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Introduction 

This report is a survey of the already voluminous and fast-growing mea- 

surement theoretic literature on utility modeling and assessment. It is writ- 

ten specifically for decision analysts who are interested in the use of these 

abstract measurement theories for solving complex real world decision problems. 

The main purpose of the report is to connect current theory of utility measure- 

ment with decision analytic practice. 

Presently, a gap exists between theory and practice, partly because util- 

ity theories are formulated in a highly mathematical language that is difficult 

to relate to real decision problems and real preferences. Many theoreticians 

overemphasize the mathematical elegance of utility modeling and assessment and 

shew little concern about model applicability. Easy translations and tutorials 

exist only for a few classes of utility models; the bulk of measurement theo- 

ries, on the other hand, is hidden in mathematical journals and books. Conse- 

quently, many decision analysts who could apply utility theory as a tool for 

solving complex decision problems find the utility theory literature inacces- 

sible and little use is made of the wealth of models and assessment procedures 

that utility theory offers. 

This repirt tries to bridge the gap between the theory and practice of 

utility measurement by: 

1. Providing a classification, translation, and integration of utility 

theories that should make them accessible to the less mathematically sophisti- 

cated decision analytic practitioner; and 

2. Evaluating the usefulness of utility theory for decision analytic 

modeling and assessment in order to articulate the needs and considerations 

of the practitioner for the theoretician. 

With these two tasks this review assumes a rather peculiar position 

amonc; the approximately 20 review articles and books on utility theory that 

have appeared since the late 60's. It clearly is not a mathematical review 

as, for evample, the books and articles by Luce and Suppes (1967), Fishburn 

(1970) and Krantz, Luce, Suppes, and Tversky (1971). Neither is it meant to 

be a tutorial in the application of utility theory such as the books by 

MUU  ---■ — ^-^-^  
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Raiffa (1968), Schlaifer (1969), Brown, Peterson, and Kahr (1974), and Keeney 

and Raiffa (1975). And it does not simply seek to describe current models and 

assessment procedures for decision analyst as, for example, the reviews by 

Fishburn (1967), Huber (1974), MicCrimmon (1973), and Kneppreth, Gustafson, 

Leifer, and Johnson (1974). 

Instead, the report hopes to provide the decision analytic practitioner 

an intelligible and yet comprehensive perspective of utility theory and an 

overview of the state of the art. It tries to answer questions like these: 

What utility models are presently available? Where can one read in detail 

about them? What are the basic characteristics of the models and the assess- 

ment procedures? What are the integrating factors? And finally, the report 

addresses the all important question: How relevant is all this theorizing to 

the practitioner? 

To answer these questions, the report is organized as follows. The 

first part discusses some general aspects of utility theory as part of mea 

surement theory and it develops a classification scheme for utility models. 

In the second part, the i.iain model classes (weak order measurement, difference 

measurement, bisymmetric measurement, conjoint measurement, and expected util- 

ity measurement) are described through their assumptions, modol forms, for- 

mally justified assessment procedures, and approximation methods. The third 

section of the report looks at some similarities and differences between mo- 

dels and assessment procedures. Topics are the logical relationsnips between 

models, similarities and differences in the cognitive processes involved in 

different assessment procedures, and model convergence by insensitivity. The 

fourth and final part of the report evaluates the use of utility theory as a 

practical tool in formal treatments of decision problems. The use of utility 

theory in structuring evaluation problems and in elicicing appropriate model 
i •    .  > 

forms is considered as well as the use of utility theory in scaling and as- 
sessment. The report concludes with some general remarks about current trends 

in utility theory and their implications for the use of utility theory. 

. 
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Measurement theory and utility models 

What is utility theory? -- Utility theory is a part of measurement theory 

thct deals with evaluating (indexing) valuable objects by numbers that are con- 

sistent with the decision maker's (group's, organization's) preferences, tastes 

and values. Utility theory is a collection of models and evaluation procedures 

that differ in wnat they measure (e.g., gambles, investment plans, cars), how 

they measure it (e.g., by adding, by taking expectation, etc.), for whom the 

measurement is performed (e.g., for an individual, a group, or an organization), 

and for what purpose the objects are to be measured (e.g., to describe an indi- 

vidual's evaluations, to prescribe his decisions, etc.) 

Before going into a more detailed discussion of utility theory, it is 

useful to back up a little and look at the measurement theoretic framework of 

which utility theory is a part. In measurement theory, subsystems of the num- 

ber system wich their numerical relations and operations are models for real 

world objects, their relations, and operations. Measurement theoretic models 

formulate the principles that justify numerical measurement of these objects, 

and they provide procedures to construct actual scales. 

H.v. Helmholtz (1887) was one of the first measurement theorists who con- 

sidered the problem of measurement as a problem of modeling empirical systems 

with systems of numbers. His rudimentary measurement postulates were straight 

generalizations from the axioms of algebra.  In a sense, v. Helmholtz required 

objects to behave like numbers -- otherwise, he would not consider them mea- 

surable. But if they behaved like numbers, one could count, add, and subtract 

them like numbers, as well as comparing their size. Thus one coulr construct 

a scale, and the numbers assigned to the objects would behave just like the 

objects themselves. UnforUinctely, the domain of objects that has the proper- 

ties required by v. Helmholtz's postulates is very small. Measurement theory 

would not have reached into areas 11k« color measurement, measurement of pro- 

bability and utility, or even measurement of temperature, if it had been 

restricted to empirical systems that obeyed v. Helmholtz's postulates. 

But there are tMO ways to broaden measurement theory. Ore is to look 

at other subsystems or numbers as measurement models, possibly without opera- 

tions such as addition and subtraction. Another one is to relax or reformu- 

iiMattNiHiiMiliiilbil «^._ . .,... ■      ■  -    ■-   .-:--...-..       :-.   .-.- ....:   ... .. ^ .....■..-■ •■■■^||-in ir-M n.'i mm.   11 nmm »1»«—aai 
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late v. Helmholtz's postulates into empirical axioms that fit the empirical 

system better. Holder's theory of length measurement (1901) was an important 

step in the latter direction. Holder formulated conditions on the relations 

and operations of rods that would allow their numerical measurement. His the- 

ory also provided the procedure by which length could be measured, namely by 

laying off a sequence of rods of equal length against rods of unknown length. 

Of course, this is exactly the procedure that had been used for hundreds of 
years. 

The other approach to broaden measurement theory by identifying differ- 

ent subsystems of numbers has a relatively recent history. Modern measure- 

ment theory (see Suppes and Zinnes, 1963; Krantz et al., 1971) uses the mathe- 

matical meory of ordered algebraic structures such as ordered semi-groups, 

ordered groups, field, rings, etc. (see, for example. Fuchs, 1963; Vinogradov, 

1969) to prove the feasibility of measurement and to construct scales. An 

empirical structure of objects to be measured (e.g., stones), their relations 

(e.g., stone a "displaces more water" than stone b), and their operations 

(e.g., stones a and b "displace together as much water" as stone c) is ana- 

lyzed and assumptions (axioms) are stated that characterize this empirical 

structure as an algebraic structure with certain nice mathematical properties 

(e.g., transitivity of the relation "displaces more water", or commutativity 

of an operation "displace together"). Then a numerical structure is identi- 

fied, containing a subset of the real numbers, with its usual relations (-, 

>) and operations (:,+,-,.), that has the same algebraic structure. Finally, 

a function is constructed that assigns to each element (e.g., a stone) in the 

empirical structure a number (e.g., volume) such that the relations and oper- 

ations in both structures coincide. This function is railed a homomorphism. 

Measurement, in short, is the construction of a homomorphism between an em- 

pirical and a numerical nrdered algebraic structure. 

This all sounds rather complicated, but is really based on very simple 

ideas. Measurement requires the creation of some rule by which numbers are 

assigned to objects (this actually is Steven's, 1936, somewhat antiquated 

definition of measurement) and that these numbers behove in accordance with 

the properties of the objects (their relations and operations). There really 

 ^^..^.^ "t"~--'• ^—--1- mä 
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are no limits to this basic idea of measurement. One can invent any funny rule 

to assign numbers to, say rods, and see whether or not these numbers behave in 

a way that reflects, say, their length expressed by laying rods off against each 

other and by connecting them. (Krantz et al., 1971, describe some such "funny 

rules" for length measurement that actually lead to usable scales, although they 

are quite different from the length scale we normally use). 

This is the framework of utility measurement. Utility theory distinguishes 

itself from general measurement theory in several aspects: 

1. The objects to be measured are objects of cost or value (just as 

stones are objects of extension or of mass). These objects are called deci- 

sions, acts, outcomes, etc. In the following, they will be called "choice en- 

tities", or just "objects". 

2. The relation between these objects is that of preference, expressed 

by an individual, group, or organization; their surrogates or representatives, 

etc. 

3. The operation on these objects are not directly definable in terms 

of external manipulations of the objects (like adding two stones in a water- 

filled container), but either operations are missing altogether or "operation 

surrogates" are constructed with the help of a human judge. 

Tnese last two distinguishing factors introduce a strong subjective ele- 

ment into utility theory. But utility measurement is different from physical 

measurement (or any other measurement, for that matter) only in the degree of 

subjectivity, not in absolute standards. Even length measurement requires hu- 

man judgment somewhere in the process. The real difference (and the challenge 

to measurement theorists) is the creation and interpretation of operations that 

are not so obvious and directly observable as they are in other measurement 

theories. Conjoint measurement theory, one of the most famous psychological 

measurement theories, was based on exactly such an invention. 

The development of a theory to measure preferences, or to assess utili- 

ties of valuable objects, begins with identifying the objects that are to be 

measured. Then the structure of preferences amor.g these objects (as expressed 

in individual pair comparisons, for example) is characterized in the form of 

 ü  
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normative or descriptive* axioms of preferences allow the identification of 

the preference structure as an algebraic structure. Utility theory then pro- 

ceeds to prove that given these axioms, numbers can be assigned to the valu- 

able objects by a function (or rule) that preserves preferences (e.g., the 

object with the higher utility number is also the more preferred) and reflects 

the properties of the preference structure (e.g., the difference between two 

utility numbers reflects the relative strength of preference). The course of 

the proof provides -- often rather well hidden in the mathematics -- the pro- 

cedure by which these numbers are assigned to the objects. 

The assumptions of utility models fall into three categories: 

1. Assumptions that the decision maker can exhibit preferences, and 

that he does so consistently as if he were maximizing something. These as- 

sumptions are often summarized as the "weak order" axiom; 

2. Independence assumptions that require preferences among :hoice en- 

titeis to be independent of certain manipulations of these choice entities. 

These assumptions are called cancellation, monotonicity, preferential indepen- 

dence, utility independence, and the like; 

3. "Technical" assumptions that prohibit abnormalities in preferences. 

One abnormality is that some choice entity is infinitely desirable ("heaven") 

or infinitely undesirable ("hell"). "Archimedean" axioms prohibit this from 

occurring. Another abnormality is that certain choice entities cannot be 

varied finely enough to produce indifferences with some other fixed choice en- 

tities. "Solvability" axioms prohibit such gaps in the set of choice entities. 

These assumptions formulate utility theory as a specific model of the 

decision problem and the decision maker's (group's, organization's) preference 

structure. These models vary in their formal properties -- particularly in 

the strength of their assumptions -- and in their interpretation within a 

specific decision problem, i.e., the model content. There are as many ways 

to measure utility as there are different types of valuable objects, prefer- 

ence properties, decision makers, etc. These differences in formal model pro- 

'1 

*Utility theory itself is silent about the distinction between normative and 
descriptive assumptions. Whether a particular theory has normative or de- 
scriptive status depends on the interpretation of its axioms. 

_,., 
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perties and model content, are reflected in the over 50 utility models that now 

exist. The most important of these models will be classified, described, and 

integrated in the following sections of this report. 

Classification of utility models -- The two dimensions of model variabil- 

ity discussed above will now be used to classify measurement theories. First, 

utility models will be classified according to some of their formal properties. 

Then a classification scheme for possible decision situations wMl be presented. 

The following formal distinctions between utility models are made: 

1. Deterministic vs. probabilistic models; 

2. Ordinal vs. interval models. 

Probabilistic models express utility and preferences as a result of a 

random process. Utilities are assessed by determining "probabilities of pre- 

ferences", presumably by repeated observations of preferences among valuable 

objects. Predictions of these models state a probability that an object is 

chosen over another as I function of their numerical utilities. Deterministic 

models (also called algebraic models) assume no randomness whatsoever in util- 

ities or preferences. Consequently, both their assessment and their predic- 

tions are deterministic, based on a unique set of preferences and indifferen- 

ces, and on unique predictions. Deterministic models are special cases of 

probabilistic models, in which only probabilities of 1 and 0 are allowed. 

The second distinction refers to the scale quality of the utility func- 

tion that can be assessed within the framework of a particular model. Ordi- 

nal models p " ice utility functions that make statements about the order of 

preferences only. The specific shape of these utility functions does not con- 

tain any information about the preferences, i.e., utility functions are unique 

up to a monotone transformation only.  Interval models produce utility func- 

tions that also make statements about the relative strength of preferences. 

The shape of these utility functions contains meaningful information about 

the modeled preferences, but their origin and unit are arbitrary, i.e., they 

are unique up to a positive linear transformation. Clearly interval models 

are special cases of ordinal models. 

Table 1 presents the main classes of utility models within this simple 

formal classification scheme. All of these model classes will be dealt with 

.-. >.. .-^  .w.. -^,.. J...: -- ■. ■• ^.. ■.J....... 
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in more detail later. Also, in later sections of this report, some more formal 

relationships amont the models in the boxes of Table 1 will be worked out. 

Insert Table 1 About here 

I 

The model classes in Table 1 can be applied to quite different decision 

situations which give them their specific interpretation as utility models. 

The distinguishing characteristic of decision situations is complexity. Deci- 

sion situations can be classified according to the presence or absence of com- 

plexity in the following aspects: 

1. static vs. dynamic decision environment; 

2. single decision maker vs. multiple decision makers; 

3. single aspect choice entity vs. multiple aspect choice entity; 

a. single attributed vs. multi-attributed choice entity; 

b. riskless vs. risky choice entity; 

c. time invari?nt vs. time variable choice entity; 

d. choice entity that affects only one individual vs. choice 

entity that affects many. 

In static decision situations, decision makers make one decision at a 

specific time in an unchanging environment; the decision's consequences may 

reach into the future, however. Dynamic decision situations are character- 

ized by sequential decision making under changing circumstances, changing 

values, and changing information (see Rapoport, 1975). Decisions in opera- 

tional management are often highly dynamic, as, for example, dispatching de- 

cisions, or inventory control decisions. Strategic decisions, although they 

usually have long term effects, can often bo interpreted as static decisions. 

The next important distinction between decision situations addresses 

the question: utility for whom? A distinction can be made between cases in 

which a single decision maker evaluates or decides, vs. cases in which a 

group or a committee has that task. When yoi- evaluate cars for possible pur- 

chase, and you finally decide which car to buy, you are the single decision 

maker, even if you consider the opinions of others and the effects your deci- 

ii ii ii it n MlWtiifiiirtfiiiiiriif mtmm*timtttit»mm\ mm TII 
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sion may have on others. Multiple decision makers are involved when a city 

council evaluates alternative taxation plans, or when a committee adopts a 

resolution. 

The classification aspects 3a-d refer to the question: utility for 

what entity? The complexity of choice entities can increase in at least four 

different aspects. (3a) A choice entity is called single attributed if it 

varies on a single, well defined dimension or attribute. Money and profit 

rates are single attributed; so are commodities like gasoline, butter, etc. 

Commodity bundles, cars, social programs, development plans are multiattri- 

buted, that is, they vary on several, and often conflicting dimensions of 

value. Cars, for example, vary on attributes such as cost, comfort, horse- 

power, cornering ability, etc. In this report, a multiattributed object will 

often be described as an n-tuple of single attribute values a-, where (a,, 

a2, ..., a., ..., an) denotes a multiattributed object a that has value a. in 

the i-th attribute. 

(3b) A choice entity is called riskless, if all of its outcomes are 

determined with certainty. An unconditional monetary gift is riskless. A 

choice entity is called risky, if some or all of its outcomes are uncertain. 

Gambles, investment plans, and stocks are risky choice entities. Similar to 

the n-tuple description of multiattributed choice entities, risky choice en- 

tities will often be described as m-tuples of outcomes, (a^a^, ...,ü., ..., a ), 

where aj is the outcome to be received if an uncertain event E. occurs. 

(3c) Choice entities are called time invariant, if their consequences 

are received at a unique time now or in the future. A meal, a car, a site 

for a plant are time invariant. Choice entities are called time variable if 

parts or all of their outcomes are distributed over time. Returns from in- 

vestments are distributed over time; jobs may vary in the prospects for fu- 

ture salary increases, etc. As before, time variable choice entities can be 

characterized by an N-tuple of outcomes to be received or consumed at differ- 

ent times. (*j, a2, .... ak, .... aN) would denote a time variable choice 

entity in which outcome a. will be received at time t.. 

(3d) Choice entities whose consequences affect a single individual can 

be distinguished from those that affect many. Individual consumption affects 

- 
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only the consumer. Public policy decisions affect many. Choice entities that 

affect many can again be symbolized by an M-tuple (a,, a^, .... a-, .... aM) 

where a1 is the consequence for individual I,. At first glance, this distinc- 

tion seems to have a lot in common with (2) (individual decision maker vs. group 

decision maker), and, in fact, they have often been lumped together as a dis- 

tinction between individual vs. social decision making. However, it is logi- 

cally possible, and useful for modeling purposes to keep these two distinctions 

separate. A singlp decision maker can decide about alternatives that affect 

many, and a group of decision makers can make choices that affect only one per- 

son. Dictators and court juries come to mind as examples. 

Whenever choice entities vary on more than one of these complicating as- 

pects, double or triple subscripts will be used to describe their elements sym- 

bolically. For example, a choice entity ^ may be uncertain and multiattributed. 

In this case it would be described by its elements a., which are single attri- 
' J 

bute outcomes to be received if the uncertain event E. occurs. 

The above classification scheme leads to 128 distinct decision situations. 

The 13 models of Table 1 (together with certain model combinations) would gen- 

erate a huge nunber of utility models when applied to these 128 decision situ- 

ations. Natu;ally, not all models have been applied to all cases. And this 

report will make some further restrictions on the models and cases that will 

actually be discussed in detail. These restrictions are discussed below. 

Some omissions -- Any honest utility modeling attempt will have to ac- 

knowledge the enormous complexity of the decision situation and the inadequa- 

cy of strong and simple models. Ideally, one would like to model preferences 

in a dynamic decision situation in which a group of decision makers makes de- 

cisions about choice entities that are multiattributed, risky, time Vu; iable, 

and affect many; and ideally such a model should make the weakest assumptions 

possible. Practically, one will have to be much more modest, first because 

models for the most complex decision situations do not exist, and second be- 

came weak models usually require an inordinate amount of very complex assess- 

ment. 

Realizing that the modeling must bp simplified one can either simplify 

the decision sicuation, or strengthen the model. This report will treat in 

iiiiil   -■ 
__ - -^ jj 
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detail only utility models t^.at make both simplifications. Eliminated from 

the discussion are the weakest model categories, (probabilistic models, semi- 

orders, interval orders, and lexicographic orders) because their practical 

applicability in real world decision problems is questionable. Furthermore, 

dynamic decision situations, and group decision makers will be omitted, be- 

cause appropriate utility models are missing for these cases. 

What follows is a brief discu;sion of the model categories and the de- 

cision situations the report leaves out of a detailed analysis. After this 

discussion, the report will describe the five remaining model categories 

(weak orders, difference measurement, bisyinmetric measurement, conjoirt mea- 

surement, and expected utility measurement) as they are applied to the regain- 

ing decision situations. 

Probabilistic models are one of the many possibilities in utility theo- 

ry to cope with the problem of error and the equivalent problem of fluctuat- 

ing or changing preferences and/or responses. Probabilistic utility models 

have built into themselves a theory of random preferences that can account 

for substantial errors or fluctuations. As a measurement theory these models 

differ somewhat from the concepts described below. They assume that a numer- 

ical assessment of the strength of preference is given by a probability of 

preference in pairwise comparisons, rankings, or choices. This probability 

is assumed to be measured through repeated observations of the same compari- 

son or choice, so that some relatively high level of numerical measurement is 

the base on which these models build. On this base, they formulate conditions 

of probabilistic preferences -- beyond those of simple probability theory -- 

that allow the expression of these probabilities as functions of hypothetical 

utility numbers assigned to the valuable objects. No procedure to estimate 

preference probabilities or to estimate from these preference probabilities 

the underlying utilities are given, but statistical estimation methods are 

available to perform some such estimations, once relative frequencies of pre- 

ferences are given. 

Probabilistic models have been developed for risky and riskless single 

and multiattributed choice alternatives. They are silent about the remain- 

ing classification aspects such as group vs. individual decision making, time 

-  mjljmammm^m^mmm  -—  —. mltm 
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variuDle or time invariant choice entities, etc. The following probebilistic 

models have been developed: 

1. Constant utility models (see U.ce, 1959; Luce and Suppes, 

1967); 

2. Random utility models (Becker, Deüroot, and Marschak, 1963); 

3. Elimination by aspects model«; (Tversky, 1972a and b). 

Constant utility models assume that the randomness of preferences is 

generated by uncertain responses or an uncertain decision making mechanism. 

Random utility models hypothesize that this randomness lies in the underlying 

utilities of the valuable objects themselves. EBA-models assume a sequential 

probabilistic elimination process, in which, at each stage, one attribute of 

the choice entities is probabilistically sampled, and all alternatives are 

eliminated that do not have the attribute (or that are not satisfactory in that 

attribute). All models express the probability of choice or the probability 

of preference as a function of numerical utilities. The main assumption 

behind these models allowing contruction of such functions are stochastic 

transitivity, simple scalability, etc., all of which are spelled out in detail 

in the references cited. 

Ihe practical impact of probabilistic models on decision analysr has 

been very small, and in recent years the theoretical development of proba- 

bilistic utility models has come to a virtual standstill. Probably the main 

reason for the lack of use of probabilistic models in decision analysis is the 

difficulty of practically assessing utility functions. Decision makers usual- 

ly do not have the time or the patience to carry out the assessment procedures 

probabilistic models require, and even if time and complexity were not prob- 

lems, the assumptions of independent repeated responses in the assessment make 

the results rather dubious. Further objection stems from the weakness of pro- 

babilistic models in guiding decisions. Model predictions or prescriptions 

in form of probabilities of preferences are too weak to be helpful in solving 

real decision problems. 

Difficulty in assessment and weakness in prediction and prescription 

are also limitations of semiorders (Luce, 1963) and interval orders (Fishburn. 

1970). While probabilistic models try to take intransitivities or changing 

-  - 
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preferences into account by building a theory of randotr preferences, these mo- 

dels formulate a weaker basis of consistency. Rather than requiring, as do all 

other utility models, the decision maker's preferences ana indifferences to be 

transitive, semiorders and interval orders allow intransitive indifferences 

and require only strict preferences to be transitive. According to these mo- 

dels preferences exist only if choice entities are sufficiently different in 

utility. Thus they allow indifferences between choice entities, evey if they 

actually have different utility numbers. 

Although these approaches to utility measurement could possibly be used 

as a theory of approximate measurement in decision analysis (see v. Winterfeldt, 

1975), no use has been made of semiorders and interval orders as of the present, 

presumably because assessment methods within these models are complicated, and 

oredictions and prescriptions are even weaker than those of pldin orderings. 

Also, interval and semiorder models have not yet been extended to more realis- 

tic choice entities than those which are simple single attribute, riskless, 

and time invariant in nature. 

Lexicographic models (see Fishburn, 1970, 1974c) apply to multi-aspect 

choice entities, and they have usually been interpreted as models for multi- 

attribute choice entities. Unlike most utility models, lexicographic models 

are non-compensatory, that is they do not trade-off one value aspect against 

another. Instead, they consider each value aspect individually and prefer- 

ences are determined solely on the basis of that value aspect. Where no pre- 

ference can be established, the next important value aspect is considered. 

Situations in which such a non-compensatory model is an appropriate represen- 

tation of the decision maker's preferences over multi-aspect choice entities 

are very rare. Although there is evidence that decision makers sometimes use 

lexicographic orderings as simplifying strategies to determine their prefer- 

ences (see Tversky, 1969), these strategies can seldom be justified as ra- 

tional models for decision making. Consequently, lexicographic models have 

found no applicatijn in decision analysis. 

This leaves us with a list of five model classes that will be discussed 

in more detail in this review: weak orders, differ?nce measurement, bisym- 

metric mpasurement, conjoint measurement, and expected utility measurement. 

. .■■■^J dUMIM  -  -■ 
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In addition, the teport will also omit some decision situations, namely dynamic 

decision situations, and group decisions. 

The reason for Irving out dynamic decision situations is very simple: 

no measurement model deals specifically with the dynamic nature of the decision 

environment. There exist dynamic programming models which use static expected 

utility measurement as inputs into their dynamic calculation'; (see Rapoport, 

1967, 1975), but no attempt has been made in the measurement literature to in- 

corporate the dynamic nature of the decision environment into utility measure- 

ment as such. 

Group decision models or models for social choice have enjoyed increas- 

ing attention by measurement theorists through the last few years. But their 

practical impact on the measurement of group utility functions in decisions 

analysis is still negligible. Although models for multiple affected individu- 

als have now reached the stage of application (see Kirkwood, 1972; Keeney and 

Kirkwood, 1973; Keeney, 1975; Keeney and Raiffa, 1975), measurement model« for 

multiple decision makers are still problematic. 

Social utility models deal with the following fundamental question: How 

can individual preferences (or individual rank orders, or individual utilities) 

be aggregated to a grouo utility function? Arrow's (1951) famous paradox 

claims that under some reasonable conditions, no  such aggregation rule exists. 

Since Arrow, several attempts have been made to cope with this problem. One 

involves changing some of Arrow's conditions in order to resolve the paradox. 

This literature is best described in Luce and Raiffa (1957) and, more recently, 

in Fishburn (1973b, 1974b). Other researchers looked at several "reasonable" 

aggregation rules (voting paradigms) to see how Arrow's paradox actually af- 

fects the outcomes (see Fishburn, 1974d) formulated as "voting paradoxes''. 

Rather than providing -- in the spirit of decision analysis -- formal tools 

to cope with the problem of integrating individual preferences or utilities, 

most of this research remains critical, full of paradoxes and criticisms of 

interpersonal utilities, etc. What is lacking are practical characterizations 

of group decision problems that say: If conditions a-d are fulfilled, this 

assessment procedure and that aggregation process is feasible. 

Recent research by Keeney and Kirkwood moved in this direction by re- 

interpreting conjoint measurement theory (Krantz, 1964; Luce and Tukey, 1964; 

•*"*•'-'-——"■-'      mi .^^^f^^/J/gti. 
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Krantz et al., »71) and multiattribute expected utility theory (Kirkwood, 

1972; Keeney and Raiffa, 1975) for group decision problems. However, these 

theories are more appropriate for decision problems in which the decision of 

an individual affects many tnan for actual group decision making problems. 

Often, one can think of a group decision making problem as a problem in which 

a supra decision maker (a term used by Keeney and Raiffi) is created that re- 

presents a number of decision makers. Such a supra .'rcision maker would then 

treat the problem as an individual decision making p' ublem in which the conse 

quences may affect many. This is obviously the sort of paraHigm to which our 

classification aspect 6 is addressee. These models will therefore be dis- 

cussed in detail later. A later report in this series will deal exclusively 

with the genuine problem of multiple decision makers. 

So much for the omissions of this report. We can now turn our atten- 

tion to the remaining five model classes as they apply to the remaining de- 
cision situations. 

> 
i : 

The main representations 

The 16 decision situations that remain to be discussed characterize the 

different types of choice entities that were described earlier: 

3a. single attributed vs. multiattributed choice entities; 

3b. riskless vs. risky choice entities; 

3c. time invariant vs. time variable choice entities; 

3d. choice entities that affect one individual vs. choice 

entities that affect many. 

These 16 cases vary from choice entities with no complicating aspects (single 

attributed, riskless, time invariant, choice entities that affect only one 

person) over choice entities with one complicating aspect (multiattributed or 

risky or time variable or many individuals affected) to the most complex choice 

entities that are multiattributed, risky, time variable, and irr-t affect many. 

Utility models exist for choice entities with no complicating aspect 

(Table 2), with one complicating aspect (Table 3), and with two complicating 

aspects (Table 4). In the case of two complicating aspects, utility models 

have been developed only for the combination of ,isky choice entities with 

. - - - . - . . 
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some other complicating aspect. 

Insert Tables 2-4 about here 

One could, of course, apply models designed for the less complex cases 

to more complex ones (e.g., weak order model to multiattributed, risky, and 

time variable choice entities) hy ignoring the additional complicating aspect. 

However, such an approach would lead to models that require extremely complex 

assessment taste. Alternatively, one could combine models for each single 

complicating aspect to an overall model (e.g., a combination of a conjoii.t 

msasurement model to deal with the multiattribute aspect, an expected utility 

model to deal with riskiness, and a weak order model to deal with cime vari- 

ability), but such an overall model may ignore interactions between complicat- 

ing aspects (see v. Winterfeldt and Fischer, 1975). Therefore, the further 

discussion will be restricted to the five main model classes. 

- weak order measurement, 

- difference measurement, 

- bisymmetric measurement, 

- conjoint measurement, 

- expected utility measurement 

as they apply to the 8 types of choice entities in Tables 2-4 . Since choice en- 

tities II-V and VI-VIII have similar structural properties (as suggested by their 

n-tuple representetion on pp. 10-11), the discussion will usually concentrate on 

the multiattribute case II and the multiattribute risky caseVI. Analogous model 

applications to the time variable cases (III and VII) and to the case in which 

multiple individuals are affected (V and VIII) will only be sketched. 

The five model classes will be discussed under the following topics: 

1. Which cases has the model been applied to? 

2. What are the main model assumptions? 

3. What is the model form? 

4. What are ;he formally justified assessment orocedures? 

5. What are some reasonable approxv "tion terfmiques? 

Tables 5 and 6 give a preview. 
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Table 2 

Models for choice entities that have no complicating aspect 

(The Roman numbers identify the type 
Of choice entity, tne Arabic numbers 
identify the specific model for that 
choice entity.) > 

Weak order 
(Krantz et al 1971) 

Difference and re.tip 
measurement (Supoes 
and Zinnes, 1963; 
Krantz et al., 1971) 

Bisymmetric measure- 
ment (Pfanzagl, 1968; 
Krantz et al., 1971) 
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Insert Tables 5 and 6 about here 

i 

Weak order measurement -- Weak order measurement has been applied to all 

cases in Tables 2-4 except for the cases of multiple affected individuals. For 

the risky choice entities, weak orders have been combined with the expected 

utility assumption to model the non-risk aspect of preferences (i.e., multi- 

attributed or time variable). 

The main model assumption behind weak orders is transitivity of prefer- 

ences. If the set of choice entities is finite (or even countably infinite), 

transitivity is necessary and sufficient to prove that a rule (function) can be 

created that assigns numbers to valuable objects such that the more preferred 

object has a higher number. In uncountably infinite sets, things become a lit- 

tle more difficult, and some technical assumptions have to be added. The for- 

mal weak order representation is: 

Weak order representation 

a>b 

if and only if 

u(a) ^ u(b) 

where a and b are choice entities, "a ^ b" means "b Is not preferred to a", u 

is the rule or function by which numbers are assigned to the choice entities, 

and u(a) is the utility of a. 

Scaling within the weak order model can take 2 forms: 

1. Rank ordering; 

2. Indifference curve construction. 

The first procedure is as simple as measurement can get. In the finite case, 

the assessor simply rank orders all valuable alternatives, and the rank order 

number is the utility of a valuable object. Procedures for the infinite case 
(countable or not) are somewhat more complicated, but they are also based on 

rankings. The second procedure is applicable in cases where the choice enti- 

ties have various value aspects (any of the cases II-VII fall under this head- 

ing).    If the weak order assumption holds, one can construct indifference 
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curves (or less graphically, classes of indifferent choice entities), and in- 

dex such curves by an appropriate numeraire (Raiffa, 1969). These procedures 

a.'e often quite helpful in decision analysis and some researchers and deci- 

sion analysts have tried to exploit the weak order assumption alone to con- 

struct utility function in complex decision problems (3oyd, 1970; Pollard, 

1969). 

If one wants to make simplifying assumptions (such as convexity of in- 

difference curves or even linearity of indifference curves) this assessment 

can be simplified substantially. Sequential application of trade-off proce- 

dures can also be used to make the task of constructing indifferences or of 

comparing choice entities easier (Raiffa, 1969; Keeney and Raiffa, 1975; v. 

Winterfeldt and Fischer, 1975). Boyd (1970) exploited some of these assump- 

tions to create an interactive technique that finds the best element in a set 

of choice entities on the basis of local trade-off ratios or substitution 

rates. MacCrimmon and Toda (1969) and MacCrimmon and Siu (1974) describe in- 

teractive techniques to approximate indifference curves. 

There is one rather peculiar application of weak order measurement in 

connection with some much stronger forms of measurement in the risky case III. 

Several strong theories measure the "riskiness" of uncertain choice entities 

(see Pollatsek and Tversky, 1970; and Huang, 1971). This measurement of risk 

in itself, however, does not produce a utility function, but rather a "risk" 

function that says nothing about preferences. However, a special form of 

weak order measurement can be applied to measure utility as a function of the 

riskiness of a gamble and some other aspect of gambles, such as their expected 

value. In this vein. Coombs (for an excellent summary, see Coombs, 1972) has 

developed portfolio theory, that can be based on measurement of risk to create 

a weak order of preferences over gambles varying in riskiness and expected 

value. 

The substantive relation in the risk measurement theories is that an un- 

uncertain choice entity is "perceived to be more risky" than another one. 

Pollatsek and Tversky (1970) developed a theory of risk measurement that is 

not unlike Holder's theory of extensive length measurement. Unlike most util- 

ity theories, their theory uses a direct manipulation of gambles, namely that 
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of convolution (i.e., playing two gambles simultaneously) to define an opera- 

tion on gambles. This operation is then treated just like the concatenation 

operation in length measurement that combines two rods. The main assumption 

in Pollatsek and Tversky's theory is that convoluting two gambles that stand 

in a certain riskiness relation does not change that relation, if they are 

both convoluted with the same gamble. For example, if gamble a is more risky 

than gamble b, and a and b are both played simultaneously with c, then the mix- 

ture a and^ c should still be more risky than the mixture b and^ c. Together 

with the usual weak order assumption (this time for the riskiness relation) 

and appropriate solvability and archimedean axioms the following risk model 

is implied: 

Extensive risk measurement 

a ^ b 

if and only if 

R(a)> R(b) 

and R(a o b) = R(a) + R(b) 

where a and b are two risky choice entities "a ^ b" stands for "b is not per- 

ceived to be riskier than a", R is the risk function, and " o" stands for the 

convolution operation. 

An alternative to this theory is presented by Huang (1971), who essen- 

tially used the v. Neumann and Morgenstern axioms (see p.39) to prove that the 

expected risk of two gambles preserves the preferences among gambles with ris- 

ky outcomes. Using the riskiness relation as in Pollatsek and Tversky's the- 

ory and the v. Neumann and Morgenstern axioms applied to that relation, the 

following risk representation can be proven: 

Expected risk measurement 

a^ b 

if and only if 

R(a)>R(b) 

and R(apb) = pR(a) + (l-p)R(b) 

where all symbols have the same meaning as above except that the convolution 

of gambles is substituted by the symbol apb that denotes a supra gamble which 

_.,. m^^m^mmmimmmm 
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yields with probability p the gamble a as an outcome, with probability 1-p the 

gamble b. 

To make either of the risk theories a utility theory, one would have to 

define a function that links perceived risk (numerically measured in R) to pre- 

ferences (numerically LO be measured in utilities). That is, one wants to find 

a function h such that 

a^ b 

if and only if 

u(a) ? u(b) 

where u(a) ■ h(R(a)) 

Some restrictions for such a weak order are spelled out in Coombs' portfolio 

theory (Coombs, 1972). 

Construction of the function R depends on the measurement model (ex- 

tensive or expected risk model).  In extensive risk measurement one would use 

standard sequence procedures, in which a sequence of lotteries is generated 

by convoluting gambles with identical risks. Arbitrarily assigning a risk of 

1 to one gamble and convoluting it with a gamble that has the same riskiness, 

one would generate a gamble that--by the measurement representation—has a 

risk of 2. Convoluting this gamble again with a gamble that has equal riski- 

ness as the unit gamble, one would generate a gamble with a risk of 3, etc. 

In expected risk measurement, risk would be measured by matching the risk of 

a gamble b that has riskiness between two gambles a and c with a supra- 

gamble ape by varying the probability p. p then is an index of the riski- 

ness of a. (This "indifference lottery procedure" will later be explained 

in more detail for preference judgments in expected utility theory.) To con- 

struct a utility function over lisky choice entities one can then use any of 

the described weak order procedures to generate a rank order of indifference 

classes of risky choice entities that are matched in riskiness (have equal R). 

The four remaining utility models (difference, bisymmetric, conjoint, 

and expected utility measurement) are aV[ special cases of the weak order mo- 

del. Without explicit statement, the weak order model will from now on be 

assumed to be valid. 

• 
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filffy^f ^tUfgy - Difference measurement is one important way 
to strengthen utility measurement beyond weak orders. In addition to simple 
preferences among choice entities difference models also compare the relative 
ifference of the strength of preference between pairs of choice entities 

A eo to judgments such as "a is preferred to b" are judgments of the form 
the deference in strength of preference between a and b is larger than that 

etween c and d". Judgments of this type can be rather difficult, particular- 
ly ^choice entities are complex. Therefore - although dif/erence measure- 
ment is. in principle, applicable to all cases in Tables 2-4 - it is reason- 
able to restrict Its discussion to the simplest case I. 

Difference measurement is the first modeling approach that uses "opera- 
te surrogates". Note thlt there were no operations whatsoever involved in 
weak order measurement. In difference measurement one wants to create an 

operation "addition" of utility differences between choice objects. Somehow, 
one would like to find two choice entities x and y such that their utility 
difference equals the "sum" of the utility differences between a and b and c 

and d. If b=c. tim  there appears to be an obvious way of defining "addition 
of judged utility iifferences"; the sum of utility differences between a and 
b on one hand and b and c on the other is the judged utility difference be- 
tween a and c. This idea is really the heart of the "invented" operation 
The rest is generalizing this idea to non-adjoining cases. 

For example, take the problem of quantifying the degree of displeasure 
from driving to work as a function of driving time. Obviously, time itself 

is not a very good measu-e of that utility cost (or disutility). The extra 
five minutes added to the one hour ride may create less discomfort than the 
extra five minutes added to the usual 10 minutes ride. That is. the differ- 
ence in utility between 65 minutes and 60 minutes is smaller than that be- 

tween 15 and 10 minutes. Similarly, all differences in time intervals could 

Although there are several types of difference measurement models 'such a. 
HLPi0iSJt1Ve ^l'  the Hebraic model, the absolute model and the cSnd 
t onally connected models; for details, see Krantz et al  1971) ZmJrT 
discuss difference measurement here by example Sf the else  Jha^is no J1 
typica for utility theory, the algebraic model. T is models I so eLv 
alent to a ratio measurement model. 0 equiv' 
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be compared. The operation would then take the following form: the differ- 

ence in displeasure between ^riving 5 and 10 minutes, "added to" the differ- 

ence between driving 10 and 15 minutes, "is equal to" the difference in dis- 

pleasure between driving 5 and 15 minutes. 

The fundamental assumption of difference measurement is that this oper- 

ation behaves nicely, meaning that adding the same amount of difference to 

two already established degrees of differences does not alter the relation 

between the original differences. This is a monotonicity assumption not un- 

like the usual cancellation property in adding and multiplying numbers. Such 

independence assumptions are the basis of any higher structured measurement 

theory. This monotonicity assumption, together with an appropriate sign re- 

versal assumption (if the difference between a and b is greater than that be- 

tween c and d, then the reverse must be true for the differences between b 

and a and d and c respectively), and solvability and archimedean axioms pro- 

duces the following model form: 

(Algebraic) difference measurement 

a^b 

if and only if 

u(a)> u(b) 

and 
• 

ab ^ cd 

if and only if 

u(a)-u(b)^ u(c)-u(d) 

where the upper part is the usual weak order representation, and the lower 

part reads as follows: "ab^ cd" means "the judged difference between c and 

d is not greater than the difference between a and b". 

The formally justified procedure to assess utility in the framework of 

difference measurement is to lay out a sequence of choice entities that have 

equal utility differences and that are connected to one another. This is a 

type of construction procedure which will come up recurrently in the discus- 

sion of utility models and is usually caTed "standard sequence" because it 

is a systematic sequence of standard choice entities that are equally spaced 

mtumm li'Mt  fMüfcilüiiiiMü 
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in utility.  In the example of driving from and to work, a standard sequence 

may be constructed by beginning with a small time step from 0 to 5 minutes, 

and then asking which increase in time from 5 to x would create as much addi- 

tional discomfort as the increase from 0 to 5 , followed by the same question 

from x to z, etc. This gives exact utilities for the points which are members 

of the standard sequence, and approximate utilities for the elements in be- 

tween. Defining each utility difference to be equal to 1, and the utility of 

some arbitrary point equal to 0, the utilities of each point in the standard 

sequence can thus be infeued. The utilities of the intermediate points can 

be approximated through interpolation, or, alternatively through a finer gra- 

ded standard sequence (e.g., one that would start with a smaller initial dif- 

ference). 

So much for the formally justified assessment technique. There are nu- 

merous scaling procedures which are good approximations of this procedure, not 

only in the sense that they will yield cinverging utility functions, but also 

in the sense that they involve cognitive processes that are similar to those 

in standard sequences. A method that closely resembles standard sequences is 

the method of equal appearing intervals (Torgerson, 1958). In this method, 

two extreme choice entities are giv^n to the assessor (the most and the least 

preferred one) and he is asked to find a number of intermediate choice enti- 

ties that subdivide the set into elements of equally appearing utility differ- 

ences. The method of bisection (Torgerson, 1958; Pfanzagl, 1968) structures 

this procedure more firmly. In the bisection method, the assessor is asked 

to determine a choice entity that is equally far in utility from two speci- 

fied elements. Further subdivision leads to a finely graded scale. 

In contrast to these indirect scaling methods, other approximation meth- 

ods involve direct numerical assessment of choice alternatives. One simple 

way is to rate utilities directly on a numerical scale (ranging from say 0 

to 100). This kind of procedure has been advocated by Edwards (1971) for 

utility assessment in the multiattribute context. Another procedure requires 

the decision maker to make direct ratio judgments about the utility (or util- 

ity difference) for pairs of choice entries. This procedure has been orig- 

inally proposed by Stevens (1936) in psychophysical measurement and it was 
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applied to assess the utility for money by Galanter (1962). In a reversal 

of these magnitude estimation tasks, one could also give numbers to the 

assessor and ask him to find choice entities that match these numbers (e.g., 

find a choice entity that he would consider twice as valuable as a standard). 

Stevens (19'/'5) calls these inverse methods magnitude production methods. 

Bisymmetric measurement* -- Bisymmetric measurement formalizes the 

ideas represented in the procedure of bisection, described before, to I mea- 

surement theory formally justifying that method. The idea is to measure 

utility by bisecting intervals of choice entities (the word interval is used 

here rather loosely) into two equal parts, such that the utility differences 

between the bisection point and the two extremes are .qual. Again, bisection 

theory is in principle applicable to all cases in Tables 2-4, but it can rea- 

sonably be applied only in simple cases, since the judgmental task involved 

in bisection may become very difficult if the choice entities are complex. 

We will first discuss the application of bisection theory to case I, and then 

s'"nch how the same ideas have been applied to case II by Fishburn (1975), 

whu used suitable independence assumptions to simplify the bisacti-«n task. 

The method of bisection itself defines the "operation surrogate"; the 

operation on two choice entities a and b is defined by finding an element c 

that bisects a and b. One wants, naturally, the property hat c has the aver- 

age utility of a and b in the numerical representation. Thl qualitative as- 

sumptions behind bisymmetric measurement are a little more complicated to spell 

out verbally than the ones for difference measurement. Again, as in differ- 

ence structures, one wants the bisymmetry operation to behave nicely, for ex- 

ample, midpoints between a and b and between a1 and b should preserve the pre- 

ference order that existed between ? and a'. (This is formally expressed as 

a monotonicity axiom in the Krantz et al., 1971, treatment of bisymmetric 

structures.) In utility measurement at least, one also wants the bisection 

bisymmetric measurement has many different applications, among others, it 
applies to the measurement of utilities for two outcome gambles. The dis- 
cussion of bisyiimetric measurement hero is restricted to the interpretation 
of the bisymmetry operation as bisection of utility intervals. 

,-^... ..»-.,■.....,.  __ ..■—^■...-.^.. . 

 —-'■— 

■ 



mm    i u   ■-■     •UI-III M   ii >i imim^mmmmj* .^,PJ*UlüLi ^PVpfnvüP"^1^' i1'  ll19I'' 

-31- 

point of two choice entities a and b to be equal to that of b and a, and the 

midpoint between a and itself should be a.    (These assumptions are called com- 

mutativity and idempotency.)   Adding axioms that midponts of midpoints be- 

have nicely, too (the so-called bisymnetry assumption) and using possible as- 

sociativity assumptions, one gets the following bisymmftric representation: 

Bisymmetric measurement 

(applied to bisection) 

a >"- b if and only if 

u(a) > u(b) where 

u(a c b) = ^u(a) + ?'2u(b) 

where "o" stands for the bisection operation, and all  other symbols have the 

usual meaning. 

As mentioned before, th   assessment procedure in bisymmetric measure- 

ment as discussed here would oe of the bisection type described in the differ- 

ence measurement sections as an approximation method.    Also, all approximation 

methods di-.cussed in that section should be good approximations for bisection 

measurement. 

Fishburn (1975) applied bisymmetric measurement to cases more complex 

than case I.    His motivation was to find appropriate assumptions that would 

guarantee that a bisymmetric utility function defined over these complex 

choice entities could be assessed as an aggregate of simpler bisymmetric func- 

tions defined only over some aspects of the choice entities.    As an example, 

we will discuss here the bisection application of Fishburn's theory to the 

riskless multiattributed case II  in Table 3. 

Fishburn's models start exactly with the bisymmetric measurement model 

defined above.    He then defines additional  independence assumptions on prefer- 

ence orders and bisection operations in order for the bisymmetric function to 

decompose into single attribute functions.    Fishburn's presentation of these 

assumptions  is quite mathematical, but--in essence--they require that 

|,    some conditional preference orders are unaffected by the attri- 

bute values on which they are conditioned; 

2.    some conditional biseccion operations are unaffected by the 

attribute values on which they are conditioned. 

-   - -   - 
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For example, if one would construct a utility function in one attribute us- 
ing the bisection procedure, the shape of that function cnould not depend on 
the values at which the other attribute values were held fixed throughout 

that construction. These and similar assumptions produce the following four 
models, discussed -- in a slightly different form -- in Fishburn: 

Bjsymtttetric decomposition models 

i> b 
if and only if 

u(a)> u(b) 
where (depending on independence assumptions)*: 

1. Multilinear l:   "(>> = j;, (V*. r.V^fj (aj) 

i<j<k   ^ 1    J    J    k    k 

r\ 

2. Multilinear 2:    u(a) =   ^ u.(a.) + z c..u.(a.)u .(a .) 
1=1 1 1  i<i ^ 1 T J J 

+ i<JVijkuk(ai)uj(a
JKK)- 

n 
+ n c 

i*l%z...*W 

*The model forms presented here generalize Fishburn's representations to n 
attn utes Fishburn's proof included only two attributes 2^^°^ 
few theoretical drficulties in stepping to the n-dimensional LiTpin 
burn's proof, do not include the multilinear form (2)! w ?ch is presenied 
here because of Us similarity to decomposable expected utililj mea de- 
ment, and because It could easily be derived in the bisymmetric context. 

-^ ■■—  ..--^ —■"   m*m^mmäm 
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3. Multiplicative:    u(a) = a) ■ n u.(a.) 
i=l 1 1 

4. Additive: u(a) = t   u.(a.) 
i = l i i 

Here a and b are riskless muUiattributed choice entities of the type described 

for case II. ai, b. are their respective values in attribute i. Note that the 

two multilinear forms include higher order interaction terms, which are either 

composed of the additive terms (2) or of independent terms (1). Practical as- 

signment of utilities to choice entities within this framework proceeds as fol- 

lows: first conditional bisection utility functions are constructed in each 

attribute jsing the bisection procedure described above. These functions are 

then interlocked (consistently scaled) by observing some additional indiffer- 

ences between muUiattributed choice entities, and aggregated according to one 

of the rules defined above, which depends on the independence assumptions pos- 

tulated. 

Conjoint measurement. - Conjoint measurement theory as conceived in 1964 by 

Luce and Tukey and Krantz is probably the most prominent psychological measure- 

ment theory. So far its applications to utility theory are very limited, but 

it has I large number of potential application areas (conjoint measurement mo- 

dels can be found in 6 out of the 3 boxes in Tables 2-4). Conjoint mea- 

surement models are especially suitable for measuring utilities for choice en- 

tities that vary on several value relevant attributes, that have multiple af- 

fected individuals, or time variable consequences. Conjoint measurement has 

also been applied to choices among gambles as a special version of expected 

utility theory (Krantz and Luce, .1971, see also p.41). In the following, we 

will explain conjoint measurement via the example of measuring multiattribute 

riskless choice entities, but by appropriate substitutions for the word "at- 

tribute" (e.g., by "time periods", or by "individuals") the use of conjoint 

measurement for these other cases can be discovered. 

Conjoint measurement constructs a utility function over multiattribute 

choice entities that decomposes into single attribute utility functions. The 

mäum «MM 
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type of decomposition and the rule by which these single attribute functions 

are aggregated depends on crucial  independence assumptions in the model.    So 

far, only "simp1    polynomial" combination rules to aggregate these single 

attribute functions have been axiomatized.    The most prominent ones are the 

additive ard the multiplicative rules.    Other rules, not typically considered 

in decision analytic contexts, are distributive rules and dual distributive 

rules (see Krantz et al.,  1971; Krantz and Tversky,  i971).    Since the addi- 

tive rule is by far the most attractive one for applied modeling purposes, 

(and since the multiplicative rule is -- in most cases -- a special case) the 

-iiscussion of conjoint measurement will concentrate on this rule. 

Conjoint measurement begins with a weak order defined over the set of 

choice entities.    It then creates an "operation surrogate" by defining a 

choice entity c that expresses the combined effects of two other choice enti- 

ties, a and b, together.    This operation surrogate is the subjective equiva- 

lent of adding utilities. 

The independence properties required to prove the additive conjoint mea- 

surement representation are usually called preferential  independence.    Prefer- 

ential  independence requires preferences over choice entities that very only 

in some subsets of the attributes to be independent of constant völues in the 

other attributes, no matter what the level of these constant value?.    Another 

way of saying this is that trade-offs in some subset of attributes are the 

same, no matter on what constant values in the remaining attributes these 

trade-offs are conditioned.    Yet another way of stating this requirement is  by 

referring to the actual construction procedure.    Utility function constructed 

while values in some attributes are held fixed should have a shape that is inde- 

pendent of that fixed value.    In particular, any of the single attribute util- 

ity functions should not depend on these conditional values.    For example, in 

evaluating sites for a nuclear power plant, the utility cost function over the 

attribute "population density in a twenty mile radius" is probably independent 

of, say, "cost of transmission lines" for that particular site.    Transmission 

lines costs and costs for   access   transportation are probably jointly prefer- 

entially independent of population density, etc.    For some counterexamples, 

see v. Winterfeldt and Fischer (1975). 

  m***mmimmtm*uim 
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Conjolnt measurement (simple polynomials) 

a £  b 

if and only if 

u(a) ^ u(b) 

where (depending on independence assumptions): 

1. Multiplicative model: u(a) = UjUJ-u^aJ-u^aJ 

2. Distributive model: u(a) = y^UJ^U«)*4 M9?) 

3. Dual distributive model: u(a) ■ u^a,) [ uJaJ + u3(a3) ] . Here, 

a - (a., a«, a-). 

Construction of the recurring utility functions u. in these conjoint 

measurement models is somewhat similar to the standard sequence approach in 

difference measurement. This procedure has occasionally been called "dual 

standard sequence procedure" (Krantz, 1964), or "saw tooth procedure" (Fish- 

burn, 1967), or "lock and step procejure" (Keeney and Raiffa, 1975). It 

uses indifference judgment and constructs matches between choice entities 

that vary only on two attributes (events, time-periods, individuals) at a 

time. A unit step In attribute 1 is used to lay off a sequence of steps in 

the other attribute with the first attribute held at a fixed level. This 

insures that the elements in that sequence space out the attribute in equal 

utility steps. 

For example, when evaluating an apartment on the two attributes, rent 

and driving distance, one considers questions like the following: how much 

more driving time are you willing to add to, say, 5 minutes, for a rent de- 

crease of from $210 to $200? If the answer is 10 minutes, one continues by 

asking: how much driving time are you willing to a 'd to 15 minutes for a 

rent decrease of from $210 to $200? If the answer is 13, one can infer that 

the increase in utility cost from 15 minutes to 28 minutes is equal to the 

increase from 5 to 15 minutes driving time. This way a good number of points 

of the utility function cen be assessed and a curve can be smoothed through 

these points. Theoretically, the spacing of the points in the single attri- 

bute can be made arbitrarily fine in order to increase the goodness of approx- 

imation of the whole utility function. One would just use a smaller unit in 

mm  .^^m mM -*— - - --. • ——_--» 
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the comparison attribute. Practically, however, if one decreases this unit, 

certain discrimination problems may arise. For example, if one would try to 

lay off a standard sequence over the attrib-te "driving time" agamst a unit 

step in the attribute "rent" from $201 to $200. the assessor may be hard 

pressed to come up with reasonable answers. 

After the construction of the single attribute utility functions, one 

still has to make sure that the different functions ui  have comparable units. 

TM« can be done by determining indifferent choice entities whose indiffer- 

ence is not already implied by the previous construction, and by solving the 
resulting equalities. 

The construction procedure of dual standard sequences resembles that of 

bisection and that of difference sequences, and similar judgmental processes 

are required to make the indifference judgments which create these sequences 

One can expect closely resembling shapes of the utility functions using any 

of the three procedures for assessing utility functions in a conjoint measure- 

ment context, although, theoretically speaking, only dual standard sequences 

are appropriate. A special problem arises when one uses bisection or differ- 

ence judgments, or any of their approximations (rating scales, method of 

equal appearing intervals, etc.) Lo approximate single attribute utility 

functions in the conjoint measurement context. These functions are construc- 

ted disregarding any other attributes, and therefore will have to be careful- 

ly matched in their units to ensure comparability. One could use the formally 

"clean" solution of observing a number of independent complex indifferences, 

Md solve the resulting equalities, just as in constructing utility functions 

with standard sequences. An alternative is to assess these scaling factors 

or weights directly by a magnitude eitimation procedures (direct rating of 

weights between 0 and 100; distributing 1.00 importance weights points among 

the attributes, etc.). This procedure has been used by Huber et al. (1971). 

and v. Winterfeldt and Edwards (1973). Edwards (1971) describes a special 

version of magnitude estimation for importance weights in which the decision 

maker assesses the ratios of the weights for two attributes at a time. From 

these, all weights can be inferred. Since scaling factors have the property 

of a ratio scale, this appears to be a reasonable procedure. The problem 
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with such explicit numerical weighting schemes is that they do not directly 

focus on comparisons of utility differences and thus may depend on the rela- 

tive ranges of the values in the single attributes. But this problem can 

be avoided through a careful assessment of these relative ranges and/or by 

making the assessor aware of that range (see Keeney and Raiffa, 1975, for a 

discussion of this point in a slightly different context). 

Expected utility theory, - Expected utility theory could be called the 

theoretical cornerstone of decision analysis. Although some may consider 

decision analysis simply an application of expected utility theory, the pre- 

vious sections should have made clear that there are many concepts of utility 

which could be applied in a formal analysis of decision problems. 

Expected utility theory has been applied to all risky cases in Tables 

2-4. Although there are a large number of expected utility axiomatizations, 

there appear to be only four basically different approaches to measure the 

utility of risky choice entities with expectation models.* 

These are: 

la. V. Neumann and Morgenstern's (1947) expected utility theory 

with numerical probabilities; 

Savage's (1954) subjective expected utility theory; 

Davidson, Suppes, and Siegel's (1957) finite utility theory 

for equally likely events; 

Luce and Krantz's (1971) conditional expected utility theory. 

Let us, however, first state the similarities among the four approaches 

and then discuss the differences. First, EU-theories .11 make-in one ver- 

sion or another-three crucial assumptions about preferences among risky 

choice entities. The first is the common weak order assumption, which was 

discussed recurrently in previous sections.  It says that the decision 

maker can order risky alternatives transitively. The second belongs to the 

class of independence assumptions mentioned earlier. It takes different forms 

lb, 

1c. 

Id. 

A fifth possTbility, not mcluded here is an application of bisymmetric mea- 
surement to nsky options in which the bisymmefy operation a /b wou d be 

968)     ^    ^ ' if 0ne eVent 0CCUrS' b otherwise". (see Pfanzagl 
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in the four approaches, but it is commonly known as the sure thing axiom. The 

sure thing axiom requires that preferences among risky alternatives should be 

inHependent of events in which these alternatives have common outcomes. This 

assumption justifies the additive form of the expected utility model, just as 

preferential independence justified the additive form in conjoint measurement. 

The final assumption belongs to the class of "technical" axioms, ana it is a 

combination of both a solvability condition and an archimedean condition. It 

reqinres that no choice entity is infinitely desirable or undesirable, and 

that there are certainty equivalents for all possible uncertain entities (i.e., 

that the decision maker is able to find a riskless entity that is just as val- 

uable to him as the risky entity). 

If these conditions are met, a utility function over risky options can 

be constructed that has the following properties: 

Expected utility measurement 

a> b 

if and only if 

u(a) ^ u(b) 

ai u UM i y  ii 

where u(a) = l  p(E.)u(a.) 
j = l  J   J 

Here a is a risky choice entity (a gamble) whose outcome is a- (e.g., a certain 

$-amount) if event E- occurs. p(Ei) is the numerical probability of event E.. 

All four approaches end up with some measurement representation similar 

to the one above. The specific form and interpretation, as well as the theo- 

retically feasible construction methods differ, however. 

v. Neumann and Morgenstern's theory is the classic expected utility the- 

ory. Its main restriction is the assumption that numerical probabilities are 

known for all events. These numerical probabilities play, in some sense, the 

role of an operation surrogate in their theory, "apb" (i.e., the p-operation 

"put a and b together") would be interpreted as "with probability p you will 

receive a, with probability 1-p you will receive b". Since probabilities are 

assumed to be known, utilities can be constructed within the v. Neumann and 

Morgenstern framev. CK by observing indifferences between lotteries and sure 

.^ggmimg.       mt^ltl^umit^IIIIIBimillll^ _  ,„ .....■.„-—^. -^ 
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outcomes. If a. b, c are riskless oiitcomes, and (ape) is the gamble that 

y1elds a with probability p and c with probability 1-p. and if b is indiffer- 

ent to (ape), then p is a measure of the utility of b relative to the utili- 

ties of a and c. By arbitrarily assigning utility values of 0 and 1 to two 

choice entities, such indifferences imply equations through the expected util- 

ity representation that can be solved for the unknown utilities. For example, 

if the utilities in the above case were 1 for a and 0 for c. then the expect-' 

ed utility representation would imply that the utility of b is p. 

Indifferences can be observed eit.ier by varying the probability p in 

(ape) and holding b fixed; or by fixing p and varying b. If the choice enti- 

ties have some numerical description (such as units of a cormiodity). it is 

often sufficient to determine the utilities for only a few poir's and approxi- 

mate the utilities for intermediate points by interpolation. This general 

type of utility construction through indifference lotteries with known proba- 

bilities is probably the wst common procedure in decision analysis-although, 

as this report demonstrates, it is by far not the only one. 

The main problem with v. Neumann and Morgen stern's expected utility mea- 

surement is the assumption that probabilities of events are known. Savage 

overcame that problem in an ingenious way. In essence, he combined earlier 

theories of subjective probability measurement (Koopman. 1940) and v. Neumann 

and Morgenstern's theory. All his assumptions are expressed in form of pre- 

ferences among uncertain alternatives which are described as a set of outcomes 

ai to be received conditional on the occurrence of a particular event E.. No 

numerical probability is assumed for these events. Using these preferences. 

Savage constructed an induced relation among events, which is interpreted as 

the relation "more likely". Then he made use of the fact that the proba- 

bility of events can be measured not unlike length in an extensive measure- 

ment model (see Koopman, 1940). Events can be compared (with the "more like- 

ly" relation) just as rods can (by the "longer" relation). An operation also 

can be defined for events, nameiy the union of two mutually exclusive events 

(just like two rods can be connected). If the independence assumption holds, 

that the ielation among two events is preserved when both are united with a 

third event, then one can show that a numerical probability representation 

M^fr ■ -, 
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exists. Savage's ingenious idea was to PxnroQc ^-^  • A 
**m  fh« • ^  , express tnut independence assumotions the ,„duced ^ ,ike,y„ relation .n fonn of   e ^  s 

r.:: „;o:truct a ^umcrica, ^"^ ^ -»• • * ^ ^1 
to „ake Use of tkl. „u.encal probability fn proving the expected utility the- 

orem ,„ essentialiy the sam «y as v. Neo^nn and Morgenstern did 

To construct utilities in this context, one therefore has to'first con- 

struct probab,! Hies, and then use the v. Neu^nn and Morgenstern procl 

oZZluT  ^ COnStrUCt UtimieS- The f0™ä^ ^- ^trut „ 
1:" T eVentS 1S ^ "" 0f a S^ s***™.  that com- 
ar  the un,on of .any equaliy ,ike,y events with the event to be «asured. 

If the un.on ot n of these equally likely events is "equally likely" as a cer- 

tam event, ahd the union of ■ of these events is "equally likely" as the un- 
known event, then the unknown event has a subjective probability of ü 

Davidson. Suppes. and Siegel (ig57) went yet another route in modeling 

expected utility theory. Their theory resembles closely the difference mea- 

surement that has been described before. In essence tbey built a difference 

structure using equally likely events by defining the "difference» between 

choice entities a and c to be eq.al to that between b andd if a gamble that 

yields with equal likelihood a or b is indifferent to a gamble that yields 

with equal likelihood c or d. (The meaning of this definition can easily be 

inferred by using the expected utility representation.) Then they formulated 

axioms on the preferences among gambles with equally likely events that allow 

identification of a difference structure. Construction of the utility function 

resets that of difference measurement, a sequence of indifferent gambles 

with equally likely outcomes is created that lay off a sequence of outcomes 

with equal utility differences. Note, however, that utility "difference" has 

a different meaning here than in the direct difference measurement. 

Luce and Krantz used yet another measurement framework to construct an 

expected utility theory. They applied conjoint measurement theory to evalu- 

ate the utility of risky choice entities. Their motivation was to get around 

a property of Savage's model which lies in the description of the choice en- 

tities as acts that produce different consequences given the same set of 

events. This view of the choice entity is best characterized by the usual 

■ *■ ■-■-      ■ .-—^-ia«^. .^iiufc-.-^-.^.-..-,...  -      , 'iiiiiiM<i>1 MI«irtMliri<illllil*^mli    limn ^«1 J 
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description of the decision problem under uncertainty as a payoff matrix, a 

matrix in which ear,." row is an act, each column is an event, and each matrix 

entry is an outcome to be received if an act row is selected and an event 

column occurs. This representation implies that no matter what an, is select- 

ed, the decision maker will always face the same uncertainties. Luce and 

Krantz point out that few problems are of this kind (although most problems 

can be defined into that format), and that it is often more convenient and 

sometimes unavoidable to formulate the problem in terms of conditional acts, 

i.e., decisions that are conditional in the sense that by choosing them, one 

is restricted to some subset of all events bearing on the decision problem. 

Luce and Kraitz then ba.ically create a conjoint measurement system in which 

they measure the utility of these conditional acts given the restriction on 

the sets of events. Besides the usual preferential independence assumptions 

which only guarantee the addioivity part of the resulting expectation model, 

they make assumptions that guarantee that the conditional utility functions are 

differing only in units. This a:sumption is spelled Out in Luce and Krantz, 

and basically requires a standard sequen-e laid off conditional on one event 

to be a standard sequence in any other event too. 

The formally justified construction of the utility of conditional decisions 

follows the pattern sketched in the discussion of conjoint measurement. Standard 

sequences are built conditioial on each event to construct the conditional util- 

ity functions. Probabilities are inferred from the comparison of the units of 

these standard sequences. 

In practice, utility functions are, of course, not constructed by using 

difference equations, standard sequences of equally spaced outcomes, or standard 

sequences in conditional events. The most common procedure is to numerically 

estimate probabilities or probability distributions of risky alternatives, and 

then to use indifference lottery procedures to construct utilities. These con- 

struction procedures have charged little, if any, from the theoretical frame- 

work v. Neumann and Morgenstern suggested, although the more- recent models ask 

for quite different procedures. Strictly speaking, these separate assessments 

of numerical probability and utility are approximation methods to construct util- 

ity functions in the framework of Savage, or Luce and Krantz. 

1 

-- 
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We turn now our attention to the cases VI, VII and VIII, in whi^h vari- 

ous special forms of expected utility theory have been applied. There are two 

ways in which expected utility theory can be used to measure utility in these 

cases. Both assume an expected utility representation over the basic choice 

entities (risky and multiattributed, risky and time variable, or risky and 

multiple individuals affected). The first approach uses some riskless assump- 

tions such as weak order, convexity of indifference curves, preferential in- 

dependence, etc., to construct a riskless utility function. (The literature 

often calls such a function "value function" or "ordinal utility function".) 

Then a function h is constructed that transforms the riskless function u into 

a risky utility function u' that follows the expected utility principle. These 

are the models 1 and 2 in the multiattribute and the time variable cases VI 

and VII. In the multiattribute case one may also consider a riskless bisym- 

metric utility function that is transformed into a risky function. (Models 

3a-d in case VI). None of these types of models has been considered yet for 

the case VIII in which many individuals are affected by a decision. 

As an example of this approach, consider tk :del 2a in case VI, the 

additive conjoint measurement expected utility model,. If preferential inde- 

pendence is satisfied, a riskless utility function u can be assessed that is 

of the form 

n 
u(a) = z uAa.) 

i = l 1 1 

where the a.'s are values of £ in the attribute i The construction of this 

utility function would use dual standard sequences or appropriate approxima- 

tion techniques. Then risky utilities for various points of that utility 

function can be assessed using standard lottery procedures to generate the 

transform h that gives 

u'd) = h(u(a)). 

If the a.'s themselves are uncertain, that is if one receives the multiattri- 

buted outcome a^ conditional on the occurrence of an uncertain event E-, the 
J J 

expected value of u': 
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i = l     J :I j = l     J i = l 1    1J 

preserves the order of preferences among these uncertain and multiattributed 

choice entities. 

The second approach to modeling risky multiattributed (time variable, 

multiple individuals) preferences is labelled "expected utility decomposition 

models". These models make independence assumptions about preferences among 

risky choice entities beyond just the simple EU-model. Given these assumptions 

the risky utility function of complex choice entities (risky consumption 

streams, risky multiattributed objects, risky decisions that affect many) can 

be decomposed into utility functions of single attributes, time periods or in- 

dividuals. 

These single attribute utility functions are then aggregated according to 

some rule that depends on the types of independence assumptions made. Since 

these rules are formally identical for cases VI, VII, and VIII,only the multi- 

attribute case will be discussed here in detail. The four most common model 

forms are very similar to the bisymmetric decomposition models (but note that 

in bisymmetric mt^sjrement nothing guarantees that the resulting utility func- 

tion will be appropriate for taking expectations): 

> 

4a.    Multilinear 1:    u(aj =    I u.(a.) +   [ c..f.(a.)f.(a  ) 
i=l 1    1       i<j  TJ  !    1    J    J 

n 
ii c 

i=l 1.2, f.(a.) .n v v 

4b.    Multilinear 2: 
n 

u(a) ■    E u.(a.) +    i c.-u.(a.)u .(a .) + 
i=l 1    1        i<j 1J  1    1    J    J 

n 
4c.    Multiplicative:    1 + ku(ä} =    n (1 + ku.(a.)) 

i=l 1 

-- -'■■--■—   - - ■ —    i__i. 
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4d.    Additive: u(a) =   I u.{a.) 
i = l 

Here, a is a (riskless) muUiattributed object, a. is its value it. attribute i. 

the u.'s and f.'s are single attribute utility functions, and the c.^s, k, etc. 

are scaling factors. The expected value of u preserves the order of preferences, 

if the a's themselves are uncertain choice entities. 

The strongest of these models is the additive expected utility model (4d! 

first conceived by Fishburn (1965) and Pollak (1967). It requires that prefer- 

ences over risky choice entities that differ only in some subset of the attri- 

butes should be independent of constant values or constant lotteries in the re- 

maining attributes. Another way of saying the same thing is that preferences 

among risky choice entities ought to depend only on the marginal probability 

distributions in single attributes. This assumption has also been called the 

"marginality assumption", "additive independence" or "value independence". 

The multiplicative model was developed by Pollak (1967) and by Keeney 

(1968. 1974). It weakens the marginality assumption by requiring that prefer- 

ences'over risky choice entities öhat differ in some subset of the attri- 

butes should be independent only of constant values in the remaining attributes. 

That is. they may depend on lotteries in the remaining attributes. TMl axiom 

is usually called "utility independence". (See also Fishburn and Keeney, 1974. 

for several weaker versions of this assumption.) 

An even weaker assumption leads to the multilinear model 4b. developed by 

Keeney (1968). The multilinear model makes assumptions only about conditional 

preferences in single attributes. Preferences over risky choice entities that 

vary only in one attribute should be independent of constant values in the re- 

maining attributes (see also Farquhar. 1974). This single attribute version 

of general utility independence has not been specifically named in the litera- 

ture. 
The multilinear model 4a generalizes Keeney's multilinear model by allow- 

ing independent interaction terms. This model has been developed by Fishburn 

(1973, 1974) using assumptions similar to those in the development of the multi- 

linear bisymmetric model. These assumptions are quite difficult to spell out. 

I JHIIlMIM I   I llll     II ^trt^atmmm mm imitm 



i.||»l  I IJH 

-46- 

and their intuitive meaning is by no means obvious. For a discussion of this 

and some even more complex models, see Fishburn (1974), and Farquhar (1974 a 

and b). 

Going in the opposite modeling direction, some specifications of the ad- 

ditive and multiplicative expected utility models are discussed in Meyer (1969) 

for the risky tine variable case VII. Meyer's assumptions that preferences are 

not only utility independent, but also time stationary imply that utility func- 

tions ui (the single time period utility functions) vary only in unit, not in 

shape. An additional assumption guarantees that the units decrease exponen- 

tially over time. The results are the multiplicative and additive models with 

variable or constant discounting rates (3a and 3b in VII). 

The formally justified assessment procedures to construct any of the mo- 

dels 4a-4d are all based on the type of indifference lottery procedures dis- 

cussed earlier. These assessments are done in single attributes while the re- 

maining attribute values are held fixed. Scaling constants c.., k, etc. and 

techniques to match the utility functions u- in units require indifference 

lotteries that involve more complex choice entities, varying on at least two 

attributes simultaneously. Depending on the acceptable independence assump- 

tions, any of the. model forms 4a-4d is then applied to aggregate the single at- 

tribute utility functions. These construction procedures are best described in 

Keeney and Raiffa (1975) for models 4b-4d, and in Fishburn (1973c, 1974a) for 

model 4a. 

The literature is rather silent about possible techniques to approximate 

decomposable expected utility functions. One possibility is to approximate the 

rirKy utility function by a riskless utility function assessed with traditional 

riskless methods and then compute the expected value of this riskless function 

to determine an approximate utility for risky choice entities. If it is as- 

sumed that a riskless utility function is a reasonable approximation to the 

risky function, judgmental methods such as rating scales can be used to approx- 

imate the riskless function. Another way of dealing with the problem of ap- 

proximating risky utilities with riskless utilities is to make the risky prob- 

lem a riskless one by determining for any risky choice entity a riskless one 

1 ' -■■ .- — -—-' 
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that is indifferent to it. Such certainty equivalents could be assessed, for 

example, in each attribute and then the utility for the now riskless choice 

entity could be measured with appropriate riskless procedures. (See also Kee- 

ney, 1968, and Keeney and Raiffa, 1975, for a discussion of model assumptions 

that allow conversions of risky objects into riskless ones by assessing certain 

ty equivalents in single attributes.) 

Relationships between models and assessment procedures 

This part of the report will show some additional relationships that link 

the 5 model classes and show connections between models for different choice 

pntities. In order to avoid unnecessary duplication, only the riskless and 

risky, single attributed and multiattributed applications of these models will 

be discussed in detail. Other applications to group and time problems can be 

inferred from the single attributed and multiattributed distinction by substi- 

tuting "individuals" or "time periods" for "attributes". 

Me are interested here in conditions under which models and assessment 

procedures produce the same or possibly very similar utility functions. There 

are at least three arguments leading to such coinciding or converging utility 

functions. 
The first examines the logical relationships between models. Two models 

A and B are equivalent if the assumptions of model A imply the assumptions of 

model B and vice versa. Utility functions constructed within equivalent mo- 

dels should be indistinguishable. In a weaker relationship, model A may imply 

B, but the reverse may not be true. If in such a case the assumptions of model 

A are true, then by implication also the assumptions of model B will be true. 

Utility functions constructed within either model should coincide in the sense 

that they both have the properties required by the weaker model. An example 

of such a case is the additive expected utility which implies the multilinear 

expected utility model(s), but the multilinear models do not imply the additive 

model. Another example is additive bisymmetric measurement which implies con- 

joint measurement but not vice versa. 

t 
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The Mcond argument for agreement between utility functions constructed 

with different procedures and models is based on the similarity of the judg- 

mental processes involved in construction procedures. For example, although 

there is no logical reason to assume that single attribute difference mea- 

surement and single attribute bisection r -»asurement should produce identical 

utility functions, one would not expect them to differ very much since the 

processes involved in bisection are not substantially different from those 

involved in making difference judgments. This line of reasoning can even con- 

clude in similarities between risky and riskless utility functions. 

The third argument is less subtle, requiring neither logical nor behav- 

ioral similarities. It is based on the experience (either experimental or 

through simulation) that certain models and procedures will produce converg- 

ing utility functions in a large number of cases. For example, it has been 

shown that additive models are usually pretty good approximations of nonaddi- 

tive models; and that variations in single attribute utility functions or 

weighting parameters produce utility functions that are very highly correlat- 

ed. This type of insensitivity is often used to justify a model whose assump- 

tions are not met or not checked, or to apply procedures that are formally 

not justified. 

Formal model implications and equivalences -- Models for the risky and 

riskless single attribute case have few interesting formal relationships. In 

the riskless case, clearly difference measurement and bisymmetric measurement 

imply the weaker weak order model, but not each other. In the risky case, the 

only interesting relationship links weak order risk theories and expected u- 

tility models. /\s Coombs (1972) points out, expected utility models imply 

the weak order expected risk model (portfolio theory). In other words, if the 

expected utility model fails, it may still be possible to assess preferences 

with a risk model. 

Tables 7 and 8 summarize all implications for models for risky and risk- 

less multiattribute cases. Identical charts are applicable to the other two 

cases (individual vs. group; time invariant vs. time variable). The direction 

of arrows in these charts goes -from the stronger model to the implied (weaker) 

.^. täm*m*mmm*mum   «-^ 
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model. Some of these implications are rather obvious and can be directly in- 

ferred from the model forms, e.g., the fact that the multilinear model 4a with 

independent interaction terms is implied by the multilinear model 4b with de- 

pendent interaction terms, or that the additive bisymmetric model implies the 

multilinear forms. 

Insert Tables 7 and 8 about here 

4 

'-B 

An interesting case is the implication of the additive and multiplicative 

bisynmetric models to the additive conjoint measurement model. Both bisymmet- 

ric models are stronger than the additive conjoint measurement model, since 

they make assumptions beyond just the preference order of multiattributed 

choice entities. But their assumptions (together with appropriate continuity 

assumptions) imply that there is an additive order preserving representation 

for multiattributed alternatives which implies conjoint measurement. (In the 

multiplicative bisymmetric case, this additive representation would oe a loga- 

rithmic transformation of the bisymmetric function). 

The risky multiattribute case has some even more intriguing model impli- 

cations to offer. The strongest model here is the additive expected utility 

model that implies almost every other model (with the exception of some simole 

polynomial conjoint measurement decompositions). Since the bisymmetric decom- 

position models have identical form and differ from the expected utility de- 

composition models only in the transformation h that maps their utility func- 

tions into a risky utility function, all of these models are implied by the re- 

spective expected utility decomposition models. Most of these relationships 

follow directly from the functional form of the models. 
What about the relationship between risky and nskless models? For the 

single attribute case the only obvious implication is that any model in the 

risky case generates utilitv functions that preserve also the order of risk- 

less preferences, that is, they all imply the weak order model in case I. 

However, nothing guarantees that EU-models imply difference or bisymmetric 

models (although an argument will be made later that there are certain behav- 

ioral similarities between these models). 
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The multiattribute case is again more interesting, and some practical 

conclusions can be drawn from observing some implications between risky and 

riskless models. First, note that only the expected utility models can be for- 

mally justified for an application in risky and riskless situations. Neither 

conjoint measurement nor bisymmetric measurement can alone provide a mechanism 

for coping with the evaluation of risky options. However, one could conceive 

of a simplified application of these two models, in which first a utility func- 

tion is contructed for riskless multiattribute chcice entities (using either 

standard sequences or bisection methods) and then expectations are taken of 

that riskless utility function if outcomes are uncertain. This is not in gen- 

eral a valid procedure (see v. Winterfeldt and Fischer, 1975). To give an in- 

tuitive understanding why this may not be appropriate, consider the properties 

of the decision maker's preferences that are reflected in an additive riskless 

utility function, derived from conjoint measurement. These are riskless inde- 

pendence properties, the decision maker's marginal utilities, etc. However, 

these utilities may not reflect the DM's attitude towards risk when he has to 

choose among uncertain choice entities. It may be necessary—before expecta- 

tions are taken--to convert the additive riskless function into a risky func- 

tion by an appropriate transformation (see p.43). 

However, if the assumptions of an expected utility decomposition model 

are met (o.g., an additive expected utility model), then a formal argument can 

be made, that the analogous riskless conjoint measurement or bisymmetric mea- 

surement (e.g., additive) will pro/'jce exactly the same utility function as 

the expected utility ineasurement. Let's look specifically at the additive 

case here. If the conditions for an additive expected utility model are met, 

then we know that 
1. there exists a utility function that preserves preferences over 

riskless choice entities, and 

2. this utility function is an additive combination of single attri- 

bute utility functions, and 

3. the expected utility preserves preferences over lotteries with 

multiattributed outcome?. 
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Now assume that, in addition to the axioms of additive expected utility 

theory, also the axioms of conjoint measurement and the axioms of an additive 

bisymmetric structure hold. These assumptions imply two more utility functions 

that 

1. preserve preferences over riskless choice entities, and 

2. decompose additively over attributes. 

The next step is a consequence of the uniqueness property of all three utility 

functions, which says that any two utility functions that preserve preferences 

over riskless alternatives and decompose additively, must be liiearly related 

to one another. Thus all three utility functions must be linearly related. 

The real trick comes now: if, however, a conjoint measurement utility func- 

tion, a bisymmetric utility function, anc an expected utility --"unction are 

linearly related, their respective expectations must preserve preferences over 

lotteries with multiattributed choice entities. Practically, speaking, this 

means that given the conditions of additive expected utility theory, any model 

that produces preference preserving additive utility functions could be used 

as a surrogate for the original expected utility model, and its utility func- 

tions could be used to take expected values. So, if an analyst has convinced 

himself oi the validity of the additive EU-model, he might as well go ahead 

and construct utilities with standard sequences or bisection methods. (And, 

of course, the step from here to even simpler approximation methods is not very 

big.) 

A final example of this sort is the case in which the multiplicative ex- 

pected utility model is valid. In this case, the additive conjoint measure- 

ment model for riskless choice entities will be valid, and both utility func- 

tions will be related by a logarithmic (or exponential) transformation. So, 

it is perfrectly valid -- when a multiplicative EU- model is accepted -- to 

construct utilities with conjoint measurement procedures and to transform these 

utilities exponentially to achieve the multiplicative EU representation. 

Behavioral similarities and differences in assessment -- Although quite 

a few models that were discussed so far cannot be logically related, it s 

possible to look at the cognitive processes that are involved in the asse.-s- 

> 
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ment task to see if there are any reasjns to assume that utility functions 

resulting from different procedures may produce similar results. This point 

is particularly important for the justification of approximate assessment 

procedures, which are often much simpler than the theoretically feasible ones. 

Unfortunately, the experimental and applied literature is rather silent about 

such similarities, so most of what fo lows will Me speculative. 

Let us first look at models and procedures in the single attribute east. 

In the riskless case we already discussed some aspects of behavioral similari- 

ties of models and procedures. Standard sequences of utility differences, di- 

rect rating scales, bisection procedures, methods of equal appearing intervals 

--all the theoretically feasible and approximation methods for this case-appear 

to involve similar judgmental processes: that of judging relative preference 

differences among riskless choice entities. Although cognitive processes such 

as anchoring and adjusting or context effects may operate differ-Uly in these 

procedures, it would be surprising if large differences in the shapes of the 

single attribute utility functions were to be found, 

Among the models for the risky single attributed case (III), the expec- 

ted utility models are all constructed using some versions of indifference 

lottery procedures. Whether one varies probability distributions in these 

procedures and asks for certainty equivalents, or whether one varies outcomes 

and asks for matching probabilities is irrelevant from a theoretical point of 

view. Practically these two types of indifference lotteries may produce dif- 

ferent results, partly because of their shift in emphasis on different aspects 

of the lotteries (costs and payoffs vs. probabilities). The most interesting 

question arises in compariny the behavioral similarities and differences among 

procedures that jointly measure probability and utility and procedures in 

which the assessment of probability and utility are strictly separated. None 

of the three SEU-models would theoretically justify numerical estimation of 

probabilities and subsequent assessment of utilities with the use of these 

numerical probabilities. Nevertheless, this is the most widely used approxi- 

mation procedure. Magnitude estimation of likelihoods of events in the form 

of odds or probabilities, although not formally justified by the models, in- 

• 
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volves, of course, processes that are very simnar to the processes in Savage's 

standard sequence method. All one has to assume is that the assessor has some 

event in mind that is well calibrated (such as the event that a spinner will 

land on a certain section of disc), finely divided in many equally likely sub- 

events, and that his numerical assignment is an indifference judgment between 

such well calibrated events and the event ',\,  question. There are, of course, 

many other procedures to assess probability distributions for risky options, 

but since this paper is concerned with utility rather than with probability, 

it will not go into further detail. 

How can models and assessment procedures for the riskless and risky 

single attribute cases I and III be compared behaviorally? Here, I would like 

to express a rather heretical view. Certain cognitive processes involved in 

the judgments of utility differences resemble closely those involved in judg- 

ing gambles. For example, a decision maker may reject playing a fifty-fifty 

gamble for $100, because he judges the loss of $100 as more severe than he ap- 

preciates winning $100. The risk aversion he exhibits by not playing the gam- 

ble really is based on judgments of utility differences. Very often risk at- 

titude (or the shape of a risky utility function) can be explained by the char- 

acteristics of a riskless utility function, e.g., its marginal utility, rather 

than by a special component introduced through gambling. For example, if a 

decision maker has the option to play a gamble in which he receives 10 pounds 

of ground beef on the flip of a coin vs. nothing, he may state a certainty 

equivalent for that gamble of 3 pounds -- not because he is risk averse (in 

the non technical sense that he does not want to take chances) but because he 

does not see any value in an additional pound of ground beef beyond, say, 6 

pounds. 

In indifference judgments about gambles, riskless judgments of utility 

differences and pure risk attitude are confounded. The above examples suggest 

that riskless utility differences may play a very strong part in the judgment 

of risky utilities. If pure risk attitude is defined through the transforma- 

tion of a riskless difference utility function into a risky one, that trans- 

formation may often be almost linear. In the multiattribute risky and risk- 

less situation, this linearity can even be proven provided that an additive 

>\ 
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expected utility decomposition model holds (See pp.52-53).  In summary, local 

risk aversion aru marginal utility may coincide more often than the conceptual 

distinction of the underlying models may suggest. 

Bisection procedures and indifference lottery procedures can be similarly 

linked. If a certainty equivalent of a gamble with two equally likely outcomes 

is identical to the bisection point for all possible outcome combinations, then 

a bisymmetric utility function and a risky utility function would have equal 

shape. Again, it appears chat the processes leading to the identification of 

a bisection point are not that much different from the processes leading to a 

certainty equivalent. 

From these arguments, the next step -- as radical as it would first ap- 

pear -- seems not that far: rating scales involve similar cognitive processes 

as do bisection and difference judgments. Bisection and difference judgments 

may involve similar processes as do indifference judgments about gambles with 

two outcomes and equally likely evenr.s. Sc t. .re are behavioral reasons to 

assume that rating scales will produce utility functions that are not substan- 

tially different from utility functions generated with indifference lotteries. 

All these concepts which have only been sketched above could, of course, 

be axiomatized, and the conclusion could be proven, and experimentally checked. 

So far, it is only speculation intended to break up some of the rigid thoughts 

about what utility means and how it should be measured. Later arguments about 

the insensitivity of certain models will show, anyway, that precise utility 

and probability assessment probably does not matter very mii<~h. 

The multiattribute case really adds only one new assessment procedure: 

that of dual standard sequences. All other procedures are single attribute 

versions of the already discussed methods (bisection, and indifference lotter- 

ies). It is doubtful that standard sequences should involve cognitve proces- 

ses that are very different from, say, difference judgments. Really, what the 

assessor eventually does in creating a standard sequence is to find choice en- 

tities that are equally spaceo in utility. The only difference from the dif- 

ference standard sequence procedure is that he does so by using a standard com- 

parison step in another attribute. One could argue that dual standard sequence 

procedures are difference procedures with the help of a realistic representa- 

I ; 
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tion of a utility difference. The argument can then be made that both bisec- 

tion and direct rating procedure will generate results similar to dual standard 
sequences. 

One crucial difference which arises only in the additive multiattribute 

case is that of implicit vs. explicit weighting procedures. Recall that impli- 

cit weights are calculated from equations that result from observed indiffer- 

ences among rather complex stimuli. The alternative approximation method is 

direct rating or ratio assessment of such weights. Here, it is possible that 

different cognitive processes are operating when making such judgments. When a 

decision maker has to make indifference judgments which eventually allow the 

computation of weights, he will express his local trade-off between attributes. 

This local trade-off (which is, of course, variable with the location of the two 

choice entities that are matched) allows the identification of the trade-off 

in utility as measured on the unrescaled single attribute utility functions. 

This trade-off in utility tells how many (unrescaled) utility units the deci- 

sion maker is willing to give up in attribute 1 for an increase of x (unre- 

scaled) utility units in attribute 2. Since this trade-off is constant in u- 

tility, that is enough information to get the utility units of the two unre- 

scaled utility functions into correct proportion. So really, the processes 

that are tapped here when observing indifferences to construct rescaled utili- 

ties are directly related to comparisons of utility intervals. 

When importance weights are judged directly, however, either on a numeri- 

cal rating scale, or in terms of ratio magnitude estimation, factors other than 

comparison of utility units may enter into the decision maker's consideration. 

One possibility is that the range within which the single attribute utility 

functions are assessed is disregarded—which in essence is disregarding the 

size of unrescaled utility intervals in that attribute—when judging some ab- 

solute "importance -atio". In attributes that have an insignificant range, 

this will lead to overestimation of the rescaling factors; in attributes that 

have a wide range, this may lead to underestimation. In any case, external 

factors not related to the scaling problem may enter in judgments of importance 

ratios. 
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Similarity by insensitivitv -- The final argument which supports conver- 

gence among several models and procedures is that of insensitivity, a sort of 

de facto similarity without formal or behavioral cause. It just says: experi- 

ence has shown that model A and model B or that procedure a and b produce con- 

verging utility functions. Most of these results have been developed for addi- 

tive models, but there are also some indications of model convergence across the 

borderline of additivity. Fischer (1972) and Yntema and Torgerson (1961). for 

example, demonstrate that additive models can approximate non-additive models 

quite well. Similar arguments can be found in Dawes and Corrigan (1973), who 

introduce the qualification "if the dependent variable (utility of the non- 

additive model) is measured with a substantial amount of error". There is a 

wealth of regression analytic literature showing that simple linear models pro- 

duce surprisingly good results when compared with more "realistic" figural and 

complicated models. Fischer (1972), however, found some examples, where addi- 

tive models are not such good approximations, in particular for complex multi- 

linear models when the number of attributes become large. 

Most recent insensitivity research was concerned with convergence between 

additive models with different utility functions or weighting parameters. The 

main results of these studies are: 

1. Variations of the llidpt of single attribute utility functions 

will produce overall utilities that are highly correlated as 

long as all single attribute functions are monotone* (Fischer, 

1972); (see also Slovic and Lichtenstein, 1971, for similar 

arguments in regression analysis). 

2. Variations in weight parameters produce overall utilities that 

are highly correlated. Unit weighting schemes often do a re- 

markable job in predicting models with skewed weighting schemes 

(Einhorn and Hoyarth, 1974; Dawes and Corrigan, 1973. 

*Morjtomcity is a version of preferential independence that requires that 
more of ont» attribute is always preferred to less (or vice versa), no matter 
what the other attribute values are. 
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Although few of these analyses have concentrated specifically on utility 

models (most of them were concerned witn simple regression models, in which one 

problem was the consumption of degrees of freedom in parameter estimation, a 

problem that does not arise in utility theory), the results should have implica- 

tions for assessment in utility theory. It is probably not too daring to say 

that, as long as all single attribute functions are monotone, their precise 

shape and relative rescaling will not matter very much. 

How useful is utility theory for decision analysis? 

So far. we have classified, described, and integrated the formal models 

and assessment procedures that form under the name of utility theory. Th | 

section examines the Question: what is all this good for? Is the effort that 

measurement theorists put into the development and sophistication of utility 

models really useful to anybody, or is it just a mathematical exercise? Obvi- 

ously. Holder did not produce any changes in the practice of length measurement. 

Do utility theorists run a similar danger of reproducing results that really 

have rnly little, if any, implications for measurement practice? 

To answer this question, let us first look into some areas where utility 

theory has been applied to model preferences. Much theorizing and psychologi- 

cal experimentation has gone into the analysis of utility theories as descrip- 

twe models of human decision making behavior. Studies in the descriptive 

validity of utility theories have concentrated on two decision situations: the 

riskless multiattributed case (case II in Table 4) and the risky single-attri- 

buted case (case III in Table 4). Simple additive models have been tested in 

the riskless multiattribute case; they usually were considered approximations 

of some conjoint measurement representation (see Fischer. 1975). Expected 

utility models and conjoint measurement models have been applied to the risky 

single attribute case (see Edwards. 1954. 1961; Edwards and Tversky. 1967; Lee. 

1970). Only three studies analyzed the validity of models in the risky rnulti-' 

attribute case (VlXTverksy, 1967; v. Winterfeldt, 1971; Fischer, 1972). Few 

of these studies used the full potential of measurement theories, e.g.. an an- 

alysis of their axioms, or application of formally justified assessment. Typ- 

ically, some approximation method or approximate model was analyzed for its 

ability to predict global preference behavior or judgments. I do not know of 
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any descriptive applications of the bisymmetric or difference utility models. 

Utility theory has also been applied as prescriptive theory of preferen- 

ces.    Any of the utility models described in this report could be used for mo- 

deling and measuring preferences to aid decision makers in evaluating or deci- 

sion-making.    Keeney and Raiffa (1975) list a number of cases in which utility 

theory-in particular expected utility measurement for single and multiattribut 

sd cases--has been applied for solving real world decision problems.    There are 

extensive applications of simple expected utility models to   business decision 

problems (see Schlaifer,  1969; Brown, 1970; Matheson, 1970), and a few applica- 

tions of simple multiattribute models (see Keeney and Raiffa, 1975; Edwards et 

al., 1975, and Fischer and Edwards, 1973).    In only a very few cases the full 

potential of utility theory (tests of independence assumptions and use of for- 

mally justified assessment) has been exploited in these applications.    Applica- 

tions of models for time variable cases aid group preferences is still very 

limited.    There has been no application of difference, bisymmetric, or con- 

joint measurement models for solving real decision problems. 

Although some utility theories have been used in modeling preferences 

--descriptively in the laboratory or normatively in the reai world--the general 

impression is that the application of utility theory is limited to a few classes 

of decision problems and utility models.    If one would measure the usefulness of 

utility theory in terms of its present use in descriptive or normative modeling, 

the picture would indeed be rather gloomy.    A better criterion—and the one tliat 

will be adopted in the following pages--!s he«' utility theory could be used, 

although the following discussion will concentrate on the potential use of util- 

ity theories as prescriptive models, many of the arguments apply to their de- 

scriptive use as well.    Prescriptive use of utility theory means any applica- 

tion of axioms, measurement procedures or other formal ways of thinking in the 

framework of utility theory when dealing with a formal analysis of real world 

decision or evaluation problems.    Ultimately, the usefulness of utility theory 

in this context is its ability to aid^ the decision maker (group, organization) 

in making decisions. 

Utility theory as formulated in the preceding sections could have two re- 

lated functions in such a formal analysis of decision problems: 

i 

I 
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1. To aid in eliciting a model that best fits the decision problems 

and that at the same time represents the decision maker's tastes, 

values, and preferences; 

2. To elicit the appropriate numbers which are needed to permit the 

calculation of utilities. 

The question, "how useful is utility theory?" then boils down to the ques- 

tion, "how well is utility theory equipped to solve these two tasks?" 

Although the report will go into much detail discussing this question, 

the general conclusion may be stated here already: utility theory offers a 

fine conceptual framework for thinking about problem structure, model forms, 

and possible places where models can go wrong. With the help of utility theo- 

ry, decision analysts may improve their model building process substantially. 

However, in the actual construction of scales, utility theory has little to of- 

fer, and analysts usually will have to use their own intuition and expertise 

when it comes to assessment of utilities. The reasons are, among others, that 

the procedures to assess utilities within the formally justified framework are 

often clumsy, complicated, and difficult to understand. They do not allow for 

errors, are time consuming, and they most often involve imaginary questions 

that are hard to think about. 

in the following, first the use of utility theory to elicit models for 

preferences will be discussed  Then the use of utility theory for eliciting 

uctual scales will be criticized, and, finally, some crifical remarks will be 

made regarding the scope of utility theory in general. 

Use of utility theory for model elicitation -- How can utility theory be 

used to help building models of preferences that can improve the decision mak- 

ing or evaluation process? First o," all, if an analyst wants to build a model 

of preferences, he has to ask himself: utility for whom, and for what entity? 

These two questions identify the class of models that arp applicable to the 

special decision problem. Utility tneory does little for the analyst here but 

stress the importance of this question. Different models apply to differ- 

ent decision making and choice entities. But through classification schemes 

like the one presented in this report, some structure is provided for the pro- 
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cess of identifying the decision maker and the decision problem. Unfortunately, 

the most realistic and complex problems have not been modeled yet. If an ana- 

V't finds, for example, a decision problem in which groups make decisions that 

affect many with uncertain and multiattributed outcomes, he will find no model 

applicable to this case. He is left to his own expertise in either putting var- 

ious models together (e.g., expected utility models, multiattributed models, and 

so forth), or to make up models himself. 

The next step an analyst has to go through if he wants to make use of any 

utility model, is to define the problem into the format in which the models are 

formulated. He has to define value dimensions (attributes) of outcomes, the 

individuals affected by the outcomes, the time periods of payoffs, and all the 

uncertain contingencies under which outcomes will be received. Although util- 

ity theory itself offers little help in this important task of structuring the 

problem, it obviously makes beneficial contributions by defining what elements 

are required in a formal treatment of decision problems. Decision trees (Raif- 

fa, 1968) and goal hierarchies (Manheim and Hall, 1967) are among the tools 

that have grown from utility theory. 

Utility theory may also help to structure a decision problem in a way that 

suggests simple models and simple assessment, thus making the judgmental tasks 

easier. For example, if one wants to use additive evaluation models in a multi- 

attribute context, one would try to structure the problem in a way that suggests 

preferential independence of attributes. This is often not very difficult to do. 

For example, when evaluating apartments on the attributes "distance from the of- 

fice" and "transportation facilities", preferential independence will certainly 

be violated. One could get around that problem by redefining a compound attri- 

bute "accessibility of the office". In other words, often the concepts of util- 

ity theory help to identify possible problem areas in modeling early in the 

structuring phase. (Interestingly enough, this function of utility theory may 

defeat the purpose of sophisticated modeling itself; if in 99% of all evaluation 

problems it is possible to find a structure that suggests additive or other sam- 

ple models, why bother developing much more complicated alternatives?) 

After the structuring process—which really is a process of making the 

decision problem accessible to modeling—the decision analyst can begin to ask 
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questions to select appropriate models for solving the decision problem. At 

this point, utility theory may hive its most beneficial applications. Of course, 

the analyst has little hope of ever identifying the one and only optimal model, 

but utility theory offers technical advice on how to go about eliminating models 

that are obviously wrong. The essence of this technical advice is contained in 

the various model assumptions and axioms. 

Consideration of these assumptions, in thought experiments and discussions 

between analyst and decision maker may identify those assumptions that are clear- 

ly unacceptable to the decision laker or that do not fit the decision problem. 

The goal of this search and cneck procedure is to find the set of strongest as- 

sumptions that can still be accepted and to identify a model that meets this set 

of assumptions, v. Winterfeldt and Fischer (1975) recently presented a hierar- 

chical structure of model assumptions for the riski ess and risky multiattributed 

cases that a decision analyst can run through in order to eliminate models, and 

select a model form that appears acceptable. 

Naturally, nothing guarantees that the model thus identified '"s an opti- 

mal one. Exploration of alternative models is good practice in decision analy- 

sis. Often one may want to make intentional modeling errors by using a model 

who^e assumptions are violated in order to buy simpler assessment methods. In 

this case, o; course, extensive sensitivity analyses should assure that these 

model violations won't lead to preposterous results. 

After thought experiments (which are nothing else but imaginary examples 

of the formal model assumptions), the analyst can go further and use explicit 

model tests, by checking practically if some simple model implications or nu- 

merical assumptions hold. Again, utility theory provides such procedures. For 

example, if one wants to check the validity of the multiplicative expected util- 

ity model in risky multiattribute evaluation problems, one could check if cer- 

tainty equivalents in one attribute are independent of constant values in other 

attributes. Of course, one has to take care that the task for the assessor is 

not so complex that it leads to errors simply because of information overload 

problems. Similar checks in a conjoint measurement framework may take the form 

of assessing single attribute utility functions conditional on various constant 

values in other attributes to see if the form of the single attribute function 

depends on these values. 

>'■ 
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Although these types of axiomatic check procedures are built into a util- 

ity theory, they are often formulated in such an invidious mathematical language 

that it is hard to recover their meaning from the model. It is crucial for such 

use of utility theory that the meaning of these assumptions is clear, otherwise 

there is little an analyst can communicate to a decision maker to check if the 

model assumptions are acceptable. For example, a decision maker may je baffled 

when asked "do your evaluations of risky multiattributed alternatives depend 

solely on their marginal probability distributions?" Unfortunately, utility 

theorists have often given in to mathematical sophistication in their model for- 

mulations, which usually hides the meaning of model assumptions. Besides for- 

mulating their assumptions in a rather mathematical fashion, utility theorists 

also try to make them appear vdy weak. A large amount of measurement theoret- 

ic effort is devoted to weakening assumptions while still retaining strong re- 

sults. Fishburn and Keeney (1974), for example, show that with the help of 

some riskless assumptions (preferential independence) it is possible to derive 

powerful risky independence assumptions (utility independence). The problem 

with this kind of reasoning is that the "stronger" assumptions must still be 

valid if the "weaker" assumptions hold. One may be tempted to accept the val- 

idity of weak assumptions and forget about their strong implications. Although 

it may be misleading to ask the decision maker whether or not he would accept 

the full implication of all assumptions together (e.g., an additive expected 

utility model), it is equally erroneous to ask for acceptance of the weakest 

assumptions. To state it in mathematical language: testing the lemmas may of- 

ten be more insightful than testing the axioms or theorems. 

After structuring and after selection of a candidate model, the analyst 

can make use of utility theory in a final way when actually assessing the util- 

ity functions within the framework of the model he selected. In an extension 

of the numerical tests to select models, he can now build into the nodel con- 

struction various consistency checks that are suggested by the model form. In 

the multiattribute framework, for example, he may assess single attribute util- 

ity functions and predict some simple implications of the additive model with 

these functions. In the risky multiattribute case, he could assess more than 

one single attribute utility function to set if the shape of these functions 
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varies systematical^ with the conditioning values in other attributes. There 

are many ways of performing such consistency checks, and although utility the- 

ory provides guidance through the model forms, it remains an art to design such 

checks intelligently. 

A final point that should be mentioned is that utility theory is silent 

about the errors that occur when one applies an inappropriate model to a deci- 

sion problem. The model may be inappropriate for two reasons: first, because 

it makes assumptions that are not justified, usually because they are too strong. 

The reverse kind of mistake is also possible, namely applying a model--although 

its assumptions are uncontroversial--which is not strong enough. Generally, 

the weaker the model, the more complicated the procedures to assess utilities; 

and the more complicated the assessment procedures, the more likely assessment 

errors will omir. Deterministic utility theory—the only class of utility 

models that has any potential in real world applications—cannot say anything 

about this very real trade-off between model weakness and assessment complex- 

ity, since it does not acknowledge error. It is uncontroversial that a weak 

order model is always an appropriate normative model for decision making, since 

it only says that choice entities are to be ordered transitively. However, 

that statement helps little in model construction. Assessment errors that can 

occur, for example, in complex indifference curve assessment and trade-offs may 

be much more substantial than the errors that occur from assuming a model form 

that violates some of the decision maicer's preferences. Probabilistic models 

appear to be no way out of this dilemma; although they acknowledge the possi- 

bility of error, they do not provide any mechanisms to realistically model and 

assess preferences in real world decision problems. 

The message of this section addressed to the practitioner of decision an- 

alysis is this: yes, utility theory can help you structuring decision problems, 

and eliminating inappropriate models. What you have to do yourself is to trans- 

late often rather mathematical axioms into behaviorally meaningful and testable 

assumptions. And even after you go through the process of model elimination and 

selection, you will still have to make up your mind about the possible trade- 

offs between assessment error and modeling error. The message to utility theo- 

rists is this: models are useful, the more meaningful and real their cssump- 
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sumptions and implication are. So it may be useful to give up some mathemati- 

cally sophisticated formulations in favor of more clumsy tut  realistic ones, 

and it may be more useful to formulate all model assumptions and implications 

in their full strength rather than hide the strength of the model behind seem- 
ingly weak axioms. 

Use of utility theory for scaling -- As mentioned before, assessment is 

really the weak point of utility theories. If the irodels are useful for de- 

fining appropriate model forms, they seldom have produced elicitation methods 

that are very attractive in applied settings. An attractive assessment pro- 

cedure would be one that is, among other things, 

1. simple, 

. error free, 

3. time and cost efficient, 

4. realistic, 

while still being in agreement with the modeled preferences. In general, the 

theoretically feasible assessment procedures do not rate very well on these 

criteria, when compared with the direct estimation methods that were discussed 

earlier as approximation procedures. An exception may be difference and bi- 

section assessment, because of their close resemblance to direct estimation 

procedures. 

Let us try to substantiate the claim that the formally justified methods 

for eliciting utilities do not fare very well in application. Really, we are 

talking about only five different methods: 

1. indifference curves (weak orders) 

2. difference standard sequences (difference measurement) 

3. bisection standard sequences (bisymmetric measurement) 

4. dual standard sequences (conjoint measurement) 

6. indifference lotteries (expected utility measurement). 

All these formally justified assessment procedures require, in one form 

or another, indifference judgments. Usually, the assessor manipulates one en- 

tity, or one variable aspect of a choice entity (a probability, a single attri- 

bute value, etc.) to match that choice entity against a standard. This method 
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is well known in psychophysics as the method of adjustment (Torgerson, 1953). 

Depending on the model form, these matches or indifference judgments involve 

more or less complex choice entities. Indifference curve procedures can in- 

volve choice entities that var> simultaneously on many attributes, while stan- 

dard sequence procedures in conjoint measurement involve choice entities that 

vary only on two attributes at a time. Indifference lottery procedures typ- 

ically involve only one variable (a probability, or a single attribute value), 

but in multiattribute models rather complex matches have to be established 

for rescaling, or assessing risk transformations (see p. 43). 

If the choice entities that are to be matched vary on many value relevant 

aspects (as in indifference-curve procedures), the matching task can be very 

complicated fpr the assessor. But even if choice entities are simple, such as 

gambles for money, indifference procedures may still be quite complex. System- 

atic reliability studies are missing, but Davidson et al., (1957) give some in- 

dication of inconsistencies in very simple indifference judgments. In addition, 

psychophysical studies on indifference judgments in a variety of tasks show that 

there are systematic biases in indifference judgments such as constant error, 

etc. (Torgerson, 1958). 

Clearly, any assessment procedure will produce some amount of error. The 

point is that indifference procedures may increase the amount of error by ask- 

ing unusual questions about complex choice alternatives. The mere complex the 

choice alternatives that are to be matched, the larger the error will be. Be- 

sides this type of random error due to the procedure, another measurement error 

is introduced in these assessment techniques. This error results from approx- 

imation of utilities through interpolation or curve fitting. Interpolation of 

utilities is necessary, if the measurement procedure did not provide the util- 

ities for all the choice entities under consideration, but rather of a f^w 

points in that area. This will almost always be the case in the three standard 

sequence procedures, since, by their logic, they identify utilities gencrically 

without concern for the decision problem. Standard sequences determine the 

utilities of a well defined subset of choice entities, but this subset may be 

very different from the choice entities that are the subject of the decision 

problem. In this case, the utilities of the poirts of interest will have to 
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be approximated. Also, if one constructs indifference curves, tie only way to 

avoid interpolation is to begin with the choice entities of interest and trade 

them off into one attribute. Otherwise, indifference curves will have to be 

approximated and utilities for points not located on the indifference curves 

will have to be estimated. The only procedure which provides for a straight- 

forward utility assessment of alj choice tntltlftl under study is the indiffer- 

ence lottery procedure in its variable probability version, where the choice 

entity of interest is fixed and probabilities are varied to generate a matcS 

between this choice entity and a gamble for two reference choice entities ^see 

p. 40). 

One could, of course, construct utilities with any of the five procedures 

that are finely graded to reduce approximation errors. But such a process may 

turn out to be very time consuming and inefficient. For example, in a simple 

riskless multiattribute evaluation problem involving 10 attributes and only 10 

steps in each attribute more than IOC such indifference judgments would have 

to be made (including the judgments necessary for rescaling), if one accepts 

the additive model, and a much larger number would be required to achieve an 

equally fine grid if the additive model fails. In complex models like the 

multilinear model, just the indifference judgments required for rescaling can 

go into the hundreds. With 10 attributes, for example, the multilinear model 

4b in the risky multiattributed case XI requires the assessment of 1022 scaling 

constants (see Keeney and Raiffa, 1975). This may be too much effort when the 

task is, for example, to compare three or four choice alternatives. 

All five assessment procedures involve indifference Judgmerus about im- 

aginary choice enfties that are not attainable in the decision problem. This 

fact is obvious for the indifference curve procedure and the standard sequence 

procedure. Since the assessor manipulates one variable aspect of the choice 

entities, he has to tiink about choices that, in reality, do not exist for him. 

The same is true for indifference lotteries, since the assessor has to think 

about "reference" outcomes that are usually not attainable, and about probabil- 

ities of events that have nothing to do with his decision problem. This lack 

of realism in assessment may produce quite serious judgmental problsms. Often, 

the analyst can formulate the assessment task in a mere realistic way, but he 
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will never get around the problem that indifference methods are by definition 

imaginary. There is another aspect to the problem of realism of assessment 

that may prove even more difficult to overcome. Some of the choice entities 

in utility assessment may not only be imaginary, but they may not even bt con- 

ceivable. For example, when evaluating apartments with a conjoint measurement 

model, one may have to construct utility functions over the attributes "ren:" 

and "size". The assessor may have to make indifference judgments about apart- 

ments with a very large size and very small rent, a rather unlikely combina- 

tion which he may not be able to think about. 

So much for the arguments that the formally justified indifference proce- 

dures are too complicated, produce too much error, are time consuming and un- 

realistic; some more so than others. In general, it appears that the rarely 

used difference and bisection procedures score bettet on these applied criteria 

than dual standard sequences, indifference curves, and indifference lottery pro- 

cedures. But if one wants to find smple, cick, realistic methods that produce 

little error, one will have to look outside of the realm of theoretically feasi- 

ble methods. Probably the most .sasonable methods of this sort are magnitude 

estimation methods such as direct .'ating, direct judgment of utility differen- 

ces, direct ratio assessment of weights, direct assessment of probabilities and 

utilities, etc. Clearly, they are uncomplicated. All the assessor has to do 

is to quantify his judgment on a numerical scale. They also are quick and more 

realistic since they need only be applied to the choice entities that are under 

study In the decision problem. If the number of choice entities is large, the 

assessment task may still be considerable, but seldom as large as in asses- 

sing the full utility function. Of course, the question of error remains. To 

use the approximation methods, one has to make sure that they produce utilities 

that are interpretable within the theoretical model in which they are to be ap- 

plied. Some such arguments can be found in the section on behavioral similar- 

ities between assessment procedures in this report. Still, these direct esti- 

mation methods are approximation methods, and errors will be made by not repro- 

ducing the ioeal utility function that would be assessed if the assessor could 

overcome all the cognitive problems in theoretically feasible methods. On the 

other hand, possible sources of error are reduced by assessing only the utili- 
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ties for the choice entities that are to be evaluated. Therefore, no interpo- 

lation is necessary. Also, by reducing complexity, one may reduce error. 

Without any experimental evidence, conclusions are hard to draw. But it ap- 

pears that there is at least a reasonable trade-off between quick, simple, and 

realistic direct estimation methods that are not formally justified in the mo- 

del context and the somewhat clumsy feasible indifference methods. This trade- 

off calls for experimentaiton. 

A concluding perspective — Utility theory is a collection of models and 

assessment procedures to measure utilities of various types of choice entites, 

for many different kinds of decision makers, groups, or organizations, and for 

numerous decision problems. Hopefully, this report has shown that utility 

theory offers a large number of models and assessment procedures and that it 

has many possible areas of application. While the preceding sections empha- 

sized the wealth of utility models and assessment procedures and their poten- 

tial use in application, these last few paragraphs will point out some limits 

of utility theory. 

If one inspect- the progress of the mathematical treatments on utility 

measurement over the last few years, certain trends become obvious: 

1. Within one and the same decision problem or evaluation paradigm more 

and more sophisticated models are developed that generalize previous model 

forms. A typical example of this trend are the last five years of modeling 

risky multiattributed preferences. Starting with the basic expected utility 

model, more and more general decomposition forms were added to the original ad- 

ditive and multiplicative forms. 

2. Existing models are transferred relatively intact to different cases 

that have similar formal characteristics. Recent models for risky group and 

time preferences, for example, are simple reinterpretations of the expected 

utility decomposition models which were developed for risky multiattributed 

cases. 
3. Some of utility theory becomes increasingly removed from its areas 

of application by weakening assumptions or formulating them in a mathemati- 

cally elegant, but often unintelligible form. 
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On the other hand, some of the most interesting and vital practical mo- 

deling problems still lie at the periphery of utility theory. Some of these 

problems are: 

1. Group decision making; 

2. Errors in measurement (in particular possible trade-offs between 

error in assessment and error in modeling); 

3. Basis for measurement with simple judgmental assessment methods. 

Anybody who is interested in the application of utility theory (either as 

descriptive or normative theory) is concerned about the problen of real prefer- 

ences and looks for theories that are based on real decision, real judgments, 

and real decision makers. Much of the recent research suggests that utility 

theory is more involved with its own formalities than with these real proper- 

ties of preferences. Maybe utility theory could become more useful if theorists 

begin to take judgments and preferences with all these real properties more ser- 

iously than the mathematics of the models that intend to represent them. 

-—-  
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