
>s ESD-TR-75-358

jgDR'C=HNc f^/5J
/ 0^ P1 ^ Copy No.

Q NLS-SCHOLAR: MODIFICATIONS AND FIELD TESTING
 c>

Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02f38

November 1975

Approved for Public Release;
Distribution Unlimited.

Prepared for and Sponsored by

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 0I73I

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VA 22209
ARPA Order No. 2984

/^t) Pi -^3

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency
or the U. S. Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for publication."

rn. ~£. M ^
SYLVIA R. MAYER, GS-U
Project Scientist

FOR THE COMMANDER

FRANK J. EMMAj/Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-358

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

NLS-SCHOLAR; MODIFICATIONS
AND FIELD TESTING

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs)
Mario C„ Grignetti
Laura Gould
Catherine Hausmann, et al

8. CONTRACT OR GRANT NUMBER(s)

FF9628-75-C-0I59
ARPA Order 2984

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt, Beranek and Newman, lnc„
50 Moulton Street
Cambridge, MA 02138

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

62706E Program Element

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom Air Force Basef MA 01731

12. REPORT DATE

November 1975
13. NUMBER OF PAGES

77
1*. MONITORING AGENCY NAME ft. ADDRESSf/f dltterint from Controlling Ollice)

Defense Advanced Research Projects Agency
[400 Wilson Boulevard
Arlington, VA 22209

15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE |^A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, It dlllerent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and Identity by block numberj

Artificial Intelligence, Computer Assisted Instruction, Natural Language
Processing, Semantic Grammar, Semantic Network, Tutorial Supervision,
On-Line Assistance, Question Answering

20. ABSTRACT (Continue on reverse aide It necessary and Identity by block number)

NLS-SCHOLAR is a prototype system that uses Artificial Intelligence techniques
to teach computer-naive people how to use a powerful and complex editor. It
represents a new kind of Computer Assisted Instruction (CAI) system that
integrates systematic teaching with actual practice, i.e., one which can keep
the user under tutorial supervision while allowing him to try out what he
learns on the system he is learning about.

(over)

DD .',
FORM
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGEftfhen Data Entered)

20. (cont)

NLS-SCHOLAR can also be used as an on-line help system outside the tutorial
environment, in the course of a user's actual work. This capability of
combining on-line assistance with training is an extension of the traditional
notion of CAI

The system is now operational. Limited but realistic testing revealed that
the teachings of NLS-SCHOLAR are very effective, and that the system's
performance as an on-line help facility needs improvement. Most of the
problems encountered are very easy to fix.

The techniques used in NLS-SCHOLAR are general and can be applied to the
teaching of a wide variety of computer related activities.

SECURITY CLASSIFICATION OF THIS P AGE(Whan Data Entered)

TABLE OF CONTENTS

Page

SECTION I - INTRODUCTION 3

Overall Approach 3
Objectives 5
Outline 5

SECTION II - DEVELOPMENTAL WORK 7

Overview 7
The Control Structure 12
Tutorial Material 16

New Text 16
Branching 17
Tasks 18
Questions 18
Answers 19

English Front End 19
The Parsing Process 20
Fuzziness 26
Instantiation of Variables 27
Further uses of LISP-NLS to answer questions . . 29

Human Engineering Features 30
Stop and Resume 30
Getting help from an expert 31
Question mark 32
Efficiency 33

SECTION III - OPERATIONAL TESTING AND RESULTS 35

General Results 36
Overview 38
The "easy problems" 39

Spelling errors 39
Unanticipated synonyms 40
Common but unanticipated syntax 41
Lack of knowledge 41
Poor answers 42
Unanticipated environments 43

The Harder Problems 44
First scenario 46
Second scenario 48
Third scenario 50
Fourth scenario 54
Fifth scenario 57

SECTION IV - RECOMMENDATIONS AND CONCLUSIONS 62

Epilogue 65

APPENDIX 67

Review of NLS-SCHOLAR by ISI 67
Comments on the review 74

REFERENCES 77

SECTION I - INTRODUCTION

This is the Final Report on a six-month effort to

improve and field test NLS-SCHOLAR [Grignetti 1975], a CAI

system that employs Artificial Intelligence techniques to

teach people how to use the BASE subsystem of NLS.*

This Report documents the changes made to the August

1974 version of NLS-SCHOLAR to prepare it for testing in the

field, and documents the results and conclusions obtained

from this testing. Since NLS-SCHOLAR was developed under a

previous contract, this re,ort is conceived as an

"incremental" one that should be read in conjunction with

the Final Report [Grignetti 197*0 on our previous effort.

Overall Approach

NLS-SCHOLAR is oriented towards teaching NLS to naive

users, such as secretaries, who have very limited experience

with computer-based text editing systems. Therefore, its

tutorial material is written assuming practically no

knowledge of computer usage on the student's part; the

necessary conceptual framework is built up from the most

*BASE is the powerful editor of the oN-Line System (NLS), an
increasingly used text manipulation system developed by
Douglas Engelbart and his co-workers at the Augmentation
Research Center of Stanford Research Institute.

primitive notions, such as striking a key on a terminal

keyboard .

The two basic pillars on which the system's approach is

founded are: a) interactiveness and mixed-initiative, and b)

supervised practice of the procedural knowledge being

taught.

Interactiveness and mixed-initiative are necessary so

that the student doesn't feel "caught" in a situation over

which he has no control. The system is designed so that any

time it is the student's turn to type, he can ask questions

himself (instead of just answering the questions posed by

the system), or direct the system to perform certain actions

for him (like executing NLS commands expressed in English).

Supervised practice is absolutely fundamental. Little

knowledge about "how to do" things can be taught by mere

descriptions; many procedures can only be taught by

demonstration, and practice is essential. A supervised

"hands on" environment is crucial to impressing newly

acquired procedural knowledge in the student's mind.

NLS-SCHOLAR provides such an environment by requesting

students to perform NLS editing tasks using (what appears to

them to be) the very system they are being taught about, by

remaining "aware" of what they are doing, and by commenting

on their performance.

Objectives

Our ultimate goal is to develop NLS-SCHOLAR so that it

can be used as an operational tool over the ARPA network, in

support of the National Software Works (NSW) users. The

specific objectives of the work described in this document

were :

a) Expand and modify the NLS-SCHOLAR system as it existed at

the end of its first year of development, incorporate

features we perceived as needed, and correct known

limitations

b) Test the newly developed system in a limited but

realistic operational environment

c) Use the feedback and experience obtained in the field to

evaluate the system and to formulate plans for the next

stage of modification and expansion

These objectives have been achieved.

Outline

In Section II of the body of this report, we describe

in detail the developmental work performed to achieve our

objectives; in Section III we describe the results obtained

during field testing of the present version of NLS-SCHOLAR.

Finally, in Section IV we present our conclusions and

recommendations for further work.

SECTION II - DEVELOPMENTAL WORK

In this Section we describe the work accomplished to

bring NLS-SCHOLAR to a state sufficiently stable and robust

so that testing it operationally would yield meaningful

results.

Overview

Our initial aim was to expand and improve NLS-SCHOLAR

so that its tutorial material would cover most of the BASE

subsystem of NLS. This entailed bolstering the system's

question-answering abilities, expanding the task evaluation

modules, and adding functions to the underlying LISP-NLS

system (our own LISP implementation of the BASE subsystem of

NLS) .

In the course of our development work we brought up

several versions of newly expanded and modified NLS-SCHOLAR

systems, incorporating not only most of the features

perceived as needed at the beginning, but many others as

well. In fact, as work progressed and our experience

running the system increased, we identified new requirements

for both the short and the long term success of our system,

and we performed work in addition to what was originally

specified. This additional work included:

1) In order to provide the flexibility and modularity

required to effect changes easily, we designed and

implemented a new control structure that uses an

implementation of the Bobrow/Wegbreit stack scheme for

multiple environments ("spaghetti stacks") that is

provided in the recently released LISP. [Bobrow 1973,

INTERLISP 1975].

2) To increase the effectiveness of our tutorial material,

we developed a prototype Agenda Language that allows us

to write English-like lessons incorporating branching,

remedial loops, quizzes, etc.

3) In order to provide a useful tutoring environment in

spite of expected system limitations, we incorporated a

fall-back mode wherein a human helper comes to the

system's rescue whenever the user requests it.

4) In order to make it practical and feasible to use systems

such as ours in operational environments, we greatly

improved the efficiency of NLS-SCHOLAR; not only is the

output package 5 times faster, but the overall efficiency

is twice as great.

By far the most significant of these advances was the

design and implementation of a flexible control structure

that uses the recently released "spaghetti" LISP. The

8

structure allows NLS-SCHOLAR to operate on multiple

environments, making it possible for the various modules of

the system (the English front end, the Quizzer, the Tutor

Scheduler, NLS, the Task Monitor, and the Evaluator) to be

handled like jobs in a time-sharing system. That is,

processes request "the floor" as need arises, and gain

access to the process queue with preassignable priorities.

As a result of this improvement, the system now has the

capability of back-tracking to abandoned contexts, of

handling multiple tasks, and of coroutining.

We expanded the tutorials (the Primer) from the

original three lessons to an introduction plus five lessons.

The material covers usage of the legal combinations of the

following NLS verbs and nouns:

a) Verbs: Load, Print, Insert, Delete, Create, Update, Jump,

Substitute, Set, Reset, Show, Copy, Move, Transpose,

Output, Help, and the one-character commands '.', '/',

'*', '\', and <LF>.

b) Nouns: Character, Word, Text, Statement, Branch, Group,

Plex, File and Rest.

Numerous questions, interspersed throughout the lessons

and forming quizzes at the end, test the students'

comprehension of the instructional material. Over 100

supervised tasks and "tutor demonstrations" support our

claim that our users learn "by doing".

We developed a prototype Agenda Language that allows us

to write these lessons in quasi-English format. (The

lessons were all prepared using NLS and are in indented

outline format.) The lessons contain not only tasks,

demonstrations of actions, question-answering periods, and

quizzes, but also branching and remedial loops. The new

control structure allows us to design much more flexible

lessons than before, ones that exhibit truly mixed

user/system initiative. For example, one of the ways we can

handle students' mistakes is by means of "scratch actions":

when a student makes a mistake, the system takes over and

shows him what would happen if the the mistake were enacted.

This resembles what a human tutor would do ("Here let me

show you what would happen if you did what you propose") to

show the effect of the mistake while at the same time

protecting the student from the consequences of his actions.

In parallel with this work, our LISP implementation of

the NLS BASE subsystem was augmented and updated, so as to

support all the NLS commands mentioned above. We also sped

it up considerably by using block compiling techniques.

Considerable work was done also on the English front

end. In addition to questions, this module now handles all

inputs from the student, including his answers to the

"tutor's" questions and his "directions" to the system. The

10

semantic network now contains 330 entries, covering the

commands and NLS concepts which the simulator can handle and

which the tutorials describe. The output package (the big

CPU time gobbler in the previous system) was streamlined and

speeded up by a factor of 5. In addition, the responses it

produces are more personal and friendly.

Finally, in addition to the above, 1) we incorporated

"stop" and "continue" facilities, so that users could

proceed with the lessons at their own pace, 2) we began to

provide users with some feedback on what went wrong when a

question could not be answered by the system and, more

importantly, 3) we offered students the help of a human user

if they so required (the system looks for one of us,

establishes a TENEX link, and allows us to come to the

student's help and to the system's rescue). Contextual

information (what the student has been up to) is preserved

in LISP's history list and is available to us.

In short, we brought up a new NLS-SCHOLAR system that

is very much better than the old one in terms of

flexibility, modularity, capability, and efficiency.

In the remainder of this section we describe in detail

the work performed in many of the areas alluded to above:

the system's control structure, the tutorial material, the

English front end, the human engineering features, and

overall efficiency.

11

The Control Structure

The new control structure was designed with several

goals in mind:

1) increasing the modularity of the system to make it more

understandable and easily modifiable

2) facilitating interactions by a) making the "English

understanding" portion of the system (ENGLISHEXEC)

available at any time by a simple interrupt mechanism,

and b) allowing the user to experiment with NLS at any

time without destroying context

3) extending the capabilities of the tutorial material to

permit branching and the conditional execution of

arbitrary INTERLISP functions to perform needed actions.

The basic idea underlying the control structure is

simple. The system continually evaluates the priorities of

several alternative goals, which include ones specified by

the user and ones set by the author of the tutorial

material. Goals with lower priority are postponed, and the

highest priority goal is executed. Some goals, such as

"presenting all the tutorial material in a useful order",

are complex and may continue over a long period of time. To

facilitate the description of complex, long lasting goals,

each goal is represented by a "process", a collection of

INTERLISP procedures which when executed will achieve the

12

goal .

Because the spaghetti-stack control structure of

INTERLISP permits any process to be interrupted at an

arbitrary point without losing the context of the

computation, complex goals can be represented by processes

which work through a set of sub-goals from beginning to end

without interruption. A process representing such an

extended goal may be interrupted and temporarily suspended

to allow other goals to be met. This permits the overall

system to "stop in its tracks" and interact with the student

when the student wants help, not just when the system

decides to pay attention. In this way the control structure

makes it possible for us to design a truly

"mixed-initiative" system, rather than representing a

single-minded tutor, since the various goals of the tutor

may be easily interrupted and suspended to allow the student

to request actions, ask questions, and experiment with NLS.

The overall control of the system is based in a simple

"monitor" which acts much like a time-sharing monitor - it

has a set of suspended processes representing pending

priorities which must be evaluated, and it chooses the

highest priority process and permits it to run.

At any time there may be several pending goals in the

system, represented by suspended processes. These goals are

chosen from the set:

13

a) listening for user commands, questions and answers in

English (ENGLISHEXEC)

b) deciding what tutorial material to give next

c) presenting a tutorial unit

d) presenting a question

e) waiting to evaluate the answer of a previous question

f) running a student through an NLS task

g) providing an experimental NLS environment requested by

the user

The priority evaluation is implemented primarily by a

stack, but it is made potentially general by having the

monitor evaluate a priority setting process associated with

each runnable process, and using that to modify priorities.

In addition, the stack of processes is easily accessible to

running processes, and thus processes can (and d_o) add and

delete processes on the stack.

In addition, by making use of the user-defined

interrupt character facility and the features available in

the new "spaghetti stack" version of INTERLISP, it is

possible for the user to interrupt any process, save its

context completely, and start up a copy of the ENGLISHEXEC

which can answer general NLS factual questions, or start up

a safe NLS environment on which to experiment without

affecting the current NLS environment. This enables

students to try out risky procedures without fearing the

14

consequences of potentially costly mistakes.

The spaghetti stack features permit the entire context

and state of a complicated (perhaps recursive) process to be

saved, to be run later or examined by other programs. This

has been used to implement a "coroutine package" which

greatly facilitated writing simple, easy to understand

modules.

An example of this is the "question posing and

evaluation module". This module is run having as arguments

a question to be posed to the student, and evaluation

procedures for possible answers. It would be easy to write

if it were expected simply to pose a question and to

interpret the next student input as an answer. However, we

wished to allow the student to interact with the EIJGLISHEXEC

once the question is posed, by asking questions or typing in

commands if he desires. Thus answer evaluation must be held

in abeyance until the student actually types in an answer.

With the coroutine package this is simple - the

question-posing module calls a coroutine which puts the

question-posing-module on the stack with the evaluation

section to be run next, puts an ENGLISHEXEC process on the

top of the stack, and then cedes control to the monitor.

When the ENGLISHEXEC recognizes an input as an answer, it

removes itself from the stack and calls the question-posing

module as a coroutine. To the question-posing module the

15

net result is that the student's answer is made available as

if from a subroutine. While this could have been done with

subroutines, the coroutine technique substantially

simplifies the state of the system during the period after

the question is posed.

Tutorial Material

The tutorial material has been expanded considerably

since November, 1974, and now consists of five lessons

rather than three. These lessons describe the BASE

subsystem of the teletype-oriented* version of NLS as it

appeared in March, 1975; they are written specifically for

naive users with no previous knowledge of NLS and (perhaps)

no previous acquaintance with terminals or computer systems.

New Text - To facilitate the initiation of these naive users

into the mysteries of computer-assisted instruction, an

interactive introduction has been written which gives a

brief description of the goals of the system and explains

the use of <CR> to terminate commands, <CTRL-A> and <CTRL-X>

for line editing, <CTRL-T> to determine the state of the

job, and <CTRL-H> to get the attention of the "tutor"

*We use the term teletype to denote generically a hard-copy
terminal, as opposed to a display terminal.

16

(ENGLISHEXEC). This introduction supplants and surpasses

the instruction sheet handout which was used for this

purpose previously.

The five lessons differ in both content and structure

from their predecessors. Revision of the content of the

original three chapters was made necessary by changes in the

NLS syntax and in a few NLS commands. The material was

extended to provide more examples and to present commands

not previously covered. These new commands include Print

File, Print Rest, print the context of the CM (/), Reset

Viewspecs, and Output Sequential File for producing a text

file which can be listed on a line printer. A brief

description of the Help command is given at the end of the

last lesson so that the "graduating" student will know how

to make use of this facility when he uses NLS without

tutorial supervision. A small, self-contained help data

file about viewspecs has been provided for practice with the

use of this command.

Branching - These changes in content, however, are of much

less significance than the increased freedom granted to the

student by the new control structure, and to the author of

the tutorial material by the introduction of branches and

remedial loops. The ability to use branches means that the

order and the content of what is being presented to the

student can be made dependent on his choices or on his

17

performance. The addition of these facilities transformed

the task of providing the tutorial material from writing a

text (the Primer) to designing a programmed instruction

course.

From the students' point of view, each lesson (and the

introduction) is composed, as before, of short sections of

text which are printed at the terminal. At the end of such

presentations, the student is given the opportunity to

request more text, to ask any number of questions, or to

practice with NLS using any commands that he chooses.

Tasks - Some text sections are followed by tasks which the

student is asked to perform. In the course of doing a task,

the student may use <CTRL-H> to get the "tutor's" attention;

he nay then ask questions, practice with NLS to see the

effect of a command, ask that he be allowed to restart the

task, or ask that the task be done for him. If the student

performs the task, his work is evaluated and helpful comment

or criticism is provided. If his work is unsatisfactory he

may be asked to do the task again, either wholly or

partially.

Questions - Some text sections are followed by questions for

the student to answer. In the course of trying to answer

the question he may ask questions himself, or practice with

NLS in an attempt to determine the answer.

18

A set of questions (a quiz) has been placed at the end

of the introduction and of the first two lessons so that the

student may have this additional method of assessing his

progress. Answers are evaluated and appropriate responses

made. Considerable latitude is provided in the judging of

answers so that the student is not constrained to a

particular form. For example, the question "What is the

statement number of the origin statement" may be answered 0,

statement 0, or zero; all are equally correct. In cases in

which an answer has several parts, missing information is

often supplied in the evaluation.

Answers - The handling of students' answers is made easy by

the use of answer predicates. A sequence of these

predicates can be written by the author after each question;

the predicates are then tested one after the other until one

of them succeeds. They operate in two steps: the first one

provides for extracting expected words, for testing those

words in various ways, and for filtering out irrelevant

parts of the answer; the second step is some action which is

undertaken or not, depending on the outcome of the first.

These actions generally consist of some text being printed

followed by an optional branching instruction.

English Front End

19

The English front end handles all language input from the

student. It therefore must be powerful enough to

distinguish between commands, ("Start lesson 5", "Delete

branch 2"); queries, ("How do I print the whole file?"); and

replies to tutor-generated questions ("The statements are 4A

and 4B"). We decided to use the notion of a semantic

grammar [Burton 1975] with two important additions, namely

instantiation of variables and Case assignments [Fillmore

1968]. These two processes will be described later.

The key notion underlying the semantic grammar approach

to parsing is the replacement of the search for syntactic

constructs by a search for semantic ones. Parsing a

student's request in this way yields its meaning directly,

i.e., it produces an executable retrieval formula that

prescribes a search in the system's "data base" (the

semantic network plus the user's work space). The search

can then be carried out and the results used to synthesize

an answer to the request. Notice that in such a parsing

process there are no separate syntactic and semantic phases

(as there are in systems like the LUNAR parser [Woods

1972]).

The Parsing Process- The parsing process begins with a

prescan of the student's input. Abbreviations are expanded,

synonyms are recognized and rewritten into a canonical form,

and compounds are collected into one word. These processes

20

ease the work of the parser itself by cutting down on the

number of alternatives that must be considered.

After the input is prescanned, an attempt is made to

parse it using an embodiment of the grammar described in BNF

in Figure 1. Each non-terminal node of the grammar is a

semantic category which takes into account all the predicted

ways of expressing it. Each semantic category is embodied

in a LISP function that tests the input string (or a

substring of it) to determine if it belongs to the category.

If successful, the function returns a value which condenses

the "meaning" of the string.

The top level rule is <REQUEST>, which can be realized

by four semantic categories: <DIRECTIVE>, <QUESTION>,

<NLS/ACTION/REQ>, and <ANSWER>. This means that an input

from the user (a request) can be either a directive, a

question, an NLS command expressed in English, or an answer

to a question asked previously by the system. Each

alternative is tried sequentially until one succeeds. If

none succeed, an error message is typed to the student ("I

didn't understand that. Please rephrase.") A good way to

describe the parsing process is by example. We shall follow

the parsing of the request "What command prints the next

statement?" (see Figure 1).

21

<REQUEST>:= <DIRECTIVE>
<QUESTION>
<NLS/ACTION/REQ>
<ANSWER>

<DIRECTIVE>:= ? ! CHECK ! PLAY ! RESTART ! GO ! HELP ! STOP

<QUESTION>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ>
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
<PROCEDURE/REQ>
<TYPE/REQ>
<INSTR/REQ>
<POSITION/REQ>

<NLS/ACTION/REQ>:= <ACTION/SPEC>

<ANSWER>:= <THE-ANSWER>
<DONT-KNOW-ANSWER>
<LIST-ANSWER>

<THE-ANSWER>:= [THE THEY IT] [IS ARE]

<DONT-KNOW-ANSWER>:= TELLXME ! I DON'T KNOW

<LIST-ANSWER>:= a list that doesn't begin with a <VERB>
or a question word like What, Is, Why, etc.

<DEFINE/REQ>:= [DEFINE DESCRIBE] <N0UN>
WHAT DOES <NOUN> [DO MEAN STANDXFOR]
HOW DOES <NOUN> WORK

<WHATIS/REQ>:= WHATXIS*
[PURPOSEXOF <NOUN>
CONTENTXOF <STR+ADDR>
LEVELXOF <STR+ADDR>
PROCEDUREXFOR <ACTION/SPEC>
ADDRESSXOF <STR+ADDR>
EXAMPLESXOF <NOUN>
EXAMPLEXOF <NOUN>
DEFINITIONXOF <NOUN>
<CURRENT/PART>
<STR+ADDR>
<NOUN>]

*Also SHOWXME TELLXME GIVEXME TELLXMEXABOUT
WHATXARE

<CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING>

Figure 1. BNF description of the grammar

22

<PARTS-IN-PART/REQ>:= WHAT <STRUCTURAL> ARE IN <FILE/PART>
WHAT ARE <STRUCTURAL> IN <FILE/PART>

<PARTS-IN-LEVEL/REQ>:= WHAT <STRUCTURAL> ARE <LEVEL/PART>

<PROCEDURE/REQ>:= [HOW\DO\I SHOW\ME\HOW\TO TELL\ME\ABOUT] <ACTION/SPEC>

<TYPE/REQ>:= WHAT CAN I TYPE AFTER [<VERB> <STRING> <PROMPT>]
WHAT CAN FOLLOW [<VERB> <STRING> <PROMPT>]

<INSTR/REQ>:= WHAT (COMMAND) <ACTION/SPEC>

<POSITION/REQ>:= WHERE AM I
WHERE IS/ARE <STR+ADDR>

<ACTION/SPEC>:= <VERB> [<OBJ>]

<VERB>:= word whose part of speech is Verb

<OBJ>:= [<RELATIONAL>] [<NOUN/PHRASE>] [<OBJ>]

<RELATIONAL>:= words like NEXTXTO FROM AT TO, etc.

<NOUN/PHRASE>:= <TASK>
<STR+ADDR>
<FILE>
<NOUN>

<TASK>:= TASK <NUMBER>

<STR+ADDR>:= <FILE/PART>
THE <STRUCTURAL> <STRING>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
<STRING>

<FILE>:= (NLSXFILE) [BREAKFAST DINNER MYBREAKFAST]

<NOUN>:= any word whose part of speech is Noun

<NUMBER>:= a number

<FILE/PART>:= STATEMENTS
GROUP <ADDRESS> <ADDRESS>
[STATEMENT STATEMENTXNUMBER BRANCH PLEX] <ADDRESS>

<ADDRESS>:= a word whose first character is a number

<STRUCTURAL>:= STATEMENT ! BRANCH ! GROUP ! PLEX

<STRING>:= a string delineated by double quotes

Figure 1 (cont)

23

<TEXTUAL>:= WORD ! CHARACTER ! TEXT

<CURRENT/PART>:= CURRENT\NLS\COMMAND
CURRENTWIEWSPECS
CURRENTXSTATEMENT
NEXTNSTATEMENT
BACKXSTATEMENT
CURRENTXADDRESS
POSITION\OF\THE\CM
CURRENT\STATEMENT\NUMBER
CURRENTXFILE

Figure 1 (cont)

24

In the prescan the words "next statement" are

recognized as a compound word or concept and are rewritten

as next\statement. Starting with the grammar rule

<REQUEST>, the first check is to see if the sentence is a

<DIRECTIVE>. It fails and the next one is tried,

<QUESTION>. The first seven realizations of the rule fail;

but <INSTR/REQ> succeeds with "What" being followed

optionally by the word "command", followed by an

<ACTION/SPEC>. <ACTION/SPEC> succeeds, since "print the

next\statement" is indeed an action specification.

<ACTION/SPEC> returns as its value (remember it is a LISP

function) an expression that is the "meaning" of the action

specification:

((VRB PRINT) (OBJ NEXTXSTATEMENT))

This says that the action is represented by the verb "print"

and the object of the action is "next\statement". In turn,

<INSTR/REQ> returns:

(QFIND/INSTR ((VRB PRINT) (OBJ NEXTXSTATEMENT)))

which represents the "meaning" of the sentence. At this

point the parsing phase is complete.

To find the correct answer, this "meaning" is executed

as a LISP expression. (QFIND/INSTR is the function and VRB

and OBJ are its arguments). The function QFIND/INSTR first

checks to see if there is an OBJ. If there is one, it looks

25

under the OBJ's data base entry for a section of data base

beginning with the VRB. If that search fails, a general

reply is given by finding all instruments (commands) under

the VRB print and printing out the procedure for using each

one. In this way, most of the knowledge the data base

contains about printing would be given to the student. The

belief is that a complete description is better than a

simple "I don't know". Among all these procedures, the

student may find the one he was looking for.

In our example, the search for the VRB under the OBJ

succeeds (see figure 2).

Figure 2

NEXTXSTATEMENT
(PRINT (I 2) (AGENT NIL USER)

(OBJ NIL NEXTXSTATEMENT)
(INSTR NIL <LF>\COMMAND))

The English output routines take the piece of data base and

form the English sentence:

YOU PRINT THE NEXT STATEMENT USING THE <LF> COMMAND.

Fuzziness - The parser allows for fuzziness; that is, it is

able to skip over words in a controlled way in order to

achieve a parse. The hope is that these words are noise

words or at least that they can be skipped over and still

permit a parse that is not far from the real meaning of the

2 6

request. The problem is that in some cases fuzziness leads

to a completely different meaning. For example, consider

the sentence "What are the default viewspecs?". In pushing

for an object, let's say the parser doesn't recognize the

word "default". Fuzziness would allow the parser to skip

over this word. It recognizes "viewspecs", and in effect

parses the sentence as "What are the viewspecs?". Applying

fuzziness techniques well is a very tricky business!

Instantiation of Variables - An effort was made to see what

it would take to build an English front end for NLS that

would allow the student to express NLS commands in English.

The added bonus from this research was the ability to answer

with greater precision questions that dealt with more

specific information than the data base explicitly contains.

An example is the sentence "How do I delete a structure

unit" versus the more specific request "How do I delete plex

2?" This ability was achieved by adding to the data base a

new construct: instantiation variables that may get set

during parsing and, if so, will be used in place of the

general term -- otherwise the more general term is used .

For example, in the data base entry for DELETEXCOMMAND, the

string $INS appears 3 times. Each time it is followed by a

variable name, (XOBJ, XOBJSTR, or XADDSTR) and then followed

by a regular piece of SCHOLAR data base (see Figure 3).

27

Figure 3

DELETEXCOMMAND
[PURPOSE (I 2) (DELETE NIL

(AGENT NIL USER)
(OBJ NIL ($INS XOBJ ($EOR (NAME NIL (OF NIL STRUCTUREXUNIT))

(NAME NIL (OF NIL STRINGXUNIT)))))
(INSTR NIL DELETEXCOMMAND)
(PROCEDURE NIL (TYPE NIL

(AGENT NIL USER)
(OBJ NIL ($SEQ "DELETE »

[$INS XOBJSTR
($EOR (NAME NIL (OF NIL STRUCTUREXUNIT))

(NAME NIL (OF NIL STRINGXUNIT]
($INS XADDSTR ADDRESS)
<CR> <CR>]

In processing "How do I delete a structure unit" none of the

instantiation variables is set and so a general response is

given:

YOU DELETE A STRUCTURE UNIT OR A STRING UNIT USING THE
DELETE COMMAND.
PROCEDURE: YOU TYPE 'DELETE ', FOLLOWED BY THE NAME OF A
STRUCTURE UNIT OR THE NAME OF A STRING UNIT, THE ADDRESS,
<CR>, AND <CR>.

In processing "How do I delete plex 2", all of the variables

are set during parsing so a very specific reply can be

given:

YOU DELETE PLEX 2 USING THE DELETE COMMAND.
PROCEDURE: YOU TYPE 'DELETE ' FOLLOWED BY 'PLEX ', '2',
<CR>, AND <CR>.

Now, not only can the question be answered, but it can

be turned into a command to NLS to perform the action

"Delete plex 2" on a copy of the user's file. It parses as

28

an <NLS/ACTION/REQ>. The form returned from the parse is

(QDO/PROCEDURE (VRB DELETE)
(OBJ PLEX (ADDR 2))

QDO/PROCEDURE is a function which first retrieves the

appropriate piece of data base and checks to see if all the

instantiation variables in this piece are filled in. It

then calls LISP-NLS, handing down to it the legal command

sequence. (If all the instantiation variables were not set

during the parse, a reply is generated telling the student

what is missing.) Using a copy of the student's current

file, LISP-NLS executes the command sequence:

BASE C: Delete C: Plex (at) A: 2;
OK: ;

Further uses of LISP-MLS to answer questions - We have just

described one use of LISP-NLS: responding to an English

request to have NLS perform a command. A second use is to

respond to queries like "Where am I now" and "What is the

address of the statement containing "PRIME"?" These kinds of

requests imply that at least one NLS command be performed.

In the first case the answer can be found by performing the

"." command; in the second by performing a series of

commands - Jump Address 0, Jump Address "PRIME", then "." to

get the current address.

29

Human Engineering Features

In order to make NLS-SCHOLAK an easy and pleasant

system to use, we strived to endow it with a number of human

engineering features that will be described next.

Stop and resume. - Sessions with NLS-SCHOLAR have natural

breaking points, such as lesson boundaries or large topic

changes, at which it is convenient and even desirable for a

user to quit. Having stopped at one of these

system-provided breaks, the user can resume the lesson at a

later time by asking the system something like "start lesson

3 now, please". Often, however, users find the time between

these natural breaks to be too long, either because their

own performance has required a longer time than average, or

because something else demands their attention. We have

provided the system with the necessary mechanism for

allowing those users to stop the lesson at any time, in

whatever situation they may find themselves: in the middle

of a lesson, performing a task, answering a question, or

even working with NLS doing their own thing. All they have

to do is get the attention of the "tutor" (by typing

<CTRL-H>) and then tell it they want to stop. The system

responds by asking the user to confirm his request and to

indicate if he intends to continue at a later time. If both

answers are affirmative, the system writes out a file (a

LISP SYSOUT file) in the user's directory. When the user

30

comes back, the system reminds him of the existence of a

suspended work session; if the user wants to, he can

continue exactly where he left off by simply typing RESUME

(which causes a LISP SYSIN). This feature was very sorely

needed and was used by almost all those involved in the

field testing.

Getting: help from an expert. - Since we did not expect our

system to be able to comprehend all user requests and to

always provide useful answers, we endowed NLS-SCHOLAR with a

feature that allows a human expert to come smoothly to the

system's rescue when the system fails. This facility

operates as follows. Let's suppose that a user is in the

middle of a task, asks a question whose answer is badly

needed, and the system either fails to understand his

question or gives him an unsatisfactory answer. If he asks

for help at this point, the system will seek a logged-in

human expert, establish a link, and report the failure to

the expert. If it isn't possible for the expert to provide

the answer solely on the basis of an isolated question, he

can examine a history list maintained by the system. This

list is a record of previous interactions between user and

system which provides the context the expert often needs to

answer a question appropriately.

The main reason for the incorporation of this facility

was to allow our students to utilize lesson time more

31

effectively; we wanted their experience using NLS-SCHOLAR to

be a profitable one in spite of the system's limitations,

and we hoped the facility would minimize frustration and

unnecessary breaks. In spite of our hopes, the facility was

hardly used at all: only one of our users ever attempted to

take advantage of it, but unfortunately no expert was

logged-in at the time help was sought.

Question mark, - Given the great flexibility of the control

structure, the student may well be confused as to what to do

when he gets the "tutor's" attention. A question mark

facility was implemented to help users remember what they

could request the system to do for them. When the student

types a "?", the system responds with a list of one-word

commands which may be used to initiate actions, such as

starting a lesson, restarting a task, stopping a lesson,

resuming it, summoning help, calling NLS, etc. These

actions are not necessarily invoked specifically by their

associated command; rather, it is the combination of command

and situation that decides which action will be undertaken.

Thus, if a user types "continue", several things may happen:

a) if he was in the middle of a lesson, the lesson

continues; b) if he was performing a task, he goes back to

the task's environment; c) if he just entered NLS-SCHOLAR

and there is a stopped lesson under his name, the lesson is

resumed; d) if he was working with NLS doing his own thing,

32

he is returned where he left off.

Efficiency - The newly brought up NLS-SCHOLAR system is

remarkably more efficient, in terms of CPU utilization, than

its predecessor: it takes about 3 minutes of CPU time, on

the average, per lesson hour. This efficiency measure

applies to a lightly loaded TENEX system; under these

circumstances the lesson proceeds at a good fast clip.

This relatively good efficiency is due to three

improvements made to NLS-SCHOLAR. The first improvement was

to redesign and streamline the output routines, the ones

which are responsible for producing English sentences out of

information encoded in the semantic network. This resulted

in a package that operates 5 times as fast as the old one.

The second improvement was to block-compile LISP-NLS.

This technique provides a way of compiling several functions

(LISP routines) into an entity called a block. Once a block

is entered, function calls within it are very fast and

variables' values are looked up directly, resulting in

considerable execution speed-ups. It is not rare to see

order of magnitude improvements from judicious use of this

technique.

The third big improvement was to pre-compute the tasks'

vectors. Previously, when a user's performance of a task

was to be evaluated, the system used LISP-NLS to perform the

33

correct sequence of commands and to obtain the correct image

of the work space. This was then compared with the result

of the user's commands. -In the present version of

NLS-SCHOLAR, these correct images are obtained for each task

at system generation time, and are stored away in a separate

file.

A file handle is provided for each task, and is made

accessible from the semantic network entry for the task so

that the correct image can be retrieved from the file.

Consequently, when a task is evaluated there is no CPU time

wasted in generating the correct image.

34

SECTION III OPERATIONAL TESTING AND RESULTS

As described at the beginning of Section II,

"operational" testing of successive versions of NLS-SCHOLAR

started early in the course of our work. For this purpose

we used BBN personnel ranging from completely naive users,

through secretaries with experience using other

computer-based text editors, up to experienced computer and

behavioral scientists.

When our system was (reluctantly) pronounced ready, it

was used in an informal but realistic testing environment by

14 non-BBN users. Among them were DOD personnel from the

Air Force Data Services Center -- an outfit chosen by the

Contracting Agency -- whose sophistication in using NLS

ranged from very naive to experienced. In addition, the

Contracting Agency solicited an independent evaluation from

qualified Technical Personnel of the Information Sciences

Institute (ISI) of the University of Southern California.

The results of this evaluation are described in a report

which is included in this document as an Appendix.

The data obtained from the operational testing is in

the form of dribble protocols recording the "dialogue"

between users and NLS-SCHOLAR. Over 50 protocols were of

significant length (ranging from 20 to 90 minutes of on-line

time) to be considered useful and to warrant their analysis.

In addition to this data, an amount roughly equivalent was

35

obtained via our own internal testing using BBN's personnel.

Taking everything into account, protocols representing

approximately 100 hours of on-line time were analyzed. This

amount of data is not sufficient to establish statistically

valid results, but it is enough to sustain very definite

qualitative conclusions about the system's capabilities and

limitations.

General Results

The main thrust of this section is to describe and

discuss a number of specific problems and problem areas

identified in the course of the field testing. In order to

frame the descriptions and to focus the discussions, we find

it necessary, at the risk of being considered unscholarly,

to present the general results of our analysis here rather

than at the end of this section. They are:

1) The tutorial set-up appears to be very effective. New

information is presented in bits and pieces of digestible

size and users are kept on their toes (albeit in a very

friendly environment) with dozens of questions they are

asked to answer and NLS tasks they are asked to perform.

Users d_q learn NLS: this is evident not only in the

progress of their work, but also from personal

communications (telephone calls, messages, and link ups).

36

2) The "supervised task environment", whereby the system

evaluates the results of a user's performance of an NLS

task and offers comments about it, appears to be very

valuable. The system succeeds in pointing out mistakes

and provides information useful for rectifying them.

However, the system is sometimes over-zealous (rejecting

outrightly the performance of a task for some trivial

discrepancy) and sometimes fails to point out some

erroneous action undertaken by the user. These

shortcomings are not serious but they detract from the

system's "intelligent" appearance.

3) A substantial part of the system's "smarts" resides in

its English front end; NLS-SCHOLAR is designed so that

the user can take the initiative anytime it is his turn

to type and formulate requests (usually questions) to the

system. Not surprisingly, however, this feature of

NLS-SCHOLAR performed less satisfactorily than the rest

of the system; only about 1/3 of the requests formulated

were answered relevantly and usefully. This poor

performance may have inhibited many users from asking

more questions.

In view of the results outlined above, the rest of

this section is concentrated on a detailed discussion of

the performance of our English front end, and on the

general issues it raises in the area of Natural Language

37

Comprehension.

Overview

Two points must be considered in order to view this

last result in the proper perspective. In the first

place, a large majority of the requests that the system

failed to answer or answered incorrectly could have been

handled satisfactorily with minor changes to the system

and additions to its semantic network. Undetected

spelling errors, unanticipated synonyms, common but not

anticipated sentence syntax, lack of specific knowledge,

etc., are examples of problems of this kind which are

relatively easy to rectify as each one is found. As a

whole, however, much time and effort must be expended to

eradicate such problems entirely.

Secondly it must be borne in mind that the tutorial

material is very clear and complete. It leaves

relatively little room for doubt within the domain of

procedural and conceptual knowledge that the question

answering system is designed to handle. Consequently,

the relatively few unanswered requests not covered in the

"easy problems" category described above, reflected a

combination of subtler doubts and the efforts of

sophisticated users to concoct a question to assess the

system's capabilities.

38

These questions remained unanswered either because

they were expressed in round about ways (i.e., outside

the set of paraphrases the system can recognize or had

convoluted sentence structures), or because they were

imprecisely formulated. The round about problem was not

important in our case. It is more likely to occur in

questions posed by users returning to the system after a

partially forgotten previous exposure to its tutorial

material. This situation could not develop within the

period the system was tested.

Imprecisely formulated requests were much more

common, within the relatively small number of

hard-to-answer questions we are focussing on, than

precise circumlocutionss. The relatively high frequency

of imprecisely formulated requests and their inherent

interest justifies the more detailed description and

analysis of their nature which will be found later in

this section.

The "easy problems"

Some examples of problems that are relatively easy

to rectify are presented next:

Spelling errors - Consider for example,

39

"What is ray current statement>?"

or "What does OK/C mean?"

In the first case, the system's spelling error correction

list contained both the words "statement" and

"statements", which resulted in "statement>" being

corrected to "statements". The system knows what a

"current statement" is (both the meaning of the concept

and how to find out its present value), but it was

hopelessly confused by "current statements". Given our

current approach that emphasizes speed and expediency,

the remedy is to eliminate "statements" from the spelling

correction list. A better solution, such as performing

morphological analysis and checking the agreement of verb

and predicate numbers, would have required a

fundamentally different approach.

In the second example, the system knows the meaning

of most prompt symbols, and in particular that of the

OK/C: prompt (notice the colon). While the system is

prepared to accept many common abbreviations and

misspellings of these symbols, OK/C was not anticipated.

Unanticipated synonyms - A very common group, exemplified

by,

"Please review the one-character commands"

"How do I logout?"

40

"Explain the OK: prompt"

The system would have answered these requests correctly

if they had contained the verbs "list" or "tell me about"

or "give me" instead of "review"; "stop" or "quit"

instead of "logout"; and "describe" instead of "explain".

Fixing this may be trivially done by incorporating those

verbs in the internal synonym lists of the system, or by

incorporating their definitions and usages in the

semantic network. Observe that "review" could have been

used to mean something different from "list", e.g., to

mean something like "Let's go over the one-character

commands again", after they have been presented once. To

handle this kind of request is feasible but less trivial.

Common but unanticipated syntax

"What NLS commands are there?"

The almost equivalent question ("What are the NLS

commands?") would have been answered correctly, but that

format didn't occurred to this particular user. (Neither

did we anticipate the "are there" format!)

Lack of knowledge - A few examples are,

"How do I delete a file?"

"Tell me about control commands"

41

"What is an illegal delete?"

Deleting files was not possible from within NLS until

very recently. This negative knowledge should have been

incorporated in the semantic network, enabling the system

to generate its canonical negative answer ("YOU MAY MOT

DELETE AN NLS FILE USING AN NLS COMMAND"). This

particular question generated a rather amusing dialogue

(albeit very frustrating for the user) in which the

system told him how to delete all sorts of things, except

files. Also, although grouping certain commands under

the category of "control commands" is certainly

reasonable, the category was not anticipated and an entry

for it is not contained in the semantic network. The

same applies to "illegal delete".

Poor answers. - In some cases the answers generated by

the question answering system were unsatisfactory.

Examples are:

"Describe play"

PLAY IS THE COMMAND YOU TYPE TO THE TUTOR TO PLAY WITH
NLS.

"What do you mean play with NLS?"

PLAY IS THE COMMAND YOU

"What is a field?"

A FIELD IS A SEQUENCE OF CONTIGUOUS DIGITS OR CONTIGUOUS
LETTERS WITHIN A STATEMENT NUMBER.

42

"What does that mean?"

PLEASE REPHRASE YOUR REQUEST.

Obviously, giving more coherent and complete responses is

something that can be taken care of. In the above case,

since "field" is a particularly difficult entity to

define in a more useful way, a specific example could be

appended to the definition (FOR EXAMPLE, THE FIELDS OF

12A2 ARE 12, A, AND 2) .

Unanticipated environments. - Many of our users worked

on display terminals. Since NLS-SCHOLAR is geared for

users of hard copy terminals, many of the requests

originating in display environments were not contemplated

in our design. For example, users of display terminals

would often forget what task they were supposed to

perform, or what question they were expected to answer.

Every time the system reminded these users about their

pending obligation, they would request a restatement of

the question or task, Handling such requests ("What was

the task?", "Ask the question again", "What did you want

me to do?") is possible, but again, we did not anticipate

them.

As can be inferred from the preceding descriptions, the

common trait that unifies these classes of failures is our

incomplete anticipation of what users would do in otherwise

43

expected situations. An elucidating comment to forestall

our readers from reaching hasty conclusions is in order

here .

It is very easy to disregard the importance of these

"little failures" and attribute them solely to our lack of

foresight. This condescending attitude, that can perhaps be

subsumed as "How could they have forgotten X, or not taken Y

into account?" fails to perceive the real issue. It is

false to believe that incorporating X or bringing Y into the

fold will make a substantial difference. The authors of

this report did nothing else during the last 2 months of

their work, and still the system is plagued with "little

problems"! The crux of the matter, what must be recognized,

is that when one is faced with the fantastic variety, the

multitudinous aspects, and the changing modalities of the

behavior of a human engaged in a dialogue with a machine,

converging to a system relatively free of these "little

problems" is a very long process. All we can say at this

time is that this first round of field testing has been

extremely useful in uncovering a large number of problems of

this type, and that we expect the next round to uncover a

smaller number.

The Harder Problems

We turn our attention now to the more interesting

44

failures of our English front end, those involving questions

that were too imprecisely formulated for our system to

answer. The imprecision of these questions stemmed from the

anaphora they contained or, more seriously, from their

"situational" character; that is to say, comprehending them

would have involved understanding the process of the user's

interactions with the system. These questions arose in such

a form because the user assumed that the system was aware of

the entire situation as it appeared to him; it is surprising

to see how large an amount of contextual information must be

taken into account before such questions can be properly

understood.

The difficulty resides not so much in the literal

interpretation of questions, as if they were precise

formulations of the specific bits of knowledge the

questioner might seek, but rather in figuring out what each

particular person may have meant to ask, given his

background, his previous experience, his previous

performance, what he ought to know vs. what he seems to

have learned, the environment he is working on, etc. These

are very hard problems; they lie at the heart of the Natural

Language Comprehension research area and their general

solution still eludes us. Our purpose is to explain why

these problems are so difficult, and to show the

advisability of indirect solutions.

45

Many of these problems are rather subtle and it is easy

to dismiss them because one can often stumble upon a

seemingly general solution whose real underlying "ad-hoc"

character is hard to perceive. To appreciate the

difficulties involved, we shall see how a solution that

seems satisfactory for a particular problem fails to apply

to an apparently similar one. We shall proceed by analyzing

five scenarios taken from our protocols. Each scenario

comprises a description of a particular situation, the

relevant context, and the question formulated. The

scenarios are ranked in order of increasing difficulty, in

terms of the mechanisms that have to be invoked in order to

handle them.

Anaphoric reference

First scenario - The curtain rises after the student has

been taught the purpose and usage of a fairly large number

of "viewspecs" - characters used to specify how an NLS file

is to be printed or viewed. Before leaving the subject, the

system mentions several additional viewspecs, and then tells

the user:

As you can see, there are a great many viewspecs. If
you are interested in what they control, you may ask me
questions about them. However, the ones that have been
introduced here are likely to be sufficient for most
purposes.

46

At this point, the student asks:

"What do they control?"

This example is deceiving because it would appear that

handling such a simple anaphoric reference is within the

state of the art [Woods 1972]. The difficulty, however,

resides in the lack of coupling between the question

answering system and the tutorial material ; in other words,

the question answerer does not know the details of what the

tutor has just finished teaching and cannot place the

request in context.

A conceivable way to cope with this problem would be to

have a complete internal representation (in the semantic

network) of the tutorial material, and then synthesize the

text the user reads from that internal representation.

Given the present state of our knowledge on how to represent

information in a semantic network and how to generate

passable English from it, such an approach would fall short

of our needs and would be totally inadequate for teaching

naive users.

Another way to cope with this problem would be to

re-write the text so that such anaphora would be inhibited

from occurring, rather than being encouraged as they are in

this example. The student is likely to frame his questions

in terms of the words of the text, ("If you are interested

47

in what they control") . so the elimination of referential

pronouns in the text might encourage him to eliminate them

in his questions.

But even if we could synthesize the text gracefully

from a semantic network or re-write it carefully with an eye

towards forestalling anaphoric questions, other difficulties

would arise as indicated by the next scenarios.

Elliptic structure

Second scenario - The system tells the student:

NLS FILES

In order to begin using NLS you will need to specify
which 'file' of information you want to work with.

Each file is sort of like a notebook or folder in
which you can keep information.

You may keep as many different notebooks (files) as
you like.

Files are automatically stored when you are not using
them.

Before you can work with a file you must 'load' it from
the storage into the working space of the computer.

Each file has a name so you may refer to it easily.

File names are made up of letters and digits and may
be quite long - like BUDGETFORFISCAL75.

No distinction is made within file names between
upper and lower case letters - both are treated as
the same character.

48

At this point, the student asks:

"What about blanks and other special characters?"

(Before going on to point out the new problems inherent in

this example, we should mention in passing that, here again,

the occurrence of this question could have been prevented by

re-writing the text so that it specified in exact detail

what characters could be used in designating file names.

This would provide, however, more detail than most users

really want and is the sort of information that belongs more

properly in a reference manual than in a tutorial.)

Let us ignore the problem of the conjunctional form of

the question, which we are presently unable to handle, and

simplify it to be

"What about blanks?"

The new problems that face us here are the elliptical

form of the question (it's not a sentence) and the

multiplicity of logically acceptable referrents. For

example, focusing on the last sentence uttered by the

"tutor", the answer would be

UPPER CASE BLANKS ARE TREATED THE SAME AS LOWER CASE
BLANKS.

If instead one focused on files (rather than on file names),

one might generate the answer

YOU MAY KEEP BLANKS (as well as other special
characters) IN FILES.

49

In order to generate the answer that the student is

actually seeking, i.e.,

FILE NAMES MAY NOT CONTAIN BLANKS

we need a crucially important new component: a model of the

user.

Such a model would be used, perhaps unconsciously, by a

human tutor in answering this question. An experienced

tutor knows that the rules about permissible characters in

file names vary from system to system and might be expecting

such an enquiry about file names from a non-naive student.

The fact that this student chose the term "special

characters", not mentioned in the text, indicates that he

has some previous experience. He certainly wouldn't be

asking whether blanks could be stored in files, or imagine

that blanks come in both upper and lower case varieties.

Thus for a system to cope with a question like this, it

would need to have a broader knowledge base than that

describing NLS; it would need to have knowledge about the

capabilities and expectations of the user.

Indeterminate Reference

Third Scenario - A similar situation (but with an

interesting twist) appears next.

Anticipating students' uneasiness and nervousness

50

before performing their first task, NLS-SCHOLAR gives them

rather precise instructions. To wit:

LOADING A FILE

I'd like to show you the file named DINNER so you can
see how an NLS file is structured.

Your first task is to load this file so you can work
with it.

When the BASE C: appears, type the command

load <SP> file <SP> DINNER <CR>

Note that you should terminate each word of the
command with a space (<SP>); you should terminate
the entire command with a carriage return (<CR>).

(You may type DINNER in either upper or lower
case letters.)

As this single command completes the task, when the
next BASE C: appears type

quit <SP> <CR>

I'll then check what you've done and point out any
mistakes you may have made. Please be sure you type a
<SP> after "quit", before you type the <CR>.

If you make a typing error while doing this task, you
may use <CTRL-A> to remove the last character, or
<CTRL-X> to delete the entire line.

These commands work in the same way whether you're
typing to me or to NLS.

Do you have any questions before doing this task?

And here the user asks

51

"Do I type the entire command?"

This is a situation in which even a human tutor might have

difficulty figuring out what this user wants to know. Let's

consider some of the possible answers.

1) Focusing on the last two sentences before questions are

invited, the system could reply

NO. YOU DELETE THE LAST CHARACTER USING
THE <CTRL-A> COMMAND.
PROCEDURE: YOU DEPRESS THE CTRL
KEY AND THE A KEY SIMULTANEOUSLY.

This is NLS-SCHOLARese for "No. You don't have to spell

out <CTRL-A> to delete a character. You only have to

depress the CTRL key and the A key simultaneously."

2) Focusing on the third and the fourth sentences, the

system could answer with something akin to "Yes. You

must spell out the entire command exactly as you are

told."

3) Finally, the answer could be directed to the fact that

all parts of a command must be specified, and to type

only the first part of a two part command leads nowhere.

The twist is that the user model in most people's minds

would not be sufficient to identify the purpose of the

question. Why would anyone ask it? Indeed, isn't the manner

in which the commands for the first task are to be typed

clearly described? Isn't it self-evident that all parts of a

command must be specified before it can be executed? And

52

haven t students already used the <CTRL-A> command in the

introduction?

The solution to this riddle is that this particular

questioner was familiar with NLS and was accustomed to

typing just the first letter (or two) of each command, using

NLS's expert input mode. His question reflected his doubt

that NLS-SCHOLAR really meant for him to type each and every

character of a command, and wanted the system to confirm its

instructions. This familiarity can be gleaned from watching

his performance on subsequent tasks, but not at the time the

question was asked, just before the first task in Lesson

One!

It might be argued that the needed information could

have been obtained from a user profile collected beforehand.

The problem of acquiring it might be handled by inserting

questions into the introduction about his previous

experiences. One could find out, for example, whether he

was familiar with terminals, computer systems (if so,

whether TENEX or others), editors (if so, whether NLS or

others, and if NLS, which version), etc. If his answers

warranted it, certain parts of the introduction might be

skipped; a fairly detailed user profile could be generated

from this information.

A limited user profile could be easily gathered and

should be of assistance in coping with questions like the

53

above, but using it in the way we have described implies

that the requisite knowledge about other computer systems,

terminals, characteristics of user behavior, etc. will all

have to be within the system's knowledge domain. This

multifold expansion of the system's field of expertise and

its integration into a coherent whole, would be a formidable

undertaking.

It may be argued that the adjective "entire", appearing

in the fifth sentence of the tutorial material and in the

question, is a clue that helps to link the question with the

desired answer. As mentioned earlier in another context, a

person involved in a dialogue often adopts the same words

that were just used by the oth^r party. Here then, we have

a possible way out: lexical clues can help disambiguate what

a student's question is about. But that won't help us

sufficiently as the next scenario will show.

Fourth scenario - After having learned how to use the Delete

command, and after having actually practiced the command by

deleting three statements in his own working file, the user

is told:

Please print the modified DINNER file so you can see
that the statements containing "tomato", "rhubarb", and
"strawberry shortcake", have all been deleted from the
DINNER file.

54

After he prints what he is asked, the system continues with

Note how the statement numbers have been changed by
NLS. You can see that many statements have been
renumbered ('promoted'), some of them acquiring the
statement numbers of the deleted statements.

Although statements 1A, 3A1, and 3B were all
deleted, these statement numbers still exist in our
file -- but the statement contents are now
different.

Would you like to ask any questions?

At this point, the user asks:

"Can I delete these modifications?"

Since many people find it hard to understand this question

let us clarify it with the help of a paraphrase

"Can I restore the contents of the file to what they
were before anything was deleted?"

Several new problem elements are introduced into the

picture by this scenario.

In the first place, the anaphoric reference is to

previous actions undertaken by the student (or on the

student's behalf) using NLS. The reference is directed

neither to concepts explained earlier, nor to anything

represented in the semantic network (the question is not

"Can I delete modifications"). This illustrates the need to

55

bring into focus the history of changes (modifications) made

to the user's work file, which is not hard to do in our

system.

In the second place, here we have a case where

"modifications" could be misconstrued as beinp; inspired by

"the modified DINNER file" in the tutorial material. In

reality, "modifications" for this user turns out to have a

much firmer root: experienced NLS users know about the

"modification file" (a file where all the changes made to a

working file are kept until the working file itself is

updated) and how to manipulate them. This user is not

naive: he knows that NLS provides specific ways of

"undeleting" and he is simply and benevolently testing how

much NLS-SCHOLAR knows about them.

In the third place, we have the rather incongruous use

of the verb "delete" with the object "modifications". All

that the student has learned up to this point indicates that

"deleting" is a positive action resulting in something being

eliminated from his work file, but here deleting something

would result in the reappearance of that which was deleted

earlier! If we know what kind of "modifications" the student

is talking about, we can make sense out of the question

without too much regard to the verb used (try, for example,

"restore" or "undelete", or "do something about").

Therefore, here we have a case where what the student must

56

be speaking about outweighs other interpretations stemming

from his choice of words, such as "Can I delete (the

statements containing* these modifications0"

Fifth Scenario - We begin at a point where the system has

just taught the student how to load and print a particular

file, an the student has successfully performed two tasks

requiring him to perform these actions. The student then

has available the following printout of the contents of the

file.

< TUTOR, DINNER.LNLS;1, >, 14-SEPT-75 13:^3 LAC ;;;;
1 SOUPS

1A tomato
1B vegetable
1c cream of mushroom

2 ENTREES
2A fried chicken
2B prime ribs
2C scallops

2C1 broiled
2C2 fried

2D salmon
2D1 with cream sauce

3 DESSERTS
3A pie

3 A 1 rhubarb
3A2 blueberry

3B strawberry shortcake
3C ice cream

3C1 blueberry
3C2 maplenut
3C3 chocolate
3C4 coffee
3C5 peppermint
3C6 cherry

The system begins to describe this file as follows

57

THE ORIGIN STATEMENT

Let's look at the information in the file.

Notice that there is a line at the top which rives
identifying information about the file

This line is called the 'origin statement' and is
supplied by NLS.

First it gives vou the name of the 'directory' (a nlace
in the memory) in which this file was stored. Then it
gives the full name of the file, and the date and time
of its creation.

The file name includes an 'extension' specifying
what kind of file it is.

In this case it says that this is an "LNLS" file.
(LNLS stands for LISP-NLS and indicates that this
file was made by our LISP implementation of NLS.)

The number after the file name is called the
'version number'.

The "1" here indicates that this is the first
version of the DINNER file that's been made.

Do you have any auestions?

And the student asks:

'Are the brackets part of the statement?"

Here we have two anaphoric references ("the statement" and

"the brackets") and a questioned inclusion relationship

between them.

Finding the referrents (the first line of the printout

as a realization of "the statement", and the left and right

an?le brackets within it as "the brackets") involves methods

of solution not required previously. "The statement" can

58

readily be assigned the referrent "origin statement" by

means of the previously hypothesized representation of the

tutorial material and by focusing, but from there on we face

entirely new problems. In the first place, the student uses

"the brackets" to describe some portion of the content of a

statement. Surely we can not expect the system to be

capable, in general, of dealing semantical.lv with the

contents of user files. In fact, referring to statement 2D

as "the fish" is possible only because of our knowledge of

zoology, which has little to do with text editing systems or

with NLS in particular.

Secondly, although "origin statement" is a perfectly

valid referrent for "the statement", what is really meant is

"the particular realization of an origin statement that is

represented in the first line of the print out".

Presumably, quite a bit of inconclusive inf erencinsr will

have to go on before the system quits tryinp to find a

connection between brackets and the concept of an origin

statement (after all, square brackets can be used in file

names!)

In the third place, even after the correct referrents

have been identified, what sense does the question have? Why

shouldn't a part of the content of a statement not be a part

of the statement? Isn't this obvious? And if so, why would

such a question be asked? If the interpretation "upper case

59

blanks are treated the sane as lower case blanks" could be

rejected for beins: trivial why can't this one be rejected

similarly?

The truth is that we don't know why this particular

user asked the question. We can only speculate that he was

a TENEX user and was wondering if the angle brackets were

used in a fashion similar to the way directory names are

denoted in TENEX; or he may have been prompted to ask this

question because of the way NLS-SCHOLAR denotes certain keys

(<CR>, <CTRL-A>, etc.

This is a good place at which to stop and recapitulate

the preceding analyses and discussions. We have seen how

each scenario has introduced new problems, and how each new

problem has required more and more complex methods of

solution -- and yet, there is no indication that this

escalation of complexity has ceased.

Proposing those methods, we stretched available ones

and hypothesized new ones to such an extent that continuing

to do so would have been utterly unrealistic. For example,

the user models we require would have to encompass a large

amount of "world knowledge" in order to cope with situations

such as the ones exemplified in our scenarios, and yet the

theory underlying such models is in its infancy at best.

The exercise we engaged in is certainly useful and

60

illustrates the need for continuing research, but above all

it demonstrates the need for a pragmatic approach, i.e., one

based on accepting the seriousness of the difficulties and

finding a way around them. Rather than exploring a large

number of plausible interpretations of a user's request, it

is better to either forestall the request, or to seek its

clarification.

61

SECTION IV - RECOMMENDATIONS AND CONCLUSIONS

In this section we summarize conclusions reached for

the most part in previous sections, and we formulate

recommendations for further work. Our contention is that

one more year of relatively low level effort can make

NLS-SCHOLAR a very useful operational system.

Our first recommendation is to continue to improve the

English front end module to rid it of the nagging little

problems described extensively in the preceding section.

This can only be done on a continuing basis, correcting the

problems as they appear in the course of bona fide usage of

the system by the type of users for whom it is intended.

This process will be long, but tne result should be a system

able to answer as many as 80$ of the recuests posed. In

parallel with this effort, techniques such as the ones

sketched in the previous section for circumventing the

harder problems should be developed and tested, and research

efforts aimed at attacking these problems head-on should be

stepped up.

Our second recommendation is to improve the task

evaluation module in the following ways:

1) Make it point out more clearly what is wrong with a

student's result. For example, when this module responds

62

"I wanted you to change A into B but you changed A into C"

it is hard to see sometimes what the difference between B

and C is. In other words, in our efforts to avoid

presenting the offending text in isolation without

contextual information, we went too much in the other

direction; we showed so much of the surroundings that the

specifics rot drowned!

2) Augment the existing task entries in the semantic

network with a list of expected errors and specific ways to

report them. This would permit by-passing the standard

reporting format if one of these specific errors were found.

3) Implement a "let me fix it" facility to avoid the

sometimes costly consequences of the task evaluators's zeal.

This facility will hand back a task environment to the user

after the system has found fault with it and has required

the user to do it all over again. In this way, users that

realize what is wrong and what is expected of them could

patch up their work and satisfy the task evaluator's

requirements in their own way.

Finally, what would really make this module

"intelligent" would be to five it the ability to understand

and interpret the user's intentions and to offer helpful

comments. It is not enough to point out what is wrong with

a result; the most helpful situation is one where the user's

solution methods are scrutinized and criticized. This area

63

is certainly one where further development is needed.

Our third recommendation addresses the tutorial

material. Although it is certainly in pood shape, it could

be improved by adding the capability for the user to

redirect the order of presentation of a lesson via requests

such as:

"Let's go back to DELETING BRANCHES"

"Tell me again about <CTRL-X>"

We have the necessary groundwork to handle these requests

for review. The only problem is how to apprise the user of

the new context he is to work on after his request has been

fulfilled; that is, how to indicate gracefully that his file

has been restored to an appropriate earlier incarnation.

We could also handle requests like

"Let's skip this task"

without too much difficulty. Here the necessary changes to

the user's file, to brine- it to the state it would have

acquired after the task had been completed, must be

explained and justified. Reauests of the form

"Let's skip all about INSERTING"

and

"Teach me about VIEWSPECS" (implying a large forward

jump)

raise other issues as well. Not only is the problem of

bringing the file up to date more complex to explain as many

64

tasks may be involved, but also some of the concepts and

terminology skipped over may be needed by the student in

order to comprehend the following material. Allowing the

student to review is relatively easy; allowing him to skip

forward is ouite difficult given the linear development of

the textual material.

Epilogue

It is easy to jump to the conclusion that the

unresolved problems we have dealt with so extensively,

preclude systems such as NLS-SCHOLAR from becoming useful in

an operational environment. This conclusion would be

erroneous for several reasons:

a) The frequency of occurrence of "hard problems1, is very

small. Most of the users' requests we have seen belong

to the "easy to answer" category, regardless of the

actual performance of the present version of NLS-SCHOLAR.

2) As more and more of the little problems are ironed out,

users will be positively reinforced towards expressinp

their requests in the kind of English the system

understands, and with the precision of formulation the

system requires,

c) As the number of failures decreases and the number of

users increases, it becomes both feasible and economical

to provide a human expert to back up the system as a kind

of "consultant". In a computer network environment, many

65

users from different sites could take advantage of this

immediate and most effective form of help. Notice also

that while human expertise is concentrated in the hands

of one expert at any one time, experts located in many

sites can take turns at minding the system; i.e., human

expertise may be concentrated but not centralized.

Waiting until "intelligent" CAI systems become capable

of 100^ stand alone operation is both futile and

counterproductive. It is futile because that kind of

performance is probably impossible to obtain (Just think of

how few people can do it!). But, more importantly, it is

counterproductive because widespread use of an &0% effective

facility, for example, would multiply by a very larr;e factor

the consulting capacity of a human expert, enabling him to

reach more people than he could otherwise and to address

himself to the relevant problems quickly.

66

APPENDIX

Review of NLS-SCHOLAR by ISI

The following evaluation report was written by David

Wilczynski, of the Information Sciences Institute of the

University of Southern California, at the specific request

of the Contracting Agency.

I. INTRODUCTION

This review is based on my own experience in early August
1975 with NLS-Scholar, a mixed-initiative tutorial CAI
system for teaching a basic subset of the text editing
subsystem of SRI's MLS programming system.

NLS-Scholar, programmed in IMTERLISP, was written by Mario
Grignetti and his group at BBN. The system has evolved from
Jaime Carbonell's Scholar (which teaches South American
geography) together with substantial influence from Brown's
SOPHIE system. The system is organized to:

a "i Present textual, tutorial material to introduce the
user to a terminal and to NLS.

b) Provide a simulated NLS system to the user on which to
practice what he has learned, as well as to do
system-generated NLS tasks.

c) Provide a natural language question-answering
component which responds to user queries by: 1) doing
Al-like searches in its fixed data base, or 2)
"executing" the right NLS commands on the user's current
file to answer dynamic questions.

d^ Present various NLS tasks to the user to test
comprehension of the material just presented.

The course is divided into the following lessons. Each
lesson takes about 1 hour, with many variables determining
the exact length, load average, attention span, competence,
etc.

Introduction - Control characters

67

Lesson 1 -

Commands: Load File, Print File, Delete, Update

Concepts: MLS files, MLS commands, NLS prompts, structure
units (statement, branch), string units

Lesson 2 -

Commands: Print Rest, Jump, one-character commands

Concepts: Control Marker, content addressing

Lesson 3 -

Commands: Insert, Create File, Substitute

Concepts: Level, level adjustment

Lesson 4 -

Commands: Print, Transpose, Move, Copy

Concepts: Plexes, GrouDS

Lesson 5 -

Commands: Show Viewspecs, Set Viewspecs, Reset
Viewspecs, Output, and Help.

Concents: Viewspecs, Text File

II. GENERAL IMPRESSIONS

NLS is well suited for CAI methods; NLS concepts are short,
factual, and "nonphilosonhic," a good method is available
for testing competence (either interfacing directly to MLS,
or simulating it), and the information is incremental and
additive rather than diffuse.

The main point is Scholar did teach me NLS. At the start of
the program I knew nothing about NLS other than what it is;
now I know the NLS terminology and how to use the system.
However, improvement is necessary in several areas if
Scholar is to be a finished production program, competitive
with possible alternative teaching methods. The following
two sections will review Scholar's strengths and weaknesses.

III. THE ENVIRONMENT OFFERED BY SCHOLAR

The Scholar CAI system is classical in that text is
presented to the student in prearranged frames with tests
usually following each. The inclusion of a natural language
interpreter is an innovation which allows the student to ask

68

questions during the program. It turns out that this node
of operation has advantages for nonstudent types. Studies
have shown that people relate well to computers, suffer less
anxiety, and feel freer to experiment and ask Questions in a
CAI environment. The critical aspect of such a system is
its transparency.

If the student notices (or becomes preoccupied by) the CAI
machinery, he can perform in the short term (answer
questions, do short tasks'*, but lacks global comprehension.
Thus the type of display and the "smoothness" of the system
become important factors for people not used to operating
such devices. Specifically, NLS-Scholar is intended for
typewriter terminals. Having written a CAI system for such
terminals myself, I have verified that all students are
acutely aware of the typing noise and slow speed. I used
NLS-Scholar on a 2*100 baud video terminal and was much more
satisfied with the results. Since there are tines when
hardcopy is needed for back referrals, BBN would do well to
offer the appropriate hardcony text to the student as an
addition for the video terminal.

A parameter of system smoothness is its responsiveness. A
high load average (virtually anything above 4) combined with
the slowness of INTERLISP made Scholar move at an unbearable
crawl. When the load average came down to 1 or less, the
system moved about sprightly. The difference here is more
than one of convenience. No user (unless he is forced or
paid'1 will sit through a session of Scholar on a machine
with a high load average. If he must, it will turn out to
be a nainful, wasteful way to learn NLS.

A fev; of the INTERLISP features caused some unnecessary
distractions. I found the rarbapie collect nessares ("Excuse
me, while I rearrange my memory!") disconcerting since they
caused a visual break in my concentration. I appreciate the
attempt to explain the impending delay, but I think the
typed message is too visible.

The preprocessing of all questions and responses by DWIM
also caused some amusing incidents. For example, in
answerinr the Question, "What character prints the context
of the CM?", I responded " "•. DWIM turned the slash into a
'?" (a common INTERLISP occurrence) and then NLS-Scholar
told me that »«'»• f not "?" was the correct answer. Those
sort of bugs are not serious and easily repairable, but must
not exist in a released product.

NLS-Scholar offers a medium which can be started when
desired (assuming machine availability 1, stopping at
arbitrary points, and proceeding in whatever pace is
comfortable. If NLS-Scholar were set up to operate at
different modes (beginner, expert, review'* then the problem

69

of retrainin/j and refreshing previous NLS users v;ould be
simplified. This nay not be a simple addition to make in
NLS-Scholar, but judging from discussions with users at
Gunter AFF, it would be powerful and useful.

IV TEACHING COMPONENTS OF NLS-SCHOLAR

The three main components of NLS-Scholar are: a) the
tutorial information, b) the natural language interpreter,
and c1 the test management. The first and third are CAI
standards, while the second is in the realm of Artificial
Intelligence 'AI).

A) The text material was impressive; it was presented
concisely and accurately. At no time did I feel that I
was being either overloaded or nursed through, both
factors which led to effective and willing comprehension
of the material. It is easy to overlook or underestimate
duality in this area because good tutorial services are
not as visible as poor ones. Because of this phenomenon
I want to emphasize the excellence of the tutorial
information.

Bl The nat
to evaluat
the system
form. The
asked a
one-charac
your reque
that "rev
However, i
"Tell me
ret a list
get what
individual
disconcert
fail on a
Just aski
failure wa
composing
want such
have liked

ural
e.
, ye
mai
simp
ter
st"
iew"
n re
abou
of
I

iy (
ing
simp
ng
s ; t
a d

info
it.

lang
Most
t Dro
n pro
le q
comm

reply
is

phras
t the
them
want

e.r. ,
to

le re
for
his i
iffer
rna ti

uage
like
babl
blem
uest
ands

I
not

in,^
one

with
ed
"Te

have
ques
a r
nfor
ent
on i

int
iy,
y th
con

ion
," a
n th

pa
the
-cha
out
I w
II n
the

t, b
ephr
mati
reou
s a

erpreter is more complicated
it is the most complex part of
e least useful in its present
corns its robustness. Often I
like "Please review the

nd got only a "Please rephrase
is case I think the problem is
rt of Scholar's dictionary.
question to something like

racter commands," I would just
functional definitions. To

ould have to ask for each
e about the command."). It is
parser or retrieval mechanism

ut not to know why is worse,
ase does not indicate what the
on will surely be useful in
est. Whether most users would
different Question: I would

It is hard to be critical of this natural language
business, since the problem is still a major research,
not developmental issue. Still, I wonder if Scholar's
interpreter is state of the art; I am thinking of Woods'
moon rock program. Since that program is also a BBN
product, it would be interesting to get a comparison of
the two systems from the NLS-Scholar group.

70

The lack of robustness of the English interpreter
detracts somewhat from Scholar; I found myself not using
that component. The table look-up kind of questions it
could answer would be better solved by just having access
to the table in some primer format. Again, the lack of
field testing may indicate that this is just a personal
reaction; but the shallow range of questions and answers
makes the current worth of this subsystem suspect.
Certainly, it doesn't fulfill the capabilities of a human
tutor.

C) The test management phase of Scholar is composed of a
series of questions which are answered either by doing an
MLS task, or talking directly to the Scholar top-level.
In both cases the answers or performance are evaluated
with feedback as to correctness. The ability to check
answers is one of the more difficult tasks for a CAI
system when the domain of true-false or multiple choice
questions is not used. Scholar does admirably here but
is far from perfect.

The top-level type questions, (e.g., "What is the
statement number of the statement that will be printed if
I now use the backslash command?") will be looked at
later. The NLS tasks, the heart of the testing
component, will be reviewed in depth.

The basic mechanism for matching a task answer to the
correct one seems to be:

a) If a file manipulation task is involved (e.g.,
INSERT, DELETE), then the resulting file and the CM
(control marker) are checked against Scholar's
expectation.

b 1 If a printing task is involved, the output of the
print command is trapped and matched against expected
print, and the CM is checked for positioning.

At no time does it appear that Scholar looks at the
student's input sequence. This lack leads to many
unfortunate experiences. For example, one task asked
to delete two consecutive statements, expecting the
user to use the sequence, "delete statement 1B5, delete
statement 1B5," to account for the renumbering done by
NLS. I tried, "delete statement 1B6, delete statement
135," to accomplish the same effect. Scholar told me I
did the task correctly and then the next frame
described how I could have accomplished the same task
by deleting statement 1B6 and then deleting statement
135. Not serious, but the question of system
transparency arises.

71

A more serious flaw in this purely extensional form of
testing appeared in the task to test the use of
'CTRL-E> for inserting a series of statements. I did
the task by insertinp all the statements at the same
level (superfluously using CTRL-E after each insert)
before going back to insert substa tenents. Even though
the resulting file was correct, the CM was not where
Scholar expected it and so I was informed of this
"error" and told to redo the entire task from scratch!
Needless to say, I didn't enjoy retyping the whole
thing. Worse, however, was the failure of Scholar to
recognize what I did, tell me the right way to do the
task (i.e., use one CTRL-E and move up and down levels
using the L: prompt) and then let me proceed. It is,
however, easier to be critical of this flaw than to
suggest an alternative. A deep understanding of the
intensional command strings represents a large (perhaps
unknown^ effort. If accomplished, there is no ouestion
that the system will appear much more intelligent then
it currently does, as well as being more useful.

Other examples of situations where this type of problem
come up can be given, but are not necessary to this
review. Some of the techniques used to check top-level
questions (those not requiring the NLS simulator) are
also open to improvement. For example, one question
expected CTRL-X as the answer; I typed <CONTROL-X> and
was told I was wrong. Another time I answered a
question with LINE-FEED and Scholar wanted <LF>. These
two cases should not be construed as nitpicking, but as
an attempt to point out situations which make Scholar
seem less suitable as a training method than standard
teaching methods. Too many of these trivial flaws will
discourage the CAI user.

V. SUMMARY AND CONCLUSIONS

As I mentioned before, it is much easier to point out flaws
in a CAI system then to recognize its Qualities. Experience
with standard methods give rise to expectations which are
then used to judge CAI systems". Yet, criticisms of Scholar
should be tempered by one observation, Scholar does teach
the student NLS effectively. Assuming that the local bugs
in Scholar are fixed (a few have been described in this
paper^, a useful system exists which can be used to train
potential NLS users.

Still, changes can be made which might expand its range of
use as well as improve its performance. Several have been
pointed out in this paper, for example, making the natural
language component more robust, adding analysis of the
user's input to the current extensional analysis, endowing
Scholar with other training modes, expert, review, etc.

72

None of these possibilities are simple; more field testing
is necessary before firm conclusions can be made one way or
the other. Yet, once Scholar is made more complete in its
coverage of NLS, it will be a viable product and should be
evaluated as such by agencies interested in NLS.

Some purely system questions also need addressing. Can
NLS-Scholar be a viable product as an INTERLISP program
(thus bound to TENEX)? Are there enough machines with enouph
time slots of low load average to accommodate the potential
Scholar users? I am sure other questions of this type will
arise if research into Scholar is continued.

73

Connents on the review

by Mario C. Grignetti

It seems to me that the review is, overall, a rather

positive one. HLS-SCHOLAR seems to be able to do its most

important job, i.e., teach NLS.

Many of the problems that Dave points out are trivial

to take care of: garbage collection messages, DWIH's

busy-bodiness in unwarrantedly exchanging ''/" for "?", and

more ways to represent CTRL-X or <LF> than we anticipated.

After all, the main goal of the field testing performed

under this contract was precisely to bring up these kinds of

problems.

Dave is wrong in his assertion that "at no time does it

appear that Scholar looks at the student's input sequence":

The system does look at the student 's actual input when he

answers questions. The fact that Dave's clever answer

(delete statement 1B6 and then delete statement 1B5) was not

handled intelligently was due to a stupid bug in one of the

predicate functions in our answer evaluation module. Again,

this is a case in Doint for the usefulness of this type of

testing to the system's designers. In general, however,

Dave's criticism is valid: when the student performs a task

using NLS, the commands he types are not looked at and only

their consequences are used to evaluate what he has done.

We'd like very much to tackle the difficult problem of

74

intentional comprehension; if solved we would have a much

smarter system!

Other difficulties referred to in the review are more

serious. Indeed, we need to provide feedback as to why a

request fails to be understood. We had wanted to tackle the

problem of partial comprehension and try a few strategies

that appear promising. However, the pressures arising from

limited time and resources, and the purely developmental

type of work in which we have had to confine our efforts,

precluded the performance of sorely needed research work.

With respect to our use of "Wood 's moon rock program", this

is another thing we 've kept on the back burner for some

time. However, it is questionable that just a more powerful

parser would have made a lot of difference in the system's

ability to respond to student's requests. The difficulty

here resides not so much in the literal interpretation of

questions as if they were precise formulations of the

specific bits of knowledge the questioner seeks, but rather

in figuring out what each particular student may have meant

to ask, given where he is, his previous performance, what he

oufrht to know, what he seems to have learned, etc., etc. It

is surprising to see how many questions are unanswerable,

even to a human, when taken in relative isolation.

Finally, a word about efficiency. We do not think that

3 CPU minutes per hour is a terribly inefficient and

75

unacceptable way to administer a CAI lesson. We agree

hov/ever 'and wholeheartedly!) with Dave's observation that

when the load average in a general nurpose time-sharing

system such as TENEX reaches about 4, it is better to quit

and go hone. This is not a problem that affects NLS-SCHOLAR

alone; when a large system such as TENEX is saturated,

nobody gets anything done efficiently, including NLS users.

76

REFERENCES

[1] Grignetti, M C., Hausmann, C. and Gould, L. "An
'intelligent' on-line assistant and tutor
NLS-SCHOLAR," National Computer Conference, 1975.

[2] Grignetti, M.C., Gould, L., Bell, A.G., Hausmann, C.L.,
Harris, G. and Passafiume, J.J. "Mixed-Initiative
Tutorial System to Aid Users of the On-Line System
(NLS)," ESD-TR-75-58, AD A007 828, November 1974.

[31 Bobrow, D.G. and Wegbreit, B. "A Model and Stack
Implementation of Multiple Environments," Communications
of the ACM, Vol. 16, No. 10, October 1973.

[4] Teitelman, W., et al, Interlisp Reference Manual. Bolt
Beranek and Newman and Xerox Corporation, 1974.

[5] Burton, R.R. "A Semantically Centered Parsing System
for Mixed-Initiative CAI Systems," paper presented at
the Association for Computational Linguistics
Conference, Amherst, Massachusetts, July 1974.

[6] Brown, J.S. and Burton, R.R. "Multiple Representations
of Knowledge for Tutorial Reasoning," Representation and
Understanding: Studies in Cognitive Science. Editors D.
Bobrow and A. Collins, Academic Press 1975.

[7] Woods, W.A., Kaplan, R. and Nash-Webber, B. "The LUNAR
Sciences Natural Language Information System," Final
Report, BBN #2378, June 1972.

[8] Fillmore, C.J. "The Case for Case," in Universals in
Linguistic Theory. (eds.) Bach and Harms, Holt, Rinehart
and Winston, 1968.

77

