

e i IR s T

(ST e BT D -

v €0 Loug

-k

o -

B R by capi g

REPORT DOCUMENTATION PAGE : R, 1A o
. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIEAT'S CATALDG NUMEBER
4. TITLE (and Subiiile) / TYPE OF REPORT & PERIOD COVERED
34— - e AL 5
PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK o 1 Technical | L:/ \
] | [T FEns o ome-meromt wiier
/3 [BEN Repase-Woi-2930 | |
7. AUTHOR(s) T L] 1% CONTRACY ORGR: 17 NUMBERTS)
—— e / r . DAHG15-6
; E.Hq/Morgan et-al. L F08606-73—C—ﬂQZZ,
J RS = N _F08696-75-C-9032
S, PERFORMING ORGANIZATION NAME AND ADDRESS k] .-Zgggﬂ.:gocaﬁnﬁ?{:umoejégg, TASK
Bolt Beranek and Newman Inc. ; {:;}‘*“‘“ ARPAi1Order E§27235ﬂ;
50 Moulton Street U ""??§§§gﬁ—Eiemen{~C53es
Cambridge, Massachusetts 02138 62 , 62706E, 62708E
19. CONTROLLING OFFICE NAME AND ADNRESS 412, REPQRY DATE _ .- =)
Advanced Research Projects Agency (:éé) Jantramf=8975
1400 Walso1 Boulevard " /A NUNBER GF PAGES
Arlington, Virginia 22209 184
14 MONITORING AGENCY NAME & ADDRESS(! dillerent (rom Controliing Ollica) 15, SECURITY CL ASS. (of thie raport)
Range Measurements Laboratory Unclassified
Building 981

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

Sa. DECLASSIFiZATION/DOWNGRADING

Patrick A.F.B., Florida 32925 SCHEDULF

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited :

17. DISTRIBUTION STATEMENT (of the abetract entered (n Block 20, il dilletent from Report)

o \F 2

d i 3

18. SUPPLEMENTARY NOTES Nk i T3 iy

J{' g

:-| 1

lHh— 3
1 1] _.J;l-

19. KEY WORDS (Continue on ‘everse elde if necassery and identily by b’ock number) % i
multiprocessor computer architecture [
Pluribus fault tolerant computation
reliable computer multiprocessor design

parallel processor

20. ABSTRACT (Continue on reveree alde il necessary and identily by bdlock number)

The Pluribus is a reliable, expandable, high bandwidth line of multi-resource
computers oviginally developed for use as a switching node in the ARPA com-
puter network. It can be configured with arbitrary amounts of memory and 1/0
tailored to suit the application; it is designed to survive failures and con-
inue operation without human intervention even while repairs are in progress/
his report, one of a set of nine volumes documenting the Pluribus line, pro-
vides a guide to the other volumes, a glossary, an index, and an extensive

description of the system. §

FORM
DD b s 1473 eocimion oF 1 NOV 65NBSOLEYE UNCLASSIFIFD

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entere.l)

r / v

e -

’

Ve

-
)

+

.~ aw i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THiS PAGE(When Data Entered)

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

January 1975

222750198ty

=
i#
|

£

v

R RS T T T

R 1] AMMYY m
S Wl o BN
| 5 i]

Sponsored by: f

Advanced Research Projects Agency

ARPA Order No. 2351
Contract No. F08606-73-C-0027

e

¥ e

(1)

il . : - T R s R P S T

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PREFACE

"pluribus Document 2: System Handbock" is one of a set of nine
which, taken together, provide complete documentation of the
Pluribus line of computer systems. In the present document,
part 1, entitled "Gulde to Documentation," glves an overview of
the entire set. Part 2, "System Description," contains an ex-
tensive discussion of the Pluribus line and the ways in which it
can be used. This system description s the primary text for

anyone seeking familiarity with the Pluribus, although, of course,

there are many details which can only be found elsewhere in the

set. Part 3 1s a glossary of specialized Pluribus terms used

throughout the set. Part U4 is an index to the present document.

Part 5 contains reprints of several papers relevant to the

Pluribus.

Of the five parts of "pluribus Document 2," parts 1, 2, 3, and

.5 are presently included here; part i 1s in production and will

be added when it becomes ready.

111

Repcrt No. 2930 Bolt Beranek and Newman Inc.

Il TABLE OF CONTENTS

8
L | v Preface
1

Part 1: Guide to Documentation

1 Part 2: Sydtem DeSEFIPLIIM « - . o w v w oy 4

i - >
) g
. PArY B CHEREdTy ¢ I v e o v 8 5.8 s s amt o H e - B
|
{
!
; Bapk 48 @ I5@€%e & s o'6 o @ & 5.5 F 4 o0le 6 oo By &
H
|
‘]
|~
' ’
Part 5: Raprints of Papers . « « « . &« « v & & & & &
|
£
A ™
o 4

Guide

Description

Glossary

Index

Reprints

PRECEDING PAGE BLANKeNOT FILMED

N i

|
',
1

Report No. 2930 Bolt Beranek and Newman Inc.

} PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

‘Q.
. PART 1: GUIDE TO DOCUMENTATION
s

(]

{

9

i

{

i‘

|

it

)i

|

| ?

LY

GUIDE TO DOCUMENTATION

Update History:

Originally written - February 1975

i
i

B

)

e AR VY o ANTE S A T

Report No. 2930 Bolt Beranek and Newman Inc.

The Pluribus line of computer systems 1is documented in
a series of nine volunes entitled as follows:

"Pluribus Document 1: Overview," BBN Report No. 2999
"pluribus Document 2: ~System Handbook," BBN Report

No. 2930
"pluribus Document 3: Configurator," BBN Report No. 3000
"pluribus Document 4: Basic Software," BBN Report No. 3001
"pluribus Document 5: Advanced Software," BBN Report

No. 2391
"pluribus Document 6: Functional Specifications,"”

BBN Report No. 3002
"Pluribus Document 7: Construction," BBN Report No. 3003
"pluribus Document 8: Card Testing," BBN Report No. 3004
"pluribus Document 9: System Integration," BBN Report

No. 3005

The set of documents taken as a whole 1s intended to cover
all aspects of the Pluribus; e.g., the decision to use a Plurlbus,
the design of systems involving the Pluribus, programming the
juribus, actually fabricatling the Pluribus hardware, and
maintaining Pluribus systems. On the other hand, the set of
documents is organlzed so that any one aspect of Pluribus
endeavor (e.g., Pluribus manufacture) should be documented with
a subset of the documents; thus, not everyone need carry all
documents with him at all times--only those he needs.

The chart on the following page suggests which Tluribus
documents will be useful for which areas of endeavor and for

what types of people.

sjusumood SNQIaInTd 03 IPTINd T STqeBL

Toumrexboad snqranyd ¥
IsuTejuTeW SIEMpPIRY SNQTANTd V¥

T3H{IAOM Axojzoey snqranid Y

Bolt Beranek and Newman Inc.

‘q°°°snqlanid ®© putAng HBuTISPTSUOD SUO

: (NOSY3d 40 FJAL) ¥OZ
1o3ndwo) snqranTd e bursn
193ndwo) snqranid © burpiing
snqTanid 92Uy3 uo paseq wa3SAS

uotrzeo11dd@ ue Butubicaq

:YFENAN INIWND0d IIS : (JOAVIANA J0 VIYVY) ¥Od

2930

Report No.

Report No. 2930 Bolt Beranek and Newman Inc.

The documents have a loose-leaf format to facllitate
updating.

Of the nine, documents 1 through 6 will be avallable in
reasonably large quantities. Documents 7, 8 and 9 contain much
detall of little general interest (e.g., wire lists, assembly
drawings) and are extremely cumbersome to produce; therefore,
their avallability from BBN will be quite limited, although
they will be submitted to the National Technical Information

Service to allow general access.

In the following paragraphs, we discuss each of the
nine documents in turn, presenting the contents of each and
discussing its expected use.

Document 1: Overview. This document is meant to provide
a quick summary of the Pluribus's capabilities, possible appli-
cations, and architecture, and 1s the first document one should

read to determine if he is at all interested in using a Plurlibus.

Document 2: System Handbook. This document 1s the primary
text for one seeking familiarity with the Pluribus. The funda-
mental ideas of the Pluribus are introduced and then discussed
in detail, including the structure of the hardware and guldance
on how we think the hardware should be configured and programmed.
In particular, after a brief general description of the Pluribus
system structure, there are discussions of the processor
structur: and of the addressing structure for the system, an
outline of how programs might be written to use the Pluribus

structure effectively, a discussion of Pluribus device handling
and I/0 handling, a discussion of the structure of the Plurilbus
busses and how they are coupled together, summaries of the

Report No. 2930 Bolt Beranek and Newman Inc.

various devices whici. can be connected to the Pluribus, and a
discussion of the Pluribus reliability mechanisms. While this
document might pest be thought of as a programmer's reference
manual for the Pluribus, or alternatively, as the reference
manual for Pluribus systems analysts, we think that everycne
assoclated with any phase of Plurlbus development and use will
be likely to want it, wlth the possible exception of those

concerned with only very local aspects of Pluribus construction.

This document is enhanced by the inclusion of a glossary,
4 gulde to other documentation (which you are reading), an
{ndex, and some reprints of relevant papers written during the
Pluribus development process which may glve the reader greater
inglght into the use and structure of the Pluribus.

Document 3: Configurator. This document lists the various

components that make up Pluribus systems (e.g., memories,

processors, pusses) and gives rules for confipuring Pluribus

systems. These rules are of two forms: rules of the firsu
form are concerned with performance limitations; rules of the
second form are corcerned with physical limitatilons. An
example rule of the first form tells how effectively multirie
processors on a bus can share a memory on the same bus as a
function of processor speed and memory speed. An example rule
of the second form says that if more than some number of cards
are to be used on a bus, then a pus extender will be needed.
Of course, in some areas these two forms of rules are not
independent; for 1lnstance, adding a2 bus extender may slow down
the bus.

Report No. 2930 Bolt Beranek and Newman Inc.

This document will be used primarily by the systems
analyst or system architect for a computer system using the
Pluribus. Further, it will be necessary in order to price
Pluribus systens accurately, since only careful configuration

will 1list all the system components actually needed.

Document 4: Basic Software. This document presents only
encugh about the Pluribus software to enable the reader to
program in basic machine language for the Pluribus. The Pluribus
instruction set is presented, the several different Pluribus
assembly languages are introduced, and there 1s a discussion
of the basic debugging package which allows Pluribns memory
locations and machine state information to be inspected and
changed.

Every Pluribus programmer will need to read this document

as this is the software he will need to do "hands on" debugging

of his program. Additionally, those buillding and maintaining
Pluribus hardware systems will need to read this document
hecause it describes the software they will need to operate
nardware diagnostic programs.

Document 5: Advanced Software. This document describes
software beyond that needed just to debug programs and operate
hardware diagnostics. The software avallable for the Lockheed
SUE, the processor used in the Pluribus, is listed. Detalled
descriptions and operating procedures are given for the two
cross—assemblers available to assemble programs for the Pluribus.

Report No. 2930 Bolt Beranek and Newman Inc.

The somewhat unstructured "package" that has been developed to

permit reliable operation of the Pluribus is also discussed.

Every Pluribus programmer, whether he is writing application
programs, utllity progranms, or diagnostics, will need to refer

to this document.

Document 6: Functional Specifications. This document
provides the physical characteristics, operating characterisitcs,
and necessary programming details for every Plurlbus ¢ard. Une
way to think of this document is as an extension to Document 2,

giving greater detail on specific devilces.

Document 7: Construction. This document provides the
informetion necessary to bulld the components of Pluribus
systems. For every Pluribus card, the following are included:

parts 1ist, wire list, art work, assembly drawing, and assembly

procedure. For every mechanical part and cable gsed in a

Pluribus, this document jncludes the following: parts 1 ECSiERy
assembly drawing, and assembly procedure. In addition, this
document contains a section which includes detailed instructions

for any modifications and option selectlions for Pluribus cards.

Document 8: Card Testing. This document gives instructilon
for testing every card that can be used in a Pluribus system.
For Pluribus cards obtained from Lockheed, the Lockheed main-
tenance bulletin and diagnostic procedure are provided. For
every card specially desligned and constructed for the Pluribus,

‘s g - g T
|

Report No. 2930 Lolt Beranek and Newman Inc.

this document includes the following: schematic diagrams, :

logic description, wire lists, test program, and test procedure.

This document 1s necessary for anyone debugging cards, ;
either after initial construction in the Pluribus factory or

after fallure in the fleld.

Document 9: Syetem Integration. This document describes
how the components of a Plurlbus system are assembled into
a complete hardware system; €.£., how chassis mount in racks,
how cards mount in chassls, and how to test the whole thing
once it is together. Included in the document are an overview
of the hardware system assembly process and the hardware system
assembly procedure; option selection information; system test
programs; and finally, system quality control and acceptance

porcedures for newly constructed systems.

This document 1is necessary for anyone debugging Pluribus
systems, elther after initial construction in the factory or

after fallure in the field. %

E

o r— -_-7..-.-»-. "hf"——-—-

report No. 2930 Bolt Deranek and Rewman Inc. '
i’ b

1. PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK
' ¢

J‘l : PART 2: SYSTEM DESCRIPTICN

I <

|

| |

& 1

1
N |
| |

L,

2

i
<

.

|

!

It

{; ,

| ’

§i

i |

¥y

-
! :

Report No. 2930 Bolt Beranek and Newman Inc.

SYSTEM DESCRIPTION

Update History:

Originally written by C. R. Morgan
and G. Falk, December 1974

Gl ST D

-
v ¥

v &

PO

e R

e

Report No. 2930 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1. INTRODUCTION

(%

2. PLURIBUS SYSTEM STRUCTURE.

3. PROCESSORS :
3.1 Instruction Set and Format Summary
3.2 Processor States
3.3 QUIT Handling.

4. ADDRESSING
4.1 References to Private Meriory
t.2 References to Commom Memory

4.7 References to System 1/0 Space
rin 4.4 References to Maps, Processor Registers, and
i Local 1/0 Space.

5. PLURIBUS PROGRAM STRUCTURE
5.1 Basic Control Structure.
5.2 System Response Time and Strips. g b g
5.3 Shared Cata Structures, Shared Code, and Locks
5.4 Using the Map Registers.
5.5 Using Multiple PIUs.

DDEVICE HANDLING AND I/0.
6.1 Address Structure nms -
6.2 Programming EBN DMA 1/0 Devices.
6.3 BBN Non-DMA 1/0 Devices.
6.3 Lockheed SUE 1/0 Levices

()]

z

10
12

14
17
18
19

20

22
22
24
28
32
33

35
35
39
43
45

a4

i —— .

Report No. 2930

7 &

10.

SYSTEM RELIABILITY MECHANISMS.
7.1 Hardware Reliability Mechanisms.

7.1.1 Power Failure/Restart Interrupts

/A

-~

.1.2 Hardware Timeouts

7.1.2.1 Infibus Timeout.

7.1.2.2 Device Timeout and Multiple Interfaces
1.3 Remote Reference/Control of Devices on a
Processor Bus. ol M
.1.3.1 Backwards Bus Coupiing .
.1.3.2 Remote Resetting of a Processor Bus.
.1.3.3 Bus Amputation g
Externally Initiated Reloads
.Parity Generation/Checking

—
o N NN

Transfers Between Private Memories on
the Same Processor

7.2 Software Reliability Mechanisms.

INFIBUSSES

BUS COUPLERS .

9.1 BCP,

9.2 BCM.

9.3.BCI.

DEVICES. e BN e AR

10.1 Pseudo Interrupt Device (PID)

10.2 Real-time Clock (RTC)

10.3 Low Speed Modem Interface (ML).

10.4 Local Host Interface (HLC). ;
10.5 Checksum/Block Transfer Device (CBT).
10.6 External Reload Device (RLD).

10.7 Synchronous Line Interface (SLI).

. 90

Bolt Beranek and Newman Inc.

48
49
49
50
51
51

52
52
56
57
59
60

61

. 63

67

70
70
73
&

73
79
80
82
86
88

99

!
|

L X
1

Fiqure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

~d

10

e e e T e T e e~ R - ‘et

LIST OF TLLUSTRATIONS

Typical Pluribus System Configuraticn.

Processor Address Space:

Address Mappings

Processor Bus Shared Address Space

System 1/0 Space:

Allocaticns of Primary System I/0 Space:

DMA Registers-

Backwards Bus Coupling-

Bus Amputation txample -

Reljability Software

Types of Bus Couplers-

e

1€

21

36

38

58

66

71

o -

Rerort No. 2930 Bolt Beranek and Newman Inc.

L INTRODUCTION

The Pluribus* system 1s a general-purpose multiprocessor
computer suitable for applications ranging from those normally
identified with minicomputers to those typleally associated with
larger machines. Pluribus hardware has been designed so as to
provide a suitable basis for the development of ultra-reliable

hardware/software systems.

i Pluribus systems contain an arbitrary number of identical

processors each of which has access both to its own private
x memory and to a common memory accessible by all processors. iL/®
devices which are part of the system can be controlled by any

processor. The number of processors, size of common memory, and

amourt of I/0 gear on & Plurlbug Eystem cdn bhe guite large.

The Pluribus system achieves modularity and reliability by
making all the processors equivalent. Any processor can perform
any system task or control any device. Since each subsystem of
the Pluribus system (processor, memory, and I/0) 1s expandable,

i systems can casily be configured to meet the throughput require-
ments of a particular job. The scheme for interconnecting system
components is also modular; herce, interconnaction costs vary

smoothly with system size.

|

|

|

?

i} The Pluribus system was originally developed to serve as a

® modular reliable packet-switching node for the ARPA Network [1].
)‘ A node consisting of a 13-processor system is currently operational.

The Pluribus approach is appropriate, however, for many other
» applications where reliability, modularity, or large loglcal com-
puting power is required.

#Trademark of Bolt Beranek and Newman Inc. (BBN)

- . .
<>

A G

i e e

Report No. 2930 Bolt Beranek and Newman Inc.

This handbook will describe the structure and cperation
of the Pluribus system. It will emphasize utilizZation of the
Pluribus architvecture in the manner for which it was originally
designed, although additional possibilities will become clear
as the discussion progresses. The handbook is oriented both to
the prugramner who will use it as a basic re‘'erence document and
to the system designer who will have to de!ermine if the Pluribus
Ls spprapriate for Hls paFcicular appliedt ion. - Seelion 2
presents an overview of the Plurlbus architecture. Section 3
containe a brief deseription of the processor. Sectlons 4; 5,
and présent the basic InTormiition toncerning the.Pluribus system;
addressing, programming, and device handling. Section 7 discusses
reliability machanisms in the Fiuribus system, both hardware and
software, in detail. Sections 8 and 9 discuss the Infibusses
and bus couplers: ®Binally; Section 10 @escribes mamny device
dependent features and bits and will be useful most likely for

reference purposes only.

The Pluribus is constructed out of comprnents manufactured
both by BBN and by Lockheed Electronies Company, Inc. (LEC). The
BBN-produced hardware is described in detail in this document.
LEC hardware from the SUE minicomputer line is discussed only i1n

sufficient detail to make the description of the Pluribus co-

herent. More complete information on the SUE components can be
found in the Lockheed product literature [2,3,4,5].

>

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS SYSTEM STRUCTURE

A Pluribus system consists of a number of components
(processors, memory modules, and I1I/0 devices), a number of
busses over which these components communicate, and a number
of bus couplers which provide the mechanism for interconnecting
the individual busses. Within this framework a wide variety
of systems can be configured ranging from small single bus
systems to larze multi-bus systems with tens of processors, up

to 1024K bytes of n~nin memory, and a large assortment of I/0

gear. The subsequent discussion will focus on a medium sized
RURIESDTS AciomitiEIate Hichnle Very small and very large systems
both involve additional considerations not discussed in detail

here.

The basic skeletal unit of the Pluribus system is the SUE

Infibus* onto which all BBN and LEC devices are connected. The

Infibus not only serves as a chassis into which device cards are
plugged but also provides a means for communication among all
attached devices. In general, a single Infibus can have an assort-
ment of cards on i&t: processors, memories, or L/0 devices.
However, only one device can be 1h control of the Infibus &t any
glven instant. An Infibus arblitsr (Bug Centrel Unit Card or BCU)
which must be préséent on the Infibus guarantees that this is the
case. The total number of components which can be plugged onto a

single Infibus 1s dependent on the number of slots available for

cards and the type of power supply used (sce section 8.).

oW o
4
4

"t roughout the remainder of this document the word "bus" will be

used as a shorthand for Infibus.

-4 -
- —— i e g

i,

¥*Trademark of Lockneed Electronics “cmwpany, Inc.

Report No. 2930 Bolt Beranek and Newman Inc.

A small Pluribus system (even a single processor system)
can be built uysing only a single bus. TFor many appliecations,
however, the bandwiath capability and/or card capacity of a
single bus 1s exceeded and a multi-bus structure 1is required.

In addition, applications which take advantage of the full capa-
bllities of the Pivribus hardware for bandwidlh and PEelisbility

will require mu'ti-bus configurations.

With more than one bus, the guestion becomes how to assign
processors, memory, and I/0 devices to the individual busses and

i how tc connect them together. A typical conflguration is illus-

trated in Filgure 1. Lines between busses rcpresent bus couplers.
Typically, busses in a Plurlbus system are configured as one of
three types: urocessor busses, memory busses, or I/0 busses.
Processor husses support processors and private memory associlated
with each of the processors. Up to four processors (numbered 0-3)
{ can logically be put on a single bus although contention for the
‘ bus is likely to reduce the effective processcr bandwidth. In the
1 ARPA Network application, for example, four processors with con-
ﬁ tention produce the same computational capacity as would three
F processors if there were no interference among the processors ULy
1f the procecsnrs were actually independent). Although the con-
tentlon is application-dependent, Fluribus systems will generally

? be configured with one, two, or three processors per processuvr bus.

:1 Two processors are indicated for the system illustrated in Figure

| 1. The other components normally residing on the processor bus Py

[~ are the processor private memories. These memories will contain

| the "hot code" (i.e., those routines most frequently referenced)
so as to reduce competition for the pool of shared (caommon)

" memory, and other code which 1s important to protecc by

removing it from shared memory. One useful technique

i]
t Report No. 2930 Bolt Beranek and Newman Inc.
N <
|]
MEM MEM MEM MEM
] Fe 1| P ¢ l Pe | | F 6 l
1
PROCESSOR ll | PROCESSOR
| BUS A = e BUSB L -,
- \ B # g /]
| A \ \\ // / ,
' | \ \ AN -~ / / /
| \ \ N / ; /
J | \ \ i \ / / ;
: I \ \// Y / / /
= MEMORY '\ A MEMORY 7 N /
| BUS A il BUS B —oln :
| ! \ 7 T |
[\ / \
| ' e s o x olll |- I‘
| | | L S '. ‘\ _ /
1 | [com |1 [com ' [com]i}[com [
' MEM || | MEM VAN MEM | | || MEM /
l I 1| n // \ n+l j il m F,
| I ! % Ol I
| ! / N \ |
l n'll 4 "'/)i \ /
1/0 J 710
BUS A sl —_ BUS B —
DEVICE DEVICE DEVICE DEVICE
' PID INTER- | |INTER- PID INTER- | | INTER-
FACE FACE FACE FACE
. Figure 1 Typical Pluribus System Configuration

L%
<y

o, - A A ——— - S T T —————— -

Report No. 2930 Bolt Beranek and Newman Inc.

ils for all private mamories to contain identical ceopies of the

i same code. uch of the system rellabili.y software will be held
i' in the private hemories to guarantee that redurn.lant coples exlst
in case of any nemol fallure. The maximum amount of private
memory addressable by each processor is 16K bytes. Not shown in

i Figure 1 but exlsting on every bus is the BCU (bus arbiter) card.

In certain cases it may be desirable to have some I/0 devices on
4 the processor bus, but this will be the exceptlion rather than the 13
rule and is discussec further in section 6.4.

Memory busses contain common memory shared by all processors.

Up to 1008K bytes »f common memory can be added in 8K or 16K byte

increments. The common memory will typically contain code which

is referenced less frequently than “he "hot eceode". @denerally,

shared data structures, variables, and buffers will also be held

in common memory.

The conflguration of common memory, thit 1ss the asEigrment
of memory modules to memory busses, depends on considerations of '

rellability and memory contention. For both reasons it i1s desirable

to have multiple memory modules on a bus, multiple “usses, and

; redundant copies of code and data structures. The details are "
application dependent and relate to the cost/performance (relia-

bility) trade-offs which the system designer must consider. For

reliable operation at least two memory busses, two processor '

busses, and two I/O busses will be required.

N @ g ang

The I/0 busses contain I/0 devices and the Pseudo Interrupt
Device (PID) central to the Pluribus system operation. The PID
keeps 1in hardware a 1list of what to do next. A number can be a
} written to the PID at any time and it will be remembered. When 8
o read, the PID returns (and deletes) the highest number it has

- .

-

P e N el
-

e . i, R, st . s . e ey e i =t s

Report No. 2930 Bolt Beranek and Newman Inc.

stored. By coding the numbers to represent tasks, and keeping the
parameters of the tasks in memory, a processor can access the PID
at the end of each task and determine very rapidly which task to do
next. This approach is an important departure from the use of
conventional interrupts and avoids the costs associated with saving
and restoring machine state.* Further, this approach neatly side-
steps the problem of routing interrupts to the proper processor.

More cetail on the use of the PID is given in section 5.

There can be no more than four PIDs in a Pluribus system.
Even though some I/0 busses may conceivably not contain a LD SN

a bus may contain more tharn one, the usual configuration is one
PID per I/0 bus.

In a Pluribus system, processor, memory, and I/0 busscs are
connected by devices called bus couplers. The different types of
bus couplers required to connec. different bus pair types together
are discussed in more detail in section 9. For moderate sized
systems, there will generally be a bus coupler between any two
busses between whicr communication is required. Usually this
implies a coupler from each bus to all busses of other types.
Thus the total number of bus couplers for such a Pluribus system
with P processor busses, M memory busses, and ‘L I/0 busses is
PM + M-I + P-I. For smaller systems it is possible for one or
more Infibusses to serve as combined memory and I/0O busses,
reducing the number of required bus couplers. For applicatlons
requiring large numbers of components (processors, memories and
1/0 devices) it will be possible to reduce the required number of

bus couplers by building hierarchical Pluribus systems where

¥Although not used within application software, conventional

interrupts can result from errors and are used for special purpcses.

See section 3.3.

BT

Report No. 2930 Bolt Beranek and Newman Inc.

e S

busses are not completely connected. A more detailed discussion
3 of the issues and procedures for configuring a Pluribus system

! can be found ipr a separate document [6l. 1

e ———

Several distinct processor models are avallable. The SUE

=—

i{s a relatively slow and inexpensive processor. Typhleal memory-
{ to-register instructlions have execution times on the order of A
microseconds. For a given application, the required processor
power can be attained by using as many processors as are necessary.
This approach to generating high throughput systems has the
advantage of permitting extreme modularityvy and high reliability

as well as graceful degradation.

-

Report No. 2930 Bolt Beranek and Newman Inc.

4 3. PROCESSORS
: 3.7 Instruction Set and Fermat Summary

i Lockheed SUE processors are used as processor components
for Pluribus systems. The basic processor is a microprogrammed

| ¥ general purpose 16-bit minicomputer with 8 general registers (one

of these reglsters 1s the program counter), and a status and a

control register. These reglsters (general purpose, status, and

control) may be accessed externally by other devices via the

Infibus. In a multiprocessor this allows one processor to stop
another, examine and change its registers, and restart 1it. Rhere
are 8 general instruction classes: MOVE, ADD, SUBTRACT, INCLUSIVE
OR, EXCLUSIVE OR, AND, COMPARE, and TEST. Each of these instruc-

tions can use a variety of addressing modes including register-to-

register, memory-to-register, register-to-memory, indexed, 1in-
direct, and auto-indexed. Also avallable are rotate, shift,
conditional branch, unconditional branch, and subroutine calling
instructions. The conditions tested for branching are bits in

the status register of the SUE. There are tests for result being

e I TR N
.

zero, result being negative, carry on last arithmetic instruction,
i’ register value odd, overflow, value greater-than on last comparison,

! value equal on last comparison, and locp completion. The branch

|

{% can occur on either value TRUE or FALSE. Instructions are either

‘ one or two words long. The processor also contains 3 programmable

} e flags, contained in the status register, that can be manipulated
directly by instructions. The SUE processor recognizes and

i generates 16-bit addresses. In addition it contains a 2-bit KEY

register which 1s settable by the SKEY instruction in the pro-

o cessor. The contents of this register are appended to the most

sirvnificant end of the 16-tit address to generate an 18-bit address.

Every memory access by a processor has these two bits appended.

-
<

Report No. 2930 Bolt Beranek and Newman Inc.

Certain of these 18-bit addresses are mapped into 20-bit system
andresses as described in section 4., The processor operates on

elther 16-bit words or 8-bit bytes of data. Bit @ 1s 1dentified "
with the low order bit and bit 15 with the high order bit. Details

of the SUE instruction set and the various processor types may be

found in reference 4. -

3.2 PROCESSOR STATES
SUE proce.sors can be 1in one of three states: halted,

running, or idle. Transitions between these states may be ef-

fected either Ly the processor itself or by external manipulation.

The implications of each of these three states are as follows:

3 Halt : No instructions executed, interrupts disabled,

1
reglsters externally accessible

Run: Instructions executed, interrupts enabled,
registers not externally accessible except

control register.

Iafliet: No instructions executed, interrupts enabled,

|
; registers not externally accessible except

control register.

i . External references to registers which are not accessible will

!f result in a QUIT, as described in sections 5.6.1 ard 9.2. The

; Idle state is entered from the running state by executing a WAIT
instruction; the HALT state, by a HALT ingtruetion. The Ruh

{1 state is entered from the Idle state by the occurrence of an

! interrupt. External manipulation of these states operates as

follows:
i The processor control register is the only register accessible
{ while the processor 1is running. To halt a processor, a one is
1H written to its control register. The processor will normally halt

> - L Ao S =

Report No. 2930 Bolt Beranek and Newman Inc.

when the instruction it is currently executing is completed. However,
if the control register is read between the time that a zero

is written to the control register and the time that the pro-

cessor completes its current instruction, the halt signal will

be lost. Hence, some algorithm such as the following should

' be used to guarantee that a processor does in fact halt:

‘ L: Write 1 to the processor control reglster.
13 Read some other processor register.

t If QUIT results go to L (see section L% o
! At th's point the processor is halted.

To start a processor, one must initialize all important
registers to needed values and store the number two into the
o control register. This is done as follows: First it must
Lo be assured that the processor 1s halted. The program counter
is initialized to the address of the program to be executed.
k| The general registers are 1naded with any values to be passed
to the program. The status register is initialized to specify
| the enabled interrupt levels, initial status flags, and pro-
grammable flags. Bit 11 (hexadecimal constant #8¢0) should
§ | be set to activate the processor. Finally, writing a 2 to
the control register starts the processor. An additional
feature of the SUE processor is the ablility to Single step
I : through an instruction sequence. The procedure fcr doing
this is identical to fthat of starting a processor except
that a 3 is written to the control register rather than a 2

[

Report No. 2930 Bolt Eteranek and Newman inc.

3.3 QUIT Handling

Processors requesting access to memory locations or Al
registers do so by directly or indirectly placing the desired
address on the appropriate bus along with the required operation
(e.g. read, write) and any data required (for a write operation).
When the requested operation is complete, the processor will
receive a signal called DONE. If no device on the destination
pbus recognizes the address provided or 1f the device recognizing
the address malfunctions, no DONE signal will be returned to
the processor. Instead, after a fixed period of time, the bus
arbiter on the reguesting processor bus will send a QUIT signal
to the processor, causing a conventional interrupt. (An equi-

valent thing happens to requests by I/0 devices from I/0 busses.)

In many applications a programmer will want to take some
action based on the presence or absence of QUIT interrupts. 1657
the ARPA Network application, for example, a device discovery
routine in the reliability software searches systen address space
and determines if known devices have disappeared or new ones
appeared by attempting to read the devices' registers and
checking for resulting QUITS. To provide this mechanism the
interrupt level routine which responds to QUITs should be written
so that control will be passed back to the application program

Report No. 2930 Bolt Beranek and Newman Inc.

if the application programmer has indicated that he wishes this
to happen. He indicates this wilsh by surrounding the instruc-
tion which potentially causes the QUIT by an "unusual pattern"
of other instructions. For example, if a programmer wants to
check for a QUIT occurring when location ABC 1is referenced he
might wrlte the following:

LDA A2, ABC
NOP

BR -+ U
QUIT BRANCH ADDRESS

if no GUIT, progeam eoRtinues here~—

The QUIT interrupt service, upon receiving control, would check

to see if the two instructions following the one which caused
the QUIT were NOP and BR . +4. 1If they were, it would simply

store the two bytes starting at location L (the address of the
instruction causing the QUIT plus 8) in the program counter and
dismiss the interrupt. If the two instructions at L-4 and

L-2 do not match the NOP BR . +4 pattern, the interrupt service
routine would take its usual action in handling the QUIT, <€
course, references to ABC which do not cause QUITs cause
execution to continue at L+2 as indicated.

Report No. 2930 Bolt Beranek and Newman Inc.

ADDRESSING

A typical Pluribus configuration incorporating both
private memory agsociated with each processar and a peol of
common memory shared among all processors has been presented
i feetionm 2. In this section .the Pluribns addrase StLHUstUPS
1s described in more detail. The application of this address
structure to Pluribus program structures will be discussed in

section 5.

In Pluribus systems all devices communicate with one
another by writing into or reading from addresses. These ad-

dresses may be memory locations, locatlons for controlling or

interrogating I/0 devices, or they may have some other special
function. In any ¢ase 1t is lmportant to understand two things;
firet, how addresses are generated and routed through the gystem

and second, what things are referenced by what addresses.

Addresses are generated by active devices, that 1is devices
wanting to read or write some location. This includes both
processors and I/0 devices. Consider first a processor.

As Indicated in Figure 3(a), SUE processors normally
generate 16-bit addresses. With the addition of the 2-bit KEY
register in the SUE, however, the Pluribus processors actually

generate 18-bit addresses which are put on the processor bus.

The KEY register can be changed under program control by
execution of the SKEY instruction. For the class of applica-
tions being considered in this document, however, each processor
on a bus will initially set its KF¢ register to a distinct

value indicating its physical processor number and will not

Report No. 2930 Bolt Beranek and Newman Inc.

AW

PRIVATE MEM
FOR PROC;
0
PROCE R. A
OCESSOR; ADDRESSES ...
JOBB-3FFF
: A@@@-SFFF -
i 6@0@ -7FFF | RELATIVE TO COMMON ADDRESS
: 8¢¢¢-9FFF}MAPS 12,3 d0000 SPACE
AG@@-BFFF RESPECTIVELY a3
‘ :
| C@@@- FBFF —
' FC@@ - FFFF o
MAPS FORPROC; %
FCAO| map @ __——/
] MAP | ! +
q
! MAP 2
f MAP 3
i PROCESSOR
| REGISTERS
| L AND LOCAL
] | +\ 170 SPACE
(4 FFFF l___
‘g
;: w Fc
ft g SYSTEM
: 1/0
1 . |) SPACE
| Figure 2 Processor Address Space
{
t

15

Report No. 2930 Bolt Beranek and Newman Inc. ,

KEY{(2) It 31T ADDRESS ON PROCESSOR BUS
E | |] \
. E PROCESSOR ADDRESS (16) ———j
' - =

I8 BIT ADDRESS ON PROCESSOR BUS 148IT ADDRESS RECOGNIZED BY
' PROCESSOR-XY'S PRIVATE MEMORY
i [xYde | 33— [—]

& MAP REGISTER (7) 20 BIT ADDRESS PUT ON MEMORY BUS
| C 3 = l]
B BIT ADDRESS ON PROCESSOR BUS Y T
1 Ixyrst | i ,
rs=@i, |0

20BITADDRESS PUT ON 1/0 BUS

|
T T)
| 1 I8 BIT ADDRESS ON PROCESSOR BUS 1
(XYl tuvw —3
tuvw # 1111

|
‘
j‘v (d)

R 18 8IT ADDRESS ON PROCESSOR BUS

XY]

i ADNRESSES OF THIS FORM REFEREN(.E MAP REGISTERS,PROCESSOR BUS 1/0 »
| DEVICES,AUTO LOAD ROM, AND PRCCESSOR AND CONSOLE REGISTERS

(e)

Figure 3 Address Mappings

‘N

Report No. 2930

Bolt Beranek and Newman Inc.

normally change this setting.

‘The KEY bits thus serve to differentiate the address spaces
of the various (up to four) processors on the bus. The right=
most bit of the 16 left to ach processor is used to select left
or right byte in byte mode Instruetions, allowling 215 = 32K
addressable words. In order to allow larger common memory and
I/0 space than this, provision has been made for mapping portions

of thls 32K processor address space onto a 512X word system ad-
dress space.

The addresses shownatthe left 1in Figure 2 are the 16-bit
addresses generated by a typical processor (processor j). The
manner in which the address space is accessed by any processor
generated address depends on the range in which that address lies.
The four types of access will be discussed individually below.
With all 4 types of access being discussed, the 18-bit address
is simply put on the processor bus. Devices (memory, bus couplers,
and I/0 gear) able to recognize that address will respond and
all others will ignore the address.

4.1 References to Private Memory (@PPP-3FFF):

Any processor generated address in this range refers to a
location in the private memory associated with processor Jj on
1ts procéssor bus. Up to 16K bytes of private memory can exist.
As shown in Figure 3 (b), the high order two bits of the 18-bit
address are used to select the proper memory module and the low

order 1.4 bits select the location within the private memory.

L34

Report No. 2930 Bolt Beranek and Newman Inc.

4.2 References to Common Memory (4PPP-BFFF):

any processor generated address in this Pange refers to a

location in common memory, that is, memory on one of the memory
busses. There are U distinet sub-ranges within thls range, each
associated with a dlstinet hardware mapping register. This
sseclation is indlcated in Figure 2. Each map reglster allows
2 contirucus set of 8K bytes of commom memory locations to be
pererenced. A separate set of 4 nap registers is associated with
cach processor on a processor bus. The map registers are phys:-

cally located in the buc couplers (see section Dodhp)

Figures 2 and 3(c¢) 1llustrate how this mapping into common
memory is accomplished. An address in the range Lpgp-5FFF
mplicitly reférs to map regiptér #. A 2@-bit system address 1is
developed at the processor end of the coupler by appending 7 bits
from the map reglster to the low order 13-bits of the 18-bit
address on the processor bus. This address is then forwarded to

the common memory bus with the access reguest.

Addresses in the range 6@@@-T7FFF, 88@p-9FFF, and AOOO-BFFF
implicitly refer to map registers 1, 2, and 3 respedétively and
the identical type of mapping occurs when these sub-ranges are
referenced. The only special feature in the way that the four
maps work 1s related to memory read operations via map register
3 which are transformed into read-modify-write accesses to
common memory where the data rewritten 1s always zero. This
allows the implementation of multiprocessor locks in the Pluribus
system. More detall on the use of this feature is discussed in

section 5.3 where Pluribus program structures are considered.

’

i . o aree - T B

Report No. 2930 Bolt Beranek and Newman Inc.

One final complication arises from the fact that a few of
the first addresses on every memory and I/0 bus are allocated for
ﬁi accessing the bus coupler control registers. The amount of this
‘ allocation depends on the number of couplers connceted to the bus.
¢ In general, the memory words at these addresses should not be
! % used. For more detail on the bus coupler control registers see
i

section 9.2.

i | 4.3 References to System 1/0 Space (CPPP-FBFF):

_ Any processor generated addr=ss in this range refers to a
.;: location in system I/0 Space. In general, each Pluribus system

device on an I/0 bus appears to the processor as a set of 8

contiguous registers (locations) in system I/0 space. This block
of registers 1is referred to as the device register block. A
processor can activate a device by writing commands or data to

certain (device dependent) addresses within the device register

block. A processor can interrogate a device Dby reading data or
'ﬁ status registers within the 16 byte device reglister block. More
: detall about the allocation of system 1/0 space to multiple I/0
l, busses and about the internal structure of the device reglister
‘f block can be found in section 6 where device handling and 1/0 is

s discussed further.

| 4 As indicated in Figure 3(d), the way that system I/0 space

I? addresses are developed 1s by appending four ones to the low-order
; 16 bits of the 18-bit address on the processor bus. This is.donhe

5;; automatically as 1s the appending of the map registers (discussed

above) by hardware in the bus couplers.

!t

19

Report No. 2930 Bolt Beranek and Newman Inc.

4.4 References to Maps, Processor Registers, and Local 1/0 Space
(FCOO-FFFF):

Any processor generated address in the range FCOO0-FFF~
(see Figure 3(e)) refers either to the map registers for that
processor (in all the bus couplers attached to the processor
pus) or refers to a part of the address space shared by all
processors on a processor bus. The map registers must be ad-
dressable, of course, SO that a processor can dynamically modify
the portions of the potentially largs common memory to which it
nas access. Map registers B, 1, 2, and 3 c@n be referenced via
addresses FC00, FCO2, FCOU4, and FCO6 respectively.

The local (to the processor bus) shared address space is
assigned as shown in Figure 4. 1In general, I/0 devices will be
attached to an 1/0 Infibus in a Pluribus system. In some CaSES,

however, it may be desirable or necessary to connect I/0 devices

directly on a processor bus. Addresces in the range FCO8 to

FDFF will be used in such a configuration to refer to the device
registers, similar to the way that the device register block is
used for referencing devices on the I/0 Irfibus. The auto load
RO is an optional hardware device attached to the processor bus
which contains a program that when executed will cause a processor
to load memory from a paper tape reader on the processor bus.

The registers of all the processors and the processor bus console
are accessible at addresses above FFOO. A processor should be
nalted before an attempt to read any of its registers occurs.

Halting a processor 1is deseribed in section 3.

Report No. 2930 Bolt Beranek and Newman Inc.

) ~ FFOO] [[PROGRAM_COUNTER
I PROCESSOR O REGISTER |
! REGIS TERS s REGISTER 2
‘ REGISTER 3
| FF2
i : PROCESSOR 1 RECIS TER 2
R REGISTER 5
! REGISTERS GIsTE
| REGISTER 6
REGISTER 7
| FF40
FCO8 A TER
S STATUS REGISTE .
PROCESSOR REGIS TERS
. BUS 8
=. 1/0
DEVICES FF60 7
PROCESSOR 3 =
FEQO REGISTERS
‘ AUTO LOAD X
| ROM FF80 [ADDRESS LionTs | | [LCONTROL REGISTER
| FFOO FF82 [™DATA LIGHTS
. PROCESSOR FF84
8 CONSOLE
REGISTERS
FFFF
¢ " UNASSIGNED
i
{
‘ b 1
- L FFFF

Figure 4 Processor Bus Shared Address Space

LA
L 4

— e B LD

S

Report No. 2930 Bolt Beranek and Newman Inc. L

9. PLURIBUS PROGRAM STRUCTURE

In most current computer systems a hardware priority !

. \
InEerrubt nechanlsi Y& used to.lnform the progfam off the oge i
i
currence of asynchronous external events. Since Pluribus systems '

do not gmenerally use interrupts for this purpose, Pluribus pro-

rrams tend to be structured differently from programs developed s
for conventional machines. The fact that Pluribus programs are
deslgned to operate in a multipro-cssor environment imposes ad~
ditional constraints on the program structure. This section

presents some of the issues and programming techniques which we

believe are useful in developing Pluribus programs.

5.1 Basic Control Structure:

Before giving an example of a typical Pluribus program
control structure, the basic operation of a PID will be reviewed
(more detall on the PID can be found in section 0=3w The PLD
1s a priority ordered memory device. It has a read address and
a write address. When an even 8-bit number is written to a PIDS
the number 1s stored. When a PID is read, the largest 8-bit
number stored in the PID will be returned and the number deleted
from the PID. If nothing has been written to the PID, the read
will return a value of zero. Numbers may be written to the PID
both by hardware I/0 devices and by software. Processors poll
the PID for tasks to be executed. As a simple example of a
Pluribus control structure, consider a system consisting of a <
number of tasks which service a set of I/0 devices. The fol-

lowing assembly language code could provide the framework for
the required program. .

22

Report No. 2930 Bolt Beranek and Newman

TASKDISPATCHTABLE: MAINLOOP, TASK1l, TASK 2, ..., TASKN

MAINLOOP: LDA Al, PIDREADADDRESS
JMP @ TASKDISPATCHTABLE (A1)

JMP MAINLOOP

The main loop o¢f the program simply reads the PID and jumps to
the appropriate task indirectly through TASKDISPATCHTABLE (1)
where 1 is the value obtained by reading the PID. At the end
ol any task (&.8: TASKi), a jump to the main loop returns the

processor to look for the next task to rerform. If there is

nothing in the PID, zero js returned and the processor simply
cycles at MAINLOOP. Note that it is useful to have the PID
store even numbers only since t}.> number retrieved will be used

as an index into a table with two-byte entries.

To allow tasks to be initiated by the software (e.g. TASK.
to be initiated by TASKj), the following type of structure

would be used:
TASKJ:

LDA Al, TASKiPIDLEVEL
STA Al, PIDWRITEADDRESS

JMP MAINLOOL

Report No. 2930 Bolt Beranek and Newman Inc.

5.2 “ystem Response Time and Strips:

As indicated in the above example, the way that I/0
devices obtalin service 1in a Pluribus system is to write the
pPiority level of their service routine to the PID when they
need attention, and wailt for some processor to return to the
main loop and pick up the associated task. Since the time
that a device can walt for service before losing data may be
critical, it is essentlal to configure systems and design soft-

ware so that response time reguirements can be met.

Tre two main factors which influence the rate at which a
Pluribus system can respond to high priority external events are
the total number of processors in the system and the duration
of task servicing instruction sequences. For example, in a
single processor system where the tasks are all of the form
illustrated by the two previous examples, if the longest task
execution time were T milliseconds, the maximum t{ime whieh 1t
could take to respond to an external event (i.e., notice that
it had occurred) would also be T milliseconds. This worst case
would happen only when the event occurred just after the single
processor had picked up the longest task to run. Since in a
Pluribus system there are no interrupts, the entire task cur-
rently being executed runs to completion before there is a
reaction to the event (even though it may be ¢ higher priority
than the task currently belng PRk -

In the multiprocessor case, things are slightly more com-=

plicated. Considering the worst case response time as above, if

the ordered task execution times are T1 (smallest), T2, T3
b

Tn (largest) and there are P processors, the maximum time to
respond to an external event assuming n>p will be between

between Tn and Tn depending on the number of incarnations of

24

R -

T

|
l P
|

o

-

Report No. 2930 Bolt Beranek and Newman Inc.

a particular task which can exist simultaneously. Of course,
the probability of such worst response times may be exceedingly
small if the large tasks are run less freauently than the smaller

tasks.

Typical (average) rather than worst case response times
will depend on three factors: (1) average task execution time,

(?2) number of processors P, ana (3) average number of tasks,

NQ, queued on the PID. If the average task execution time is
T,, and N 2P, the typical time taken to service a high priority

event will be Tav/2' 1E P>NQ then there will usually be an 1idle

processor which will immediately react to the external event and

average response time will be essentially zero.

In general, the application will dictate where strict
real-time response must be guaranteed or if more flexible system
response characteristics are adequate. If strict real-time
response is required, then some program structure which permits
both logical tasks of arbitrary length and fast response to
critical external events may be required. To accomplish this,
Pluribus program tasks can be partitioned into code segments
referred to as strips. A strip is simply 2 sequence of lnstruc-
tione within a task. A task can give up contrel of 1té proces-=
sor at the end of each strip so that any higher priority tasks
may be run. Of course, if the task is incomplete at the end of
a strip, the task queues 1tself on the PID for further execution
before yielding its processor. The idea is illustrated by the

example below where TASKk is broken down into two strips.

25

— i e e e

Report No. 2930 Bolt Beranek and Newman Inc.]
DISPATCHKk : K1 /INITIALIZE TO THIS VALUE.
TASKk : JMP @ DISPATCHk
\
4112

LR AR - JR

STA A2, DISPATCHk v
LDA Al, TASKPIDLEVEL

STA Al, PIDWRITEADDRESS

JMP MAINLOOP J

Streip! 1

K2:

LDA A2, =Kl
STA A2, DISPATCHk Strip 2
JMP MAINLOOP

The first instruction of TASKk i1s a dispatch to the segment

(strip) of the code to be executed. This dispatch is initialized

to K1 so when TASKk 1s first initiated, execution will begin at

Kl. At the end of strip 1, the task stores a new dispatch ad-

dress (K2) in the subtask dispatch location, DISPATCHk , writes

its own PID level back into the PID and gives up the processor.

The next time this PID level is serviced, the task will be re-

sumed in strip 2 starting at K2. At the end of Strip 2, the

subtask dispatch location is restored so that strip 1 will be “
executed the next time that TASKk is activated. It must be kept

in mind that a task writing its own level to the PID will pre-

vent the processor which is executing the task from picking up a d
waiting task with lower priority. In certain situations it may

be desirable for a task to yield the processor and also "sleep"

a specified period prior to getting rewritten to the PID. This

can be accomplished by the task setting a software timer which i

26

c o

-~ "

wr

wwr

Report No. 2930 Bolt Beranek and Newman Inc.

gets counted down by a periodic clog¢k routine. When the timer
reaches zero, the clock routine can write the sleeping task's
level to the PID. The 5 instructions at the end of strip 1 in

the above example might, therefore, be replaced by the following:

LDA A2, = K2

STA A2, DISPATCHk
LDA A2, SLEEPTIME
STA A2, TIMERK
JMP MAINLOOP

Then after TIMERk has been counted down, the timer routine will
execute the instruction:

LA Al, TASKkPIDLEVEL
STA A1, PIDWRITEADDRESS

The decision of precisely where to segment a task into
strips is somewhat arbitrary; the main rule 1s that the strips
must be short enough so that the proper response characteristics
can be guaranteed. In the ARPA Network application of the
Pluribus, for example, it turned out that the proper typical
strip size was 2n the crder of 100 instructions (although a few
infrequently run ones are much longer). As a rule of thumb, it
will generally be sufficient to segment a task into strips as-
suming each instruction takes 4 usec for execution.

Two other related practical issues relevant to strip size

selections are convenience and overhead. In general, tasks should

Le broken into strips at convenient points in the code; that is,
points at which licttle information . (e.g. in the registers) needs
to be preserved. It may occasionally be desirable to have strips

somewhat smaller or larger than the nominal size so that such a

27

Description

Report No. 2930 Bolt Beranek and Newman Inc.

partitioning will be possible. Data which must be saved and re-
stored across strip boundries adds to the already existing over- |
head associated with breaking the code into strips. In many A
applications it is likely that little or no breaking of tasks
into strips will be required. In the ARPA Network application,
for example, multi-strip logical tasks are the exception rather
GI0GHIWRIT ol I GIEER

The fractlonal overhead associated with breaking a task into
strips depends directly on the strip size since the number of
instructions required for strip switching is essentially fixed.
For example, 1n TASKk presented above 8 overhead instructions are
assoclated with switching from one strip to another (6 in TASKk
and 2 in the main loop). If the strip size were 100 instructions
as 1s typically the case in the ARPANET -plication, then the

'pracessor overhead due to using strips would ke 8%. In applica-

tions where largeir strips are acceptable, of course, the over-
head will be even smaller. Experience with a number ¢of Plurlbus
s&stem applications has indicated that the processor overhead
and programmer effort associated with breaking tasks into strips
is not a serious problem and is a relatively small price to pay
forithe increased reliability and performance of the novel
Fluribus architecture.

5.3 Shared Data Structures, Shared Code, and Locks

In a multiprocessor care must be exercised when a piece of
data may be referenced (read and/or written) simultaneously by
more than one processor. In this context, "simultaneously"
means that a process running on one processor desires access to
the data while another process running on a second processor
already has access to the data. Consider, for example, two

processors that are concurrently executing processes which

28

Report No. 2930 Bolt Beranek and Newman Inc.

obtain buffers from a common free storage list. If some interlock

1s not used, it would be possible for both processors to get the
3 same buffer since the second processor could access the list after t
the first processor had accessed it but before the pointer was
updated.

To avoid this and a multitude of similar situations involving

4

shared resources, a lock mechanism is typically used 1in programs
for multiprocessors. Before a shared resource is accessed by a
process, a logical lock 1s set. All processes determine if the
lock 1s set prior to accessing the resource, and if so, then the

process will wait. Only one process can, therefore, have access

- B]
te the shared resource at any one time. -

To be effective it must be possible to test and cet a lock in ©
a single operation. A typical implementation provide: the
F ability to read, test, and provisionally modify a memory location
PN in a single interruptable operation. In Pluribus systems this

- feature is provided by turning memory reads through map register 3
h‘ into reaxd-modify-write accesses where the data rewritten is all

Zeros.

To implement a lock on a shared resource one simply assigns a
location (LOCKVAR), addressed through map register 3, to the
i lock. The resource is unlocked if the lock 1s non-zero and
.i? locked otherwise. A segment of code which accesses a locked
.,3 resource might look as follows:

l? 107 LDA A2, LOCKVAR (Lock and continue) or (WAIT)
. i BZ L

access to shared resource

! s ST8 TPC; LOCKVAR Unlock Lock

->» r
-y

29

Report No. 2930 Bolt Beranek and Newman Inc.

If a processor falls through the loop at L, the resource was
unlocked but is now locked by the process running on this proces-
sor. If a processor loops at L, then the shared resource e i
use and the processor waits until the lock is released. To unlock
the rescurce at L1 any non-zero quantity could have been stored in
LOCKVAR. The current program counter (PC = general register 0)
contains one such value which has the additional advantage of
legving a partial trace of the program executlon in the 1lock

regliters. This trace may be helpful for debugging purposes.

Wher a process encounters a locked resource, it may take one
of two actions. As in the above example, 1t can remain in a tight
loop checking the jock until it is unlocked. Thils type of walting
will be called busy walting since the processor running the pro-
cess remains occuplied while walting. Alternatively, & Topk of
non-busy waiting may be implemented where the process may elther
write itself to the PID or set a timer so that a clock routine
will later write 1t to the PID as described earlier. In either
case the processor then 1s free to seek other tasks whille waiting.
The busy form of a lock is appropriate in situations where the
resource will be locked for only a short period. An example of
this is the free buffer list accessing mentioned at the begin-
ning of the discussion on locks. The lock implementation which
dispatches the processor to do other useful work will be more
suitable in situations where the shared resource is Lile@ly ©0O
remain locked for a relatively long time. A paper tape reader

shared by two processors might be such a resource.

The preceding discussion leaves considerable latitude with
respect to what should be leccked and when. For example, if each
incarnation of a plece of shared code references a set nf shared

variables, it may be more efficient to associate a single lock

-4y

<

< »

Report No. 2930 Bolt Beranek and Newman Inc.

with the set of shared variables than a lock with each of the
individual variables. What needs to be balanced against this goal
of fewer locks is the desire to keep locked segments short.

Large locked segments while reducing the tiotal number of locking/
unlocking vperations required,will tend to increase overhead due
to increcsed busy waiting or processor task switching. This
overhead can become quite large on the percentage utilization of
the shared resource increases beyond 60 - 70%. For this reason,
the systcom designer must use considerable judgement in deciding

on the exvent of locked segments. In addition, locks should not
remain locked across strip boundaries. Locked segments should
also be executed with interrupts disabled so that prompt unlocking
of the shared resource 1is assured.

One further consideration is that a processor may fail while
executing a locked segment. Two problems can arise in this case,
(1) the locked resource will be unavailable to other tasks and
(2) 1f busy waiting is irplemented, procegscre may be executing
irftnite loops. Therefore, a processor should only be allowed to
wailt for the maximum amount of time which the lock can legiti- |
mately be set before deciding that a malfunction has occurred
and activating a recovery procedure.

Cooperation with respect to the use of shared variables

is required between tasks corresponding to different code

MENESE—— SR

segments and especially tasks corresponding to different incar-
nations of the same reentrant code segment. In general, reentrant

coding is particularly appropriate in a multiprocessor such as the

—

Pluribus system. The shared code may exist in common memory

or multiple copies of the code may exist in the private processor
memories to reduce contention. In the ARPA Network application,
for example, shared code is used to transmit data from the IMP to

each of a number of modems. In this case, the control structure

3

Report No. 2930 Bolt Beranek and Newman Inc. '

illustrated earlier in thls section is modified to look as
follows:

\
TASKDISPATCHTABEL: MAINLOOP, TASKl, e+, MODEMOUT, MODEMOUT, -»-*TASKN

CONTROLBLOCKS: #, BLOCKl, <+, MBLOCK1l, MBLOCK2, --<BLOCKN

MAINLOOY: LDA A1, PIDREADADDRESS
JMP @TASKDISPATCHTABLE (Al)

MODEMOUT : LDA A2, CONTROLBLOCKS (Al)
LDA A3, MODEMLOCK (A2)

STA PC, MODEMLOCK
JMP MAINLOOP

The modem interfaces each write different levels to the PID when
output of a buffer ls cofiplete butl all these levels activa&e the
same piece of shared code, MODEMOUT. The PID levels are used,
however, to select the address of a control block which contains
the variables specific to the modem being serviced. At the start
of MODEMOUT, an instruction is executed which loads an accumu-
lator, (A2), with the address of this control block. One of the
words in this block is a lock used to lock all tg@other shared
variables in thé block. Thésé variables remaiQ‘i::ked Feorithe
duration of the modem output tasks.

9 .

The map registers allow four independent 8K byte segments of

5.4 Using the Map Registers:

the common memory to be referenced by each processor. The only
constraint is that a read done through map reglister 3 will be a

read and clear. The other three map registers may be used to

32

-

<y

Report No. 2930 Bolt Beranek and Newman Inc.)

point to program or data as required by the application. iyl S

possible to have two map registers point to the same segment of

memory. In the ARPA Network appllcation, for example, map 3

~ad one of the other map registers point to a segment contailning
system variables whizli can be accessed normally or used as lock

variables.

In Plurlbus systems with small memory configurations little
of no map changing may be required. For applications requirina
large primary memories, map changing will be more frequent. @i {
course, it 1is desirable to design a cvstem so that as little map
changing as possible will be required. To change the area of
common memory addressed through a particular map reglster, one
simply stores into the map register a constant whose high order
7 bits are to become the contents of the map. As already mentioned 3
in section 4.4, the four maps have addresses FCOO, Fco2, FCO4, and {
FC06. The code which changes a map must not jtself be referenced !
through that map/ One way to make sure that this does not occur J
is to execute all map changing code out of private memory.

5.5 Using Multiple PIDs :

The PID is the heart of the Pluribus system. Essentially all
task dispatching 1is done via this devica., It 18 Impertant, therslfore;
that reiiability provided by redundancy in the remainder of the Plu-
ribus system components no® be jeopardized by availability off cnly a
single PID.

In a multi-PID system, the PIDs will themselvés be vriority
ordered. Typically, the control program in such a system will read
the highest priority PID first. If a PID other than the lowest
priority PID returns zero, the next lower priority PID will

be read. If all PIDs return zero, the control program simply q

33

e il

Report No. 2930 Bolt Beranek and Newman Inc.

cycles by reading the highest oriority PID again.

As indicated earlier, a Pluribus system can have up to 4 PIDS,
i one on each of 4 I/O busses. A hardware device on an 1/0 'bue is

F associated with a PID on that bus. Software tasks, on the other
hand, may write to any of the PIDs in the system. Redundant I/0
devices will generally be on different I/0 busses and assoclated
1 with different PIDs.

34

1 Y

Report No. 2930 Bolt Beranek and Newman Inc.

6. DEVICE HANDLING AND 1/0

Pluribu% systems may be comprised of two types of I/0

devices, BBN-developed devices and Lockheed-developed devices.
The primary distinctions between the two are that BBN devices
interpret 20-bit addresses and use the PID while Lockheed devices
interpret 16-bit addresses and utilize the standard SUE priority
interrupt mechanism. Since SUE I/O programming is discussed at
length in [2], most of this section will be devoted to the
specifics of programming BBN-developed devices. Special con-
siderations relevant to the programming of Lockheed I/0 devices

in a Pluribus environment are given at the end of the section.

6.1 Address Structure

As shown in Figure 2, system addresses FCOOO to FFBFF are
reserved for Pluribus system I1/0 space. The detailled structure
of this space depends on the allocation of addresses to I/0
busses. Figure 5 shows one possible allocation of addresses in
the case of a Pluribus with 2 I/0 busses. Possible varlations

on this structure will be indicated later.

The total system I/0 space in Figure 5 is divided into four
almost equal parts, two of which are assigned to each bus. The
high address segment for each bus will be referred to as the
primary I/0 space and the low address segment as the auxiliary
I/0 space. Note that the primary address space of bus 1 (from
address FF000 to FFBFF) is shorter than the other 3 segments by
1024 bytes because these 1024 addresses are allocated to
individual processor maps, registers, and local I/O space as
shown in Figure 2. At the beginning of each primary address
space are 144 bytes of reserved addresses. These locations are
associated with the clock (RTC) and PID on the bus (see sections
10.1 and 10.2), contain the bus coupler (BCM) control registers

b
| Report No. 2930 Bolt Beranek and Newman Inc.
l

i FE@@P| PID WRITE : |
[' FE@@2| PID READ |
. FE@@4l PID CLEAR ¢
‘li SYSTEM " |
1 SPACE FE@PE| CLOCK COUNTER |
1 ' Fcage ’FE,M PID & RTC FE¢¢8 CLOCK PID »
l ik ¢ BLOCK ﬁ LEVELS
i‘ i regon| GERRIERT "
‘ CLOCK READABLE
| e aa FE@AC| ReGISTER 2
| R COUPLER lFEﬂQE CLOCK AEABABLE
4 CONTROL
‘ FER@P REGISTERS - - 41 2 |\ ¢
0 BEIbN| E
' BUS & CODE BC
| \ WORD celsa 2 | conTroL
LI AC | T | REGISTER
FF@pP E|RE
- BUS |
- ~
; FFBFF
i FEgSH FEgeg
1 BACKWARDS FE’“ BBC
Bus = K WINDOW
COUPLING FE@84
; REGISTERS
FEPIPD FE@86
’ 170
: DEVICE
’ BLOCKS
1B (8 WORDS !
' EACH)
LFEﬂE BBC MAP
| WL)
Y
- LFEFFF

Figure 5 System I/0 Space

36

Report No. 2930 Bolt Beranek and Newman Inc.

(see section 9:.2); and provide mapping for backwards bus coupling

(see section 7.1.3) using this bus.

¢ The remainder of the system I/0 space is divided into 16-byte
blocks where each block is associated with an I/0 device (other
than the clock and PID) attached to the bus. These blocks are

. called device register blocks. A processor activates an I1/0
device by writing to a certaln address within the device register
block. A processor can interrogate a device by reading the con-
tents of status registers contained in this block. More detalil
on the structure of device register blocks is given below and is
also contained in section 10. where individual I/0 devices are

discussed.

Variation of the structure shown in Figure 5 depends on the

number of I/0 busses and the allocation of system I/0 addresses
-~ among them. This allocation 1is determined by switches on the bus
g couplers (see section 9.2). Figure 6 indicates allocations of
system I/0 space for 1, 2, 3, and 4 I/0 busses. Only the primary
1/0 space allocations are shown; the auxiliary alloecations are
identical to these except that the highest address segment oOf
auxiliary is the same size as the rest of the segmer.ts, that is,
it is not reduced in size by 1024 bytes. The low 144 bytes of
ezch primary segment 1s reserved on each bus as indicated in
Figure 5. While other allocations are pessible, the onés shown
in Figure 6 constitute all of the reasonable ones. Switeh
settings resilting in non-contiguous primary and auxiliary seg-

ments for incividual busses, while possible, are not considered

= e WLA}MWWWW--W -
»

here.

PES

Report No. 2930

W ————

(a) ONE BUS

R e N -

(b) TWO BUSSES

(¢) THREE BUSSES

(d) FOUR BUSSES

Figure 6

Bolt Beranek and Newman lnc.

FEOQQ

BUS @
FFBFF
FEQGQO

BUS @
FFOOO

BUS 1
FFBFF
FEQOO

BUS @
rasel e
FeFFF L—BUS 2 |
FEQOQO BUS 0
T
FreFF L—BY

38

FEQOO
FESQO
FFOQGQ

FFBFF

BUS O

BUS 1

BUS 2

Allocations of Primary System 1/0 Space

l Report No. 2930 Bolt Beranek and Newman Inc.

ﬁ 6.2 Programming BBN DMA (Direct Memory Access) 1/0 Devices

BBN DMA (Direct Memory Access) devices provide a means for the
automatic transfer of blocks of data to (from) memory from (el
I1/0 devices on the 1/0 busses. while the DMA hardware and
its associated device interface are on separate cards, from the

programmer's viewpoint they may be thought of as a single unit.

In general, each data transfer will involve sending Or re-

| ceiving a number of data puffers. Each data buffer will consist

1 of an integral number of words. For each directlon of data flow

.{ (read, write) there are three main registers used by the programmer
' to control I/0 operations; the begin memory (puffer) -ddress

register, the end memory (pbuffer) address register, and the status

1

| regliscer. These registers are contained in the 16-byte device

| register blocks. The structure of the device register blocks for
BBN DMA devices is shown 1n Figure 7. Each of these reglisters

is described in detail below.

DEVICE TYPE - The high order byte contains a number indicating
the type of device interface involved (e.g. modem, hosft, éte.):

3 This number i3 fixed by hardware in the device interface assocla-
%F ted with the DMA. In general, the low order byte contains the

i value set in the device number switches in the device interface.
i The device type register 1s readable; writing to it will have no
effect.

5. RECEIVE/TRANSMIT BEGIN ADDRESS - These registers contain the
high order 16 bits of the 20-bit system address specifying the
£ first location of the buffer to be read or written. Bits 1-3
i of the 20-bit starting address are contained in the recelve or
i transmit status register (see pelow). Bit O of the 20-bit system
address 1is always #. The beginning address registers may be

-
<«r

Report No. 2930 Bolt Beranek and Newman Inc.

either read or written. i1f read, the result r:turned is simply
soro. Normally when writing into this location, no data trans-
misston will be in progress in the direction corresponding to

the repister weitten (receive or transmit). The device will
stuply be initiallzed to transfer 2 puffer; actual data transfer
does not. commence until the buffer end register is written.

It a transfer s In progress when the location 1s written, the
transfer 1s aborted, the error bit (in the end address regilster

- see btelow) is set, the PID is written, and the corresponding
nalf (receive or transmit) of the device 1is initialized for trans-

mission of a new pbuffer.

RECEIVE/TRANSMIT END ADDRESS - These reglsters may be read or
written. Normally, bits 0-12 of these registers will be written
with the low order 13 bits of the address of the end of the
puffer. @it O is actuélly ignored and assumed to be Zero.)
Writing to this address initiates the data transfer. After the
data transfer has ended, these registers can be read to determine
information concerning the way that the transfer completed.

pit A5, 1T S&%, indicates that no error has peen detected and
that this was the last puffer of the transfer. (Bit 1% will be
set when the last buffer is transmitted correctiy.) Bit O serves
as an error bit and will be set if: (1) the device was reini-
tialized during the previous transmission (see above), (2) a QUIT
occurred during transmission of the previous buffer, (3) the
device is currently active (see RECEIVE/TRANSMIT STATUS below) or
(4) the device itself is reporting an error. Bits 1-12 of the
end address register indicate the address, modulo 212, of the
last work actually transferred. The top 7 bite of the DMA pointer
into the buffer come from the begin address (see above) and never
change. Therefore, the puffer will "wrap around" on 8K byte

boundaries in memory.

40

- — —..-...:--——'_H‘ -

4.4

| Report No. 2930 Bolt Beranek and Newman Inc.

RECEIVE/TRANSMIT STATUS - The recelve and transmit status regis-
ters may also be both read and written. Writing the RESET bit |
causes the particular half of the interface (receive or transmit) E
to reset itself. If that portion of the interface is active when

the reset is initia%ted, the operation in progress will be aborted,

the error bit in the end address register will be set, and the
receive or transmit level for the device will be written to the
PID. Before initiating a DMA data transfer, bits 1-3 of the

puffer beginning location must be written into bits uU-2 ov the

: corresponding status register. Reading one of the status registers
allows a processor to determine the PID level associated with

that direction of data transfer and to interrogate the QUIT flag.
The PID will be written and the QUIT . lag will be set if a QUIT
occurred during the previous data transfer performed by the DMA.

This could indicate a parity error, non-existent address, etc.
| In this case, when the end pointer is read, the error bit will be
set.

The interpretation of the device dependent status bits varies
from device to device but in general these bits provide for
direct two-way communication between a processor and a device

interface.

One of the device dependent bits will be the ACTIVE bit which,
if set, indieates that a transfer to or from the device is in

1 progress. More precisely, a DMA device is active from the time

that its end pointer is written (which starts the device) until
the time that it writes 1its level to the PID (indicating LG s

done).

DEVICE DEPENDENT - This register can be optionally used by the
device interface for any appropriate function. The assignme.t
of dsta bits is arbitrary.

a»
ow»r

41

i

Report No. 2930 Bolt Beranek and Newman Inc.

To cause a transfer to be performed by a BBN DMA device, the
program will typically perform the following steps:
1. Write the STATUS REGISTER - This sets up the low-order 3 bits
of the buffer start word address and selects any desired options
(@ofos LoDped modem). This will normally be done only once for a
sequence of DMA transfers.
5. Write the BEGIN ADDRESS REGISTER - Thls sets up the 16 high
order bits of the buffer start address.
3. Write the END ADDRESS REGISTER - This sets the end address of
the buffer and initiates the DMA transfer.
When the PID level, indicating device completion, 1is picked up by
a processor, it will:
., Read the END ADDRESS REGISTER and check bit 15 (completion).
If it is not set, the transfer has completed (i.e., no error
occurred and this is the last buffer of the transfer). Bits 1-12
are used to give the length of the buffer.
5, If thlis bit is not set, bit ¢ (error) is checked. If bit 4 -
is zero, then no error occurred but this buffer is not the last
of the transfer. As above, bits 1-12 are used to determine the
l1éngth of th€ buffers
6. If bit # is one, then an error has occurred. These are dif-
ferentiated by examining the SMATUS REGLSTER, If Bit 13 (active)
is set, the device is still active and the PID value was spurious.
If bit 8 (QUIT) is set, a QUIT occurred during the transfer.
Device dependent status bits may further define the error.

In addition to the registers mentioned above, each BBN block
transfer type of device has a number of manually settable switches.
These switches, located on the device interface, are as follows 8
(number of switches provided for each purpose shown 1in paren-
theses):

(1) Device Address Switch (10) - These switch settings define

N

Ny

42

Report No. 2930 Bolt Beranel and Newman Inc.

the address of the device register block in I/O space (see
T Figure 5). The ten switches specify bits 4-13 of the address of
the first register of the block. (Bits 14-19 of this address

_f are all ones and bits 0-3 are all zeros.)

.‘ () Receive/Transmit PID levels (7) - These seven switches
: define the number written to the PID uapon completion of a data
transfer. For duplex devices there are two sets of switches.
For simplex devices only a single set is provided (&:f. CBT -

see sectlion 10.5). g

4 (i11) PID Address (2) - Selectis which of the 4 PIDs will be
written to by the de'ice. The selected PID must be on the same
Infibus as the device itself.

(%) Device Number (8) - In general, a set of 8 switches readable
.l. as the low-order byte of the first word in the device register
block (see Figure 7). The CBT device, however, has only one such

switch.
6.3 BBN Non-DMA I/0 Devices

Typically, non-DMA devices will only have a small amount of
- internal hardware buffering, therefore, they need to be serviced by
‘{ a processor no slower than every few byte times. The mechanism by
} which s.ich a device is serviced can take one or two forms in Pluribus
n systems. One approach is to 17t the device be passive and put the
ji responsibility for servicing the device completely on the processors.
For input, the processors would have to poll the devices faster than
2 the input rate so that no data is lost. For output, the processors
i would have o deliver data to the devices at a rate sufficient to |
| guaiantee that no undesirable gaps within the data occur. Although
f such an approach permits a relatively simple hardware interface im- 1
plementation, it may require an undesirable amount of processor

PEN

overhead.
«r

43

Report No.

b nm

WORD

N

.

2930

Bolt Beranek and Newman Inc.

10-BIT DEVICE ADDRESS SWITCH

DEVICE TYPE

il

RECEIVE
BEGIN ADDRESS

RECEIVE
END ADDRESS

RECEIVE
STATUS

TRANSMIT
BEGIN ADDRESS

TRANSMIT
END ADDRESS

WRITE

TRANSMIT
STATUS

READ

DEVICE
DEPENDENT

WRITE

READ

15

8 7 [

DEVICE INTERFACE

8-BIT DEVICE NUMBER

SWITCH ON
TYPE DEVICE INTERFACE™
18 0
HIGH ORDER 16 BITS OF
FIRST BUFFER LOCATION
LAST BUFFER OF TRANSFER
(TRANSMIT ONLY) i

LOW ORDER 13 BITS 0
OF BUFFER END ADDRESS™

BITS 1-12 OF LAST
WORD TRANSFERRED ADDRESS Q

L]
ERROR

'NO ERROR & LAST BUFFER OF

TRANSFER (RECEIVE ONLY)

15 98 7 3 2 0
R T LOW
E/// ORDER
START
DEVICE E
. -DEPENDENT--{—L ot
sTatus |$
: PID LEVEL |@
:

*BIT © ON TRANSMIT END HAS A SPECIAL INTERPRETATION
FOR THE CBT DEVICE (SEE SECTION 10.5)

! ** ONLY ONE SWITCH EXISTS FOR CBT DEVICE (SEE SECTION 10.5)

Figure 7

DMA Register

44

S

i

A,

«r

Report No. 2930 Bolt Deranek and Newman Inc.

An alternate approach is to make the device actlive with respect
to notifying the processors when it requires service. In a Pluribus
system this implies that the device will write its level to the PID
when its internal buffers are ready. Checking whether tne device
needs service will, therefore, be done automaticall, as part of
the main PID reading loop of the program. Such an approach; of
course, requires more hardware in the device interface than does

implementation of the first approach mentioned above.

The only BBN non-DMA I/0 device which currently exists 1s
the synchronous line interface (SLI) whiech is deseribed 1in de€tail
ih section 10.7. This device 1is passive and consequently requires
polling by the processors. Both DMA and non-DMA I/0 devices which
are addressed through system address space will have 16 byte device
register blocks acsoclaived with them. In contrast to the DMA
device register blocks which have a common format for all DMA
devices, the structure of the non-DMA device register blocks will

be device dependent.
6.4 Lockheed SUE I/0 Devices

As indicated above, standard SUE 1I/0 devices differ from
those developed specifically for the Pluribus system in that (1)
they interpret 16-bit addresses rather than 20-bit addresses and
(2) if they are set up to actively notify the processor when they
require service, they do so via a hardware priority interrupt
mechanlsm rather than via the PID. Since it will often be deslirable
to incorporate such devices in a Pluribus system, some procedures
for interfacing and programming them need to be developed. There
are two distinct approaches that may be taken. First, sufficient
modifications could be made so that the device will work on the
system I/0 busses. This approach has the advantage that the /0
device will be accessible to any processor in the system. It has

45

Report No. 2930 Bolt Beranek and Newman Inc.

the disadvantage that hardware modifications probably need to be
made to the device hardware. The other approach 1s simply fto have
the LEC device reside on one of the processor Infibusses, the place
for which it was designed. This approach has the disadvantage of
essentially isolating the device from the processors in the system
on other processor busses but has the advantage of requiring no

hardware modifications.

If the rirst dpproadh ls Daken, that 18, The devied® 1IE put oh
an I/0 bus, the hardware modifications required depend on whether
the device will be active or passive. In either case 1t will be
essential to modify the device interface to recognize 20-bit ad-
dresses. If it is to be a DMA-type device it would also be required
to generate 20-bit addresses. In the ARPA Network application, for
example, a system contrcl teletype has been interfaced in this manner
and is handled by the processors as a passive device. Programming
of LEC devices on the I/0 busses will be similar to the BBN I/0
devices discussed above. The details, of course, depend on how the
device interfaces aré modified.

The only logical difficulty with putting LEC I/0 devices on
the I/0 busses arises in the case of high speed DMA devices which
require fast servicing for proper operation. To guarantee that
such devices will be serviced within a specified time is 1likely to

impose unacceptable constraints on the size of the strips into

which tasks are partitioned. In such cases, e.g., handling a disk,

it will probably be essential to take the second approach mentioned

above and interface the device on one of the processor busses.

Programming LEC I/0 devices on a Pluribus processor bus is
essentially identical to programming them in a standard multipro-
cessor SUE configuration. The only difference arises with DMA
devices which are dealing with buffers in Pluribus common memory.

Report No. 2930 Bolt Beranek and Newman Inc.

Since the devices only produce 16-bit addresses, some mapping

mechanism similar to the processor address mapping is required
here. Thls can be accomplished by simply dedicating one of the
first three map registers asscciated with processor 0 to the I/0
device for the duration of the time the device is being used.

The I/0 device addresses which have no key bits set appear to

the bus couplers as requests from processor 0 and are mapped

accordingly. I/0 interrupts, when they occur, are always routed

to processor 0. Even though it is undesirable from an overall

i system reliability standpoint, this dependence on a specific
'E processor Is unavoidable.

|

|

|

More detail in programming specific LEC peripherals can be
l found 1n the LEC SUE Computer Handbook [2].

47

et e e . s . i v ¢ i - p.

- v

Report No. 2930 Bolt Beranek and Newman Inc.

;
:

il SYSTEM RELIABILITY MECHANISMS

The hardware architecture of Pluribus systems which provices
a foundation for the development of reliable computer systems has
i, already been presented. This section describes both some additional
! hardware mechanisms which have been included to improve system
reliability and a general description of some software mechanisms
which when operating oi. the Plurlbus hardware can create a rellable

computing environment in which to execute application programs.

K The interpretation of reliability is strongly related to the

type of applications for which a computer system is intended. At
one extreme are computations which do not have strict real-time
constraints, for example, large numerical computations. Fdr these
applications, reliability may mean simply checkpointing, that is,
dumping intermediate states of the computation on a mass storage
device so that the computation can be continued without much wasted
effort sheuld a system cutage oceur. At the other extreme are
real-time control applications in which no outages are allowed and
every request must be serviced within a short fixed time period.
Such applications may require simultaneously running the system on
several identical hardware configurations with decisions based on

a majerity vote. Although the Pluribus system can be appilied te

b)

: applications in both of these two classes, the applications for
} which it was specifically designed fall somewhere between these two.
The Pluribus system will be most appropriate in situations where it)
{ = is important to maximize MTBF and minimize MTTR but where occasional

‘ outages and minor delays in servicing requests can be tolerated.

" A reliable Pluribus system will generally be configured with
[at least one redundant copy of each hardware resource essential
for running the overall system. It will be the goal of the relia-
bility software to maintain a "working set" of resources and, if

o

48

Report No. 2930 Bolt Beranek and Newman Inc. p

|
|

possible, backup spares for each of them. In general, the relia-
pility software will attempt to recover from failures otf single

hardware resources.
7.1 Hardware Reliability Mechanisms A

The following mechanisms can be used both By £hé Plurlbus

|
!
|
t
1 ; reliability software described later 1n this section and applications
i' programs which choose to use them directly.

d 7.1.1 Power failure/Restart Interrupts:

|

(1) Processor Infibusses - The Infibus provides power for
i each of the devices it contains. If the power supply

is about to fail on a processor Infibus, processor J4

on that bus receives a level U4 interrupt with device
code 2. Processor @ then has approximately 2.5 milli-
seconds to signal the other processors and save any
important data on a non-failing Infibus or in non-
destructive memory. When a processor Infibus is with-
out power, the Control Register of any bus couplér con=
nectirg this Infibus to another is $t111 med il iable;

When power 1s restored to the Iafabus, 2 reset of the
In ibus is executed by the BCU and each device on the

| bus will reinitialize itrelf. Each processor will
enter an idle state with all reglsters zeroed. Proces-
sor # will then execute a level 4 interrupt with

device code 4 (power restart).

&P Memory and I/0 Infibusses - When power 1is about to
fail on a common Infibus, processor @ of each Infibus
e connected to the common Infibus executes a level 1

interrupt with device code 1. The processor must then 4

an

49

- e ———

~eport No.

7.1.2

*This may
location

2930 Bolt Beranek and Newman Inc.

read the control register of each bus coupler on 1its
Infibus to determine which one caused the interrupt.
If the Control Register is f*, then the attached
Infibus 1s losing power.

When the processor determines which commori Infibus
is losing power, it has 2.5 milliseconds to signal £
other processors, save important data stored on the
failing Infibus, and mark that Infibus unusable by
the program. While the Infibus is without power the
bus coupler map registers are still modifiable.

It will be necessary for the processors to periodi-
cally check the dead Infibus to see if power has been
restored. When this 1s the case, the Control Register
will read (hexadecimal) 2190%.

Hardware Timeouts:

A philosophy prevalent in the Pluribus hardware and
software is that the system should perform sufficient
introspection to recognize illegal and deadlocked states.
If such states are detected, actions sutfficient to move
the system intc some legal state should be 1nitlated.

The Infibus and device timeouts discussed below are two
implementations of this general philosophy.

be modified by the contents of any overlapping memory
(see section 9.2).

50

Report No. 2930 Bolt Beranek and Newman Inc.

Infibus Timeout - The Bus Control Unit¢ monitors the
freguency of activity on the Infibus. If there are mo
accesses for one second, the BCU will execute an Infibus
RESET and each device on the Infibus will reinitialize
itself. Processors on the bus will enter an idle state
with thelir registers set to zero. Processor g will cub-

sequently receive a level 4 interrupt with device code 4
power restart.

Device Timeout and Multiple Interfaces - In many applica-

tions of the Pluribus it will be important to have redun-
dant (multiple) interfaces to one or more of the I/O
devices 1n order to improve system reliability. 1In the
ARPA Network application, for example, multiple inter-
faces to modems and Host computers are planned. Since
such multiple interfaces will share a single I/0 device,
it will be necessary to electrically disable the devire-
interface transmit path on all interfaces but the one

currently in use at any given time.

Rather than have the enabling/disabling of these
paths controlled by the pirocessors, the interfaces
themselves are provided with sufficient logic so that
the decision can be made locally. Each device interface
which permit other interfaces like itself to be connected
to a shared 1/0 device is equipped with a hardware timer.
This timer is reset whenever a specific (device dependent)
word in the corresponding device register block is accessea.
If the word 1s not accessed for a fixed time period, the
timer runs to zero and the associated device - interface
path is disabled. The path wlill be enabled whenever the

specific word 1n the device register block 1s next

Report No. 2930 Bolt Beranek and Newman Inc.

referenced. A processor can, therefore, switeh from

one interface to a spare by simply stopping references to
one interface and starting references to another. If for
some reason an interface cannot be referenced, it will
soon return to its stable, legal, disabled state. All
DMA devices currently implement this facility and have
one second timeouts. If a transfer is in progress when
+he interface timer reaches zero, the interface will

sho~t the transfer, write its level to the PID, and set

the error bit in tie associated device register block;

The specific words in the device register blocks which
must be referenced in order to reset the timers are given
in section 10, where the different I/0 devices are dis-

cussed.
7.1.3 Remote Reference/Control of Devices on a Processor Bus:

7.1:8.1 Backwards Bus Coupling - Using the type of interbus

communication described so far, 1t is not possible for

a processor on one bus to interact with a processor on
another bus except by voluntary communication on the
part of both processors through a mutually agreed upon
portion of shared memory. A processor cannot directly
halt, restart, or modify the registers or local memory
of a processor on a different processor bus. To over-
come this shortcoming, the Pluribus has an additional
mechanism known as backwards bus coupling (BBC). Back-
wards bus coupling permits requests to be transmitted
to a processor bus via a bus coupler as well as from a
processor bus, the normal direction. This is 1llus-
trated in Figure 8a where a processor on bug & is SFYIHS
to reference some address local to bus B via I/0 In-
fibus C.

Report No. 2930 Bolt Beranek and Newman Inc.

Py Mg M Pg

’
AC\ NORMAL BACKWARDS//BC
C =Z

1/0 BUS L
D

(a)

Description

ADDRESS SPACE OF PROCESSOR WITH
KEY BITS XY ON BUS B

pood

3210
7,

MAP REGISTER

ADDRESSES] EFFECTIVE

ON BUS C L-——==--9 & ADDRESSES ON BUS B
REFERENCED) ~—_"""""71 ggc ACTUALLY REFERENCED
BY PROCESSOR _{ BY PROCESSOR ON

ON BUS A f BUS A

(b)

rigure 8 Backwards Bus Coupling

53

J
Report No. 2930 Bolt Beranek and Newman Inc.

Backwards bus coupling from one processor bus to
§ another is only possible over a shared I/0 Infibus. In
addition, only one bus coupler on an I/O bus can be enabled
for backwards bus coupling at a time. Attempting to \
j enable more than one BBC path on a single bus will produce
' unpredictable results. A lock will typically be as-
soclated with thls shared YBBC path" resource.

t

|

i

|

1i

. For backwards bus coupling to proceed, the BBC enable

; bit in the Control Register of the bus coupler connecting

| the shared I/0 bus to the target processor bus must be

‘ set to one. (See Figure 5) This can be accomplished by

| writing the hexadecimal constant DE7D to the control

' register if forward coupling is to be disabled or DE7F if
forward coupling is to be enabled. The first 13 bits of

these constants are a code word required to prevent indis-

= em
"W“‘—lﬂ-—l—r‘-‘-n s
_ ’ . i T—

criminate modifications of the register by malfunctioning
devices. After the BBC enable bit is set, the BBC Map s
Register (see Figure 5) may be set to point to the desired

area of address space on the target processor bus (at-

tempting to write the BBC map prior to enabling BBC will

result in a QUIT). With BBC enabled and the mép register

set, reference to locations on the target processor bus

may proceed by making reference to corresponding bytes

; within the BBC window (see Figure 5). After BBC accessing
! is complete, the coupler control register should be re-
i+ turned to its previous state by resetting the BBC enable 4 :
‘; [ohlin i
: Figure 8b illustrates the details of the BBC map- 2

1 ping in {he context of the situation shown in Figure 8a.

To reference locations within the address space of the
processor with key bits XY on bus B, processor A loads

54

Report No. 2930 Bolt Beranek and Newman Inc.

bits 2 and 3 of the bus C BBC map register with XY and
bits 3-~15 of this map register with the high order 13
address bits of an area on processor bus B. OSubsequent
references to bytes or words within the bus C BBC window
are translated into 18-bit references on the target

processor bus A at the address formed as follows:

(low order 3-bits of

XY Bits 3-15 of Map Register address of byte
referenced in BBC
Window)

The BBC Map Register essentially serves as a base register
which allows up to 8 bytes starting at the BBC map ad-

dress to be referenced. Of course, the BBC Map Register
will need to be updated quite a bit if any significant

number of BBC references are required.

One further complication is the fact that simul-
taneous forward and backward bus coupling requests conflict.
The result of such conflicts will be short term deadlock:
while the Infibusses at both ends of the bus coupler
time out their respective requests prior to sending QUITs
to the requesting devices. In Figure €a, for example, if
yrocessor PO on bus A were attempting to access memory MO
on bus B at the same time that processor P1 on bus B
were attempting to access device D on I/0 bus C, a
deadlock would occur with respect to coupler BC. Busses
B and C would, therefore, timeout the requests made to
~ BC prior to sending QUITs to processor Pl on bus B and

bus coupler AC on bus C respectively. Since the time
until a QUIT is returned is typically longer on a proces-

sor bhus than on an I/0 bus, however, the bus coupler AC

2 N

'y

55

Report No. 2930 Bolt Peranek and Newman Inc.

will generally receive the QUIT first and terminate the

BBC request passing on the QUIT to the requestirg proces-
sor, PO on bus A. The forward bus coupling will then

continue until completion. The point of thie digcusélion

is that the application program using the BBC mechanism
should be aware that QUITs may result, be prepared to
test for them (see section 5.5.1), and repeat the BBC

request 1f necessary.

The following list summarizes the previous discussion with a

typical sequence of steps to follow for BBC references:

1) Lock (or wait on lock) BBC path resource on I/0 bus
; 2) Set BBC Enable bit in Control Regilster
o) Write Map Register

Set of Bb(C References: to QUITs and may involve changes

1 4
‘ Will involve sensing and reacting
i to map register

n-2) Reset BBC Enable bit in Control Register
l n-1) Unlock BBC path resource on I/0 bus.

' 7.1:8:2 Remote Resetting of a Processor Bus - Writing a zero to
? pit @ of the control register of a bus coupler connecting
: a shared (I/0 or memory) bus to another processor bus
will cause that processor Infibus to execute a RESET.
All devices on the processor bus will be reinitialized; P

| each processor will enter an idle state with all registers

i zeroed. A subsequent 60 cycle clock interrupt (level 4,

i device code 1) will reactivate processor g on the bus. .
L- As with writing the BBC Enable bit, the first 13 bits of

L the word written to the control register must agree with

the hexadecimal constant DE78. 1In addition, bits 1 and 2

%

56

il - x

- B —

‘ Report No. 2930 Bolt Beranek and Newman Inc.

Et of the control reg!ster should be written so as to create
I
|

?; the proper state with respect to forward and backward

couplling after. the reset:

Zuls3:3 Bus Amputation - Bus amputation provides a means of
isolating selected active devices (I/0 device: and proces-
* sors) from the remainder of a Pluribus system. In this
way malfunctioning devices can be prevented from af-
| fecting the healthy system components. The unit of ampu-
: tation is the bus; that i1s, a whole bus must be amputated

if any deviece on that bus 1§ to bEe disabled.

ii Bit 1 of the control register of a bus coupler must
i

| be 1 if the coupler is enabled for forward bus coupling.
: By setting this bit @, therefore, all forward requests
over the coupler can be blocked. By zeroing this bit in
all bus couplers coming from a bus containing a malfunc-
tioning device, that device can be removed from the

operational Pluribus system.

A processor 1s not able to write the control registers
of any couplérs conmnected to JAls bus {see section 9.2),

therefore, amputation must be accomplished by references

-

to the control register arriving over a different path.

In Figure 9. for example, coupler ac could not be shut

J! off by Precessorn PO omy Bs As | Rrecesisor PO ol s By
however, could cut path ac with an access to the ac

control register (in the address space of bus C) via
coupler be. As with writing the RESET and BBC Enable bits,
the first 13 Bits of the word Written to the conhtrol
register must agree with DE78 hexadecimal, therefore, the

. word to write to the control register to amputate a bus

¢ i is DE79 if BBC i:c +o be disabled and DE7D if BBC is to

PR bée enabled.

Report No. 2930 Bolt Beranek and Newman Inc.

' =
| i P' P‘ i
PROCESSOR A PROCESSOR B .
BUS BUS I |
ac bd !
1
! MEMORY -
‘ BUS c 1/0 BUS D ,
\f :
- cd *1
[~ ’

i Figure 9 Bus Amputation Example

Report No.

Bolt Beranek and Newman Inc.

To illustrate, suppose that in Pigure 9 processor
PO on bus B decided that processor Po on bus A was mal-
tunctioning and its tus should be amputated from the
gystem. It could do thid by simply Zeroing B¢ 1 im the
control register for couplers ac and ad. Similarly, if
processor PO determined that device X on I/C bus D was
writing spurious data bits to common memory, it could
igolate the device by zercimg bit 1 in the econtroel
register for coupler cd. This would effectively remove
bus D from the system as far as memory transfers are
concerned although addresses on bus D could still be

referenced via couplers ad and bd.

7.1.4 Externaily Initiated Reloads:

For the ARPA Network application it was necessary to
develop a means of reloading°Pluribus systems remotely over
phone lines. In other communication applications, the abllity

to do this may also be importaint

A special piece of hardware called the R:load (RLD)
Device is available which resides on an I/0 bus and monitors
up to 8 modem interfaces (receivers). When the RLD observes
a command in theée laput stream, it interprets the neéxt 20 bits
as a system address and the following 16 bits as a data word
to bz stored at that address. The address and data are heavily
cnecksummed. Sequences of such commands can be sent to cause
the R.LD device to fill a portion of common memory or write via
backwards bus coupling to the processor bus address spaces.
Details concerning line protocol and device cperation are

given in section 10.6.

I

i o e T e A T e

Report No. 2930 Bolt Beranek and Newman Inc.

7.1.5 Parity Generition/Checking:

parity geaeration and checking schemes provide a simple and
effective way to detect many of the errors which occur in computer v
systems. The Pluribus uses such a scheme to z2utomatically recognize
merory failures and fallures along the data transfer paths (i.e. bus
couplers). This mechanism is invisible tc the programmer except for .

the fact that a QUIT may result from a data access if bad parity is

detected.

The type of parity calculated 1s called "address XOR Data"

parity or AXD parity for short. AXD parity involves two parity
| bits for each 16-bit word, one associated with each 8-bit byte.
Each parity bit is calculated as the exclusive-or of the address
parity and contents parity of the byte. The advantage of this
parity function is that it detects: (1) ofe @ata BLt ip ePror,

(2) all data bits zero, (3) all data bits one, and (4) on= address

e s g

PG S e et

There are essentially four distinct paths in a Pluribus system
thet implement parity checking. Each of these paths iEFolves: inters
bus t~ansfers and is described below. Parity checking for data

accesses on a single bus is not implemented.

(i) Processor/Common Memory Path - When data is being written

|

|

I

J

.

J: to common memory the processor end of the "us coupler computes

the AXD parity bits and sends them to be stored in tfhe memory. P
On reading a memory location the stored parity bits are re-

IT' trieved and returned to the processor end of the bus coupler

l which recalculates the parity and matches 1t against the re- 5

trieved bits. A QUIT will be generated 1f these two sets of
parity bits do not match.

= e

Report No. 2930 Bolt Beranek and Newman Inc.

(11) 1/0 Device/Common Memory Path - The procedure here 1is

virtually the same as for the Processor/Common Memory Path

above except that the I/0 end of the bus couplier rather than

the processor end checks the parity bits.

|

13 (iii) Processor/1/0 Device Path - When a processor writes

{ ¢ (reads) data to (from) one of the devices on an I/0 bus, a
different sort of parity checking is performed. A special
device on the target I/0 bus, the Parity (PAR) card, con-

i tinuously generates AXD parity from addresses and data placed

on its bus during accesses to devices on that bus. This parity

is fed back through the bus coupler involved in the reference

and checked against parity computed at the processor end. A
QUIT will be generated if the two sets of parity bits do not

match. This technique is referred to as feedback parity
checking.

|

‘ (iv) Backwards Bus Coupling Path - Parity checking during BBC
-m references is restricted to the forward part of the overall

! processor bus-to-processor bus path. The BBC registers are

, treated by the PAR card as if they were the registers of an

| I/0 device on that bus, consequently the parity checking

f described in (iii) above applies.

i

|

¢ 7.1.6 Transfeis Between Private Memories On the Same Processor Bus

{ X Using the BBC mechanism it is possible for a processor on one

'1‘ processor bus to transfer data into the private memory of a proces-
sor on another processor bus (see sction 7.1.3.1). It is also

desirable for a processor to be able to effect transfers into the
l private memory of another processor on the same processor bus.
s
)

Such transfers will be required, for example, when a processor on

a bus wants to reload and restart another processing on that bus.

61

Report No. 2930 Bolt Beranek and Newman Inc.

A recommended technique for doing this 1s descrited below. It
irvolves running a short program out of the registers In one of

ChE, Processen s

Suppose prezessor O wishes to transfer N words from its private
memory starting at location SOURCE to consecutive words starting
vt location DESTINATION in processor 1l's private memory. Processor
O tirst stores the following program in processor 1's registers
ptarring at Fr2g)s

LDA A2, SOURCE (-A1l)
1
A2, DESTINATION (A1)
0

F20 /Address of Processor 1 register §
(AT)

Next, Processor O sets up the count N in one of his registers (Al
in the example above) by executing the following:

LDA Al, = N

Finally, processor O executes the program on processor 1l's registers
via a:

JSB A7, FF20

This example has assume., of course, that processor 1 was initially

halted and that the original contents of processor 1's registers
either did not matter or were initially saved and later restored.

An attempt by the reader to work out some more straizht forward
solution shoulcd demonstrate the necessity of fthe sort of 1lmplemen-
tatlion described above.

Report No. 2930 Bolt Beranek and Newman Inc.

7.2 Software Reliability Mechanisms

There are no strict constraints on the programmer concerning
now the Pluribus hardware features can be used. These hardware
mechanisms have been developed, however, with & particular hardware/
software structure in mind. Thils structure will ve described below.
It should be pointed out that there does not curre:;tly exist any
reliability software package that is available with a Pluribus
system. The Pluribus reliability software which now exists is
integrated into the ARPA Network IMP application of the Pluribus.
Nevertheless, we believe that the basic ideas embodied in this
software (and perhaps much of the code itself) can be applied in
other Pluribus applications and are, therefore, worthwhile describing

here.

One view of the relations between the three major software
components in a reliable Pluribus system is shown in Figure 10.
From the figure it can be seen that there are two major modules of
the reliability software. The system reliablility code is applica-
tion independent ar® attempts to maintain a suitable set of re-
sources in which to run the overall system. @ The application relia-
bility code, oh the other hand, is totally dependent on the particular
application sinece it has responsibility for checking and fixing
the data structures internal to the application program. To
develop this module one must have a detailed knowledge of the
states of that program. For this reason, the following discussion

will focus on the structure oY system reliabllity code module.

Under normal circumstances, the application program will be

continuously running, executing application tasks fet.ched from the
PID. The system timer routine which runs off of the real-time
clock (RTC) causes both the application reliability code and the
system reliabillity code to be periodically executed. The system

p——— e LS S

[
Report No. 2930 Bolt Beranek and Newman Inc. '

reliability code is comprised of a sequence o. stages that are
performed when activated. These stages include such tasks as
calculating the checksum on programs in local and common memory,

Jj checking whether any memory or I/0 device has elther appeared or

'; disappeared, maintaining original and spare copliles of code and
vartaole segments, and maintaining the running status of all
processors by reloading and restarting them if necessary. If all
these tasks can be performed successfully, the system rellability
software will return to the application program. This will normally
be the case. In some sltuations, however, the system reliability
code may be required to supervise the initialization of the applica-
tion program itself. Reinitialization of the application code,

H would be required, for example, if a segment of memory containing
variables were taken out of service and a new portion of memory
were allocated for this purpose.

An lmportant concept assoclated with the system rellabillity
module is that of processor consensus. Before a processor is

allowed to run elither the applilecation program or the application
| reliability code, 1t 1is necessary to establish a common environment
for all processors. Thils process of reaching an agreement about
| the environment 1s called "forming a consensus", and we dub the
group of agreeing processors "the C.nsensus". The work done by
the Consensus 1s in fact performed by individual processors, but
| the coordination and discipline imposed o1 the Consensus members
make them behave like a single logical entity. An example of a Lo
4?~ task requiring consensus is the ldentification of usable ccmmon
{ memory and the assignment of functions (code, variables, buffers,
ete.) to particular segments. The members of the Consensus may 1
: not agree in their view of the environment, as for example when a
12 broken bus coupler blinds one member to a segment of common memory.

| In this case the Consensus, including the processor with the broken

- mnm St L i A S St S, e P —_—, | £ s L

Report NO. 2930 Bolt Beranek and Newman Inc.

coupler, will agree to run the main system without that processor.

In addition to periodic activation by the system timer routine,
the system reliability code willl alse be activated fellowing cePtain
exceptional conditions ilndieated ih Figure 10. Several of these
conditions have already been discussed. An extremely important
mechanism not yet mentioned, however, is the 60Hz interrupt which
i3 used to guarantee that each processor does, in fact, periodically
run the system reliability code. Zach processor upon executing the
system reliability code sequence will reset a timer which th» 60Hz

interrupt service will count down. If the timer ever reaches zero,

a processor has been lax for one reason or another and the relia-

Description

bility code will try to get the processor running correctly again.
As is the case for periodic activations, the system reliability
code will eventually either go to sleep or supervise the initiali-
Eation of the application rPeliaBility rouliing of thé adplicatism
program itself.

The discussion in this section has only provided a brief
overview of the Pluribus software reliability mechanisms which are,

in fact, currently in state of flux. More details and additional

motiv.ticn for many of the design decisions relating to Pluribus

reliability mechanisms may be found in [7].

Report No. 2930

Bolt Beranek and Newman Inc.

APPLICATION DEPENDENT | APPLICATION INDEPENDENT

!
PERIODIC ACTIVATION OF

APPLICATION

INITIALIZATION

APPLICATION
RELIABILITY
CODE

PERIODIC
ACTIVATION

Figure 10

ALL APPLIC&TIFN PROCESSES

CHECKS

SYSTEM ' PERIODIC
RELIABILITY ACTIVATION

EXCEPTIONAL EVENTS:

QUITs

ILLEGAL OPERATIONS

60 Hz INTERRUPT

POWER FAIL INTERRUPT
POWER RESTART INTERRUPT

Reliability Software

Report No. 2930 Bolt Beranek and Newman Inc.
-
L ¥ 4
8. INFiBUSSES
The Infibus is the primary power and communication path-
' ! way between devices. Physicalliy, the bus is a panel containing
_ o4 slots. Each device is inse .ed into one or more of these slots.
| Power and signal circuits connect all of the slots together,
< Power for the bus is provided by one of two possible power supplies:
the smaller power supply 1s plugged into 8 of the slots of the uus,
leaving 16 slots for devices; the larger power supply 1s external to
i
' the bus (leaving 24 slots for devices) and can provide power for
| one or more busses (depending on power requirements of the devices).
9 The Bus Control Unit (BCU) module 1is necessary to control every
Ii
| Infibus. It occupies one slot, leaving either 15 or 23 slots for
K
b other devices. A bus can be extended by the addition of another
i bus cabinet. The electronics for the extension will occupy one
b $lot 3@ esach sebinet, leaving <9, 37; oF 45 glots Tor deviees. The .
i' number of slots occupied by the major components of the Pluribus
‘ system are as follows:
l
' Device Number of Slots
Processor 2
‘ 8k bytes Menory 3
l 16k bytes Memory 3
¢ Bus Control Unit (BCU) 1
15 Bug Coupler (ECP, BCM, or BCI - see section 9) 1
)i PID Pseudo Interrupt Device i
‘ RTC Real Time Clock il
! HLC Local Host Interface 2 |
| - CBT Checksum/Block Transfer 2 \
[ML Low Speed Modem Interface 2
' RLD Reload Card |
» PAR Parity Module 1
! SLI Synehronous Line Interface e

. bese

Report No. 2930 Bolt Beranek and Newman Inc.

Eleetronicdlly, the Infibus i8& the communications channel
petween devices. At any time, at most one device contained in a
bus has access to that bus. This device can request data from
another device contained in the bus (read) or request that another
device receive the data that this device is providing (write).

The device which has access to the bus is called the bus Master.
The Slave device is the device the bus Master 1s transferring data
to or from. The Master communicates with the other devices con-

tained in the Infibus by providing the following information:

2P-bit Address
One of the control Tunetlons:
Read
Write
Read-Modify-Write
Whether data is word or byte
Data (if function is Write)
Parity

wach device contained in a bus continuously monitors the address
being transmitted by the bus Master. A device becomes the Slave
when it observes an address on the bus that it recognizes as if5S
own. The device then performs the activity indicated by the ac-
dress and control functions. When this activity is completed, a
completion signal called DONE 1is returned. When the Master observes
the DONE signal it accepts any data expected from the bus and
relinquishes access to the bus. The Bus Control Unit has at that
time already chosen the next device to be Master from among the
devices which have requested access to the bus but have not yet
received it. If no device recognizes the address that the Master
provides the bus or if the Slave device malfunctions, then no
action will be taken ard no DONE signal will be returned. After

68

Report No. 2930 Bolt Beranek and Newman Inc.

a fixed period of time (dependent on the particular bus), the

Bus Control Unit will send a QUIT signal to the bus Master. The
bus Master then relinquishes control of the bus and access 1s pro-
vided the next requesting device., The time allowed between azcess
and a QUIT signal 1s established hy the BCU hardware and 1s nor-
mally between 5 and 5@@ microseconds. Processor busses will
normally have the longest QUIT timeouts with I/O busses and memory

busses having the next longest and shortest timeouts respectively.

Two different devices on a bus can recognize the same address.
If both of these devices respond with action and a DONE, the system
will likely malfunction. Devices must, trerefore, use some criteria
external to the bus to resolve which device becomes the Slave.
Normally the address recognition switches on cach device in a sys-
tem will Le set to recognize disjoint portions of the system ad-
dress space.

The bus provides an initialization signal, called RESET, to
each of the devices attached to it. This signal 1is transmitted to
the devices whenever power is being restored, whenever the bus is

reset from the console or from another processor, or whenever there

has been no transaction on this bus in the last second. Each
device will terminate any activity when it receives the RESET cignal
and reinitialize the state of all registers and indicators.

Report No. 2930 Bolt Beranek and Newman Inc.

9. Bus Couplers

The functions of the bus couplers as components in an opera-
tional Pluribus system have already been discussed in several '
earlier sections. 1In this section the internal structure of the

bus couplers is considered in more detail.

Each bus couple' connects two busses and, therefore, has two
ends. Each end of a bus coupler appears as a normal device on its
containing Infibus. The 3 types of ends (BCP, BCM, and BCI) and
two types of bums coubler (BCP-BCM and BCI-BCM) that may exist in
a Pluribus system are illustrated in Figure 11. BCP-BCM couplers are

| used to connect processor busses to either memory or I/0 busses.
BCI-BCM couplers are used to connect I/0 busses to memory busses.
The operation of the BCP, BCM, and BCI devices are presented below.

9.1 BCP:

Each BCP contains four 7-bit MAP registers for each of the
g four possible processors on the Infibus. The MAP registers are
numbered 0-3 and are located in the address space of each processor
at locations FC@@-FC@6. Each processor has its own set of MAP
I registers, selected by bits 16 and 17 of the 18-bit address of
data on the Infibu . These two bitc are specified by the last

I’ execution of the SKEY instruction in the particular processor.

: The MAP registers can be modified by writing the new contents of
‘ the MAP to the corresponding address FC@g, FC@2, FCgh, or FCg6.

The high order 7 bits of the word written become the new contents 0

{‘ of the map register. In general, bus coupler registers may be
written but not read. Reading a MAF register gives a result of

zero and does not change the register. Infibus RESET does not 2
effect the contents of the MAP register. The contents of the MAP

i registers are unpredictable at power-up.

70

Report No. 2930 Bolt Beranek and Newman Inc.

FEN

ol

@ @

FPROCESSOR — e 1/0
BUS BUS

i
[
i | S
E
l

D oK

MEMORY
BUS

Figure 11 Types of Bus Couplers

Report No. 2930 Bolt Beranek and Newman Inc.

During forward (normal) bus couplilng the BCP is a Slave
device on its bus and the BCP transforms each 18-bit processor
address into a 2@-bit system address to be sent to the BCM. As
discussed in section 4., each processor's address space is divided

up in%o 7 components:

Addresses Description

22888-3FFT References to Local Memory
Lpp@-5FFF Transform address using map O
6020-TFFF Transform address using map 1
80008-9FFF Transform address using map 2
AZP@-BFFF Transform address using map 3
Cogw-FBFF Transform address to I/0 space
FC@@-FFFF References to Processor Reglsters

and Local I/0 space

Addresses within gg@@-3FFF or FC@@-FFF are ignored by the BCP.

For those 8k byte segments of processor address space utilizing

a particular MAP, the BCP forms a system address by preserving the
low order 13 bits of the processor generated address while replacing
the high order 3 bits by the 7 blt contents of the corresponding

MAP register. Addresses 1in the segment C@@PP-FBFF are considered to
pe references to Pluribus device registers. The system address

for such a reference cpnsists of appending four bits of 1's to the

most significant portion of the address.

When the BCP transforms an address, this address, any
fats, and oné of The control operations (read, write, read-modify-
write, byte) are communicated from the BCP to the attached BCM
through a cable. The control operations will be used by the BCM to
generate a bus access on the target bus, generally identical to
tr» pus access on the source bus except for the transformaticn of

the address. Read operations using MAP 3, however, will be

72

A 4

Report No. 2930 Bolt Beranek and Newman Inc.

transformed as previously described into read-modify-write accesses
on the target bus (where the write data is zero) to allow imple-

| mentation of multlprocessor locks.

When backwards bus coupling is enabled, the BCP acts as a
Master on its bus and simply passes along the 18-bit references
N generated by the BCM at the other end of the cable.

9.2 BCM:
When a processor accesses a shared resource on a memory or
I/0 bus, all of :he BCPs on the source bus map “he initial address
1 and pass it along to the BCM end of the bus coupler. Similarly,
when an I/0 device accesses & shared resource on a memory bus,

o all the BCIs on the source bus transmit the initial address to
thei~ BCM end. Each BCM tnen determines if the address sent tc ity

{ is one to which it can resgond. If 1t is not, the BCM simply
‘3 ' ignores the request. If it 1s, the BCM requests access to 1ts
N Infibus. When it receives control, the BCM transfers the 2@-bit

, address, any data, and all control signals to 1ts bus and returns

i any responses recelved to the originating end of the bus coupler

pair. The addresses to which a BECM will respond are determined by
the Cable Recognition Switch described below.

, There are two important reasons for making the bus coupler

E perform address discrimination. The first is to reduce hariware

| contention. If each BCM simply passed all addresses to the con-
taining bus, every processor reference to common memory would be in
[contention for each memory bus rather than just the single bus on
whi~h the referenced memory was located. A similar contention
problem would exist for processor references to I/0 busses and I/O
references to common memory. The second reason for BCM address
discrimination is to eliminate multiple responses by the connected
busses. Since a bus always responds eilther positively (by DONE) or

73

Report No. 2930 Bolt Beranek and Newman Inc.

negatively (by QUIT), one DONE and multiple QUITs would result from
every access to common memory if no address discrimination was

done. The QUITS would, of course, confuse the device that previous-
ly request~d the access since it would already have taken actions
based on thc previous DONE. This same problem is the motivation

for configuring Pluribus systems so that BCMs conneeted to dirferent
busses recognize disjoint areas of system address space. [n general,
the addresses recognized by all BCMs connected to the same bus will
be identical.

The BCM contains several physical switch registers which must

be manually se! and a single 16-bit control register which may be

referenced under program control. The switch registers along with

the number of bits (switches) in euch register are indicated below:

Sw_tch Register Number of Bits

MEMSW (Memory or I/0 Bus)
BCM CONTROL REGISYER ADDRESS
BCM ADDRESS KECOGNITION:
BASE
RELEVANCE

The algorithm used by the BCM for address disc:iiminatica is as
follows: 1if the 20-bit address it receives is less than FC@@4,
then the high order 6 bits of the address are compared against

the high order 6 bits in the BCM ADDRESS RECOGNITION switches.

The comparison is satisfied for a particular address bit if either
the corresponding RELEVANCE switch is OFF or the RELEVANCE switch
is on and the address bit matches the corresponding switch (bit) in
BASE. If all 6 high order bits satisfy the comparison, then the

20-bit address is accepted and used to request a bus access.

Report No. 2930 Bolt Beranek and Newmun Inc.

Typically, the BASE AND RELEVANCE switches will be set to recognize
a contiguous portion of system address space. This is done by
setting the high order 6 bits of BASE to some starting address and
turning off some number of low order switches (within the high
order 6) in RELEVANCE. Of course, more complicnted memory access
patterns can be implemented by other seti,ings o’ the RELEVANCE

switches.

If the 2@-bit address passed to the BCM is greater than or
equal to FCPPP and MEMSW is on, the adiress will not be recognized

am VS =

by the BCM. If the address is greater than or equal to FCP@P and
MEMSW is off, bits 11 and 12 of the address must satisfy the com-
parison test described above witn respect to the two low order
bits of the BCM ADDRESS RECOGNITION switches if the 2@-bit address

1 iz to be recognized and put on the { LAY hEEs

o The BCM contains one internal register, the BCM Contirol
i Register. As already indicated In section “.3 and 6.1, the block
of addresses where these control registers can be found is at the
beginning of one of the address snace segments recognized by the
bus to which the BCMs are connected. The precise location of a

BCM Control Register is specified by the 6-bit BCM CONTRO. REGISTER
ADDRESS Switch. The number set in this switch 1s used as the dis-
placement in words of the 3CM Control Register from the starting
address of the control register block. m, state this more suc-

cinctly, the address of each BCM control register 1is:

¥Early models of <“he bus cbuplers required all 8 high ofder Clts
of the address to match the switch bits for address recognitinn

to occur.

oA
<»

75

A A, VTR 0w W ST DRI, 5

Report No. 2930 Bolt Beranek and Newman Inc.

Addes: Bits From

14-19 High orde~ 6 bits of BCM ADDRESS
RECOGNITION BASE switches

13 Negation of MEMSW

7-12 0

1-6 Contents of BCM CONTROL REGiSTER
ADDRESS switches.

0 0

The 3 switches (BBC Enable, Foreward Enable, and Reset)
which can be set in the BCM control register by a processor have
already been discussed in detail in section 7.1.3. It has alsc
been pointed out that the data written to a BCM control regilster
must agree vitY the hignh order 13 bits of the hexadecimal constant
DE78 if the write 1is to take effect.

One additional complexity in the BCM arices since the Control
Registers for 3CMs on a memory bus and those on an I/0 bus will
differ in one respect; those on a memory bus will share addresses
with the memory devices on that bus whereas those on an I/0 bus
will not share locations with any I/0 device. Since devices
referencing BCM control registers will expect a single DONE slignal
upon completion of an access, the BCM works as follows: if MEMSW
is on, tr>» BCM does not return a DONE since references to the
coutrol register also reference a memory locatica and the memory
device returns the DON% signal. If MEMSW 1is off, on the cther
hand, the BCM cenerates and returns a DONE signal for references
made to its control register since there is no other "overlapping
devices" that will produce it.

76

: = ESe S H s
. W'

N T T S S e T 1y M ST [TN g R T e T PETP TN T Ry dam b S Tk

Report No. 2930 Bolt Beranek and Newman Inc.

The effect of two devices (BCM and memory) sharing the same
address must also be kepnt in mind when the BCM control register 1is
read or written. For BCMs attached to 1/0 busses, reading will
return 2100 if the attached bus is up or 0 if the bus LeWiitn she
process of golng down due to a power fallure-= see gettlon f.l.L
(of course a QUIT will pe returned 1f the attached bus is completely
down). If the BCM shares the address of 1its control register with
a memory module, however, this 2100 or 0 will be Inclusive-0Or'ed
with the contents of the associated memory word. For this reason
and to permit proper (peration of the Pluribus system parity
mechanism, any read of 2 BCM control r. ister will normally be
preceded by a write of zero to the control register. This will

clear any "shadow™ memory location but not effect the control

regicter contents. The response to stores at the address of the BCM
control register will also depend on whether the address 1s on an
I/0 bus or a memory bdus in addition to whether or not the high order
13 bits of ‘the data written match the key DE78. If the Key matches,
the write will take effect and a DONE will be returned. If the Key
does not match, a DONE response will be returned if the BCM control
register is on a memoury pus and a QUIT response will be returned if '
the BCM control register 1ls on an I/0 bus. |

9.% BCl: !

The BCl serves in place of a BCP when coupling an I/0 Infibus
to a memory Infibus. Its relation to the BCM 1s identical to that
of the BCP with the following three exceptions: (1) no address
mapping is performed (devices on I/0 busses generate 2@-bit addres-
ses), (2) any address less than FCPPP (with any data and control
signals) 1s passed directly through the BCI to the BCM, and (3) any
address greater than cr equai to FCPPY® is ignored. Devices on an

1/0 Infibus cannot directly communicate, therefore, with I/0

s B’ S

Report No. 2930 8o}t Beranek and Newman Inc.

devices on another I/0 Infitus any such communication must be done

via common memory. The BCI-BCM bus coupler cannot be used for

backwards bus coupling.

Report NO. 2930 Bolt Beranek and Newman Inc.

19, DEYICES

| In section 6, the general information necessary for program-
ming both BBN-developed and LEC devices was discussed. This
section provides additional device-dependent information for each
of the BBN-developed devices. Similar information for Lockheed
devices can be found in the LEC Product lizterature.

10.1 Pseido Interrupt Device (PID):

T > PID is a priority memory device. The application of this
{ device to the control of processes in a Pluribus system has been
described at length in section 5. A Pluribus system may have up to
four independent PIDs. As indicated in Figure 5, the PID and
Real-Time Clock (RTC) share a 16-byte device register block in the
addregs space of the containing I/0 bus. The three regiitérs 1n

this bloek &sscclated with the PID &ré the Tollowhhg:
‘ 200 IRACELE, &

}

!

i

When data i1s written into the PID WRITE register, bits
| 1 through 7 of the data get a zero appended as bit O
and the resulting even 8-bit number is stored. Only

one copy of any number is retained. When the PID WHLITE

Ef register is read, the largest number stored in the PID
;5 lg returned but not deleted.

\
{ PID READ:

; When the PID READ register is read, the largest number
stored in the PID is returned and that number deleted

I from PID storage. if there is no number stcred in the
PID, a Zero 1s returned. An atteémpt 80 wirits tihe -PID
READ register will result in a QUIT.

- >

wr

79

|
|
!

Report No. 2930 Bolt Beranek and Newman Inc.

PID CLEAR:

When data is written into the PID CLEAR register, bits

1 through 7 of the data set a zero appended as bit 0 and
che resulting even 8-bit number is compared with the
memory of the PID. If that number is already in PID
memory, it is deleted. When the PID CLEAR reglister 1is
read, the largest number in PID memory is returned but
not deleted.

The address of each PID is specified by a two bit switch
on the device which selects bits 11 and 12 of the device

reglster block starting address. Bits 0-10 of the device

register block starting address are zeros and bit 13-19

are ones. The PID card has a set of lights which display

the high order 7 bits of the largest number stored.
10.2 Real-Time Clock (RTC):

The Pluribus has two methods for timing events. Processor f

on each processor bus can recive an interrupt every I/68%1. of &

second on processor interrupt level ., Trig pate i toe lnfPequent

for many applications, however, and does s ealin alnusel GlE SNCOCEN=
sor independent struzture of the Pluribus. For these reasons
another timing device, the RTC, has been developed. The RTC aiso
provides a common time reference for all the processors. Tr» RTC
provides access to a clock which is incremented every 100 micro-
seconds and which generates two distinct PID levels periodically,
one every 1.6 milliseconds and another every 25.6 milliseconds.

As indicated in Fibure 5, the RTC and PID share a l6-byte
device register block in the address space of the containing I/0
Infibus. The five registers in this block associated with the RTC

80

e

Report No. 2930 Bolt Beranek and Newman Inc.

are the following:

I CLOCK COUNTER: 'The 16-bit clock counter, The RTC increments

this register every 100 microseconds.

i CLOCK PID LEVELS: The high-order byte is the number which will
" be written to the PID every 25.6 ms. The low-order
byte is the number which will be written to the PID

e Bl e o W G

every 1.6 ms.

CLOCK READABLE REGISTER 1 - A switch-settable register.
CLOCK READABLE REGISTER 2 - A switch-settable reglster.
CLOCK READABLE REGISTER 3 - A switch-settable register.

: These five registers are all read-only. Attempting to write to -
them will have no effect.

O

has not been accessed (i.e. none of its 5 registers have been read)
within the past second. This allows the Infibus timeout mechanism
to detect and recover from the illegal state where the RTC is the
only device putting requests on an I/0 Infibus. The clock will
also stop on master (bus) reset. Reading any RTC register will
' star. the clock again in these two cases.

1- ' The RTC hag a devize timer which will stop the cloeck 1T 1t
l
|

The address of each RTC is specified by a two-bit switch on

i the device which selects bits 11 and 12 of the device register
block starting address. There is alsc a two-bit switch which
specifies the address of the PID to be written to in the same way.
Normaliy, these twc bits will be identi:al to the two bits which
loc~te the RTC device register block. In any case, bits 0-10 of
the device register block starting address are zeros and bits 13-19

are ones. Two seven—bit switches are also available on the RTC

PSS

to specify the 1.6 second and 25.6 second PID levels.

o, ™

81

Report No. 2930 Boit Beranek and Newman Inc.

10.3 Low Speed Modem Interface (ML) :
|

The ML connects Lhﬁ Pluribus tec a 303 modem at speeds up to
o5gkb. The ML will transmit or receive messages of an arbltrary
even number of data bytes to or from the 383. The Pluribus need
Ry specify a portion of{the message to the ML at any time. This
portion of a message 1s cél‘éd a buffer and is delimited in core
by two addresses provided to the ML by the Pluribus DMA. On
transmission, the ML will transmit end of message characters if an
end of message flag is associated with a buffer. On reception, a
buf fer will be read until either the input area provided 1s full
or the end of message characters are detected Three test optlons
are available on the /L under program control: (1) the ML can be
crosspatched to itself so that it takes its transmitted data back
in as receive data ignoring the 383 modem, (2) the ML can loop
the 383 modem back thus tcsting both the ML and the 383 modem, and
(3) the ML can be forced to send a zerc checksum to test the error
logle of the ML.

To allow for multiple MLs connected to the same modem, the
device timeout feature described in section 7.1.2.2 has been im-
plemented for the ML. Data buffering is provided on the ML card
to tolerate delays in servicing of approximately 32 characters on
both input and output without loss of data or line utilization.
Additional delays of indefinite length are tolerated on output by
sending a line protocol idle sequence.

All data on the communication line is organized as 8-bit
bytes, and sent low-ord=r bit first. There are four control

bytes:

82

Report No. 2930 Bolt Beranek and Newman Inc. 1
;
j
NAME CODE (Hexadecimal) }
SYN 16 "
DLE 10 §
PR 02 1
k&
ETX 83

The protocol on the line looks as follows:

S 8 bYS (r E D T DNS i D C T SIS
b E B
b X iy ke X g X) &€ B ¥ :
NNEX) EE T ENL T EBE R 8 N N =
1 2 3 - g 5 3 6 i E
Notes:
L At least two SYN characters separate adjacent messages.

An idle line is filled with SYN characters.

208 The beginning of a message is indlcated by the sequence DIE STX.
The rollowing character is text. Note that i1f the RLD card
is used, the first bit of text must be zero if the message is

not to be interpreted as a special reload message.

8 The text is made up of characters ta.ien from the buffer to be
sent. The right half word is sent first, then the left half-
word. There are always an even number of text characters in

a valid message, otherwise messages are of arbitrary 1-ngth.

4. When the escape character DLE appears in the text, the hardware
inserts an additional DLE.

M 54 If text 1s not available to the ML in time, the sequence DLE SYN

. is sent as an 1dle protocol until Cext becomes available.

Pl N

W

83

.

Report No. 2930 Bolt Beranek and Newman Inc.

(5 The end of a packet 1s indicated by the sequence DLE BTX,

%z Each packet 1s followed by a ol-pit CRC checksum, sent as 3
8-pit characters. The checksum 15 computed based on all of
the characters in the message starting with DLE STX and
ending with ETX. A bad checksum will cause the device

receiver to report an error.

Hote that a DLE is always followed by a DLE, SYN, STX, or ETX.

Any other character following a DLE will cause an error on receliving.
An error may also be reported if the ML receiver is not serviced
quickly enough, that is, within 64 character times of the time that
1t writes the PID. A receive reset command flushes the input buffer
and forces the receive half of the interface to look for character
syné: Deétected erTort also reset the interface to search for charac-
ter sync, and flag the data as end of packet and error, but do not
flush the Lufler:

The ML is a DMA device and as such is programmed as described
in section 6.2. That section also describes the switches and device
independent bits in the ML (DMA) registers. The interpretations of
device dependent bits in the registers are indicated below. In

each case, the description assumes that a one is read or written.
DEVICE TYPE: The high order byte contains a 1.

RECEIVE STATUS (15) "Loop":

Write: Cause the 383 modem to send bick the transmission
of the ML to the receive portion of the ML. The
receive portion of the ML should be initialized
pefore the transmit portion so that no data is 1lost.

Read : The ML is looped.

84

e e et Sl e et .~

il
|
E

e s e

T e
e

2
e e
Eg .

T iy

=

LA e

Py v

el o,

Report No. 2930 Bolt Beranek and Newman Inc.

RECEIVE STATUS (14) "Crosspatch™:
Write: Cause the ML to take back 1ts transmitted data
into the receive portion ignoring the 383 modem.
The receive portion of the ML should be isst Az .ed
before the transmit portion so that no data is lost.

Read : The ML is cross-patched.

RECETVE STATUS (13) "aative”:
Read : The ML receive portion is either waiting for or

transferring a buffer from the 383 modem to memory.
TRANSMIT STATUS (15) "Device Timeout":

Read: A one second timer has deactivated the ML. If the
transmit status worc has not been written for one
second, all activity of the ML is aborted.

i All ML circuits whicn communicate with the 383
r

modem are deactivated. The ML will become usable

again when the transmit status word is written.

TRANSHIT STATUS (1%) "Zero Checksum™:
Wiehttrets Generate a zero checksum for this message.

Read: A zero checksum will be generated for this message.

TRANSMIT STATUS (13) "Active":

Read : 4 buffer 1s belng transmitted.
q
-
A4
85

1

TN e

- - - —— . — - o~ gy

Report No. 2930 Bolt Beranek and Newman Inc.

10.4 Local Host Interface (HLC):

The Local Host module provides an interface between the
Pluribus and another computer (called a Host) according to the
hardware specification for IMP to Host connections described in
the BBN report, "Specificatlons for the Interconnection of a Host
and an IMP" [8]. This is a general purpose asynchronous serial
interface. The Local Host module can perform block transfers of
data in either direction between the Host and the PLURIBUS. A
data block can be either read or written as a number of separate
buffers if required. Transfer of the last buffer will have an
associated end of data block flag. Padding is provided by the
HLC receiver at the end of data blocks to account for word length
mismatch between the Pluribus and the attached Host. Two padding
options &re availalle: (1) 2 1 followed by 0's as described in
Report No. 1822 or (2} all zeros. The choice is fixed by hardware
jumrers on the interface. Another set of jumpers permits the
Pluribus and Host ready lines to be permanently disabled (ignored).
The Local HYost module can be programmed to be looped. In this
state, all data transmitted from the transmit half of the HLC is
returned to the receive half of the HLC. This mode of operations
is convenient for hardware and software debugging. To allow for
nmultiple HLCs connected to the same Host, the device timeout feature
describel in section 7.1.2.2 has been implemented for the HLC.

The HLC is a DMA device and as such is programmed as described
in section 6.2. That section also describes the switches and
device independent bits in the HLC (DMA) registers. The inter-
pretations of device dependent bits in the registers are indicated
below. In each case, the description assumes that a one is read
or written.

86

Report No. 2930 Bolt Beranek and Newman Inc.

DEVICE TYPE: The high order byte contains a 2.

RECEIVE STATUS (1&) "Loop™:

Write: ‘onnect the recelve portion of the ELC t0 Zhe
transmit portion so that data transmitted by the HLC will be re-
turned to the receive portion of the MHLC. To inltiste the crang=
mission both RECEIVE END AND TRANSMIT END must be written. REGEIID
END should be written before TRANSMIT END so that no data 1s lost.
When the HLC is lcoped, the HOST READY indicator is the same as the
Pluribus READY indicator.

Read: The HLC is performing 1in looped mode.
RECEIVE STATUS (13) "Actlve™:

Read: The receive portion of the HLC is active recelving
a daca blocks
RECEIVE STATUS (12) "Host Ready":

Read: A one indlcates that the Host has set its ready
Tnddertion:

RECETVE STATUS (14):

Read: There wes an error in the last buffer received from
the Host. No end of message terminated the data block. This bit
will be set 1If the Host Ready signal went away and returned during
the previous transfer. Note that the error bit in the RECEIVE END

rerister will also be set.

RECEIVE STAPUS (L0)
Read: Same as RECEIVE STATUS (11) above except if this ook &

is set, an end of message indication did terminate the data block.

TRANSMIT STATUS (14) "Loop":

Read: The HLC is performing in looped mode.

TRANSMIT STATUS (13) "Active":
Read: The transmit portion of the HLC is active transmitting
a data block.

Report No. 2930 Bolt Beranek and Newman Inc.

TRANSMIT STATUS (327 YPlurimus Ready"

Write: Writing a one Sets the Pluribus ready indicator.
Writing a zero clears the Pluribus ready indicatcr. This indica-
tor will also be cleared if neither the transmit or recelve status
words has been written in the last second 1n order to implement
the previously described device timeout feature.

Read: The Pluribus ready indicator is set.
10.5 Checksum/Block Transfer Device (CBT):

The Checksum/Block Transfer Device performs one of three
operations on a source data buffer: (1) it ecadculdtss & 16-bit
checksum on the data (2) it transmits the data words from the
source buffer to a destination buffer, or (3) 1t does poth (1) and
(2) simultaneously. Aslide from providing a convenient way to move
data around with a Pluribus system, this device provides a key
service for the system reliability software (see saetion (2]« Lo
the DMA, the device appears as two separate sections - source
(transmit) and destination (receive) which deal with the DMA data
transfer independently but are 1inked closely together within the
device. Only the source interrupt and status, nowever, are used. i
Checksum calculation i5 performed serially, low order bit first
with provision for either reinitializing or continuing the compu-
tation when a new data block is specified. Either an IBM CRC
16-bit checksum or a CCITT 16-bit checksum may be calculated. The
choice 1is switch-selectable. The generator polynomials for these
checksums are as follows: IBM: X16 & X15 + X2 ¢ 1 and CCLITTz
16 & x32 & x°

time when no checksum is being computed and by the slower of bus o

+ 1. Transfer rate is 1imited only by bus accesSs

gccess or checksum computation when a checksum is being computed.
checksum computation time 1is approximately 1.3 microsecond per
16-bit word.

.-.-- '-M—-I ..-——-——'—_._.A_-—_.,-_ —

o, -

Report No. 2930 Bolt Beranek and Newman Inc. :

The CBT is a DMA device and as such is programmed as described
in section 6.2. That section also describes the switches and
device independent bits in the CBT (DMA) registers. The interpreta-
tions of device dependent bits in the registers are indicated below. ?

In each case the description assumes that a one is read or written.

DEVICE TYPE: The high order byte cortains a 3. Switch (bit) O
selects a CCITT checksum (off) or an IBM CRC16 checksum (on).

TRANSMIT (SOURCE) END (15):
Write: This is the last buffer of the block.

TRANSMIT (SOURCE) END (0):

Write: Clear the checksum accumulator register. Writling

a zero indicates that the previous checksum should be pre-
served, e.g. when checking a multi-buffer block.

Reau: BRIRGE

TRANSMIT (SOURCE) STATUS (15) "Check":
Write: Calculate checksum. Changing this bit while an
operation is in progress will cause an interrupt and a device
reset.

Reset: Checksum being calculated.

TRENGMIT {SOURCE) STATUS (148) ™Iransifer™ :
Write: Move data from source buffer to destination buffer.
Writing this bit while an operation 1is in progress will
cause an interrupt and a device reset.
Read: Data being moved from source buffer to destination
buffer.

TRANSMIT (SOURCE) STATUS (13) "Active™:
Read: CBT operation in progress.

89 |

Report No. 2930 Bolt Beranek and Newman Inc.

TRANSMIT (SOURCE) STATUS (12) "EUB Destination":
Read: Interrupt requested since the destination buffer
is too small for source buffer. CBT has suspended activity -
until new destination buffer addresses are supplied for the
remainder of data. No data 1s lost. The error bit is also

.._.‘.,_

set.
»

| TRANSMIT (SOURCE) STATUS (11) "NOP":
Read: Interrupt requested since CBT initlated action but
registers indicate that there is nothing to be done. The

‘ error bilt is also set.

§
! I TRANSMIT (SOURCE) STATUS tL B mLEst e
Read: TRANSMIT (SOURCE) END (15) was set when this buffer

was written.

TRANSMIT (SOURCE) STATUS (9) "Destination QUIET™ ¢
Read: The receive (destination) portion of the device '
received a QUIT during the previous operation. The error tobists

is also set.

DEVICE DEPENDENT DMA REGISTER - The 16-bit checksum is accumulated
here. This register may be initialized prior to the start of a
checksum computation. Writing this register during a check opera-

’ tion will cause an erroneous checksum to be calculated.

welsag .

| . 10.6 Exterral Reload Device (RLD): .
The Reload card (RDD) monitors the input data from up to eight

modem interfaces. When the RLD observes a command, it decodes the
! command as a 2@-bit system address, a 16-bit data word, and a 16-bit '
CRC16 checksum. This single card device 1s not processor control-
lable, but is controllable by external signals arriving over the
normal communication lines. The purpose of the RLD is to change,
control, or restart the Pluribus system from a remote site without

!
f

e

P

L N

@ r

Report No. 2930 Bolt Beranek and Newman Inc.

on-site supervision. The RLD resides on an I/0 bus, thus the RLD
can modify common memory busses and access processor busses by

backwards bus coupling as well as access devices on its own bus.

Whenever a message 1s recelved over a communication line,
the RLD checks the first bit (the least significant bit of the
first 16-bit word). If this bit 1s one, the RLD determines that a
sequence of RLD commands 1s arriving over that communication line
and ceases to monitor the other 7 modem interfaces until all com-
mands in the incoming message have been processed. Except fianeiitihne
first bit of the first command 1n the message, each of the remaining
bits in each command are doubled to increase the uniqueness of the
reload packet and to guarantee that the DLE character will not
oceur in the reload data stream. The format of an arriving RLD
message 1s irdicated below:

= D S

14 o alal1[p[p|p{Dic|c|clc|a clplE
Ao Dl plo| [alalalaiu|n|H|H|D H

L Tplp ol p|{p|1|T|T|T|T|{EIEIE|E|D E|L|T
bR Rl R|R| |AlA|alAjc|clc|c|R C
R.E%EEEI KIK|K|K|E K
El§ s s|s s|sis|sis S

E Xs|g s sis|1 ululululu ulE| X
S M| M| M| m|m M
ol 8 1211¢] |olul8|1oju|812/0 2
Bits: A 1Y W R A) 4) ;
3|71 1919 (3| 711119 3|7 |1415 3 L5

It should be noted that:
1) The low-order two bits of the first word of the first command
must be 0l. The low order two bits of the first word of sub-

91

'i

o — - - = ’ = - - - o — v

Report NO. 2930 Bolt Beranek and Newman Inc.

sequent commands in the message must be 00.

2) An eight-bit padding byte follows the high order address bits.
This byte can contain any non-zero "doubled" four-bit pattern.
The pattern can be set by jumpers on the card. (Note that

four ones are shown in the figure above.)

3) An arbitrary number of commands may contained in an RLD

message.

by The 16-bit checksum on the address and data bits in the IBM
CRC-16 checksum with generator polynomial X16 g, d 2 X2 + 1.

For each command in the message, the RLD device stores the
incoming data word at the specified system address. This process
is repeated until either a bad checksum is detected, bad padding 1s
detected, non-doubled data is detected, a delayed bus access occurs,
or the RLD device times out after one second of inactivity. In
each of these cases, the RLD device releases the communication

line and is available to service one of the other modem interfeces.

There are 3 lights on the RLD device which provide a visual
indication of the device operation. One light is on from the time
that the device is first activated until the bus containing the
device is reset. Thne second is on for the duration of a single RLD
command sequence. The third indicator is briefly 1it by completici

of each bus access.
10.7 Synchronous Line Interface (SLI):

The SLI provides a simple synchronous full-duplex interface
to a wide variety of modems. In contrast to the other interfaces
previously described, the SLI is a single passive device and does
not use either the DMA facility or the PID. To guarantee that

92

——— — = =
5

‘a

.

Report No. 2830 Bolt Beranek and Newman Inc.

neither data not line bandwidth will be lost, the processors must

poll each SLI in the system faster than the byte rate being used.

Each physical SLI1 card provides interfaces for two independent
1ines. The allocation of the 8 words in the device register block
is glven below. The location of the register block is fixed by

jumpers on the card.

Regilister it Device Type - Modem 1

Register 2 Status - Modem 1
Reglister 3: Control - Modem 1
Register 4: Data - Modem 1
Register 5: Device Type - Modem 2
Register 6: Status - Modem 2
Regligter 7: Control - Modem 2
Register 8: Data - Modem 2

The Device Type and Status words are read only registers whereas
the Control and Data words are read-write registers. The inter-
pretation of pits In each of these four registers are given below.
In each case, the interpretation assumes vhat the particular RS L
one unless otherwise stated.

DEVICE TYPE (8-15): The high-order byte of the Device Type
register contalns a 4.

DEVICE TYPE (6-7): These bits are set by switches on the SLI
card and indicate information concerning the speed of the
modem to which the SLI is connected.

Blts (@.7) Speed

y 00
| 01
; 10
, 11

Under 2.5K bits/sec
tnder 5K bits/sec

Under 10K bits/sec

19.2K bits/sec and over.

on

DK

Descri

Report No. 2930 Bolt Beranek and Newman Inc.

STATUS (15): The transmitter buffer is empty. The next character
may be written to the Data register. (It 1is assumed that

Clear to Send status (10) - has previously beea found to be on.)

STATUS (14): A SYNC character has been transmitted. The program
was too slow in responding to STATUS (15) above and in the
absence of new data a SYNC character was transmitted. This
bit remains set until the next data character starts being
transmitted.

STATUS (10): Clear to Send. This is a signal received from the

modem. In general, this indlicator signifies that the wodem
is ready to transmit data. Refer to the modem litera“ure for

more detail.

STATUS (8): Data Set Ready. This is a signal received from the
modem. In general, it indicates to the SLI that 1€8 modem
is not in a test mode and its power is on. Refer to the

modem literature for more detail.

STATUS (0-7): After a Receiver Reset (CONTROL bit 0) this half of
the Status Register will monitor the input data stream, that

is,; bite @wilil be detoured here as well as going to the Data
register. This will continue until a zero has propagated to
STATUS 0 at which point these 8 bits will no longer change.

A subsequent receiver reset will cause this first even char-
acter search mode to start again. It is expected that this
feature will be used to handle the case of devices transmitting
to the SLI which employ different sync characters. The first
even character received can by mutual agreement be the sync
character that will be recognized by the interface hardware
(see DATA (8) and DATA (9) below).

]
P,. Report No. 2930 Bolt Beranek and Newman Inc.

to the modem. In general, it indicates to the modem that the

|
‘ CIONMHEL (8) Request to Send. Thils signal is passed directly
i @ SLI is ready to transmit data. The modem will normally

respond by settimg Clear to Send STATUS (10). Refer to the
, modem literature for more detaill.

. CONTROL: (9): Locp Téet. Loop the SLI output baeck into Che SLi
_3 iriput. This feature zllowse the SLI to test itesslf witheut a
} modem.
|

! CONTROL (7): Transmit and recleve in 7-blt plus parity mode.
This bit will be set by the program when communicating with
an ASCII terminal. When writing to the data register bits
0-6 will be accepted and the SLI hardware will add the correct
h bit 7 to create odd parity in the 8-bit character transmitted.
Data words received will be checked for odd parity (see DATA
(9) below) but bit 7 of the data byte read will be zero. For
communication with EBCDIC terminals, CONTROL (7) 1s cleared.

!
! In this case parity is neither generated nor checked. The

{

' 8-bit character transmitted is the 8-bit byte written to the
! data register.

|

CONTROL (0): Recelver Reset. Clear Received Parity Error -
DATA (9), Receiver Overrun Error - DATA (8), Sync Recelved -
DATA (14), and Data Ready - DATA (15). As described above,
writing this bit also initlates sync character search mode and
i initializes STATUS (0-7) to all ones.

j In contract to the DMA devices previously described, the input
and output halves of the SLI share a single address for the two

. (read and write) DATA registers. The proper SLI internal register
is referenced when the SLI is accessed as described below.

[=
o
3]
@
Q

(s

Report No. 2930 Bolt Beranek and Newman Inc.

DATA (15)

Read: Data Ready. Finding this bit set segnals that

a new character is in bits 0-7 of the DATA register.

¢ DATA (15) is zero, then no change has occurred to
pits 0-7 of the DATA register since the last time the
DATA reglister was recd. Reading the DATA register

sets bit 15 if it was one. In normal operation, the
DATA register 1is read more frequently than the byte
rate, bit 15 1s tested, and bits 0-7 extracted or ignored

as approprilate.
DATA (14)

Read: Sync Recelved. This bit will be one from the
time that a sync character is detected untll a non-sync
character is detected. Although available, this Fifor-
mation will generally not be used by most programs.

DATA (9)
Read: A parity error has been detected. This bit 1s
cleared only by Recelver Reset. =<' 1s never set unless
CONTROL (7) has been set to one. Parilty checking 1is
enabled when data mode 1s entered, that is, when the
first non-sync character after two successive sync

characters arrives.

Write: Store Transmit Sync. Route DATA (0-7) to a
special holding register (rather than transmit 1),

This character will become the transmitted sync character,
j.e., it will De transmitted whenever the last bit of

a character has been sent but no new data character has
been written to DATA (0-7). This register remains
unchanged until rewritten.

Report No. 2930 Bolt Beranek and Newman Inc.

| DATA (8)
Read: The incoming data stream has not been serviced

quickly enough and a character has been lost. Since

the input 1s double buffered, two byte times must have
elapsed since Data Ready was last set for this to occur.
This bit is cleared only by Rereiver Reset.

|

4

|

|

i Write: Store Receive Sync. Route DATA (0-7) to a

" second special holding register (rather than transmit

f it). This character will become the recelive sync

i character, that is, this character will be compared to
the received bit stream to achieve character

‘ synchronization. Data mode will be entered after at

least two adjacent sync characters have been received.

Yescription

This register will remain unchanged until rewritten.
DATA (0-7)

{

| Read: Input Data Byte. This is the data to be extracted
; when Data Ready 1s Set.
{

Write: Output Data Byte., This is the location to which

the next 8-bit byte should be written when Transmit

L Buffer Empty 1s found set. This register is not protected

:{ against premature writing and no indication is provided

;§ if it is written when Transmit Buffer Empty is zero.

| If this happens, the character previously written will

, 1 have been lost without being transmitted. Each receive

[and transmit portion of the SLI device is actually

j double buffered in addition to the serial-to-parallel

shift register in the card. This extra buffering implies

lf that the programmer actually has longer chan a single

‘ character time 1n which to service the device. 1In addition,

) the programmer should also be aware that this buffering

a >
wy

97

i = 3 g S e - hoannad " O e o e S Tt s - e A SR AR s
B g R n o e e it o 1 M i 2 b i ettty Y ¥

, Report iNo. 2930 Bolt Beranek and Newman Inc.

1! -’
has other implications since the contents of the status

L and data registers are not synchronized., A status

indicator can not be assoclated with the data byte .
currently available in the data register.

Tiie SLI device can be us2d with either switched or
dedicated channels, The Data Set Reaty, Data Ternilnal
Ready,; and Carrier Détecet slgnals wil. be uwseful primarily
il in switched applications. They can all be strapped to

: l "true" values for unswitched operation. If the SLI :
1 is used with a full-duplex channel (i.e. modem and |
- ' circuit) the Request to Send and Clear to Send Signals
f | could also be strapped "true". They are included to
' allow the option of half-duplex operation.
{
I
|
!
| N
I
|

==

]
L

98

PN

'y

Report No, 2930

n

Bolt Beranek and Newman Inc.

REFERENCES

Heart, F. E., Ornstein, £. M., Crowther, W. R.; and Barker;
W.B., "A New Minicomputer Multiprocessor for the ARPA
Network," Proceedings of the 1973 AFIPS National Computer
Conlerencé, Yol: 82, Pp. 529537,

Lockheed Electronics Company, SUE Computer Handbook

Lockheed Electronics Company, SUE Computer System, General
System Buil: tin G2, included in Flurlbus Document B

Lockheed Electronics Company, SUE Processor Instruction
Set, General Sys.em Bulletin G3, included in Pluribus
Document 4,

Lockheed Electronics Company, SUE Infibus Interface,
General System Bulletin G4, included in Pluribus Document 6.

Bolt Beranek and Newman Inc., Pluribus Document 3:
Configurator.

Ornstein, S.M., Crowther, W.R., Kraley, M; Py BEexgle?r;, B.D.,

Michel, 2., and Heart, F.E., "Pluribus - a Rellable
Multiprocessor,” to appear in the Proceedings of the 1975
AFIPS National Computer Conference.

Bolt Beranek and Newman Inc., "Specifications for the
Interconnection of a Host and an IMP," BBN Report No. 1822,

99

3
s
b
&

-

n

il s

Report No. 2930 Bolt Beranek and Newman Inc.

-
PLURIBUS DOCUMENT 2: SYSTEM HANDBQOOK
PART 3: GLOSSARY

l <+
‘
|
i
A
i
1
i
i
| v
I
|
| 1
‘k
[

“

a»

¥ =

g 4

St ¥ e A - .
Y o W, 5 == e - Ty

Report No. 2930 Bolt Beranek and Newman Inc. ;

GLOSSARY

—— e

Update History:

t Originaily written by M.F. Kraley, February 1975.

]

i |

L i

2

|

i

| i

i

Report No. 2930

60 Hz. interrupt - a classical interrupt occur-ing at the
power line fregnency on level 4, device nunver 1.

abort - a QUIT.

access time - time from the initiation of the request (rise

of §STRB) to the presentation or acknowledgment of data
(rise of DONE).

active - said of a DMA device while it is transferring data:

from the writing of the end pointer to the setting of
the PID level.

active I/0 device - an I/0 device which indicates its need
for service dJdirectly, wusually either by classical or
pseudo interrupt; cf. passive I/0 device.

address halt - a feature of the control panel which halts a

processor when a selected address is accessed on the
bus .

address recognition - the process in which a module checks
the 1Infibus address 1lines for an address which is in
the range of those which pertain to tihat module.

address space - the set of locations accessible to
(addressable by) a device; cf. memory space, I/0
space, system address space, processor address space,
eEec:

amputate - to disconnect a bus (usually a processor bus)
from the rest of the system by turning off the forward
enable bit in all bus couplers coming from that bus.

ALD - a LEC card which implements the AutoLoaD function.

arbitration - the act of choosing the next prospective user
of a resource.

ARPA Network - a national network of heterogeneous computers
linked to facilitate research; the original design
environment for the Pluribus.

asynchronous - not necessarily occurring at a certain time
or at fixed time intervals.

asynchronous line - a serial communications line where the
receiver derives timing information from the initial
transition of a character's start bit; characters are
sent individually, at arbitrary times, bounded by start
and stop bits.

i 5y i s A | e S ot A SR “.-.Wnl_.‘q‘-a—mt‘:.ll L A LR G L R T e Y e . A B [V - b T W ST s

Bolt Beranek and Newman Iprc.

Glossary

Report No. 2930 Bolt Beranek and Newman Inc.

attention - a classical interrupt on level 1, device number
FF80, caused by pushing the "attn" button on the
control panel.

autoload - a LEC module which contains some read only memory
programmed to do loading from any of a number of 1/0
devices; when commanded by a bus signal, the autoload
will initiate a classical interrupt, having first set
the vector address to point to the ROM.

auto restart - see power recovery.

auxiliary I/O space - the portion of I/O space from FC000
through FDFFF.

auxiliary processor - a processor which is not number 0 and
thus does not handle classical interrupts.

AXD parity - a scheme wherein the parity bit(s) are derived
from both the address and data; specifically, the
parity bit of each byte is the exclusive-OR of the odd
parity of the data and the odd parity of the byte
address of that byte.

backwards bus coupling - the process by which a master on a
common (usually I/0 or M/I) bus can access a slave on
another bus (usually a processor bus); used by
processors to access other processors' address space.

bandwidth - the rate at which information may be transferred
or processed.

BBC - Backwards Bus Coupling.

BBC enable bit - bit 2 of the bus coupler control register;
controls whether that coupler is selected for BBC.

BBC map - a register in the BCM which specifies the
high-order address bits of a BBC reference.

BBC window - the four word region of system address space
through which BBC references are performed.

BBN - Bolt Beranek and Newman Inc.; the developer of
Pluribus.

BCI - Bus Coupler I/0 end; the card which forms the I/0 ,end
of an I/0-to-memory bus coupler.

- Bus Coupler Memory end; the card which forms the 1I/0

end of a processor-to-1/0 coupler and the memory end of
processor-to-memory and I/O-to-memory bus couplers.

4

a >
<y

Report No. 2930 Bolt Beranek and Newman Inc.

BCP - Bus Coupler Processor end; the card which forms the
processor end of processor-to- memory and
processor—to—I/O bus couplers.

BCU - Bus Control Unit; a LEC card which performs bus
supervisory functions; it is chiefly responsikle for
arbitrating the use of *he bus, but also assists in
classical interrupts and other specialized functions.

BDR - Bus Driver/Receiver: a custom IC used in both LEC and
BBN boards to interface with the Infibus.

begin pointer - in a DMA device, the address of the first
word of the buffer.

bezel - the decorative front of a bus unit which also
contains an air filter.

block transfer - the act of copying the contents of a series
of contiguous memory locations to another place.

buddy - the other processor (s) on the same bus.

buffer - a series of contiguous memory locations which holds
a block of data.

bus - usually an abbreviation for Infibus.
bus arbiter - a BCU.
bus controller - a BCU.

bus coupler - a module which allows transactions on one bus
to be transformed into transactions on another bus,
depending upon address; composed of a BCM, either a BCP
or BCI, and connecting cables; performs other special
features such as parity generation and ~hecking,
mapping, power isolation, and amputation.

bus extender - a LEC module which allows one logical bus to
span more than one bus unit; the extended bus looks
just like one long bus; it consists of two cards, BXD
and BXR, and two connecting cables.

bus timer - usvally rzfers to the reset timer.

bus unit - the basic mechanical module of the Pluribus;
contains various combinations of Infibusses and power
supplies, and has integral cooling.

BXD - Bus Extender Driver; the card which forms part of the
bus extender; plugs into the same bus as the BCU.

5

‘.:. IR WIS

Report No. 2930 Bolt Beranek and Newman Inc.

BXR - Bus Extender Receiver; the card which forms part of
the bus extender; plugs into the bus which does not
have a BCU.

byte - 8 bits; two bytes to a word.

cable - an assembly which electrically connects two or more
modules and’or external equipment; each type has a four
letter designation.

card - a logic board which plugs into the Infibus; each type
has a three letter designation.

CBT - a BBN card which forms part of a Checksum-Block
Transfer module.

CCITT checksum - a 16 bit checksum computed with polynomial
x**16 + x**12 + x**5 + x**0,

CCP - Communications and Control Processor, a Pluribus
application which involves the collection, limited
processing and routing of seismic data.

central processor - the number 0 processor electrically
connected to the bus arbiter which handles all
classical interrupts.

checksum - a number of bits associated with a block of data
computed via a fixed function from the data; the
implicit redundancy can then be used to detect changes
in the data.

checksum-block transfer — a BBN module which allows the
computation of a cyclic checksum and/or the copying of
a block of memory; consists of a DMA and a CBT.

classical interrupt - the diversion of the control stream of
a processor in response to an external event; the
device number of the interrupting device, status and
program counter at the time of interruption are saved
and the processor Jjumps indirect through a fixed
location; also refers to the bus transaction which
causes the interrupt.

classical parity - the parity scheme wherein the source
generates on writes and the source checks on reads.

clock - usually refers to RTC.

CMB - the LEC printed circuit board which forms the actual
Infibus; holds the edge connectors for the cards.

L2

Report No. 2930 Bolt Beranek and Newman Inc.

commc.n bus - a bus which is not a processor bus: a memory,
1/0, or M/I bus.

| common memory - that memory whi-h can be accessed Dby all
I § processors, that is, all memory on memory OI M/I
1 busses.

i
! configuration - the process by which a group of Pluribus
: modules are selected and an arrangement designed to
) create a machine for a particular application.
| consensus - the agreement between processors that to take a
particular action would be in their common interest;
! also refers to the process by which agreement 1is
A reached.

console - usually refers to the control panel.
contention - the situation where multiple users are

attempting to simultaneously use a resource; this
| usually causes delay.

continuous read/write - a feature of the control panel which
when set, repeatedly performs the access requested by
depressing the "read" or "write" buttons; located on
the rear of the control panel.

control panel - a LEC module which allows manual reading and

writing of addresses, typically memory locations,

processor registers, and starting and stopping of

: processors, and other special functions; consists of

i two cards, PCB and PBI, connected by a DIP connector

p & cable, and a front panel, SWB, which connects to the
other cards via three ribbon cables.

control register - a location associated with a module whose

bits correspond to program sectakle functions; in a

I processor, register 15; in a serial or parallel

o interface, the address of the device + 6; in a bus
coupler, set by the jumpers on the BCM.

cooling module - the external shell of a bus unit which

’ provides mechanical support for the Infibus chassis,
fan pack, and bezel, and airflow isolation and
deflection.

CPA - a LEC card which forms part of the processor.

cPB - an early LEC card which used to form part of the
™ processor; superseded by CPC.

CPC - a LEC card which forms part of the processor.

7

~ 7 Wosnm .',“'

g

Report No. 2930 Bolt Beranek and Newman Inc.

CPU - central processor; more generally, but incorrectly, a
processor.

CRC-16 checksum - a 16 bit checksum computed with polynomial
X**16 + X**15 4+ x**2 + x**0.

cycle time - the time from the beginning of a request until
the device has completed all activity related to that
request and is ready to start or accept another;
usually longer than access time.

cyclic checksum - a checksum computed by dividing the data
by a specific polynomial and taking the remainder.

D-cable - a cable which connects a card plugged into an
Infibus with the fantail.

DBAL - Duzl Bus Access Logic, a custom IC that contains much
of the logic n:cessary to be a bus master.

DDT - a program which allows the user to inspect and change
memory locations and processor registers, start and
stop processors, copy memory, field traps and other
useful things; in many ways, can be thought of as a
simple executive, providing an environment for user
programs.

deadlock - a state in which two (or more) processes
(hardware or software) are each waiting for a resource
held by the other; each now waits indefinitely for the
other's resource to become available.

device - usually a module that performs I/O functions;
sometimes refers just to DMA devices.

device dependent - a register or bit whose interpretation or
function is determined by the particular module with
which it is associated.

device independent - a register or bit with a common
interpretation or function over a range of different
module types.

device register block - the eight word segment of address
space which is associated with a DMA device.

device type - a number indicating the type of the associated
module; usually program readable in the low order byte
of the first register of the device.

device number - a number ass-ociated with each device which
causes classical interrupts; when servicing an
interrupt, this number can be read from the first word

8

A ———

R

Report No. 2930 Bolt Beranek and Newman Inc.

) _
: ':g of the interrupt vector, indicating which device caused
: the interrupt.

t' DMA - Direct Memory Access; a BBN card which performs the
bus interaction and pointer management for I/0 devices.

DMA device - an 1/0 device which uses a DMA; it transacts
directly with memory with data in buffers.

DONE - an Infibus signal that indicates successful
€ completion of a bus access cycle; also serves as the
strobe for data in a read access.

| doubled cable - a cable which connects the two parts of a
ki doubled interface with the fantail.

‘ doubled interface - an interface which, for reliability
considerations, consists of two modules on different
busses, connected such that either one can serve the

external equipment.

elastic buffer - a buffer which allows input and output to
proceed asynchronously, at different rates.

end pointer - in a DMA device, the address of the last word
of a buffar.

' executive core - usually refers to locations 0-5E; the area
(1 in which interrupt, QUIT, and ILLOP information is

stored.

EXY - Eight X and Y; a LEC card which forms part of the
memory; contains the core stack itself.

F-cable - a cable which connects external eguipment to the
fantail.

ol R S AT LA

fan pack - a chassis containing six fans that provide the
cooling for each bus unit.

o E—

fantail - a panel which contains connectors for cables from
external equipment which interface to internal cables;
used to facilitate the reconnection of external

.

o
-

equipment.

Il feedback parity - the parity scheme wherein the destination
generates and the source checks parity on all

transfers.
flop - flip-flop.

it force reload - a scheme by which memory locations may be
loaded, processors started, etc., via special,, heavily

9

Report No. 2930 Bolt Beranek and Newman Inc.

passworded messages on modem lines; used for remote
start-up of machines.

forward enable bit - bit 1 of the bus coupler control
register; when cleared, prevents all forward accesses
through that coupler, thus amputating the bus
associated with the BCP or BCI of that coupler.

F-stick - to map an address in I/O space via the implicit
fixed mapping.

full duplex - a communications path wherein transmission can
take place in both directions simultaneously.

ground modem - not a satellite modem.

half duplex - a communications path wherein transmission can
take place in either direction, but not both
simultaneously.

halt (ed) - a state of the processor wherein instructions are
not being executed, interrupts cannot be honored, and
the registers are externally accessible.

hex - abbreviation for hexadecimal, base 16.
high speed modem - a BBN module which interfaces to a Bell

306 modem at speeds up to 1.5 Mbaud; consists of MHX,
MHR, and DMA.

HLC - Local Compatible Host; a BBN card that forms part of a
Host interface.

HIT - the name of the general Pluribus system test program.

Host - a computer which provides and uses the actual network
services; connected into the network via an IMP.

Host interface - a BBN module which interfaces to a local
Host; comprised of a DMA and HLC.

hot code - frequently executed code which is located in
local memory.

IBM - four card interconnect module.
IBM checksum - CRC-16 checksum.
ICM - three card interconnect module.

IDM - two card interconnect module.

10

R e s

b

Report No. 2930

I-cable - a cable which cnnnects two internal cards.

idle - a state of the processor wherein no instructions are
being executed, registers are not externally
accessible, but interrupts may be honored.

illegal operation - trap caused by attempted execution of an
instruction not in the repertoire of the pro:essor.

ILLOP - illegal operation.

ILLOP vector - the four word block holding information
pertinent to the current ILLOP; starts at 20 for
processor 0, 30 for processor 1l; contents are: 1illegal
instruction, status, program counter, address of
service routine.

IMP - Interface Message Processor; the node computer of the
ARPA Network, which performs the basic packet-switching
functions.

Infibus - the bus which physically and electrically connects
the cards of a Pluribus system.

interface - a module which allows access and information
flow to and from external equipment.

interrupt - usually a classical interrupt.

interrupt vector - the four word block holding information
pertinent to a given interrupt level; for levels 1-4,
starts at locations 0,8,10,18 respectively; contents
are device number, status, program counter, address of
service routine.

I/0 bus - a bus which contains primarily I/O devices.

I/0 space - the part of system address space from FC000 to
FFBFF; the area which may be accessed via fixed mapping
from prccessor address space; also refers to the
corresponding section of processor address space
(CO00-FBFF)

isochronous line - a serial communications scheme wherein
bit timing is derived from a separate clock line, but
characters may be sent at arbitrary intervals and are
bounded by start and stop bits.

jiffy - a 60 Hz. interrupt or 1/60th of a second.

JIG - the name of the bus coupler stand-alone test program.

11

Bolt Beranek and Newman Inc.

Report No. 293C Bolt Beranek and Newman Inc.

1 K - 1024 (decimal) .

key bits - address bits 16 and 17, asserted on processor

- references according to the contents of a two bit

! register set by the SKEY instruction; used to
differentiate among the various processors on a bus. -

LEC - Lockheed Electronics Company.

level 5 interrupt - an ILLOP.
level 6 interrupt - a QUIT. ‘
local Host - a Host interconnected via a bit serial,

handshook interface, usually over distances of less
than 30 feet.

| local memory - memory on a processcr bus, as opposed to
common memory .

lock - a data structure (usually a single word) used to
interlock processes; also refers to the act of reading
a lock with a read-clear cycle.

" Lockheed Electronics Company - the manufacturer of several
Pluribus parts.

low speed modem interface — a BBN module which interfaces to

a Bell 303 modem at speeds up to 250 Kbaud; consists of
a MLX, MLR, and a DMA.]

map value - the 7 bit number that determines which 4K page
of system address space is referred to by accesses in
\ the associated map segment.

e map segment - one of the four 4K regions of processor
i address space through which accesses are made to common
J’ memory .
mapping - the act of transforming an address in one address ;
|~ space to that in another.
| master - the participant in a bus transaction which §

initiates the access; e.g. the processor, when it is d
accessing memory.

i memory - a LEC module, either 4K or 8K by either 16 or 18
' bits of random access core memory, consisting cf three
cards: TAG, SID, and EXY; also refers to a more generic
collection of the above.

memory bus - a bus which contains primarily common memory .

12

Report No. 2930 Bolt Beranek and Newman Inc.

<4
w memory £pace - the part of system address space from 0 to
FBYFF.
message - the unit of data communicated between Hosts;
messages are broken up by IMPs into one or more packets
'] . for transmission in the subnetwork.
d M/I bus - a common bus which contains both Memory and I/0O.
1
] MHR - a BBN card which forms the Receive half of a
“ g High-speed ground Modem interface.
]
%! MHX - a BBN card which forms the transmit half of a
i ‘ High-speed ground Modem interface.
{
! MLR - a BBN card which forms the Receive half of a Low-speed
ground Modem interface.
i, q .
i MLX - a BBN card which forms the transmit half of a
LY 4 Low-speed ground Modem interface.
| modem - a piece of external equipment which converts digital
signals from the computer to analog signals for
communication and vice versa; also refers to modem
interface.
‘ nodem interface - the module which interfaces to a high
| speed synchronous mocem, either ground or satellite,
' low or high speed.
|
module - a unit consisting of one or more cards which
{ performs a unified function.
| : ;
’ﬂ MSR - the BBN card which forms the Receive part of the

Satellite Modem interface.

MST - the BBN card which performs the Timing functions of
the Satellite Modem interface.

MSX - the BBN card which forms the transmit part of the
Satellite Modem interface.

1] multiprocessor - a system which contains several tightly
coupled processors with some common resources.

Multiwire - a technology for making cards, midway between
printed circuit and wire wrap in the dimensions of cost
and difficulty; consists of a printed circuit card

; which carries power and ground, covered by a sticky

insulating layer, in which insulated wires are laid to

form the signal paths.

13

P

Report No. 2930 Bolt Beranek and Newman Inc. ‘

¥ P-cable - a cable which carries primarily powe:. y

packet - the unit of data communicated between IMPs on modem
lines; several packets may form a message; usually on
the order of one or two thousand bits.

| packet-switching - a communications scheme in which packets
of data from many sources are forwarded to many
destinations along the same line, multiplexing the use
of the line at a high rate.

page - a 4K region of common memory, OI more generally,
system address space.

PAR - I/0 PARity; a BBN card which generates parity for
references to I/0 devices.

*:“-—ﬁ el Sy o WSl gy,

20 parallel bits of information; can be polled or use
classical interrupts; used primarily as the paper tape
reader interface; card type PPB.

‘ parallel interface - a LEC module that can interface up to
}

parity - the exclusive OR of a collection of data and /or
address bits; also refers to schemes which detect
changes by generating and later checking the parity of
a collection of bits.

parity memory - memory which is 18 bits wide, allowing a
parity bit to be stored for each byte.

passive I/0 device - a device which must be polled, does not
interrupt; cf. active I/O device.

password - a specific combination of data bits which must be
written in order for an action to take place; used for
reliability considerations.

PBI - Panel Bus Interface; a LEC card which forms part of a
control panel.

2 PCB - Panel Control Board; a LEC card which forms part of a
control panel.

pCcD - PreCeDence passer; a BBN card which serves only to !
pass the precedence pulse by an empty slot; used for
debugging.

pDU - Power Distribution Unit; usually refers to a BBN
module which accepts site power and distributes it,
with appropriate switches, circuit breakers and
indicators; also refers to a LEC module which provides |
two key switches, one for power, the other for -
processor selectiun.

14

Report No. 2930 Bolt Beranek and Newman Inc.
|
<
| g PID - Pseudo Interrupt Device, a BBN module which serves as<
a hardware pending task queue.
L
' PID level - the number that a device or a processor writes
to the PID to signify that the associated task should
* be run.

Pluribus - a line of modular, reliable,
multiprocessor/minicomputer systems produced by BBN.

l

! poll - the act of periodically checking a device to see if

) some event has occurred, as opposed to the device doing

(its own notification when a change in status occurs.
1

|

power fail - a classical interrupt which occurs 2.5 ms.
before bus operations are ceased preparatory to
complete power loss; occurs on level 4, device number

2.
e power restart - a classical interrupt which occurs on
* restoration of local bus power on level 4, device
number 4.

power sense - an Infibus signal that indicates the condition
of bus power, gives advance notice of a power failure;
also refers to circuitry in the bus coupler that checks
the status of power at each end of the coupler,
allowing one end to disregard signals coming from &
card with inadequate power.

power supply - a LEC module which supplies Infibus logic
power and a 60 Hz. signal; comes in two styles:
internal (plug-in, 5951) which takes up 8 of the 24
{ slots of an Infibus, and external (stand-alone, 5952)
which requires its own bus unit.

i PPB - Peripheral Parallel Buffer; parallel interface.
precedence pulse - an Infibus signal which is daisy-chained
{ < between cards; used to resolve priority for the

selection of the next bus master.

primary I/0 space - the portion of I/0 space from FE000 to
FFBFF.

printed circuit - a technology for fabricating cards which
involves etching away copper-clad epoxy boards to form

¢ the signal paths.
-~ private memory - local memory.
< processor - a LEC module which executes instructions;

consists of two cards, CPA and either CPB or CPC; three

15

e — e = < S —— Te— e e T e e | S = - - i & E

>

Feport No. 2930 Bolt Beranek and Newman Inc.

A microcode versions exist: standard, business, and
scientific.

; processor address space - the address space seen by an
individual processor; 32K words long.

processor bus - a bus which contains processors and
(usually) local memory.

processor bus address space - the aggregate of the four
potential processor address spaces on a processor bus; g
128 K words long.

{
L pseudo interrupt - the act of writing a number to the PID to
; indicate that a task associated with that number should
1 be performed.

]

t

PSB - Peripherul Serial Buffer; serial interface.

o QUIT - an Infibus signal that indicates abnormal completion;
' e.g. non—-existent device, malfunctioning device,
parity error, etc.; also refers to the trap that is
taken when a processor-initiated access results in a

QUIT.

QUIT timer - the timer on the bus arbiter which regulates
how long the bus will wait for a DONE before deciding
that the intended slave will not respond and thus

_ should issue a QUIT, terminating the access; these

a timers have different values on different bus types.

=

QUIT vector - the four word block of memory which records

information pertinent to the most recent

processor-initiated QUIT; contents are: address
| 4 referenced, status, program counter, and address of
| 3 service routine; located at 28 for processor 0, at 38
¥ for processor 1.

rack - the unit which houses bus units; up to five bus
units, a PDU, and a fantail may be mounted in cne rack.

read - an access in which data is transferred from slave to
master.

read-clear - a read-modify-write access in which the written
data is zero.

read-modify-write - an access in which data is read from
memory and then (potentially) different data is written
back to the same address, all within one memory cycle.

- ‘:m.-:ﬁrm.m#,-.

]6]

Report No. 2930 Bolt Beranek and Newman Inc.

reload card - RLD.

remote power f.il - a classical interrupt which indicates
that a common bus's power is failing and about 2.5 ms.

of usable power remains; OCCUrs On level 1, device
number 1.

remote reset - the low-order bit of a bus coupler's contrcl
register; when cleared, causes a reset to occur on the
bus which the BCP is plugged into.

reset timer - see bus timer.

resource - a part of a system needed by more than one of the
parallel wusers and therefore a possible source of
contention.

ribbon cable - a multiconductor cable made of several
parallel wires bonded together in a flat shape.

run - a state of the processor in which instructions are
being executed, interrupts may be honored, and
registers are not externally accessible.

ribbon - the part of an algorithm associated with a single
PID level; may be one or more strips.

RLD - RelLoaD; a BBN module which allows forced reloads.

round robin - a feature of the bus arbicration scheme which
enforces fairness of access to the bus; when a device
has been granted a bus access that terminates normally,
it is not allowed to request another access until all
those devices on that bus which are currently
requesting access have been granted same.

RTC - Real Time Clock; a BBN card which causes PID levels at
intervals of 25.6 ms. and 1.6 ms., has a program
readable 16 bit counter that increments each 100 us.,
and three 16 bit readable switch registers.

SACK timer - a timer on the bus arbiter which guards against
the case wherein a potential bus master requests an
access, subsequently stops the precedence pulse,
indicating that it will be the next master, but fails
to assert SACK, acknowledging this fact.

satellite modem interface - a BBN module which interfaces to
a satellite ground station transmitter; has features to
enable use of the satellite channel in broadcast mode
such as provision for switching the carrier and
accurate timing of transmission and receipt of packets;
consists of four boards: MSR, MST, MSX, and DMA.

17

Tt

ey ——

Report No. 2930 Bolt Beranek and Newman Inc.

scientific processcr - the processor module with extended
instruction set, including multiply, divide, double
precision, etc.

select cycle - that part of an access which 1is concerned
with selecting the next master. =

t: self intercupt - a trap.

1 serial interface - a LEC module that interfaces asynchronous

(start/stop) 1/0 devices; strappable for various
| speeds, character sizes, EIA vs. current 1loop, modem
i options, etc.; is half duplex and may either be polled
{

v
- L —

‘ or use classical interrupts; card type PSB.

service cycle - thit part of an accass wherein the master
actually transacts with the slave.

SIMP - Satellite Int ‘rface Message Processor; an IMP which
uses broadcast satellite cnannels as some of its
M communications links.

simplex - a communications path wherein communication can
take place in only one direction.

« slave - the participant in a bus transaction which responds
to the master's request; e.g. the memory, when the
{ i processor is accessing it.

SID - Sense and Inhibit Drivers - a LEC card which forms
part of the memory.

SLI - Synchronous Line Interface - a BBN card which
interfaces two synchronous 1lines; a passive device
which must be polled.

; SMS - Synchronous Modem Simulator; a BBN card which
! interfaces two synchronous data sources, giving the
. appearance that+ the Pluribus is a modem; a passive)
i device which must be polled.

SRN - System Release Notice.

status register - a location associated with a module whose }
$ bits report various combinations of the module; in a
' processor, register 8; in a serial or parallel
interface, the first register; in a DMA device, the
fourth and seventh registers.

step - the act of causing a processor to execute a single

e»
instruction and then halt. '

-y

18

e ——

Report No. 2930 Bolt Beranek and Newman Inc.

«
{ start pointer - begin pointer.
}1
| STRB - an INFIBUS signal which indicates that a master is
transacting with a slave; used to¢ strobe address and,
: L on a write, data.
t strip - a set of instructions which are executed as a unit
between references to the PID.
|
" SUE - System User Engineered; the namne of the 1line of LEC
1 parts which make up part of a Pluribus.
i' SWB - SWitch Board; the front panel of the control panel.
? subnetwork - the collection of node computers (IMPs) and
! communication lines of a network which perform the
actual routing and transmission of the data.
' synchronous - occurring at fixed time intervals.
synchronous line - a communications line where the timing
3 information is derived from the transitions between
data bits; data is usually sent in blocks.
| synchronizer - a device which resolves two asynchronous time
{ references.
I
! system address space - the address space of common busses;
seen directly by 1I/0 devices and indirectly by
processors after mapping; 512K words long.
system release notice - a document associated with each
1 Pluribus system describing the location and
E s configuration of each component.
| 3
3 TAG - Timing And Gating; a LEC card which forms part of the
| memory .
{ + Y three phase wye - the type of AC power that the Pluribus PDU
3 requires; there are five wires: one is for protective
(green) ground; one is common for the other three, each
of which has a 117 volt AC potential with the common,
X but the phase of the legs is staggered by 120 degrees.
f throughput - the rate at which information can be processed.
: TI - usually refers to Texas Instruments Silent 700
terminal.
“ar timer - a device, hardware or software, which watches over
<> the activity of a part of the system; the timer is

periodically reset by the occurrence of an event which
signifies correct operation and which should occur

: 19

Report No. 2930 Bolt Beranek and Newman

periodically: should a specified time interval elapse
without a reset, the timer will "time out" initiating
some remedial action.

TIP - Terminal Interface message Processor; an IMP with
built-in simple Host capabilities which allows users at
terminals access to the network, obviating an external
Host computer.

TOD - Time Of Day; a modification to a pair of PPB boards to
interface a Systron-Donner clock.

trap - either a QUIT or an ILLOP.

very distant Host - a Host connected to the IMP via a
communication link, with associated error detection and
retransmission protocols.

VDH - Very Distant ifost.

VISTAR - refers to an Infoton VISTAR terminal.

watchdog timer - cf. timer.

window - one of the four 4K regions of processor address
space which can be mapped onto a page of system address
space.

wire-wrap - a technology for making boards wherein

connections are made by wrapping a wire around a pin
located adjacent to the component.

word - the basic element of data; has 16 bits and two parity
bits; there are two bytes in a word.

woven cable - a multiconductor cable constructed Ly weaving
together several twisted pairs with a nylon thread.

write - a bus transaction where the data flow is from master
to slave.

20

Inc.

- - e i il R S—

| Report No. 2930 Bolt Beranek and Newman Inc.

- -~

L

PLURTRUS DOCUMENT 2: SYSTEM HANDBOOK

i ' PART 4: [INDEX :
L ‘.
4y
i
!
L | E
ks
|
¥
.{ .
._ :
1
&
|
|
I L4

e e TT I — TR T s

4 -

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

2]
PART 5: REPRINTS OF PAPERS

.

|

il y

1
A

1,

! " |
a <>

4

5

!

|

]‘

]

|

| !

| :

I

) i K

‘I «r

I -

! .

] 1
[

1

i}

1 SR e e =

Repristed from —
AFIPS — Conference Proceedings
Volume 42

©) AFIPS PRESS
Montvale, N. J. 07645

A new minicomputer/multiprocessor

for the ARPA network*

by F. E. HEART, 5. M. ORNSTEIN, W. R. CROWTHER, and W. B. BARKER

Bolt Beranek and Newman [nc
Cambridge, Massachusetts

INTRODUCTION

Since the early vears of the digital computer era, there
has been a continuing attempt to gain processing power
by organizing hardware processors so as to achieve some
form of parallel operation.'* One important thread has
been the use ¢f an array of processors to allow a single
control stream to operate simultaneously on a multiplic-
ity of data streams; the most ambitious effort in this
direction has been the 1LLIAC 1V project.” " Another
important thread has been the partitioning of problems so
that several control streams can operate in parallel. Often
functions have been unloaded from a central processor
onto various specialized processors; examples include
data channels. display processors, front-end communica-
tion processors, on-line data preprocessors in fact, 1,0
processors of all sorts. Similarly, dual processor systems
have been used to provide load sharing and increased
reliability. Still another thread has been the construction
ol pipeline systems in which sub-pieces of a single
(generally large) processor work in parallel on successive
phases of a problem.® In some of these pipeline
approaches the parallelism is “hidden" and the user con-
siders only a single control strean.

In recent vears, as minicomputers have proliferated,
groups of identical small machines have been connected
together and jobs partitioned quite grossly among them.
Most recently, our group and several others have been
investigating this avenue further, attempting to reduce
the specialization of the processors in order to employ
independent processors with independent control streams
in a cooperative and “equal’’ fashion.®"*

This paper describes a new minicomputer multipro-
cessor architecture for which a fourteen-processor proto-
type is now (February 1973) being constructed. The
hardware design and the software organizetion include
many novel features, ard the system may offer significant
advantages in modularity and cost/performance. The

* This work was sponsored by the Advanced Research Projects Agency
under Contracts DAHC15-69-C-0179 and FOB606-73-6-0027

529

systemn contains an expandab. number of identical proc-
essors, each with some “private” memory; an expandable
amount of “shared”” memory to which all processors have
equal access; and an expandable amount of 170 interface
equipment, controllable by any processor. The system
achieves unusual modularity and reliability by making
all processors equivalent, so that any processor may per-
form any system task; thus systems can be easily config-
ured to meet the throughput requirements of a particular
job. The scheme for interconnecting processors, memo-
ries, and 1/0 is also modular, permitting interconnection
cost to vary smoothly with system size. There is no “exec-
utive” and each processor determines its own task alloca-
tion.

A key issue throughout most of the attempts at parallel
organization has been the difficulty of partitioning proh-
lems in such a way that the resulting computer pro
gram(s) can rezlly take advantage of the parallel organi-
zation. This issue is raised in its most serious fi.rm when
the parallel machine is expected to work well on a great
diversity of problems as. for example, in a time-sharing
system. Our machine design has been developed under
the highly Tavorable circumstances that (1) the initial
application, and a prior software implementation in a
standard machine. was well understood; (2) the initial
application lent itself to fragmentation into parallel struc-
tures; and (3) the design would be deemed successful if it
handled only that one application in a meritorious fash-
ion. However, we now believe that the design is advanta-
geous for many other important applications as well and
that it may herald a broadly useful new way to achieve
increased performance and reliability.

The machine has been designed to serve initially as a
modular switching node for the ARPA Network® and, in
the following section, we briefly describe the ARPA
Network application and the requirements that the net-
work imposed upon the machine design. In subsequent
sections we discuss our choice of minicomputer, describe
our system design in some detail, discuss certain of the
more interesting characteristics of multiprocessor behav-
jor, and summarize our present status and plans for the
near future.

et sng

530 National Compuater Conferenee, 1973

ARPA NETWORK REQUIREME TS

The ARPA Network, a natiorwide interconnection of
comrputers and high bandwidth (50 Kb) communication
circuits, has grown durmg the pest four years to include
over 35 sites, with more than one computer at many sites.
The contputers at cach site, called Hosts, obtain access to
the net via a small communications processor known as
an Interface Message Processor or IMP. In order to
perimit groups without their own computer tacility to
access this powerful set of computer resourees, a version
of the IMP called a Terminal IMP allows, in addition,
attachment of up to 63 local or remote terminals of a wide
range of tvpes."

As a considerable simplification, the job to be handled
by an IMP is that of a communieations processor. Arriv-
ing messages must pass through an error control algo-
rithmn, be inspected to some degree (e.g., for destination),
and generally be directed out onto some other line. Some
ineoming messages (e.g., routing control messages) must
be constructed or digested directly by the IMP. The IMP
must also concern itself with flow control, message assem-
bly and sequencing, performance and flow monitoring,
Host status, line and interface testing, and many other
housekeeping functions. To perform these functions an
IMP requires memory both for program and for message
buffers. processing power for executing the program, and
1 O units of various sorts for connecting to a variety of
lines and devices. The original IMP, built around a
Honevwell 516 processor with a 1 us cvele time, cou'd
handle approximately three-quarters of a megabit per
second of full duplex communications traffic. A later,
smaller and cheaper (Honeywell 316) version handles
about two-thirds as much traffic.

As the network has grown and as usage has increased, a
number of demands for improvement have led to the need
for a new “line” of IMP machines. Our intent is to pro-
vide a modular arrangement of flexible hardware from
which it will be possible to construct both sma'ler and less
expensive IMPs as well as far more powerfu: IMPs. An
important specific objective is to obtain an IMP whose
communications bandwidth could be at least an order of
magnitude greater than the 516 IMP; such a high speed
IMP would permit the direct connection of satellite cir-
cuits or land T-carrier circuits operating at approxi-
mately 1.3 megabits/second.

It is also desirable to improve the present IMP design
in a number of ether areas, as follows.

e Expandability of 1/0: The present IMPs permit
connection to a total of only seven high-speed circuits
and/or Host computers. We would like to permit a
much greater fanout so that an IMP might be con-
necied to as many as 20 or more Host computers or
to hundreds of terminals. This means that the num-
ber of interface units should be expandable over a
wide range.

e Modularity: A number of groups have wished to
make a network conneetion from a single Host at a

eonsiderable distznee (miles) from the nearest IMP.
We feel that such Hosts should be locally connected
to a very small IMP in order to preserve consisteney
and standardization thioughout the network. There-
fore, a goal of this new hardware effort is the provi
sion of a small and inexpensive but ecompatible IMP
whieh could serve to eonnect a single, distant spur
Host.

e Expandability of Memory: The new line of eqnip-
ment is required for use in conneetion with satellite
links (or longer faster links in general) and must
therefore be able to expand its memory easily to
provide the much greater huffer storage require-
ments of such links.

e Reliability: The new line of processors should be
more reliable than the existing IMPs and ought to
permit better self-diagnosis and simple isolation and
replacement of failing units.

Of the requirements posed by the ARPA Network
application, the most eentral was to ohtain an order-of-
magnitude traffic bandwidth improvement. We first con-
sidered meeting this requirement with highly speeialized
hardware, but the need to allow evolution of the commu-
nications algorithms, as well as the “bookkeeping” nature
of much of the IMP task, militate against hardwired
approaches and require the flexibility of a stored program
computer. Thus we need a machine with an effective
cycle time of 100 nanoseconds, a factor of ten faster than
the present 1 us IMP. Realizing that a single very fast
and powerful machine would be difficult to build and
would not give us compatible machines with a wide spec-
trum of performance, we began to consider the possibility
of a minicomputer/ multiprocessor in order to achieve the
flexibility, reliability, and effective handwidth required.

With the idea of a multiprocessor in mind we consid-
ered the IMP algorithm to determine which parts were
inherently serial in nature and which could proceed in
parallel. It seemed difficult to process a single message in
a parallel fashion: the job was already relatively short
and intimately coupled to 1/0 interfaces. However, there
was much less serial coupling between the processing of
separate messages from the same phone line and no cou-
pling at all betwen messages from different phone lines.
We thus envisage many processors, each at work on a
separate message, with the number of processors carefully
matched to the number of messages we expect to encoun-
ter in the time it takes one processor to deal with one
message. With this simple image there seems to be no
inherent limit to the parallelism we can achieve —the
ultimate limit would be set by the size of the multiproces-
sor we can build.

CHOICE OF THE PROCESSOR

In designing a multiprocessor for the IMP application,
we found ourselves iteratively exploring two related but
distinct issues. First, assuming that the problem of inter-
connection could be solved, what minicomputei would be

e S

A New Minicomputer’ Multiprocessor for the ARPA Network 531

a sensible choee fromi the price’ performance and physi
cal points of view” Second, and much harder: for any
specific machine, how did the CPU talk to memory, how
would multiple CPUs, memornes, and 1 O be intercon-
nected to form a system, and how would the progrim be
organized”

Since the program for the existing IMPs wias well
understood, it was possible to identity key sections of that
program which consnmed the majority of the processing
bandwidth. Then, for each sensible minicomputer choice,
we conld uask how many CPUs of this type wonld be
needed 1o provide an effective 100 nanosecond cvele time;
and given g price list, physical data, and g modest
amount of design effort, we could define the physical
structure and the price of the resulting multiprocessor.
With this general approach, we examined the internyl
design of about s dozen machines, and actually wrote the
kev code in many cases. Using the fastest available mini-
computers it was possible to arrive at configurations with
only three or four processors; using the slowest choices,
svstems with 20 CPUs or more were required.

1t we defer the interconnection and contention prob-
lems for 4 moment, it is interesting to note that "slow and
cheap' mnay win over ' fast and expensive’ in this kind of
multiprocessor competition to achieve a stated processing
bandwidth. This is an espeeially happy situation if, as in
our case, a spectrum of configurations is needed, includ-
ing a very tiny cheap version.

in considering which minicomputer might be most eas-
ilv adaptable to a multiprocessor structure, the internal
communication between the proecessor and its memory
was of primary eoncern. Several years ago machines were
introduced which combined memory and 170 busses into
a single hus. As part of this step, registers within the
devices (pointers, status and control register., and the
like) were made to look like memory ¢ells so that they
and the memory could be referenced in a homogeneous
manner. This structure forms a very i lean and attractive
architecture in which any unit ean bid to beeorie master
of the bus in order to communicate with any other desired
unit. One of the important features of this structure is
that it made memory aceessing ' public’’; the interface to
the memory had to hecome asynchronous, cleanly isolable
electrically and mechanically, and well doeumented and
stable. A characteristic of this architecture is that all ref-
erences hetween units are time multiplexed onto a single
bus. Conflicts for bus usage therefore establish an ulti-
mate upper bound on overall performance, and attempts
to speed up the bus eventually run into serious problems
in arbitration.®

In 1972 a new processor the Lockheed SUEY - was
introduced which follows the single bus philosophy but
carries it an important step further by removing the bus
arbitration logie to 1 module separate Itom the processor.
This step permits one to consider confignrations embody-
ing multiple processors and multiple memories as well as
I O on a single bus. The SUE CPU is a compaet, rela-
tively inexpensive (approximately $600 in guantity),
quite slow processor with a microcoded inner structure,

This slowness can be compensated for by simply doubling
or trebling the number of processors on the bus; perform-
anee is limited largely by the speed of the s, With this
bus architecture it hecomes attraetive to visualize multi-
bus systems with a “bus coupling’ mechanism to allow
deviees on one bus to access deviees on other busses.

Similar approaches can he implemented with varving
degrees of difticulty in systems with other bus struetures,
and we examined several approaches in some detail for
those processors whase cost/perforianece was attractive.
Rather fortnitously, the minicomputer which exhibited
the most attraetive bus arehitecture also was extremely
attractive in terms of cost performanece and physical
characteristics. This machine, the Loekheed SUE, would
require fourteen processors to achieve the effective 100
nanosecond cvele time, and we embarked on the detailed
design of our multiprocessor on that hasis.

SYSTEM DESIGN

Although our design permits systems ol widely varying
size and performance, in the interest of clarity we will
describe that design in terms of the particular prototype
now under eonstrnction. Our overall design is represented
in Figure 1. We require fourteen SUE processors to obtain
the necessary processing bandwidth, and we estimate that
32K words of memory will be required lor a complete
copy of the operational program and the necessary
communieation buffer storage. The 1/0 arrangements
must allow easy eonnection of all the communications
interfaces, appro,. te to the IMP joh (modem inter-
faces, Host interfaces, terminal interfaces) as well as
standard peripherals and arv special devices appropri-
ate to the multiprocessor nature of the system.

Some of the basic SUE characteristics are listed in
Table I. From a physical point of view, the SUE ¢hassis
represents the basie construction unit; it incorporates a
printed eircuit back plane which forms the bus into which
24 cards may be plugged. From a logical point of view this
bus simply provides a common connection between all

PROCESSORS
AND PRIVATE
MEMORY

SHARED
MEMORY

MODUL AR SWITCH

Figure 1 Sysrem strueture

e ee . rng

532 National Computer Conference, 1973

TABLE I SUE Characteristies

16-hit word

% CGrenernl Registers

A3 7 s add or load time
Microcoded

Two words/instruelon typical
§-157 % 107 X I8 chiassis

B4R by tes addressable by o single instraetion

~$ik for LCOU +th Memory +Uower, Rack, ete.
200 ns minimuim bus eyele tine

R0 s memory cycle tline

425 1% mEmory aecess lime

units plugged into the chassis, We are using these chassis
for the entire system: processor, memory., and 1 0. All
specially desygned cards as well as all Lockheed -provided
modules plug into these bus chassis With this hardware,
the terms “‘bus’ and “chassis™ are used somewhat inter-
changeably, but we will commanly call this standard
building unit a “bus.”” Each bus requires one card which
performs arbitration. A bus can be logically extended (via
4 bus extender unit) to a second bus if additional card
space 1s required; in «uch a case, a single bus arbiter
controls aceess to the entire extended bus.

We can build a small multiprocessor just by plugging
several processors and memories tand 1 0) into a single
bus. For larger systems we quickly exceed the bandwidth
capability of a single bus and we are foreed to multi-bus
architecture. Then, from a construction viewpoint, our
multiprocessor design involves assigning Processors,
memories and [O units ‘o busses in a sensible manner
and designing a switching .:rangement to permit inter-
connection of all the busses. Of course, the superficial
simplicity of this construction viewpoint completely hides
the many difficult problems of multiprocessor system
design; we will try to deal with some of those issues in the
following sections.

Resources

A central notion in a parallel system is the idea of a
“resource,” which we define to mean a part of the system
needed by more than one of the parallel users and there-
fore a possible source of contention. The three hasic
hardware resources are the memories, the 1/0, and the
processors. [t is useful to consider the memories, further-
more, as a collection of resources of quite different char-
acter; a program, queues and -ariables of a glohal nature,
loeal variables, and large areas of buffer storage.

The basic idea of a multiprocessor is to provide multi-
ple copies of the vital resources in the hope that the algo-
rithm can run faster hy using them in parallel. The
number of copies of the resource which are required to
allow concurrent operation is determined by the speea nf
the resource and the frequency with which it is used. An
additional advantage of multiple copies is reliability: if a
system contains a few spare copies of all resources, it can
continue to operate when one copy breaks.

It may seem peeulizr to think of a processor as a
resource, but in fact in our system the parallel parts of
the algorithin compete with each other for a processor on
which to run. We take the view that all processors shall be
identical and equal. and we go to some trouble to insure
that this is in fact so. As a consequenee no single proces-
cor is of vital importance, and we can change the number
of processors at witl. A later section will describe how the
processors coordinate to get the job done without a master
of some sort.

Processor busses

A SUE bus can physically and logically support up to
four processors. As more provessors are added to a bus,
the contention for the bus increases. and the performance
increment per processor drops; hut the effective cost per
processor also drops. since the cost for the chassis, power
supply, bus arbitration, etc., is amortized over the num-
ber of processors.

Roughly speaking, using two processors per bus loses
almost nothing in processor performance, us.ng three
processors per hus loses significant efficiency, and adding
a fourth processor gains less than half an “effective proc-
essor.”” After careful examination of the logical. economic
and physical aspects of this choice, we decided to use two
processors per proeessor bus. and we thus require seven
processor busses in our initial multiprocessor system.

The next question was how the processors should access
the program. In our application, some parts of the pro-
gram are run very frequently and other parts are run far
less frequently. This fact allows a significant advantage to
he gained by the use of private memory. When a proces-
sor riakes access to shared memory via the switching
arrangement, that access will incur delays due to eonten-
tion and delays introduced hy the intervening switch. We
therefore decided to use a 4K local memory with each
processor on its hus to allow faster local access to the
frequently run code; these loeal memories all typically
contain the same code. With this configuration and in our
application, the ratio of accesses 10 local versus shared
memory is better than three to one. This not only reduces
contention delays for access to the shared memory but
also cuts the number of accesses which suffer the delays.

The final configuration of a processor hus is shown in
Figure 2(a). The units marked *“Bus Coupler” have to do
with our multiprocessor switching arrangement, which
will he discussed helow.

Shared memory busses®

The shared memoary of our multiprocessor is intended
to contain a copy of the program as well as considerahle
storage space for message buffering, global variahles, etc.
Application-dependent considerations led us to select a

* The terms "1 O bus™ and "memory bus’' as used here and henccforth
are not the same as conventional 1 0 and memory busses.

A New Minicompater Multiproeessor tor the ARPA Network 033

PROCE SSOR BUS MEMORY BUS 1/0 BUS

b aREITER 0 e, N | 5 ST

i EWOCTSS0R = BUS et EE — EuS COuUPLER
5 .

= PROCESSOR . .
o .

— W MO b= Bus coupLeR)~ |1—{ BUS COUPLER -

Ll N | :
— dm M MOR H—(8 memoRY — cLoch)

' guy COURLER b .—(8x MEMO“'J — FLD b
|

"
g B r-r T MICAT e
— BUS COuUPL H-l._)l 2(b} N TERFACE _JJ
l .
= AuS COUPLER P .
2(a) LT imMiCaT NS

WIEREALE
U-—-(BUS Exfﬁwb(_n)
ﬂ—u‘ BiS {I'I[h'}[hj
[o
1
| EDwmLNICaT oS

ML INTERFACE

Ll-—c cONSOLE i

2(c)

Figure 2 Bus structures

42K memory, but it is possible to configure this memory
on a single bus or to divide the memory onto several bus-
ces. We first concluded that four logical memory units
would be appropriate in order to reduce processor conten-
tion to an acceptable level. Then, since the bus is eonsid-
erably faster than the memories, it is feasible to place two
logical memory elements on a single bus with almost no
interference. Thus, we are planning two memory busses
in the initial multiprocessor; the configuration of a
common memory bus is shown in Figure 2(h).

| O bussexs

The [O system of the multiprocessor emplovs stand-
ard SUE busses with standard bus arbitration units on
those busses. Into the bus will be plugged cards for each
of the various types of I O interfaces that are required,
including interfaces for modems, terminals, Host eomput-
ers, etc.. as well as interfaces for standard peripherals.
Our initial system has a single 170 bus and Figure 2(c}
shows its configuration: the specialized units shown (a
“Clock" and “Pseudo Interrupt Device™) are system-wide
resources that are used to control the operation of the
multiprocessor. The 1/0 bus will also be the access route
for the multiprocessor console; we plan to use a standard
alphanumeric display terminal which ean be driven by
code in any processor, and no canventional consoles will
he used.

Interconngction system

Our prototype multiprocessor 1= now seen to eontain
seven processor hasses, two shared memory busses and an
1,0 bas To adhere to our requirement that all proeessors
mnust he egual and able to perform any system task, these
hasses miast be connected so that all processors can access
all shared memory, so that I O can be fed to and trom
shared memory, and so that any of the processors may
control the operation and sense the status of any 170 unit.

A distributed inter-communication scheme was chosen
in the interest of expandability, reliability, and design
simplicity. The atom ol this scheme is called a Bus Cou
pler, and consists of two ‘ards and an interconnecting
cafrie. In making connections between processors and
sharcd ricmory, one card plugs into a shared memory
Hus, where it will request cycles of the memory: the other
ard plugs into a processor’s bus, where it looks like
memory. When the processor requests a cycle within the
address range which the Bus Coupler recognizes, a
regquest is sent down the cable to the memory end, which
then starts contending for the shared memory bus. When
weleeted, it requests the desired cycle of the shared
memory. The memory returns the desired information to
the Bus Coupler, which then provides it to the requesting
processor, which, except for an additional delay, dves not
know that the memory was not on its own bus. Note that
the memory access arbitration inherent in any memory
switching arrangement is handled by the SUE Bus Arb'-
ter controlling the shared memory bus, while the Bus
Coupler itself is conceptually straightforward.

One additional feature of the Bus Coupler is that it
does address mapping. Since a processor can address only
64K bytes (16 bit address), and since we wished to permit
multiproeessor configurations with up to 1024K bytes (20
bit address) of shared memory. a mechanism for address
expansion is required. The Bus Coupler provides four
independent 8K byte windows into shared memory. The
processor can load registers in the Bus Coupler which
provide the high-order bits of the shared memaory address
for each of the four windows.

Given a Bus Coupler connecting each processor bus to
each shared-memory bus, all processors can uccess all
shared memory. I O devices which do direct memory
transfers must also access these shared memories. These
170 devices are plugged into ax many 110 busses as are
required to handle the bandwidth involved, and bus cou-
plers then connect each 1/0 bus to each memory bus.
Similarly, 1 O devices also need to respond to proeessor
requests for action or information; in this regard. the [0
devices act like memories and Bus Couplers are again
vsed to connect each processor hus to each [/0 hus. The
path hetween processor husses and 170 busses is also
used in a more sophisticated fashion to allow processors
to examine and control other processors; this subject is
described in a later section.

The resulting svstem ix shown in Figure 3. One is struck
by the number of bus couplers: P I+ 1*"M+P*M bus
couplers are required for a system with P processor bus-

[
i1
{

e il

s sy

534 National Computer Conference, 1973

+ PSEUDO '
B| = BUS C | + COMMUNICATION
EXTENDER g“gvsfgéum INTERFACE
. BUS 8} » 3us COUPLER, + REAL TIME
ARBITER S| PROCESSOR END CLOCK
PROCESSOR BUSSES(7)
ponER [BIG G, | 4x | ox (B1818 p |+ CENTRAL [Ei' S B (MEM « MEMORY
/ i : |5 MEMORY
suPeLY al Al MEM:MW.&]J u| PROCESSOR |y MORY END |
tLL
By ————t
W Ie | E!.ﬂ!
POWER [BIC, c, | ax | an E-\
sueeLy 18]yl ,_,|-uwn-u- Blep
B
: POWER I.EJEJ;B!*E E‘i?r§|3'5.‘| 8K | Bk |
POWER !F']iCF ‘EF 4K | 4K |¥?!E|§ SUPPLY [Absh vk MEMIVEN]
LB ¥ |JL ul u MEM-MEEE!': r it
L L
-l_____.__ MEMORY
r BUSSES
powER (8%, (C, | 4 | 4K |§*'.E']IE
suPPLY &) "yl u"'E"'l"‘E"'gF-lﬁ-_n [———
1
| o TTREE T o o
supPLy [alSICEISICICICIE MEMIMEM
1 1 |.Hiu J-";I."FJ!‘.-.'.IVIL!'*J." ':|
PowER [BIS, | u‘ufg L
SUPPLY (& Pu!ju uEwluEui'EllElE - _I l
i
=
Il [C ?
POWF4 B a | 4K (B]B}
. PP Al
SUPPLY .!:.l u[P ng;gmlplpjpr [
T1
FOWER [BIC. 1C. | ax | ax [BlalE
\5uvn-ur]l FJ P luEmimem(Sic s
T il l I
170 BUS power |e(B(BlEIB[BIEI6l ¢ [c | c power [BBBl ¢ (¢ 5|87 | 170 BUS
SUPPLY nﬁﬁ“qﬁ},ﬁ ARG suppuy [E[SIS] 1] 1 [3lEje] | EXTENSION

Figure 3 Prototype system

<es, 1 T O busses, and M memory busses. In the case of
our initial multiprocessor, 23 are needed.

This modular interconnection approach clearly permits
great fl=xibility in the nnmber and configuration of bus-
«es, and allows interconnection cost to vary smontbly with
svstem size. We believe that tbis modular interconnection
«cheme also permits a complex bierarchical arrangement
of husses. Actually the system exhibits a pronounced
hierarchical structure already. A processor accesses the
local memory when it needs instructions or local varia-
bles. Two such processor-memotv combinations form a

dual processor, which can be regarded as a unit and
which needs access to shared resources, such as global
variables, free buffers, and 1/0 interfaces. When one
copy of a resource can only support a limited number of
users, it seems sensible to provide only the corresponding
limited number of connections. If a multiprocessor of this
type were to grow larger, the pbysical number of bus
couplers as well as increasing contention problems might
not permit the connection of each processor to all of
common memory, but might instead require a multi-level
structure where groups of processors were connected to an

— Tt

9

A New Minicomputer. Multiprocessor for the ARPA Network 535

intermediate level bus which was in tum connected to a
centralized common memory We have not explored this
domain but feel it 1s an interesting area for future work.

MULTIPROCESSOR BEHAVIOR

Until the processors interact, a multiprocessor s a
number of independent single processor systerms: it is the
interaction which poses the conceptual as well as the
practical problems. If the vanous processors spend their
time waiting for each other, the system degrades to a sin
gle processor equivalent; if thev can usefully run concur-
sently, the processing power is multiplied by the number
of processors. If the failure of a single processor takes the
wvstem down. the system reliability is only the probability
of all processors being up: it working processors can diag-
nose and heal or amputate faulty processors and proceed
with the job, the system reliability approaches the proba-
bility of any processor being up. We now consider how to
keep processors running concurrently, and then how to
keep the system running in the case of module failure.

The first problem in making the machines run inde-
pendently is the allocation of runnahle tasks to proces-
<ors, so that the full requisite power can be quickly
brought to bear on high priority tasks. Our scheme for
doing this rests on four key ideas: (1) We break the job up
into a set of tiny tasks. (2) Our processors are all Wdenti-
cal. asvnehronous, and capable of doing any task. (3) We
keep a queue of pending tasks, ordered by priority, from
which each processor at its convenience gets its next task.
(4) For speed and efficiency. we use a hardware device to
help manage the queue.

By breaking the job up into smaller and smaller tasks
until each one runs in under 300 us, we effectively deter-
mine the responsiveness of our system. Once started. a
task must run to completion, but there will be a reconsi-
deration of priorities at the beginning of each new task.
We have chosen 300 microseconds as the maximum task
execution time because this compromise between effi-
ciency and responsiveness is well matched to the execu-
tion time of key IMP functions.

By making the processors identical. we can use the
sar program in systems of widely varying size and
throughput capability. Any processor can he added to or
removed from a running system with only a slight change
in throughput. The power of all processors quickly shifts
to that part of the algorithm where it is most needed.

By queuing pending tasks, we keep track of what must
be done while focusing on the most important tasks. By
using a passive queue in which the processors check for a
new task when thev are ready, we avoid some nasty tim-
ing problems. Tasks may be entered into the queue at any
time. either by a proeessor or by the hardware 1 0
devices. This approach is an extremely important depar-
ture which avoids the use of conventional interrupts and
the associated custs of saving and restoring machine state.
Further. this approach neatly sidesteps the problem of
routing interrnpts to the proper processor.

9

We could not afford a sofgware queue both because it
was slow to use and hecause processors would have been
waiting for each other to get access to the queue Instead
we use a speeial hardware device called a Pseudo Inter-

rupt Device (PID), which keeps in hardware a list of

what to do next. A number can be written to the P1D at
any time and and it will be remembered. When read, the
PID returns (and deletes) the highest number it has
stored. By coding the numbers to represent tasks, and
keeping the paraneters of the tasks in memory, a proces:
sor can access the PID at the end i each task and deter-
mine very rapidly what it should do next.

Contention

Clearly, the O must give any task to exaetly one
processor. 'his is guaranteed because the PID is on a bus
that can he ace@sed by only one processor at a time and
because the PITY completes each transaction in a single
aceess. This is an example of the more general problem
that whenever twg users want access to a single resource
there must be m’nerluck to let them take turns. This is
true at many levels, from contention for a bus to proces-
sor contention ¥ shared software resources such as a free
list. When all the appropriate interlocks have been pro-
vided. the performance of the multiprocessor will depend
rather eritically g the time wasted waiting at these inter-
locks for a resource to become free. As discussed above,
whenever c‘]icls hecome a serious problem one pro-
vides anotheMagv of the resource. We studied our system
behavior carefullv. noting areas of conflict, in order to
know how many additional copies of heavily accessed
reso - rces to @ovide. Table Il provides examples of
delays due to various conflicts. Practically speaking, the
curve 1&:_\' vs. numher of resources has a rather sharp
knee, so t it is meaningful to make such statements as
“a meg@ary bus supports eight processors™ or “'a free list
Suppo ight processors.” Of course, these statements
are application related and depend on the frequency and
duration gf accesses required.

With *erlockh, deadlocks become possible (in both
hard'are and software). For example, a deadlock occurs

TABLE 11 —Expected System Slowdown Due to Couvtention Delays

Slowdown Cause

5 59, Contention for a Processor Bus.

kLA Contention for the Shared Memory Busses.
5% Contention for the Shared Memories.
109, Conteotion for a single system-wide software resource, as-

suming each processor wants the resource for 6 instruc-
tions out of every 120 instructions executed.
1 76, Cortention for one of two copies of a system-wide software
rcsource, as ahove.
0.15% Coctention for the parameters of a single 1.3 megabit
‘ rhone I'ne, assuming the parameters will be used for 160
riicroseconds every 800 microseconds.

:I

E
o
o
1%

gy

536 Nationa! Computer Conterence, 1973

when cach of two processors has claimed one of two
resonrees needed by both. Each waits mdefinitely for
the other's resource to become avarlable.’t Unless there
1 a careful systematie apgeoach to interlocks, deadlocks
interlock, and require that a jrocessor never compete for
4 resctree when it already owns a bigher numbered
resotree. ft1s not alwavs practical or possible to do this,
though we expect to be able to do so with the IMP algo
nthms.

Anoteresting example ot a deadlock oecurs in our bus
couphing. To pernnt processors to access one another, tor
mutual turs on, turn off, testing, ete.. the patb connecting
cach processor bus with the 1 O bus 1= made by direc
nonal Thus processors access one another via the 1 O
bue. b a i directional coupler, a deadlock anses when
units obtain control of their busses at cach end and then
request aceess via the coupler to the bus on the other end.
Because the backward path s intrequently used. we
<mply detect such deadlocks, abort the backward request
and try again

Reliablity

We have taken a rather amiitious stand on reliability.
We plan to detect a failing module automatically, ampu-
tate it, and keep the svstem running without human
intervention it at all possible. Critical to our avpproach is
the fact that there are several processors each with pri-
vate memory and thus each able to retreat to local opera
tion in the tace of svstem problems. To reduce our vulner-
ability turther, power and cooling are provided on a
modular basis so that loss ¢t a single unit does not jeop-
ardize system operation. We are only mildly concerned
with the damage done at the time of failure, because the
IMD system includes many checks and recovery proce-
dures throughout the rerwork.

The first sign of a lailure may be a single bit wrong
<omewhere in shared memory, with all units apparently
funetioning properly. Alternatively, the failure may strike
¢atastrophically, with shared memory in shauibles and
the processors running protectively in their local meme, -
ries. Against this spectrum we cann .1 hope for a syster-
atic defense: instead we have chosen a few defen:ive
strategies.

So long as a module is failing, recovery s meaningle s,
We must run diagnostics to identity the tad module, or
see il cutting a module out at random helps things. We
jeel that identifving such a solid failure will be relatively
easy. Since a processor without couplers is completely
harmless, once we identify a malfunetioning processor, we
amputate it by turning olf its bus couplers. We consid-
ered the possihility of a runaway processor turning geod
processors off. This 1s unlikely to hegin with but we
decided to make it even less likely by requiring a particu-
lar 16-bit password to be used in turning off a coup:er. A
runaway processor storing throughout shared memory
would need this password in its accumulator to acciden-

tally amputate. Similarly we require a password for one
processor to get at anot her's local memory.

Against intermittents we use a strategy of dypamie
remmitialization. Every data structure is periodically
checked: every waiting state s timed out; the code is
periocheally checksummed; memory transters are hard-
ware parity checked: memory 15 periodically tested; proc
essors are perindically given stapdard tests. Whenever
apvthing is tound wrang, the otfending structure is initial
.. «d. Using this scheme we may not know what caused a
failure, but its elfects will not persist. In the most
extreme cases we will need to reload all the program in
main memory. Fortupately we have a eommunieations
network handy to load from. This technique of reloading
bas worked remarkably well in the current ARPA Net-
work. Each processor has a eopy of the reload program in
it~ local memory, thus making loss ot reload capahility
unlikely.

We might seem to be vulnerable to memory or 110 fail-
ures, particularly those ipvolving the P1D and the clock.
It these modules fail it does indeed hurt us more, hut only
hecause we have fewer modules of these types In OUr sys-
tem. 11 we provide redundant modules, the system can
reconligure itsell to substitute a spare module tor a failed
one. Our design allows multiple 170 busses with multiple
PiDs and clocks, and we could even have xeparate
hackup interfaces to vital communication lines on sepa-
rate busses.

To summarize, the mainstay of our reliability scheme is
a system continually aware ol the state of things and
quickly responding to unpleasant changes. The second
line of defense consists of drastie actions like amputation
and reloading. Assuminy we ¢an make all this work, we
will have quite a reliable system, perhaps even one in
which maintenance consists ={ periodic replacement of
those parts which the system itsell has rejected.

STATUS AND NEAR FUTURE

In Fehruary 1973, as this paper is submitted, we are
very much in the middle of our multiprocessor develop-
ment. Much progress has been made and we are increas-
ingly confident of the design, but much work remains to
he done.

The broad design is complete; all Lockheed-provided
units {CPUs, memories, busses, etc.) have been delivered,
prototype wire-wrapped versions of the erucial special
modules have bemn completed, including the Bus Cou-
plers, Pseudo Interrupt Device. clock, and modem inter-
faces; and a multi-bus, multi-processor-per-bus assembly
has heen suecessiully tried with a test program. A sub-
stantial program design effort has been in progress and
coding of the first operational program has becn started
We are still doing detailed design of some hardware, and
we are still learning about detaiied organizational issues
as the -cftware effort proceeds. An example of such an

[

Correction (p. 536 of original text, first column, second new sentence):

Unless there is a careful systematic approach to interlocks, deadlocks become almost |
a certainty. One technique is to assign a unique number to each resource for which
there is an interlock, and require that a processor never compete for a resource
when it already owns a higher numbered resource.

A New Mimmcomputer Malt,processor for the ARPA Netwark 537

aren 1s exactly hnw st best lor processors to watch each
ather tor signs af Lalure?

We carrently anticipate the parts cost af the protaty pe
fourteen processor system, without communication inter
taces, 1o bhe under S1OMK

Hopelully, by the time this paper s presented n June
1973, we will be able ta report an operational prototyv e
multiprocessor svstem. Bevond that, our schedale calls
for the installatian of a machine 1o the ARPA Network by
about the end ot 1973, We also plan to construct many
variant svstems out of this kit of buildig blocks, and to
eraperiment with svstems of vaeving sizes A: part of this
wark, we plan to concentrate on the very smallest versinn
that may be sensible, in order tn provide a mininum cost
IMP tor spur applications in the ARPA Network

As the design nas proceeded, onr attraction ta the gen-
eral approach has increased 1perhaps a comman ralady),
and we now beheve that the approach 1= apphcable to
many other classe~ of problems. We expect to explore
such other applications as tune permits, with initial
attention to twe arcas: 1) certain speciahized multi-user
systems, and 21 hiph bandwidth signal processing.

With our presentl planned baitding blocks. although
we do not vet know wisat will limit system size, we do not
row see any ontunsic problem in construeting svstems
with litty or a handred processors. As improvements in
integrited circuit technology occur, and processors and
memones beenme ~snaller and cheaper, orgamization and
connection become the puramount questions in multipro-
cessor design We expect to see many attempts at multi
processors, snd are hopeful that the ideas embodied
this design will help to steer that technology, Pechaps
minicomputer multiprocessars will soon represent real
cotipetition tor the various brontosaurus machimes that
now abound.

ACKNOWLEDGMENTS

Qur new machine design 1= a product of many minds. We
gratelully acknowledge the specilic design contributions
ol M. Kralev. A. Michel, M. Thrope, and R. Bressler.
Helptul criticism and an important idea about the Pseudo
Interrupt Device were contributed by D, Walden. Assist-
anee in planning and in the choiee ol building bloeks was
contributed by . Rising. Helplul ideas and criticism
were provided by J. McQuillan, B. Cosell, and A.
McKenzie. Assistanee with support software was provided
by J. Levin.

We also wish to express appreciation tor “he support
and encouragement provided by Dr. L. Roberts of the
Advanced Research Projeets Agency.

REFERENCES

1 Lehman. M. A Sorvey ol Problems and Prelrminary Results
Concerming Parallet Processing and Parallel Processars’, roc
TEEE . Vol 54, No, 12, pp 1889 1901, December, 1966

Lo

Lorm, B, Paalleleon o Hlarduare & Software Real and Appar

ent Concurrenoy Prentoe Hall, 1971

Sletnick. J L Bork, W € McRevnolds, R €. "Solomor’".

AFIPS Canference {Proc cedigs, FJCC 1902

Barnes, GAL, et al, “The e IV Computer”™, (FEE Trans € 17,

Vol 8 pp 746757, August 196K

Andersorn, 1) W Sparacio, F 1 Tomasule, R M, “The 18M

Svstenc 360 Model 91 Machine Philosopay and Instraciion

Handbng™ [8M Journal No. 11, January 1967, pp 8 24

O Cohen, E | "Symmetnie Maln Mint Processors, A Better Way to
Go” Computer Decsions, Janouary 1974

TOWall WA Bell, € G Coanmp A Mults Mum Processor,
AFIPS Pro coedings, F1CC, Vadl 41, 1972

S Cosserat 1D C A Capaluluy Onented Multy Prucessor Svstem
lor Real Tune Apphications”. Co nputer Communwation {'roc
1000, pp 282 289, October 1972

D Roberts 1 G Wessler, 5 D Computer Network Develupment
to Achweve Resource Shanng” AFIES Proceedings, SICC. Vol 36
1970

10 Hlewrt. FE et al, “The Interlace Message Processor lor the ARIPA
Cumputer Network™. AFIPS Proceedings, S1CC, Vol 36, 1970,

1T Omstein. 8 M et al . “The Termnal IMP lor the ARPA Cum
pater Network™, ALTES Procecdings, SJCC, Vol 40, 1972

12, Chanes, T, Orastein, S, Lattlelield. W., "Beware the Svnchroni
er'’. Proc. COMPCON Conference, 1972

13 SCE Computer Handbook, Lockheed Electromes Campany Las
Angeles 1372

1 ol BCLSome Deadlocl. Properties ol Computer Svstems',

ACM Compuing Surtov,, Vol 4 Noo 3o pp 179194, Septemnber

1972

SUPPLEMEN"ARY BIBLIOGRAPHY

Amdahl G M, Engincering Aspects of Large High Speed Computer
Design LPart 11 Logecal Orzonization, |BM T'ech. Repon ‘T'RO0.1227
December 1964

Baskin 11 B et al, A Modular Computer Sharig System,” CACM
Vol 12, No 10, October 1964, p 551

Bell and Newell. Computer Structures, MeGraw 1hl, 1971

Bell, G et al, C mmp the CMU Multinuaiprocessar Computer, Dept ot
Cumputer Seience, Carnegie Mellon Univ, Aogust 1971

Hurnett, G J et al A Distnibuted PROCESSING System lor General
Purpose Computing”. AFIPS Proceedings, FICC, Val 31,1967,
Dikstra, K. W, “Cuoperating Sequential Provesses”. in Prograniining
Languages, (Gennvs, F . ed). Academic Press, pp. 43-111), 1968

Flynn, M 1., "Some Computer Organizations and Their Fllectiveness”
1LEE Transactions on Computens™, Vol C 21, No. 9, September 1972
Flvan, M L, “Very lhigh Speed Computing Systems”. ’roc (EEE Vol
54, No. 12 pp 1901 1909, December, 1966,

Holland. J H . "A Universal Computer Capable ol Exeeuting an Arin
trars Number o Sub Prigrams Stmultaneousls . AFIPS Proceedings
FACC, pp. 108 113, 1959

MeQuillan, J M . et al. “Imprivements in the Destgn and Perlormance
ot the ARDPA Network™, AFIDS Proceedings, FICC, Vol 41,1972
Ornstein, 5. M. Stacke ML S Clark. WAL A Functonal Descrniption
ol Macramodules” AFLPS Proceedies, SJCC, Vol 30, 1967,

Pirtle, M . “Intercommumcatian ol Processors & Memoryv'', AFIPS
P’roceedings, FJCC Vol 31,1907,

Randell. B.. "Operating Svstetns - The Prohlems al Perlormance and
Relmmbilin™, IF{P Congress 7/, Ljublyana, North Holland PPub. Ca.,
1972, po 281 290

A Description of the Advanced Scientfie Computer System, Texas
fnstruments, Inc., 1972

Thoraton, J E.. “Parallel Operation 1n the Contral Data 6600, AFF'S
Procecdings, FICC, Vol 26, 1964

Wull. W et al. Hydrn A Rernel Operating Sxsrem for C mmp, Dept
ot Computer Seienee, Carnegie Mellon Univ., 1978,

P

wr

el - o .pn—

THE BBN MULTIPROCESSOR }

B. Barker, R.D. Bressler,
E. Heart, M.F. Kraley,
hrope

S.M. Ornstein, W.
W.R. Crowther, F.
A. Michel, M.J. T

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

This paper appeared in the Computer Nets Supplement

to the Froceedings of the Seventh Hawali Internatlonal
Conference on System Sciences, January 1974, and is
reproduced with the permission cf the publisher,
Western Periodicals Company, California.

Pd

- e

THE BBN MULTIPROCESSOR#
S.M. Ornsteln, W.B. Barker, R.D. Bressler, W.R. Crowther
¥.E. Heart, M.F. Kraley, A. Michel, M.J. Thrope

Bolt Beranek and Newman In..

Cambridege,

Massachusetts

Abstract

The BBN multiprocessor has gone from conception to prototype over

the past year.
levels and will soon be a new IMP

It is hizhly modular at several logical and physical

in the ARPA Network. It 1is very

flexible both in the range of bandwidths 1t can handle and the
number and type of interfaces 1t can accommodate.

1. INTRODUCTION

Last year we presented a paper which de-
scribed the multi-processor we were then
setting out to build as a new IMP for the
ARPANET [1,2]. Much has been accomplished
in this past year and we report here on
nrogress made as well as on some important
features of the system that have evolved.
Familiarity with the earlier paper is
assumed in what follows.

The architecture, as previously described,
is highly modular and allows for IMPs of
sreater or lesser processing power than the
present 516/316-based IMPs, as well as for
many more and more varied phone line and
Host interfaces. The hardware consists of
busses Joined together by speclal bus cou-
rlers of our design. There are processor
busses each of which contains two proces-
sors, each in turn with its own "private"
L¥ memory to store frequently run code.

The more processor busses, the greater the
system processing power. There are memory
pusses to house the segments of multiported
"sommon" memory — the more memory busses,
the more memory ports. Finally, there are
1/0 busses which house device and line con-
trollers as well as a special (priority or-
iered) task disburser which replaces the
traditional priority interrupt system. The
latter allows equality among the processors
so that if some fail the rest can continue
to run all system tasks, albeit at reduced
~apacity.

2. DESIGN ISSUES

In this section we describe features we
have designed into the system, souwe of the
more interesting of which relate to reli-
ability lssues,

2.1 ADDRESSING & LOCKING

The Lockheed SUE, with a 15-bit word ad-
dress, can address up to 32K words. A
1.5-megabit line running over a 1/2 sec.
round trip satellite channel holds 750,000
bits or about 50,000 words, coples of which
must be held in the IMP for possible re-
transmission. Address expansion is thus
inescapable and to allow for several such
lines and be reasonably unbound by address
space, we have allowed for half a million
words., The bus coupler serves as the vehi-
cle for address expansion. 8K of a proces-
sor's address space are used for direct
references to its private memory. (Al-
though we expect to use only 4K, 8K has
been set aside to allow for growtl.) An-
other 8K is used principally for aadressing
system I/0 (on the up to four I/0 busses).
We assign 8 addresses to each I/0 device
for pointers and status and control regls-
ters; 960 devices can be accommodated in

g0l kg

16K of each processor's address space 1s
mapped through the couplers to common memo-
ry. At the processor end of each coupler
are four program-settable map registers for
each possible processor on the bus. (We

¥This work was supported by the Advanced Research Projects Agency under Contracts
DAHC15-69-C-0179 and F0B8606-73-C-0027.

expect tc use only (WO processors per bus
but up to four are allowed for.) These map
reglisters expand a 15-bit address to a 19-
bit system address on the memory busses.

By use of the maps, each processor can thus
1ccess, at any one time, four 4K pages 1n
system address space. Read accesses
through a particular one of these windows
are turned by the coupler into read-clear
yperations, thereby providing the indivisi-
ble test-and-modify operation required for
program interlocking in a multi-processor.
The processor itself presently lacks such
An instruction.)

ACCESS ENABLING

The coupler paths that
busses into memory and I/0 busses have pro-
gram settable enablling switches at thelr
far (memory and I/0) ends, thus permitting
processors to be cut in and out of the sys-
tem. To allow processors to access one
another and to permlit reloadling as discuss-
ed below, we have provided reverse paths 1in
the processor to I/0 couplers which also
have enabling switches. Normally the for-
ward paths to memory and I/0O are turned on
and the backward paths are shut off. Since
these paths represent a hazard whereby a
"sick" processor or device could damage
healthy processors, we have arranged that
only by storing a password at <tiie proper
address can a switch be chenga:d. This

e C

connect processor

greatly reduces the probabilicy that a ber-
serk processor painting memory will affect

the path. A processor can nelther enable
nor disable 1ts own access paths but one
processor, deciding that another 1s sick
and should be eliminated from the system,
can amputate the bus of the offending pro-
cessor. It can be similarly reinstated
later.

The loglc upon which amputation decisions
are based 1s not yet fully understood and
will be worked out as experlence grows. We
expect to require all processors to execute
periodic healthlness-proving tasks. A
regular system task, performed by any free
processor, verifies that all processors
have passed their tests and amputates any
unhealthy one(s). Protective embellish-
ments easlly suggest themselves and we ex-
pect to do what seems necessary.

2.3 DISCOVERY

The operational program implements the IMP
algorithm with whatever hardware 1s working
at a particular site at a gilven time. The
program discovers the hardware conflgura-
tion as follows: Memory 1s found by trying
to access 1t; a fallure interrupt results
if Memory 1s not there. Processors are
found by accessing a register whose re-
sponse indicates 1f the processor 1s absent,
running or halted. I/0 Devices are found
by reading the lst word of every possible

device In I/0 space — a fallure interrupt
means no Device, a response returns a
unique 16-bit device type. Any parameters
needed to run the devices are avallable as
status words in the 8-word block. It is
somewhat harder to find where the bus
boundaries are, but they too can be found
by searching for the bus coupler disable
switches. In the event that there 1s some
property we cannot otherwlse discover, we
have set aslide 3 reglsters (associated with
the clock device) to hold thls information.
For example, the IMP number (used for net-
work routing) is contained in 8 bits of
these registers.

The Discovery logic is not an initlaliza-
tion phase; rather the program periodically
runs through the Discovery loglc and recon-
figures whenever a change occurs. It thus
automatically adapts the IMP algorithm not
only to the wide variety of possible con-
figurations but also to those which contain
broken components.

2 M PR

At present the memories we are using do not
store paritv:; however, we have bullt into
our system design (and Into the hardware)
mechanisms to incorporate parity. These
mechanisms have been tested with prototype
parity memory and we have recently ordered
parity memorles for our productlon machines.
We use a novel parity computatlon based not
only upon the contents of a word but also
on its address. The scheme also detects
both "all ones" and "all zeros" fallures.
For writes to common memory, parity is com-
puted at the processor end and fed, via the
coupler, to the memory where it 1s stored
with the word. Reads from memory fetch
this stored parity, which 1s compared to a
recomputed parity at the »rocessor end of
the coupler, thus checking both the memory
and coupler paths in both directions. For
units on the I/0 bus, 1n order to check the
coupler paths, a speclal card computes and
transmits parity for all words belng read
from the I/0 bus by the processors and
checks parity on all words arriving from
processor busses.

2.5 RELOADING

At present we use paper tape to load the
system. The operator starts a processor
which, from tape, loads 1ts own prilvate
memory, 1ts map reglsters and thereby any
or all of common memory. It also loads,
using backward coupling, the private memo-
ries on all other processor busses in the
system. After the memory has been loaded,
a startup procedure 1s executed which fi-
nally turns on the other processors.

Since all crucial swltches, parameters,
registers and control flip flops have been
made addressable by reads and writes, load-

o

|
|
|
{

T S

¥

tng the system and starting it up can be
done by externally force feedling 1t with
the right set of addresses and data. Al-
thouph we presently use paper tape in corn=
functlon with a bootstrap ROM executed by a
processor for thls purpose, we are planning
o construct a means whereby the system can
be force fed directly from the network.

The mechanism for this is a device on the
1/0 bus which monitors phone lines from ad-
Jacent IMPs looking for a special format
which signals arrival of reload informa-
tion. The card then performs the reload by
executing store type bus cycles using the
reload data.

This sort of operation, which looks forward
to elimination of paper tape, switches, and
ther operator dependent functlions, is ap-
propriate to the IMP Jjob, If a running
system fails, as viewed from the net, the
first step 1s to send 1t a regular "for MR
message which causes a standard system re-
start to be attempted. If that seems not

to work, the next step is to send another
regular message trylng to activate the
relos .-from-the-net code in hopes that it
1s 5ti1l intact. Only 1if that falls would
ne attempt to force a full restart from
scratch, in which case the speclal card de-
scribed above is called into play. The
first data sent halts the processors in or-
jer to stop any interfering actlvity. Then
the reload-from-the-net code 1s refreshed
and finally a processor restarted running
that code which then completes reload via
the normal packet mechanism.

2.6 MECHANICAL MODULARITY

We have settled on a modular mechanical
structure well matched to the modular logi-
~al structure of the system. This struc-
+ure 1s important 1in that 1t allows easy
~onstruction of systems of varled size and
prermits repair of parts of a system whille
rhe rest of 1t continues to operate. The
nasic unit is a cooling module which houses
either 1) a 16-slot bus complete with its
>wn power supply, 2) a 24-slot bus without
rower, or 3) a power supply for such a 24-
slot bus. These units, each wlth its own
set of fans, sit on ralls in a vertical

tier in a rack, five of them filling a stan=
dard nelght rack. (The li-processor system
requires three racks.) Figure 1 shois how
the cooling modules stack. Air flow is from
back %o front so that racks placed beside
one another do not directly heat each other.
A tilted pan at the bottom of each module
separates the air flow between stackel mod-
ules, thus eliminating chimney effects.
Cards plug in from the front and all device
and coupler cables also connect on that
side. An entire unit can be removed to the
reoar for repalr or replacement of the bus,
rfans, etc. — all without disturbing opera-
tion of the remainder of the system.

T,

\
ELECTRONICS
F N\
R + FANS * |
0
N o,
T
ELECTRONICS
\
FANS o % Figure 1
!\\\h‘ Mechanical
Structure
SIDE VIEW

3. THE TEST PROGRAM

The primary design objectlve of the test
program 1s to exerclse all of the hardware
as intensively and extenslvely as possible,
detecting all fallures and reporting them
precisely and comprehensibly. Extenslive
testing implies a wide varilety of test
modules; intensive testing implies permit-
ting the entire computational power of the
system to be focused on individual compo-
nents at times. These objectlives led to
the selectlion of a system based on process-
es, analogous to a time-shared system's
jobs. Processes are not tied to proces-
sors; a glven process will switch rapidly
from one processor to another. Nor 1z &
process 1n general tled to a specific copy
of code; like time-shared Jobs, processes
share a single copy of sectlons of pure
procedure.

There are four types of processes: the
"system" processes, including the clock,
timeout, and type=-out processes; the de=-
vice-specific processes, which are tled to
particular I/0 devices, two processes per
device; the "GART" (Get A Random Test)
processes, which select a test at random
from a table of tests to be performed; and
a dummy process, whose sole purpose is to
assure that there is always a runnable
process.,

Fach GART test 1s designed to test a par-
ticular element or feature of the system.
These range from standard processor and
memory tests (the latter are also useful
for checking bus couplers) to exercising
the varlous bus coupler switches and maps.
The I/0 devices are kept busy by circula-
ting various data through them.

4, WHERE WE STAND

Although the system uses Lockheed SUE pro-
cessors, busses, memories, etc., we have so
far designed and bullt nine BBN card types
for the system: three coupler cards for
each of the three bus types, a full-duplex
memory channel card, a Host interface card

(which operates at speels up to 1.5 mega-
bit), transmit and recelve modem cards, the
pseudo-interrupt card and a clock card.

These designs are virtually all finalized
ind many are in production (printed circult
r similar) form.

Je are presently finlshing the design of

two other cards: the flrst of these 1is the
parity checking card for the I/0 bus de-
scribed above under the dilscussion of par-

Ity. The second 18 a checksum/block-trans-
fer card whlch flows a block of memory
through 1tself computlng a checksum as 1t
roes. This 1s used to checksum critical

rode from time to time [3], to compute
hecksums for network end-to-end checkling
' messages, and other useful checking pur-
poses., A transfer mode can be enabled so
that 1t can a2lso be used to move blocks of
information about in memory (checksumming
1s it poes 1If desired). In additlion we are
presently embarking on modifications to the
modem transmlt and recelve cards which will
1llow them to deal with 1.9 megabilt lines
ind deslgn of the special interface which
monltors incoming inter-IMP lines watching
for reload information as descrilbed above.

present we are runnlng several systems.

t

'wo small systems are belng used for test-

friyy and debugglng of the IMF program.

These ure sometimes run as separate single

bus IMP systems which are connected togeth-
er with our prototype 516 IMP into a three-
node network. At other times the two bus-

ses

are comblined into a slngle system using
i bus coupler. In thls case one bus 1s
ised as a dual processor bus and the other
15 2 comblned memory and I/) bus. This
system then works with the 516 IMP to form
a 2-node net.

The growlng prototype lli-processor system
presently conslsts of three dual processor
busses, two memory busses and one I/O bus.
We have grown up to thls system gradually
but it now operates with sufficlent reli-
ability under stress (shaking of cables,
margining power supplles, shuffling of
cards, etc.) that we are presently in the
process of bullding toward the full proto-
type (1.e., adding the 2nd I/0 bus and the
remalnling four processor busses). By mid-
1974 we hope to have two production coples
of thils large prototype working in the net-
work. During 1974 we plan also to design
satelllite modem Interface cards and to pro-
duce and dellver three moderate sized sys-
tems with satelllte capablility [4].

The baslc IMP system program 1s up and run-
ning in multi-processor form, that 1s, with
processors plcking tasks up via the pseudo-
Interrupt system and using locks to prevent
Interfering accesses to resources. So far
1t has been run only with a two-processor
system, but 1t will shortly be put on the
larger prototype. The 1nner parts of the

system, store and forward, Host, task, etc.,
seem solid. The work that remains 1s in im-
plementing the system mailntenance, monitor-
ing, and debugging functlons (1l.e., system
DDT, periodic status reports, etc.). This
coding is about half done and needs finish-
ing as well as debugglng. The network er-
ror recovery code 1s ready for debugging.
The special reliabllity code which keeps
the system up when parts of the hardware
fall is belng designed.

Much work must be done in the present net-
work to accommddate the advent of the new
line of machines. For example, the whole
reloading mechanism must be changed since
one's nelghbor may now be very different
from one's self. The network must there-
fore be arle to pass core load images
packet-by-packet to an immedlate nelighbor
of the machine needing reloading.

Our small IMP 1s bullt on a single logical
bus (consisting of two separate physical
busses connected by an extender) which com-
bines memory, processor and /0. This sys-
tem embodles none of the speclal rellability
stemming from multiple hardware coples but
1s the least expensive verslon avallable.
Small rellable systems are a2nother matter
and requlre, in general, doubling the sys-
tem to provlde complete redundancy of parts
to allow for any single fallure. Such sys-
tems may prove to be one of the more signif-
icant outgrowths of thils development effort.

REFERENCES

1. Heart, F.E. et al, The Interface Mes-
sage Processor for the ARPA Computer
Network, Proceedings AFIPS 1970 SJCC.

2. Heart, F.E. et al, A New Minicomputer/
Multiprocessor for the ARPA Network,
Proceedings AFIPS 1973 NCC.

3. Crowther, W.R. et al, Reliability
Issues in the ARPA Network, ACM Data
Communications Symposium, Nov. 1973.

4, Butterfield, S.C. et al, The Satellite
IMP for the ARPA Network, Seventh
Hawall Int. Conf. on System Sclences,
Jan. 1974,

PLURIBUS — A RELIABLE MULTIPROCESSOR

} by S. M. Ornstein, W. R. Crowther, M. F. Kraley,
i R. D. Bressler, A. Michei, and F. E. Heart
|
|
|

19

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

November 1974

{
| This paper was submitted for review by referees for the 1975
‘ National Computer Conference.

PLURIBUS — A RELIABLE MULTIPROCESSOR*

¥This work was supported by the Advanced Resecarch Projects Agency

(ARPA) under contracts DAHCL5-€9-C-0179 and F086Q06-73-C-0027.

by 5. %M. Ornstein, W. R. rowther, M. F. Xraley, R. D. B essler,
Ao Mlehaly and F. K. Hegre
Bolt Beranek and Newman Inc.
Cambridge, Massachuselts
INTRODUCTION

As computer techrniology has evolve., system architects have
continually sought new ways t exploit the dacreasing

system componerits., Une approach has been 1O pull together eollecs

; I o) : 1 !
tions of units into multiprocessor systens. iz, Dl AlA S6ES ©ld) € 8=

tives nave been to galn increased operating power through paral-
jelism and/or to gain increased system reliability Chrough re=
dundancy.

In 1972, our group at Bolt Beranek and Newman started to de-
sign a new machline for use as a switching node (IMP) in the ARPA

Hetwork.2’3

The machine was to be capable of high bandwidth, in
order to handle the l.5-megabaud data ghrcults which were then
planned for the network. It was to have a high fanout to Host

computers connected at a node. It was to come in all sizes fant

processing power, memory, I1/0) so that one could configure an

Ornsteiln

individual 1MP to meet the requirements of 1ts particular location
{ in the network, and change that configuration easily should the
| requirements change. Most of all, it was to be reliable.
| The family of machines we have produced which meets these
goals has been named the Pluribus line. The machines are highly 4
5 modular at several levels and have a minicomputer/multiprocessor
‘:y architecture. Although the largest configuration we have put to-
: gether so far contains only 13 processors, we believe there are
no inherent problems with considerably larger systems. The struc-
! ture and details of some of the hardware are described in earlier
paper's.u’5 Familiarity with these papers will be helpful in under-
‘ standing the present paper, which focuses on the 1ssue of reli-
.! ability. We believe that reliability will become an increasingly
‘ common concern as multiprocessors become more commonplace, and we
pelieve that we have galned some interesting insights into the
solution of this problem.
B THE MULTIPROCESSOR ARCHITECTURE
;g A novel feature of our design {s the consistent treatment of
| all processors as equal units, both in the hardware and in the
11 software. There is no specialization of processors for particular
system functions, and no assignment of priority among the proces-
' i sors, such as designating one as master. We chose to distribute
R f among the processors not oniy the application job (the IMP job)
put also the multiprocessor control and reliability jobs, treating

all jobs uniformly. We view the processors as a resource used to

b
A4

Qras tein g

advance our algorithm; the identity of the processor performing a
particular cask is of no importance. Programs sre written as f{or
" a single processor except that the algorithm includes interlocks
necessary to insure multiprocessor sequentiality when required.
The software of our machine consists of & single conventional
program run by all processors. Each processor had Jts owh Local
copy of about one quarter of this program and the remaining three

quarters is In commonly accessible memory.

Hardware Structure

Reliablility was a main concern in planning the hardware
architecture. Although we tried to build the individual pleces
solidly, our main gnal was to provide hardware which could be
exploited by the program to survive the failure of any individual
component .

The hardware consists of busses joined together by speclal
bus couplers which allow units on one bus to access those on
another. FEach hus, “ogether with its own power supply and cool-

ing, is mounted in its own modular unit, permitting Tlexible

variation in the size and structurs of systems. There are
’ processor busses each of which contains two processors, each in
turn with its own local 4K memory which stores frequently run

’ and recovery-related code. There are memory busses to heuse the

sepments of a large memory common tc all the processors. eIy

there are I/0 busses which house device controllers as well as

Ornstein

certaln central resources such as system clocks and specilal
(priority-ordered) task dlsbursers which replace the traditional
priority interrupt system. About half of the machine consists
' standard parts from the Lockheed SUE line; the remainder is
of ‘spec la v destiign:

As emphasized in our initial paper,u we were fortunate to
have a very specific job in mind as we designed the system. This
enabled us to place specific bounds on the problems we sought to
solve. FPor example, the proposed initial setting within & com=
munications network means that outside entities (neighboring
communications processors, Hosts, users, etc.) may help to notice
that things are going wrong. It also means that recovery asslist-
ance i1s potentially avallable from the Network Control Center
(NCC) through the networ'k.6’7 The system 1s designed generally
to avold reliance upen extérnal help, but upon otcasion suéh help
is useful and therefore we have provided methods for permitting

the system to be forcibly reloaded and restarted via the network.

Software Structure

The problem of building a packet-switching store-and-forward
communications processor (the IMP) lends 1tself especially well
to parallel solution since packets of data can be treated in-
dependeritly of one another: OQther functioms, such as . .routing

computations, can alsc be performed in parallel.

SRS — it . . -

- e, T

The program is {irst divided iInto small pieces, called
gtrpipe, each of which handles a particular aspect of the Job.

When a task needs to be performed, the name (numpber) of the ap-
nropriate strip is put on a queue &t tmake to. bée run. Edeh provess
}ar, when it 1s not running a strip, repeatedly checks this qgueue.
When a strip number appears on thie queue, the next available pro-
cessor will take 1¢ £ ghe qua and execute the corresponding
Ttrig. We ' he prceram into strips in such a way that
a minimum of context saving 1t necessary.

The number assigned tc each sirip reflects the prfleopity of
the task 1t performs. When & processor checks the task fuéue, it
takes the highest priority waiting job. Since &ll procecsors
access this queue frequently, contention for it is very high.

We therefore built a hardware device called the Pseudc Interrupt
Device (PID) which serves as a task qucue. A"gingle instY¥uciion
allows the highest priority task to be fetched and removed frcm

the queue. Another instruction allows a new task to be put onto

the queue. All contention 1s arbitrated by standard bus logic

hardware.

The length of strips is governed by how long prierity tEsks
cah wailt if all the procéssors 4re busy. The Worst case arises
when all processors have Jjust begun the longest strip. In the

IMP application, the most urpent tasks can afford to wait a maxi-

mum of 400 microseconds. Therefore, strips must not generaliy be

Ornstein

Tonger than that .

An inherent part of multiprocessor operation is the locking
of critical resources to enforce sequentiality when necessary.8
A load-and-clear operation provides our primitive locking facility.
To avoid deadlocks, we priority-order our resources and arrange

that the software not lock one resource when it has already locked
another of lower or equal priority.
Status

During the early spring of 1974 a prototype 13-processor
system was constructed. As this paper 1s being written (in the
fall of 1974) two production copies have been constructed and are
running. Each comtalns 13 processors, two memory busses, and two
I/0 busses. These machines have been connected intermittently
into the ARPA Network for testing purposes and operational instal-
lation in the network is antlcipated shortly. A single processor
has been running on the network for an extended period in order to
validate performance during routine operation. Three Satellite
IMP conf‘igur'ations9 are presently under construction as well as a

non-IMP configuration desiegned to provide highly reliable pre-

processing and forwarding of seismic data to processing and storage

centers.

RELIABILITY GOALS

Since the term "reliable system" can have many different meanings

5

it 1s important to establish clearly just what we are and what we are

Ornstein

not trying to achleve. We are rot trying to build a non-raillng

device (as in l0); Instead, we are trying to build a system which

will recuperate automatically within seconds, or at most minutes,
following a failure. Furthermore, we want the system to survive
not only transient fallures but also solid failures of any single
component . In many cases (such as the IMP job) it is not necessary

to operate continuously and perfectly: it suffices Lo operate cor--

rectly most of the time so long as outages are infrequeqb, keptl

brief, and fixed without human intervention.
How one copes with infrequent brief outages dnpen‘s on what

one 1s tryling teo de. For tasks not tightly coupled to real-time

requirements (e.g., for many large numerical computatigns), a
simple device is to choose checkpoints at which to record the

state of the system so that one can always recover by restarting

11,12

from the checkpolint just preceding an oufare. The IMP sys-

tem happens to be embedded in a larger systeuxvﬁﬁxﬂ!is quite for-
eiving. (This is not an uncommon situation.) Thus brief outages
of a few seconds are toleraied easily, and outqﬁes cf many seconds,
while causing the part:cular node to become tempofarily unusable,
will not in general jeopardize operation cf th® network as a whole.
Occasionally, despite all efforts, the i‘stem will break so
catastrophicallyv that it will be unable to recover. Our goal is
te reduée the probabllity of sueh fafal i'stem failure to the

probability of a multiple hardware fallure. We do not try to

'

N ————— e
‘

Ornstein

protect against all possible errors; some of our procedures will

fail to detect errors whose probability of occurrence is suf-

ficiently iow. For example, all code 1s periodically checksummed
i using a 16-bit checksum. A failure that does not distﬁrb the
'] validity of the checksum may not be detected. We do not mind if
‘ a failure renders large sections of the machine unusable or inac-
' cessible, providing enougl: remains to run the system. The presence
f runnable hardware, however, is not sufficient to guarantee that
pveration will be resumed; in addition, the software must be atle
| to survive the transients accompanying the failiure and adapt to
; the remaining hardware. This may include combating and overcoming
1 sctive failures (for example, when an element such as a processor
g poes berserk and repeatedly writes meaningless data into memory).
l A1l code is presumed to be debugged -- iigs, all Cregusnily
] occurring problems will have been fixéd. On the other hand, we
must be able to survive infrequent bugs even when they randomly

) destroy code, data structures, etc.

gf In order to avoid complete system failure, a failed component
H
J must be repaired or replaced before 1its backup also breaks. The
| {
j‘ system must therefore report all fallures. The actual repair

i and/or replacement will of course be performed by humans, but this
will generally take place long after the system has noted the
failure and reconfigures itself to bypass the failed module. The

£ | ratio of mean-time-to-repair to mean-time-between-failures will

Ornstein

determine overall system reliability. It must also be possible
to remove and replace any component while the system contlinued tc
run. %inally, the system should absorb repaired or newly intro-
duced parts gracefully.
SURAVTRIGHTEE S

In order to understand our system it is convenient to con-
sider the strategies used to achieve our goals in two parts which
more or less parallel the traditional division into hardware and
software. The first :art provides hardware that will survive any
single failure, even a solid one, in such a way as to leave a
potentially runnable machine intact (potentially in that it may
need resetting, reloading, etc.). The second part provides all
of the facilitles necessary to survive any and all transients
stemming from the failure and to adapt to running in the new hard-
ware conflipuration.

Appropriate Hardware

We have two basic strategies in providing the hardware. The
first is to include extra copies of every vital hardware resource.
The second is to provide sufficient isolation between the coples
so that any single component failure will impair only one copy.

To increase effective bandwidth in multiprocessors, multiple
coples of heavily utillkzéd reéséurces are normally provided. For

reliability, however, all resources critical to running the

algorithm are duplicated. Where possible the system Bigatilatz e

Reprints

T —

Ornstein

these extra resources to increase the bandwidth of the system.

It 1s not sufficient merely to provide duplicate copies of
a particular resource; we must also be sure that the copies are
not dependent on any common resource. Thus, for example, in ad-
dition to providing multiple memories, we also include logically
Independent, phycically modular, multiple busses on whiclhi the
memorles are distributed. Each bus has its own power supply and
cooling, and m.; be disconnected and removed from the racks for
servicing while the rest of the machine continues to run.

All central system resources, such as the real time clock
and the PIC, are duplicated on at least two separate I/0 busses.
All connections between bus pairs are provided by separate bus
couplers &0 that a coupler failure c¢an disable at most the two
busses it i conneeting.

Non-central resources, such as individual 1/0 interfaces, are
generally less critical. Provision has been made, however, to

connect important lines to two identical interface units (on

separate 1/0 busses) either of which may be selected for use by

the program.

To adapt to different hardware configurations, the software
must be able to determine what hardware resources are available
to it. We have made it convenient to search for and locate those
resources which are present and determine the type and parameters

of those which are found.

-
e i

cohtrollable switch that ir
Thus, a bus mey be effectively
plers from that bus.
use by requiring a particular data word (a pa
in a contrel regilster of the bus coupler.

rocessor
P

essential, we have avolded such a line LD
its driver could jeopardize the entire

central point (not even a single power

Ornstein

To allow for active fallures, 21l Bus couplers have @ Progream=
ihibits transactions via that coupler.
"amputated" by turning off all cou-
This mechanism 1s protected from capricious
gsword) to be stored
Nacurally an amputated
is prevented from accessing thesc passwords.

finally, although a common reset line is normally considered
a single falilure on
system. There is thus no

switch) where one can gain

control of the entire system at once. Instead, we rely on reset-

ting a section at & time using passwords.

Software Survival

With the above features, the Pluribus hardware can experience

any single sompcnent failure ahd still present & runnable system.

One must assume that as a consequence of a failure, the program

may have been destroyed, the processors halted, and the hardware

put in some hung state needing to be reset. We now investigate

the means used to restore the algoriihm Co operation after a fail-

ure. The various technigues for doing thie may bé classified under

three broad strategles: keep it simple, worry about, redundancy,

and use watchdog timers t,hroughout.

Simglicity

It is always good Lo kaep a system simple, for then one

i - i

abd

Ornsteln

has a fighting chance to make it work. We describe here three
system constraints imposed in the name of simplicity.

First, as mentioned above, we insist that all processors
ne identical and equal: they are viewed only as resources used
io advance the algorithm. Each should be able to do any system
task; none should be singled out (except momentarily) for a parti-
cular function. The important thing is the algorithm. With this
view it 1s clear that it is simplest if the algorithm is accessible
to all processors of the system. A consequence of this 1s that
the full power of the machine can be brought to bear on the part
of the algorithm which 1s busiest at a given time.

One might argue that for some systems it is 1n fact simpler
(or more efficient) to specialize processors to specific tasks.
One could, in such a case, then duplicate each different type for
reliability. With that apprcach, however, one must worry about
the recovery of several different types of unilts, and all the pos=
sible interactions between them. We consider the recovery problem
for a group of identical machines formidable enough.

One consequence of treating all processors equally is that
a program can be debugged on a single machine up to the point
where the multiple machine interaction matters. Once this has
peen done, we have found that processor interaction does not
present a severe additional debugging problem. On the other hand,

finding routine software bugs when a dozen machines are running

-w
wr

12

|

r

Ornstein

ig 'a difficult protism.

A second characteristic of our system which arose from a
desire to keep things simple is passivity. We use the terms
active and passive to describe communicction between subsystems
in which the recelver 1s expected to put aside what it is doing
and respond. The gLhekel the required response, the more active
the interaction. In general, the more passive the communication,
the simpler the receiver can be, because 1t can ranse i EEE N O

venient time to process the communication. ©On the other hand

the slower response may complicate things for the sender’. We

believe that there is a net gain in using more passive systerns.
An example of this is our decision to make the task disbursing
mechanics (the PID) a passive device. Neither the hardware inter-
faces nor other processors tell a processor what to do, rather,
processors ask the PID what should be done next. There are some
costs to such a passive system. The resulting slower responsive-
ness has nececsitated additional buffering in come @ eniE LaiGEE=
faces. In addition, the programn must regularly break from tasks
peing executed to check the PID for more important tasks.

The a.ternatives, however, are far worse. In a more active

system, for example one which uses classical priority interrupts,

1% 44 d9Fffieult o @decide which processor to switch to the new task.

Furthermore, it is almost impossible to preserve the context of a

15

processor while making such a switeh because of the interaction

13

«Reprints

rnstein

with the resource interlocking system. The possibilities for
deadlocks are frightening, and the general mechainlsm to resolve
them cumbersome. With a passive system a processor finishes one -

task before requesting the next, thus guaranteeing that task

switching occurs at a time when there is little context, e.g., no
resources are locked.
Passive systems are more reliable for another reason: namely,
the recovery mechanisms tend to be far simpler than those for ac-
tive systems.
is a third example of simplicity we introduce the notion of
a reliability subsystem. A reliability sub:iystem is albart of the
overall system which is verified as a unit. A subsystem may in-
clude a related set of hardware, program, and/or data structures.
The boundaries of these reliability subsystems are not necessarily
related at all to the boundaries of the hardware subsystems (pro- -
cessors, busses, memories, etc.) described earlier. The entire
system is broken into these subsystems, which verify one another
in an orderly fash’on.
The subsystems are cleanly bounded with well-defined inter-
faces. They are self-contained in that each includes a self-test)
mechanism and reset capability. They are isolated in that all com-
munication between subsystemsltakes place passively via data struc-
tures. C(Complete interlocking 1s provided at the boundary of every
subsystem so that the subsystems can operate asynchronously with

respect to one another.

14

Ornsteiln

The monitoring of one subsystem by another is performed using

timer modules, as discussed below. These timer modules guarantee 1

} that the self-test mechanism of each subsystem operates. and this |

In turn guarantees that the entire subsystem is operating properly.

Redundancy

f Redundancy is simultaneously a blessing and a curse. It
3§ occurs in the hardware and the software, and in both control and
l data paths. We deliverately introduce redundancy to provide relia-
} bility and to promote efficiency, and it frequently occurs because
I it 1s a natural way to build things. On the other hand the mere
existence of redundancy implies a possible disagreement between the
versions of the information. Such inconsistencies usually lead to
, erroneous behavior, ani often persist for long periods.
It was not until we adopted a strategy of systematically
searching out and identifying all the redundancy in every subsystem
that we succeeded 1n making the subsystems reliable. This process

s therefore constitutes one of our three basic strategies for con-

- ¢ structing robust software.

J} We use the term redundancy here in a somewhat subtle sense,

not only for cases in which the same information is stored in two
places, hut also when two stored pieces of information each imply
a common flact although neither is necessarily sufficient to imply

the other.

‘ There are several methods of dealing with redundancy. The

15 ‘

—

Ornstein

first and best 1s to eliminate 1t, and always refer to a sirgle
copy of the information. When we choose not to eliminate 1:, we
can check the redundancy and explicitly detect and correct any ¢
inconsistencies. It does not really matter how this 1s done as the
system is recovering from a failure anyway. What 1s important is
to resclve the inconsistency and keep the algorithm moving. Some-
times 1t is tno difficult to test for inconsistency; then timers
can be used as discussed in thé next Section.
Let us consider a few examples of redundancy to make these
ldeas more concrete.
A buffer holding 2z message to be processed, and a
pointer to the huffer on a "to be processed" gueue --
if the buffer a-~d gqueue are inconsistent, the buffer will
not be processed. Each buffer has its own timer and if
not processed in a reasonable time, it will be replaced
on the queue.
A device requesting a bus cycle, and a request capturing
flip-flop in the bus arbiter -- if the arbiter and device
disagree, the bus may hang. A timer resets thé bus after
one second of inactivity.
One processcr seelng a memory word at a particular system
aldress and another seeing the same word at the same ad-
dress =-- The software watches for inconsistencies and when

they occur declares the memory or one of the processors

s

16

Ornstein

unusable.
The PID level used by a particular device and the device
L % serviced in response to that level -- The PID level(s)
used by each device are program-readable. A process periodi-
cally reads them and forces the tables driving the piogram's
response to agree.
. 8 Timers
We have adopted a uniform structure for implementing a
monitoring functlion between reliability subsystems based on watch-
dog timers. Consider a subsystem which 1s being monitored. We
design such a subsystem to cycle with a characteristic time constant
and insist that a complete self-consistency check be included with-

e in every cycle. Repular passage through this cycle therefore 1is

T A

sufficient indlcation of correct operation of the subsystem. If
excessive time goes by without nassage through the ¢ycle, 1t implies
that the subsystem has had a fallure from which it has not been
able to recover by itself. The mechanism for monitoring the cycle
is a timer which is restarted Ly every passage Glhrouglh e eycle.

We have both hardware and software timers ranging from five micros=

B S ———

a seconds to two minutes in duration. Another subsystem can monitor

this timer and take corrective action if it ever runs out. To

’ avoid the necessity for subsystems to be aware of one another's
internal structure, each subsystem includes a reset mechanism which
may be externally activated. Thus corrective action consists

e

17

=

Ornstein

merely of invoking this reset. The reset algorittm is assumed to
work although a particular incarnation in code may fail because

it gets damaged. In such a case another subsystem (the code check-
summer) will shortly repair the damage.

Note thal we have introduced an active element into our
otherwise totally passive system. These resets constitute the
only active elements and furthermore are invoked only after a
failure has occurred. This approach seems to provide for the
maximum isolation between subsystems.

SYSTEM RELIABILITY STRUCTURE

In the previous section we described a mechanism whereby
one subsystem can monitor another. Our system consists ol a
chain of subsystems in which each subsystem monitors the next
member of the chain. Figure 1 and Tahle I show this structure in
the system we have puilt for the IMP. An efficient way to build
such a chain is to have lower subsystems provide and guarantee
some important environmental feature used by higher level systems.
For example, a 1low level in our chain guarantees the integrity
~f code for higher levels which thus assume the correctness of
code. Such a system 1is vulnerable only at its bottom. (We are
assuming here that we have runnatle hardware although it may be
in a bad state, requiring resetting.) The code tester level
(see Figure 1) serves three functions: first, it checksums all

jow level code (including itself); second, it insures that control

18

Ornstein

NETWORK
. .. CONTROL
g CENTER
NETWORK Q__o
.
IMP SYSTEM
f' ‘ "l’ 1 S : S S
.f IMP '; k
| o L
| ::" s | IMP SYSTEM
| / e \ RELIABILITY
| r \
' |
| CONSENSUS ~ .
' e |
' |
‘ |
' |
‘ |
I | |
1 ‘ I
1 INDIVIDUALS e e ° l
| I | | I (B) A MONITORS A
| l I : | TIMERON B &
| ESETS B IF THE
PROCESSORH : : (8) TIMER RUNS OUT
1
CODE_ : | =
. TESTER | ‘ | ‘
N I | l I
f I | | |
| lf’ = |
| » eus TiMER & — {\. , | |
R 60 Hz INTERRUPT \ \] 7
% \\ N o ,f
i . ;
1 - -7

T e — ——— —

FIGURE 1 RELTABILITY STRUCTURE

19

Ornstein

i{s operating properly, i.e., that all subsystems are receiving a
share of the processors' attention; third, it guarantees that locks
do not hang up. It thus guarantees the most basic features for <
all higher levels. These will, in turn, provide further environ-
mental features, such as a list of working memory areas, I/0
devices, étec., to still higher levels. The method by which the

code tester subsystem itself is monitored and reset will be dis-

cussed shortly.

Table 1

Major Subsystems ard their Functions

IMP SYSTEM: Watches network behavior - will not cooperate

with irresponsible network behavior.

IMP SYSTEM RELIABILITY: Watches IMP SYSTEM (data structures

mostly).

CONSENSUS: Watches IMP SYSTEM RELIABILITY, verifies all Common
Memory Code (via checksum), watches each processor,
finds all usable hardware resources (interfaces,
PIDs, memory, processors, etc.), tests +ach and

creates a table of good ones. Makes spare copies

e

of code.
INDIVIDUAL: Watches CONSENSUS, finds all memory and processors M
it considers usable, determines where the Consensus
i{s communicating and tries to join it.
“»
<

20

iy i

Ornstelin

|
|
{

P
«»r

e il

CODE TESTER: Watches INDIVIDUAL, verifies all Local Memory Code

(via a checksum), guarantees control and lock

mechanisms.

T
*

BUS TIMER + 60Hz INTERRUPT: Watches CODE TESTER, guarantees hus
activity.

o The mechanisms we have described ensure that the separate

processor subsystems have a satisfactory local environment in
which to work. Before they can work‘together to run the main sys-
1 tem it is necessary that a common environment be established for

! all processors. We call the process of reaching an agreement

l aLout this environment "forming a consensus", and we dub the group
‘ of agreeing processors the Consensus. The work cone bv the Con-

i sensus is in fact performed by individual processors communicating
; via common memory, but the coordination and discipline imposed on
Consensus members make them behave like a single logical entity.

An example of a task requiring consensus 18 The 1déntifieatioh oF

I

|

i

i! usable common memory and the assignment of funetione (code, vari-

J ables; bufférs, etc.) te particular pages. The members of the Con-

|~ sensus will not in general agree in their view of the envircnment,

| as for example when a broken bus coupler blinds one member to a
segment of common memory. In this case the Consensus, including

¢ the processor with the broken coupler, will agree to run the main

{ system without that processor.

|

21

Ornstein

The Consensus maintains a timer for every processor in the
system, whether or not the processor is working. The Consensus
will count down thece timers in order to eliminate uncooperative
or dead processors. In order to join the Consensus, a processor
need merely register 1ts desire to Join by holding off its tiner.
Within the individual processors it 1s the code tester subsystem
which helds off the timer.

The Consensus, then, acting as a group, provides the monitor-
ing mechanism for the individuals as shown by the feedback monitor-
ing path in Figure 1. This monitoring mechanlsm run by the Con-
sensus includ>s the usual reset capability which in this case
means reloading the individual's lccal memory and restarting the

processor. Since all of the processors have identical memories,

reloading is not difricult. We provide (password proftected) paths

whereby any processor can reset, reload, and restart any other
processor. This reliance on the Consensus 1s lndeed vulnerable to
a simultaneous transient failure of all processors. However, the
Network Control Center has access to these same reset and reload
facilities and these enable it to perform the reload function re-
motely (a path also shown ir the figure).

Thus the Consen- us and/or Network Control Center are the
ultimate guarantors of the lowest level subsystem. While this
process 1s sufficient it 1s sometimes slow. For many cases in

which the Consensus is disabled (as for example when all of the

R SR S = Y

Ornstein

nrocessors halt), a simpler rezet without reloading will suffice. |
{ For this reason we have provided a simpler and more immediate (1if 1:

v redundant) mechanism in each processor for resetting the control

L and lock systems. We implement this mechanism in software with

the assistance of a 60Hz interrupt and a one-second timer on the

S —— -

bus. Together these provide a somewhat vulnerable but much quicker

alternative to the more ponderous NCC/Consensus resets.

.; There is a problem about what area of common memory the
processors should use in whieh to form the Consensus; .ince

| failures may make any predetermined system address inaccessible.

. To allow for this, sufficient communication is maintained in all

! pages of common memory to reach agreement both as to which proces-
l sors are in the Consensus ana where further communication is to

take place.
To protect itself from broken processors, the Consensus ampu-=
tates all processors whieh @6 mot Suedeed 1M joinlng it: There is
|‘ a conflict between this need to protect itself and the need to
] admit new or healed vprocessore into the Consensus. The amputation
barrier is therfore lowered for a brief period each time the Con-
[~ sensus trigs to restart a processor. This restapt Ly in fact the
reset based on the timer held off by the code tester subsystem, !
b as discussed above. In the chse of certain active failures, evén
;' thit brief relaxation may cause ftrouble. In thesé cates the Coh=

? sensus will decide to keep the barrier up continuously.

. |.

A ST TR T TR

A - - - - - - - - < - -

S

Ornstein 0

i Certain active faillures may prevent the formation of a con- |
sensus. In such a situation each processor will behave as if it
were a Consensus (of one) and will try to amputate all other proces-
sors. At the point when the actively falling component is ampu-

tated, the remaining processors will be able to form a consensus. '

|

i From this point the system behaves as described above.

i Further up in the figure there 1s another Jo*riing of inde-

i pendent units, namz2ly IMPs Joining to form the network. The

' analogy here 1is incomplete because the ARPA Network was not bullt
l with these concepts in mind. There is collective behavior, e.g.,
[routing, and individual behavior which accepts collective
decisions only after they pass reasonability tests. However, the
reliability features of the network are concentrated in the Net-

work Control Center, which depends on the continual presence of

human operators for successful operation. It is correspondingly

powerful, resourceful, and erratic in its behavior.
i SOME EXAMPLES OF FAILURES
}j In order to explain in more practical terms some of the
reliability mechanisms, we now discuss a number of specific fallures
& ané describe the methods which detect and repair the resulting .
damage. In each case, we focus on the component that failed and

the particular mechanism that takes care of that failure. Deriva-

i tive failures may well take place, and other mechanisms will handle

[these, since all mechanisms operate all the time.

——

- &

i s ek S S R =

Ornstein

a»
<»

These examples are set in the context of the IMP application and
the severity of their direct consequences rated on the following
scgle:

1. Momentary slowdown - no data loss

\ 2. Loss of data (a network message)

3. Temporary loss of some IMP function (a network link)

4. Momentary total IMP outage with local self-recovery

5. Outage requiring reloading vlia the network

6 Fallure requiring human insight for debugging.
Example 1. Suppose { ‘rst that a bus coupler experiences a transient
failure on a single reference to common memory, which leaves one
word of common memory with the wrong contents but correct parity.
Suppose further that the failure is subtle, in the sense that there
is no obvious 111 effect on processor control, like halting or
looping, which will be caught by lower level mechanisms. We will
focus first on examples which cause minimal disruption and where
detection and gentle : :covery are the primary conceras. We con-
sider four examples of transient memory failures:

Example 1l.a Suppose that a word of text in one of the messages

we are deliverying becomes smashed. There is a checksum on all
* messages and the network will notice at one of 1ts checkpolnts that
the message has gone bad. The source will be prompted to send a

new copy. (Severity 2)

25

Ornstein

B mmiiel s Near the heart of our system is a queue of unused

buffers called the free list. Suppose the failure is in the struc-
ture of this queue. The system explicitly tests for both a looped -
queue and wrong things on the queue. A more subtle form of error
occurs when some buffers which should be on the queue are missing {
from it. Our system is designed so that a buffer should be removed
from the free 1list for at most two minutes at a time. A timer is
maintained on each buffer, which 1is restarted whenever the buffer
returns to the free list. Should any timer ever run out, its
. buffer is forced back onto the free list. The result of this

failure will be a degradation of system performance as it attempts
i to run with fewer buffers for a short while, followed by complete
j' recovery within two minutes. The IMP will stay up and no messages

will be lost. (Severity 1)

Example l.c Suppose that one of the locks on a resource is

i broken so that it wrongly locks the resource. Any subsystem which
i' tries to use the resource will put a processor into a tight loop

:{ waiting for the resource to become free. In about 1/15 sec. this

; will cause the processor's timer, driven off its 60Hz clock inter-

J rupt, to run out. Upon investigation, the program will notice that
: the subsystem is waiting for a locked resource, and arbitrarily

g unlock it. Aside from the 1/15 sec. pause, tl'e system will be
i ﬁ unaffected by the transient. (Compare the simplicity of this scheme

with lu.) (Severity 1)

= . 5
e m ———— et = _ I

Ornstelin

a»

A ¢ 4

(=
L

-

Example 1.d Suppose now that a failure strikes common memory

holding code, and that the trouble 1is subtle == either the code

is not run often or the change has 10 immediate drastic effect.

' In a few seconds the processors will begin to notice that the

i} checksum on that piece of code 1s bad and stop running it. Shortly

the whole Consensus will apree, and will switch over to use the
memory holding the spare copy of that code. Unless the broken

code has already caused some other trouble, the probléem 18 Thereby
fixed, with only momentary slowdown. (Severity 1)

; Example 2. Suppose a processor fails by suddenly and pnermanently

% stopping. The immediate effect will be that some task will be left
! half done, with a high probabilitv that ~ome resource is locked.

i This looks to the system like a data failure, as in examples 1.a,

‘ 1.5, and L.& @béve. The réeeovery will be Ydentical. In a féw

' seconds the Consensus will notice that the processor has dropped
out and processor reccvery logilc will be invoked. Since tThe
processor is solidly hrroken the recovery will be unsuccessful, and
the system will settle into a mode where every so often recovery

is retried. Eventually a repairman will fix the processor, at

jt which time recovery will proceed and the processor will rejoin Con-
sensus. It is hard to predict whether the IMP system will momen-

; tarily go down because of the fallure; experience indicates that

it usually stays up, but our experience i® 1limited to ITighily

loaded machines. (Severity 2-U4)

27

il

Ornstein

Example 3. Supnose a power supply for a processor bus breaks.
This is similar to the failing processor described above except
that both processors on the bus are affected and the processors v

are given a hardware warning sufficlently far in advance that they

can halt cleanly. The system will surely stay up through this
failure. (Severity 1)
Example 4. Now consider a case in which some page of common memory

ceases to answer when referenced. Each processor will get a hard-

ware trap when 1t tries to use that memory, forcing it directly to

the code which routinely verifies the environment. As a result, the

failine memory will be deleted from the memory list by the Consensus

and another module will be pressed into service to take 1its place.
If the failed nage contained code, a spare copy will normally

be available and a new spare copy will be made if possible. If

it contained data, an unused page will be pressed into service.

In either case, the system will be reinitialized, momentarily

bringing the IMP system down. If the failled page contained the

Consensus communication area, a new Consensus must be formed and

thus recovery will take a little longer. (Severity U4)

Exémgle 5. Let us now consider a failure of the PID. Suppose that ’

the PID reports a task not previously set. When invoked, each strip

checks to make sure that it is reasonable for the strip to be run.
If not, another task is sought. Suppose instead that the PID "drops"
3 task. A special process periodically sets all PID flags inde-

pendent of what needs to e done. This causes no harm, because

¥

28

Ornstein

superfluous tasks will be ignored (as described above), and serves
to pick up such dropped tasks. Thus we have both a consistency

» % cheek on redundant information and a timer btuilt into our use of
the PID. If a PID fails solidly, another PID will be switched :in

to operate the system. Transient failures cause slowdown; switch-

over may momentarily bring down the IMP system. (Severity 1, 4)
' All of this leads to a slightly different image of the P.D.

Instead of being the central task disburser, with all processors

relying: on 1t to tell,them what to dos the PLD iF & guide, Bug-
gesting %o processors that if they look in-a certain placey they
will probably find some useful work to do. The system would in
fact run without a PID, albeit much mere slowly and inefficiently.
Example 6. Suppose a halt instruction somehow gets planted in
common memory and that all processors execute it and stop. There
is thus no Consensus left to come to the rescue. Furthermore,
60Hz interrupts are ineffective In a Lalted processor. After one

: second of inactivity, the bus arbiter timer will Peget the proces-

! sors, making them once more¢ eligible for 60Hz interrupts which will

J restart them. B:fore the broken code is run, it will be checksummed,
|)
l ! the discrepancy found, and a spare copy used. (Severity 2-4

Examole 7. Let us consider now what harpens when, in common memory,

an end test for a storing loop is destroyed, causing each processor
1 to wipe out its £0Hz interrupt code in local memory. In this case
1 Mot only &Fé flhefe no progcessers 1#r't to help; but the 60Hz inter-

rupt will not help either, since the interrupt code itself 1is

B (e

Ornstein

broken. This is a care in which the machine is incapable of res=
cuing 1itself and will go off the network as a working node. When
the Network Control Center notices that the IMP is no longer up,

it will commence an external reload, restoring the IMP to operation.
(Severity 5)

Example 8. Consider the case of a processor whose hardware is
solidly broken such that it repeatedly stores a zero into a loca-
tion in common memory. Mechanisms described above will rc.oveatedly
fix the changed location, but it is desirable to eliminate the
continuing presence of this disrupting influence. The Consensus
will notice that one of its number has dropped out and will endeavor
to help the errant processor. After a few tries, a longer timer
will run out, and the Consensus will take a more drastic action:
final amputation. In this case there will be a rather lengthy

IMP outage but the system will recover without external help.
(Severity U4))

Example 9. C 2 failure from which there 1s no recovery, either
automatic or remote, is a program which impersonates normal behavior
but is still somehow incorrect. That is, it holds off the right
timers, has a valld checksum, and simulates enough normal behavior
so that higher levels (e.g., the NCC) are satisfied. For example,
1f it were not for the fact that the NCC explicitly checks the
version vumber of the program running in each IMP, a previous,
compatible, but obsolete version of the program would exhibit this

pehavior. (Severity 6)

30

S

LS 4

Ornstelin

4
w
Example 10. Another class of fajlures which is hard to lcsolate
and deal with 1s low-frequency inte-mittents. Consider the case
¥ of a single processor which is broken such that its indexed shi:st

instruction performs incorrectly. 84irce this instruction ohly
occurs in some infrequently executed procedures, the failure only
! manifests itself, on the average, once every peried t., If ¢ is

]
L large, for instancc one year, then we can safely disregard the error,

since its frequency is in the range of other failures over which

we have no control. If t is small, say 100 milliseconds, then the

Consensus will isolate the bad processor and excise it. At some

intermediate frequency, however, the Consensus will fall toc cor-

»
e

relate successive failures and will instead treat each as a separate
transient. The system will repeatedly fail and recover until some

i human intervenes. (Severity 6)

{ RESULTS AND CONCLUSIONS

; Some strategies and techniques for building a reliable multi-

3

processor have been described above. We have, in fact, actually

¥
3}3 built and programmed such a machine using these stratesies. We
| 3
| | have found this machine straightforward to debug, both in hardware
‘} 1 and” software. Furthermore, the system continues to operate when
L]

{rndividual power supplies are turned off, when memory locations
are altered, when cables and cards are torn out, and through a

- variety of other failures. We have yet to establish field per-

formance (which must be measured both in rate of recoverable

31

Ornstein

incidents and in rate of unrecoverable failures), but we expect to
start gathering this information shortly.

We believe there are many important problems in the world
today which could benefit from the principles descrihed here.
While we have discussed these principles in terms of a specific
application (the IMP), most of the concepts are application inde-
pendent. We have been able to separate the application code from
the reliability subsystems intact in another application of the
Pluribus machine.
ACKNOWLEDGEMENTS

Many people in addition to the authors have contributed to
the ideas described herein, notably BenjJamin Barker, John Robinson,
David Walden, John McQuilian, ard William Mann. In addition,
there is a long list of those who helped to bring these machines
into existence. Foremost among these are Martin Thrope, David
Katsukl and Steven Jeske. The work reported here would not have
becii jossible without the continued support of the ARPA/IPT office.

Finally, a word of thanks to Robert Brooks and Julie Moore, who

helped to prepare the manuscript.

Ornstein

REPERENCES

tng

W, B. Riley, "Minicomputer Wetworks =- A Challenge to
Maxicomputers?" Electronics, March 29, 1971, pp. 56-62

P ‘B Teart, R. B« Kalin,, 8. ¥; Ormstelns W. R. Crowther,

and D. C. Walden, "The Interface Message Processor for the
ARPA Computer Network," AFIPS Conference Proceedings,

Vol. 36, June 1970, pp. 551-567; also in Advances in Com-
puter Comrunications, W. WsChu (ed,),; APhech House Ing:,
18T b, pp s BB0=316

I,. G. Roberts and B. D. Yessler, "Computer Network Develop-
ment to Achlieve Resource Sharing," AFIPS Conference Proceed-
ines, Vol. 36, June 1970, pp. 543-549.

F. E. Heart, S. M. Ornstein, W. R. Crowther, and W. B. Barker,
"A New Minicomputer/Multiprocessor for the ARPA Network,"
AFIPS Conference Proceedings, Vol. b2, Jume LT3 B’ S20=b3TE
also in Selected Papers: International Advanced Study Insti-
tute, Computer Communication Networks, R. L. Grimsdzle and

. ®. Kuo (eds.) University of Sussex, Brighton, England,
September 1973; also in Advances in Computer Communications,
W. W. Chu (ed.), Artech House Inc., 1974, bp. 329=357 1

S. M. Ornstein, W. B. Barker, R. D. Bressler, W. R. Crowther,
F. E. Heart, M. F. Kraley, A. Michel, SN Pl ol IV [GTEe)PIE S

"The BBN Multiprocessor," Proceedings of the Seventh Annual

Hawaii International Conference on System Sciences, @onolulu,

L0l

Bl.

Ornstein

tawaii, January 1974, Computer Nets Supplement, pp. 92-95.

W. R:. Crowther, J. M. MeQuillamn,; and DP. €, walden,

"Reliab.lity Issues in the ARPA Network, " ?roceedings of v
the AClMN/IEEE Third Data Communications Symposium, November
1978, pp: 159=16¢0.

A. A. McKenzie, B. P. Cusell, J. M. McQuillan, and M. J.
Thrope, "The Network Control Center for the ARPA Network,"
Proceedings of the First International Conference on Com-
puter Communication, Washington, D.C., October 1972, pp.
185-191.

E. W. Dijkstra, "Cooperating Secuentiul Processes," in

Progr amming Languages, ed. F. Genuys, Academic Press, London
and New York 1968, pp. 43-112.

S. C. Butterfield, R. D. Rettbere, and D. C. Walden, "The
Satellite IMP for the ARPA Metwork, " Proceedings of the
Seventh Annual Hawaii International Conference on Syttem
Sciences, Honolulu, Hawaiil, January 1974, Computer Nets

Supp lement, ®h. To=T73-.

A. L. Hopkins, Jr., "A Fault-Tolerant Information Processing
Concept for Space Vehicles," IEEE Transactions on Computers, '
Volume C-20, Number 11, November 1971, pp. 1394-1403.

A. Avizienes, G. C. Gilley, F. P. Mathur, D. A. Rennels, 4
I. A. Rohr, and D. K. Rubin, "The STAR (Self-Testing and

Repairing) Computer: An Investigation of the Theory and

34

Ornstein

Practice of Fault-Tolerant Computer Design," IFREE Trans-
actions on Computers, Volume C-20, Number 11, November 9T
pp. 1312-1321.

IBM Corporation, "OS Advanced Checkpoint/Restart,” 1BM

Manual GC28-6708.

R. J. Qountanie and M. L. Viss, "pA Method of Processor
delection ror Interrupt Haniling in a Multiprocessor System."
Proceedings of the IEEE, Vol. 54, No. 12, December 1966,

pp. 1812-1819.

Ls Lemporty; "A New “,lution of Dijkstra's Concurrent Pro-

gramming Problem," Communication of the ACM, Volume 5

Number 8, August 1974, pp. 453-"55.

