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The Social Science Research Institire of the University of Southern
Calitfornia was founded on July 1, 1972 to permit USC scientists to
bring their scientific technological skills to bear on social and public
policy problems. Its staff members include faculty and graduate students
from many of the Departments and Schaols of the University.

SSR s vesearch activities, supported in part from University funds
and In pare by various sponsors range from exrremely basic to relatively
applied. Most SSRI projects mix both kinds of goals — thur is, they con-
tribute ro fundamenral knowledge in the field of 4 social problem, and in
doing so, lielp to cope *vith that problem. T'ypically, SSR] programs are
mterdisciplinary, drawing not only on its own staff but on the talents of
otl ers within the USC communiry., Fach continning program is compaosed
of several projects; these change from time to time depending on staff
and sponsor interest.

At preseat (Spring, 1975), SR hne four programs:

Criminal justice and jnvenile delinguency. Typical projects include
studies of the effect of diversion on recidivism among Lo Angeles area
Juvenile delinguents, and evaluation f the cffects of decriminalization
of status offenders.

Decicion analysis and social program evaluation. "Typical projects
include study of elicitation methods for continuous probability distriby-
tions and development of an evaluation technology for Calitornia Cog." 1
Commission decision-making,

Program for data rescarch. A typical project is examination of
small-area crime statistics for planning and evaluation of innovations in
California crime prevention programs.

Madels for social phenomena. Typical projects inclnde differential-
equation models of international relations transactions and model: of
population flows,

SSRI anticipates continn’ng these four programs and adding new
staft and new programs frou, time to time. For further information, pub-
lications, etc., write or phone the Director Professor Ward Edwards, at
the address given above.
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The first part of the report explains the role of utility theory as a
part of the general theory of measurement, and it develops a classifica-
tion scheme for utility models. Models are classified according to some
of their formal properties and according to the type of decision situa-
tions to which they apply. The second part of the report describes the
main v*ility models -- weak order measurement, difference measurement,
bisymmetric measurement, conjoint measurement, and expected utility mea-
surement -- through their assumptions, model forms, formally justified
assessment procedures, and common approximation methods. In the third
part some similarities and differences among models and assessment pro-
cedures are discussed. Topics include logical relationships between mo-
els, similarities in the cognitive processes involved in different assess-
ment procedures, and model convergence by insensitivity. The fourth and
final part of the report evaluates the use of utility theory for decision
analysis, as a tool in formal treatments of decision problems. This an-
alysis concludes that utility theory can be quite useful in struccuring
evaluation problems, and in eliciting appropriate model forms, but the
theoretically feasible assessment procedures are often too clumsy ard com-
plicated to be applicable in real world preference assessment. A general
critique of current trends to mathematize utility theory concludes the
report.
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Introduction

This report is a survey of the already voluminous and fast-growing mea-
surement theoretic literature on utility modeling ani assessment. It is writ-
ten specifically for decision analysts who are interested in the use of these
abstract measurement theories for solving complex real world decision problems.
The main purpose of the report is to connect current theory of utility measure-
ment with decision analytic practice.

Presently, a gap exists between theory and practice, partly because util-
ity theories are formulated in a highly mathematical language that is difficult
to relate to real decision problems and real preferences. Many theoreticians
overemphasize the mathematical elegance of utility modeling and assessment and
shew Tittle concern about model applicability. Easy translations and tutorials
exist only for a few classes of utility models; the bulk of measurement theo-
ries, on the other hand, is hidden in mathematical journals ard books. Conse-
quently, many decision analysts who could apply utility theory as a tool for
solving complex decision problems find the utility theory literature inacces-
sible and 1iitle use is made of the wealth of models and assessment procedures
that utility theory offers.

This repart tries to bridge the gap between the theory and practice of
utility measurement by:

1. Providing a classification, translation, and integration of utility
theories that should make them accessible to the less mathematically sophisti-
cated decision analytic practitioner; and

2. Evaluating the usefulness of utility theory for decision analytic
modeling and assessment in order to articulate the needs and considerations
of the practitioner for the theoretician.

With these two tasks this review assumes a rather peculiar position
among the approximately 20 review articles and books on utility theory that
have appeared since the late 60's. It clearly is not a mathematical review
as, for ewample, the books and articles by Luce and Suppes (1967), Fishburn
(1970) and Krantz, Luce, Suppes, and Tversky (1971). Neither is it meant to
be a tutorial in the application of utility theory such as the books by




Raiffa (1968), Schlaifer (1969), Brown, Peterson, and Kahr (1974), and Keeney
and Raiffa (1975). And it does not simply seek to describe current models and
assessment procedures for decision analysis as, for example, the reviews by
Fishburn (1967), Huber (1974), MicCrimmon (1973), and Kneppreth, Gustafson,
Leifer, and Johnson (1974).

Instead, the report hopes to provide the decision analytic practitioner
an intelligible and yet comprehensive perspective of utility theory and an
overview of the state of the art. It tries to answer questions like these:
What utility models are presently available? Where can one read in detail
about them? What are the basic characteristics of the models and the assess-
ment procedures? What are the integrating factors?  And finally, the report
addresses the all important question: How relevant is all this theorizing to
the practitioner?

To answer these questions, the report is organized as follows. The
first part discusses some general aspects of utility theory as part of mea-
suremerit theory and it develops a classification scheme for utility models.

In the second part, the main model classes (weak order measurement, difference
measurement, bisymmetric measurement, conjoint measurement, and expected util-
ity measurement) are described through their assumptions, riodel forms, for-
mally justified assessment procedures, and approximation methods. The third
section of the report looks at some similarities and differences between mo-
dels and assessment procedures. Topics are the logical relationsnips between
models, similarities and differences in the cognitive processes involved in
different assessment procedures, and model convergence by insensitivity. The
fourth and final part of the report evaluates the use of utility theory as a
practical tool in formal treatments of decision problems. The use of utility
theory in structuring evaluation problems and in elicicing appropriate model
forms is considered as well as the use of utility theory in scaling and as-"
sessment. The report concludes with some general remarks about current trends
in utility theory and their implications for the use of utility theory.




Measurement theory and utility models

What is utility theory? -- Utility theory is a part of measurement theory
thet deals with evaluating (indexing) valuable objects by numbers that are con-

sistent with the decision maker's (group's, organization's) preferences, tastes
and values. Utility theory is a collection of models and evaluation procedures

that differ in wnat they measure (e¢.g., gambles, investment plans, cars), how

they measure it (e.g., by adding, by taking expectation, etc.), for whom the
measurement is performed (e.g., for an individual, a group, or an organization),
and for what purpecse the objects are to be measured (e.g., to describe an indi-

vidual's evaluations, to prescribe his decisions, etc.)

Before going into a more detaiied discussion of utility theory, it is
useful to back up a little and look at the measurement theoretic framework of
which utility theory is a part. In measurement theory, subsystems of the num-
ber system with their numerical relations and operations are models for real
world objects, their relations. and operations. Measurement theoretic models
formulate the principles that justify numerical measurement of these objects,
and they provide procedures to construct actual scales.

H.v. Helmholtz (1887) was one of the first measurement theorists who con-
sidered the problem of measurement as a problem of modeling empirical systems
with systems of numbers. His rudimentary measurement postulates were straight
generalizations from the axioms of algebra. In a sense, v. Helmholtz required
objects to behave 1ike numbers -- otherwise, he would not consider them mea-
surable. But if they behaved like numbers, one could count, add, and subtract
them like numbers, as well as comparing their size. Thus one could construct
a scale, and the numbers assigned to the objects would behave just like the
objects themselves. Unfortuunctely, the domain of objects that has the proper-
ties required by v. Helmholtz's postulates is very small. Measurement theory
would not have reached into areas like color measurement, measurement. of pro-
bability and utility, or even measurement of temperature, if it had been
restricted to empirical systems that obeyed v. Helmholtz's postulates.

But there are two ways to broaden measurement theory. Ore is to look
at other subsystems of numbers as measurement models, possibly without opera-
tions such as addition and subtracticn. Another one is to relax or reformu-
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late v. Helmholtz's postulates into empirical axioms that fit the empirical
system better. HGlder's theory of lenyth measurement (1901) was an important
step in the latter direction. Hdlder formulated conditions on the relations
and operations of rods that would allow their numerical measurement. His the-
ory also provided the procedure by which Tength could be measured, namely by
laying off a sequence of rods of equal length against rods of unknown length.
0f course, this is exactly the procedure that had been used for hundreds of
years,

The other approach to broaden measurement theory by identifying differ-
ent subsystems of numbers has a relatively recent history. Modern measure-
ment theory (see Suppes and Zinnes, 1963; Krantz et al., 1971) uses the mathe-
matical tneory of ordered algebraic structures such as ordered semi-groups,
ordered groups, field, rings, etc. (see, for example, Fuchs, 1963; Vinogradov,
1969) to prove the feasibility of measurement and to construct scales. An
empirical structure of objects to be measured (e.g., stones), their relations
(e.g., stone a "displaces more water" than stone b), and their operations
(e.g., stones a and b "displace together as much water" as stone c) is ana-
lyzed and assumptions (axioms) are stated that characterize this empirical
structure as an algebraic structure with certain nice mathematical properties
(e.9., transitivity of the relation "displaces more water", or commutativity
of an operation "displace together"). Then a numerical structure is identi-
fied, containing a subset of the real numbers, with its usual relations (=,
>) and operations (:,+,-,.), that has the same algebraic structure. Finally,
a function is constructed that assigns to each element (e.g., a stone) in the
empirical structure a number (e.g., volume) such that the relations and oper-
ations in both structures coincide. This function is called a homomorphism.
Measurement, in short, is the construction of a homomorphism between an em-

pirical and a numerical ordered algebraic structure.

This all sounds rather complicated, but is really based on very simple
ideas. Measurement requires the creation of some rule by which numbers are
assigned to objects (this actually is Steven's, 1936, somewhat antiquated
definition of measurement) and that these numbers behave in accordance with

the properties of the objects (their relations and operations). There really
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are no limits to this basic idea of measurement. One can invent any funny rule
to assign numbers to, say rods, and see whether or not these numbers behave in

a way that reflects, say, their length expressed by laying rods off against each
other and by connecting them. (Krantz et al., 1971, describe some such "funny
rules" for length measurement that actually lead to usable scales, although they
are quite different from the length scale we normally use).

This is the framework of utility measurement. Utility theory distinguishes
itself from general measurement theory in several aspects:

1. The objects to be measured are objects of cost or value (just as
stones are objects of extension or of mass). These objects are called deci-
sions, acts, outcomes, etc. In the following, they will be called "choice en-
tities", or just "objects".

2. The relation between these objects is that of preference, expressed
by an individual, group, or organization; their surrogates or representatives,
etc.

3. The operation on these objects are not directly definable in terms
of external manipulations of the objects (1ike adding two stones in a water-
filled container), but either operations are missing altogether or "operation
surrogates" are constructed with the help of a human judge.

Tnese last two distinguishing factors introduce a strong subjective ele-
ment into utility theory. But utility measurement is different from physical
measurement (or any other measurement, for that matter) only in the degree of
subjectivity, not in absolute standards. Even length measurement requires hu-
man judgment somewhere in the process. The real difference (and the challenge
to measurement theorists) is the creation and interpretation of operations that
are not so obvious and directly observable as they are in other measurement
theories. Conjoint measurement theory, one of the most famous psychological
measurement theories, was based on exactly such an invention.

The development of a theorv to measure preferences, or to acsess utili-
ties of valuable objects, begins with identifying the objects that are to be
measured. Then the structure of preferences amorg these objects (as expressed
in individual pair comparisons, for example) is characterized in the form of
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normative or descriptive* axioms of preferences allow the identification of
the preference structure as an algebraic structure. Utility theory then pro-
ceeds to prove that given these axioms, numbers can be assiyned to the valu-
able objects by a function (or rule) that preserves preferences (e.g., the
object with the higher utility number is also the more preferred) and reflects
the propertiec of the preference structure (e.g., the difference between two
utility numbers reflects the relative strength of preference). The course of
the proof provides -- often rather well hidden in the mathematics -- the pro-
cedure by which these numbers are assigned to the objects.

The assumptions of utility models fall into three categories:

1. Assumptions that the decision maker can exhibit preferences, and
that he does so consistently as if he were maximizing something. These as-
sumptions are often summarized as the "weak order" axiom;

2.. Independence assumptions that require preferences among :hoice en-
titeis to be independent of certain manipulations of these choice entities.
These assumptions are called cancellation, monotonicity, preferential indepen-
dence, utility independence, and the like;

3. "Technical" assumptions that prohibit abnormalities in preferences.
One abnormality is that some choice entity is infinitely desirable ("heaven")
or infinitely undesirable ("hel1"). "Archimedean" axioms prohibit this from
occurring. Another abnormality is that certain choice entities cannot be
varied finely enough to produce indifferences with some other fixed choice en-
tities. "Solvability" axioms prohibit such gaps in the set of chuice entities.

These assumptions formulate utility theory as a specific model of the
decision problem and the decision maker's (group's, organization's) preference
structure. These models vary in their formal properties -- particularly in
the strength of their assumptions -- and in their interpretation within a
specific decision problem, i.e., the model content. There are as many ways
to measure utility as there are different types of valuable objects, prefer-
ence properties, decision makers, etc. These differences in formal model pro-

*Utility theory itself is silent about the distinction between normative and
descriptive assumptions. Whether a particular theory has normative or de-
scriptive status depends on the interpretation of its axioms.
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perties and model content are reflected in the over 50 utility models that now
exist. The most important of these models will be classified, described, and
integrated in the following sections of this report.

Classification of utility models -- The two dimensions of model variabil-
ity discussed above will now be used to classify measurement theories. First,
utility models will be classified according to some of their formal properties.
Then a classification schem2 for possible decision situations will he presented.

The following formal distinctions between utility models are made:

1. Deterministic vs. probabilistic models;

2. Ordinal vs. interval models.

Probabilistic models express utility and preferences as a result of a
random process. Utilities are assessed by determining "probabilities of pre-
ferences", presumably by repeated observations of preferences among valuable
objects. Predictions of these models state a probability that an object is
chosen over another as & function of their numerical utilities. Deterministic
models (also called algebraic models) assume no randomness whatsoever in util-
ities or preferences. Consequently, both their assessment and their predic-
tions are deterministic, based on a unique set of preferences and indifferen-
ces, and on unique predictions. Deterministic models are special cases of
probabilistic models, in which only probabilities of 1 and 0 are allowed.

The second distinction refers tc the scale quality of the utility func-
tion that can be assessed within the framework of a particular model. Ordi-
nal models p: »'i:ce utility functions that make statements about the order of
preferences only. The specific shape of these utility functions does not con-
tain any information about the preferences, i.e., utility functions are unique
up to a monotorie transformation only. Interval medels produce utility func-
tions that also make statements about the relative strength of preferences.
The shape of these utility functions contains meaningful information about
the modeled preferences, but their origin and unit are arbitrary, i.e., they
are unique up to a positive linear transformation. Clearly interval models
are special cases of ordinal models.

Table 1 presents the main classes of utility models within this simple
formal classification scheme. Al11 of these model classes will be dealt with
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in more detail later. Also, in later sections of this report, some more formal
relationships amont the models in the boxes of Table 1 will be worked out.

P L T I T P L P

The model classes in Table 1 can be applied to quite different decision
situations which give them their specific interpretation as utility models.
The distinguishing characteristic of decision situations is complexity. Deci -
sion situations can be classified according to the presence or absence of com-
plexity in the following aspects:

1. static vs. dynamic decision environment;

2. single decision maker vs. multiple decision makers;

3. single aspect choice entity vs. multiple aspect choice entity;

a. single attributed vs. multi-attributed choice entity;

b. riskless vs. risky choice entity;

c. time invarient vs. time variable choice entity;

d. choice entity that affects only one individual vs. choice
entity that affects many.

In static decision situations, decision makers make one decision at a
specific time in an unchanging environment; the decision's consequences may
reach into the future, however. Dynamic decision situations are character-
ized by sequential decision making under changing circumstances, changing
values, and changing information (see Rapoport, 1975). Decisions in opera-
tional management are often highly dynamic, as, for example, dispatching de-
cisions, or inventory control decisions. Strategic decisions, although they
usually have long term effects, can often be interpreted as static decisions.

The next important distinction between decision situations addresses
the question: wutility for whom? A distinction can be made between cases in
which a single decision maker evaluates or decides, vs. cases in which a
group or a committee has that task. When you evaluate cars for possible pur-

chase, and you finally decide which car to buy, you are the single decision
maker, even if you consider the opinions of others and the effects your deci-
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sion may have on others. Multiple decision makers are involved when a city
council evaluates alternative taxation plans, or when a committee adopts a
resolution.

The classification aspects 3a-d refer to the question: utility for
what entity? The complexity of choice entities can increase in at least four
different aspects. (3a) A choice entity is called single attributed if it
varies on a single, well defined dimension or attribute. Money and profit
rates are single attributed; so are commodities like gasoline, butter, etc.
Comnodity bundles, cars, social programs, development plans are multiattri-
buted, that is, they vary on several, and often conflicting dimensions of
value. Cars, for example, vary on attributes such as cost, comfort, horse-
power, cornering ability, etc. In this report, a multiattributed object will
often be described as an n-tuple of single attribute values 3y where (al,

Aps wevs Ags ey an) denotes a multiattributed object a that has value a; in
the i-th attribute.

(3b) A choice entity is called riskless, if all of its outcomes are
determined with certainty. An unconditional monetary gift is riskless. A
choice entity is called risky, if some or all of its outcomes are uncertain.
Gambles, investment plans, and stocks are risky choice entities. Similar to
the n-tuple description of multiattributed choice entities, risky choice en-
tities will often be described as m-tuples of outcomes, (a 85 8ps . eaadgs am),
where aJ is the outcome to be received if an uncertain event E occurs.

(3c) Choice ~ntities are called time invariant, if the1r consequences
are received at a unique time now or in the future. A meal, a car, a site
for a plant are time invariant. Choice entities are called time variable if
parts or all of their outcomes are distributed over time. Returns from in-
vestments are distributed over time; jobs may vary in the prospects for fu-
ture salary increases, etc. As before, time variable choice entities can be
characterized by an N-tuple of outcomes to be received or consumed at differ-

ent times. (al, Aps eees Aps ouny aN) would denote a time variable choice

entity in which outcome a, will be received at time t
(3d) Choice entities whose consequences affect a single individual can

be distinguished from those that affect many. Individual consumption affects

K’
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only the consumer. Public policy decisions arfect many. Choice entities that
affect many can again be symbolized by an M-tuple (al, gy s Ayy cees aM)
where a, is the consequence for individual 11. At first glance, this distinc-
tion seems to have a lot in common with (2)(individual decision maker vs. group
decision maker), and, in fact, they have often been lumped together as a dis-
tinction between individual vs. social decision making. However, it is logi-
cally possible, and useful for modeling purposes to keep these two distinctions
separate. A single decision maker can decide about alternatives that affect
many, and a group of decision makers can make choices that affect only one per-
son. Dictators and court juries come to mind as examples.

Whenever choice entities vary on more than one of these complicating as-
pects, double or triple subscripts will be used to describe tneir elements sym-
bolically. For example, a choice entity a may be uncertain and multiattributed.
In this case it would be described by its elements aij which are single attri-
bute outcomes to be received if the uncertain event Ej occurs.

The above classification scheme leads to 128 distinct decision situations.
The 13 models of Table 1 (together with certain model combinations) would gen-
erate a huge nunber of utility models when applied to these 128 decision situ-
ations. Natuially, not all models have been applied to all cases. And this
report will make some further restrictions on the models and cases that will
actually be discussed in detail. These restrictions are discussed below.

Some omissions -- Any honest utility modeling attempt will have to ac-
knowledge the enormous complexity of the decision situation and the inadequa-
cy of strong and simple models. Ideally, one would 1ike to model preferences
in a dynamic decision situation in which a group of decision makers makes de-
cisions about choice entities that are multiattributed, risky, time variabie,
and affect many; and ideally such a model should make the weakest assumptions
possible. Practically, one will have to be much more modest, first because
models for the most complex decision situations do not exist, and second be-

cause weak models usually require an nordinate amecunt of very complex assess-
ment.

Realizing that the modeling must be simplified one can either simplify
the decision sicuation, or strengthen the model. This report will treat in




=] 2%

detail only utility models that make both simplifications. Eliminated from
the discussion are the weakest mode! categories, (probabilistic models, semi-
orders, interval orders, and lexicographic orders) because their practical
applicability in real world decision problems is questionable. Furthermore,
dynamic decision situations, and group decision makers will be omitted, be-
cause appropriate utility models are missing for these cases.

What follows is a brief discu:sion of the model categories and the de-
cision situations the report leaves out of a detailed analysis. After this
discussion, the report will describe tnhe five remaining model categories
(weak orders, difference measurement, bisymmetric measurement, conjoirt mea-
surement, and expected utility measurement) as they are applied to the remain-
ing decision situations.

Probabilistic models are one of the many possibilities in utility theo-
ry to cope with the problem of error and the equivalent problem of fluctuat-
ing or changing preferences and/or responses. Probabilistic utility models
have built into themselves a theory of random preferences that can account
for substantial errors or fluctuations. As a measurement theory these models
differ somewhat from the concepts described below. They assume that a numer-
jcal assessment of the strength of preference is given by a probability of
preference in pairwise comparisons, rankings, or choices. This probability
is assumed to be measured through repeated observations of the same compari-
son or choice, so that some relatively high level of numerical measurement is
the base on which these models build. On this base, they formulate conditions
of probabilistic preferences -- beyond those of simple probability theory --
that allow the expression of these probabilities as functions of hypothetical
utility numbers assigned to the valuable objects. No procedure to estimate
preference probabilities or to estimate from these preference probabilities
the underlying utilities are given, but statistical estimation methods are
available to perform some such estimations, once relative frequencies of pre-
ferences are given.

Probabilistic models have been developed for risky and riskless single
and multiattributed choice alternatives. They are silent about the remain-
ing classification aspects such as group vs. individual decision making, time




———

L

variuble or time invariant choice entitiess, etc. The following probebilistic
models have been developed:

1. Constant utility models (see Luce, 1959; Luce and Suppes,

1967);

2. Random utility models (Becker, DeGroot, and Marschak, 1963);

3. Elimination by aspects modelc {Tversky, 1972a and b).

Constant utility models assume that the randomness of preferences is
generated by uncertain responses or an uncertain decision making mechanism.
Random utility models hypothesize that this randomness lies in the underlying
Jtilities of the valuable objects themselves. EBA-models assume a sequential
probabilistic elimination process, in which, at each stage, one attribute cof
the choice entities is probabilistically sampled, and all alternatives are
eliminated that do not have the attribute (or that are not satisfactory in that
attribute). A1l models express the probability of choice or the probability
of preference as a function of numerical utilities. The main assumption
behind these models allowing contruction of such functions are stochastic
transitivity, simple scalability, etc., all of which are spelled out in detail
in the references cited.

1he practical impact of probabilistic models on decision analysi- has
been very small, and in recent years the theoretical development of proba-
bilistic utility models has come to a virtual standstill. Probably the main
-eason for the lack of use of probabilistic models in decision analysis is the
|ifficulty of practically assessing utility functions. Decision makers usual-
ly do not have the time or the patience to carry out the assessment procedures
probabilistic models require, and even if time and complexity were not prob-
lems, the assumptions of independent repeated responses in the assessment make
the results rather dubious. Further objection stems from the weakness of pro-
babilistic models in guiding decisions. Model predictions or prescriptions
in form of probabilities of preferences are too weak to be helpful in solving
real decision problems.

Difficulty in assessment and weakness in prediction and prescription
are also limitations of semiorders (Luce, 1963) and interval orders (Fishburn.
1970). While probabilistic models try to take intransitivities or changing
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preferences into account by building a theory of random preferences, these mo-
dels formulate a weaker basis of consistency. Rather than requiring, as do all
other utility models, the decision maker's preferences and iidifferences to be
transitive, semiorders and interval orders allow intransitive iniifferences
and require only strict preferences to be transitive. According to these mo-
dels preferences exist only if choice entitics are sufficiently different in
utility. Thus they allow indifferences between choice entities, evey if they
actually have different utility numbers.

Although these approaches to utility measurement could possibly be used
as a theory of approximate measurement in decision analysis (see v. Winterfeldt,
1975), no use has been made of semiorders and interval orders as of the present,
presumably because assessment methods within these models are complicated, and
predictions and prescriptions are even weaker than those of plain orderings.
Also, interval and semiorder models have not yet been extended tuv more realis-
tic choice entities than those which are simple single attribute, riskless,
and time invariant in nature.

Lexicographic models (see Fishburn, 1970, 1974c) apply to multi-aspect
choice entities, and they have usually been interpreted as models for multi-
attribute choice entities. Unlike most utility models, lexicographic models
are non-compensatory, that is they do not trade-off one value aspect against
another. Instead, they consider each value aspect individually and prefer-
ences are determined solely on the basis of that value aspect. Where no pre-
ference can be established, the next important value aspect is considered.
Situations in which such a non-compensatory model is an appropriate represen-

tation of the decision maker's preferences over multi-aspect choice entities
are very rare. Although there is evidence that decision makers sometimes use
lexicographic orderings as simplifying strategies to determine their prefer-
ences (see Tversky, 1969), these strategies can seldom be justified as ra-
tional models for decision making. Consequently, lexicographic models have
found no application in decision analysis.

This leaves us with a 1ist of five model classes that will be discussed
in more detail in this review: weak crders, differance measurement, bisym-
metric measurement, conjoint measurerent, and expected utility measurement.
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In addition, the report will also omit some decision situations, namely dynamic
decision situations, and group decisions.

The reason for lesving out dynamic decision situations is very simple:
no measurement model deals specifically with the dynamic nature of the decision
environment. There exist dynamic programming models which use static expected
utility measurement as inputs into their dynamic calculations (see Rapoport,
1967, 1975), but no attempt has been made in tne measurement literature to in-
corporate the dynamic nature of the decisior environment into utility measure-
ment as such.

Group decision models or models for social choice have enjoyed increas-
ing attention by measurement theorists through the last few years. But their
practical impact on the measurement of group utility functions in decisions
analysis is still negligible. Although models for multiple affected individu-
als have now reached the stage of application (see Kirkwood, 1972; Keeney and
Kirkwood, 1973; Keeney, 1975; Keeney and Raiffa, 1975), measurement models for
multiple decision makers are still problematic.

Social utility models deal with the following fundamental question: How
can individual preferences (or individual rank orders, or individual utilities)
be aggregated to a grouo utility function? Arrow's (1951) famous paradox
claims that under some reasonable conditions, no such aggregation rule exists.
Since Arrow, several attempts have been made to cope with this problem. One
involves changing some of Arrow's conditions in order to resolve the paradox.
This literature is best described in Luce and Raiffa (1957) and, more recently,
in Fishburn (1973b, 1974b). Other researchers looked at several "reasonable”
aggregation rules (voting paradigms) to see how Arrow's paradox actually af-
fects the outcomes (see Fishburn, 1974d) formulated as "voting paradoxes".
Rather than providing -- in the spirit of decision analysis -- formal tools
to cope with the problem of integrating individual preferences or utilities,
most of this research remains critical, full of paradoxes and criticisms of
interpersonal utilities, etc. What is lacking are practical characterizations
of group decision problems that say: If conditions a-d are fulfilled, this
assessment procedure and that aggregation process is feasible.

Recent research by Keeney and Kirkwood moved in this direction by re-

interpreting conjoint measurement theory (Krantz, 1964; Luce and Tukey, 1964;
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Krantz et al., 1971) and multiattribute expected utility theory (Kirkwood,
1972; Keeney and Raiffa, 1975) for group decision problems. However, these
theories are more appropriate for decision problems in which the decision of
an individual affects many than for actual group decision making problems.
Often, one can think of a group decision making problem as a problem in which
a supra decision maker (a term used by Keeney and Raiffa) is created that re-
presents a number of decision makers. Such a supra Jdecision maker would then
treat the prbb]em as an individual decision making p'oblem in which the conse-
quences may affect many. This is obviously the sort of paradigm to which our
classification aspect 6 is addressed. These models will therefore be dic-
cussed in detail later. A later report in this series will deal exclusively
with the genuine problem of multiple decision makers.

So much for the omissions of this report. We can now turn our atten-
tion to the remaining five model classes as they apply to the remaining de-
cision situations.

The main representations

The 16 decision situations that remain to be discussed characterize the
different types of choice entities that were described earlier:

3a. single attributed vs. multiattributed choice entities;

3b. riskless vs. risky choice entities;

3c. time invariant vs. time variable choice entities;

3d. choice entities that affect one individual vs. choice

entities that affect many.

These 16 cases vary from choice entities with no complicating aspects (single
attributed, riskless, time invariant, choice entities that affect only one
person) over choice entities with one complicating aspect (multiattributed or
risky or time variable or many individuals affected) to the most complex choice
entities that are multiattributed, risky, time variable, and tn=t affect many.

Utility models exist for choice entities with no complicating aspect
(Table 2}, with one complicating aspect (Table 3), and with two complicating
aspects (Table 4). In the case of two complicating aspects, utility models
have beer developed only for the combination of +isky choice entities with




some other complicating aspect.

One could, of course, apply models designed for the less complex cases
to more complex ones (e.g., weak order model to muitiattributed, risky, and
time variable choice entities) by ignoring the additional complicating aspect.
However, such an approach would lead to models that require extremely complex
assessment task>. Alternatively, one could combine models for each single
complicating aspect to an overall model (e.g., a combination of a conjoint
rizasurement model to deal with the multiattribute aspect, an expected utility
model to deal with riskiness, and a weak order model to deal with time vari-
ability), but such an overall model may ignore interactions between complicat-
ing aspects (see v. Winterfeldt and Fischer, 1975). Therefore, the further
discussion will be restricted to the five main model classes.

- weak order measurement,

difference measurement,
bisymmetric measurement,

conjoint measurement,

expected utility measurement
as they apply to the 8 types of choice entities in Tables 2-4 . Since choice en-
tities II-V and VI-VIII have similar structural properties (as suggested by their
n-tuple representeation on pp. 10-11), the discussion will usually concentrate on
the multiattribute case Il and the multiattribute risky case VI. Analogous model
applications to the time variable cases (III and VII) and to the case in which
multiple individuals are affected (V and VIII) will only be sketched.

The five model classes will be discussed under the following topics:

1. Which cases has the model been applied to?

2. What are the main model assumptions?
3. What is the model form?
4
5

What are .he formally justified assessment procedures?
. What are some reasonable approxi—~tion techniques? !
Tables 5 and 6 give a preview.

i .
|
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Table 2
Models for choice entities that have no compiicating aspect.

(The Roman numbers identify the type
0V choice entity, the Arabic numbers
identify the specific model for that
*— choice entity.)

1. Weak order
(Krantz et al., 1971)
g 2. Difference and ritjo

measurement (Suppes
and Zinnes, 1963;
Krantz et al., 1971)

3. Bisymmetric measure-
ment (Pfanzagl, 1968;
Krantz et al., 1971)

N
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Weak order measurement -- Weak order measurement has been applied to all
cases in Tables 2-4 except for the cases of multiple affected individuals. For
the risky choice entities, weak orders have been combined with the expected
utility assumption to model the non-risk aspect of preferences (i.e., multi-
attributed or time variable).

The main model assumption behind weak orders is transitivity of prefer-
ences. If the set of choice entities is finite (or evern countably infinite),
transitivity is necessary and sufficient to prove that a rule (function) can be
created that assigns numbers to valuable objects such that the more preferred
object has a higher number. In uncountably infinite sets, things become a 1it-
tle more difficult, and some technical assumptions have to be added. The for-
mal weak order representation is:

Weak order -epresentation
apb
if and only if
u(a) > u(b)

where a and b are choice entities, "a » b" means "b is not preferred to a", u
is the rule or function by which numbers are assigned to the choice entities,
and u(a) is the utility of a.

Scaling within the weak order model can take 2 forms:

1. Rank ordering;

2. Indifference curve construction.
The first procedure is as simple as measurement can get. In the finite case,
the assessor simply rank orders all valuable alternatives, and the rank order
pumber is the utility of a valuable object. Procedures for the infinite case
(countable or not) are somewhat more complicated, but they are also based on
rankings. The second procedure is applicable in cases where the choice enti-
ties have various value aspects (any of the cases II-VII fall under this head-
ing). If the weak order assumption holds, one can construct indifference
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curves (or less graphically, classes of indifferent choice entities), and in-
dex such curves by an appropriate numeraire (Raiffa, 1969). These procedures
a:e often quite helpful in decision analysis and some researchers and deci-
sion analysts have tried to exploit the weak order assumption alone to con-
struct utility function in complex decision problems (Boyd, 1970; Pollard,
1969).

If one wants to make simplifying assumptions (such as convexity of in-
difference curves or even linearity of indifference curves) this assessment
can be simplified substantially. Sequential application of trade-off proce-
dures can also be used to make the task of constructing indifferences or of
comparing choice entities easier (Raiffa, 1969; Keeney and Raiffa, 1975; v.
Winterfeldt and Fischer, 1975). Boyd (1970) exploited some of these assump-
tions to create an interactive technique that finds the best element in a set
of choice entities on the basis of local trade-off ratios or substitution
rates. MacCrimmon and Toda (1969) and MacCrimmon and Siu (1974) describe in-
teractive techniques to approximate indifference curves.

There is one rather peculiar application of weak order measurement in
connection with some much stronger forms of measurement in the risky case III.
Several strong theories measure the “"riskiness" of uncertain choice entities
(see Pollatsek and Tversky, 1970; and Huang, 1971). This measurement of risk
in itself, however, does not produce a utility function, but rather a "risk"
function that says nothing about preferences. However, a special form of
weak order measurement can be applied to measure utility as a function of the
riskiness of a gamble and some other aspect of gambles, such as their expected
value. In this vein, Coombs (for an excellent summary, see Coombs, 1972) has
developed portfolio theory, that can be based on measurement of risk to create
a weak order of preferences over gambles varying in riskiness and expected
value.

The substantive relation in the risk measurement theories is that an un-
uncertain cihoice entity is "perceived to be more risky" than another one.
Pollatsek and Tversky (1970) developed a theory of risk measurement that is
not unlike Holder's theory of extensive length measurement. Unlike most util-
ity theories, their theory uses a direct manipulation of gambles, namely that
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of convolution (i.e., playing two gambles simultaneously) to define an opera-
tion on gambles. This operation is then treated just 1ike the concatenation
operation in length measurement that combines two rods. The main assumption
in Pollatsek and Tversky's theory is that convoluting two gambles that stand
in a certain riskiness relation does not change that relation, if they are
both convoluted with the same gamble. For example, if gamble a is more risky
than gamble b, and a and b are both played simultaneously with c, then the mix-
ture a and c should still be more risky than the mixture b and c. Together
with the usual weak order assumption (this time for the riskiness relation)
and appropriate solvability and archimedean axioms the following risk model
is implied:
Extensive risk measurement
a 5; b
if and only if
R(a) » R(b)
and R(a o b) = R(a) + R(b)

where a and b are two risky choice entities "a > b" stands for "b is not per-
ceived to be riskier than a", R is the risk function, and " o" stands for the
convolution operation.

An alternative to this theory is presented by Huang (1971), who essen-
tially used the v. Neumann and Morgenstern axioms (see p.39) to prove that the
expected risk of two gambles preserves the preferences among gambles with ris-
ky outcomes. Using the riskiness relation as in Pollatsek and Tversky's the-
ory and the v. Neumann and Morgenstern axioms applied to that relation, the
following risk representation can be proven:

Expected risk measurement
ag; b
if and only if

R(a) » R(b)
and R(apb) = pR(a) + (1-p)R(b)

where all symbols have the same meaning as above except that the convolution
of gambles is substituted by the symbol apb that denotes a supra gamble which
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yields with probability p the gamble a as an outcome, with probability 1-p the

gamble b.
e | To make either of the risk theories a utility theory, one would have to
A define a function that links perceived risk (numerically measured in R) to pre-

ferences (numerically to be measured in utilities). That is, one wants to find
r a function h such that
- azb

if and only if
u(a) Z u(b) ‘
where u(a) = h(R(a))

Some restrictions for such a weak order are spelled out in Coombs' portfolio
theory (Coombs, 1972).

Construction of the function R depends on the measurement model (ex-
tensive or expected risk model). In extensive risk measurement one would use
standard sequence procedures, in which a sequence of lotteries is generated
by convoluting gambles with identical risks. Arbitrarily assigning a risk of |
1 to one gamble and convoluting it with a gamble that has the same riskiness,
one would generate a gamble that--by the measurement representation--has a
risk of 2. Convoluting this gamble again with a gamble that has equal riski-
ness as the unit gambie, one would generate a gamble with a risk of 3, etc.

oS ettt ey et e

In expected risk measurement, risk would be measured by matching the risk of
a gamble b that has riskiness between two gambles a and ¢ with a supra-
gamble apc by varying the probability p. p then is an index of the riski-
ness of a. (This "indifference lottery procedure" will later be explained 1
in more detail for preference judgments in expected utility theory.) To con-
struct a utility function over risky choice entities one can then use any of
the described weak order procedures to generate a rank order of indifference
classes of risky choice entities that are matched in riskiness (have equal R).

The four remaining utility models (difference, bisymmetric, conjoint,
and expected utility measurement) are all special cases of the weak order mo-
del. Without explicit statement, the weak order model will from now on be
assumed to be valid.
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Difference smeasurement* -- Difference measurement is one important way
to strengthen utility measurement beyond weak orders. In addition to simple
preferences among choice entities difference models also compare the relative
difference of the strength of preference between pairs of choice entities.
Added to judgments such as "a is preferred to b" are Judgments of the form
"the difference in strength of preference between a and b is larger than that
between ¢ and d". Judgments of this type can be rather difficult, particular-
ly if choice entities are complex. Therefore -- although dif ‘erence measure-
ment is, in principle, applicable to all cases in Tables 2-4 -- it is reason-
able to restrict its discussion to the simplest case 1I.

Difference measurement is the first modeling approach that uses "opera-
tion surrogates". Note tiat there were no operations whatsoever involved in
weak order measurement. In difference measurement one wants to create an
operation "addition" of utility differences between choice objects. Somehow,
one would like to find two choice entities x and y such that their utility
difference equals the "sum" of the utility differences between a and b and ¢
and d. If b=c, then there appears to be an obvious way of defining "addition
of judged utility differences"; the sum of utility differences between a and
b on one hand and b and ¢ on the other is the judged utility difference be-
tween a and ¢. This idea is really the heart of the "invented" operation.
The rest is generalizing this idea to non-adjoining cases.

For example, take the problem of quantifying the degree of displeasure
from driving to work as a function of driving time. Obviously, time itself
is not a very good measure of that utility cost (or disutility). The extra
five minutes added to the one hour ride may create less discomfort than the
extra five minutes added to the usual 10 minutes ride. That is, the differ-
ence in utility between €5 minutes and 60 minutes is smaller than that be-
tween 15 and 10 minutes. Similarly, all differences in time intervals could

*Although there are several types of difference measurement models {such as
the positive model, the algebraic model, the absolute model, and the condi-
tionally connected models; for details, see Krantz et al., 1971) we will
discuss difference measurement here by example of the case that is most
typical for utility theory, the algebraic model. This model is also equiv-
alent to a ratio measurement model.
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be compared. The operation would then take the following form: the differ-
ence in displeasure between uriving 5 and 10 minutes, "added to" the differ-
ence between driving 10 and 15 minutes, "is equal to" the difference in dis-
pleasure between driving 5 and 15 minutes.

The fundamental assumption of difference measurement is that this oper-
ation behaves nicely, meaning that adding the same amount of difference to
two already established degrees of differences does not alter the relation
between the original differences. This is a monotonicity assumption not un-
Tike the usual cancellation property in adding and multiplying numbers. Such
independence assumptions are the basis of any higher structured measurement
theory. This monotonicity assumption, together with an appropriate sign re-
versal assumption (if the difference between a and b is greater than that be-
tween ¢ and d, then the reverse must be true for the differences between b

and a and d and c respectively), and solvability and archimedean axioms pro-
duces the following model form:

(Algebraic) difference measurement
a ;sb
if and only if
u(a) 2 u(b)
and
ab}} cd
if and only if
u(a)-u(b)> u(c)-u(d)

where the upper part is the usual weak order representation, and the lower
part reads as follows: "ab2 cd" means "the Judged difference between c and
d is not greater than the difference between a and b".

The formally justified procedure to assess utility in the framework of
difference measurement is to lay out a sequence of choice entities that have
equal utility differences and that are connected to one another. This is a
type of construction procedure which will come up recurrently in the discus-

sion of utility models and is usually cal’ed "standard sequence" because it
is a systematic sequence of standard choice entities that are equally spaced
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in utility. In the example of driving from and to work, a standard sequence
may be constructed by beginninj with a small time step from 0 to 5 minutes,
and then asking which increase in time from 5 to x would create as much addi-
tional discomfort as the increase from 0 to 5 , followed by the same question
from x to z, etc. This gives exact utilities for the points which are members
of the standard sequence, and approximate utilities for the elements in be-
tween. Defining each utility difference to be equal to 1, and the utility of
some arbitrary point equal to 0, the utilities of each point in the standard
sequence can thus be inferred. The utilities of the intermediate points can
be approximated through interpolation, or, alternatively through a finer gra-
ded standard sequence (e.g., one that would start with a smaller initial dif-
ference).

So much for the formally justified assessment technique. There are nu-
merous scaling procedures which are good approximations of this procedure, not
only in the sense that they will yield converging utility functions, but also
in the sense that they involve cognitive processes that are similar to those
in standard sequences. A method that closely resembles standard sequences is
the method of equal appearing intervals (Torgerson, 1958). In this method,
two extreme choice entities are given to the assessor (the most and the least
preferrad one) and he is asked to find a number of intermediate choice enti-
ties that subdivide the set into elements of equally eppearing utility differ-
ences. The method of bisection (Torgerson, 1958; Pfanzagl, 1968) structures
this procedure more firmly. In the bisection method, the assessor is asked
to determine a choice entity that is equally far in utility from two speci-
fied elenents. Further subdivision leads to a finely graded scale.

In contrast to these indirect scaling methods, other approximation meth-
ods involve direct numerical assessment of choice alternatives. One simple
way is to rate utilities directly on a numerical scale (ranging from say 0
to 100). This kind of procedure has been advocated by Edwards (1971) for
utiliiy assessment in the wultiattribute context. Another procedure requires
the decision maker to make direct ratio judgments about the utility (or util-
ity difference) for pairs of choice entities. This procedure has been orig-
inally proposed by Stevens (1936) in psychophysical measurement and it was
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applied to assess the utility for money by Galanter (1962). In a reversal

| of these magnitude estimation tasks, one could also give numbers to the /
1 assessor and ask him to find choice entities that match these numbers (e.g.,

find a choice entity that he would consider twice as valuable as a standard).

Stevens (1975) calls these inverse methods magnitude production methods.

Bisymmetric measurement* -- Bisymmetric measurement formalizes the

ideas represented in the procedure of bisection, described before, to a mea-
surement theory formally justifying that method. The idea is to measure ¢
utility by bisecting intervals of choice entities (the word interval is used
here rather loosely) into two equal parts, such that the utility differences
between the bisection point and the two extremes are -qual. Again, bisection
theory is in principle applicable to all cases in Tables 2-4, but it can rea-
sonably be applied only in simple cases, since the judgmental task involved
in bisection may become very difficult if the choice entities are complex.

We will first discuss the application of bisection theory to case I, and then
satch how the same ideas have been applied to case II by Fishburn (1975),
who used suitable independence assumptions to simplify the bisecti» task.

The method of bisection itself defines the "operation surrogate"; the
operation on two choice entities a and b is defined by finding an element ¢
that bisects a and b. One wants, naturally, the property -hat c has the aver-
age utility «f a and b in the numerical representation. Tu: qualitative as-

sumptions behind bisymmetric measurement are a little more complicated to spell
out verbally than the ones for difference measurement. Again, as in differ-
ence structures, one wants the bisymmetry operation to behave nicely, for ex-
ample, midpoints between a and b and between a' and b should preserve the pre-
ference order that existed between a and a'. (This is formally expressed as

a monotonicity axiom in the Krantz et al., 1971, treatment of bisymmetric
structures.) In utility measurement. at least, one also wants the bisection

*Bisymmetric measurement has many different applications, among others, it
applies to the measurement of utilities for two outcome gambles. The dis- ol
cussion of bisyimetric measurement here is restricted to the interpretation
of the bisymmetry operation as bisection of utility intervals.
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point of two choice entities a and b to be equal to that of b and a, and the
midpoint between a and itself should be a. (These assumptions are called com-
mutativity and idempotency.) Adding axioms that midpo:nts of midpoints be-
have nicely, too (the so-called bisymmetry assumption) and using possible as-
sociativity assumptions, one gets the following bisymmetric representation:

Bisymmetric measurement
(applied to bisection)
a7 b if and only if

u(a) 7 u(b) where
u(a v b) = %u(a) + %u(b)

where "0" stands for the bisection operation, and all other symbols have the
usual meaning.

As mentioned before, th. assessment procedure in bisymmetric measure-
ment as discussed here would oe of the bisection type described in the differ-
ence measurement sections as an approximation method. Also, all approximation
methods discussed in that section should be gocd approximations for bisection
measurement.

Fishburn (1975) applied bisymmetric measurement to cases more comple
than case I. His motivation was to find appropriate assumptions that woul
guarantee that a bisymmetric utility function defined over these complex

X
d
choice entities could be assessed as an aggregate of simpler bisymmetric func-
tions defined only over some aspects of the choice entities. As an example,
we will discuss here the bisection application of Fishburn's theory to the
riskless multiattributed case II in Table 3.

Fishburn's models start exactly with the bisymmetric measurement model
defined above. He then defines additional independence assumptions on prefer-
ence orders and bisection operations in order for the bisymmetric function to
decompose into single attribute functions. Fishburn's presentation of these
assumptions is quite mathematical, but--in essence--they require that

1. some conditional preference orders are unaffected by the attri-

bute values on which they are conditioned;

2. some conditional bisection operations are unaffected by the

attribute values on which they are conditioned.




W A e R R P g,

T

-32-

For example, if one would construct a utility function in one attribute us-
ing the bisection procedure, the shape of that function should not depend on
- the values at which the other attribute values were held fixed throughout
E that construction. These and similar assumptions produce the following four
models, discussed -- in a slightly different form -- in Fishburn:

Bisymmetric decomposition models
ay b
if and only if
u(a) > u(b)
where (depending on independence assumptions)*:

nmMms=s
—

1. Multilinear 1: u(a) = ; us(a;) + EATAICEPLITC
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i *The model forms presented here generalize Fishburn's representations to n
attributes. Fishburn's proof included only two attributes, but there are
few theoreticxl di“ficulties in ste?ping to the n-dimensional case. Fish-
burn’s proofs do not include the multilinear form (2), which is presented
here because of its similarity to decomposable expected utility measure-
B ment, and because it could easily be derived in the bisymmetric context.
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n
3. Multiplicative: wu(a) = n ui(ai)
i=1
n
4, Additive: u(a) = ¢ u.(a.)
iyl 3ol

Here a and b are riskless multiattributed choice entities of the type described
for case II. a;s bi are their respective values in attribute i. Note that the
two multilinear forms include higher orde:r interaction terms, which are either
composed of the additive terms (2) or of independent terms (1). Practical as-
signment of utilities to choice entities within this framework proceeds as fol-
iows: first conditional bisection utility functions are constructed in each
attribute using the bisection procedure described above. These functions are
then interlocked (consistently scaled) by observing some additional indiffer-
ences between multiattributed choice entities, and aggregated according to one
of the rules defined above, which depends on the independence assumptions pos-
tulated.

Conjoint measurement. -- Conjoint measurement theory as conceived in 1964 by

Luce and Tukey and Krantz is probably the most prominent psychological measure-
ment theory. So far its applications to utility theory are very limited, but
it has a large number of potential application areas (conjoint measurement mo-
dels can be Tound in 6 out of the 8 boxes in Tables 2-4). Conjoint mea-
surement models are especially suitable for measuring utilities for choice en-
tities that vary on several value relevant attributes, that have multiple af-
fected individuals, or time variable consequences. Conjoint measurement has
also been applied to choices among gambles as a special version of expected
utility theory (Krantz and Luce, 1971, see aiso p.41). In the following, we
will explain conjoint measurement via the example of seasuring multiattribute
riskless choice entities, but by apprcnriate substitutions for the word "at-
tritute" (e.g., by "time periods", or by "individuals") the use of conjoint
measurement for these other cases can be discovered.

Conjoint measurement constructs a utility function over multiattribute

choice entities that decomposes into single attribute utility functions. The

yi
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type of decomposition and the rule by which these single attribute functions
are aggregated depends on crucial independence assumptions in the model. So
far, only "simp!- polynomial" combination rules to aggregate these single
attribute functions have been axiomatized. The most prominent ones are the
additive ard the multiplicative rules. Other rules, not typically considered
in decision analytic contexts, are distributive rules and dual distributive
rules (see Krantz et al., 1971; Krantz and Tversky, 1971). Since the addi-
tive rule is by far the most attractive one for applied modeling purposes,
(and since the multiplicative rule is -- in most cases -- a special case) the
4iscussion of conjoint measurement will concentrate on this rule.

Conjoint measurement begins with a weak order defined over the set of
choice entities. It then creates an "operation surrogate" by defining a
choice entity ¢ that expresses the combined effects of two other choice enti-
ties, a and b, together. This operation surrogate is the subjective equiva-
lent of adding utilities.

The independence properties required to prove the additive conjoint mea-
surement representation are usually called preferential independence. Prefer-
ential independence requires preferences over choice entities that very only
in some subsets of the attributes to be independent of constant values in the
other attributes, no matter what the level of these constant values. Another
way of saying this is that trade-offs in some subset of attributes are the
same, no matter on what constant values in the remaining attributes these
trade-offs are conditioned. VYet another way of stating this requirement is by
referring to the actual construction procedure. Utility function constructed
while values in some attributes are held fixed should have a shape that is inde-
pendent of that fixed value. In particular, any of the single attribute util-
ity functions should not depend on these conditional values. For example, in
evaluating sites for a nuclear power plant, the utiiity cost function over the
attribute "population density in a twenty mile radius" is probably independent
of, say, "cost of transmission lines" for that particular site. Transmission
lines costs and costs for access transportation are probably jointly prefer-

entially independent of population density, etc. For some counterexamples,
see v. Winterfeldt and Fischer (1975).
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Conjoint measurement (sfmp]e polynomials)
a b
if and only if
u(a) 2 u(b)
where (depending on independence assumptions):
1. Multiplicative model: wu(a) = ul(al)-uz(az)-u3(a3)

2. Distributive model: u(a) = ul(al)-uz(az)-+ u3(a3)

3. Dual distributive model: wu(a) = ul(al) [uz(az) % u3(a3)] . Here,
a = (al, 355 a3).

Construction of the recurring utility functions u, in these conjoint
measurement models is somewhat similar to the standard sequence approach in
difference measurement. This procedure has occasionally been called "dual
standard sequence procedure" (Krantz, 1964), or "saw tooth procedure" (Fish-
burn, 1967), or "lock and step procedure" (Keeney and Raiffa, 1975). It
uses indifference judgment and constructs matches between choice entities
that vary only on two attributes (events, time-periods, individuals) at a
time. A unit step in attribute 1 is used to lay off a sequence of steps in
the other attribute with the first attribute held at a fixed level. This
insures that the elements in that sequence space out the attribute in equal
utility steps.

For example, when evaluating an apartment on the two attributes, rent
and driving distance, one considers questions like the following: how much
more driving time are you willing to add to, say, 5 minutes, for a rent de-
crease of from $210 to $200? If the answer is 10 minutes, one continues by
asking: how much driving time are you willing to a'd to 15 minutes for a
rent decrease of from $210 to $200? If the answer is 13, one can infer that
the increase in utility cost from 15 minutes to 28 minutes is equal to the
increase from 5 to 15 minutes driving time. This way a good number of points
of the utility function can be assessed and a curve can be smoothed through
these points. Theoretically, the spacing of the points in the single attri-
bute can be made arbitrarily fine in order to increase the goodness of approx-
imation of the whole utility function. One would just use a smaller unit in
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the comparison attribute. Practically, however, if one decreases this unit,
certain discrimination problems may arise. For example, if one would try to
lay off a standard sequence over the attribute "driving time" against a unit
step in the attribute "rent" from $201 to $200, the assessor may be hard
pressed to come up with reasonable answers.

After the construction of the single attribute utility functions, one
still has to make sure that the different functions uj have comparable units.
This can be done by determining indifferent choice entities whose indiffer-
ence is not already implied by the previous construction, and by solving the
resulting equalities.

The construction procedure of dual standard sequences resembles that of
bisection and that of difference sequences, and similar judgmental processes
are required to make the indifference Judgments which create these sequences.
One can expect closely resembling shapes of the utility functions using any
of the three procedures for assessing utility functions in a conjoint measure-
ment context, although, theoretically speaking, only dual standard sequences
are appropriate. A special problem arises when one uses bisection or differ-
ence judgments, or any of their approximations (rating scales, method of
equal appearing intervals, etc.) Lo approximate single attribute utility
functions in the conjoint measurement context. These functions are construc-
ted disregarding any other attributes, and therefore will have to be careful-
ly matched in their units to ensure comparability. One could use the formally
“clean" solution of observing a number of independent complex indifferences,
and solve the resulting equalities, just as in constructing utility functions
with standard sequences. An alternative is to assess these scaling factors
or weights directly by a magnitude e:timation procedures (direct rating of
weights between 0 and 100; distributing 100 importance weights points among
the attributes, etc.). This procedure has been used by Huber et al. (1971),
and v. Winterfeldt and Edwards (1973). Edwards (1971) describes a special
version of magnitude estimation for importance weights in which the decision
maker assesses the ratios of the weights for two attributes at a time. From
these, all weights can be inferred. Since scaling factors have the property
of a ratio scale, this appears to be a reasonable procedure. The problem
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with such explicit numerical weighting schemes is that they do not directly
focus on comparisons of utility differences and thus may depend on the rela-
tive ranges of the values in the single attributes. But this problem can

be avoided through a careful assessment of these relative ranges and/or by
making the assessor aware of that range (see Keeney and Raiffa, 1975, for a
discussion of this point in a slightly different context).

Expected utility theory -- Expected utility theory could be called the
theoretical corners’one of decision analysis. Although some may consider
decision analysis simply an application of expected utility theory, the pre-
vious sections should have made clear that there are many concepts of utility
which could be applied in a formal analysis of decision problems.

Expected utility theory has been applied to all risky cases in Tables
2-4. Although there are a large number of expected utility axiomatizations,
there appear to be only four basically diffe: ent approaches to measure the
utility of risky choice entities with expectation models.*

These are:

la. V. Neumann and Morgenstern's (1947) expected utility theory

with numerical probabilities;

1b. Savage's (1954) subjective expected utility theory;

lc. Davidson, Suppes, and Siegel's (1957) finite utility theory

for equally likely events;

1d. Luce and Krantz's (1971) conditional expected utility theory.

Let us, however, first state the similarities among the four approaches
and then discuss the differences. First, EU-theories 11 make--in one ver-
sion or another--three crucial assumptions about preferences among risky
choice entities. The first is the common weak order assumption, which was
discussed recurrently in previous sections. It says that the decision
maker can order risky alternatives transitively. The second belongs to the
class of independence assumptions mentioned earlier. It takes different forms

*A fifth possibility, not included here is an application of bisymmetric mea-
surement to risky options in which the bisymmet:y operation a ¢ b would be
interpreted as "receive a if one event occurs, b otherwise". (see Pfanzagl,
1968).
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in the four approaches, but it is commonly known as the sure thing axiom. The
sure thing axiom requires that preferences among risky alternatives should be
independent of events in which these alternatives have common outcomes. This
assumption justifies the additive form of the expected utility model, just as
preferential independence justified the additive form in conjoint measurement.
The final assumption belongs to the class of "technical" axioms, and it is a
combination of both a solvability condition and an archimedean condition. It
requires that no choice entity is infiniteiy desirable or undesirable, and
that there are certainty equivalents for all possible uncertain entities (i.e.,
that the decision maker is able to find a riskless entity that is just as val-
uable to him as the risky entity).

If these conditions are met, a utility function over risky options can
be constructed that has the following properties:

Expected utility measurement
arb
if and only if
u(a) z u(b)

where u(a) = : 1p(Ej)U(aJ-)

Here a is a risky choice entity (a gamble) whose outcome is aj (e.g., a certain
$-amount) if event Ej occurs. p(Ej) is the numerical probability of event Ej.

A1l four approaches end up with some measurement representation similar
to the one above. The specific form and interpretation, as well as the theo-
retically feasible construction methods differ, however.

v. Neumann and Morgenstern's theory is the classic expected utility the-
ory. Its main restriction is the assumption that numerical probabilities are
known for all events. These numerical probabilities play, in some sense, the
role of an operation surrogate in their theory. "apb" (i.e., the p-operation
"put a and b together") would be interpreted as "with probability p you will
receive a, with probability 1-p you will receive b". Since probabilities are
assumed to be known, utilities can be constructed within the v. Neumann ard

Morgenstern framev. ‘rk by ohbserving indifferences between lotteries and sure
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outcomes. If a, b, ¢ are riskless outcomes, and (apc) is the gamble that
yields a with probability P and c with probability 1-p, and if b is indiffer-
ent to (apc), then p is a measure of the utility of b relative to the utili-
ties of a and c. By arbitrarily assigning utility values of 0 and 1 to two
choice entities, such indifferences imply equations through the expected util-
ity representation that can be solved for the unknown utilities. For example,
if the utilities in the above case were 1 for a and 0 for c, then the expect-
ed utility representation would imply that the utility of b is p.

Indifferences can be observed eitner by varying the probability p in
(apc) and holding b fixed; or by fixing p and varying b. If the choice enti-
ties have some numerical description (such as units of a commodity), it is
often sufficient to determine the utilities for only a few poiris and approxi-
mate the utilities for intermediate points by interpolation. This general
type of utility construction through indifference lotteries with known proba-
bilities is probably the most common procedure in decision analysis--although,
as this report demonstrates, it is by far not the only one.

The main problem with v. Neumann and Morgenstern's expected utility mea-
surement is the assumption that probabilities of events are known. Savage
overcame that problem in an ingenious way. In essence, he combined earlier
theories of subjective probability measurement (Koopman, 1940) and v. Neumann
and Morgenstern's theory. All his assumptions are expressed in form of pre-
ferences among uncertain alternatives which are described as a set of outcomes
a; to be received conditional on the occurrence of a particular event Ei' No
numerical probability is assumed for these events. Using these preferences,
Savage constructed an induced relation among events, which is interpreted as
the relation "more likely". Then he made use of the fact that the proba-
bility of events can be measured not unlike Tength in an extensive measure-
ment model (see Koopman, 1940). Events can be compared (with the "more like-
ly" relation) just as rods can (by the "longer" relation). An cperation also
can be defined for events, nameiy the union of two mutually exclusive events
(just like two rods can be connected). If the independence assumption holds,
that the relation among two events is preserved when both are united with a

third event, then one can show that a numerical probability representation
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exists. Savage's ingenious idea was to express these independence assumptions
for the induced "more Tikely" relation in form of preference relations, which
allowed him to construct a numerical probability for events. He then proceeded
to nake use of this numerical probability in proving the expected utility the-
orem in essentially the same way as v. Neumann and Morgenstern did.

To construct utilities in this context, one therefore has to first con-
struct probabilities, and then use the v. Neumann and Morgenstern procedure
described above to construct utilities. The formally justified construction
of probabilities for events is again that of a standard sequence, that com-
pares the union of many equally likely events with the event to be measured.
If the union of n of these equally likely events is "equally likely" as a cer-
tain event, and the union of m of these events is "equally likely" as the un-
known event, then the unknown event has a subjective probability of %—.

Davidson, Suppes, and Siegel (1957) went vet another route in modeling
expected utility theory. Their theory resembles closely the difference mea-
surement that has been described before. In essence they built a diffarence
structure using equally likely events by defining the "difference" between
choice entities a and ¢ to be equal to that between b andd if a gamble that
yields with equal 1ikelihood a or b is indifferent to a gamble that yields
with equal likelihood ¢ or 4. (The meaning of this definition can easily be
inferred by using the expected utility representation.) Then they formulated
axioms on the preferences among gambles with equally likely events that allow
identification of a difference structure. Construction of the utility function
resembles that of difference measurement: a sequence of indifferent gambles
with equally likely outcomes is Created that lay off a sequence of outcomes
with equal utility differences. Note, however, that utility "difference" has
a different meaning here than in the direct difference measurement.

Luce and Krantz used yet another measurement framework to construct an
expected utility theory. They applied conjoint measurement theory to evalu-
ate the utilitv of risky choice entities. Their motivation was to get around
a property of Savage's model which lies in the description of the choice en-
tities as acts that produce different consequences given the same set of

events. This view of the choice entity is best characterized by the usual
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description of the decision problem under uncertainty as a payoff matrix, a
matrix in which each row is an act, each column is an event, and each matrix
entry is an outcome to be received if an act row is selected and an event
column occurs. This representation implies that no matter what act is select-
ed, the decision maker will always face the same uncertainties. Luce and
Krantz point out that few problems are of this kind (although most problems
can be defined into that format), and that it is often more convenient and
sometimes unavoidable to formulate the problem in terms of conditional acts,
i.e., decisions that are conditional in the sense that by choosing them, one
is restricted to some subset of all events bearing on the decision problem.
Luce and Krantz then basically create a conjoint measurement system in which
they measure the utility of these conditional acts given the restriction on
the sets of events. Besides the usual preferential independence assumptions
which only guarantee the addi.ivity part of the resulting expectation model,
they make assumptions that guarantee that the conditional utility functions are
differing only in units. This assumption is spelled out in Luce and Krantz,
and basically requires a standard sequente laid off conditional on one event
to be a standard sequence in any other event too.

The formally justified construction of the utility of conditianal decisions
follows the pattern sketched in the discussion of conjoint measurement. Standard
sequences are built conditional on each event to construct the conditional util-
ity functions. Probabilities are inferred from the comparison of the units of
these standard sequences.

In practice, utility functions are, of course, not constructed by using
difference equations, standard sequences of equally spaced outcomes, or standard
sequences in conditional events. The most common procedure is to numerically
estimate probabilities or probability distributions of risky alternatives, and
then to use indifference lottery procedures to construct utilities. These con-
struction procedures have charged little, if any, from the theoretical frame-
work v. Neumann and Morgenstern suggested, although the more recent models ask
for quite different procedures. Strictly speaking, these separate assessments
of numerical probability and utility are approximation methods to construct util-
ity functions in the framework of Savage, or Luce and Krantz.
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We turn now our attention to the cases VI, VII and VIII, in which vari-
ous special forms of expected utility theory have been applied. There are two
ways in which expected utility theory can be used to measure utility in these
cases. Both assume an expected utility representation over the basic choice
entities (risky and multiattributed, risky and time variable, or risky and
multiple individuals affected). The first approach uses some riskless assump-
tions such as weak order, convexity of indifference curves, preferential in-
dependence, etc., to construct a riskless utility function. (The literature
often calls such a function "value function" or "ordinal utility function".)
Then a function h is constructed that transforms the riskless function u into
a risky utility function u' that follows the expected utility principle. These
are the models 1 and 2 in the multiattribute and the time variable cases VI
and VII. In the multiattribute case one may also consider a riskless bisym-
metric utility function that is transformed into a risky function. (Models
3a-d in case VI). None of these types of models has been considered yet for
the case VIII in which many individuals are affected by a decision.

As an exanple of this approach, consider th. ~del 2a in case VI, the
additive conjoint measurement expected utility model. If preferential inde-
pendence is satisfied, a riskless utility function u can be assessed that is
of the form

3

u(a) = 1.=1u1-(f:11-)
where the ai's are values of a in the attribute i. The construction of this
utility function would use dual standard sequences or appropriate approxima-
tion techniques. Then risky utilities for various points of that utility
function can be assessed using standard lottery procedures to generate the
transform h that gives

u'(a) = h(u(a)).

If the a's themselves are uncertain, that is if one receives the multiattri-

buted outcome a; conditional on the occurrence of an uncertain event Ej, the

expected value of u':
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preserves the order of preferences among these uncertain and multiattributed
choice entities.

The second approach to modeling risky multiattributed (time variable,
multiple individuals) preferences is labelled "expected utility decomposition
models". These models make independence assumptions about preferences among
risky choice entities beyond just the simple EU-model. Given these assumptions
the risky utility function of complex choice entities (risky consumption
streams, risky multiattributed objects, risky decisions that affect many) can
be decomposed into utility functions of single attributes, time periods or in-
dividuals.

These single attribute utility functions are then aggregated according to
some rule that depends on the types of independence assumptions made. Since
these rules are formally identical for cases VI, VII, and VIII,only the multi-
attribute case will be discussed here in detail. The four most common model
forms are very similar to the bisymmetric decomposition models (but note that
in bisymmetric meas.irement nothing guarantees that the resulting utility func-
tion will be appropriate tor taking expectations):

n
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4d. Additive: u(a) = = ui(ai)
i=1

Here, a is a (riskless) multiattributed object, CH is its value in attribute i,
f the u;'s and f.'s ave single attribute utility functions, and the cij's, k, etc.
h are scaling factors. The expected value of u preserves the order of preferences,
- if the a's themselves are uncertain choice entities.

The strongest of these models is the additive expected utility model (4d"
first conceived by Fishburn (1965) and Pollak (1967). It requivres that prefer-
ences over risky choice entities that differ only in some subset of the attri-
butes should be independent of constant values or constant lotteries in the re-
maining attributes. Another way of saying the same thing is that preferences
among risky choice entities ought to depend only on the marginal probability
distributions in single attributes. This assumption has also been called the
"marginality assumption", "additive independence" or "value independence".

The multiplicative model was developed by Pollak (1967) and by Keeney
(1968, 1974). It weakens the marginality assumption by requiring that prefer-
ences over risky choice entities tvhat differ in some subset of the attri-
butes should be independent only of constant values in the remaining attributes.
That is, they may depend on lotteries in the remaining attributes. This axiom
is usually called "utility independence". (See also Fishburn and Keeney, 1974,
for several weaker versions of this assumption.)

An even weaker assumption leads to the multilinear model 4b, developed by
Keeney (1968). The multilinear model makes assumptions only about conditional
preferences in single attributes. Preferences over risky choice entities that
vary only in one attribute should be independent of constant values in the re-
maining attributes (see also Farquhar, 1974). This single attribute version
of general utility independence has not been specifically named in the litera-
ture.

The multilinear model 4a generaiizes Keeney's multilinear model by allow-
ing independent interaction terms. This model has been developed by Fishburn
(1973, 1974) using assumptions similar to those in the development of the multi-
linear bisymmetric model. These assumptions are quite difficult to spell out,
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and their intuitive meaning is by nc means obvious. For a discussion of this
and some even more complex models, see Fishburn (1974), and Farquhar (1974 a
and b).

Going in the opposite modeling direction, some specifications of the ad-
ditive and multiplicative expected ulility models are discussed in Meyer (1969)
for the risky time variable case VII. Meyer's assumptions that preferences are
not only utility independent, but also time stationary imply that utility func-
tions u., (the single time period utility functions) vary only in unit, not in
shape. An additional assumption guarantees that the units decrease exponen-
tially over time. The results are the multiplicative and additive models with
variable or constant discounting rates (3a and 3b in VII).

The formally justified assessment procedures to construct any of the mo-
dels 4a-4d are all based on the type of indifference lottery procedures dis-
cussed earlier. These assessments are done in single attributes while the re-
maining attribute values are held fixed. Scaling constants Cij’ k, etc. and
techniq.es to match the utility functions u, in units require indifference
Totteries that involve more complex choice entities, varying on at least two
attributes simultaneously. D:pending on the acceptable independence assump-
tions, any of the model forms 4a-4d is then applied to aggregate the single at-
tribute utility functions. These construction procedures are best described in
Keeney and Raiffa (1975) for models 4b-4d, and in Fishburn (1973c, 1974a) for
model 4a.

The literature is rather silent about possible techniques to approximate
decomposable expected utility functions. One possibility is to approximate the
ricsky utility function by a riskless utility function assessed with traditional
riskless methods and then compute the expected value of this riskless function
to determine an approximate utility for risky choice entities. If it is as-
sumed that a riskless utility function is a reasonable approximation to the
iisky function, judgmental methods such as rating scales can be used to approx-
imate the riskless function. Anotker way of dealing with the problem of ap-
proximating risky utilities with riskless utilities is to make the risky prob-

lem a riskless one by determining for any risky choice entity a riskless one
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that is indifferent to it. Such certainty equivalents could be assessed, for
example, in each attribute and then the utility for the now riskless choice
entity could be measured with appropriate riskless procedures, (See also Kee-
ney, 1968, and Keeney and Raiffa, 1975, for a discussion of model assumptions
that allow conversions of risky objects into riskless ones by assessing certain-
ty equivalents in single attributes.)

Relationships between models and assessment procedures

This part of the report will show some additional relationships that link
the 5 model classes and show connections between models for different choice
entities. In order to avoid unnecessary duplication, only the riskless and

risky, single attributed and multiattributed applications of these models will
be discussed in detail. Other applications to group and time problems can be

inferred from the single attributed and multiattributed distinction by substi-
tuting "individuals" or "time periods" for "attributes".

We are interested here in conditions under which models and assessment
procedures produce the same or possibly very similar utility functions. There
are at least three argumencs leading to such coinciding or converging utility
functions.

The first examines the logical relationships between models. Two models
A and B are equivalent if the assumptions of model A imply the assumptions of
model B and vice versa. Utility functions constructed within equivalent mo-
dels should be indistinguishable. In a weaker relationship, model A may imply
B, but the reverse may not be true. If in such a case the assumptions of model
A are true, then by implication also the assumptions of model B will be true.
Utility functions constructed within either model should coincide in the sense
that they both have the properties required by the weaker model. An example
of such a case is the additive expected utility which implies the multilinear
expected utility model(s), but the multilinear models do not imply the additive
model. Another example is additive bisymmetric measurement which implies con-

joint measurement but not vice versa.
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The secon. argument for agreement between utility functions constructed
with different procedures and models is based on the similarity of the Jjudg-
mental processes involved in construction procedures. For example, although
there is no logical reason to assume that single attribute difference mea-
surement and single attribute bisection i ~asurement should produce identical
utility functions, one would nct expect them to differ very much since the
processes involved in bisection are not substantially different from those
involved in making difference judgments. This line of reasoning can even con-
clude in similarities between risky and riskless utility functions.

The third argument is less subtle, requiring neither logical nor behav-
ioral similarities. It is based on the experience (either experimental or
through simulation) that certain models and procedures will produce converg-
ing utility functions in a large number of cases. For example, it has been
shown that additive models are usually pretty good approximations of nonaddi-
tive models; and that variations in single attribute utility functions or
weighting parameters produce utility functions that are very highly correlat-
ed. This type of insensitivity is often used to justify a model whose assump-
tions are not met or not checked, or to apply procedures that are formally
not justified.

Formal rodel implications and equivalences -- Models for the risky and

riskless single attribute case have few interasting formal relationships. In
the riskless case, clearly difference measurement and bisymmetric measurement
imply the weaker weak order model, but not each other. In the risky case, the
only interesting relatiunship links weak order risk theories and expected u-
tility models. As Coombs (1972) points out, expected utility models imply
the weak order expected risk model (portfolio theory). In other words, if the
expected utility model fails, it may stiil be possible to assess preferences
with a risk model.

Tables 7 and § summarize all implications for models for risky and risk-
less multiattribute cases. Identicai charts are applicable to the other two
cases (individual vs. group; time invariant vs. time variable). The direction
of arrows in these charts goes from the stronger model to the implied (weaker)
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model. Some of these implications are rather obvious and can be directly in-
ferred from the model forms, e.g., the fact that the multilinear model 4a with
independent interaction terms is implied by the multilinear model 4b with de-
pendent interaction terms, or that the additive bisymmetric model implies the
multilinear forms.

An interesting case is the implication of the additive and multiplicative
bisymmetric models to the additive conjoint measurement model. Both bisymmet-

ric models are stronger than the additive conjoint measurement model, since
they make assumptions beyond just the preference order of multiattributed
choice entities. But their assumptions (together with appropriate cortinuity
assumptions) imply that there is an additive order preserving represantation
for multiattributed alternatives which implies conjoint measurement. (In the
multiplicative bisymmetric case, this additive representation would be a loga-
rithmic transformation of the bisymmetric function).

The risky multiattribute case has some even more intriguing model impli-
cations to offer. The strongest nicdel here is the additive expected utility
model that implies almost every other model (with the exception of some simple
polynomial conjoint measurement decompositions). Since the bisymmetric decom-

position models have idertical form and differ from the expected utility de-

composition models only in the transformation h that maps their utility func-
tions intoa risky utility function, all of these models are implied by the re-

spective expected utility decomposition models. Most of these relationships

follow directly from the functional form of the models.
What about the relatinnship between risky and riskless models? For the -

single attribute case the only obvious implication is that any model in the

risky case generates utilitv functions that preserve also the order of risk-

less preferences, that is, they all imply the weak order model in case I.

However, nothing guarantees that EU-models imply difference or bisymmetric
models (although an argument will be made later that there are certain Lehav-
ioral similarities between these models).
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The multiattribute case is again more interesting, and some practical
conclusions can be drawn from observing some implications between risky and
riskless models. First, note that only the expected utility models can be for-
mally justified for an application in risky and riskless situations. Neither
conjoint measurement nor bisymmetric measurement can alone provide a mechanism
for coping with the evaluation of risky options. However, one could conceive
of a simplified application of these two models, in which first a utility func-
tion is contructed for riskless multiattribute chcice entities (using either
standard sequences or bisection methods) and then expectations are taken of
that riskless utility function if outcomes are uncertain. This is not in gen-
eral a valid procedure (see v. Winterfeldt and Fischer, 1975). To give an in-
tuitive understanding why this may not be appropriate, consider the properties
of the decision maker's preferences that are reflected in an additive riskless
utility function, derived from conjoint measurement. These are riskless inde-
pendence properties, the decision maker's marginal utilities, etc. However,
these utilities may not reflect the DM's attitude towards risk when he has to
choose among uncertain choice entities. It may be necessary--before expecta-
tions are taken--to convert the additive riskless function into a risky func-
tion by an appropriate transformation (see p.43).

However, if the assumptions of an expected utility decomposition model
are met (e.g., an additive expected utility model), then a formal argument can
be made, that the analcgous riskless conjoint measurement or bisymmetric mea-

surement (e.g., additive) will pro.uce exactly the same utility function as

the expected utility measurement. Let's look specifically at the additive
case here. If the conditions for an additive expected utility model are met,

then we know that
1. there exists a utility function that preserves preferences over

riskless choice entities, and

this utility function is an additive combination of single attri-
bute utility functions, and

the expected utility preserves preferences over lotteries with
multiattributed outcomes.
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Now assume that, in addition to the axioms of additive expected utility
theory, also the axioms of conjoint measurement and the axioms of an additive
bisymmetric structure hold. These assumptions imply two more utility functions
that

1. preserve preferences over riskless choice entities, and

2. decompose additively over attributes.

The next step is a consequence of the uniqueness property of all three utility
functions, which says that any two utility functions that preserve preferences
over riskless alternatives and decompose additively, must be linearly related
to one another. Thus all three utility functions must be linearly related.
The real trick comes now: 1if, however, a conjoint measurement utility func-
tion, a bisymmetric utility function, an¢ an expected utility function are
linearly related, their respective expectations must preserve preferences over
Intteries with multiattributed choice entities. Practically, speaking, this
means that given the conditions of additive expected utility theory, any model
that produces preference preserving additive utility functions could be used
as a surrogate for the original expected utility model, and its utility func-
tions could be used to take expected values. So, if an analyst has convinced
himself o1 the validity of the additive EU-model, he might as well go ahead
and construct utilities with standard sequences or bisection methods. (And,
of course, the step from here to even simpler approximation methods is not very
big.)

A final example of this sort is the case in which the multiplicative ex-
pected utility model is valid. In this case, the additive conjoint measure-
ment model for riskless choice entities will be valid, and both utility func-
tions will be related by a logarithmic (or exponential) transformation. So,
it is perfrectly valid -- when a multiplicative EU- model is accepted -- to
construct utilities with conjoint measurement procedures and to transform these
utilities exponentially to achieve the multiplicative EU representation.

Behavioral similarities and differences in assessment -- Although quite

a few models that were discussed so far cannot be logically related, it ‘s
possible to look at the coonitive processes that are involved in the asse:s-
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ment task to see if there are any reasuns to assume that utility functions
resulting from different procedures may produce similar results. This point
is particularly important for the Justification of approximate assessment
procedures, which are often much simpler than the theoretically feasible ones.
Unfortunately, the experimental and applied literature is rather silent about
N 'l such similarities, so most of what fo'lows will "e speculative.
- Let us first look at models and procedures in the single attribute case.
In the riskless case we already discussed some aspects of behavioral similari-
ties of models and procedures. Standard sequences of utility differences, di-
rect rating scales, bisection procedures, methods of equal appearing intervals
--all the theoretically feasible and approximation methods for this case--appear
to involve similar judgmental processes: that of judging relative preference
differences among riskless choice entities. Although cognitive processes such
as anchoring and adjusting or context effects may operate differcatly in these
procedures, it would be surprising if large differences in the shapes of the
single attribute utility functions were to be found.
Among the models for the risky single attributed case (III), the expec-
ted utility models are all constructed using some versions of indifference
Tottery procedures. Whether one varies probability distributions in these
procedures and asks for certainty equivalents, or whether one varies outcomes
and asks for matching probabilities is irrelevant from a theoretical point of
view. Practically. these two types of indifference lotteries may produce dif-
ferent results, prrtly because of their shift in emphasis on different aspects
of the lotteries (costs and payoffs vs. probabilities). The most interesting
question arises in comparing the behavioral similarities and differences among
procedures that jointly measure probability and utility and procedures in
i which the assessment of probability and utility are strictly separated. None
of the three SEU-models would theoretically justify numerical estimation of

probabilities and subsequent assessment of utilities with the use of these

numerical probabilities. Nevertheless, this is the most widely used approxi-
mation procedure. Magnitude estimation of likelihoods of events in the form
of odds or probabilities, although not formally justified by the models, in-
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volves, of course, processes that are very simiiar to the processes in Savage's
standard sequence method. A1l one has to assume is that the assessor has some
event in mind that is well calibrated (such as the event that a spinner will
land on a certain section of disc), finely divided in many equally likely sub-
events, and that his numerical assignment is an indifference judgment between
such well calibrated events and the event i1 juestion. There are, of course,
many other procedures to assess probability distributions for risky options,
but since this paper is concerned with utility rather than with probability,

it will not go into further detail.

How ran models and assessment procedures for the riskless and risky
single attribute cases 1 and III be compared behaviorally? Here, I would like
to express a rather heretical view. Certain cognitive processes involved in
the judgments of utility differences resemble closely those involved in judg-
ing gambles. For exampie, a decision maker may reject piaying a fifty-fifty
gamble for $100, because he judges the loss of $100 as more severe than he ap-
preciates winning $100. The risk aversion he exhibits by not playing the gam-
ble really is based on judgments of utility differences. Very often risk at-
titude (or the shape of a risky utility function) can be explained by the char-
acteristics of a riskless utility function, e.g., its marginal utility, rather
than by a special component introduced through gambling. For example, if a
decision maker has the option to play a gamble in which he receives 10 pounds
of ground beef on the flip of a coin vs. nothing, he may state a certainty
eqdiva]ent for that gamble of 3 pounds -- not because he is risk averse (in
the non technical sense that he does not want to take chances) but because he
does not see any value in an additional pound of ground beef beyond, say, 6
pounds.

In indifference judgments about gambles, riskless judgments of utility
differences and pure risk attitude are confounded. The above examples suggest
that riskless utility differences may play a very strong part in the judgment
of risky utilities. If pure risk attitude is defined through the transforma-
tion ot a riskless difference utility function into a risky one, that trans-
formation may often be almost linear. In the multiattribute risky and risk-
less situation, this linearity can even be proven provided that an additive
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expected utility decomposition model holds (See pp.52-53). In summary, local
risk aversion ardy marginai utility may coincide more often than the conceptual
distinction of the underlying models may suggest.

Bisection procedures and indifference lottery procedures can be similarly
linked. If a certainty equivalent of a gamble with two equally likely outcomes
is identical to the bisection point for all possible outcome combinations, then
a bisymmetric utility function and a risky utility function would have equal
shape. Again, it appears that the processes leading to the identification of
a bisection point are not that much different from the processes leadina to a
certainty equivalent.

From these arguments, the next step -- as radical as it would first ap-
pear -- seems not that far: rating scales involve similar cognitive processes
as do bisection and difference judgments. Bisection and difference judgments
may involve similar processes as do indifference judgments about gambles with
two outcomes and equally likely even:s. Sc t. .re are behavioral reasons to
assume that rating scales will produce uti'ily functions that are not substan-
tially different from utility functions generated with indifference lotteries.

A11 these concepts which have only been sketched above could, of course,
be axiomatized, and the conclusion could be proven, and experimentally checked.
5o far, it is only speculation intended to break up some of the rigid thoughts
about what utility means and how it should be measured. Later arguments about
the insensitivity of certain models will show, anyway, that precise utility
and probability assessment probably does not matter very much,.

The multiattribute case really adds only one new assessment procedure:
that of dual standard sequences. Al1l other procedures are single attribute
versions of the already discussed methods (bisection, and indifference lotter-

ies). It is doubtful that standard sequences should involve cognitive proces-
ses that are very different from, say, difference judgments. Really, what the
assessor eventually does in creating a standard sequence is to find choice en-
tities that are equally spacea in utility. The only difference from the dif-

ference standard sequence procedure is that he does so by using a standard com-

parison step in another attribute. One could argue that dual standard sequence
procedures are difference procedures with the help of a realistic representa-
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tion of a utility difference. The argument can then be made that both bisec-
tion and direct rating procedure will generate results similar to dual standard
sequences.

One crucial difference which arises only in the additive multiattribute
case is that of implicit vs. explicit weighting procedures. Recall that impli-
cit weights are calculated from equations that result from observed indiffer-
ences among rather complex stimuli. The alternative approximation method is
direct rating or ratio assessment of such weights. Here, it is possible that
different cognitive processes are operating when making such judgments. When a
decision maker has to make indifference Judgments which eventually allow the
computation of weights, he will express his local trade-off between attributes.
This local trade-off (which is, of course, variable with the location of the two
choice entities that are matched) allows the identification of the trade-off
in utility as measured on the unrescaled single attribute utility functions.
This trade-off in utility tells how many (unrescaled) utility units the deci-
sion maker is willing to give up in attribute 1 for an increase of x (unre-
scaled) utility units in attribute 2. Since this trade-off is constant in u-
tility, that is enough information to get the utility units of the two unre-
scaled utility functions into correct proportion. So really, the processes
that are tappe& here when observing indifferences to construct rescaled utili-
ties are directly related to comparisons of utility intervals.

When importance weights are judged directly, however, either on a numeri-
cal rating scale, or in terms of ratio magnitude estimation, factors other than
comparison of utility units may enter into the decision maker's consideration.
One possibility is that the range within which the single attribute utility
functions are assessed is disregarded--which in essence is disregarding the
size of unrescaled utility intervals in that attribute--when Jjudging some ab-
solute "importance -atio". In attributes that have an insignificant range,
this will lead to overestimation of the rescaling factors; in attributes that
have a wide range, this may lead to underestimation. In any case, external
factors not related to the scaling problem may enter in judgments of importance
ratios.
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Similarity by insensitivity -- The final argument which supports conver-
gence among several models and procedures is that of insensitivity, a sort of
de facto similarity without formal or behavioral cause. It just says: experi-
ence has shown that model A and model B or that procedure a and b produce con-
verging utility functions. Most of these results have been developed for addi-
tive models, but there are also some indications of model convergence across the
borderline of additivity. Fischer (1972) and Yntema and Torgerson (1961}, for
example, demonstrate that additive models can approximate non-additive models
quite well. Similar arguments can be found in Dawes and Corrigan (1973), who
introduce the qualification "if the dependent variable (utility of the non-
additive model) is measured with a substantial amount of error". There is a
wealth of regression analytic literature showing that simple linear models pro-
duce surprisingly good results when compared with more "realistic" figural and
complicated models. Fischer (1972), however, found some examples, where addi-
tive models are not such good approximations, in particular for complex multi-
linear models when the number of attributes become large.

Most recent insersitivity research was concerned with convergence between
additive models with different utility functions or weighting parameters. The
main results of these studies are:

1. Variaticns of the shape of single attribute utility functions

will produce overall utilities that are highly correlated as
long as all single attribute functions are monctone* (Fischer,
1972); (see also Slovic and Lichtenstein, 1971, for similar
arguments in regression analysis).

2. Variations in weight parameters produce 7.erall utilities that

are highly correlated. Unit weighting schemes often do a re-
markable job in predicting models with skewed weighting schemes
(Einhorn and Hogarth, 1974; Dawes and Corrigan, 1973.

*Morotonicity is a version of preferential independence that requires that
more of one attribute is always preferred to less (or vice versa), no matter
what the other attribute values are.
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Although few of these analyses have concentrated specifically on utility
models (most of them were concerned witn simple regression models, in which one
problem was the consumption of degrees of freedom in parameter estimation, a
problem that does not arise in utility theory), the results should have implica-
tions for assessment in utility theory. It is probably not too daring to say
that, as long as all single attribute functions are monotone, their precise
shape and relative rescaling will not matter very much.

How useful is utility theory for decision analysis?

So far, we have classified, described, and integrated the formal models

and assessment procedures that form under the name of utility theory. Th';
section examines the auestion: what is all this good for? Is the effort that
measurement theorists put into the development and sophistication of utility
models really useful to anybody, or is it Jjust a mathematical exercise? Obvi-
ously, Holder did not produce any changes in the practice of length measurement.
Do utility theorists run a similar danger of reproducing results that really

have cnly little, if any, implications for measureiment practice?

To answer this question, let us first look into some areas where utility
theory has been applied to model preferences. Much theorizing and psychologi-
cal experimentation has gone into the analysis of utility theories as descrip-
tive models of human decision making behavior. Studies in the descriptive
validity of utility theories have concentrated on two decision situations: the
riskless multiattributed case (case II in Table 4) and the risky single-attri-
buted case (case III in Table 4). Simple additive models have been tested in
the riskless multiattribute case; they usually were considered approximations
of some conjoint mcasurement representation (see Fischer, 1975). Expected
utility models and conjoint measurement models have been applied to the risky
single attribute case (see Edwards, 1954, 1961; Edwards and Tversky, 1967; Lee,
1970). Only three studies analyzed the validity of models in the risky multi-
attribute case (VI)Tverksy, 1967; v. Winterfeldt, 1971; Fischer, 1972). Few
of these studies used the full potential of measurement theories, e.g., an an-
alysis of their axioms, or application of formally justified assessment. Typ-
ically, some approximation method or approximate model was analyzed for its
ability to predict global preference behavior or judgments. I do not know of
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any descriptive applications of the bisymmetric or difference utility models.
Utility theory has alsu been applied as prescriptive theory of preferen-
ces. Any of the utility models described in this report could be used for mo-
deling and measuring preferences to aid decision makers in evaluating or deci-
sion-making. Keeney and Raiffa (1975) 1ist a number of cases in which utility
theory--in particular expected utility measurement for single and multiattribut-
ed cases--has been applied for solving real world decision problems. There are
extensive applications of simple expected utility models to business decision
problems (see Schlaifer, 1969; Brown, 1970; Matheson, 1970), and a few applica-
tions of simple multiattribute models (see Keeney and Raiffa, 1975; Edwards et
al., 1975, and Fischer and Edwards, 1973). In only a very few cases the full
potential of utility theory (tests of independence assumptions and use of for-
mally justified assessment) has been exploited in these applications. Applica-

tions of models for time variable cases aad group preferences is still very
limited. There has been no applicatior. of difference, bisymmetric, or con-
joint measurement models for solving ~eal decision problems.

Although some utility theories have been used in modeling preferences
--descriptively in the laboratory or normatively in the reai world--the general
impression is that the application of utility theory is limited to a few classes
of decision problems and utility models. If one would measure the usefulness of
utility theory in terms of its present use in descriptive or normative moceling,
the picture would indea2d be rather gloomy. A better criterion--and the onc that
will be adopted in the following pages--is hew utility theory could be used.
41though the following discussion will concuntrate on the potential use of util-
ity theories as prescriptive models, many of the arguments apply to their de-
scriptive use as well. Prescriptive use of utility theory means any applica-
tion of axioms, measurement procedures or other formal ways of thinking in the
framework of utility theory wnen dealing with a formal analysis of real world
decision or evaluatior problems. Ultimately, the usefulness of utility theory
in this context is 'its ability to aid the decision maker (group, organization)
in making decisions.

Utility theory as formulated in the preceding sections could have two re-
lated functions in such a formal analysis of decision problems:
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1. To aid in eliciting a model that best fits the decision problems
and that at the same time represents the decision maker's tastes,
values, and preferences;

2. To elicit the appropriate numbers which are needed to permit the
calculation of utilities.

The question, "how useful is utility theory?" then boils down to the ques-
tion, "how well is utility theory equipped to solve these two tasks?"

Although the report will go into much detail discussing this question,
the general conclusion may be stated here already: utility theory offers a
fine conceptual framework for thinking about problem structure, model forms,
and possible places where models can go wrong. With the help of utility theo-
ry, decision analysts may improve their model building process substantially.
However, in the actual construction of scales, utility theory has little to of-
fer, and analysts usually will have to use their own intuition and expertise
when it comes to assessment of utilities. The reasons are, among others, that
the procedures to assess utilities within the formally justified framework are
often clumsy, complicated, and difficult to understand. They do not allow for
errors, are time consuming, and they most often involve imaginary questions
that are hard to think about.

in the following, first the use of utility theory to elicit models for
preferences will be discussed. Then the use of utility theory for eliciting
actual scales will be criticized, and, finally, some critical remarks will be
nade regarding the scope of utility theory in general.

Use of utility theory for model elicitation -- How can utility theory be
used to help building models of preferences that can improve the decision mak-
ing or evaluation process? First ov all, if an analyst wants to build a model
of preferences, he has to ask himself: wutility for whom, and for what entity?
These two questions identify the class of models that are applicable to the
special decision problem. Utility tneory does little for the analyst here bui
stress the inportance of this question. Different models apply to differ-
ent decision making and choice entities. But through classification schemes
like the one presented in this report, some structure is provided for the pro-
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cess of identifying the decision maker and the decision problem. Unfortunately,
the most realistic and complex problems have not been modeled yet. If an ana-
1::-% finds, for example, a decision problem in which groups make decisions that
affect many with uncertain and multiattributed outcomes, he will find no model
applicable to this case. He is left tu his own expertise in either putting var-
ious models together (e.g., expected utility models, multiattributed models, and
so forth), or to make up models himself.

The next step an analyst has to go through if he wants to make use of any
utility model, is to define the problem into the format in which the models are
formulated. He has to define value dimensions (attributes) of outcomes, the
individuals affected by the outcomes, the time periods of payoffs, and all the
uncertain contingencies urder which outcomes will be received. Although util-
ity theory itself offers little help in this important task of structuring the
problem, it obviously makes beneficial contributions by defining what elements
are required in a formal treatment of decision problems. Decision trees (Raif-
fa, 1968) and goal hierarchies (Manheim and Hall, 1967) are among the tools
that have grown from utility theory.

Utility theory may also help to structure a decision problem in a way that
suggests simple models and simple assessment, thus making the judgmental tasks
easier. For example, if one wants to use additive evaluation models in a multi-
attribute context, one would try to structure the problem in a way that suggests
preferential independence of attributes. This is often not very difficult to do.
For example, when evaluating apartments on the attributes "distance from the of-
fice" and "transportation facilities", preferential independence will certainly
be violated. One could get around that problem by redefining a compound attri-
bute "accessibility of the office". In other words, often the concepts of util-
ity theory help to identify possible problem areas in modeling early in the
structuring phase. (Interestingly enough, this function of utitity theory may
defeat the purpose of sophisticated modeling itself; if in 99% of all evaluation
problems it is possisie to find a structure that suggests additive or other sim-
ple models, why bother developing much more complicated alternatives?)

After the structuring process--which really is a process of making the
decision problem accessible to modeling--the decision analyst can begin to ask
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questions to select appropriate models for solving the decision problem. At

this point, utility theory may have its most beneficial applications. Of course,
the analyst has little hope of ever identifying the one and only optimal model,
but utility theory offers technical advice on how to go about eliminating models
that are obviously wrong. The essence of this technical advice is contained in
the various model assumptions and axioms.

Consideration of these assumptions, in thought experiments and discussions
between analyst and decision maker may identify those assumptions that are clear-
1y unacceptable to the decision naker or that do not fit the decision problem.
The goal of this search and check procedure is to find the set of sirongest as-
sumptions that can still be accepted and to identify a model that meets this set
of assumptions. v. Winterfeldt and Fischer (1975) recently presented a hierar-
chical structure of model assumptions for the riskless and risky multiattributed
cases that a decision analyst can run through in order to eliminate models, and
select a model form that appears acceptable.

Naturally, nothing guarantees that the model thus identified is an opti-
mal one. Exploration of alternative models is good practice in decision analy-
sis. Often one may want to make intentional modeling errors by using a model
whose assumptions are violated in order to buy simpler assessment methods. In
this case, 0/ course, extensive sensitivity analyses should assure that these
model viclations won't lead to preposterous results.

After thought experiments (which are nothing else but imaginary examples
of the formal model assumptions), the analyst can go further and use explicit
model tests, by checking practically if some simple model implications or nu-
merical assumptions hold. Again, utility theory provides such procedures. For
example, if one wants to check the validity of the multiplicative expected util-
ity model in risky multiattribute evaluation problems, one could check if cer-
tainty equivalents in one attribute are independent of constant values in other
attributes. Of course, one has to take care that the task for the assessor is
not so complex that it leads to errors simply because of information overload
problems. Similar checks in a conjoint measurement framework may take the form
of assessing single attribute utility functions conditional on various constant
values in other attributes to see if the form of the single attribute function

dep2nds on these values.




1
{
H
{

-64-

Although these types of axiomatic check procedures are built into a util-
ity theory, they are often formulated in such an invidious mathematical language
that it is hard to recover their meaning from the model. It is crucial for such
use of utility theory that the meaning of these assumptions is clear, otherwise
there is little an analyst can communicate to a decision maker to check if the
model assumptions are acceptable. For example, a decision maker may de baffled
when asked "do your evaluations of risky multiattributed alternatives depend
solely on their marginal probability distributions?" Unfortunately, utility
theorists have often given in to mathematical sophistication in their model for-
mulations, which usually hides the meaning of model assumptions. Besides for-
mulating their assumptions in a rather mathematical fashion, utility theorists
also try to make them appear ve.y weak. A large amount of measurement theoret-
ic effort is devoted to weakening assumptions while still retaining strong re-
sults. Fishburn and Keeney (1974), for example, show that with the help of
some riskless assumptions (preferential independence) it is possible to derive
powerful risky independence assumptions (utility independence). The problem
with this kind of reasoning is that the "stronger" assumptions must still be
valid if the "weaker" assumptions hold. One may be tempted to accept the val-
idity of weak assumptions and forget about their strong implications. Although
it may be misleading to ask the decision maker whether or not he would accept
the full implication of all assumptions together (e.g., an additive expected
utility model), it is equally erroneous to ask for acceptance of the weakest.
assumptions. To state it in mathematical language: testing the lemmas may of-
ten be more insightful than testing the axioms or theorems.

After structuring and after selection of a candidate model, the analyst
can make use of utility theory in a finai way when actually assessing the util-
ity functions within the framework of the model he selected. In an extension
of the numerical tests to select models, he can now build into the model con-
struction various consistency checks that are suggested by the model form. In
the multiattribute framework, for example, he may assess single attribute util-
ity functions and predict some simple implications of the additive model with
these functions. In the risky multiattribute case, he could assess more than
one single attribute utility function to see if the shape of these functions
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varies systematically with the conditioning values in other attributes. There
are many ways of performing such consistency checks, and although utility the-
ory provides guidance through the model forms, it remains an art to design such
checks intelligently.

A final point that should be mentioned is that utility theory is silent
about the errors that occur when one applies an inappropriate model to a deci-
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sion problem. The model may be inappropriate for two reasons: first, because
- it makes assumptions that are not justified, usually because they are too strong.
The reverse kind of mistake is also possible, namely applying a model--although
its assumptions are uncontroversial--which is not strong enough. Generally,
the weaker the model, the more complicated the procedures to assess utilities;
and the more complicated the assessment procedures, the more likely assessment
errors will ocrur. Deterministic utility theory--the only class of utility
models that has any potential in real world applications--cannot say anything
about this very real trade-off between model weakness and assessment complex-
ity, since it does not acknowledge error. It is uncontroversial that a weak
order model is always an appropriate normative model for decision making, since
it only says that choice entities are to be ordered transitively. However,
that statement helps 1ittle in model construction. Assessment errors that can
occur, for example, in complex indifference curve assessment and trade-offs may
be much more substantial than the errors that occur from assuming a model form
that violates some of the decision maker's preferences. Probabilistic models
appear to he no way out of this dilemma; although they acknowledge the possi-
bility of errcr, they do not provide any mechanisms to realistically model and

assess preferences in real world decision problens.
The message of this section addressed to the practitioner of decision an-
alysis is this: yes, utility theory can help you structuring decision problems,
and eliminating inappropriate models. What you have to do yourseif is to trans- !
late often rather mathematical axioms into behaviorally meaningful and testable |
assumptions. And even after you go through the process of model elimination and
selection, you will still have to make up your mind about the possible trade-
of fs between assessment error and modeling error. The message to utility theo-
rists is this: models are useful, the more meaningful and real their &ssump-
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sumptions and implication are. So it may be useful to give up some mathemati-
cally sophisticated formulations in favor of more clumsy hut realistic ones,
and it may be more useful to formulate all model assumptions and implications

in their full strength rather than hide the strength of the model behind seem-
ingly weak axioms.

Use of utility theory for scaling -- As mentioned before, assessment is
really the weak point of utility theories. If the mdels are useful for do-
fining appropriate model forms, they seldom have produced elicitation methods
that are very attractive in applied settings. An attractive assessment pro-
cedure would be one that is, among other things,

simple,

1
2. error free,
3.

time and cost efficient,

4, realistic,
while still being in agreement with the modeled prefe~ences. In general, the
theoretically feasible assessment procedures do not rate very well on these
criteria, when compared with the direct estimation methods that were discussed
earlier as approximation procedures. An exception may be difference and bi-
section assessment, because of their close resemblance to direct estimation
procedures.

Let us try to substantiate the claim that the formally justified methods
for eliciting utilities do not fare very well in application. Really, we are
talking about only five different methods:

1. indifference curves (weak orders)

2. difference standard sequences (difference measurement)

3. bisection standard sequences (bisymmetric measurement)

4. dual standard sequences (conjoint measurement)

5. indifference lotteries (expected utility measurement).

A1l these formally justified assessment procedures require, in one form
or another, indifference judgments. Usually, the assessor manipulates one en-
tity, or one variable aspect of a choice entity (a probability, a single attri-
bute value, etc.) to match that choice entity against a standard. This method
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is well known in psychophysics as the method of adjustment (Torgerson, 1953).
Depending on the model form, these matches or indifference judgments involve
more or less complex choice entities. Indifference curve procedures can in-
volve cheice entities that vary simultaneously on many attributes, while stan-
dard sequence procedures in conjoint measurement involve choice entities that
vary only on two attributes at a time. Indifference lottery procedures typ-
ically involve only one variable (a probability, or a single attribute value),
but in multiattribute models rather complex matches have to be established

for rescaling, or assescing risk transformations (see p. 43).

If the choice entities that are to be matched vary on many value relevant
aspects (as in indifference-curve procedures), the matching task can be very
complicated for the assessor. But even if choice entities are simple, such as
gambles for money, indifference procedures may still be quite complex. System-
atic reliability studies are missing, but Davidson et al., (1957) give some in-
dication of inconsistencies in very simple indifference judgments. 1In addition,
psychophysical studies on indifference judgments in a variety of tasks show that
there are systematic biases in indifference judgments such as constant error,
etc. (Torgerson, 1958).

Clearly, any assessment procedure will produce some amount of error. The
point is that indifference procedures may increase the amount of error by ask-
ing unusual questions about complex choice alternatives. The more complex the
choice alternatives that are to be matched, the larger the error will be. Be-
sides this type of random error due to the procedure, another measurement error
is introduced in these assessment techniques. This error results from approx-
imation of utilities through interpolation or curve fitting. Interpolation of
utilities is necessary, if the measurement procedure did not provide the util-
ities for all the choice entities under consideration, but rather of a faw

points in that area. This will almost always be the case in the three standard
sequence procedures, since, by their logic, they identify utilities generically
without concern for the decision problem. Standard sequences determine the
utilities of a well defined subset of choice entities, but this subset may be
very different from the choice entities that are the subject of the decision
problem. In this case, the utilities of the poirts of interest will have to
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be approximated. Also, if one constructs indifference curves, the only way to
avoid interpolation is to begin with the choice entities of interest and trade
them off into one attribute. Otherwise, indifference curves will have to be
approximated and utilities for points not 1ncated on the indifference curves
will have to be estimated. The only procedure which provides for a straight-
forward utility assessment of all choice enti*ies under study is the indiffer-
ence lottery procedure in its variable probability version, where the choice
entity of interest is fixed and probabilities are varied to generate a match
between this choice entity and a gamble for two reference choice entities (see
p. 40).

One could, of course, construct utilities with any of the five procedures
that are finely graded to reduce approximation errors. But such a process may
turn out to be very time consuming and inefficient. For example, in a simple
riskless multiattribute evaluation problem involving 10 attributes and only 10
steps in each attribute more than 100 such indifference judgments would have
to be made (including the judgments necessary for rescaling), if one accefts
the additive model, and a much larger number would be required to achieve an
equally fine grid if the additive model fails. In complex models 1like the
multilinear model, just the indifference judgments required for rescaling can
go into the hundreds. With 10 attributes, for example, the multilinear model
4b in the risky multiattributed case XI requires the assessment of 1022 scaling
constants (see Keeney and Raiffa, 1975). This may be too much effort when the
task is, for example, to compare three or four choice alternatives.

A1l five assessment procedures involve indifference judgmen.s about im-
aginary choice entities that are not attainable in the decision problem. This
fact is obvious for the indifference curve procedure and the standard sequence
procedure. Since the assessor manipulates one variable aspect of the choice
entities, he has to think about choices that, in reality, do not exist for him.
The same is true for indifference lotteries, since the assessor has to think
about "reference" outcomes that are usually not attainable, and about probabil-
jties of events that have nothing to do with his decision problem. This lack
of realism in assessment may produce quite serious judgmental problzms. Often,
the analyst can formulate the assessment task in a mcre realistic way, but he
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will never get around the problem that indifference methods are by definition
imaginary. There is another aspect to the problem of realism of assessment
that may prove even more difficult to overcome. Some of the choice entities
in utility assessment may not only be imaginary, but they may not even be con-
ceivable. For example, when evaluating apartments with a conjoint measuremcnt
model, one may have to construct utility functions over the attributes "rent"
and "size". The assessor may have to make indifference judgments about apart-
ments with a very large size and very small rent, a rather unlikely combina-
tion which he msy not be able to think about.

So much for the arguments that the formally justified indifference proce-
dures are too complicated, produce too much error, are time consuming and un-
realistic; some more so than others. In general, it appears that the rarely
used difference and bisection procedures score better on these applied criteria
than dual standard sequences, indiffarence curves, and indifference lottery pro-
cedures. But if one wants to find simple, auick, realistic methods that produce
little error, one will have to look outside of the realm of theoretically feasi-
ble methods. Probably the most :2asonable methods of this sort are magni tude
estimation methods such as direct rating, direct judgmert of utility differen-
ces, direct ratio assessment of weights, direct assessment of probabilities and
utilities, etc. Clearly, they are uncomplicated. All the assessor has to do
is to quantify his judgment on a numerical scale. They also are quick and more
realistic since they need only be applied to the choice entities that are under
study in the decision problem. If the number of choice entities is large, the
assessment task may still be considerable, but seldom as large as in asses-
sing the full utility function. Of course, the question of error remains. To
use the approximation methods, one has to make sure that they produce utilities
that are interpretable within the theoretical model in which they are to be ap-
plied. Some such arguments can be found in the section on behavioral similar-
ities between assessment procedures in this report. Still, these direct esti-
mation methods are approximation methods, and errors will be made by not repro-
ducing the ideal utility function that would be assessed if the assessor could
overcome all the cognitive problems in theoretically feasible methods. On the
other hand, possible sources of error are reduced by assessing only the utili-
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ties for the choice entities that are to be evaluated. Therefore, no interpo-

lation is necessary. Also, by reducing complexity, one may reduce error.
Without any experimental evidence, conclusions are hard to draw. But it ap-
pears that there is at least a reasonable trade-off between quick, simple, and
realistic direct estimation methods that are not formally justified in the mo-
del context and the somewhat clumsy feasible indifference methods. This trade-
of f calls for experimentaiton.

A concluding perspective -- Utility theory is a collection of models and
assessment procedures to measure utilities of various types of choice entites,

for many different kinds of decision makers, groups, or organizations, and for
numerous decision problems. opefully, this report has shown that utility
theory offers a large number of models and assessment procedures and that it
has many possible areas of application. While the preceding sections empha-
sized the wealth of utility models and assessment procedures and their poten-
tial use in application, these last few paragraphs will point out some limits
of utility theory.

If one inspect: the progress of the mathematical treatments on utility
measurement over the last few years, certain trends become obvious:

1. Within one and the same decision problem or evaluation paradigm more
and more sophisticated models are developed that generalize previous model
forms. A typical example of this trend are the last five years of modeling
risky multiattributed preferences. Starting with the basic expected utility
model, more and more general decomposition forms were added to the original ad-
ditive and multiplicative forms.

2. Existing models are transferred relatively intact to different cases
that have similar formal characteristics. Recent models for risky group and
time preferences, for example, are simple reinterpretations of the expected
utility decomposition models which were developed for risky multiattributed
cases.

3. Some of utility theory becomes increasingly removed from its areas
of application by weakening assumptions or formulating them in a mathemati-
cally elegant, but often unintelligible form.
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l On the other hand, some of the most interesting and vital practical mo-

deling prublems still lie at the periphery of utility theory. Some of these
problems are:

1. Group decision making;

N 2. Errors in measurement (in particular possible trade-offs between
error in assessment and error in modeling);

3. Basis for measurement with simple judgmental assessment methods.

Anybody who is interested in the application of utility theory (either as
/ descriptive or normative theory) is concerned abcut the problen of real prefer-
1 ences and looks for theories that are based on real decision, real judgments,
and real decision makers. Much of the recent research suggests that utility
theory is more involved with its own formalities than with these real proper-
ties of preferences. Maybe utility theory could become more useful if theorists
begin to take judgments and preferences with all these real properties more ser-
: jously thar the mathematics of the models that intend to represent them.
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