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1. INTRODUCTION

We discuss the stationary sequence of random variables
(x,} which is formed from a sequence {Gn} of independent
random variables, each with the same exponential distribution
with parameter X > 0, according to the probabilistic linear
model

BGn with probability B8,
X = (1.1)

B(n*'hn-l with probability (1-8),

for n=1,2,..., where 0 & £ £1, and

ijn-l with probability o,
A = (1.2)

x 'pAn_l-&‘n with probability (1l-p),

for n=1,2,... and 0 & p £ 1. The random variable Ag has

an arbitrary distribution but, if it is taken to be exponential

with parameter A, then the X,'s, n=1,2,..., form a

stationary sequence of dependent exponential random variables.
The model of (l1.1) and (1.2) will be called EARMA(1l,l),

(exponential autoregressive-moving average, each of order 1);

it extends the moving average model of Lawrence and Lewis (197S),

which is essentially (l.1) with A replaced by ‘n-l' and

n-1
the autoregressive model of Gaver and Lewis (1975), which is
just (1.2), by combining the two basic structures defined in
those papers. Further extensions are given by Lewis (1975).
The model defined by (1.1) and (1.2) is actually a back-

ward model; an equivalent forward model can be defined similarly.



However, the two, while similar, are not equivalent. This is
because the sequences are not time reversible in the sense that
{xl""'xk} does not have the same joint probability distribu-
tion as {X_,,...,X_ }. The properties of one model can be
derived by the same techniques as those of the other, so we
consider only the backward model. The time dependence does,
however, come in in an essential way in estimation problems for
the model.

Let Tt = x1+ ...+-xr. Then Tr can be thought of as the
time of occurrence of the rEE event in a point process having
{xi} as the interval sequence. Further let N, be the number
of events that occur in (0,t] in the point process.

Various moments and joint distributions for the {X,)
sequence are obtained in the next two sections. A recursive
scheme for obtaining the Laplace transform of 'rr is obtained
in Sention 4. The variance time curve and sequence are then
obtained. In Section 6 the asymptotic behavior of the sequence
{xn} is studied and limit theorems for T , N, and E(N,)
are given.

Finally, several extensions of the model are discussed

as well as another model having similar correlation structure.



2. SOME PRELIMINARY PROPERTIES OF THE EARMA (1,1) MODEL

Let {Un} and {V“} be independent sequences of
independent random variables taking the values (0,1} with

0} = p. Then we may write (1.1) and

P{Un =0} = g8 and P{Vn

(1.2) as

>
[}

B‘n"unAn-l' (2.1)

with

A, = PA |tV € (2.2)

for n=1,2,..., where {en} is a sequence of independent
exponential random variables with parameter A. Unless other-
wise indicated we will assume that Ay = €gi that is, Ao has
exponential distribu‘ion with parameter A and is independent
of {(n: n=1,2,...}, {Un}, and {Vn}.

It is not hard to show that X, has an exponential

distribution with parameter A; in fact by (2.2), for s 2 0
E{exp(-sA_)} = E{exp(-spA )}(A*'Q)
P n P n-1'""%+s
for n=1,2,... . By induction (Gaver and Lewis, 1975),
= A =
E[exp{-sAn}] * TTs for n=0,1,2,...

since Ao = eo. Hence

E{exp(-sX )} = E[exp{-s (B¢ +U A _,)}]

A A A
=8 yvsgt (1-B)x3sE Yo

- A
T+’

3



showing that the marginal distribution of the xn's, like those
of the Gn's. is exponential with parameter ).

However, the xn's are not independent, as seen by the
following calculation of the covariance between xn and xn*k.

Ignoring terms which cancel, we get

Cl.l(k) = B(an -E(Xn)E(X

n*k) n+k)

= B(L-B){E(€A 1) ~E(¢ )EQA_ 1))
gy ? -
+ (1=8)*{E(A_ _ A . 1) -EA _EQR . 1)}

By induction arguments we get

Kk 1
E(€ A ) ~E(€VEM ) = p5(1-p)}

and

k

1
E(AnA -E(An)E(An+k) i o

n+k)
Therefore, the serial correlation p(k) = C1 1(k)/Var(x) is
[

p(k) = corr(x X ,) = 0" "lc(s,0), (2.3)

where
c(B,p) = R(1-8)(1=-p) + (1-B)?p (2.4)
= g=38p+ 2R p-B¥+p

= 8(1-8B) + p(1-8) (1-28).

When p = 0 we have the correlation for the EMAl model
given by Lawrence and Lewis (1975). When B8 = (0 we get the
correlation for the autoregressive model EARl given by Gaver
and Lewis (1975). By (2.3) and (2.4) the first order correla-

tion is nonnegative and bounded above by 1. Note that, if



d 4l an. - . . _1-3
35 €(B,0) = 1-3p-28(1-20) = 0, then & 5-‘-1—_5’;)- 1f

%-S p < -;- this value of B is non-positive so that, for fixed
p, c(B,p) decreases monotonically from the value p at £ = 0
to zero at 8 = 1. 1If %< p &1, then 1—-‘1-'1'—3%;)- & 1l. PFinally,
-5% c(B.%—) < 0. Hence, for fixed p, as a function of 8
c(B,p), which always is equal to p at £ = 0 and equal to

0 at B =1, 1is single valued on [0,1) for op 2 %- For

p < 1 it is double valued on [0,1). This result will be use-

3
ful in the estimation of p and £. 1In fact if o z%- esti-
mates of p and B can be obtained from the first two serial
correlations. For p < % higher order joint moments are needed.
Note that the second order joint moments or correlation
structure is that of the so-called ARMA (1,1) model (cf. Box

and Jenkins, 1971); consequently the spectrum will be

£, = 21+2 T okicoskw))

k=1
.1 [1 + {1-2¢(8,p) }p? - 2p{1-c(B,p)cos ul] (2.5)
] 1+8%-2pcosw
for 0 £ w £ n. The spectrum has the constant value %- vhen the

xn's are independent, (p=8=0; B=1).
Note that the correlations p{(k) are all positive in
this EARMA (1,1) model, unlike the ARMA (1,1) model. This seems

to be the greatest limitation of the model.



3. HIGHER-ORDER JOINT MOMENTS

We now proceed to the calculation of other joint moments
for {xn}. These are useful in estimating g8, since it is not

possible, when p < %, to distinguish between the case ({8,p]}

and {(1-8),p} on the basis of the second order joint moments.
This is closely related to the question of time invariance dis-
cussed in the Introduction; the time (or serial number) depend-
ence shows up clearly in higher order joint moments.

First, for k & 1, eliminating terms that cancel, we

have

2,11k = E(XpXpap) = E(XEX )
= B2 (1-B){E(€]A, 1) ~E(DE@ . )}
+ 28(1-B){E(€ A _|A . 1) -E(¢ A IEQA L, 1)}
+ (1-B) *{E(A2 1A . 1) ~E(A_DEWM . 1)}
= X" E(e I Var (¢ ) 28(1-8)
+ {E(€)) - E(€)E(< ) }{8?(1-8) (1-p) + (1-8) *p}]

- pk°1% [28(1-8) 2 + 4{B? (1-8) (1-p) + (1-8)?p}). (3.1)

When p = 0, so that we have just the first order moving average

process, (3.1) becomes for Kk =1

Cp 1 (1) = 3={28(1-8) (1+8) } = {2 (1) (148) ).



It is useful to write the multiplier of pk-l/X' in (3.1)

as a polynomial in p and a polynomial in B8 and we then have

C, (k) = 057 e (1-8)(28(148) + 0 (1-8-8%))

okl L (o +8(2-20) + 82 (p-2)).
Similarly we get for

e 2 = 2
c1.2‘k) E(XanH() E(xn)E(xnﬂc)

%"l & 1(6(1-g) (1-p) + (1-8)2p)} (145) 18

+ 0¥ 1{p? + B(1-3p2) + B2 (202-1)

_2(k-1)

= %[Cl’l(k)(l+f)*'%7 {p?+2(1-3p%) + 82 (2p2-1). (3.3)

Again (3.3) can also be written as polynomials in B8

and p. When k =1 we get
3
%rcl,z(l) = (1-8){B(2+B) + p(1+8) (1-28) + p?(1-28) ) (3.4)

= p(14p) + B{2(1-p)=3p2} + 87 (=1-p+2p2%) + B*(20-1). (3.5)

The fact that Cz'l(k) ¥ °1,2‘k) indicates that the
{xn} sequence is not time reversible. This can hopefully be
exploited, as in the EMAl process, to estimate B8, and, in
particular, differentiate between the cases p,8 and p,(1-8).
Higher order moments, e.qg. Cz,z(k)' are useful in deriving the
asymptotic variances of sample serial correlations for the

model. This will be discussed elsewhere.



The above third-order joint moments are special cases
of the third order joint moments with two lags, 3j and k,
whose double Fourier transform will give the bispectrum of the
{xn} seqguence.

For j 21, ka1, and p <1, similar calculations

to those above show that

clplol(j'k) = E(ann+jxn+j+k) 'E(Xn)E(Xn‘_j)E(xn‘_j*k)

= or (8(1-8)%p%020371) (10) 4 (1-8)%0%020)  (3.6)

1+p

+ fr (8(1-8)% [0X(p?) 4+ (10

202371 (1-p) + 20371 (1-p) (1-27"1)4p3)

+

oX=1{(1-p)2p3"1 4 (1-p))

+

+ p37{(1-p) 12-p%"11 4 o}

k=1 (1-p) + 9371 (1-p)})

+

82 (1-8) [pX(pI"L(1-p) ] + 0

k¢

-p?)
(1-8) * 1p* (118" + 203 (1-p7) )

+

0% (1-p)03 + 03 (1-p%" ) 11}

+

We give this expression for completeness and because it
is clear that second-order joint moments do not describe com-
pletely a process which is as non-normal as the EARMA(1,l)
described here. It is felt, however, that the special cases
(3.1) and (3.2) of the third order moment °1,1,1(3'k) when
j =0 and k = 0 respectively will give all necessary information.
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It is also possible to derive Laplace Stieltjes transforms
for the joint distributions of several xi's. These will be
multivariate exponential distributions. Thus we have, for

example,

}] =
(X+le) A(1-8) (A+8s +Dsz)
) «(3.7)

8
(r—'ﬂﬂl (r'ﬂ [(xn (uszp)(us +8,P) (xulTn

Despite its relatively simple form, this transform does

B[cxp{-llxn-szxn+l

not lend itself to easy derivation of moments, e.g. z(x;xn+1].

or E[Xxx? or of conditional moments, as for

n n+11' n*n+1l’
the EMALl case (p=0) in Lawrance and Lewis (1975); nor is it

E[X

invertible to give approximate likelihoods for the process.

When 8, =8, =8 we get the transform of the sum

xn + xml as

Elexp{-s(X +X _,)}] =

A y2|B(A+8S) A (1-B) (A+Bs+ps)
(Fi’s") [{xni * h+os) (2+8 (1%p } (A+s+s ] * (3.8)

Transforms of the distributions of the sums of adjacent
xi's are very useful in the point process theory of the model;
if these can be obtained one can obtain the second order proper-
ties of the counting function of the point process in the form
of either an intensity function, the (Bartlett) spectrum of
counts or the variance time curve (see Cox and Lewis, 1966,

Ch. 4). These transforms are discussed in the next section.

Y



4. THE SEQUENCE {'rr}.

Recall that Tr = x1+ ...4-xr. We will interpret Tr
as the time of the 1'3:-n event in a point process which starts
with an event at the origin. We will obtain a recursive rela-
tionship for computing E{exp(-sTr)} for r=1,2,... and

8 2 0. Let
V(s,,8,) = E[exp{-slTl-szalll. (4.1)

Then, by direct computation from the definition (1.1) and (1.2)
2
{A(x+sls+szp)}

V(s):8;) = X735 Bvs,) (W¥s,B) (K¥s,0) (h¥s 078 (4.2)
Now we define
b(s,,s,) = E[exp{-(518+szv1)€1}] (4.3)

A(A+813+l20)
" TX+s,B+s,) (A+8,B)

and let

v (8,,8,) = E[exp{-slTr-szar}].

Then, for r 2 2

V. (8,,8,) = Elexp{-8, (T _,+B€ +UA__,) -8,(pA _,+V € )]}]

= Elexp{-(s,B+8,V )€ ~8,T _, - (8,U +s,0)A._ }

b(s,,8,)E{V__, (8,,5,U +s,p)}

b(s,,8,) [BV._;(8,,8,0) + (1-B)¥__,(s;,8;+8,0)]. (4.4)

10



For 8 =0 and 0 = 0 we get, respectively, the
recursion relationships for the EAR]l process (Gaver and Lewis,
1975) and the EMAl process (Lawrence and Lewis, 1975) which
have explicit solutions which lead to expressions for

B{oxp(-srr)}.

Using (4.4) we can calculate the Laplace transform of
Tr recursively. In particular we have for Tl that, using
(4.1)

V(s,0) = E[exp{-sTl}] = X%? 3 (4.5)
as it should. Then we get

¥,(s,0) = E[exp{-st}]

A A {x(A+sB+sp) }?
" Y+sf [B s * (178) TXTEEyTxesden) (hesp) Uupn,] W&

which agrees with (3.8). Unfortunately the expressions become

very unwieldy as r increases. We have

A 2
¥3(8,0) = (5353) [e’xi,»f 8(1-8){

+ (1-p)?

For the transform of the distributions of T‘ and Ts we get

(s,0) = (L)’ 8 2 4+ g2(1-p) ‘f’
Vel®e A+sB 1+s iy

11



A+88+8D 2 {A1\+88+sok+sok*l)}z

= 2
* =k [(Mss)(xns*s)(xnmnm L GraoFesoftl) (resrapespt])

k=1

(A+sB+8p?) {»(\+s8B+sp+sp?) )}’
(A+88) (A+8B+8) (A+8B+8+8p°) (A+s8p+sp’) (A+s+sp+8p’)

+

v (1-8)° (A+8B+sp) (A+8B+8p+8p2) {A (A +sB+sp+sp’+8p’)}?
(A+8B) (A+8P +8) (A +SB+8+sp) (A+8R+8+8Dp+8D")

1
X X+sc+8p X +8p°) (A+s+8p+8p“+8p ) !

(4.8)

For the sum TS we get the transform

4 K,,2
Ve (8,0) = (X"E) BY + B (1-s) ) (A(A+sB+sp )]
> = { X_ k=1 (A+3B) (A+sB+8) ““—pfc) ()H»r&le)

{(A+:B+:pk'1)[A(A+38+so+spk)l:

(A+38)(A+sB+s)(A+sB+s+sok'1)

4
+ 82 (1-8)2%] §
k=2

3 k - k }
(A+s8p+8p ) (A+s8+8p+8p )

4 (A+88+spk-2) (A()\-0-:84»30’-0»39")]2

k=3 { (A+88) (A+s88+8) (Anennpk':) (Anp’npi)

+

(\+88+8p) [\ (A+s8B+8p +8p"*) ]2
* 0F88) (A +86+8) (A +8B+8+8p) (A¥8p +8p")

- 1l
A+s+8p +8p"

+ B(1-8)° A+8B+80
(A+88) (A+8B8+8) (A+8R+s+8p) (A+sB+s+sp+8p’)

12



{(A+se+sp+so’)[A(A*38+-o+sp’+:p“]’
(A+s8p+8p°+8p +8+8p+80° +80

(A+sB+8p+8p?) [A (A+sB+sp+sp +8p")]?
(X+8p +8p +80" ) (A+8+8p +8p '+80

+

(A+sB+sp2+8p?) [\ (A +8B+sp+sp’+8p*)])?
(A+sp +8p +8p ) (A+8+8p +8pT+8p’)

, +88+802) (A+sB+sp+sp’) () (\+sB+sp+sp®+sp*))?
(X?sB)(x+sB+3771+sB+s+sp‘)(x+s§+s+3p+sp’;

1
4 (X+so+so*+sp')(A+s+sp+so‘+so’£]

+ (I_B)u{(k+ss+sp)(A+sB+so+sp’)(A+ss+3p+.p’+. ’
(l+sB)(X+sB+s)()+sB+s+lD)(X+s§+s+lp+lpl,

[ (\+sB+sp+spi+sp +8p") ]2
(A +SB+S+Sp+8p +80 ) (A+8p+8p +8p +8p")

(4.9)

1
X x+s+sp+sp‘+so’+s?'} .

The pattern in these results is fairly evident, but it
is clear that the Laplace transform of the intensity function
(Cox and Lewis, 1966, Ch. 5),

me(s) = rzl v, (8:0)

is not obtainable. This is disappointing in view of the simpli-
city of the result for the EMAl process (Lawrance and Lewis, 1975).
It is probably true that as much information can be obtained
from the higher order joint moments given in Section 3 as can

be obtained from the intensity function. As a particular case,

13



for the EMAl process, the intensity function differentiates

the cases B8 and 1-8, where the serial correlations do not.
However, a direct estimate of B is obtainable from 01'2(1)
and Cz'l(l) which are given at (3.1) and (3.2).

Some idea of the behaviour of the intensity function can,
however, be obtained. The limiting behaviour is discussed in
Section 6. Consider now the value of the intensity function
at 0.

Note that
t

e B __B | (4.10)

n

NCRNCI
k!

e~ 8

k

Since xl is exponentially distributed, we have

Pr(N,21) = pr(x,£t) = (1-e %)
and, from (4.10)
- A
¢
k§2 pr(N, 2k) %t- [l-e 8 ]
4
t t
A
S N =1)
B8 t 4

which tends to 0 as t » 0.
Now the intensity function is the derivative of the

function E(Nt).

14



s

Hence, we have

E(N,) z pr (N, 2 k)
Yim t . 1im k=L l-e

t = lim
t+0 t+0

t+0

t

i.e., that the derivative of the mean value function (the intensity

function) at t =0 is ).

15



5. THE VARIANCE-TIME CURVE AND SEQUENCE

We can easily obtain the variance function for 'rr and
the index of dispersion for intervals (Cox and Lewis, 1966,
p. 71), from the results of the previous sections.

For the variance function we have

r-
Var(T ) = r var(x,) +2 )

(r-i) (a(xlx
i=l

i+
1 rst i-1
= 5z {r+2 1z1 (r-i) [(1-B)p™ " "{B(1-p) + (1-B)p}1}

1 reloja
xr {r+2r(1-8)(B(1-p) + (1-B)plk21 P

r-1 i-1
- 2(1-8) [B(1-p) + (1-e)o11i ip
=]

}

1 t°2 . f'l i-l
= 5z [r+201-8){B(1-p) + (1-B)p}{xr ] ol- ] ip""*)).
j=0 i=1
If p <1

Var(r,) = fr (r+201-8)(8(1-p) + (1-B)p}{x J22T - & 1-o7),
ro X ° oHr 15— % T

= 4 - - , r _(I-Dr
yr (r+2Q1 B){B(1-p) + (1 3)9}{1—_3 = . (5.1)

Hence, for p <1 the normalized variance sequence is

var{T_ ) 1 1-of
Jt = m = 1+42(1-8){B(1-p) + (1'8)9){m-t -

Therefore, for p <1 the index of dispersion is

3= 1im J_ = 1+2(1-8){B(1-p) + (1-B)p} TI%‘T . (5.2)

rve

16



For p =1

r-1

Var{T_} = yrlr+2(1-8)° DAL
Hence
r=1
var{T } 1k

)2&_=.
r

lim L = 1lim 1+2(1-p :
new FEIT 17~ 00
Thus the process is overdisprersed relative to the Poisson

process for which 1lim Jr = 1. In particular, if an observed
r-»o

process had exponentially distributed marginal distributions

for the xi but 1lim Jr was much greater than one, the EARMA
r-vcb

(1,1) process could be a candidate as a model.

As a byproduct of (5.2), for p <1 we get values for
the slope of the variance time curve, 1lim V'(t) = V'(e), the
initial points of the spectrum of count:*-g+(w) and the spectrum
of intervals f (w) as

1

f+(0+) - :‘2 Jr, (5.3)
Vi(e) = A lim Jr' (5.4)
r+w
A
g+(0+) . = :i: Jr' (5.5)

for p <1, (Cox and Lewis, 1966, 4.6.12).

The relationship f_ (0+) can be verified directly from
(2.5); (5.5) says, using (5.2), that the initial point of the
spectrum g+(u) is greater than its value % for a Poisson
process.

17



6. LIMIT THEOREMS

In this section we will study the mixing properties of
{xn}. obtain strong laws and central limit theorems for {Tn}
and {Nt}' and obtain renewal type results for E[Nt]. We will
assume throughout this section that p < 1. Our technique usually
will be to use the limiting behavior of related Markov chains and
Markov renewal processes to obtain limiting results for the
EARMA (1,1) process. The Markov chain and Markov renewal process
will have the real line as state space. Although it is usually
hard to obtain specific results concerning the limiting behavior
of these processes if they have a nondiscrete state space, the

linear forms of (1.1) and (1.2) allow us to obtain the limiting

behavior quite easily in this instance.

6.1 Mixing properties and asymptotic normality
We first consider the limiting distribution of the sequence
{xn} in the case when A, is not exponential (). From (1.1) it

follows that the dependence of X £ on X is through the auto-

n n-1
regressive sequence {A_}. Since A =pA _,+V €  (n=1,2,...),
{An:rmso.l....} is a Markov chain (a discrete time parameter
process which satisfies the first-order Markov property), with
state space (R _,R,), where R = [0,2) and B, denotes the
collection of Borel subsets of R_. The transition function

P(x,B) = pr{Anc-BI A } for the Markov chain is given by

n-1" %
P(x,B) = p¢c x(8)4-(1-0) J Ae-xy dy (6.1)
2 BJpx

for any interval B of R, and x = 0, where

18



1 if  pxeB,
cpx(B) =

0 otherwise
and for z 2 0, B-2z = {y-z: yeB}.

Thus, A, has, conditionally, a shifted exponential distribution

with an atom at the point px. By (1.2) we have the expansion

k k=1

A 0

k

and it is not hard to show that
Elexpl-s (v, € V. € .+ + o5 ly €)1 = A+80"
expl=s(V € +0V, 1€ 1+ ... 40 161! ~+s '

= pk+ (l-ok)x%;-

Hence, for the kEh order transition function we have

Pk(x,B) pt{Ak < B | A, = x}

k

oKe | (B) + (1-pF)etP X [ eV ay , (6.2)
P X B

for k & i, x 20, and any Borel set B in R_. Taking limits

as k * * we have

1im PX(x,B) = 7(B) = [ e May,
Ko a

which is simply an exponential distribution.

From (1.1), adding on the moving average operation to get

the complete {xn} process
P{X B | Ag=x} = “pr{B¢ <B}+ (1-B)pr{Be +A_ _, B | Ao-x}

= gn(BR~ 1) + (1-B) f n(dy)p""(x,a-ey).

19



where BB-1 = {yB'lzye B}). Hence, taking limits

lim 11‘{)(n €B| Ay =x} = Bn(BB-l) + (1-8) I n(dy) n (B-By)

n-.@

= n(B).

Thus we have shown that if we start generating the sequence {xn}
with a random variable Ao that has an arbitrary (and possibly
degenerate) distribution, the distribution function of xn will
converge to the exponential distribution as n + =,

We will now study the mixing propérties of {xn} when A,
is exponentially distributed. Let gm be the o-algebra generated
by the random variables Ao,...,Am, ‘1""'(m' and Ul""'uu'

Let G be the o-algebra generated by ApeApyyreeid

‘m'€m+1""; mel’ 0T

be the collection of real-valued functions that are measurable

and U_,U Let Lz(gm). (respectively L’(gm)).

with respect to En+ (respectively gm). and have finite second
moments. Since {Gn} and {Un} are independent sequences of
random variables, by the Markov property of {A_.] we have for

n
fu.‘(gm) and chz(§m+k), k 21, that

E(fg) -E(f)E(g) = E[f{E(g | A ) -E(q)}]
= E[f I E(q | Amk-y){Pk(Am.dy) - n(dy) })

= o*E [ B(g | A =v) (e, (@y) - vi@n )
o*A,
k Ao*Ay
¢+ A-pMIBlE [Eg I Ay =i te M-lway))  (6.3)
by (6.2).

20



By HOlder's inequality

DAm

k
= E{fE(qg | Apek = P Am)}

B{ffz(q | Ak =Ye  (dy)}

< et 2R (lg] | AL, = o*A 17112,

s E(£2)1/2

But, letting 2z = pky

E{E(g? | Ak = pkAm) 1172,

k

2 i .
E{E(q lAmk PrA)

an

Xe-)‘yE(gz | Rpsk ™ pky)dy

/]
—_— -

f 20 E(qzl Ax = 2)dz
0
E

(9).

o"""'o*l"'o

if 0<p<,
Thus, for 0 £ p < 1]

pkE[fIE(q | Ak = y){e k. (dy) - n(dy)}]

DAm

k
s 02 B(£) 1/ 25(g7) V2. kg (eyp(q).
Using the HSlder inequality again we have
A0 ¥ A
E{ffs(qlam*":y) (e = 1)n(dy)}

K
= E(g)E{f(e’® Mm_ 1))

k
s E(g)E(£?) Y/ 2p( (P Mm.y)2)1/2,

21
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For k sufficiently large, and 0 < p < 1
Ao*Ag 20p"A roFAg
E{(e -1)%} = E(e m. 2e +1)

IS S
A(14p%)

+1
A (1+20%)

k- 2(1420%) + (1+20%) (140%)

'1"'0
(1420") (14pK)

= 20
l+ 3pk + me

£ 2p2k.

Hence from (6.3) and (6.4)
k

E(fg) - E(£)E(g) & E(£2) Y/ 2E(g2) 12 (p2+p%+/T o¥)
k

s e(£2) V2892122 (24 7). (6.5)

Therefore, when A, is exponentially distributed the
sequence {(An,tn,un)) is strong mixing in the sense of Rosenblatt
(1971) and is in fact asymptotically uncorrelated in the sense of
Rosenblatt (1971). By (1.1) {xn} is also strong mixing and
asymptotically uncorrelated. Further, for any measurable sets
B = f(xl....,xm) and C = g(xm+k'xm+k+1"") for suitable func-

tions £ and g, by (6.5)

k
lpr(BAC) - pr(B)pr(C)| s (2+/§)DI . (6.6)

In addition it follows that

T
R. 1}
:;i: ? x a.8. (6.7)
by the strong law for a stationary sequence of random variables;

cf. Doob (1953, Chapter 10). Also since
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TN TN +1

t t t
-—t g = § (6.8)
Nt Nt Nt
we have
Nt
lim —t- = x a.8.¢ (60,)
t+ o

To obtain a central limit theorem for {Tn} we note that,
using (5.2), the hypothesis of Theorem (20.1) in Billingsley (1968)
is satisfied by (6.6) with
2 =
] var X, +2 nzl cov (X, /X, )

=} 11+201-8) {8 (1-p) + (1-8) 0} £2o1, (6.10)

which is positive. Hence,

{Tn-n% }
lim pr € x; = d(x), (6.11)
n»o /no
where
1 1l
- x -
o(x) = (2m) 7[ e 2 4.

By the remark after the proof of Theorem (17.3) in Billingsley

(1968) we also have
lim p:{wnt- 410 x} = 0(x), (6.12)
tre oA t
i.e., the counting process, suitably normalized is, in the limit,
asymptotically normally distributed.
Equations (6.7) and (6.11) show that the estimate X = 1,:‘-
of B(xn] is strongly consistent and asymptotically normally
distributed with variance %o’, with o¢? defined by (6.10). Also
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(6.9) and (6.12) show that the estimate i = 1} of A is also

strongly consistent and asymptotically normally distributed with
233

variance ot)\ .

6.2 Renewal type theorems

We will now turn our attention to renewal type limit theorems
for E(Nt) as t » =,

For any Borel set B in R,, t20, and x 20, let
Q(x,B,t) = pr(A, ¢B, T £t [Aj=x) . (6.13)
From the definition of the process (1.1) and (1.2) we have
Q(x,B,t) = p € (B) [B{1-exp(-AB"1t))

+ (1-8) [1-exp{-28"lmax(t=-x,0)}]]

+ (1-p) [ Ae'xy dy IB(px+y){BI[o't](By)

0
+ (1-8)1[00t1(8y+x)}o
where
‘1 if zZ¢B,
Ig(z) = ' .
0 otherwise.

By (1.1) and (1.2), {(An,Tn);n=-0,l,...} is a Markov
renewal process in the sense of Qinlar (1975, Ch. 10), with state
space (R+,g*) and semi-Markov kernel Q defined in (6.13);

that is, letting T, = 0,

0

prmMl €B,T ,-T st | LYR ..,An.'ro....,'rn) (6.14)

- Q(Anpnvt) .
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Thus the Tn process of the EARMALl process is a marginal process

in a Markov renewal process with a non-discrete state space. Let

R(x,B,t) = § Q"(x,B,t), (6.15)
n=0
where
Q% (x,B,t) = e (B)ey(10,t]) (6.16)
and

t (@
Qn(va:t) = I [ Q(Xadeds)Qn-l(Yoth'.)
0 0

for n&1l, x &0, t 20, and Borel set B. Note that

E(Nt | A, =x) = R(x,E,t). (6.17)

0

Since {Gn} is a sequence of independent exponentially
distributed random variables, for any Borel set B with positive

Lebesque measure
Pr(A e¢B infinitely often | Ay = x) =1

for all x & 0. Therefore, condition A of Jacod (1971, p. 86)

is satisfied. Further, sinc~

pr(A B, T St | Ay = x)

n n-1

2B p (l-ppr(enc B-p“x,e +...+ens te-l).

1

for n 22, a>0, and each § > 0, there is a Borel set C
of R, of positive Lebesgue measure so that the density of
Q"(x,. . (a=8,a+8)) with respect to Lebesgue measure has a positive

lower bound on the product set Cx C. Hence, the hypotheses of
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Jacod (1971, Th. 3, p. 107) are satisfied and

lim R(x,B,t+C) = lim I R(x,B,t+du) = % n(B) |C]| (6.18)
t -+ tro
for any Borel sets B and C of R_ and x 20, where |C|

denotes the Lebesgue measure of C, and

up a

[4
'n(dY) J {l'Q(Y'R+0S) }dS
0

3
n
O

w

pr(T1>s)ds = : (6.19)

>| p

Ot

Finally taking C = {0,h}] and B = R, in (6.18) we have

lim[E(Nt+h | Ag=x) - E(N, | Ag=x)] = }h, (6.20)

t >

for all x & 0. This is a Blackwell-type renewal theorem for the

EARMA(l,1) process.

6.3 The intensity function
We will now show that the intensity function for the counting

process exists and its limit as t - » is A. Let

a(x,t) = lim £ {0(x,R,,t+h) - Q(x,R,,t)} (6.21)
hi0
’x exp{-AB-lt} for ¢t < x,
. A exp{-xa'lt}+-(1-B)AB-1 exp{-AB-l(t-x)} for t 2 x.

Consider the Markov renewal equation, (MRE),

t o
f(x,t) = q(x.t)+-j I Q(x,dy,ds)f(y,t-s). (6.22)
0o O
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Since q(x,t) # 1 and s:p Q(x,R,,t) <1 for t >0, by
the results of ginlar (1975, ch. 10, Sec. 3), (6.22) has the

unique solution

t (>
m(x,t) = I I R(x,dy.ds)q(y,t-s).
0 0 t
The function U(t) = I m(u)du satisfies the MRE,
0

t @®
f(xot) x Q(XoR+ct) "'I I Q(XJdYod.)f(Y't'.)
0 0
which has as its unique solution R(x,R+,t)-1, where R(x,R+,t)

is defined by (6.15). Therefore, m(x,t) is the intensity of

the counting process evaluated at t given that Ao = X.

Note that I n(dx)q(x,t) = re"*t, and for each xe R,

0
t+g(x,t) is monotone decreasing. Hence, for b > 0.

oi b)) I n(dx)sup{q(x,t): nb 8 t < (n+l)b}
n [ ]

0 ® [
€Db [ n(dx)q(x,0) +b I m (dx) I q(x,t)dt < e

Hence, q 1is directly Riemann integrable with respect to =«
in the sense of ginlar (1969, p. 388). By (6.18), the hypotheses
of the Theorem on page 390 of Cirlar (1969) are satisfied, and we

have

lim m(x,t) = )
t o

for all x & 0. Thus the intensity function goes to A as t + =,

The same types of techniques, i.e. writing a Markov renewal
equation, writing down its solution, and computing its limit as
t -+ =, can be used to show that the distribution of the forward
recurrence time is in the .imit as t » » exponential with

parameter .

27



Note that subsequent intervals are, in the limit, not
exponentially distributed. Following Cox and Lewis (1966, Ch. 4)
call these intervals LI'LZ"" . Their marginal and joint
distributions can, in theory, be obtained from results of Section
3 using Palm=-Khinchine relationships. We note only that their

means are, (Cox and Lewis, 1966, Ch. 4),
ElL;) = EIx 1(1+c?(x dotid)),  (i=1,2,...).

Since Elxn] = % and cz(xn) = 1, using the expressions (2.3)

and (2.4) for p(i) we get

EIL;) =+ (1+ciB,0pi™)),

This decays geometrically to %. When p = 0 and we have only

the two-dependent EMAl process, the bias does not extend beyond

E[Lll. as would be expected from the construction of the process.
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7. EXTENSIONS AND CONCLUSIONS

The EARMA (1,1) process described here is a generalization
of the EARl and EMA]l processes and has the correlation structure
of a mixed-moving average-autoregressive process of order (1,1)
and an exponential marginal distribution. It thus provides an
alternative to an i.i.d. exponential sequence or a Poisson process
which is relatively simple probabilistically and has an easily
visualized dependency structure. Moreover, it is easy to generate
on a computer in simulations, and asymptotic properties follow
easily from the observation that it is the marginal process in a
Markov renewal process with a nondiscrete state space.

Lewis (1975) discusses methods of generating similar pro-
cesses in which either (i) the marginal distribution of the xi'-
is Gamma, mixed exponential or Weibull; and/or (ii) the dependency
structure is that of higher order ARMA processes. We do not give
details here; probabilistic properties of these processes, as
well as multivariate processes, wWwill be discussed in later papers.

Similarly estimation properties are discussed elsewhere;
we note only that results such as those in Section 3 allow one
to compute asymptotic variances of serial correlations and other
statistics based on the X,'s. Thus, we have a tractable process
with which to examine the efficacy of the many tests for renewal
and Poisson processes given in Cox and Lewis (1966, Ch. 6).

A limitation of the process is that the serial correlations
are all positive and, for p = 0, i.e. the EMAl process, are

bounded above by 1/4.
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Thus, the question arises as to whether there are processes
with exponential marginal distributions and ARMA (1,1) second
order correlation structure and which cover a broader range than
the EARMA (1,1) process, though perhaps at a cost of more com-
plicated structure.

One such process is now discussed briefly (Cox and Lewis,
1966, pp. 7, 194-204). 1In this two state semi-Markov model there
are two types of intervals with p.G.f.s. fl(x) and fz(x)

sampled in accordance with a two-state Markov chain for which

ay -a, l-n l-a
P = ](7.1) and Q1 =1 P= 2T—- FG_-Q— (7.2)
l-a a
2 2

It is assumed that no knowledge is available about the

type of interval. Then, the distribution of an interval xk is

fx(x) =" 1(x)¢-ﬂ 2(x) (7.3)

and the correlation between x1 and xk+1 is

o(k) = A X (K= 1,2,0.2), (7.4)

where A is a positive constant and 8 = a14-c2-1 =a - (l-az).

Thus the correlation structure is that of an ARMA (1,1) process.

If we let
-\x
Ae
| e OFX e
fl(")'
0 X > xoa
‘0 x‘xoo
fa(x) = -Ax
L xo g
e 0
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the marginal distribution of an interval X, fx(x), is
exponential (1) if we set " = l-exp(- xo). There is then
only one degree of freedom lefﬁ in the matrix P, and in addi-
tion to A, we have free parameters L3 (or xo) and a;-.
What then is the range of 8, and can it be negative?

Straightforward manipulation shows that

which lies between zero and one. Thus the model is no broader

than the EARMA (1,1) model and the question of obtaining negative

correlation is still open. More complicated non-linear schemes

for doing this are discussed by Lewis (1975).
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