15 except L\

bottom perimeter holes closed. W

Configuration 2 with blowing i’\
through first row of holes in )
top light pipe.

Configuration 17 except _@_*’f\
with suction applied and .o
bottom perimetor holes open,

Configuration 17 with blow- _@11‘(\

ing also tkrough all perimeter
holes exceps bottom, upstream hole. +

15
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o the model to collect unsteady pressure data. These in-
QT‘) struments are self-compensating for temperature and are
responsive to frequency inputs up to 20 KHz,
RMS Meters
The output signals of the pressﬁre transducers
were routed through Hewlitt-Packard model 3400A rms
‘;;&it'meters. These instruments utilized a two second
integration time to obtain a root-mean-square vcltage.
By multiplying this voltage by the transducer constant,
pressure/volt, the root-mean-isquare of the unsteady
pressure, P .o» WRS obtained.
Tape Recorder
‘ (’\ - Unsteady pressure data was recorded by an Ampex

mocel CP'100, 14 channel, FM, tape reccrder. This
device has a maximum frequency response of 10 KHz and
a magimum input voltage limit of 1.4 volts/channel.
Input signals to the recorder were monitored on a
Fourier Analyzer and oscilloscope to insure they were

within frequency and voltage limits.

Flow Meter

In those model variations employing mass flow in-
% Jection, a standard, flange tapped, orifice plate flow
meter was used to determine h values., This device con-

sisted of a .25 inch diameter, square edged orifice

16,
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mounted in a 2 inch inside diameter pipe. Preszsure

and temperature data from the flow meter instrumentation

"was input to a Hewlitt-Packard model 9810A calculator

which computed flow rates.
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IV. Experimental Procedures

Pigure 7 depicts the flow diagram ot the on-line

anc post test data collection procedures that were util-

ized in this experiment,

Wind Tunnel Calibration
Prior to the recording o' any test data, the opnti-

mum wind tunnel diffuser flap and side wall porosity
settings were first determined. This was accomplished
by manipulating these settings until static pressures
measured on the forward and aft portions of the model

plate were equal to the free stream static pressure,

Test Phases

Three types of test data were recorded during three
different ohases of the experiment. First, measurements
of the static pressures across the too of the coelostat
were made, Also during this rhase the thickness of the
boundary layer approasching the model was measured by a
three probe rske. Next, unstesdy pressure d-te was col-
lected from the tronsducers located within the model.

The final phase of the test was the oil -flow visueliza-

tion experiment in wihich the flow patterns ascross various

model configurations were photo@raphicaliy recorded,

18
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Variable DC Flow Static
Rel'erence Voltage Meter Pressure
Pressure Source Pressures| | Taps -
Kulite Reversing HP 9810
Transdu- Switch Computer Trensdu-
cers & Lg?rs
DC Turret | | Potenti-
Offsets Motor ometer
Ampli- Switch
fiers l
RIS
Switch Switch Meters
| Oscillo- —-_-'->—f
Pilters scope
s Monitor
Fourier FM HP
Analyzer Recorder Recorder
= s e v L
amera ‘Filter & ! conversioq
\ARATySEx L Constants
I 'Y | I
Power » Root lMe Prms vs iTurret '1
Spectral | | Scuare @ plots h ILocal !
Densitieg 1 Torque IPress vs ¢
e e e - - e — — - - o4

. Pige 7. Data collection flow diagram. Solid boxes en-

close those procedures that were accomplished

during the test.
test analysis procedures.

19.
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-—Phase I - Turret Steady Pressures

ﬂ; ) The outputs of the 11 static pressure taps across
~"the top of the model were recdrded as the coelostat was
" protatsd in azimuth from,0 to 120 degrees. This data was

-acliected for free stream Mach numbers of .7, .85, and

«95; with and without the aft fairing installed.

A three probe rake, installed 8% in. aft of the

'Effs=’

- leading 24ge of the model mounting plate and 3% in. for-
ward of the turret was utilized to determire the thickness

'?ﬁ‘%hﬁ boundary layer approaching the model. An analysis

—of this data can be found in Appendix B.

'?hase I1 - UTM Unsteady Pressures
_____ Though the primsry purpose of this phase of the ex-
(:i') _periment was to determine and minimize the torque being
exerted about the elevation and azimuth axes of the UTM,
~limitations on test instrumentation proh:bited the on-
~Iine measurement of these values, However, analysis of the
Aﬁés II torque data indicated that the root-mean-square
of the unsteady pressure signals, Prms’ were 8 reliable
1n&ication of the relative torque magnitude. This data
“showed that a reduction in the P signals invariably re-

rms
sulted in a reduction in torque. Since wind tunnel instru-

‘mentation did allow real time fecording of transducer Prms
signhals, phase II of the experiment was aimed at the on-
line analysis of these values, while post test data eval-

(- ) 20
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uation Qas méde to determine torocue ngagnitudes. A de-

soription of the procedures utilized in this test phase

~ is given in the following paragraphs.

The output of transducers 8 and 10, those akout the
eiééaﬁion axis of the UTY, were routed through R!S meteré,
then to a two pen, nnalog, X-Y plotter. The output of the
model pofentiometer was also input to this plotter. After

a;mbdél configuration and Mach number was established, the
oéélogtat would be rotated from O to 120 degrees and a plot
of: P;'ms vs azimuth angle would be generated for these trans-
ducers, At this point the output of transducers 9 and 11,
those about the azimuth axis of the UTM, would be switched
to ;:t;e plotter and a trece of their Pomg Values would be
made as the coelostat was turned back to 0 degrees, Anal-
ysis of these plots were then made to determine chose azi-
muth angles at which P, ., values Were highest and/or
differed significantly from base line values., The coelo-
stat would then be positioned at these angles and 2 one
minute tape recording of the outrut of all pressure trsnse
ducers would be made, ' .

It sheculd be noted at this point that these procedures
vere first utilized while model 2, i.e., tho base line model
configuration was installed in the wind tunnel. Plots of

the outputs of transducers 8 thru 12 vs azimuth angle were

obtained for this model at.Mach numbers of .7, .85 and

2
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3

«95. In subsequent model configurstions plots of trans-
ducer outputs were made at higher'thh numbers only if an
improvement in Pn;4 values were noted at Mach=.7. This
procedure was strictly a time conserving measure ‘to allow
data to be collected on a greater number of model varia-
tions at a minimun of one Mach nuﬁber. Also, to velidate
the repestability of the experimental procedures, trans-
ducer dutput plots for the base line model configuretion
were accomplished at the completion of this phase of the
test. Comporison of these plots with the original Model
2 plots indiceted there wns no change in values,
- While data tspe recordings were being made, the
power spectrsl densities (PSD) of the output of the trens-
ducers were observed and photographically recorded.
Polloﬁing the completion of the experiment the tape
recorded unsteady pressure data was utilized to deter-
mine UTM torcue values. Transducer signals were routed
through filters which were set to pass data of the renge
80 to 10000 Hz. The lower limit of 80 Hz was selected to
eliminate low megnitude 60 Hz noise signals that were
superimposed on the deta signal., The filtered information
was then input to a computer that multiplied each signel

by & constant which reprasented the conversion from voltage

to torquo., The difference of the signals, representing

the net UTH torcue, was then computed and diuspleyed,

22
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zheae JII - 011 Flow Visualization

The procedure utilized in this nhase of the a&xperi-
ment was standard for wind tunnel oil flow visuellzatiun.
Prior to its installation a mixture of STP oil treatment,
61010 acid and titanium dioxide would be painted onto the
model, After a delay of approximately 10 minutes at a
particuler Mach number, this oil would be ar+ranged into
the pattern of air flow across the model. A Polariod

camera vwould then photographically record these patterns.

23
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(g - V. Results
,‘-) F

In this chapter the results of the threc primary
_areas of investigation, i.e., UTM unsteady torque,

_- furrat static pressure distribution and oil flow vis-

__ualization, will be addressed separately.

CSﬁiﬁ'Unsteadx Torque

- 7 Pigures 8 thru 11 portray the UTM torque for for-
“‘ward 6 as a function of model configuration. As is
apparent from these displays, a significant reduction
in torque magnitude can be achieved through the use of
some active model modifications, Specifically, mass
flow injection at the rear of the bottom light pipe
Cg ; (Model 12) can reduce azimuth and elevation torque by
approximately 50% of base line values, Also, mass flow
injection at the forward lip of the turret aperture
(Model 16) can lower torque to 33% of base line values
for 8 = 0°, Other blowing and suction modifications
reduced torque by lesser anounts,

The passive model modifications consisting of var-
ious external fairings were almost totally ineffective,
Indeed, in most cases these fairings were noted to amp-
1ify rather than dampen UTM torques,

The physical processes that are responsible for

these results can not be exactly determined from the

« ‘ 2
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Fig.8. NON-DIMENSIONAL IZED RMS TORQUE ABOUT (HE ELEVATION
AX1S OF THE UTM RESULTING FROM VARIOUS PASSIVE MODEL
MODIFICATIONS COMPARED TO BASE LINE (MODEL 2) ELE-
.VATION TORQUE AT MACH = ,7 .
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§01:: NUMBER ADJACZNT TO
O©" INDICATES MODEL NO,

010

Fre.9.
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NON=D IMENS | ONAL IZED RMS TORQUE ABOUT THE AZIMUTH
AX1S OF THE UTM RESULTING FROM VARIOUS PASSIVE MODEL
MODIF I CATIONS COMPARED TO_BASE LINE (MopeL 2) AzI-
MUTH TORQUE AT MACH = ol
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AX1S OF THE UTM RESULTING FROM VARIOUS ACTIVE MODEL
MODIFICATIONS COMPARED TO BASE LINE (MOOEL 2) ELE-
_ VATION TORQUE AT MACH = ,7
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data collected., It would appear, however, that the pro-
nounced success of Models 12 and 16 is due to the diver-
sion of high energy air away {rom the turret opening

(Fig 12). Model 16 was more efficient in this respect

)

“""Il-__
Model 16 f
]

Fig. 12. Diversion of Approaching Flow by Mass Injection

since it imparted a definite upward velocity to the ap-

proaching fluid, Also, it should be noted that in Model
12 the impingement of injected air upon the UTM may, of

itself, introduce some component of unsteady torque,

The variations in the Model 12 and 16 UTM torques
with & (Figs 13 & 14) suggest that limits exist on the
torque damping capabilities of these models. The real
time analysis of Model 12 UTM unsteady pressures showed
there was little effect oh these pressures (and most
probably on torque also) as h was increased above ,107.

Evidently, at these higher E'values, any reduction in

29
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torque achieved through the diversion of more air away
from the aperture is offset by an ihcrease in torque
induced by the impact of injected flow on the UTM, 1In
Model 16 however, reductions in torques were still be-
ing recorded at the maximum ® that could be attained
with the experimental apparatus. It appears that Model
16 would be limited in its torque reducing capability
by the mass flow rate that could be delivered by an
aircraft engine bleed air asystem,

Tests of Model 3, representing a possible config-
uration for future coelostat turrets, revealed a signif-

icant rise in Prm and azimuth torque due to the trun-

s
cation of the bottom light pipe. This result is indic-

ative of an internal geometry that is inducing a resonance

condition,

The reader is referred to Appendix C for more de-
tailed information relating to the unsteady pressures
and torques on the UTM,

A concluding remark is in order concerning the
accuracy of the UTM torque data presented in this report.
It should be recalled that only four precssure trans-
ducers could be installed on the UTM., This necessitated
that some assumption be made on the pressures being
exerted on those portions of the mirror not instrumented

with transducers. The assumption sadopted was that each

PR
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transducer recorded the unsteady pressure across one
half of the UTM. Obviously, this introduces an unknown
error into the results, However, some insight into .2e
acceptability of this assumption can te gleaned .rom a
comparison of torque data on those model configura’ions
commor. to both this test and the Ames II test (Table III).
(The Ames II model was instrumented with eight UTM trans-

ducers.,) First, this comparison shows that the order

Table III

UTM Elevation Torque
Compared for Similar Models

Model Numbers Maximum Elevation
for Similar Torques x 10
Configurations (in-1bs)
This Test|Ames II | Descripticvi| This Test|Ames II (Scaled)
Porus top
2 11 light pipe 8.4 6.0
with foam
Aperture
9 12 lip fence 7.2 561

of magnitude of the torques is comparable. Addition-
ally, the percentage difference in torque magnitude
between Models 9 and 2 and Ames II Models 12 and 11

are nearly equal at 17% and 18% re-  ~ctively. Also the
variation in torque with 6 and Mach numbe.- for similar

models was found to be coincident. These a posteriori

32,
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observations tend to justify the aforementioned as-
sumption. Finally, it should be noted that any error

induced by the assumption will be constant and as such

~should not jeopardize the comparative evaluation of

various model configurations,

Turret Pressure Distribution

Data concerning this area of investigation can be
found in Appendix D. Figures 15 and 16 are typical
plots of the turret flow CP and Mach number as a func-
tion of the local angle to U,. Examination of these
traces reveal that the presence of the aft fuiring had
only a small effect on the properties of flow across
the turret. The widest deviations noted in measurements
on the two models occurred as the pressure tap meridian
was turned under the aft fairing. Here the pras higher
than that measured when nv fairing was installed.

The results of this portion of the experiment also
indicated that the local flow velocities across the
turret are significantly higher than the velocities pre-~
dicted by the theory of incompressible flow about a
sphere., This could be the result of the fact that the
coelostat configuration is approximating a highly tap-
ered, 37% thick airfoil. It has been established that
some thinner airfoils exhibit the same phenomenon, i.e.,

lower coefficients of pressure and higher local f{iow
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velocities at comprsssible speeds than those predicted
by incompressible theory (Ref 10:256).

Figures 17 thru 19 depict the effect of the turret
aperture on the local flow Cp. The arrangement of the
pressure taps limited this comparison to angles of
70° thru 110° (6 = 0°thru 40°, refer to Fig 20). It
can be seen that from approximately 90° rearward there
is an increase in the local Cp of flow downstream of the
aperture ¢.er that which is unaffected by the opening.
However, the differences that are noted from 90° to 110°
tend to become less pronounced as the Mach number is
increased. It is probable that this result is a func-

tion of the point at which flow separates from the tur-

ret. Figures 79 and 80 depicting oil flow patterns for

Mach = ,85 and .95, show that static pressure measure-
ments made downstream of about 90° will be in an area
of separated flow. Thus, any effect of the upstream
aperture would probably be masked by the high levels
of turbulence in this area, However at Mach = ,7 the ~
line of flow separation extends well past the 90° mer-
idian (Fig 21) and static pressure measurements to

110° would most likely record the effects of the upstream

turret aperture.

il Flow Visualization

Appendix E contains drawings of observed oil flow

36 \
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Pressure Tap
MERIDIAN
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THE SYMMETRY, WITH RESPECT TO Ug,OF THE CROSS

HATCHED AREA PERMITS STATIC PRESSURE MEASURE-
MENTS MADE ON BOTH SIDES OF THE TURRET TO BE

COMPARED,

Note:
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patterns across the coelostat turret., The photographs
that were taken during this portion of the experiment
were distorted because of the necessity to view throhgh
the slotted walls of the wind tunnel, For this reason
they are not included in the report,

Figure 21 is typical of the flo& patterns that
were observed. The line of flow separation for Mach = .7
was curved and included symmetrical standing vorticies
near the 130° meridians. At the higher velocities how=-
ever, flow separation was nearly constant along the 90°
meridians. As the turret was turned, little effect was
noted on the point of flow separation though the strength
of the standing vorticies on the top of the model were
weakened., With the exception of a small area beneath
the aperture, flow remained attached to the turret in
the immediate vicinity of the opening. Also, it was
noted that the geometric extent of the area of separated
flow immediately in front of the turrect increased from
«2 turret diameter at Mach = .7 to .2 turret diameter
at Mach = .95. This result is in close agreement with
0il flow experiments performed on coelostat models at
the Air Force Academy (Ref L:46).

Though not depicted in this text, oil flow pat-
terns were also observed at the leading and side edges

of the coelostat mounting plate, These showed that

4,
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the flow attached to the plate almost immediately.

r) Also, distrubances generated at the corners formed by

the plate and the wind tunnel floor and ceiling were

very localized.
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VI. Conclusions and Recommendations

?

Conclusions

In reference to the stated test objective, it can
be concluded that coelostat upper turning mirror une
steady torques can be significantly reduced through the
use of some blowing configurations. Limits on torque
reduction would most probably be set by the maximum
mass flow rate that a particular engine bleed air
system could deliver. If available mass flow rates,

E, approach .2 and if a lower aperture lip blowing
arrangement is adopted (configuration 16), tlien torque
reductions of 67% of base line (% = 0) could be ex-
pected. Such a reduction would almost certainly permit
the coelostat turret to be employed in a wide range of
USAF missions. Additionally, this low level of torque
would probably reduce Air Force development costs for
the mirror stabilization and positioning system,

The performances of the externally mounted fairings,
which increased torque anywhere from 10% to 100%, do not
entirely rule out the possibility that reductions in
torque can be achieved through passive design modifica-
tions. However, it is doubtful that a non-interfering
fgiring could be so designed. The maximum height of

such a device could only be .06 turret diameter, i.e.,

L
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the height of the lower lip of the aperture above the
aircraft fuselage. This places the fairing entirely in
the region of stagnated flow and would most certainly
limit its influence on the high energy air passing over
it. .

A very important conclusion can be drawn from the
comparative analysis of model configurations that were
common to both this test and the Ames II test, This
éomparison (Table III) showed a very similar performance
between the different scale models. This is not such
an expected result whin viewed in light of the differ-

ences in test Reynolde number, i.e., 1.25 x 106 for

6

this test compared to 11.25 x 10° for the Ames II test

(Reynolds number based upon turret diameter)., From

this it can be concluded that the unsteady torque on
the UTM of a coelostat turret is relatively independent
of Reynolds number., This, in turn, indicates that
expensive, large scale wind tunnel testing of coelostat
turrets would not be necessary. Instead, small scale
testing at in-house USAF wind tunnels could provide re-
quired data. |

Analysis of test data also leads to the conclu-
sion that the flow nver a significant portion of the
coelostat turret will be supersonic, especially at

flight Mach numbers above .85, At aperture pointing

us.
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angles from approximately 60° to 110° » Shock waves
formed by this flow would be in the 6ptica1 path and
degradation of the performance of some optical devices
may occur, If such was the case, lower flight Mach num=
bers and/or restricted aircraft headings and attitudes
would eliminate the problem, Of course such limitations
may not be compatable with a particular mission.

The pressure distribution across the turret indi-
cates a substantial lifting force will be generated by
the device., The effect of such a force on the stability
of the carrying aircraft may be significant,

_ Two secondary, b.. still important conclusions can
be drawn from this investigation. First, wall mounting
models in the Flight Dynamics Laboratory trisonic wind
tunnel pose no great operational difficulties. This

was the first time such a testing arrangement had been
attempted and it was found to present no particular prob-
lems, Model changes could be done in less time than
required for internelly mounted models and access to
model instrumentation was facilitated.

Second, this test marked the first time unsteady
pressure data was output for real time analysis as well
as recorded for post test examination., Again, no diffi-
culties were encountered which would discouraée the

future use of such an arrangement,

ué
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Recommendations

Since the adaptation of equipment accessories to
accomplish mass flow injection in a full scale coelostat

will be expensive, heavy and increesse system complexity,

further examination of passive torque feducing modifi- ¢

cations should be accomplished. If it is then found
that an externally mounted, non-interfering fairing
cannot produce the desired results, then an examina-
tion of internal modifications should proceed. Only
after this is accomplished should an active model con-
figuration be accepted for full scale development,

It is also recommended that, since Reynolds num=

ber appears to have little effect on UTM unsteady torque,

future coelostat tests be conducted on a scale model
similar to that used in this test. Only after specific
areas of interest are identified in these tests should
the expense of large scale wind tunnel operations be
incurred.

An investigation irnto the effect of shock wave and

vortex density gradients on laser beam propagation is

2lce recemr.onded, It is entirely possible that the

gradients associated with coelostat turret flow phenom-

ena are sufficiently weak so as to pose no viewing angle

restrictions.
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Finally, the exact magnitude of the lilting force
‘ ) being generated by the coelostat and its effect or air-
craft stability should be measured. |
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Appendix A

Model Configurations

This Appendix contains Figures 22 thru 33 which
illustrate and include discussion on the various model
configurations utilized in the expériment. Models
4, 7, and 13, near duplicates of other listed config-

urations, were deleted from the report in the interest

of brevity.
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Note:

Configuration 3

A possibility exists that improvements in

future pointing and tracking equipment will

eliminate the need for an extended bottom

1ight pipe. To aporoximate the geometry of

such a configuration, a plug wes inserted into

the coelostat model at the position indicated.

Fig. 22. Model Configuration 3
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COnfigurations_g &fi

Note: A fence of 31% porosity could be rositioned
at varying distences in front of the model.
Previous wind tunnel tests have shown that
‘such a device creates a large bubble of low
energy air which extends down wind of the
fence. Bj enveloping the coelostat with this
bubble it was anticivated that less intense

vortices would be generated by flow over the

open cavity.

Fig. 23. Modal Configurations 5 & 6
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Note:

Configuretion 8

A cone of helf angle 18.k4 degrees was split
and mounted at the le=ding edge of the coelo-
stat as showm, This modification was an at-
tempt to streamline the turret and thus elimi-

nate the vortex generating forward stagnation

zone observed by WHelik (Ref 7).

Fig. 24. Model Configuratiun 8

52°
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-Note:

Configuration 9

A thia walled, perforated tube of 31% pofosity
was designed for installation within the coelo-
stat top light pipe. The leading edge of this
tube could be extended from the aperture to form
a wrap around cavity lip fence of .333 inch
height. Buell found thet such spoilers ére an
effective means of impeding vortex formation at
the cavity 1lip (Ref 8:13). Also, data from the
Ames II test indicated that lip fences produce

a deamping effect on UT! pressure fluctuations

(Ref L:442).

Fig. 25. Model Configuration 9
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Configuration 10 T _

Note: The resr of the bottom light pive was vented

| Qr to the low pressure area formed by a flared
tﬁbe. The objective of such & configuretion
was to eliminate snear layer oscillations in

the cavity opening by permanently “sw2llow-

ing" the shear layer.

[5 Fig. 26. Model Configuration 10
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Configuration 11

Note: A thiﬁ vertical splitter could be positioned
on the centerline of the coelostat mounting plate
a8 depicted sbove. Previous wind tunnel tests
[:\ have shown that such splitter plates stabilize
/( : turret leading edge flow which-'in turn reduces

internal cevity pressure fluctuations (Ref 3:64).

3

Fig. 27. VModel Configuration 11

e
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Note:

Configuration 12

A flow channel was placed at the rear of the
bottom light pipe through which air could be
injected. The retionale behind such a design

is to divert high energy air away from the tur-
ret uperture at forward facing angles of @,
Additionally such a design would tend to pre-
vent the down wind side of the aperture shear
layer from being alternately moved in and out

of the top light pipe by lip vortex shedding
when the turret was at side facing 6 angles. A
similar arrangement was successfully employed in
the Ames IJ test., However it wos desired to re-

cortify the validity of this earlier success.

Fig. 28. Model Configuration 12
56
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Note:

Configuration 14

A thin wglled tube was placed inside the tcp
light pipe to form a non-porus surface., Such
a configuration was utilized as the base line
in the Ames II test. Its purpose in this in-
vestigation was to provide an additional check
on the performance of the scaled model relative

to the Ames model,

Fig. 29. Model Configuration 14
57
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Note:

Forward view of
(:) turret
0~—0

Configurations 15 & 16

In configuration 15 air was injected into the
base of a baffle surrounding the porus top
light pipe and could exit through'the first
two rows of holes in the pipe and through two

holes at the base of the aperture, It was

_-hopéd that such flow would divert high energy

air away from the aperture and thus stabilize
the pressure field on the UTM, Configuration
16 was the same as configuration 15 except the

aperture perimeter holes were closed,

Fig. 30. Model Configurations 15 & 16’
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Rote:

Configuration 17

The model was identical to configuration 16
except that blowing was only through the first
row of holes in the top light pipe. By con-
centrating the upward flow injection ot the
aperture lip it was believed a better possi-
bility existed for diverting high energy free

stream flow,

Fig. 31. Model Configuration 17
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Rayl

Note:

AN

Forward view of
O turret
0~0

COnfiguration 18

The two aperture verimeter holes were opened
and suction was applied at the base of the baf-
fle, It weas recognized that such an arr~nge-
ment would have the péssibly adverse effect

of entraining free stream fluid into the open-
ing. However the additional effect of bleed-
ing off the stagnation zone in front of the '

turret could, it was believed,-stabilize L9

pressures,

Pig. 32, Model Configuration 18
60
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E .

Forward view of

‘ @

Configuration 12

Note: Injected air could exit through five aper-
ture perimeter holes and the first row of
top 1light pipe holes as depicted above,
Again, the objective of this arrangement

‘ was to divert the high energy free stream
flow from impinging direcyly upon the open-

ing.

Fig. 33. Model Configuration 19
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Appendix B

Boundary Layer Data

30 M0
SN

B.Sin. 30511‘10

25+ Legend ‘

A Mach .gO
+ Mach .85
® Mach = .95
~—— Theoretical

ihu

° 20"‘

Note that at higher velocities
less of the turret offect on the
flow is provagated forward to the
probe thus resulting in a thinner
boundary layer.

L] 15"‘

y(in)

010"'

005"‘

-I'El 3? -IE 19 1.0

Fig. 34. lMeasured boundary layer comparcdi to theoreticel
1/7 power law velocity profile (Ret 11:598).
Sincz the teat Reynolds number was constant at
3x10%/ft, the single theoretical line applies

to all test lMach numbers.
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Appendix C

UTM Unsteady Pressures and Torgues

This section contains P___/q values of the four

rms
UTM pressure transducers as functions of 6 for various

model configurations and Mach numbers (Fig 35 thru 66).
The base line (M>del 2) values are superimpossd on each
figure as dotted lines. Generally a reduction in the
Prma/q value can be interpreted as a reduction in torque.

Because of the fact that each transducer had a dif=-
ferent constant relating voltage to pressure, the verti-
cal scale in the figures assumes two values. Also, where
given, the values of h have been non-dimensionalized
(see page 8). No measurements were made on the rate of
suction applied to Model 18,

Figures 67 and 68, also included in this Appendix,
glive plots of the Model 2 UTM azimuth and elevation tor-

ques as functions of 6 and Mach number,
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Appendix D

Turret Static Pressure Distribution

Contained in this section are Figures 69 thru 78.

These depict the turret flow Mach number and C, as

p
fuictions of the local angle to Uy, and free stream vel-
ocity for Models 1 and 2. The reader is referred to
page 11 for the location of the pressure taps utilized
in the expe:r*iment,

The abscissa of each graph is given as the angle

of the pressure tap to Ug,. For pressure taos 1 thru 7

~the angle of the turret aperture, 6, is given by

@ = angle of pressure tap - 70° (&)
and for pressure taps 9 thru 11 by
® = angle of pressure tap - 110° (7)

98




GAE/AE/75J-6

= 15

- .25 MacH

Z\
-\

~ = MoDEL 1
e = MoDEL 2

L

T

’.

[©) o) : H

o~ 12

w @- b

1B ® Ofs

mn

u

W

¥

o
o

= L

& a
O

gw _,m&

1 L. [l

=
o
POSITIONN

L L L

L,

L]

B M w@

e

EL = BO. 1 B2

ANGLE OF FRESSURE TAP- TO U,

Comparison of local turret flow Mach number
with and without the aft fairing installed
with free stream Mach = .7. See page 11
for pressure tap location.

Fig. 69.

99



GAE/AE/75J-6

ANGLE OF PRESSURE TRP TO Ug
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f} Appendix E

0il Flow Visualization Drswings

This Appendix contains Figures 79 thru 82 which
are drawings of oil flow patterns observed on the sur-
face of Model 2 at various Mach numbers snd 6. The
position of the turret saperture is s=2en to have little

effect on the line of flow separation.
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