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I.  INTRODUCTION 

We discuss the stationary sequence of random variables 

{X } which is formed from a sequence  {( } of independent 

random variables, each with the same exponential distribution 

with parameter X > 0, according to the probabilistic linear 

model 

( M- with probability ß, 
Xn = J  n (1.1) 

» ß« + A  ,    with probability  (1-ß), n  n-1 

for n - 1,2,...,  where 0 & f * 1,  and 

( pA .       with probability p, 
A - |  n"i (1.2) 

' PA« I*'»    with probability  (l-p) , n-i  n 

for n ■ 1,2,...  and 0 s p & 1.  The random variable AQ has 

an arbitrary distribution but, if it is taken to be exponential 

with parameter X,  then the X 's,  n ■ 1,2,...,  form a 

stationary sequence of dependent exponential random variables. 

The model of (1.1) and (1.2) will be called EARMAd»!)» 

(exponential autoregressive-moving average, each of order 1); 

it extends the moving average model of Lawrence and Lewis (1975), 

which is essentially (1.1) with A  ,  replaced by •«,••  And 

the autoregressive model of Gaver and Lewis (1975), which is 

just (1.2), by combining the two basic structures defined in 

those papers. Further extensions are given by Lewis (1975). 

The model defined by (1.1) and (1.2) is actually a back- 

ward model; an equivalent forward model can be defined similarly. 

I 



However» the two, while similar, are not equivalent. This ii 

because the sequences are not time reversible in the sense that 

(!.«•••«XL) does not have the same joint probability distribu- 

tion as  {X ,#...#X . }. The properties of one model can be 

derived by the same techniques as those of the other, so we 

consider only the backward model.  The time dependence does, 

however, come in in an essential way in estimation problems for 

the model. 

Let T = X, ♦...-♦• X .  Then T  can be thought of as the 

time of occurrence of the r— event in a point process having 

{X.} as the interval sequence.  Further let N.  be the number 

of events that occur in  (0,t]  in the point process. 

Various moments and joint distributions for the (X.} 

sequence are obtained in the next two sections. A recursive 

scheme for obtaining the Laplace transform of T is obtained 

in Section 4. The variance time curve and sequence are then 

obtained. In Section 6 the asymptotic behavior of the sequence 

(X } is studied and limit theorems for T , N and EIN. I 

are given. 

Finally, several extensions of the model are discussed 

as well as another model having similar correlation structure. 



2.  SOME PRELIMINARY PROPERTIES OF THE EARMA (1,1) MODEL 

Let  (U }  and {V } be independent sequences of 

independent random variables taking the values  (0,1) with 

P{U„ = 0} - ß and P{V„ = 0} = p.  Then we may write (1.1) and n n 

(1.2) as 

Xn = ß( ♦UnAn ,. (2.1) n    n  n n-i 

with 

A = PA . ♦ V ( (2.2) 
n    n-1  n n 

for n ■ 1,2#...(  where  U )  is a sequence of independent 

exponential random variables with parameter X.  Unless other- 

wise indicated we will assume that AQ = (Qi     that is« A« has 

exponential distribu'.ion with parameter X and is independent 

of  {« ; n« 1,2,...},  {U },  and  (V^). n n n 

It is not hard to show that X  has an exponential 

distribution with parameter A;  in fact by (2.2), for s a 0 

E{exp(-sAn)} » E{exp(-spAn_1) X^j^) 

for n ■ 1,2,... .By induction (Gaver and Lewis, 1975), 

E(exp{-sAn}l = j—      for  n = 0,1,2,... 

since A0 « (Q.    Hence 

E{exp(-sXn)} - EIexp{-8(Bfn*UnAn_1)}) 

' xTs' 



showing that the marginal distribution of the X 's,  like those 

of the *n'S'  is exponential with parameter >. 

However, the X 's are not independent, as seen by the 

following calculation of the covariance between X  and X ^j. 

Ignoring terms which cancel, we get 

C1#1(k) » EOCnXn^)-E(Xn)E(Xn+k) 

- eu-ßHE(VW.i)-E(VE(An*k.i,} 

* «•«^ViVk-l1 -E(Vl)E(An+k-l
)}- 

By induction arguments we get 

and 

Therefore, the serial correlation p(k) * c .(k)/Var(x) is 

p(k) » corr(Xn,Xn4k) » pk"1c(ß,p), (2.3) 

where 

c(ß,P) « ?(l-ß)(l-p) ♦ (l-ß)2p (2.4) 

« e - 3ßo + 2ß2p- ß2 -f p 

« ß(l-ß) ♦ P(l-ß){l-2ß). 

When p * 0 we have the correlation for the EMA1 model 

given by Lawrence and Lewis (1975) . When ß = 0 we get the 

correlation for the autoregressive model EAR1 given by Gaver 

and Lewis (1975). By (2.3) and (2.4) the first order correla- 

tion is nonnegative and bounded above by 1. Note that, if 



X c(ß,p) = 1 - 3p - 2|3(l-2p) = 0,  then  0 = 2{[^ .  If 

j c p < j this value of ß is non-positive so that» for fixed 

p, c(6,p)  decreases monotonically from the value p at 6*0 

to »ero at B«l.  If J<P«1,  then rrrjfei * 1* Finally, 

3     1 jjr c(B#y) < 0. Hence, for fixed p,  as a function of 0 

c(6,P), which always is equal to p at r = 0 and equal to 
i 

0 at 6=1,  is single valued on  [0,1]  for p * ?. For 
• 3 

p < ? it is double valued on  [0,1].  This result will be use- 

ful in the estimation of p and 6.  In fact if P * T esti- 

mates of p and 6 can be obtained from the first two serial 

correlations. For P < j higher order joint moments are needed. 

Note that the second order joint moments or correlation 

structure is that of the so-called ARMA (1,1) model (cf. Box 

and Jenkins, 1971); consequently the spectrum will be 

i 
f.(u)) «±{1+2 I    p(k)cos(kw)} 
+     f     k=l 

. i fl ♦ (l-2c(e.p) }p* - 2p{l-c(e#p)cos (an     (2.5) 
tr [_    ~~  1 + B - 2p cos 5 J 

for 0 « u < IT.  The spectrum has the constant value - when the 

X 's are independent,  (p=ß=0; 6=1). 

Note that the correlations p(k)  are all positive in 

this EARMA (1,1) model, unlike the ARMA (1,1) model. This seem 

to be the greatest limitation of the model. 



3.  HIGHER-ORDER JOINT MOMENTS 

We now proceed to the calculation of other joint moment« 

for (Xn)* These are useful in estimating ß, since it is not 

possible, when p < j , to distinguish between the case (ß/p) 

and {(1-3),p) on the basis of the second order joint moments. 

This is closely related to the question of time invariance dis- 

cussed in the Introduction; the time (or serial number) depend- 

ence shows up clearly in higher order joint moments. 

First, for k i: 1,  eliminating terms that cancel, we 

have 

c2.ilk) * i<J#W-1<J#I"W 

. 02(l-B){E(^An,k.1).E(^)E(An+k.1)} 

♦ 20(1-0) (E(fnAn_1An+k.1) .E(CnAn.1)E(An+k.1)) 

* (l-0)'(E(A^1An+k.1) -E(A^1)E(An+k.1)} 

* pk~1(E((n)Var(6n)20(l-B)2 

♦ {E(^) - E(^)E(*n)}{02(l-0) (1-p) ♦ (l-0)2p}] 

- P*"1 p- (28(l-0)2 > 4{ß2(l-ß)(1-p) ♦ (l-e)2p}l. (3.1) 

When p - 0, so that we have just the first order moving average 

process, (3.1) becomes for k = 1 

C2,l(1) B p^20(l-0) (1+0)) = p-{2 p(l) (1+0)}. 



It is useful to write the multiplier of p,c"1/^, in (3.1) 

as a polynomial in p and a polynomial in 0 and we then have 

C2,l(k) = pk"1 rr (l-ß){2ß{H-ß) +P(l-a-B2)} 

= p*1"1 ^ (p + ß(2-2P) + ß3(P-2)}. 

Similarly we get for 

Cl#|Cm =E(XnX^k)-E(Xn)E(X^k) 

= P*'1  yr   Kßd-B) d-p) + (l-B)2p)(l+ß)        (3.2) 

♦ pk'1irp2 ♦ß(l-3p2) ♦ ß2(2p2-l) 

■ ftCx#x(k)(l*3) ♦ Jr    (r.2+P(l-3p:) + ß?(2p2-l). (3.3) 

Again (3.3) can also be written as polynomials in ß 

and  p. When k = 1 we get 

\ J 
yCj 2(1) = (l-ß){ß(2^ß) ♦ p(l+ß) (1-28) + p2(l-20))     (3.4) 

« p(l+p) + ß{2(l-p)-3p?) ♦ ß2(-l-p+2p2) ♦ ß,(2p-l). (3.5) 

The fact that C2 1(k) ?  C1 2(k)  indicates that the 

(X ) sequence is not time reversible. This can hopefully be 

exploited, as in the EMA1 process, to estimate 6«  and, in 

particular, differentiate between the cases p,ß and P,(1-0). 

Higher order moments, e.g.  C- j^)* are useful in deriving the 

asymptotic variances of sample serial correlations for the 

model.  This will be discussed elsewhere. 



The above third-order joint moments are special cases 

of the third order joint moments with two lags,  j and k, 

whose double Fourier transform will give the bispectrum of the 

{Xn}  sequence. 

For j * 1* k * 1,  and p < 1, similar calculations 

to those above show that 

C1#1#1(j,k) - E(XnXn+jXn+j+k) -E(Xn)E(Xn+j)E(Xn+j+k) 

- jV {6(l-ß)2pkp2(j'1, (1-P) + (l-B)^^2^   (3.6) 

*^{ß(l-ß)Mpk{p2Uli^^l 

4 2p2j'1(l-p) + 2pj"1(l-p) (l-'>j"1)+pj} 

+ Qk'l{a'p)2pi'l+ (i-P)} 

+ pj"1{(i-p)[i-pk';Li + p}j 

+ 82(l-ß)lPk(Pj':L(l-P)]"»-pk"1 (1-P) •»•Pj'1(l-P)J 

♦ (l-ß)Mpk{i^+2p
j(l-p3)} 

* pk"1{(l-p)pj + pj(l-pk"1)}l}. 

Me give this expression for completeness and because it 

is clear that second-order joint moments do not describe com- 

pletely a process which is as non-normal as the EARMAd»!) 

described here. It is felt, however, that the special cases 

(3.1) and (3.2) of the third order moment C, , ,(j,k)    when 

j > 0 and k « 0 respectively will give all necessary information. 



It is also possible to derive Laplace Stieltjes transfoms 

for the joint distributions of several    X^'s.    These will be 

multivariate exponential distributions.    Thus we have,  for 

example, 

ElexpNs^-SjX^}]  - 

(    x   ^      x       fß (A*ßs1) A (1-0) (X+BS^PSJ) * 1 
ixripy krtjp rfinjl + a+s2p) fmppqh rH^pnj • (3-7) 

Despite its relatively simple form, this transform does 

not lend itself to easy derivation of moments, e.g. EIXnXn<fl^' 

EfXnX*+1l, or EfXnXn+i^' or of conditional moments, as for 

the EMA1 case (P«0) in Lawrence and Lewis (1975); nor is it 

invertible to give approximate likelihoods for the process. 

When s, = s2 = s we get the transform of the sum 

Xn + Vl " 

E[exp{-s(Xn+Xn+1))J 

HX+&8) . X(l-e)(A't'Bs-<-ps)2   1 ,, ft. P(A+S) + a+ps){X+s(i+phnis+sd)J • l3-B) 

Transforms of the distributions of the suns of adjacent 

X.'s are very useful in the point process theory of the modeli 

if these can be obtained one can obtain the second order proper- 

ties of the counting function of the point process in the form 

of either an intensity function, the (Bartlett) spectrum of 

counts or the variance time curve (see Cox and Lewis, 1966, 

Ch. 4). These transforms are discussed in the next section. 



4.  THE SEQUENCE  {Tr}. 

Recall that T « X,* ...♦Xr. We will interpret T 

as the time of the r— event in a point process which starts 

with an event at the origin. We will obtain a recursive rela- 

tionship for computing E{exp(-sT ))  for r ■ 1,2,...  and 

s 2 0.  Let 

iMa^Sj) - ElexpC-SjTj - SjAj)]. (4.1) 

Then, by direct computation from the definition (1.1) and (1.2) 

{A(X+s1ß+s2P)}
2 

Now we define 

b(s1,s2)  - Efexp{-(s16+82V1)f1>] (4.3) 

A(A+s1ß+s2P) 
(\*alB-*-a2) (A+Sjß) 

and let 

♦r(s1,s2)  - Efexpf-Sj^-s2Ar}l. 

Then,  for    r ft 2 

W^*  " EIexP{-8i<T
r-l

+0(r*ürAr-l) "^^Vl^r^^1 

- Elexp{-(s10+s2Vr)€r-s1Tr,1- (s1ür+s2P)Ar-1)j 

■ b(s1,s2)E{<»r-1(s1,s1Ur+s2p)} 

« b(s1,s2) (ß*r_1(s1,s2p) + (l-8)<'r.1(s1,s1+s2P)J.     (4.4) 

10 



For 6 » 0 and p = 0 we get, respectively, the 

recursion relationships for the EAR1 process (Gaver and Lewis, 

1975) and the ENA1 process (Lawrence and Lewis, 1975) which 

have explicit solutions which lead to expressions for 

E{exp(-sTr)). 

Using (4.4) we can calculate the Laplace transform of 

T recursively. In particular we have for T, that, using 

(4.1) 

*(s,0) « EtexpNsT^)] » ^  , (4.5) 

as it should.    Then we get 

♦2(s,0)  » E[expf-sT2}] 

„     X    ra   A    .  M   ftv    {x(A-*-sB-fsp))a ltA g. 
• rOTL8*^  (1 0) a+sß) (US8*SHUSP) a♦•p♦•)J(4•6, 

which agrees with (3.8). Unfortunately the expressions become 

very unwieldy as r increases. We have 

.  {A(A->-sB»sp2)}'  
(A-t-sß) (X-t-sß-fs) (X-t-sp'i (A4-s^sp') 

. /i.ft»a  (A4sß>sp) (A (A»sß-<-sp-»spa) }* fl U 71 
* (1 ^  (A+sß)(A+sß+snA+Sß*s*8pnA+8p*IipM<Us*sp+Sp«)ü,( *^ 

For the transform of the distributions of T. and T. «re get 

11 



(AfUsß.frSp^sp1^1)}2 
| r X-»g3-»8p    x      r iA( V>8P4-8p"-»8p W 

B(1'ß)     L(X+1^<^8ß*«n^8^»^P)    *   kll    (A+8pk+8pk+1) (A+8+8pk"^8pk','1) 

2 
     (A»s3>8p2)  {A(A-t-8ß-»'8p>«p>)) 
fXTiyi (A-»-8ß-»-8) (A-»-8ß-f8-f8p')   TT+sp+sp^TTATiTip+iF'T 

n    ftlJ    (^-»-Bß-t-SP) (A4-sß-t-8p4-8p'){A(A-f8ß-t-8p-t-8p2-f8p3))2 

1       "^^ (A+8ß) (A+sf+8) (A+sß+S+Sp) (A+8ß+8+8p-f8Pi ) 

x 
(A■^■8p•^8p'^•8p,) (A"f8+8p+8p'+8p,)J ; (4•8, 

For the sum T  we qet the transform 

Ar«p     ,       A+8 kml   (Ui>e) (A+8ß+8) (x+mpK) (A+s+sp'1) 

♦ ß2(l _ß)2rr   i (A^ß-fsp^1) (A (A-t-8ß^8p^spk) 1 2 

|k»2 ' (A+8ß) (A+Bß+8) (A+sß+s+sp15'1) 

x        1 p-i 
(A+8p+8pK) (A+S-t-Sp+Sp    )  P 

+      J      ( (A-t-8ß-f8pk"2) [A(A-t-8ß^gp2-<-8pk)l2 

k»3  ' (A+sß) (A+sß+8)(A48ß+8+8pk"2)(A+«p2+8pk) 

 i—E} + 8+ 8p2 4  »p     ' 
x 

A 

. (A48ß48p) [A(A-f8ß-f8p3-»-8p',)l2 

(A-fSß) (A+8ß+8) (A-l-8ß+8+8p) (A+Sp'+Sp') 

x  TT 
1 "I 

8+ Sp' + 8p'J 

*  ß(1  ^   \jTfSfr7TTT7rr^-nrr=* nrra ^    x 
_     A + 8ß + 80 

Iß) (A+8ß+8) (A+8ß+8+8p) (A+8ß+8+8p+ap') 

12 



I   (A+sP+Sp'+Sp1) (A+B-fSP+Äp'+gp1) 

(A4-8e-t-8p-*-8p') [A(A-»gB»lp2-f«p>-»«p',na 

(A + sp'+sp^SP') (A+s+Sp'+gp'+gp^J 

(A^-sß-t-sp^sp3) jAlA-t-sB-fsp-t-sp'^pMl'l 
(A+sr +8pi+SpJ,) (A+S+Sp +8p'+8p')   f 

(A48ß|8p2) (A-t-sß^Sp-t-Sp1) [A(A-t-88»8p-t-8P2»«P%na 

(A+Sß) (A+sß+s) (A+sß+S+SpM (A+8ß*8"»-8P+gp') 

* >9m9u (A+sp + SPi+Sp1') (A+8'»-8p-f8PJ 

M    Qtu< (Usfl^Sp)  (A-t-sß-t-SP-fSp2) (A4-8ß»8p-t-8pa»»pl) 
u"p, i (A+sß) (A-t-sß-t-s) (A-t-sß-t-s-t-8p) n+iiwi5*n,i 

[A (A+sß-j-sp-fsp'+ap^sp11)!2 

A+sß+s+sp+sp'+sp") (A+sp+sp'+ip'+tp1') 

" J TTTTpTTprTlprT9pT} '      (4,9) 

The pattern in these results is fairly evident, but it 

is clear that the Laplace transform of the intensity function 

(Cox and Lewis,  1966, Ch.   5), 

*     ■ 
n>f(8) ■ l    (ü (8;0) 
r     r-1 r 

is not obtainable. This is disappointing in view of the simpli- 

city of the result for the EMAl process (Lawrance and Lewis, 1975) 

It is probably true that as much information can be obtained 

from the higher order joint moments given in Section 3 as can 

be obtained from the intensity function. As a particular case, 

13 



for the EMA1 process, the intensity function differentiates 

the cases 6 and 1-6, where the serial correlations do not. 

However, a direct estimate of 0 is obtainable from C. 2(1) 

and C2 ^(1)  which are given at (3.1) and (3.2). 

Some idea of the behaviour of the intensity function can, 

however, be obtained. The limiting behaviour is discussed in 

Section 6.  Consider now the value of the intensity function 

at 0. 

Note that 

pr(X1 + ... ♦Xn» t) * Pr<^x + •••''' ^n*^ 

(4.10) 
k=n 

Since X.  is exponentially distributed, we have 

pr(Nt»l) .pr(X1<t) » (l-e"At) 

and, from (4.10) 

J2Pr(Nt>lc) ^t. ^/rj 

. *♦ (e g -1) 
8 +    t 

which tends to 0 as t -» 0. 

Now the intensity function is the derivative of the 

function E(N ). 

14 



Hence, we have 

E(Nt)       I    ^««t^       .   -At 
lim —ri- - lim K i |  = liin ±-=-2  - A; 
t*0  c    t*0    *        t*0   • 

i.e., that the derivative of the mean value function (the intensity 

function) at t = 0 is X. 

15 



5.  THE VARIANCE-TIME CURVE AND SEQUENCE 

We can easily obtain the variance function for T  and 

the index of dispersion for intervals (Cox and Lewis, 1966, 

p. 71), from the results of the previous sections. 

For the variance function we have 

r-1 
Var(Tr) - r Var(X1) +2 I    (r-i) (E^X^) - ECX^ECX^)) 

i      r"1 i   i 
'Air* 2    l    (r-i)ni-ß)p Mßd-p) + (l-ß)p}l} 

i-1 

i r"1 i i 
- ^r {r*2r(l-ß)(ß(l-p) ♦ (l-ß)pj J p1 1 

k"l 

r-1  . , 
- 2(l-ß)(ß(l-p) 4- (I-P)PJ J ip1"1} 

i-1 

i r"2 i f"1  i   i 
« VT- [r-»'2(l-ß){ß(l-p) + (l-ß)p)(r I    P3 - I    ipx'1}l. 

3-0    1-1 

If P < 1 

Var(Tr) - ^r Ir ♦ 2(l-ß) {ß(l-p) ♦ (l-ß)p}{r ^g ^jL llfi-)] 

- ^r  [r*2(l-ß){ß(l-p) + (1 3)p)(I^- {^gjj }).    (5.1) 

Hence, for p < 1 the normalised variance sequence is 

Var{T } r 

Therefore,  for    p < 1    the index of dispersion is 

j - lim Jr - 14 2(1-$){8(1-P) ♦ (l-ß)p) j^y . (5.2) 
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For    p » 1 

i r-1 

Var{Tr}   = ^frlr+ 2(1-6 )2     I     (r-i)J. 
i=l 

Hence 

r-1 

VarCr) ., 
lim rV,T L   =  Um 1 +2(1-6) 2  ^-^— « -. 

Thus the process is overdispersed relative to the Poisson 

process fot which    lim J    » 1.     In particular,  if an observed 

process had exponentially distributed marginal distributions 

for the    X-     but    lim J.    was much greater than one,  the EARMA x r r 
(1,1)  process could be a candidate as a model. 

As a byproduct of (5.2), for P < 1 we get values for 

the slope of the variance time curve,  lim V'U) » vM*),  the 

initial points of the spectrum of counts q^(u)) and the spectrum 

of intervals  f+(u))  as 

f+(0+) = J lim J , (5.3) 

VM«I  ■ x lim Jr, (5.4) 

gY(0+) = J- lim J . (5.5) 

for p < 1,  (Cox and Lewis, 1966, 4.6.12). 

The relationship f+(0+) can be verified directly from 

(2.5); (5.5) says, using (5.2), that the initial point of the 

spectrum g+((*))  is greater than its value - for a Poisson 

process. 
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6.  LIMIT THEOREMS 

In this section we will study the mixing properties of 

{X }, obtain strong laws and central limit theorems for (T } 

and  (N. ), and obtain renewal type results for E(N ]. We will 

assume throughout this section that p < 1.  Our technique usually 

will be to use the limiting behavior of related Markov chains and 

Markov renewal processes to obtain limiting results for the 

EARMA (1,1) process.  The Markov chain and Markov renewal process 

will have the real line as state space.  Although it is usually 

hard to obtain specific results concerning the limiting behavior 

of these processes if they have a nondiscrete state space, the 

linear forms of (1.1) and (1.2) allow us to obtain the limiting 

behavior quite easily in this instance. 

6.1 Mixing properties and asymptotic normality 

We first consider the limiting distribution of the sequence 

{X } in the case when A»  is not exponential (A) . From (1.1) it 

follows that the dependence of X  on X ,  is through the auto- 

regressive sequence  ^A }.  Since A = PAn»i ■*" vn^n  (n»l,2,...), 

(A ; n*0,l(...}  is a Markov chain (a discrete time parameter 

process which satisfies the first-order Markov property), with 

state space  (K+,B+),  where R+» (0,»)  and B+ denotes the 

collection of Borel subsets of R+.  The transition function 

P(x,B) * Pr^An 
e fl I An-i = x^  for the Markov chain is given by 

I Xe'Xy  dy 
iJpx 

for any interval B of R+ and x * 0, where 

P(x.B) « cr  (B) ♦ (1-p) I *e "* dy (6.1) 
p* BJpx 
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4  I If        PXcB, 

w f 0 otherwise 

and  for    z  fc  0,     B-z  =   (y-z:  ycB}. 

Thus,    A      has, conditionally,  a shifted exponential distribution 

with an atom at the point    px.    By   (1.2)  we have the expansion 

Ak = ^\^k"1Vi+--- + pViVi*Vk' 

and it is not hard to show that 

E(exp{.S(vk€k+(vk.1fk.1+ ...-.P^^^^)! « %£-, 

Hence,   for the  k— order  transition  function we have 

Pk(x,B)   = prUk'  B I A0= x) 

k     r 
(B) + (l-pk)eAp x   I   Xe'Xydy , (6.2) k 

for k ^ 1, x ^ 0, and any Borel set B  in R+. Taking limits 

as k * ^ we have 

lim Pk(x,B) = "(B) j^e-^dy, 
R' B 

which is simply an exponential distribution. 

Prom (1.1), adding on the moving average operation to get 

the complete  fX ) process 

PfX c B | An- x) «  pr{ß< c B} f (l-0)pr{H€M-»-An . c B | Aft-x) nun n  n~i     ü 

= fMBp"1) + (1-P) I TT(dy)Pn"1(x,B-ßy). 
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where    B6      ■  (yö     :y« B) .    Hence,  taking limits 

lim P{Xn c B | A0-x}   »  BTTCBB'
1
) + (1-B)   f n(dy)MB-By) 

«    TT(B). 

Thus we have shown that if we start generating the sequence {X } 

with a random variable A0 that has an arbitrary (and possibly 

degenerate) distribution, the distribution function of X  will 

converge to the exponential distribution as n -» oo. 

We will now study the mixing properties of (x ) when A» 

is exponentially distributed. Let F  be the a-algebra generated 

by the random variables AA,...,A , <.*••••<.,« and U,»..,,^. u m      i m in 
Let    G_    be the    o-algebra generated    by    A_,A_.,,...; *m •  m m+i 
fm'W"--; and Um'Um*l  Let ^ ^m'' (^^tively L2 (g,,)). 

be the collection of real-valued functions that are measurable 

with respect to F .  (respectively G ), and have finite second 

moments. Since {(  )    and fu ) are independent sequences of 

random variables, by the Markov property of (A } we have for 

feL2^) and 9 ^ ^2 (Gm^k) >    k k I, that 

E(fg) -E(f)E(g) - E(f{E(g | Am) -E(g)}l 

- E(f |E(g | An|+k-y){Pk(Ain,dy) -n(dy)}I 

- pkE(f f E(g | Am4k-y)(e k (dy) -7r(dy))J 
p Am 

XpkA. 

by (6.2). 
♦ (l-pK)E{f J E(g | Am+k-y) (e   m-l)ir(dy)}   (6.3) 
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•• 

By Holder's inequality 

.P Am 

*E(f?)l/2El{E(|g| lA^-p11^)}»!1/2. 

But, letting z » p^y 

•r le'X*E(q* W • Pky)dy 
0 

-:* 

»OD                                     ■ 

f   Ae-2Xp 
■ 

0 

-k 
E(g2 

Vk'5 

•* 
E(g2), 

• -t I *• ~" E(g' | A^-Ddi 

if 0 < p < 1. 

Thus, for 0 « p .< 1 

PkElf f E(g | A   =y){e .  (dy) -Tr(dy)>l 
PA« in 

k 

P1 E(f2)1/2E(g2)1/2-pkE(f)E(g).   (6.4) 

/ ^k 

Using the Holder inequality again we have 

E{£|E(9 I Ain4k"y,(eXp ^-DMdy)) 

- E(g)E{f(eXp *»- 1)} 

< E(g)E(f2)1/2Ef(eAp A«l-l)2)1/2. 
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•* .w---* 

For    k    sufficiently large,  and    0 < p < 1 

k k 
E{(eXp ^-l)2}  - E(e2ApiVA«-2eXp ^+1) 

-S--2:T7Sr+1 
Ad^p")        A(l+pÄ) 

.  H- Pk - 2 (H-2p*) •♦• (l>2pk) (l-t-pk) 

(l+2pk)(l+pk) 

2p2k 

 E JTc 1+ 3pK + 2p*K 

*   2p 

Hence from  (6.3)  and   (6.4) 
k 

E(fg) -E(f)E(g)   C E(f2) 1/2E(g2) 1/2(pI+pk+/I pk) 
k 

< E(f2)1/2E(g2)1/2pI(2+/I). (6.5) 

Therefore, when A0 is exponentially distributed the 

sequence {(A ■! ,U )) is strong mixing in the sense of Rosenblatt n n n 

(1971) and is in fact asymptotically uncorrelated in the sense of 

Rosenblatt (1971). By (1.1)  fx } is also strong mixing and 

asymptotically uncorrelated. Further, for any measurable sets 

B - f(X1,...,Xm) and C - 9(Xm+k,Xin+k+1,...)  for suitable func- 

tions f and g, by (6.5) 
k 

|pr(Bnc) -pr(B)pr(C)| s (2+/?)p7 . (6.6) 

In addition it follows that 

T 
lim -^ » T   a.s. (6.7) 
n-*- n 

by the strong law for a stationary sequence of random variables; 

cf. Doob (1953, Chapter 10). Also since 

22 



I 

we have 

Nt lim -r- * ^    a.s.. (€.9) 

To obtain a central limit theorem for {T ) we note that, n 

using (5.2), the hypothesis of Theorem (20.1) in Billingsley (1968) 

is satisfied by (6.6) with 

o2 - Var X, + 2 J cov(X1 »X, _) 
1   n-1     1 1+n 

- T- [l + 2(l-ß){e(l-p) + (l-ß)p) T^rr], (6.10) 

which is positive. Hence, 

<Tn-nf   \ 
lim pr{-2—1 < x) » *(x), (6.11) 
n-*»      '   /no 

where 
1    .„    _L.2 

♦ (x)   =   (2ii) 2 i* :t* Je2      dy. 

By the remark after the proof of Theorem  (17.3)   in Billingsley 

(1968)   we also have 

IT  - Xt 

i~PrtaTO75*x}-♦(x,• (*•l,, 

i.e., the counting process, suitably normalized is, in the limit, 

asymptotically normally distributed. 
-  Tn 

Equations (6.7) and (6.11) show that the estimate x * 7f 

of E(X ]  is strongly consistent and asymptotically normally 

distributed with variance ^c2, with o2 defined by (6.10). Also 
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-   Nt (6.9) and (6.12) show that the estimate  X « •— of X    is also 

strongly consistent and asymptotically normally distributed with 

a'X* variance —r— . 

6.2 Renewal type theorems 

We will now turn our attention to renewal type limit theorems 

for EfN.) as t -► •. 

For any Borel set B in R+, t * 0, and x * 0, let 

Q(x,B#t) = pr(A1 < B, ^ < t | AQ = x) . (6.13) 

From the definition of the process (1.1) and (1.2) we have 

Q(x,B,t) » p cx(B)(ß{l-exp(~Aß'
1t)} 

+ (1-ß)(l-exp{-Aß"1max(t-x,0)}JJ 

♦ (1-p) I Ae"Xy dy IB(px+y){ßI(0>t](ey) 

0 

+ (l-ß)I(0 t](0y+x)}, 

where 

1    if  z f B, 

I»*,l = I 0    otherwise. 
By (1.1) and (1.2),  ((A «T )|ll» ••l#...) is a Markov 

renewal process in the sense of yinlar (1975, Ch. 10), with state 

space (R+'&f.) and semi-Markov kernel Q defined in (6.13); 

that is, letting T0 > 0, 

pr(An+1cB,Tn+1-Tn*t|A0 An,T0 !„) (6.14) 

Q(An,B,t). 
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Thus the T  process of the EARMA1 process is a marginal process 

in a Markov renewal process with a non-discrete state space. Let 

where 

and 

R(x,B.t) = I    Qn(x,B,t), (6.15) 
n«0 

Q0(x,B.t) « ex(B)e0([0,tJ) (€.16) 

rt ,<• 
Qn(x,B,t) =|| Q(x,dy,ds)Qn"1(y/B,t-s) 

0 0 

for nil, x*0,  t i 0, and Borel set h.    Note that 

E(Nt!A0 = x) »R(x,Eft). (6.17) 

Since {(  }    is a sequence of independent exponentially 

distributed random variables, for any Borel set B with positive 

Lebesque measure 

pr(A f B infinitely often | A0= x) »1 

for all x ft 0. Therefore, condition A of Jacod (1971» p. 86) 

is satisfied. Further, sine 

pr(An. B, Tn<t | A0 = x) 

ft 0npn"1(l-pJpr(( . B-pnx,€1 + ...+€M«t3"
1), n        in 

for n ft 2, a > 0, and each 6 > 0, there is a Borel set C 

of R+ of positive Lebesgue measure so that the density of 

Qn(x,. ,(a-6,a+6)) with respect to Lebesgue measure has a posit 

lower bound on the product set C * c. Hence,  the hypotheses of 
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Jacod (1971, Th. 3, p. 107) are satisfied and 

lim RCx^B.t+C) = lim ( R(x,B,t+du) = ^n(B)|c|       (6.18) 

^  C 

for any Borel sets B and C of R+ and x k 0, where  |c| 

denotes the Lebesgue measure of C,  and 

m= j TT(dy)    (1-Q(y,R+#s)}ds 

0      0 

= I pr(T1>s)ds = J- . (6.19) 
0 

Finally taking C ■ [0th] and B = R+ in (6.18) we have 

lim[E(Nt+h | A0=x) - E(Nt | A0=x)] = Xh, (6.20) 

for all x * 0. This is a Blackwell-type renewal theorem for the 

EARMA(1,1) process. 

6.3 The intensity function 

We will now show that the intensity function for the counting 

process exists and its limit as t • '  is A. Let 

q(x,t) « lim h  {0(x,RA,t+h) -Q(x,R.,t)} (6.21) 
hlO n      + 

i X expf-Xß"1t} for  t < x, 

I X exp{-Xß'1t} ♦ (1-8)xa'1 exp{-XB'1(t-x))    for  t » x. 

Consider the Markov renewal equation, (MRE), 

f(x,t) » q(x,t) +j  | Q(x,dy#ds)f(y,t-8). (6.22) 

0 0 
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Since q(x,t) * 1 and sup Q(x#R.,t) < 1 for t > 0, by 
x      w 

the results of Cxnlar (1975, Ch. 10, Sec. 3), (6.22) has the 

unique solution 

t r00 

m(x,t) = !  j  R(x,dy,ds)q(y#t-8). 

0 "f1 
The function U(t) ■ |  m(u)du satisfies the MRE, 

0 

f(x,t) =Q(x,R+,t)+J   j  Q(x,dy,ds)f(y,t-s) 

which has as its unique solution R(x,R+,t) -1, where R(x,R4,t) 

is defined by (6.15). Therefore,  m(x,t)  is the intensity of 

the counting process evaluated at t given that A. » x. 

Note that l    Ti(dx)q(x,t) = Xe" t# and for each x c R+ 

0 
t*q(x,t)  is monotone decreasing.  Hence, for b > 0. 

00   #00 

* = b J j ii(dx)sup{q(x,t) :  nb « t < (n+Db) 

* b I iT(dx)q(x,0) + b [ ir(dx) j q(x,t)dt < • 

0 0      0 

Hence,  q is directly Riemann integrable with respect to IT 

in the sense of Cinlar (1969, p. 388). By (6.18), the hypotheses 

of the Theorem on page 390 of Cir.lar (1969) are satisfied, end we 

have 

lim m(x,t) = ). 

for all x i 0.  Thus the intensity function goes to X as t ■► •. 

The same types of techniques, i.e. writing a Markov renewal 

equation, writing down its solution, and computing its limit as 

t -» <», can be used to show that the distribution of the forward 

recurrence time is in the Halt as t -•> • exponential with 

parameter \. 
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Note that subsequent intervals are, in the limit, not 

exponentially distributed. Following Cox and Lewis (1966, Ch. 4) 

call these intervals LwL-,..* • Their marginal and joint 

distributions can, in theory, be obtained from results of Section 

3 using Palm-Khinchine relationships. We note only that their 

means are, (Cox and Lewis, 1966, Ch. 4), 

EILJ = ElXnl{l + C
2(Xn)p(i)},     (i»l,2,...). 

1       2 Since ElX 1 = f and C (X ) ■ 1, using the expressions (2.3) n    A n 

and (2.4) for  p(i)  we get 

EfLil = j  {l + c(ß,p)p1'1}. 

This decays geometrically to y. When p = 0 and we have only 

the two-dependent EMA1 process, the bias does not extend beyond 

EfLjl, as would be expected from the construction of the process. 
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7.  EXTENSIONS AND CONCLUSIONS 

The EARMA (1,1) process described here is a generalisation 

of the EAR1 and EMA1 processes and has the correlation structure 

of a mixed-moving average-autoregressive process of order  (1*1) 

and an exponential marginal distribution.  It thus provides an 

alternative to an i.i.d. exponential sequence or a Poisson process 

which is relatively simple probabilistically and has an easily 

visualized dependency structure. Moreover, it is easy to generate 

on a computer in simulations, and asymptotic properties follow 

easily from the observation that it is the marginal process in a 

Markov renewal process with a nondiscrete state space. 

Lewis (1975) discusses methods of generating similar pro- 

cesses in which either (i) the marginal distribution of the X.'s 

is Gamma, mixed exponential or Weibull; and/or (ii) the dependency 

structure is that of higher order ARMA processes. We do not give 

details here; probabilistic properties of these processes* as 

well as multivariate processes, will be discussed in later papers. 

Similarly estimation properties are discussed elsewhere; 

we note only that results such as those in Section 3 allow one 

to compute asymptotic variances of serial correlations and other 

statistics based on the X.'s.  Thus, we have a tractable process 

with which to examine the efficacy of the many tests for renewal 

and Poisson processes given in Cox and Lewis (1966, Ch. 6). 

A limitation of the process is that the serial correlations 

are all positive and, for p « 0,  i.e. the EMA1 process, are 

bounded above by 1/4. 

29 



Thus» the question arises as to whether there are processes 

with exponential marginal distributions and ARMA (1,1) second 

order correlation structure and which cover a broader range than 

the EARMA (1,1) process, though perhaps at a cost of more com- 

plicated structure. 

One such process is now discussed briefly (Cox and Lewis, 

1966, pp. 7, 194-204).  In this two state semi-Markov model there 

are two types of intervals with p.ö.f.s.  f,(x)  and f?^*) 

sampled in accordance with a two-state Markov chain for which 

a.    l-o 

l-a 

1-ou      l-a, 
1 1 (7.1)   and  n= n P= -   *  ,  *   M.  (7.2) J -   - -  12-c^-o    2-a -a j 
'2 ~2 

It is assumed thit no knowledge is available about the 

type of interval.  Then, the distribution of an interval X^ is 

fx(x) » w1f1(x) ♦Tr2f2(x) (7.3) 

and the correlation between X,  and X^+i    is 

p(k) » A ßk    (k = 1,2,...), (7.4) 

where A is a positive constant and B ■ a, + a, - 1 * a,- (l-a,)* 

Thus the correlation structure is that of an ARMA (1,1) process. 

If we let 

^(x) -  1- 

Ae-Xx 
e^x0    0 * x * x0, 

' 0        x > x0; 

x * x0. 

**<*>-1 Xn.x* 1 
A=y^        x ' xo 
e       x > xA; 
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the marginal distribution of an interval X, fx(x), is 

exponential (X) if we set v. = l-exp(- x0) . There is then 

only one degree of freedom left in the matrix P, and in addi- 

tion to A, we have free parameters w.  (or Xg) and a,. 

What then is the range of 8, and can it be negative? 

Straightforward manipulation shows that 

*1 - al 

which lies between zero and one. Thus the model is no broader 

than the EARMA (1,1) model and the question of obtaining negative 

correlation is still open. More complicated non-linear schemes 

for doing this are discussed by Lewis (1975). 
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